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ABSTRACT  

 

This paper reports experimental results of viscoelastic mechanical tests, at five different levels 

of conversion, for a thermoset composite matrix system toughened with an appropriate 

percentage of thermoplastic polymer. Results from static tests are used to build master curves 

at specific degree of cure while shift factors are compared with corresponded values from 

dynamic experiments in order to assess the validity of time temperature superposition for each 

conversion. Neat resin plates have been accurately cured, according to the full kinetics model 

for dynamic and isothermal temperature regime; conversion gradient within the plane and 

through the thickness was assessed by thermal analysis of samples taken from different 

locations before extracting the samples from the plates.  

Viscoelastic behaviour of the resin matrix shows sensible difference in relaxation time 

spectrum with the conversion according to the provisional trend of mobility theory; higher 

conversion induces horizontal shifting of the principal relaxation time for each level of 

conversion which can be very well related with glass transition at same conversion. Good 

results have been also obtained for the ultimate modulus of the resin at temperature just before 

the starting of the co-curing phase for the partially cured samples.  

 

KEYWORDS:  mechanical property, viscoelasticity, time-temperature superposition, 

conversion, thermoset 
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INTRODUCTION  

 

There has been limited work reported in the literature on the development of viscoelastic 

mechanical properties in curing thermosets. Evolution of the mechanical properties with the 

increasing degree of cure is a very important effect to monitor in order to provide adequate 

mathematical model for process simulation software.  

As the thermosetting resin cures, its material characteristics change from the behaviour of a 

viscous liquid (low stiffness) material, in its uncured state, to an elastic rigid solid (high 

stiffness), in its fully cured state. The mechanical properties of this resin phase are governed 

by competing mechanisms of chemical kinetics hardening, due to the polymerization, and 

viscoelastic relaxation phenomena, associated with the high processing temperatures. At 

elevated temperature and near the glass transition temperature, the system is characterised by 

a strongly viscoelastic behaviour with cure dependent relaxation times as the cure progresses; 

when the temperature is lowered, the elastic behaviour is dominant, with no sensible 

relaxation effect.  

Considering that temperature gradient inside the part and an associated degree of conversion 

gradient lead to a sort of complex “mapping” of the mechanical properties, suitable predictive 

models are necessarily required to achieve accurate residual stress analysis. Many efforts have 

been focused on the development of relationships between viscoelastic properties and specific 

polymer characteristics, such as molecular weight, molecular weight distribution, and degree 

of branching [1]. White and Mather [2] investigated the effect of cure on viscoelastic 

properties using ultrasonic techniques, while dielectric techniques have been used to 

characterize curing polymers [3] by relating ionic mobility to dynamic viscosity. Suzuki et al. 

[4] presented relaxation data for epoxies cured according to various cure cycles. However, in 

this analysis, the cure states of these samples were not determined. Therefore, relationship 

between mechanical properties and cure evolution could not be properly explored. In work by 

Kim and Hahn [5], the progression of the elastic modulus of thermoset resins has been 

reported to have a linear relationship with the degree of cure in the region of liquid-solid 

transformation. Outside this region two fixed values were assumed, respectively for the elastic 

modulus of uncured and fully cured system. Kim and White reported a systematic analysis of 

the effect of cure state on the stress relaxation modulus, the relaxation spectrum and the glass 

transition temperature [6,7]. Recently, Simon et al. [8] have presented an interesting research 

work on cure-dependent storage modulus for a commercial toughened epoxy resin. Giving a 

general methodology to model the time-temperature-conversion effects of viscoelastic 
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response of thermosets, the predictions of the shear modulus for a general temperature history 

profile are presented. Based on the same time-cure superposition and extended to a more 

general concept of time-cure-temperature superposition principles is the methodology 

presented by Manson et al. [9] used to predict the viscoelastic properties of an high ultimate 

glass transition temperature epoxy resin at any stage during complex cure cycles. While 

experimental data in all the above cited works are limited to the post-gelation region, in 

O`Brien et al. [10] a complete understanding of the mechanism that drive the development of 

material properties during the cure is presented by a series of experiments on the unreacted or 

partially reacted liquid resin as well as on the post-gelled resin. The authors have used inter-

relationships between viscoelastic properties obtained by both dynamic and static 

experiments, depending on the handling state of the resin system, to evaluate one mechanical 

property from another one. Master curves for creep compliance and for storage and loss 

modulus were constructed and their shift factors analysed. 

In this work, neat resin specimens were manufactured at various post-gelation degrees of 

conversion and tested under static stress relaxation and dynamic mode at different 

temperatures. Using raw data from static tests, master curves and shift factors were derived 

applying the time-temperature superposition principle. Obtained shift factors are then back-

applied to dynamic raw data from dynamo-mechanical tests performed on the same samples 

to proof validity of the master curve procedure. 

