
 175

8 TARGET MANOEUVRABILITY AND MISSILE

GUIDANCE AND CONTROL MODELLING

8.1 Introduction

This chapter explains the mathematical modelling of the target manoeuvrability and

the missile tracking, guidance and control algorithm. The inputs required for

modelling are explained. During the target-missile engagement simulation, the target

position and direction is calculated at every time interval or frame as per the selected

mode or manoeuvre. The missile movement and rotation are calculated as per the

relative position of the target and the aerodynamic limits of the missile. The missile

tracking logic is implemented with a gimballed seeker head.

8.2 VR World Fields for Target and Missile Movement

As explained in Chapter-7, the virtual reality (VR) world scenario is built using

several objects such as the missile, target aircraft, flares, background, sky and

atmosphere etc. All these objects are placed in world coordinates at respective

positions and directions as per the scenario. Out of these objects, the missile, the

target (aircraft) and flares are the only objects that are dynamic in nature. During

simulation these objects are moving and changing their directions. To control the

movement of these objects in the virtual world, their “translation” and “rotation”

fields are linked with the main algorithm in MATLAB. The target “translation” and

“rotation” fields are given in Equation 8-1 and 8-2 respectively. Figure 8-1 illustrates

the target location and direction in 3D world coordinates.

 myworld.target.translation = [Xtgt, Ytgt, Ztgt] (8-1)

 myworld.target.rotation = [0, 1, 0, φtgt] (8-2)

 The parameters of translation and rotation fields depend upon the target flight

path or the manoeuvrability. These parameters are explained in detail in subsequent

paragraphs.

 176

 Figure 8-1 : Target translation and rotation Fields

 Similarly, the missile movement is controlled by the “translation” and

“rotation” fields which need to be upgraded regularly to chase the target. Equation 8-

3 to 8-5 shows the translation and rotation fields related to the missile movement.

 myworld.missile.translation = [Xmsl, Ymsl, Zmsl] (8-3)

 myworld.missile_LOS.rotation =[Xm_LOS, Ym_LOS, Zm_LOS, φmsl_LOS] (8-4)

 myworld.gimbal.rotation =[Xm_gimbal, Ym_gimbal, Zm_gimbal, φgimbal] (8-5)

 Unlike the target which has only one rotation field, the missile has two

independent rotation fields. One for controlling the direction of the missile body or

the “missile-LOS” as given in Equation 8-4 and the other is the missile gimballed

seeker head which is denoted as “gimbal” in Equation 8-5. Figure 8-2 shows the

“missile_LOS” and “gimbal” position and direction fields. The gimbal rotation is

independent of the missile_LOS direction and may look away from missile direction

of motion.

Target

X

Y

Z

φtgt

Xtgt

Ztgt

Ytgt
World

Coordinates

 177

 Figure 8-2 : Missile and gimbals translation and rotation Fields

8.3 Assumptions for Missile and Target Movement

For the missile-target engagement simulation, the following assumptions are made

regarding the movement of the target and the missile in the 3D virtual world.

8.3.1 Target Degree-of-freedom

It is assumed that the target aircraft can move in four degrees-of-freedom (4-DOF).

That means the target may move freely in three directions along the X-, Y- and Z-axes

and can also perform “yaw” movement. The yaw is rotation around a vertical axis and

therefore acts in a horizontal plane. However, the “pitch” and “roll” movement are

not considered. Figure 8-3 illustrates the 6-DOF of an aircraft. Although, the 6-DOF

is essentially required for modelling the aircraft movements in real scenarios,

however, to keep the algorithm simple and due to the shortage of the time, the aircraft

pitch and roll movements are not incorporated in the algorithm. The pitch and roll

movement may be modelled in future by incorporating changes in the aircraft

manoeuvrability algorithm.

Missile_LOS

X

Y

Z

Zmsl

φmsl_LOS

φgimbal

Gimbal

Ymsl

Xmsl

 178

 Figure 8-3 : Aircraft six degree-of-freedom

8.3.2 Missile Degree-of-freedom

It is assumed that the missile can perform 5-DOF, which means the missile may move

along X, Y and Z axes and may also perform “yaw” and “pitch” movement along

“vertical” and “lateral” axis respectively. However, the “roll” movement is not

incorporated in the algorithm and is left on this assumption that it may not have any

direct effect on the target movement and IR signature of the scene.

8.3.3 Targets Initial Position

The missile seeker relies on the target relative position (Xtgt, Ytgt, Ztgt) in the virtual

world coordinates. This information is given to the missile launcher at the start of the

simulation about the target aircraft. As it may be realistic to assume that in a real

world scenario, the missile has access to similar information through some other

radar, TV or visual search system.

8.3.4 Information about Missile Launch

The information about the time, location and direction of the missile launch is

required by the target aircraft to initiate appropriate countermeasures such as

dispensing flares and taking evasive manoeuvres. Although in realistic systems this

information is generally provide by the Missile Approach Warning System (MAWS)

or any other missile detection system. Although modelling MAWS is necessary for

simulating true target missile engagement scenarios and the countermeasures analysis,

Roll
Pitch

Yaw

Y

X
Z

Vertical Axis

Longitudinal

Axis

Lateral

 Axis

 179

however, presently at this stage it is assumed that the only information regarding

missile launch provided to the target aircraft is the time in seconds after the simulation

has started and the direction of the missile approach so that the target aircraft may

initiate countermeasures and manoeuvres accordingly.

8.4 User Inputs and Typical Data Ranges

To simulate any specific real world scenario of the missile-target engagement, several

parameters are required as inputs. These inputs are fed in using either the “menu”

command of MATLAB [MAT07], or Microsoft Excel spreadsheet or manually in the

main m-file of MATLAB. Table 8-1 lists the inputs required for the simulation and

also their typical ranges. The typical ranges are based on the open source data or

interpolated from system brochures and do not represent classified data of any missile

or aircraft.

 Table 8-1 : Typical input data ranges

PARAMETER SYMBOL TYPICAL RANGE REMARKS

Missile speed in

Mach number

Mmsl

Mach # 1 to 4 For aerial targets

Seeker refresh-rate Ref_rate 100-125 Hz

Seeker frame-rate fps 30-70 frame/sec May be same as refresh-

rate

Seeker field-of-view FOVgimbal 1-2 degree

Missile Load factor G’smsl < 40 G's For lateral acceleration

Hit criteria

(impact distance)

Rimpact <2 meters Cylindrical region in front

of missile

Seeker detection

criterion

threshold Based on detector

type

for centriod go-no-go

criterion

Seeker head gimbal

turn limit
θgimbal_max

± 45 deg to ±90 deg

Gimbal seeker head rotate

limit

 Missile initial

location

 (Xmsl, Ymsl, Zmsl)

(0, 0, 0)

 Initially keeping missile

at origin of virtual world

 Missile initial

rotation

(Xm_LOS, Ym_LOS,

Zm_LOS, φmsl_LOS) (0,1,0,0)

 Initially missile looking

along negative Z-axis

Gimbal initial

rotation

(Xm_gimbal, Ym_gimbal,

Zm_gimbal, φgimbal)

Looking towards target

aircraft location

Target Speed in

Mach number

Mtgt

Mach # 0.4 to 2.2

Target Load factor G’stgt < 9 G's

Target rate-of-descent

ROD In x1000 of

meters/sec

Target initial position

(Xtgt_start, Ytgt_start,

Ztgt_start)

Any point in front of

missile Ztgt< Zmsl

 to be within seeker head

FOV and detection range

Target initial

direction (0, 1, 0, φtgt) As per selected mode

Target manoeuvre

Mode

12 modes Select one mode

 180

8.5 An Aircraft in a Level Turn

The level flight of the aircraft is when it is flying with constant velocity along a

straight line. However, in a realistic world the aircraft apply radial acceleration which

leads to the movement of aircraft along a curved path. There are typically three cases

of turned flight: a level-turn, a pull-up and a pull-down. For the purpose of the IR

signature analysis, presently, the level-turn along the horizontal plane is considered

for modelling, however, the pull-up and pull-down movement may be modelled in

future by making additions in the algorithm. A level-turn is illustrated in Figure 8-4.

