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8 TARGET MANOEUVRABILITY AND MISSILE 

GUIDANCE AND CONTROL MODELLING 

8.1 Introduction 

This chapter explains the mathematical modelling of the target manoeuvrability and 

the missile tracking, guidance and control algorithm. The inputs required for 

modelling are explained. During the target-missile engagement simulation, the target 

position and direction is calculated at every time interval or frame as per the selected 

mode or manoeuvre. The missile movement and rotation are calculated as per the 

relative position of the target and the aerodynamic limits of the missile. The missile 

tracking logic is implemented with a gimballed seeker head.  

8.2 VR World Fields for Target and Missile Movement 

As explained in Chapter-7, the virtual reality (VR) world scenario is built using 

several objects such as the missile, target aircraft, flares, background, sky and 

atmosphere etc. All these objects are placed in world coordinates at respective 

positions and directions as per the scenario. Out of these objects, the missile, the 

target (aircraft) and flares are the only objects that are dynamic in nature. During 

simulation these objects are moving and changing their directions. To control the 

movement of these objects in the virtual world, their “translation” and “rotation” 

fields are linked with the main algorithm in MATLAB. The target “translation” and 

“rotation” fields are given in Equation 8-1 and 8-2 respectively. Figure  8-1 illustrates 

the target location and direction in 3D world coordinates. 

 

 myworld.target.translation = [Xtgt, Ytgt, Ztgt]    (  8-1 )  

 myworld.target.rotation = [0, 1, 0, φtgt]    (  8-2 ) 

 

 The parameters of translation and rotation fields depend upon the target flight 

path or the manoeuvrability. These parameters are explained in detail in subsequent 

paragraphs.  
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 Figure  8-1 : Target translation and rotation Fields 

 Similarly, the missile movement is controlled by the “translation” and 

“rotation” fields which need to be upgraded regularly to chase the target. Equation 8-

3 to 8-5 shows the translation and rotation fields related to the missile movement. 

 

 myworld.missile.translation = [Xmsl, Ymsl, Zmsl]   (  8-3 ) 

 myworld.missile_LOS.rotation =[Xm_LOS, Ym_LOS, Zm_LOS, φmsl_LOS] (  8-4 ) 

 myworld.gimbal.rotation =[Xm_gimbal, Ym_gimbal, Zm_gimbal, φgimbal] (  8-5 ) 

 

 Unlike the target which has only one rotation field, the missile has two 

independent rotation fields. One for controlling the direction of the missile body or 

the “missile-LOS” as given in Equation 8-4 and the other is the missile gimballed 

seeker head which is denoted as “gimbal” in Equation 8-5. Figure  8-2 shows the 

“missile_LOS” and “gimbal” position and direction fields. The gimbal rotation is 

independent of the missile_LOS direction and may look away from missile direction 

of motion.  
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 Figure  8-2 : Missile and gimbals translation and rotation Fields 

8.3 Assumptions for Missile and Target Movement  

For the missile-target engagement simulation, the following assumptions are made 

regarding the movement of the target and the missile in the 3D virtual world. 

8.3.1 Target Degree-of-freedom 

It is assumed that the target aircraft can move in four degrees-of-freedom (4-DOF). 

That means the target may move freely in three directions along the X-, Y- and Z-axes 

and can also perform “yaw” movement. The yaw is rotation around a vertical axis and 

therefore acts in a horizontal plane. However, the “pitch” and “roll” movement are 

not considered. Figure  8-3 illustrates the 6-DOF of an aircraft. Although, the 6-DOF 

is essentially required for modelling the aircraft movements in real scenarios, 

however, to keep the algorithm simple and due to the shortage of the time, the aircraft 

pitch and roll movements are not incorporated in the algorithm. The pitch and roll 

movement may be modelled in future by incorporating changes in the aircraft 

manoeuvrability algorithm.  
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 Figure  8-3 : Aircraft six degree-of-freedom 

8.3.2 Missile Degree-of-freedom 

It is assumed that the missile can perform 5-DOF, which means the missile may move 

along X, Y and Z axes and may also perform “yaw” and “pitch” movement along 

“vertical” and “lateral” axis respectively. However, the “roll” movement is not 

incorporated in the algorithm and is left on this assumption that it may not have any 

direct effect on the target movement and IR signature of the scene.  

8.3.3 Targets Initial Position 

The missile seeker relies on the target relative position (Xtgt, Ytgt, Ztgt) in the virtual 

world coordinates. This information is given to the missile launcher at the start of the 

simulation about the target aircraft. As it may be realistic to assume that in a real 

world scenario, the missile has access to similar information through some other 

radar, TV or visual search system.  

8.3.4 Information about Missile Launch 

The information about the time, location and direction of the missile launch is 

required by the target aircraft to initiate appropriate countermeasures such as 

dispensing flares and taking evasive manoeuvres. Although in realistic systems this 

information is generally provide by the Missile Approach Warning System (MAWS) 

or any other missile detection system. Although modelling MAWS is necessary for 

simulating true target missile engagement scenarios and the countermeasures analysis, 
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however, presently at this stage it is assumed that the only information regarding 

missile launch provided to the target aircraft is the time in seconds after the simulation 

has started and the direction of the missile approach so that the target aircraft may 

initiate countermeasures and manoeuvres accordingly.   

8.4 User Inputs and Typical Data Ranges 

To simulate any specific real world scenario of the missile-target engagement, several 

parameters are required as inputs. These inputs are fed in using either the “menu” 

command of MATLAB [MAT07], or Microsoft Excel spreadsheet or manually in the 

main m-file of MATLAB. Table  8-1 lists the inputs required for the simulation and 

also their typical ranges. The typical ranges are based on the open source data or 

interpolated from system brochures and do not represent classified data of any missile 

or aircraft.   

 Table  8-1 : Typical input data ranges 

PARAMETER SYMBOL TYPICAL RANGE REMARKS 

Missile speed in 

Mach number 

Mmsl 

Mach # 1 to 4 For aerial targets  

Seeker refresh-rate Ref_rate 100-125 Hz   

Seeker frame-rate fps 30-70 frame/sec May be same as refresh- 

rate 

Seeker field-of-view FOVgimbal 1-2 degree  

Missile Load factor G’smsl < 40 G's  For lateral acceleration 

Hit criteria  

(impact distance) 

Rimpact <2 meters Cylindrical region in front 

of missile  

Seeker detection 

criterion 

threshold Based on detector 

type 

for centriod go-no-go 

criterion 

Seeker head gimbal 

turn limit 
θgimbal_max 

± 45 deg to ±90 deg 

Gimbal seeker head rotate 

limit 

 Missile initial 

location 

 (Xmsl, Ymsl, Zmsl) 

(0, 0, 0) 

 Initially keeping missile 

at origin of virtual world 

 Missile initial 

rotation 

(Xm_LOS, Ym_LOS, 

Zm_LOS, φmsl_LOS) (0,1,0,0) 

 Initially missile looking 

along negative Z-axis   

Gimbal initial 

rotation 

(Xm_gimbal, Ym_gimbal, 

Zm_gimbal, φgimbal)  

Looking towards target 

aircraft location  

Target Speed in  

Mach number 

Mtgt 

Mach # 0.4 to 2.2    

Target Load factor G’stgt < 9 G's  

Target rate-of-descent 

ROD In x1000 of 

meters/sec   

Target initial position 

(Xtgt_start, Ytgt_start, 

Ztgt_start) 

Any point in front of 

missile Ztgt< Zmsl 

 to be within seeker head 

FOV and detection range 

Target initial 

direction (0, 1, 0, φtgt)  As per selected mode  

Target manoeuvre 

Mode 

 

12 modes Select one mode 
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8.5 An Aircraft in a Level Turn 

The level flight of the aircraft is when it is flying with constant velocity along a 

straight line. However, in a realistic world the aircraft apply radial acceleration which 

leads to the movement of aircraft along a curved path. There are typically three cases 

of turned flight: a level-turn, a pull-up and a pull-down. For the purpose of the IR 

signature analysis, presently, the level-turn along the horizontal plane is considered 

for modelling, however, the pull-up and pull-down movement may be modelled in 

future by making additions in the algorithm. A level-turn is illustrated in Figure  8-4. 