 

 

2 MATERIAL AND EXPERIMENTS 

2.1 Materials and sample preparation  

 

The main system considered in the present work is a TGDDM based resin, with catalyzed 

DDS cure and containing about 25% by weight of thermoplastic. The resin appears as 

translucent paste at room temperature with quite high viscosity. According to the 

manufacturer, the shelf life at  is 10 months and the glass transition temperature for 

the fully cured system is about . No more details were given for this system, since it is 

not yet available on the market. 

Co18−

Co200

Resin plates were cast using the mould shown schematically in Fig. 1. Handling problems 

related with resin flow as well as the generation of excessive degree of cure gradients within 

the sample are the major considerations in designing the moulding procedure. A thin layer of 
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PTFE/glass release film was stuck to each of the two glass plates, using PTFE tape at each 

end. The use of PTFE enabled easier release of the samples from the mould. In some cases, 

also liquid release agent (FREEKOTE 700) was used. The two metal bars were separated by a 

spacer of either rubber or aluminium, in which a reservoir was cut off. The spacer was held in 

place using double side PTFE tape on one mould and then the two moulds were held together 

using metallic jig clamps.  

Five different plates of partially cured resin (dimension 200 × 400 × 2.5 mm) were prepared 

under isothermal conditions ( - ) for different periods, in order to achieve 

partially cure material at various extents. They were classified by labels A, B, C, D, E, with 

degree of conversion increasing from A to E. For sample labelled as E, full conversion was 

expected, based on the results of cure kinetics modelling. 

C°180 C°160

 

2.3 Sample conversion assessment by Differential Scanning Calorimetry 

 

Since the aim of the mechanical characterization was to acquire the necessary raw data to 

build the corresponding “master curves” at a particular degree of conversion, uniformly cured 

samples were required. According to results of the cure kinetics model11 different samples 

were prepared with accurate temperature profile and off-line measurements were also 

performed on each sample to verify the uniformity of conversion for each specimen both in 

plane and through thickness.  

Figure 2 reports a schematic representation of the specimens’ location on one side. All 

samples, of about  , were scanned by DSC from room temperature to 340°C at a 

heating rate of 10°C/min to evaluate both the residual heat of reaction and the glass transition 

temperature. These two values provide useful information for evaluating the degree of 

conversion for each specimen and therefore they can be used to quantify the level of 

uniformity of conversion reached by the whole plates. The glass transition temeprature was 

determined as the inflection point of the heat flow step in the DSC signal in a thermal scan at 

10 K min

43− mg

−1 for the isothermally cured samples; while for the dynamically cured specimens the 

same heating rate was used in order to avoid discrepancies due to rate dependence of glass 

transition. DSC tests were performed on 10 different samples taken from the same rectangular 

plate, respectively from each of the two sides to evaluate through-the-thickness and on each 

side, from the four corners and from the middle position, to evaluate in-plane degree of 

conversion gradient. 
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2.4 Dynamic Torsional Rheometric Tests 

 

Rheometric test using a torsional clamp system for solid samples were performed on partially 

cured materials. Specimens were cut from the plates after the degrees of conversion were 

assessed, using a low speed saw wafer machine. The cell mounted on the AR2000 rheometric 

equipment from TA Instruments is an Environmental Test Chamber (ETC) with thermal 

controlling system in the range  to  with maximum heating rate of . 

All solid torsional tests were performed according to the specifications of ASTM D4065. 

C°−150 C°600 min/15 C°

 

2.5 Static and dynamic 3 point bending tests  

 

Stress relaxation and dynamical mechanical tests were performed by a TA-2940 DMA 

machine on rectangular strips taken from each of the partially cured plate. For the dynamic 

tests, specimens with dimensions of 50 x 12 x 3 mm were cut from each plate and subjected to 

frequency sweep tests between 0.01 Hz and 100 Hz at different isothermal temperatures under 

three-point bending test configuration. Each sample was equilibrated for about 5 minutes 

before test segment starting at each temperature, to provide a uniform temperature distribution 

inside the material during the frequency sweep. A total of 22 step-and-hold segments 

(between 25 and 320°C) were considered in the machine program for all tests. However, since 

the partially cured resin had a glass transition temperature of 104°C for the least cured plate 

(A) and 181°C for the almost totally cured plate (E), only data in the region 25°C to 220°C 

have been used to build the corresponding dynamic master curves. When the material starts to 

react further, the test results are meaningless because of the changing degree of conversion. 