Figure 8-4(a) shows the top view of the complete level-turn circle and Figure 8-4(b)

shows the same from the front view. The distance from the centre of the circle to the

aircraft is the turn-radius (TR) which is the tightness of the turn circle. The angular

velocity (ω) which is the rate-of-change of the angle (θ) per unit time. The angular

velocity (ω) is also called is the rate-of-turn (ROT). The ROT shows how fast the

aircraft can get around the turn. From Figure 8-4(a) the ROT may be explained as

given in Equation 8-6.

TR

V

dt

d
ROT ==

θ
 (8-6)

 Where, V is the velocity of the aircraft along the direction of motion or LOS.

 TR is the turn-radius

 From Figure 8-4 (b) the resultant force (Fr) applying along the horizontal axis

due to the radial acceleration may be given as in Equation 8-7 [AND00].

TRg

VW
Fr

⋅

⋅
=

2

 (8-7)

Where, W is the weight of the aircraft,

 g is the acceleration due to gravity,

The resultant force (Fr) may also be expressed in terms of lift (L) and weight (W) as

given in Equation 8-8.

22 WLFr −= (8-8)

 181

Let n = L/W, which is the load-factor of the aircraft or also know as G’s force

[AND00]. Then Equation 8-8 may be written in form of the load-factor as given in

Equation 8-9.

 1' 2 −= sGWFr (8-9)

Relating Equation 8-7 and 8-9 and simplifying for TR. The turn-radius may be

calculated as given in Equation 8-10 [AND00].

1' 2

2

−
=

sGg

V
TR (8-10)

By putting the value of TR in Equation 8-6, the ROT may be expressed as given in

Equation 8-11 [AND00].

V

sGg
ROT

1' 2 −
= (8-11)

In turn flight, the wing of the aircraft bank through an angle (φ) which is called the

bank-angle [AND00]. From Figure 8-4(b) the forces applying along the vertical axis

are given in Equation 8-12.

 WLCos =φ (8-12)

Therefore, from Equation 8-12 the load-factor (G’s=L/W) may be given as in

Equation 8-13.

φCosW

LsG 1' == (8-13)

From Equation 8-13 the bank-angle may be expressed in terms of load-factor as given

in Equation 8-14.

 ()
sG

Cos
'

11−=φ (8-14)

Therefore, to find the TR and the ROT of the aircraft we need to know the velocity of

the aircraft (V) and either the load-factor (G’s) or the bank-angle (φ).

 182

 Figure 8-4 : An aircraft in level turn

8.5.1 Effects of Turn-radius and Rate-of-turn on Aircraft Performance

The performance of an aircraft depends upon many factors, of which the turn-radius

(TR) and the rate-of-turn (ROT) are two important characteristics. Considerations of

the TR and ROT are particularly important for military aircraft and missiles. Keeping

everything else constant, the aircraft or missile with the smallest TR and largest ROT

will have an advantage in air combat. From Equation 8-10 and 8-11, to obtain the

smallest TR and largest ROT the aircraft must operate with the highest possible load

factor (G’s) and the lowest possible velocity (V). High performance fighter aircraft are

designed to operate at high G’s (typically 3 to 10) [AND00]. In Equation 8-10 and 8-

11, for higher values of G’s, the term 1' 2 −sG may be approximated to only “G’s”,

TR

θ

Flight Path

(a) Top view of horizontal plane

φ
Horizontal plane

(b) Front view of horizontal plane

φ

L

TR
W

Fr

 183

thus these equations may be rewritten as given in Equation 8-15 and 8-16 respectively

[AND00].

sGg

V
TR

'

2

⋅
≈ (8-15)

V

sGg
ROT

'⋅
≈ (8-16)

 The combined effect of V and G’s on ROT and TR is quite complex. To see the

individual effects, the ROT and TR are calculated for different values of V and G’s as

shown in Table 8-2. When velocity is kept constant, the TR is inversely proportional

to G’s (
sG

TR
'

1∝) and the ROT is directly proportional to G’s (sGROT '∝). On the

other hand, when G’s is kept constant, the TR is directly proportional to the square of

velocity (2
VTR ∝) and the ROT is inversely proportional to velocity (

V
ROT 1∝).

 Table 8-2 : Rate-of-turn and Turn-radius Calculated Values

Mach # Gs ROT (deg/sec) TR (meters)

1 2 2.86 6823

1 9 14.77 1321

1 20 32.98 592

1 40 66.03 296

2 2 1.43 27292

2 9 7.38 5285

2 20 16.49 2366

2 40 33.01 1182

3 2 0.95 61406

3 9 4.92 11891

3 20 10.99 5325

3 40 22.01 2660

4 2 0.71 109166

4 9 3.69 21140

4 20 8.25 9466

4 40 16.51 4729

6 2 0.48 245624

6 9 2.46 47565

6 20 5.50 21298

6 40 11.00 10639

 184

 The velocity has a much greater effect on the TR than the load-factor. When

G’s is constant and velocity is doubled the TR increases four times and ROT is

reduced to half. When G’s are kept constant and velocity is reduced to a half, the TR

is a quarter and the ROT doubles. Whereas, when V is constant and G’s doubled the

TR is a half and the ROT doubles. Table 8-3 summarizes the effects of G’s and V on

TR and ROT. The fourth case shown in Table 8-3 shows the effects of changing V and

G’s both at the same time. By doubling the G’s and reducing the V to half, the TR

reduced to 1/8
th

 and the ROT increased by four times.

 Table 8-3 : Summary of ROT and TR for different cases

Case I II III IV

G’s Constant Constant Double Double

V Double Half Constant Half

TR 4 times Quarter Half 1/8
th

ROT Half Double Double 4 times

 Although having more G’s force is better for the missiles performance, the

low speed is dependent upon the type of missile and the speed of the target being

chased. It may be that in a head-on scenario, a missile with less speed may hit a target

aircraft flying faster than missile, but for most of the situations, the missile has to be

faster than the target. Typically, for chasing an airborne target, the missile speed may

be double that of the target and the missile G’s force may be four times more than that

of the target being chased.