Figure  8-4(a) shows the top view of the complete level-turn circle and Figure  8-4(b) 

shows the same from the front view. The distance from the centre of the circle to the 

aircraft is the turn-radius (TR) which is the tightness of the turn circle. The angular 

velocity (ω) which is the rate-of-change of the angle (θ) per unit time. The angular 

velocity (ω) is also called is the rate-of-turn (ROT). The ROT shows how fast the 

aircraft can get around the turn. From Figure  8-4(a) the ROT may be explained as 

given in Equation 8-6. 

 
TR

V

dt

d
ROT ==

θ
       (  8-6 ) 

 Where, V  is the velocity of the aircraft along the direction of motion or LOS.  

 TR is the turn-radius 

 

 From Figure  8-4 (b) the resultant force (Fr) applying along the horizontal axis 

due to the radial acceleration may be given as in Equation 8-7 [AND00]. 

 
TRg

VW
Fr

⋅

⋅
=

2

         (  8-7 ) 

Where, W  is the weight of the aircraft, 

 g  is the acceleration due to gravity, 

 

The resultant force (Fr) may also be expressed in terms of lift (L) and weight (W) as 

given in Equation 8-8.  

 
22 WLFr −=         (  8-8 ) 
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Let n = L/W, which is the load-factor of the aircraft or also know as G’s force 

[AND00]. Then Equation 8-8 may be written in form of the load-factor as given in 

Equation 8-9.  

 1' 2 −= sGWFr        (  8-9 ) 

Relating Equation 8-7 and 8-9 and simplifying for TR. The turn-radius may be 

calculated as given in Equation 8-10 [AND00]. 

 

1' 2

2

−
=

sGg

V
TR        (  8-10 ) 

By putting the value of TR in Equation 8-6, the ROT may be expressed as given in 

Equation 8-11 [AND00]. 

 
V

sGg
ROT

1' 2 −
=        (  8-11 ) 

 

In turn flight, the wing of the aircraft bank through an angle (φ) which is called the 

bank-angle [AND00]. From Figure  8-4(b) the forces applying along the vertical axis 

are given in Equation 8-12. 

 WLCos =φ         (  8-12 )  

Therefore, from Equation 8-12 the load-factor (G’s=L/W) may be given as in 

Equation 8-13. 

  
φCosW

LsG 1' ==        (  8-13 ) 

From Equation 8-13 the bank-angle may be expressed in terms of load-factor as given 

in Equation 8-14. 

 ( )
sG

Cos
'

11−=φ        (  8-14 ) 

Therefore, to find the TR and the ROT of the aircraft we need to know the velocity of 

the aircraft (V) and either the load-factor (G’s) or the bank-angle (φ). 
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  Figure  8-4 : An aircraft in level turn 

8.5.1 Effects of Turn-radius and Rate-of-turn on Aircraft Performance 

The performance of an aircraft depends upon many factors, of which the turn-radius 

(TR) and the rate-of-turn (ROT) are two important characteristics. Considerations of 

the TR and ROT are particularly important for military aircraft and missiles. Keeping 

everything else constant, the aircraft or missile with the smallest TR and largest ROT 

will have an advantage in air combat. From Equation 8-10 and 8-11, to obtain the 

smallest TR and largest ROT the aircraft must operate with the highest possible load 

factor (G’s) and the lowest possible velocity (V). High performance fighter aircraft are 

designed to operate at high G’s (typically 3 to 10) [AND00]. In Equation 8-10 and 8-

11, for higher values of G’s, the term 1' 2 −sG   may be approximated to only “G’s”, 
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thus these equations may be rewritten as given in Equation 8-15 and 8-16 respectively 

[AND00]. 

 
sGg

V
TR

'

2

⋅
≈         (  8-15 ) 

 
V

sGg
ROT

'⋅
≈        (  8-16 ) 

 

 The combined effect of V and G’s on ROT and TR is quite complex. To see the 

individual effects, the ROT and TR are calculated for different values of V and G’s as 

shown in Table  8-2. When velocity is kept constant, the TR is inversely proportional 

to G’s (
sG

TR
'

1∝ ) and the ROT is directly proportional to G’s ( sGROT '∝ ). On the 

other hand, when G’s is kept constant, the TR is directly proportional to the square of 

velocity ( 2
VTR ∝ ) and the ROT is inversely proportional to velocity (

V
ROT 1∝ ).    

 Table  8-2 : Rate-of-turn and Turn-radius Calculated Values 

Mach # Gs ROT (deg/sec) TR (meters) 

1 2 2.86 6823 

1 9 14.77 1321 

1 20 32.98 592 

1 40 66.03 296 

2 2 1.43 27292 

2 9 7.38 5285 

2 20 16.49 2366 

2 40 33.01 1182 

3 2 0.95 61406 

3 9 4.92 11891 

3 20 10.99 5325 

3 40 22.01 2660 

4 2 0.71 109166 

4 9 3.69 21140 

4 20 8.25 9466 

4 40 16.51 4729 

6 2 0.48 245624 

6 9 2.46 47565 

6 20 5.50 21298 

6 40 11.00 10639 
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 The velocity has a much greater effect on the TR than the load-factor. When 

G’s is constant and velocity is doubled the TR increases four times and ROT is 

reduced to half.  When G’s are kept constant and velocity is reduced to a half, the TR 

is a quarter and the ROT doubles. Whereas, when V is constant and G’s doubled the 

TR is a half and the ROT doubles. Table  8-3 summarizes the effects of G’s and V on 

TR and ROT. The fourth case shown in Table  8-3 shows the effects of changing V and 

G’s both at the same time. By doubling the G’s and reducing the V to half, the TR 

reduced to 1/8
th

 and the ROT increased by four times.   

 Table  8-3 : Summary of ROT and TR for different cases  

Case I II III IV 

G’s Constant Constant Double Double 

V Double Half Constant Half 

TR 4 times Quarter Half 1/8
th

 

ROT Half Double Double 4 times 

 

 Although having more G’s force is better for the missiles performance, the 

low speed is dependent upon the type of missile and the speed of the target being 

chased. It may be that in a head-on scenario, a missile with less speed may hit a target 

aircraft flying faster than missile, but for most of the situations, the missile has to be 

faster than the target. Typically, for chasing an airborne target, the missile speed may 

be double that of the target and the missile G’s force may be four times more than that 

of the target being chased. 