The same instrument was used to analyse the viscoelastic behaviour in the post-gelation 

region by 3 points bending under stress relaxation mode. In a simple stress relaxation 

experiment, the material specimen is subjected initially to a constant strain and the time-

dependent stress response is observed. In order to set the experiment on stress level within the 

range of linear viscoelasticity, some preliminary experiments have been performed with a 

fixed load rate. Final static tests, step-and-hold segments were performed at different 

temperatures up to the correspondent glass transition temperature. Three specimens were 

tested for each degree of conversion. After clamping, the specimens were equilibrated for 30 

min at  and then deformed for 40 min. Afterwards, the temperature was increased C°30
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C°−155  and data acquisition was triggered. Above the glass transition temperature the test 

was stopped because of the onset of the post cure reaction.  

 

 

3 EXPERIMENTAL RESULTS 

3.1 Thermal analysis results 

 

Calorimetric analysis of preliminary cast plates has revealed a high variability of degree of 

cure within the sample to invalidate further investigation, as mechanical testing or thermo-

mechanical analysis. For these reasons, the determination and the minimization of the spread 

in the degree of conversion for each sample used for the dynamic and static mechanical tests 

has been an important issue to deal with during the preliminary stage of sample preparation. 

Since the aim of the mechanical characterization was to acquire the necessary raw data to 

construct the corresponding “master curves” at a particular degree of conversion, uniformly 

cured samples were required.  

Figure 3 reports DSC scans for material taken from the least cured plate studied (labelled A); 

samples were extracted from the four corners and from the centre of this plate in order to 

study the in-plane conversion gradient. A value of  for the glass transition temperature 

was found as the average value of all five measurements. Using the DiBenedetto glass 

transition model developed for the resin system of this study by Zarrelli et al. [

C°104

11] the value 

of degree of cure corresponding to CTg °= 104  was found to be 0.68. The same type of 

analysis was performed for the plate made of resin, type B, C, D, and E [12]. The degree of 

cure were also checked using the residual heat generation values and compared with resin 

kinetic model12, in order to determine the actual degree of conversion at the location from 

which the specimen was taken. Average values for the glass transition temperature, for 

residual heat of reaction and for the corresponding degree of conversion for all five partially 

cured plates (A-B-C-D-E) are reported in table 1. For plate, E the analysis of the heat flow 

profile has shown more uniform results with a very low value of variance for the residual heat 

of reaction. Figure 4 reports the non-reversible and reversible signal obtained by testing 

sample from plate labelled E (fully cured) by means of modulated dynamic scanning 

calorimetry (MDSC).  
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3.2 Solid rheometry results  

 

From each plate, five sets of three samples each were obtained by cutting and polishing. One 

of the sets was used to perform solid rheometric tests in order to verify the glass transition 

temperature and hence to assess the degree of conversion reached by the resin plates. The 

values obtained for the glass transition temperatures are higher than the corresponding values 

calculated using DSC technique. The difference can be attributed to the finite dimensions of 

the specimens. Negligible variation in degree of conversion has been found using the 

mechanically evaluated values of . Figure 5 reports the results of dynamic rheometric scans 

on all five specimens. Here, the  is defined as the temperature corresponding to the 

maximum value of 

gT

gT

δtan , no experimental data could be obtained at degrees of cure lower 

than the level reached for plate A, due to the inherent fragility of the sample associated with 

the near gelation conversion, during the clamping or initial deformation of the sample.  

 

3.3 Static and Dynamic results on solid samples 

 

All the experimental data presented in this section are averaged over three different 

experiments. In the case of static experiments, depending upon the temperature range (from 

room temperature to the sample's glass transition temperature) and step increment, the time 

required to complete each test was between 300 min and 800 min. Raw data for the case of 

0.90α = , are reported in Fig. 6. The relaxation moduli for the entire partially cured sample 

are reported in Fig.6 and Fig.7 as raw data. The temperature ranges from  to the TC°25 g of 

the corresponding sample as measured by the torsional rheometer tests. For all the partially 

cured samples, the approach of the glass transition is clearly reflected by a sharp drop in the 

modulus. At the lowest temperatures, all the samples show glassy behaviour with an average 

modulus of about ; this value was treated as constant during the subsequent fitting 

procedure. Near the , the rubbery modulus reached a plateau value ranging from  

for the least cured sample to  for the fully cured resin samples. 

GPa4.3

gT MPa38.1

MPa9.60

It is important to emphasise that as the testing temperature is raised through the glass 

transition temperature, the raw data acquired become meaningless because of the onset of the 

post cure reaction. The raw data obtained were used to construct the relaxation modulus 

master curves up to the corresponding sample  according to the time-temperature gT
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superposition principle with temperature of CTref °= 32  was used as the reference 

temperature with no vertical shifts. Figure 9 reports all smoothed experimental master curves 

as used for further analysis. 