8.6 Target and Missile Increment in one Time Frame

To augment the position of the target during the simulation, the distance the target and

the missile can travel in one time interval (∆t) or between two frames is to be

calculated. The target-step (steptgt) may be calculated from the target velocity (Vtgt)

and the time interval (∆t) which is equal to 1/ ref_rate.

 tVstep tgttgt ∆⋅= (8-17)

Similarly, the missile step (stepmsl) may be calculated from the missile velocity (Vmsl)

and the ∆t as given in Equation 8-18.

 tVstep mslmsl ∆⋅= (8-18)

 185

8.7 Rate-of-Climb or Rate-of-Descent

In Figure 8-5 (a), the aircraft is flying along the horizontal axis and the thrust (T) is

equal to the drag (D). This is the case of a straight and level flight. But if the thrust is

greater than the drag, the aircraft may move up with a speed which is the vertical

component of the aircraft velocity (V) due to the bank-angle (φ) as shown in Figure

 8-5(b). The VSin(φ) gives the rate with which the aircraft is climbing up or may be

called the rate-of-climb (ROC) [AND00].

 φsinVROC = (8-19)

In Figure 8-5 (b) the forces applying along flight path may be written as.

 φsinWDT += (8-20)

Multiplying both sides with velocity (V) gives us.

 φsinVWDVTV ⋅+⋅=⋅ (8-21)

Rearranging the terms for Vsin(φ).

W

powerexcess

W

VDVT
V

.
sin =

−
=φ (8-22)

Where “VT-VD” is called the “excess power” [AND00]. Comparing Equation 8-19

and Equation 8-22 the ROC may be expressed in terms of the “excess.power” and the

weight of the aircraft.

W

powerexcess
ROC

.
= (8-23)

 Typically, the ROC is expressed in thousands of meters per minute. The rate-

of-descent (ROD) may be defined as the lost in altitude of the flying aircraft per unit

time. Generally, ROD is also given as thousands of meters per minute. To use the

ROD in the simulation for changing the altitude of the target aircraft, the ROD per

time interval (∆t) in seconds needs to be calculated. This may be calculated as given

in Equation 8-24.

60int

tRODROD ∆⋅= (8-24)

Where, RODint is the ROD per time interval in seconds

 ROD is the input ROD in meters per minute

 186

 Figure 8-5 : Rate-of-climb explanation

8.8 Target Manoeuvrability

For simulating the missile-target engagement scenarios, the target aircraft is initially

positioned at some desired location and aspect and then the aircraft performs some

pre-defined manoeuvres. To cover typical manoeuvres which the target aircraft may

perform in normal flight or to avoid a missile hit, the following modes of target

manoeuvres are modelled by controlling the “translation” and “rotation” fields of the

aircraft in the virtual world.

8.8.1 Straight-and-Level Modes

The aircraft may move straight-and-level in the following four directions.

(a) Straight and level head-on towards the missile,

(b) Straight and level tail-chase away from the missile,

(c) Straight and level tangential left to right,

(d) Straight and level tangential right to left.

 Figure 8-6 illustrates a few possible scenarios for the target straight-and-level

flight. By changing the relative position of the target and the missile any desired mode

may be generated.

W

D

Horizontal

L

V Flight Path

T

W

D

Horizontal

L

T Flight Path

φ

θ

φ

θ

V

(a) Steady level flight path (b) Climb flight path

 187

 Figure 8-6 : Target Manoeuvres straight-and-level modes

Target

Missile

X

Y

Z

Target

X

Y

Z

Missile

Target

X

Y

Z

Missile

Target

X

Y

Z

Missile

Target

X

Y

Z

Missile

Target

X

Y

Z

Missile

Tail chase

Head-to-head off centred Tail chase off centred

Tangent left to right Tangent right to left

Head-to-head

 188

8.8.2 Level-Turn Modes

The target aircraft may perform a level-turn in the following directions.

(a) Tangential right turning towards,

(b) Tangential right turning away,

(c) Tangential left turning towards,

(d) Tangential left turning away,

(e) Longitudinal right turning towards,

(f) Longitudinal right turning away,

(g) Longitudinal left turning towards,

(h) Longitudinal left turning away.

The directions are defined as looking from the missile position. Figure 8-7 illustrates

several cases of level-turn.

 Figure 8-7 : Target manoeuvres level turn modes

Target

X

Y

Z

Target

X

Y

Z

Target

X

Y

Z

Target

X

Y

Z

Longitudinal right towards Longitudinal left away

Tangential right towards Tangential left away

 189

8.8.3 Take-off and Landing Modes

The same cases of straight-and-level flight mentioned in paragraph 8-8-1 above may

be converted into takeoff or landing by incrementing the aircraft altitude Ytgt by

RODint calculated in Equation 8-24. Whereas, for the straight and level flight modes

the Ytgt value is kept as constant. Figure 8-8 illustrates the target take-off and landing

modes.

 Figure 8-8 : Target take-off and landing modes

8.8.4 Spiral Descent Mode

The level turn cases discussed in paragraph 8-8-2 may be altered to a spiral descent by

changing the altitude of the target aircraft during turn. The RODint calculated in

Equation 8-24 may be used to increment the Ytgt accordingly. Figure 8-9 shows one

example of a spiral descent mode.

 Figure 8-9 : Target manoeuvre spiral descent mode

Target

X

Y

Z

Target

X

Y

Z

Missile

Target

X

Y

Z

Missile

Take-off Landing

 190

8.8.5 Complex Manoeuvres

Small portions of the target flight such as the straight-and-level, level-turn, spiral

descent and landing etc. may be joint together to model complex manoeuvres. For

example the target aircraft coming straight-and-level may then make a turn and

descend down and then land in a straight line. Any complex manoeuvre may be

planned in advance before the simulation starts and may be implemented by selecting

the modes at different time intervals. Presently, the complex manoeuvres are not

incorporated in the algorithm. However, this may be added by making changes in the

algorithm. Alternatively, B-spline curves may be used for generating complex paths

for target manoeuvres [BUS03]. MATLAB Splines Toolbox deals with B-splines and

may be used in future work for generating complex manoeuvres [MAT07].

8.8.6 Modelling Level Flight Modes

The changes required to be made in the “translation” and “rotation” field values for

different cases of straight-and-level modes are explained and the summary of these is

given in Table 8-4. The target translation field values given in Equation 8-1 may be

altered to find the target new position for the straight-and-level modes. The steptgt

calculated in Equation 8-17 is used to increment the target position in the

corresponding direction. The translation fields for all four cases of straight flight are

shown in Table 8-4. For the descent or take-off cases, the RODint calculated in

Equation 8-24 is added to Ytgt.

 The initial direction of the target aircraft (θtgt_ini) is fed in as the angle in the

rotation field of Equation 8-2. The θtgt_ini values for the different modes of straight-

and-level are given in Table 8-4. In Equation 8-2, the values for the direction cosines

are set as (0, 1, 0) which corresponds to the “Yaw” movement of the aircraft. The

default direction of the rotation field is along the negative Z-axis. That means if θtgt_int

is zero, the target aircraft heading is in the negative Z direction. Any positive value of

θtgt_int corresponds to rotation in a counter-clock wise direction.

 191

 Table 8-4 : Target manoeuvrability different modes

Mode

 Initial

Direction

Initial Rotation

(0 1 0 θtgt_int)

Translation Field

Longitudinal Head-on

Looking in +Z (0 1 0 180
o
) (Xtgt, Ytgt -RODint, Ztgt + steptgt)

 Tail-chase

Looking in -Z (0 1 0 0
o
) (Xtgt, Ytgt -RODint, Ztgt - steptgt)

Tangential Right-to-left

Looking in -X (0 1 0 90
o
) (Xtgt- steptgt, Ytgt-RODint, Ztgt)

 Left-to-right

Looking in +X (0 1 0 -90
o
) (Xtgt+ steptgt, Ytgt-RODint, Ztgt)

8.8.7 Modelling Turn Modes

 For the cases in which the aircraft is turning along a curved path, the location of the

target at each time interval is calculated by converting the target TR and the ROTint

information into Cartesian coordinates. This is done by using the MATLAB function

“pol2cart” which converts the point in polar coordinates into the corresponding

Cartesian coordinates [MAT07].