8.6 Target and Missile Increment in one Time Frame 

To augment the position of the target during the simulation, the distance the target and 

the missile can travel in one time interval (∆t) or between two frames is to be 

calculated. The target-step (steptgt) may be calculated from the target velocity (Vtgt) 

and the time interval (∆t) which is equal to 1/ ref_rate. 

 tVstep tgttgt ∆⋅=        (  8-17 ) 

Similarly, the missile step (stepmsl) may be calculated from the missile velocity (Vmsl) 

and the ∆t as given in Equation 8-18.  

 tVstep mslmsl ∆⋅=        (  8-18 ) 
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8.7 Rate-of-Climb or Rate-of-Descent 

In Figure  8-5 (a), the aircraft is flying along the horizontal axis and the thrust (T) is 

equal to the drag (D). This is the case of a straight and level flight. But if the thrust is 

greater than the drag, the aircraft may move up with a speed which is the vertical 

component of the aircraft velocity (V) due to the bank-angle (φ) as shown in Figure 

 8-5(b). The VSin(φ) gives the rate with which the aircraft is climbing up or may be 

called the rate-of-climb (ROC) [AND00].  

 φsinVROC =        (  8-19 ) 

In Figure  8-5 (b) the forces applying along flight path may be written as.  

 φsinWDT +=        (  8-20 ) 

Multiplying both sides with velocity (V) gives us. 

 φsinVWDVTV ⋅+⋅=⋅       (  8-21 ) 

Rearranging the terms for Vsin(φ). 

 
W

powerexcess

W

VDVT
V

.
sin =

−
=φ      (  8-22 ) 

Where “VT-VD” is called the “excess power” [AND00]. Comparing Equation 8-19 

and Equation 8-22 the ROC may be expressed in terms of the “excess.power” and the 

weight of the aircraft. 

 
W

powerexcess
ROC

.
=       (  8-23 ) 

 

 Typically, the ROC is expressed in thousands of meters per minute. The rate-

of-descent (ROD) may be defined as the lost in altitude of the flying aircraft per unit 

time. Generally, ROD is also given as thousands of meters per minute. To use the 

ROD in the simulation for changing the altitude of the target aircraft, the ROD per 

time interval (∆t) in seconds needs to be calculated. This may be calculated as given 

in Equation 8-24.   

 
60int

tRODROD ∆⋅=        (  8-24 ) 

Where,  RODint  is the ROD per time interval in seconds 

 ROD   is the input ROD in meters per minute 
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 Figure  8-5 : Rate-of-climb explanation 

8.8 Target Manoeuvrability 

For simulating the missile-target engagement scenarios, the target aircraft is initially 

positioned at some desired location and aspect and then the aircraft performs some 

pre-defined manoeuvres. To cover typical manoeuvres which the target aircraft may 

perform in normal flight or to avoid a missile hit, the following modes of target 

manoeuvres are modelled by controlling the “translation” and “rotation” fields of the 

aircraft in the virtual world. 

8.8.1 Straight-and-Level Modes 

The aircraft may move straight-and-level in the following four directions.  

 

(a) Straight and level head-on towards the missile, 

(b) Straight and level tail-chase away from the missile, 

(c) Straight and level tangential left to right, 

(d) Straight and level tangential right to left. 

 

 Figure  8-6 illustrates a few possible scenarios for the target straight-and-level 

flight. By changing the relative position of the target and the missile any desired mode 

may be generated. 

 

 

 

 

W 

D 

Horizontal 

L 

V Flight Path 

T 

W 

D 

Horizontal 

L 

T Flight Path 

φ

θ

φ

θ

V 

(a) Steady level flight path (b) Climb flight path 



 187 

 

 

 

 Figure  8-6 : Target Manoeuvres straight-and-level modes  
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8.8.2 Level-Turn Modes 

The target aircraft may perform a level-turn in the following directions.  

  

(a) Tangential right turning towards, 

(b) Tangential right turning away, 

(c) Tangential left turning towards, 

(d) Tangential left turning away, 

(e) Longitudinal right turning towards, 

(f) Longitudinal right turning away, 

(g) Longitudinal left turning towards, 

(h) Longitudinal left turning away. 

 

The directions are defined as looking from the missile position. Figure  8-7 illustrates 

several cases of level-turn. 

 

 Figure  8-7 : Target manoeuvres level turn modes 
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8.8.3 Take-off and Landing Modes 

The same cases of straight-and-level flight mentioned in paragraph 8-8-1 above may 

be converted into takeoff or landing by incrementing the aircraft altitude Ytgt by 

RODint calculated in Equation 8-24. Whereas, for the straight and level flight modes 

the Ytgt value is kept as constant. Figure 8-8 illustrates the target take-off and landing 

modes.   

 Figure  8-8 : Target take-off and landing modes 

8.8.4 Spiral Descent Mode 

The level turn cases discussed in paragraph 8-8-2 may be altered to a spiral descent by 

changing the altitude of the target aircraft during turn. The RODint calculated in 

Equation 8-24 may be used to increment the Ytgt accordingly. Figure  8-9 shows one 

example of a spiral descent mode.  

 

 

 

 Figure  8-9 : Target manoeuvre spiral descent mode 

Target 

X 

Y 

Z 

 

Target 

X 

Y 

Z 

Missile 

Target 

X 

Y 

Z 

Missile 

Take-off Landing 



 190 

8.8.5 Complex Manoeuvres 

Small portions of the target flight such as the straight-and-level, level-turn, spiral 

descent and landing etc. may be joint together to model complex manoeuvres. For 

example the target aircraft coming straight-and-level may then make a turn and 

descend down and then land in a straight line. Any complex manoeuvre may be 

planned in advance before the simulation starts and may be implemented by selecting 

the modes at different time intervals. Presently, the complex manoeuvres are not 

incorporated in the algorithm. However, this may be added by making changes in the 

algorithm. Alternatively, B-spline curves may be used for generating complex paths 

for target manoeuvres [BUS03]. MATLAB Splines Toolbox deals with B-splines and 

may be used in future work for generating complex manoeuvres [MAT07].   

8.8.6 Modelling Level Flight Modes 

The changes required to be made in the “translation” and “rotation” field values for 

different cases of straight-and-level modes are explained and the summary of these is 

given in Table  8-4. The target translation field values given in Equation 8-1 may be 

altered to find the target new position for the straight-and-level modes. The steptgt 

calculated in Equation 8-17 is used to increment the target position in the 

corresponding direction. The translation fields for all four cases of straight flight are 

shown in Table  8-4. For the descent or take-off cases, the RODint calculated in 

Equation 8-24 is added to Ytgt.  