 

3.4 Master curves and shift factors: results 

 

For viscoelastic materials, the mechanical response is history-dependent and involves the use 

of a reduced time. Reduced time can be written using the temperature-cure dependent shift 

factor, ( TaT , )α  from the integral in the following form: 

 

( )Ta
t

T ,α
ξ =            Eq.1 

 

where ( Tt ,, )αξ  is the reduced time,  is the actual experimental time and t ( TaT , )α  is the 

temperature-conversion shift factor value. For polymeric materials, shift factors are generally 

functions of temperature; in the case of a reactive system the dependence on the conversion 

needs to be taken into account in implementing the model. Fig. 10 shows the horizontal shift 

factors used to generate the master curves of stress relaxation modulus. 

The application of the reduced variable method needs to be verified for the analogous data 

obtained under dynamic conditions. Using the same values of shift factor, master curves of 

dynamic storage and loss modulus were generated from raw data obtained from dynamic tests 

based on frequency sweeps. All these curves for the almost fully cured samples (label E) are 

shown in figs. 11 and 12. 

The curves were built using  as the reference temperature and no vertical shift was 

involved. At the lowest frequencies, storage modulus shows glassy behaviour with a linear 

variation of the modulus. O’Brien

CT °= 30

10 obtained the same behaviour for a different epoxy resin. 

At very low frequencies, corresponding to high temperatures of the raw testing data, values of 

the moduli cannot be acquired because of the inherent onset of the post cure reaction. Similar 

proof tests for the shift factor values have been performed for all five levels of conversion, 

and give satisfactory results in terms of dynamic master curves (see figure 13). In order to 

predict the evolution of the viscoelastic mechanical properties of the neat resin during cure, 

the shift factor curves need to be modelled with respect to both temperature and the degree of 

cure.  
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4 RESULTS AND DISCUSSION 

 

The viscoelastic mechanical properties of the neat resin system were investigated at different 

degrees of conversion. Five different levels of conversion have been considered, the resin 

plates being cured under appropriate conditions, as defined by the kinetic data presented 

previously13.  

Using differential mechanical analysis, stress relaxation measurements based on step loading 

and holding tests have been made on samples cut from partially cured resin plates. Master 

curves have been drawn from the raw data and the shift factors obtained have been verified 

for the dynamic data. Results show that appropriate master curves can be drawn for each 

degree of conversion and typical relaxation time can be evaluated. As expected, principal 

relaxation time are right shifted along the time axis as the cure advances. This is a typical 

behaviour as the more complex structure necessary induced longer time for the viscoleastic 

relaxation of the modulus.  
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Fig. 1 Mould assembly for mechanical test samples (dimensions given for single resin plate) 
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Fig. 2 Schematic neat resin plate with location of DSC sample used for quality inspection 
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Fig. 3 Heat flow diagrams obtained by DSC measurements on specimens taken from the four corners and the 

centre position of resin plate A (α=0.68). Sample.. – s..- c.., indicates the type of sample (Sample), the side (s) 

from and the corner (c) from which the DSC samples were taken from. 

 

 

 

 

Plate Label Tg  ( )C°
Residual Heat of 

Reaction ( )gJ /  
Degree of Conversion 

A 104±5 132 ± 3 68.0  

B 133±3 83 ± 3 8.0 0 

C 151±3 54 ± 3 87.0  

D 165±3 43 ± 2 9.0 0 

E 182±3 18 ± 1 96.0  

Table 1 Average results of thermal analysis tests performed on samples taken from the partially cured plat 
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Fig. 4 Reversible and non-reversible heat flow curves for sample taken from resin plate E 
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Fig. 5 Torsional rheometric results for partially cured samples. Glass transition temperature values are also 

reported. 
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Fig. 6 Raw data of relaxation test on specimen type D ( 90.0=α ) 

 

 

 

Fig. 7 Stress relaxation profiles at various temperatures for resin plate A (α=0.68) 
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Fig. 8 Stress relaxation profiles at various T for resin plates B-C-D-E (α=0.80-0.87-0.90-0.96) 
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Fig. 9 – Experimentally obtained Master curves for all partially cured sample 
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Fig. 10 3D plot of experimental shift factors vs. temperature and degree of cure 
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Fig. 11 Dynamic storage modulus master curve (sample E) obtained applying the shift factors from  static tests 
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Fig. 12 Dynamic loss modulus master curve for sample plate E, applying shift factor values as obtained from 

relaxation modulus master curves 

 

 

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

1.E-32 1.E-27 1.E-22 1.E-17 1.E-12 1.E-07 1.E-02

Reduced Frequency, aTω  (Hz)

D
yn

am
ic

 S
to

ra
ge

 M
od

ul
us

 (G
P

a) Sample A Sample B

Sample C Sample D

Sample E

 

Fig. 13 Master curves of dynamic loss modulus for all the levels of conversion, constructed using values of the 

shift factor values obtained from master curves for the static stress relaxation tests. 
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