 [] ()TRrotcartpolZX tgttgt ,2= (8-25)

Where, TR is the turn-radius calculated in Equation 8-10 and “rot” is the angle the

target is making from its initial direction θtgt_int. Depending upon the mode selected

the “rot” may be incremented or decremented by ROTint in each time-interval. The rot

calculated for different modes are given in Table 8-5.

 intROTrotrot ±= (8-26)

Where, ROTint represent the target angular displacement in one time interval. The

ROTint is calculated by multiplying the target aircraft ROT calculated in Equation 8-11

with the time interval (ROTint =ROT x ∆t). To turn the target from its initial position,

the target location is shifted by TR along the Z-axis for tangential modes as shown in

Table 8-5.

 TRZZ tgttgt ±= (8-27)

 192

Similarly, for longitudinal modes shown in Table 8-5, the target location is moved by

TR on X-axis.

 TRXX tgttgt ±= (8-28)

 For the cases of descent or climb, the altitude or the vertical component of the

target position (Ytgt) is changed accordingly. An increment (Yinc) is calculated at each

time interval as shown in Equation 8-29 and is subtracted from the target start altitude

(Ytgt_start). The value of RODint is calculated in Equation 8-24. However, in the case of

level flight Yinc remains zero.

 intRODYY incinc += (8-29)

 The target rotation angle (φtgt) as given in Equation 8-2 is calculated at each

time interval by multiplying the target ROTint with the number of frames (n). The

direction of rotation depends upon the mode selected. Table 8-5 summarizes φtgt

values for all modes.

 nROTtgt ×±= intφ (8-30)

 193

 Table 8-5 : Aircraft translation and rotation fields for turned flight modes

 Mode Initial

Direction

Rotation Field

(Initial)

Rotation Field

(0 1 0 φtgt)

 rot

(initial)

 rot

 Translation Field

Tangential Right Towards

+X (0 1 0 -90
o
) - n x ROTint -π/2 rot + ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt+TR

 Left Towards

- X (0 1 0 90
o
) + n x ROTint -π/2 rot - ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt+TR

 Right Away

+X (0 1 0 -90
o
) + n x ROTint π/2 rot - ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt-TR

 Left Away

- X (0 1 0 90
o
) - n x ROTint π/2 rot + ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt-TR

Longitudinal Right Towards

+Z (0 1 0 180
o
) + n x ROTint π rot - ROTint Xtgt_start+ Xtgt+TR, Ytgt_start-Yinc, Ztgt_start+Ztgt

 Left Towards

+Z (0 1 0 180
o
) - n x ROTint 0 rot + ROTint Xtgt_start+ Xtgt-TR, Ytgt_start-Yinc, Ztgt_start+Ztgt

 Right Away

- Z (0 1 0 0
o
) - n x ROTint π rot + ROTint Xtgt_start+ Xtgt+TR, Ytgt_start-Yinc, Ztgt_start+Ztgt

 Left Away

- Z (0 1 0 0
o
) + n x ROTint 0 rot - ROTint Xtgt_start+ Xtgt-TR, Ytgt_start-Yinc, Ztgt_start+Ztgt

 194

8.9 Cartesian Coordinates and Axis Angle

In VRML, the rotation vector is defined using axis-angle [VRML97]. The rotation

vector field holds four values (X, Y, Z,φ). The first three values specify a normalized

rotation axis vector about which the rotation takes place. The fourth value specifies

the amount of right-handed rotation about that axis in radians. Figure 8-10(a)

illustrates the unit vector in Cartesian coordinates. The three axes are X, Y and Z and

the corresponding angles which the unit vector OP makes with these axes are α, β and

γ respectively. The lengths a, b and c are the corresponding projections of the unit

vector along X-, Y- and Z-axis respectively.

 Figure 8-10 : Direction Cosines of a Unit vector

 The projection of point P on the three axes makes three right angle triangles.

From the triangle along X-axis as illustrated in Figure 8-10(b), the
1

aCos =α or

αCosa = . Similarly, from the other two triangles βCosb = and γCosc = . These

projections of unit vector are called “direction cosines” [PAT68]. Whereas, the

magnitude of the unit vector is given in Equation 8-31.

2221 cba ++= (8-31)

 The projection of the same point P on the XY-plane is illustrated in

Figure 8-11(a). The magnitude of the projection of the point P on the XY-plane is

given as Equation 8-32.

α

X

Y

Z

γ

β

c

b

a

P(a, b, c)

1
O(0, 0, 0)

(a)

X

YZ

(b)

a

1

O

P

α

 195

22

baXYprojection += (8-32)

 The angle (φ) is the azimuth rotation angle which the unit vector is making with the

XY-plane as shown in Figure 8-11(c) is given in Equation 8-33.

 










+
= −

22

1tan
ba

c
φ (8-33)

The angle (θ) is the elevation rotation angle which the projection of the point P on the

XY-plane (OP’) is making with the X-axis as shown in Figure 8-11(b) and is given in

Equation 8-34.

 







= −

a

b1tanθ (8-34)

These two angles φ and θ are used for finding the rotation field values in VRML. In

VRML, the angles are defined using the right-hand rule which means any object

rotating along the counter-clockwise direction is considered as a positive rotation

angle [VIR04].

 196

 Figure 8-11 : Cartesian coordinates and direction cosines

8.10 Missile Guidance and Control Modelling

The missile movement at any one instance depends upon the missile and target

relative position and direction. The missile gimballed seeker head tracks the target

aircraft. Remaining within the aerodynamic limits, the missile steers towards the

target. The movement of the missile depends upon the speed (Vmsl) and the load factor

(G’smsl) which in turn decides the ROT, TR and lateral acceleration capabilities. The

following paragraphs explain the algorithm developed for the tracking and guidance

of the missile in three dimensions. The missile movement in the 3D virtual world is

controlled by changing the “translation” and “rotation” fields given in Equation 8-3

to 8-5.

8.10.1 Missile Gimbal Initial Direction Modelling

The gimballed seeker head can rotate independent of the missile body rotation or

missile_LOS. This implies that the seeker head can look in any direction (within a

cone in front of the missile) independent of the missile_LOS. The missile gimbal

X

Y

Z

φ

θ

1
P

c

b

a
O

P’

X

Y

a

22
ba +

O

P’

θ

XY Plane

Z

22

ba +

1

O

P

φ

b

(b)

c

(c)

(a)

 197

rotation field is given in Equation 8-5. At the start of the simulation, irrespective of

the missile_LOS, the seeker head must always look towards the target. Figure 8-12

shows the 3D view of the target and missile initial positions.

 Figure 8-12 : Target and missile relative positions in 3D view

 To understand the calculations involved in finding the gimbal direction, the

two triangles in the 3D view shown in Figure 8-12 are separately redrawn in 2D in

Figure 8-13(a) and (b). From Figure 8-13(a) the angle (θ) is calculated as in Equation

8-35.