 The initial direction of the target aircraft (θtgt_ini) is fed in as the angle in the 

rotation field of Equation 8-2. The θtgt_ini values for the different modes of straight-

and-level are given in Table  8-4. In Equation 8-2, the values for the direction cosines 

are set as (0, 1, 0) which corresponds to the “Yaw” movement of the aircraft. The 

default direction of the rotation field is along the negative Z-axis. That means if θtgt_int 

is zero, the target aircraft heading is in the negative Z direction. Any positive value of 

θtgt_int corresponds to rotation in a counter-clock wise direction.  
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 Table  8-4 : Target manoeuvrability different modes 

              

Mode 

 Initial 

Direction 

Initial  Rotation 

(0 1 0 θtgt_int) 

Translation Field 

Longitudinal Head-on 

 

Looking in +Z (0 1 0 180
o
) (Xtgt, Ytgt -RODint, Ztgt + steptgt) 

 Tail-chase 

 

Looking in -Z (0 1 0 0
o
) (Xtgt, Ytgt -RODint, Ztgt - steptgt) 

Tangential Right-to-left 

 

Looking in -X (0 1 0 90
o
) (Xtgt- steptgt, Ytgt-RODint, Ztgt) 

 Left-to-right 

 

Looking in +X (0 1 0 -90
o
) (Xtgt+ steptgt, Ytgt-RODint, Ztgt) 

8.8.7 Modelling Turn Modes 

 For the cases in which the aircraft is turning along a curved path, the location of the 

target at each time interval is calculated by converting the target TR and the ROTint 

information into Cartesian coordinates. This is done by using the MATLAB function 

“pol2cart” which converts the point in polar coordinates into the corresponding 

Cartesian coordinates [MAT07].  

 

 [ ] ( )TRrotcartpolZX tgttgt ,2=       (  8-25 ) 

 

Where, TR is the turn-radius calculated in Equation 8-10 and “rot” is the angle the 

target is making from its initial direction θtgt_int. Depending upon the mode selected 

the “rot” may be incremented or decremented by ROTint in each time-interval. The rot 

calculated for different modes are given in Table  8-5.   

 

 intROTrotrot ±=         (  8-26 ) 

 

Where, ROTint represent the target angular displacement in one time interval. The 

ROTint is calculated by multiplying the target aircraft ROT calculated in Equation 8-11 

with the time interval (ROTint =ROT x ∆t). To turn the target from its initial position, 

the target location is shifted by TR along the Z-axis for tangential modes as shown in 

Table  8-5. 

 

 TRZZ tgttgt ±=        (  8-27 ) 
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Similarly, for longitudinal modes shown in Table  8-5, the target location is moved by 

TR on X-axis.   

 

 TRXX tgttgt ±=        (  8-28 ) 

 

 For the cases of descent or climb, the altitude or the vertical component of the 

target position (Ytgt) is changed accordingly. An increment (Yinc) is calculated at each 

time interval as shown in Equation 8-29 and is subtracted from the target start altitude 

(Ytgt_start). The value of RODint is calculated in Equation 8-24. However, in the case of 

level flight Yinc remains zero.  

 

 intRODYY incinc +=        (  8-29 ) 

 

 The target rotation angle (φtgt) as given in Equation 8-2 is calculated at each 

time interval by multiplying the target ROTint with the number of frames (n). The 

direction of rotation depends upon the mode selected. Table  8-5 summarizes φtgt 

values for all modes.     

 

 nROTtgt ×±= intφ        (  8-30 )   
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  Table  8-5 : Aircraft translation and rotation fields for turned flight modes 

           Mode  Initial 

Direction 

Rotation Field 

(Initial) 

Rotation Field 

(0 1 0 φtgt) 

   rot 

(initial) 

     rot 

 

                     Translation Field 

Tangential Right Towards 

 

+X (0 1 0  -90
o
) -  n x ROTint -π/2 rot + ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt+TR 

 Left Towards 

 

- X (0 1 0   90
o
) + n x ROTint -π/2 rot -  ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt+TR 

 Right Away 

 

+X (0 1 0  -90
o
) + n x ROTint  π/2 rot -  ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt-TR 

 Left Away 

 

- X (0 1 0   90
o
) -  n x ROTint   π/2 rot + ROTint Xtgt_start+ Xtgt, Ytgt_start-Yinc, Ztgt_start+Ztgt-TR 

Longitudinal Right Towards 

 

+Z (0 1 0 180
o
) + n x ROTint  π rot -  ROTint Xtgt_start+ Xtgt+TR, Ytgt_start-Yinc, Ztgt_start+Ztgt 

 Left Towards 

 

+Z (0 1 0 180
o
) -  n x ROTint  0 rot + ROTint Xtgt_start+ Xtgt-TR, Ytgt_start-Yinc, Ztgt_start+Ztgt 

 Right Away 

 

- Z (0 1 0     0
o
) -  n x ROTint  π rot + ROTint Xtgt_start+ Xtgt+TR, Ytgt_start-Yinc, Ztgt_start+Ztgt 

 Left Away 

 

- Z (0 1 0     0
o
) + n x ROTint  0 rot -  ROTint Xtgt_start+ Xtgt-TR, Ytgt_start-Yinc, Ztgt_start+Ztgt 

 



 194 

8.9 Cartesian Coordinates and Axis Angle 

In VRML, the rotation vector is defined using axis-angle [VRML97]. The rotation 

vector field holds four values (X, Y, Z,φ). The first three values specify a normalized 

rotation axis vector about which the rotation takes place. The fourth value specifies 

the amount of right-handed rotation about that axis in radians. Figure  8-10(a) 

illustrates the unit vector in Cartesian coordinates. The three axes are X, Y and Z and 

the corresponding angles which the unit vector OP makes with these axes are α, β and 

γ respectively. The lengths a, b and c are the corresponding projections of the unit 

vector along X-, Y- and Z-axis respectively.  

 

 Figure  8-10 : Direction Cosines of a Unit vector 

 

 The projection of point P on the three axes makes three right angle triangles. 

From the triangle along X-axis as illustrated in Figure  8-10(b), the 
1

aCos =α  or 

αCosa = . Similarly, from the other two triangles βCosb =  and γCosc = . These 

projections of unit vector are called “direction cosines” [PAT68]. Whereas, the 

magnitude of the unit vector is given in Equation 8-31. 

 
2221 cba ++=        (  8-31 ) 

 

 The projection of the same point P on the XY-plane is illustrated in          

Figure  8-11(a). The magnitude of the projection of the point P on the XY-plane is 

given as Equation 8-32.  
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22

baXYprojection +=        (  8-32 ) 

 The angle (φ) is the azimuth rotation angle which the unit vector is making with the 

XY-plane as shown in     Figure  8-11(c) is given in Equation 8-33.  

 










+
= −

22

1tan
ba

c
φ        (  8-33 ) 

 

The angle (θ) is the elevation rotation angle which the projection of the point P on the 

XY-plane (OP’) is making with the X-axis as shown in Figure  8-11(b) and is given in 

Equation 8-34.  

 







= −

a

b1tanθ          (  8-34 ) 

 

These two angles φ and θ are used for finding the rotation field values in VRML. In 

VRML, the angles are defined using the right-hand rule which means any object 

rotating along the counter-clockwise direction is considered as a positive rotation 

angle [VIR04]. 
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 Figure  8-11 : Cartesian coordinates and direction cosines   

8.10 Missile Guidance and Control Modelling 

The missile movement at any one instance depends upon the missile and target 

relative position and direction. The missile gimballed seeker head tracks the target 

aircraft. Remaining within the aerodynamic limits, the missile steers towards the 

target. The movement of the missile depends upon the speed (Vmsl) and the load factor 

(G’smsl) which in turn decides the ROT, TR and lateral acceleration capabilities. The 

following paragraphs explain the algorithm developed for the tracking and guidance 

of the missile in three dimensions. The missile movement in the 3D virtual world is 

controlled by changing the “translation” and “rotation” fields given in Equation 8-3 

to 8-5.     