−−

−
= −

)(
tan 1

msltgt

msltgt

XX

YY
θ (8-35)

 The negative sign in the denominator is to change the θ polarity in accordance

with the VRML quadrant sign requirements. The differences in VRML and MATLAB

sign conversions are discussed in paragraph 8-10-6. Therefore, if () 0>− msltgt XX the

θ calculated will be a negative value and needs to add π to make it positive. (i.e.

πθθ +=). The three direction cosines given in the gimbal rotation field of Equation

8-5 may be calculated as given in Equation 8-36 to 38.

Target

Missile

X

Y

Z

-Z

RTMxy

RTMz
RTMD

 198

 θsin_ =gimbalmX (8-36)

 θcos_ =gimbalmY (8-37)

 0_ =gimbalmZ (8-38)

 The three direction cosines given in Equation 8-36 to 8-38 must satisfy the

condition of unity magnitude given in Equation 8-31. From Figure 8-13(b), the gimbal

angle φgimbal is calculated as in Equation 8-39.

 







= −

TMz

TMxy
gimbal R

R1tanφ (8-39)

Where, RTMz is the distance between the target and the missile along the Z-axis.

 tgtmslTMz ZZR −= (8-40)

and RTMxy is calculated using Figure 8-13(a) as in Equation 8-41.

 () ()22

msltgtmsltgtTMxy YYXXR −+−= (8-41)

 199

 Figure 8-13 : 2D views of target and missile relative positions

 The distance RTMxy, will always be a positive number as this is a square root of

a sum of squares. However, RTMz may become negative once the target crosses over

the missile Z-axis (see Figure 8-13(b)). This negative value needs to be taken care of

when calculating the angle φgimbal of the missile rotation field. Also at the instance the

target crosses the missile on the Z-axis the RTMz may become zero, this will make the

output of Equation 8-39 undefined. To avoid this, when the RTMz value becomes zero

this is replaced with a very small value “eps” of MATLAB [MAT07].

 The direct distance from the target to the missile (RTMD) is calculated from the

triangle as shown in Figure 8-13(b).

22

TMzTMxyTMD RRR += (8-42)

T

X Xtgt-Xmsl

Ytgt-Ymsl

θ

Target

Missile

XY

-Z

RTMz

RTMxy

φgimbal

(a)

(b)

RTMD

RTMxy

Y

Xtgt

Xmsl

Ytgt

Ymsl

Ztgt

Zmsl

 200

For the missile-target engagement simulation, the missile rotation field and distance

RTMD and RTMz are calculated after every ∆t (or for each frame) as the target and

missile relative positions are changing constantly.

8.10.2 Capturing Frame from 3D VR Viewer

For the missile tracking and guidance algorithm, after every ∆t seconds, the missile

seeker needs to capture the 2D image from the 3D VR world viewer. To capture the

2D image, an algorithm is developed using several functions of MATLAB Virtual

Reality toolbox. Table 8-6 explains the VR Toolbox functions used in this algorithm.

The VRML file containing the 3D VR world is opened in MATLAB and a VR world

object is associated with virtual world. The VR world object is given a name

“myworld”. Several VR viewer windows are opened to view the virtual world

“myworld” from different aspects. The 2D image is captured in true RGB colours and

stored in the variable “XRGB”.

 Table 8-6 : VR Toolbox functions used for capturing 2D image

VR Toolbox function Explanation

myworld = vrworld(‘file_name.wrl’) Creating a new world object associated with virtual world

under name “myworld”

Open(myworld) Opening virtual world object in MATLAB. The VRML fields

can be controlled from MATLAB command

View(myworld) Opening virtual world in a default VRML viewer. Virtual

world can be viewed from different aspects by opening same

virtual world in different windows

f = vrfigure(myworld) Creating new VR figure and returning a VR figure object as

variable “f”

Vrdrawnow Updates virtual world field values. The view is updated when

MATLAB is idle for some time.

XRGB = capture(f) Create 2D image from VR figure variable “f” and stores

image as variable “X” in true RGB colours

8.10.2.1 Problem Faced in Capturing Image from Virtual World

During simulation, the virtual world fields’ values need to be updated to augment the

positions of the missile and the target. However, in MATLAB, the virtual world field

values are updated when MATLAB is idle or no other function is running [MAT07].

For running the simulation, I am using the “while” function of MATLAB. This caused

a problem in my algorithm as with the “while” loop running; the virtual world was not

updating the field values correctly. To overcome this system limitation a pause of

1/30
th

 of a second is introduced in the “while” loop. This means that the maximum

frame rate which can be achieved is 30 frames/sec. The maximum 30 frames/sec limit

 201

is found by running the simulation several times with different “pause” values. For

any value above 30 frames, the image was not refreshing correctly. The “pause”

function of MATLAB is used to insert a time delay.

8.10.3 Converting RGB Image into Gray-scale Image and Binary Image

The 2D image captured from the 3D virtual world is in true RGB colours. Each pixel

of the RGB image (XRGB) holds the RGB colour values. For the “intensity centroid”

tracker, each pixel of the image must represent its intensity over a gray-level. The

XRGB image is then converted into the intensity image with each pixel representing the

intensity over the Gray-scale. The MATLAB function “rgb2gray” is used for this

purpose [MAT07].

 ()
RGBgray XgrayrgbX 2= (8-43)

 To clip the image (Xgray) as per the missile detector criterion, a detector

threshold (thresholddet) is used as the detection criterion for the missile seeker. There

are different options for the detection criterion. The thresholddet may be kept as an

input parameter or be calculated separately from the detector NEP and the SNR.

However, presently, the detection criterion is incorporated in the algorithm as a

percentage level above minimum intensity present in the image (thresholdpercent) as a

user input and using this to calculate the thresholddet. Equation 8-44 calculates the

detector threshold from the given threshold percentage.

min100

1det gray

percent
X

threshold
threshold 








+= (8-44)

Where, thresholddet is the detector threshold level for the detection criterion

 thresholdpercent is the percentage above the minimum intensity in the image

 Xgray_min is the minimum intensity of any one pixel in the image. This

 may be found by ()()graygray XX minmin
min

=

 The image Xgray is tested for the detection criterion as given in Equation 8-45

and any pixel having intensity below thresholddet calculated in Equation 8-44, is

converted to a zero level by using a “find” function of MATLAB [MAT07].

 ()() 0det =< thresholdXfindX graygray (8-45)

 202

 For the “binary centroid” tracker, each pixel of the image is represented as the

binary value of “0” or “1” with zero as no target and one representing presence of the

target irrespective of the intensities. The intensity image Xgray is converted into binary

image data (XBW) using the “im2bw” function of MATLAB. The “im2bw” uses a

“level” between 0 and 1 to decide the go-no-go criterion [MAT07].

 ()levelXbwimX grayBW ,2= (8-46)

This “level” value may be entered as any value between 0 and 1 to represent the

detection criterion or the thresholddet calculated in Equation 8-44 may be used as the

“level”. Another way of incorporating a threshold is to use the “graythreshold”

function of MATLAB, which is based on Otsu’s method of finding the threshold

[MAT07]. The Otsu’s method [OTS79] performs discriminant analysis to

automatically select an optimal threshold to maximize the distribution of the resultant

classes in gray levels. The method utilizes only the zeroth- and the first-order

cumulative moments of the gray-level histograms which is normalized and regarded

as a probability distribution. The “graythreshold” function given in Equation 8-47,

generates a “level” between 0 and 1 which may be used in Equation 8-46 as a go-no-

go criterion for converting the Gray-scale intensity image Xgray into binary image XBW.

 ()
grayIoldgraythreshlevel = (8-47)

8.10.4 Centroid Tracking as Target Location Estimation

Out of the different missile tracking techniques discussed in Chapter-3 paragraph 3-3,

the most common and probably the best known of these is the centroid tracker

[DUD93]. In the algorithm used in this simulation, the “binary centroid” tracker and

the “intensity centroid” tracker are incorporated for target location estimation. The

other methods discussed in Chapter-3 paragraph 3-3 may be added in the algorithm in

future work.

 In the binary centroid tracker, depending upon the threshold level, a binary

image is generated which represents the presence of the target as pixels having level

one and the rest all as level zero. Irrespective of their intensity the pixels having

intensity more than the threshold are level one. Whereas, in the intensity centroid each

pixel is given a different value on the Gray-scale corresponding to the intensity of

each pixel. Their level depends upon their mass factor. To understand the centroid

tracking algorithms, first we take an example of a binary image of a 10x10 pixel

 203

matrix as illustrated in Figure 8-14. All the pixels other than the pixels shown

as ones are having zero value. The centroid (or the centre of mass) may be found by

summing the product of mass of each pixel and its distance from the origin. In

 Figure 8-14 the origin is considered to be at the left top corner of the image.

The reason for considering origin at top left corner is that the image size in MATLAB

is shown as numbers of rows and columns. The number of rows starts from the top

and increase downward and the number of columns starts at the left and increases to

the right [VIR04]. The X and Y components of the centroid may be found by using

Equations 8-48 and 8-49 respectively.

 Figure 8-14 : Explaining binary centroid

M

Xm

X

q

i

ii

CM

∑
== 1

.

 (8-48)

M

Ym

Y

p

j

jj

CM

∑
== 1

.

 (8-49)

where, ∑∑
= =

=
p

j

q

i

jimM
1 1

 is the sum of all the pixels masses of the entire image

 XCM is the centre of mass on the X-axis in number of pixels,

 YCM is the centre of mass on the Y-axis in number of pixels,

1

1 1

1

1 1 1 1 1 1 1 1

1 1 1

1

1 1 1

1

2 1 1

2

4

8

6

5 2 2 5 2 3 2 1

YCM

XCM

1

2

1 2 10

10

22

Origin

Yj

Xi

mj

mi

 204

 Xi is the distance (in number of pixels) of the i
th

 element on the X-axis from

 the origin,

 Yj is the distance (in number of pixels) of the j
th

 element on the Y-axis from

 the origin,

 mi is the sum of mass of all the pixels on the i
th

 column,

 mj is the sum of mass of all the pixels on the j
th

 row,

 p is the number of rows of the image,

 q is the number of columns of the image.

 Therefore, the centroid of the complete image can be written as (XCM, YCM).

Although the binary and intensity centroid tracker uses the same Equations 8-48 and

8-49 and the only difference between these is the mass “m” of each pixel. In the case

of binary centroid the mass of each pixel representing the target is considered as unity.

Whereas, in the case of intensity centroid the intensity on the Gray-scale of each pixel

is taken as the mass “m”. In Figure 8-14 an example of a binary image is illustrated

and Figure 8-15 illustrates the same image with the pixels intensities on the Gray-

scale level.

 Figure 8-15 : Explaining intensity centroid

 The MATLAB function “regionprops” may be used to find the centroid of an

image [MAT07]. However, this function only uses the binary image (IBW) for finding

100

50 50

100

50 50 50 50 50 50 50 50

25 25 25

25

25 25 25

25

200 100 100

200

150

400

150

325 75 75 325 75 100 75 50

1

2

1 2 10

10

1100 M

YCM

XCM

1

2

1 2

Origin

Yj

Xi

mi

mj

 205

the centroid thus it can only work for the binary centroid tracker. Initially, I used this

function in my algorithm but to add the intensity centroid, I developed my own

algorithm which finds centroids by using either the binary or the intensity centroid

method. Figure 8-16 shows the flow diagram of the centroid tracker algorithm using

the binary image XBW of Equation 8-46 for the binary centroid and the intensity image

Xgray of Equation 8-43 for the intensity centroid.

 Figure 8-16 : Flow diagram of centroid tracking algorithm

8.10.5 Calculating Target Error from Bore-sight

The centroid (XCM, YCM) shown in Figure 8-14 and Figure 8-15 are from the origin

of the image which is at the top-left corner. To calculate the error vector from the

bore-sight, the centroids are subtracted from the centre of the image (i.e. the bore-

sight of the missile). Figure 8-17 illustrates the bore-sight and the error vector

represented as Xerr and Yerr. The values of the X- and Y-components of the error

vector are calculated using Equation 8-50 and 8-51 respectively.

 CM

pix

err XcolX −=
2

 (8-50)

 START

X=Xgray

(XCM, YCM)

1

 END

SWITCH

MENU

Centroid

1 Binary

2 Intensity

2
X = XBW

 206

 CM

pix

err YrowY −=
2

 (8-51)

Where, pix

errX and pix

errY are the X- and Y-components of the error vector in number of

pixels. The “col” is the number of columns in the image representing the number of

pixels in the horizontal direction. The “row” is the number of rows in the image

representing the number of pixels in the vertical direction. The “col” and “row” also

correspond to the horizontal FOV and the vertical FOV respectively.

 Figure 8-17 : Error signals from bore sight

 For estimating the missiles new location, the error values in the pixels are to

be converted into meters. This is done by converting number of pixels in the FOV into

meters. The FOV is an angle which depends upon the distance between the target and

the missile (RTMD). In Figure 8-18, the height (h) of the image in meters at the distance

RTMD from the detector may be calculated using Equation 8-52.

XCM

col/2

YCM

row/2

Xerr

Yerr

Bore-sight

Origin

(Xerr, Yerr)

Rerr

 207

 Figure 8-18 : Geometry explaining size of one pixel in meters

 ()2/tan2 gimbalTMD FOVRh ⋅⋅= (8-52)

In VRML, the FOV given in the “navigationInfo” node is the vertical FOV. The

vertical FOV corresponds to the number of rows “row” and it is the Y-component of

the error signal. Therefore, the size of one pixel (pix_size) in meters can be calculated

as in Equation 8-53.

row

hsizepix =_ (8-53)

Where, the “row” is the number of rows of the image. For the square shape pixel, the

same pixel size can also be used for converting the X-component of the error signal.

Therefore, the error components in meters are calculated by multiplying the error

components given in Equation 8-50 and 8-51 with pix_size given in Equation 8-53.

pix

errerr XsizepixX ⋅= _ (8-54)

pix

errerr YsizepixY ⋅= _ (8-55)

And the magnitude of the error vector (Rerr) is given in Equation 8-56

22

errerrerr YXR += (8-56)

8.10.6 Sign Conversions in VRML and MATLAB

In VRML, the polarity standards in the four quadrants followed for the “translation”

and “rotation” fields are different. Considering the four quadrants shown in

Figure 8-19, the X-components of the “translation” fields of the missile (Xmsl) and the

target (Xtgt) are positive in the First and Fourth quadrants and the Y-components Ymsl

h

h/2

RTMD

φ = FOVgimbal/2

 208

and Ytgt are positive in the First and Second quadrants. Whereas, for the “rotation”

field the Xm is positive in the First and Second quadrants and Ym is positive in the

Second and Third quadrants. The Xerr is considered positive on the left of the Y-axis

(i.e. Second and Third quadrants) and the Yerr is considered positive in the First and

Second quadrants. As the MATLAB and VRML sign conversion are different

[VIR04], therefore, for controlling the movement of objects in the 3D virtual world

from MATLAB, the sign conversions, summarized in Figure 8-19, are finalized after

repeatedly making changes in the algorithm and trying different options and finally

deciding the logic for each field separately.