8.10.1 Missile Gimbal Initial Direction Modelling 

The gimballed seeker head can rotate independent of the missile body rotation or 

missile_LOS. This implies that the seeker head can look in any direction (within a 

cone in front of the missile) independent of the missile_LOS. The missile gimbal 
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rotation field is given in Equation 8-5. At the start of the simulation, irrespective of 

the missile_LOS, the seeker head must always look towards the target. Figure  8-12 

shows the 3D view of the target and missile initial positions.  

 

 

 Figure  8-12 : Target and missile relative positions in 3D view 

 

 To understand the calculations involved in finding the gimbal direction, the 

two triangles in the 3D view shown in Figure  8-12 are separately redrawn in 2D in 

Figure  8-13(a) and (b). From Figure  8-13(a) the angle (θ) is calculated as in Equation 

8-35. 

 














−−

−
= −

)(
tan 1

msltgt

msltgt

XX

YY
θ        (  8-35 ) 

 

 The negative sign in the denominator is to change the θ polarity in accordance 

with the VRML quadrant sign requirements. The differences in VRML and MATLAB 

sign conversions are discussed in paragraph 8-10-6. Therefore, if ( ) 0>− msltgt XX  the 

θ calculated will be a negative value and needs to add π to make it positive. (i.e. 

πθθ += ). The three direction cosines given in the gimbal rotation field of Equation 

8-5 may be calculated as given in Equation 8-36 to 38.   
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 θsin_ =gimbalmX        (  8-36 ) 

 θcos_ =gimbalmY        (  8-37 ) 

 0_ =gimbalmZ         (  8-38 ) 

 

 The three direction cosines given in Equation 8-36 to 8-38 must satisfy the 

condition of unity magnitude given in Equation 8-31. From Figure  8-13(b), the gimbal 

angle φgimbal is calculated as in Equation 8-39.  

 







= −

TMz

TMxy
gimbal R

R1tanφ       (  8-39 ) 

Where, RTMz is the distance between the target and the missile along the Z-axis.  

 tgtmslTMz ZZR −=        (  8-40 ) 

and RTMxy is calculated using Figure  8-13(a) as in Equation 8-41. 

 ( ) ( )22

msltgtmsltgtTMxy YYXXR −+−=       (  8-41 ) 
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 Figure  8-13 : 2D views of target and missile relative positions 

 The distance RTMxy, will always be a positive number as this is a square root of 

a sum of squares. However, RTMz may become negative once the target crosses over 

the missile Z-axis (see Figure  8-13(b)). This negative value needs to be taken care of 

when calculating the angle φgimbal of the missile rotation field. Also at the instance the 

target crosses the missile on the Z-axis the RTMz may become zero, this will make the 

output of Equation 8-39 undefined. To avoid this, when the RTMz value becomes zero 

this is replaced with a very small value “eps” of MATLAB [MAT07]. 

 The direct distance from the target to the missile (RTMD) is calculated from the 

triangle as shown in Figure  8-13(b). 

 
22

TMzTMxyTMD RRR +=        (  8-42 ) 
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For the missile-target engagement simulation, the missile rotation field and distance 

RTMD and RTMz are calculated after every ∆t (or for each frame) as the target and 

missile relative positions are changing constantly. 

8.10.2 Capturing Frame from 3D VR Viewer 

For the missile tracking and guidance algorithm, after every ∆t seconds, the missile 

seeker needs to capture the 2D image from the 3D VR world viewer. To capture the 

2D image, an algorithm is developed using several functions of MATLAB Virtual 

Reality toolbox. Table  8-6 explains the VR Toolbox functions used in this algorithm. 

The VRML file containing the 3D VR world is opened in MATLAB and a VR world 

object is associated with virtual world. The VR world object is given a name 

“myworld”. Several VR viewer windows are opened to view the virtual world 

“myworld” from different aspects. The 2D image is captured in true RGB colours and 

stored in the variable “XRGB”.    

 Table  8-6 : VR Toolbox functions used for capturing 2D image 

VR Toolbox function Explanation 

myworld = vrworld(‘file_name.wrl’) Creating a new world object associated with virtual world 

under name “myworld” 

Open(myworld) Opening virtual world object in MATLAB. The VRML fields 

can be controlled from MATLAB command 

View(myworld) Opening virtual world in a default VRML viewer. Virtual 

world can be viewed from different aspects by opening same 

virtual world in different windows   

f = vrfigure(myworld) Creating new VR figure and returning a VR figure object as 

variable “f” 

Vrdrawnow Updates virtual world field values. The view is updated when 

MATLAB is idle for some time. 

XRGB = capture(f) Create 2D image from VR figure variable “f” and stores 

image as variable “X” in true RGB colours 

 

8.10.2.1 Problem Faced in Capturing Image from Virtual World 

During simulation, the virtual world fields’ values need to be updated to augment the 

positions of the missile and the target. However, in MATLAB, the virtual world field 

values are updated when MATLAB is idle or no other function is running [MAT07]. 

For running the simulation, I am using the “while” function of MATLAB. This caused 

a problem in my algorithm as with the “while” loop running; the virtual world was not 

updating the field values correctly. To overcome this system limitation a pause of 

1/30
th

 of a second is introduced in the “while” loop. This means that the maximum 

frame rate which can be achieved is 30 frames/sec. The maximum 30 frames/sec limit 
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is found by running the simulation several times with different “pause” values. For 

any value above 30 frames, the image was not refreshing correctly. The “pause” 

function of MATLAB is used to insert a time delay. 

8.10.3 Converting RGB Image into Gray-scale Image and Binary Image 

The 2D image captured from the 3D virtual world is in true RGB colours. Each pixel 

of the RGB image (XRGB) holds the RGB colour values. For the “intensity centroid” 

tracker, each pixel of the image must represent its intensity over a gray-level. The 

XRGB image is then converted into the intensity image with each pixel representing the 

intensity over the Gray-scale. The MATLAB function “rgb2gray” is used for this 

purpose [MAT07]. 

 ( )
RGBgray XgrayrgbX 2=       (  8-43 ) 

 To clip the image (Xgray) as per the missile detector criterion, a detector 

threshold (thresholddet) is used as the detection criterion for the missile seeker. There 

are different options for the detection criterion. The thresholddet may be kept as an 

input parameter or be calculated separately from the detector NEP and the SNR. 

However, presently, the detection criterion is incorporated in the algorithm as a 

percentage level above minimum intensity present in the image (thresholdpercent) as a 

user input and using this to calculate the thresholddet. Equation 8-44 calculates the 

detector threshold from the given threshold percentage.  

 
min100

1det gray

percent
X

threshold
threshold 








+=     (  8-44 ) 

Where, thresholddet is the detector threshold level for the detection criterion 

 thresholdpercent is the percentage above the minimum intensity in the image  

  Xgray_min  is the minimum intensity of any one pixel in the image. This 

   may be found by ( )( )graygray XX minmin
min

=  

 

 The image Xgray is tested for the detection criterion as given in Equation 8-45 

and any pixel having intensity below thresholddet calculated in Equation 8-44, is 

converted to a zero level by using a “find” function of MATLAB [MAT07]. 