 Figure 8-19 : Sign for translation and rotation fields as per four quadrants

8.10.7 Updating Gimbal Rotation Field

At the start of the simulation, the missile gimbal direction is locked on towards the

target. Paragraph 8-10-1 explains the steps involved in calculating the missile initial

direction. During the simulation for tracking the target, the gimbal should remain

looking towards the target. However, due to the movement of the missile and the

target, an error is induced. This error is used in the missile control algorithm for

steering the missile towards the target. The error components calculated in Equation

8-54 and 8-55 are used to calculate the total error at every frame using Equation 8-57

and 8-58 respectively.

 errTerrerrT XXX += (8-57)

Second Quadrant

Xerr (+ve) Yerr (+ve)

Xm (+ve) Ym (+ve)

Xmsl (- ve) Ymsl (+ve)

Xtgt (- ve) Ytgt (+ve)

First Quadrant

Xerr (- ve) Yerr (+ve)

Xm (+ve) Ym (- ve)

Xmsl (+ve) Ymsl (+ve)

Xtgt (+ve) Ytgt (+ve)

Third Quadrant

Xerr (+ve) Yerr (- ve)

Xm (- ve) Ym (+ve)

Xmsl (- ve) Ymsl (- ve)

Xtgt (- ve) Ytgt (- ve)

Fourth Quadrant

Xerr (- ve) Yerr (- ve)

Xm (- ve) Ym (- ve)

Xmsl (+ve) Ymsl (- ve)

Xtgt (+ve) Ytgt (- ve)

 209

 errTerrerrT YYY += (8-58)

 In Figure 8-20, the total magnitude (RerrT) and the total direction (θT) of the

error vector are calculated as given in Equation 8-59 and 8-60 respectively.

22

errTerrTerrT YXR += (8-59)

 





= −

err

err
T X

Y1tanθ (8-60)

 If XerrT is less than zero (XerrT <0), the θT calculated in Equation 8-60 is

negative and needs to be added with “π” to make this a positive angle. In

Figure 8-20(a) XerrT is negative if it is in the First or Fourth quadrants.

 πθθ += TT (8-61)

 To rotate the gimbal towards the target new position, the direction cosines for

the missile gimbal rotation field are calculated as per the new position of the missile

and the target by putting total angle θT in the Equation 8-36 to 8-38.

 Tgimbalm SinX θ=_ (8-62)

 Tgimbalm CosY θ=_ (8-63)

 0_ =gimbalmZ (8-64)

 The total rotation angle (φgimbal_T) shown in Figure 8-20(b) is calculated as

given in Equation 8-65.

 





= −

TMz

errT
Tgimbla R

R1

_ tanφ (8-65)

 In Equation 8-65, if RTMz is less than zero (RTMz <0), then φgimbal_T is a negative

angle and needs to be converted to a positive angle by adding π.

 πφφ += TgimbalTgimbal __ (8-66)

 210

 Finally the gimbal rotation field given in Equation 8-5 is updated as per the

new direction cosines and the rotation angle calculated in Equation 8-62 to 8-64 and

8-66 respectively.

 Figure 8-20 : Total error vector magnitude and direction

8.10.8 Gimballed Seeker Head Maximum Angle Limit

The gimballed seeker head is modelled to rotate in a spherical region around

missile_LOS. The gimballed seeker head rotation is limited by an angle (θgimbal_max)

which holds a value based upon the missile input parameters (typical value between

45
o
 to 90

o
). This limit is incorporated in the algorithm using the logic explained in the

flow diagram of Figure 8-21.

T

Xmsl -Xtgt

θT

Target

Missile

XY

-Z

RTMz

RerrT

φgimbal_T

(a)

(b)

RerrT

Y

XerrT

Xerr -X

Ymsl-Ytgt

YerrT

Yerr

Ztgt

Zmsl

Rerr

 211

 Figure 8-21 : Flow diagram explaining gambal maximum angle limit

8.10.9 Updating Missile Translation Fields

During the simulation, the missile new position needs to be calculated for each frame.

The new position of the missile depends upon the target new location and the missile

LATAX limit. Considering the missile target locations given in Figure 8-12, and

using the θ and φgimbal calculated in Equation 8-35 and 8-39, the angle ζT and angle

φ(n) are written as Equation 8-67 and 8-68 respectively. The angle θ of Equation 8-

35 is given a new name ζT, just to differentiate it from the initial value of θ as during

the simulation ζT is used for the LATAX implementation.

 ()






−−

−
= −

msltgt

msltgt
T XX

YY)(
tan 1ζ (8-67)

 () 







= −

TMz

TMxy

R

R
n

1tanφ (8-68)

 The “n” in Equation 8-68 depicts the number of the frame during simulation.

If RTMz < 0 that means the target has gone behind the missile and the negative angle

φ(n) needs to be corrected by adding π. Figure 8-22 explains the change of sign for

the negative φ(n).

 () () πφφ += nn (8-69)

 START

YES

 END

 IF

 φgimbal_T - φmsl_LOS

 > θgimbal_max

NO

φgimbal_T =

φmsl_LOS + θgimbal_max

INPUT

θgimbal_max

 212

 Figure 8-22 : Calculating missile angle

8.10.10 Modelling Missile Lateral Acceleration Limit

To incorporate the missile lateral acceleration (LATAX) limit, the missile ROTmsl is

limited as per the missile load factor (G’s) and the speed (Vmsl). From the ROT

calculated in Equation 8-11, the maximum angle that the missile can turn in one frame

or time interval (∆t) is calculated by multiplying ROTmsl with ∆t.

 tROTROT mslmsl ∆⋅=int_ (8-70)

 Initially, LATAX was implemented by comparing the missile angle φ(n) as

given in Equation 8-69 with nROTmsl ⋅int_ at every frame. Although, this logic works

satisfactorily for situations when the missile is constantly turning in one direction,

however, once the target crosses the missile-LOS and the missile starts to move in the

opposite direction, this simple logic was not limiting the LATAX. This problem is

resolved by comparing the difference between the missile rotation angle (φ) at two

consecutive time intervals. For the missile to operate within the LATAX limit, this

difference must be less than the ROTmsl_int.

 () () int_1 mslROTnn <−− φφ (8-71)

 If the logic of Equation 8-71 is true, the missile new angle φ(n) is the same as

that calculated in Equation 8-69, otherwise, the φ(n) is limited. If angle φ(n) is

increasing then ROTmsl_int is added to the angle φ(n).

 () () int_1 mslROTnn +−= φφ (8-72)

Otherwise, if φ(n) is decreasing then ROTmsl_int is taken away from the angle φ(n).