 ( )( ) 0det =< thresholdXfindX graygray      (  8-45 ) 
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 For the “binary centroid” tracker, each pixel of the image is represented as the 

binary value of “0” or “1” with zero as no target and one representing presence of the 

target irrespective of the intensities. The intensity image Xgray is converted into binary 

image data (XBW) using the “im2bw” function of MATLAB. The “im2bw” uses a 

“level” between 0 and 1 to decide the go-no-go criterion [MAT07]. 

 ( )levelXbwimX grayBW ,2=       (  8-46 ) 

This “level” value may be entered as any value between 0 and 1 to represent the 

detection criterion or the  thresholddet calculated in Equation 8-44 may be used as the 

“level”. Another way of incorporating a threshold is to use the “graythreshold” 

function of MATLAB, which is based on Otsu’s method of finding the threshold 

[MAT07]. The Otsu’s method [OTS79] performs discriminant analysis to 

automatically select an optimal threshold to maximize the distribution of the resultant 

classes in gray levels. The method utilizes only the zeroth- and the first-order 

cumulative moments of the gray-level histograms which is normalized and regarded 

as a probability distribution. The “graythreshold” function given in Equation 8-47, 

generates a “level” between 0 and 1 which may be used in Equation 8-46 as a go-no-

go criterion for converting the Gray-scale intensity image Xgray into binary image XBW.  

 ( )
grayIoldgraythreshlevel =       (  8-47 ) 

8.10.4 Centroid Tracking as Target Location Estimation 

Out of the different missile tracking techniques discussed in Chapter-3 paragraph 3-3, 

the most common and probably the best known of these is the centroid tracker 

[DUD93]. In the algorithm used in this simulation, the “binary centroid” tracker and 

the “intensity centroid” tracker are incorporated for target location estimation. The 

other methods discussed in Chapter-3 paragraph 3-3 may be added in the algorithm in 

future work.  

 In the binary centroid tracker, depending upon the threshold level, a binary 

image is generated which represents the presence of the target as pixels having level 

one and the rest all as level zero. Irrespective of their intensity the pixels having 

intensity more than the threshold are level one. Whereas, in the intensity centroid each 

pixel is given a different value on the Gray-scale corresponding to the intensity of 

each pixel. Their level depends upon their mass factor. To understand the centroid 

tracking algorithms, first we take an example of a binary image of a 10x10 pixel 
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matrix as illustrated in  Figure  8-14. All the pixels other than the pixels shown 

as ones are having zero value. The centroid (or the centre of mass) may be found by 

summing the product of mass of each pixel and its distance from the origin. In 

 Figure  8-14 the origin is considered to be at the left top corner of the image. 

The reason for considering origin at top left corner is that the image size in MATLAB 

is shown as numbers of rows and columns. The number of rows starts from the top 

and increase downward and the number of columns starts at the left and increases to 

the right [VIR04]. The X and Y components of the centroid may be found by using 

Equations 8-48 and 8-49 respectively.  

 

  Figure  8-14 : Explaining binary centroid  
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 Xi is the distance (in number of pixels) of the i
th

 element on the X-axis from 

 the origin, 

 Yj is the distance (in number of pixels) of the j
th

 element on the Y-axis from 

 the origin, 

 mi is the sum of mass of all the pixels on the i
th

 column, 

 mj is the sum of mass of all the pixels on the j
th

 row, 

 p  is the number of rows of the image, 

 q is the number of columns of the image. 

 

 Therefore, the centroid of the complete image can be written as (XCM, YCM). 

Although the binary and intensity centroid tracker uses the same Equations 8-48 and 

8-49 and the only difference between these is the mass “m” of each pixel. In the case 

of binary centroid the mass of each pixel representing the target is considered as unity. 

Whereas, in the case of intensity centroid the intensity on the Gray-scale of each pixel 

is taken as the mass “m”. In  Figure  8-14 an example of a binary image is illustrated 

and Figure  8-15 illustrates the same image with the pixels intensities on the Gray-

scale level.  

 

 Figure  8-15 : Explaining intensity centroid 
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the centroid thus it can only work for the binary centroid tracker. Initially, I used this 

function in my algorithm but to add the intensity centroid, I developed my own 

algorithm which finds centroids by using either the binary or the intensity centroid 

method. Figure  8-16 shows the flow diagram of the centroid tracker algorithm using 

the binary image XBW of Equation 8-46 for the binary centroid and the intensity image 

Xgray of Equation 8-43 for the intensity centroid.   

 

 Figure  8-16 : Flow diagram of centroid tracking algorithm 

8.10.5 Calculating Target Error from Bore-sight 

The centroid (XCM, YCM) shown in  Figure  8-14 and Figure  8-15 are from the origin 

of the image which is at the top-left corner. To calculate the error vector from the 

bore-sight, the centroids are subtracted from the centre of the image (i.e. the bore-

sight of the missile). Figure  8-17 illustrates the bore-sight and the error vector 

represented as Xerr and Yerr. The values of the X- and Y-components of the error 

vector are calculated using Equation 8-50 and 8-51 respectively.  
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        (  8-50 ) 
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 CM

pix

err YrowY −=
2

       (  8-51 ) 

Where, pix

errX  and pix

errY  are the X- and Y-components of the error vector in number of 

pixels. The “col” is the number of columns in the image representing the number of 

pixels in the horizontal direction. The “row” is the number of rows in the image 

representing the number of pixels in the vertical direction. The “col” and “row” also 

correspond to the horizontal FOV and the vertical FOV respectively. 

 

 Figure  8-17 : Error signals from bore sight 

 For estimating the missiles new location, the error values in the pixels are to 

be converted into meters. This is done by converting number of pixels in the FOV into 

meters. The FOV is an angle which depends upon the distance between the target and 

the missile (RTMD). In Figure  8-18, the height (h) of the image in meters at the distance 

RTMD from the detector may be calculated using Equation 8-52.   
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 Figure  8-18 : Geometry explaining size of one pixel in meters 

 ( )2/tan2 gimbalTMD FOVRh ⋅⋅=       (  8-52 ) 

In VRML, the FOV given in the “navigationInfo” node is the vertical FOV. The 

vertical FOV corresponds to the number of rows “row” and it is the Y-component of 

the error signal. Therefore, the size of one pixel (pix_size) in meters can be calculated 

as in Equation 8-53.  

 
row

hsizepix =_        (  8-53 ) 

Where, the “row” is the number of rows of the image. For the square shape pixel, the 

same pixel size can also be used for converting the X-component of the error signal. 

Therefore, the error components in meters are calculated by multiplying the error 

components given in Equation 8-50 and 8-51 with pix_size given in Equation 8-53.  

 
pix

errerr XsizepixX ⋅= _       (  8-54 ) 

 
pix

errerr YsizepixY ⋅= _        (  8-55 ) 

And the magnitude of the error vector (Rerr) is given in Equation 8-56   

 
22

errerrerr YXR +=        (  8-56 ) 

8.10.6 Sign Conversions in VRML and MATLAB 

In VRML, the polarity standards in the four quadrants followed for the “translation” 

and “rotation” fields are different. Considering the four quadrants shown in        

Figure  8-19, the X-components of the “translation” fields of the missile (Xmsl) and the 

target (Xtgt) are positive in the First and Fourth quadrants and the Y-components Ymsl 

h 

h/2 

RTMD 

φ = FOVgimbal/2 
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and Ytgt are positive in the First and Second quadrants. Whereas, for the “rotation” 

field the Xm is positive in the First and Second quadrants and Ym is positive in the 

Second and Third quadrants. The Xerr is considered positive on the left of the Y-axis 

(i.e. Second and Third quadrants) and the Yerr is considered positive in the First and 

Second quadrants. As the MATLAB and VRML sign conversion are different 

[VIR04], therefore, for controlling the movement of objects in the 3D virtual world 

from MATLAB, the sign conversions, summarized in Figure  8-19, are finalized after 

repeatedly making changes in the algorithm and trying different options and finally 

deciding the logic for each field separately.   

 

  Figure  8-19 : Sign for translation and rotation fields as per four quadrants 

8.10.7 Updating Gimbal Rotation Field 

At the start of the simulation, the missile gimbal direction is locked on towards the 

target. Paragraph 8-10-1 explains the steps involved in calculating the missile initial 

direction. During the simulation for tracking the target, the gimbal should remain 

looking towards the target. However, due to the movement of the missile and the 

target, an error is induced. This error is used in the missile control algorithm for 

steering the missile towards the target. The error components calculated in Equation 

8-54 and 8-55 are used to calculate the total error at every frame using Equation 8-57 

and 8-58 respectively. 

 errTerrerrT XXX +=        (  8-57 )  

Second Quadrant 

 

Xerr  (+ve) Yerr  (+ve) 

Xm   (+ve) Ym   (+ve) 

Xmsl (- ve) Ymsl (+ve) 

Xtgt  (- ve) Ytgt  (+ve) 

 

First Quadrant 

 

Xerr  (- ve)  Yerr  (+ve) 

Xm   (+ve)  Ym   (- ve) 

Xmsl (+ve)  Ymsl (+ve) 

Xtgt  (+ve)  Ytgt  (+ve) 

 

Third Quadrant 

 

Xerr  (+ve) Yerr  (- ve) 

Xm   (- ve) Ym   (+ve) 

Xmsl (- ve) Ymsl (- ve) 

Xtgt  (- ve) Ytgt  (- ve) 

 

Fourth Quadrant 

 

Xerr  (- ve) Yerr  (- ve) 

Xm   (- ve) Ym   (- ve) 

Xmsl (+ve) Ymsl (- ve) 

Xtgt  (+ve) Ytgt  (- ve) 
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 errTerrerrT YYY +=        (  8-58 ) 

 

 In Figure  8-20, the total magnitude (RerrT) and the total direction (θT) of the 

error vector are calculated as given in Equation 8-59 and 8-60 respectively. 

 
22

errTerrTerrT YXR +=        (  8-59 ) 

 





= −

err

err
T X

Y1tanθ        (  8-60 ) 

 If XerrT is less than zero (XerrT <0), the θT calculated in Equation 8-60 is 

negative and needs to be added with “π” to make this a positive angle. In            

Figure  8-20(a) XerrT is negative if it is in the First or Fourth quadrants. 

 πθθ += TT         (  8-61 ) 

 

 To rotate the gimbal towards the target new position, the direction cosines for 

the missile gimbal rotation field are calculated as per the new position of the missile 

and the target by putting total angle θT in the Equation 8-36 to 8-38. 

  Tgimbalm SinX θ=_         (  8-62 ) 

 Tgimbalm CosY θ=_        (  8-63 ) 

 0_ =gimbalmZ         (  8-64 ) 

 

 The total rotation angle (φgimbal_T ) shown in Figure  8-20(b) is calculated as 

given in Equation 8-65. 

 





= −

TMz

errT
Tgimbla R

R1

_ tanφ        (  8-65 ) 

 

 In Equation 8-65, if RTMz is less than zero (RTMz <0), then φgimbal_T is a negative 

angle and needs to be converted to a positive angle by adding π.  

 πφφ += TgimbalTgimbal __       (  8-66 ) 
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 Finally the gimbal rotation field given in Equation 8-5 is updated as per the 

new direction cosines and the rotation angle calculated in Equation 8-62 to 8-64 and 

8-66 respectively.  

 

 Figure  8-20 : Total error vector magnitude and direction   

8.10.8 Gimballed Seeker Head Maximum Angle Limit 

The gimballed seeker head is modelled to rotate in a spherical region around 

missile_LOS. The gimballed seeker head rotation is limited by an angle (θgimbal_max) 

which holds a value based upon the missile input parameters (typical value between 

45
o
 to 90

o
). This limit is incorporated in the algorithm using the logic explained in the 

flow diagram of Figure  8-21. 
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 Figure  8-21 : Flow diagram explaining gambal maximum angle limit  

8.10.9 Updating Missile Translation Fields 

During the simulation, the missile new position needs to be calculated for each frame. 

The new position of the missile depends upon the target new location and the missile 

LATAX limit. Considering the missile target locations given in Figure  8-12, and 

using the θ and φgimbal calculated in Equation 8-35 and 8-39, the angle ζT and angle 

φ(n) are written as Equation 8-67 and 8-68 respectively. The angle θ  of Equation 8-

35 is given a new name ζT, just to differentiate it from the initial value of θ  as during 

the simulation ζT is used for the LATAX implementation.     

 ( )
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
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−−

−
= −
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T XX

YY )(
tan 1ζ      (  8-67 ) 

 ( ) 



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


= −
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R
n

1tanφ       (  8-68 ) 

 The “n” in Equation 8-68 depicts the number of the frame during simulation. 

If RTMz < 0 that means the target has gone behind the missile and the negative angle 

φ(n) needs to be corrected by adding π. Figure  8-22 explains the change of sign for 

the negative φ(n). 

  

 ( ) ( ) πφφ += nn        (  8-69 ) 
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 Figure  8-22 : Calculating missile angle  

8.10.10 Modelling Missile Lateral Acceleration Limit 

To incorporate the missile lateral acceleration (LATAX) limit, the missile ROTmsl is 

limited as per the missile load factor (G’s) and the speed (Vmsl). From the ROT 

calculated in Equation 8-11, the maximum angle that the missile can turn in one frame 

or time interval (∆t) is calculated by multiplying ROTmsl with ∆t.  

 tROTROT mslmsl ∆⋅=int_       (  8-70 ) 

 Initially, LATAX was implemented by comparing the missile angle φ(n) as 

given in Equation 8-69 with nROTmsl ⋅int_  at every frame. Although, this logic works 

satisfactorily for situations when the missile is constantly turning in one direction, 

however, once the target crosses the missile-LOS and the missile starts to move in the 

opposite direction, this simple logic was not limiting the LATAX. This problem is 

resolved by comparing the difference between the missile rotation angle (φ) at two 

consecutive time intervals. For the missile to operate within the LATAX limit, this 

difference must be less than the ROTmsl_int.  

 ( ) ( ) int_1 mslROTnn <−− φφ       (  8-71 ) 

 If the logic of Equation 8-71 is true, the missile new angle φ(n) is the same as 

that calculated in Equation 8-69, otherwise, the φ(n) is limited. If angle φ(n) is 

increasing then ROTmsl_int is added to the angle φ(n).  