 () () int_1 mslROTnn −−= φφ (8-73)

Target

Missile

XY

Z

φ

RTMz > 0

RTMz

RTMxy

Target

Missile

XY

Z

φ

RTMz < 0

RTMz

RTMxy

-Z -Z

 213

 The flow chart shown in Figure 8-23 explains the logic for limiting the missile

ROT as per the LATAX limit. However, for the first frame (i.e. n = 1), in Equation 8-

71 the “n-1” term is not defined. To overcome this problem, for the first two frames

the angle φ(n) is calculated by multiplying ROTmsl_int with “n”.

 () nROTn msl ×= intφ (8-74)

 Figure 8-23 : Flow chart explaining missile ROT limit logic

 After limiting the missile angle φ as per the LATAX, the missile new position

is calculated as per the new φ value. The RTMxy is calculated from RTMz as given in

Equation 8-75 and illustrated in Figure 8-13(b).

 ()nRR TMzTMxy φtan= (8-75)

 START

φ(n)=tan
-1

(RTMxy/RTMz)

φ(n) = φ(n-1)+ROTmsl int

φ(n) = φ(n-1)-ROTmsl int

NO

YES

NO

 END

|φ(n-1)-φ(n)|

< ROTmsl_int

|φ(n-1)<φ(n)

YES

YES

NO n > 2

φ(n) = ROTmsl_int x n

 214

If the target is on the left of the missile (ie msltgt XX <) then the X-component of the

increment in the target-missile distance (∆XTM) is calculated as given in Equation 8-76

 ()TTMxyTM CosRX ζ−=∆ (8-76)

Otherwise, if the target in on the right of the missile (ie msltgt XX >) then ∆XTM is

positive as given in Equation 8-77.

 ()TTMxyTM CosRX ζ=∆ (8-77)

Similarly, for the Y-component, if the target is below the missile (ie msltgt YY <) then,

 ()TTMxyTM SinRY ζ−=∆ (8-78)

And for the target above the missile (ie msltgt YY >) then ∆YTM is a positive value.

 ()TTMxyTM SinRY ζ=∆ (8-79)

The missile increment along the Z-axis is calculated by multiplying the missile-step

(stepmsl) calculated in Equation 8-18 with the Cosine of φ(n).

 ()nCosstepstep mslzmsl φ×=_ (8-80)

The stepmsl_z calculated in Equation 8-80 is taken as a negative value when RTMz is

decreasing and a positive value for increasing RTMz.

 To steer the missile towards the target, the 3D location of the missile in the

next frame (n+1) is calculated. The Xmsl(n+1) and Zmsl(n+1) given in Equation 8-81

and 8-83 are calculated using the two similar triangles shown in Figure 8-24.

Similarly, the Ymsl(n+1) given in Equation 8-82 is calculated by solving the similar

triangles along the Y-axis.

 () ()nX
R

step
XnX msl

TMz

zmsl

TMmsl +∆=+
_

.1 (8-81)

 () ()nY
R

step
YnY msl

TMz

zmsl

TMmsl +∆=+
_

.1 (8-82)

 () ()nZstepnZ mslzmslmsl +=+ _1 (8-83)

Using these values the “translation” field of the missile-LOS given in Equation 8-3 is

updated at each frame.

 215

 Figure 8-24 : Explaining missile new position in next frame

8.10.11 Updating Missile_LOS Rotation Field

The missile rotation field given in Equation 8-4 is updated at every frame by

calculating the direction-cosines and the rotation angle of the missile_LOS. The

direction-cosines are calculated using ζT calculated in Equation 8-67. For, Xmsl < Xtgt,

the ζT is a negative angle and π is added to make ζT a positive value. The direction-

cosines calculated in Equation 8-85 to 8-87 are used to update the rotation field values

in Equation 8-4. The missile_LOS rotation angle φmsl_LOS(n) is the same angle as

calculated after the LATAX limit and explained in flow diagram of Figure 8-23.

 πζζ += TT (8-84)

)(_ TLOSm SinX ζ= (8-85)

)(_ TLOSm CosY ζ= (8-86)

 0_ =LOSmZ (8-87)

Stepmsl_z

Xmsl(n+1)

-X

RTMz

Zmsl

Ztgt -Z

Xmsl(n)

∆XTM

Missile(n)

X

Missile(n+1)

Z

Target

 216

8.11 Missile Miss-distance and Hit-Criterion

In homing missiles, the contributors to missile miss-distance are the seeker errors,

autopilot lag, target manoeuvres, target state estimation lag etc. The hit-criterion is

based on the type of fuse and effective range of the warhead used. The fuse may be a

simple impact device or a complex “fisheye” lens proximity system. Typically, the

missile reaching less than half the minimum dimensions of the target is considered as

a hit [MEN03]. If the missile satisfies the hit-criterion then it is considered as a direct

hit. Otherwise, the missile has missed the target. The missile miss-distance is the

minimum distance between the missile and the target aircraft at any time during the

engagement. The miss-distance is calculated between the geometrical origins of the

missile and the target or in other words for miss-distance the missile and target are

considered as point objects.

 The hit-criterion is incorporated in the algorithm by considering that if the

target aircraft enters the cylindrical region ahead of the missile as shown in Figure

 8-25 then it is a hit, otherwise the missile has not hit the target. The radius of the

cylinder is entered as Rimpact as an input parameter and the length is taken as the stepmsl

calculated in Equation 8-18. During the simulation, at every frame the Rerr calculated

in Equation 8-56 is compared with Rimpact and the RTMD calculated in Equation 8-42 is

compared with stepmsl. If the logic given in Equation 8-88 is satisfied, then missile hits

the target.

)(&)(stepTMDimpacterr mslRRR << (8-88)

 However, in the case where the missile misses the target aircraft, the miss-

distance is calculated as the largest out of the RTMD and Rerr used in the hit-criterion

logic in Equation 8-88.

 Figure 8-25 : Considering Hit-criterion as a cylindrical region in front of missile

Missile
Cylinder

Length = Stepmsl

Diameter = Rimpact

 217

 In the virtual world, the RTMD represents the distance from the centre of the

target body to the head of the missile and the Rerr denotes the magnitude of the error

from the centre of the target aircraft. However, to increase the fidelity of the model,

the hit-criterion may be improved by adding the “collision” node and integrating this

with “avatarSize” fields in the virtual world. Presently, due to shortage of time, this

feature is not incorporated in the algorithm.

8.12 Conclusion

The missile-target engagement simulation is modelled by controlling the “translation”

and “rotation” fields of the missile and target aircraft by the algorithm implemented in

MATLAB. The target aircraft may fly with 4-DOF and can perform different

manoeuvres in straight-and-level, descent and turn flight paths. The missile movement

is modelled in 5-DOF. The missile is modelled with a gimballed seeker head. The

binary centroid and intensity centroid trackers are implemented in the algorithms. The

missile seeker/detector captures the 2D image from 3D virtual world. This is

implemented using MATLAB Virtual-reality Toolbox. The Pursuit-course guidance is

modelled for steering the missile towards the target aircraft. The lateral acceleration

(LATAX) is modelled by limiting the rate-of-turn as per the missile speed and the

load-factor. The missile hit-criterion is implemented as a cylindrical region in front of

the missile. The target manoeuvrability and the missile guidance and control in 3D are

modelled to simulate the missile-target engagement sequences for the analysis of the

IR signature of the targets and the countermeasure flares.

 218