 ( ) ( ) int_1 mslROTnn +−= φφ       (  8-72 ) 

Otherwise, if φ(n) is decreasing then ROTmsl_int is taken away from the angle φ(n). 

 ( ) ( ) int_1 mslROTnn −−= φφ       (  8-73 ) 
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 The flow chart shown in Figure  8-23 explains the logic for limiting the missile 

ROT as per the LATAX limit. However, for the first frame (i.e. n = 1), in Equation 8-

71 the “n-1” term is not defined. To overcome this problem, for the first two frames 

the angle φ(n) is calculated by multiplying ROTmsl_int with “n”.   

 ( ) nROTn msl ×= intφ        (  8-74 ) 

 

 Figure  8-23 : Flow chart explaining missile ROT limit logic 

 

 After limiting the missile angle φ as per the LATAX, the missile new position 

is calculated as per the new φ value. The RTMxy is calculated from RTMz as given in 

Equation 8-75 and illustrated in Figure  8-13(b). 

 ( )nRR TMzTMxy φtan=        (  8-75 ) 

 

 

   START  
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(RTMxy/RTMz) 
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NO 

     END  
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If the target is on the left of the missile (ie msltgt XX < ) then the X-component of the 

increment in the target-missile distance (∆XTM) is calculated as given in Equation 8-76  

 ( )TTMxyTM CosRX ζ−=∆       (  8-76 ) 

Otherwise, if the target in on the right of the missile (ie msltgt XX > ) then ∆XTM is 

positive as given in Equation 8-77.  

 ( )TTMxyTM CosRX ζ=∆       (  8-77 ) 

Similarly, for the Y-component, if the target is below the missile (ie msltgt YY < ) then, 

 ( )TTMxyTM SinRY ζ−=∆       (  8-78 ) 

And for the target above the missile (ie msltgt YY > ) then ∆YTM is a positive value. 

 ( )TTMxyTM SinRY ζ=∆        (  8-79 ) 

The missile increment along the Z-axis is calculated by multiplying the missile-step 

(stepmsl) calculated in Equation 8-18 with the Cosine of φ(n).   

 ( )nCosstepstep mslzmsl φ×=_        (  8-80 ) 

The stepmsl_z calculated in Equation 8-80 is taken as a negative value when RTMz is 

decreasing and a positive value for increasing RTMz.  

 To steer the missile towards the target, the 3D location of the missile in the 

next frame (n+1) is calculated.  The Xmsl(n+1) and Zmsl(n+1) given in Equation 8-81 

and 8-83 are calculated using the two similar triangles shown in Figure  8-24. 

Similarly, the Ymsl(n+1) given in Equation 8-82 is calculated by solving the similar 

triangles along the Y-axis.  

 ( ) ( )nX
R

step
XnX msl

TMz

zmsl

TMmsl +∆=+
_

.1     (  8-81 ) 

 ( ) ( )nY
R

step
YnY msl

TMz

zmsl

TMmsl +∆=+
_

.1     (  8-82 ) 

 ( ) ( )nZstepnZ mslzmslmsl +=+ _1      (  8-83 ) 

Using these values the “translation” field of the missile-LOS given in Equation 8-3 is 

updated at each frame. 
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 Figure  8-24 : Explaining missile new position in next frame     

8.10.11   Updating Missile_LOS Rotation Field 

The missile rotation field given in Equation 8-4 is updated at every frame by 

calculating the direction-cosines and the rotation angle of the missile_LOS. The 

direction-cosines are calculated using ζT calculated in Equation 8-67. For, Xmsl < Xtgt, 

the ζT is a negative angle and  π is added to make ζT a positive value. The direction-

cosines calculated in Equation 8-85 to 8-87 are used to update the rotation field values 

in Equation 8-4. The missile_LOS rotation angle φmsl_LOS(n) is the same angle as 

calculated after the LATAX limit and explained in flow diagram of Figure  8-23. 

 

 πζζ += TT          (  8-84 ) 

 )(_ TLOSm SinX ζ=        (  8-85 ) 

  )(_ TLOSm CosY ζ=        (  8-86 ) 

 0_ =LOSmZ         (  8-87 ) 
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8.11 Missile Miss-distance and Hit-Criterion  

In homing missiles, the contributors to missile miss-distance are the seeker errors, 

autopilot lag, target manoeuvres, target state estimation lag etc. The hit-criterion is 

based on the type of fuse and effective range of the warhead used. The fuse may be a 

simple impact device or a complex “fisheye” lens proximity system. Typically, the 

missile reaching less than half the minimum dimensions of the target is considered as 

a hit [MEN03]. If the missile satisfies the hit-criterion then it is considered as a direct 

hit. Otherwise, the missile has missed the target. The missile miss-distance is the 

minimum distance between the missile and the target aircraft at any time during the 

engagement. The miss-distance is calculated between the geometrical origins of the 

missile and the target or in other words for miss-distance the missile and target are 

considered as point objects. 

 The hit-criterion is incorporated in the algorithm by considering that if the 

target aircraft enters the cylindrical region ahead of the missile as shown in Figure 

 8-25 then it is a hit, otherwise the missile has not hit the target. The radius of the 

cylinder is entered as Rimpact as an input parameter and the length is taken as the stepmsl 

calculated in Equation 8-18. During the simulation, at every frame the Rerr calculated 

in Equation 8-56 is compared with Rimpact and the RTMD calculated in Equation 8-42 is 

compared with stepmsl. If the logic given in Equation 8-88 is satisfied, then missile hits 

the target. 

 )(&)( stepTMDimpacterr mslRRR <<         (  8-88 )  

 However, in the case where the missile misses the target aircraft, the miss-

distance is calculated as the largest out of the RTMD and Rerr used in the hit-criterion 

logic in Equation 8-88.  

 

 Figure  8-25 : Considering Hit-criterion as a cylindrical region in front of missile  
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 In the virtual world, the RTMD represents the distance from the centre of the 

target body to the head of the missile and the Rerr denotes the magnitude of the error 

from the centre of the target aircraft. However, to increase the fidelity of the model, 

the hit-criterion may be improved by adding the “collision” node and integrating this 

with “avatarSize” fields in the virtual world. Presently, due to shortage of time, this 

feature is not incorporated in the algorithm. 

8.12 Conclusion 

The missile-target engagement simulation is modelled by controlling the “translation” 

and “rotation” fields of the missile and target aircraft by the algorithm implemented in 

MATLAB. The target aircraft may fly with 4-DOF and can perform different 

manoeuvres in straight-and-level, descent and turn flight paths. The missile movement 

is modelled in 5-DOF. The missile is modelled with a gimballed seeker head. The 

binary centroid and intensity centroid trackers are implemented in the algorithms. The 

missile seeker/detector captures the 2D image from 3D virtual world. This is 

implemented using MATLAB Virtual-reality Toolbox. The Pursuit-course guidance is 

modelled for steering the missile towards the target aircraft. The lateral acceleration 

(LATAX) is modelled by limiting the rate-of-turn as per the missile speed and the 

load-factor. The missile hit-criterion is implemented as a cylindrical region in front of 

the missile. The target manoeuvrability and the missile guidance and control in 3D are 

modelled to simulate the missile-target engagement sequences for the analysis of the 

IR signature of the targets and the countermeasure flares.      
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