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Abstract

The large quantities of slurry and manure that are produced annually in many areas with intensive

animal production could be an important source of organic matter and nutrients for agriculture. However,

the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff

from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure

application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are

analysed. Rainfall simulations at a rate of 70 mmh-1 were conducted in a sandy loam soil packed into soil

flumes (2.5m long*1m wide) at a bulk density of 1400 kg m-3, with and without cattle slurry manure

applied on the surface. For each simulation, sediment and runoff rates were analysed and in those

simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were

evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils,

reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies

an important source of pollution for surface waters especially if rainfall takes place within a short period

after application. The concentrations of microorganisms (presumptive faecal coliforms (PFCs)) found in

water runoff, ranged from 1.9x104 to 1.1x106 PFC 100 mL-1, depending on the initial concentration in the

slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a

strong relationship between the faecal coliforms transported by runoff and the organic matter in the

sediment.
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Introduction

The large quantities of slurry and manure that are produced annually in many areas with intensive

animal production could be an important resource of organic matter and nutrients. Recycling these wastes

via land application could lead to improvements in physical properties of soil, such as soil porosity,

structure and water holding capacity (León-González et al., 2000; Ourédraogo et al., 2001; Nyamangara

et al., 2001). For this reason, the application of faecal wastes could be beneficial for soil conservation

(Pinamonti and Zorzi, 1996), especially in degraded soils and soils susceptible to erosion, although the

response to soil amendment is soil-site specific. However, the benefits of waste recycling may be partially

offset by the risk of water pollution associated with runoff from fields to which slurry or manure has been

applied, especially if rainfall occurs shortly after application.

The contamination of surface waters with pathogenic micro-organisms transported from fields to

which livestock slurries and manure have been applied is a serious environmental concern because it may

lead to humans being exposed to such micro-organisms via several routes: drinking water (Ongerth and

Stibbs, 1987; Hansen and Ongerth, 1991; Poulton et al., 1991; Skerrett and Holland, 2000); bathing

waters (Geldreich, 1996; Wyer et al., 1996; Baudart et al., 2000); and water used for the irrigation of

ready to eat foods (Tyrrel, 1999).

The aim of this work was to evaluate the effects of cattle manure application on soil erosion rates

and runoff and on the detachment and transport of faecal coliforms.

Material and methods

The study was performed in the laboratory. A sandy loam soil, classified as Lamellic

Ustipsamment (Soil Survey Staff, 1999), sampled at Bedfordshire, (UK) was used throughout the

experiments. The soil was passed through a 9.5 mm sieve and packed into soil flumes (2.5 m long x 1 m

wide and 30 cm deep) at a bulk density of 1400 kg m-3, set at a 5 % slope. The flumes are designed to

separate overland flow from water that has infiltrated the soil. Surface runoff generated along the slope

flows into a collection chamber at the end of the flume and then through an outlet hose from which



discharges could be measured and samples taken for analysis. Water percolating through the soil was able

to drain freely from the flume thus avoiding the creation of saturated conditions (Fig 1).

In order to increase soil surface moisture conditions, one day prior to each runoff experiment, the

erosion plot was exposed to simulated rainfall whilst protected with fabric to avoid soil detachment.

Simulated rainfall was applied to the plots at an intensity of 70 mm h-1 for 45 minutes using a pressure

irrigation sprinkler. The sprinkler had a nozzle (LECHLER GMbh 56072830-CE) positioned 2 m above

the soil surface. Raindrop size ranged between 0.7 mm and 2.8 mm, with a D50 value of 1.2 mm. The

intensity used in the simulation was high enough to produce runoff, which became constant after 15

minutes. This intensity corresponds to the 15-min intensity for a 20-year return period storm.

For each simulation runoff samples were taken every five minutes. Runoff volumes (including

water and sediment) were determined using calibrated measuring cylinders. Sediment concentration in

runoff was determined in 1-L aliquots of runoff, which were then decanted and dried at 105ºC, and then

weighed. The organic matter content in the sediments collected in runoff was determined for each sample

by weight after ignition in a furnace at 550 C for 4h of an aliquot (Nelson and Sommers, 1996). The

results were expressed in grams of organic matter per runoff volume. Two simulations and three

replications of each analysis were done.

In similar plots, cattle slurry was spread onto the soil surface at a rate of 30 Mg ha-1 (7.5 kg/plot)

which is below the maximum recommended value (MAFF, 1998). Slurry application was done by hand

but just left on the surface, simulating the way in which it could be applied by farmers with machinery.

The dry solids content of the slurry ranged from 8-24%. In this case, simulated rainfall was applied to the

plots within 24 h of the slurry application. Runoff samples were collected and managed in the way

described above to determine sediment and organic matter concentration. In addition, aliquots of 300 mL

were collected in sterile bottles to determine the number of PFCs in the runoff following serial dilution

according to the membrane filter procedure (method nº: 9222D, APHA, 1998). The analysis was done

within two hours of the end of the rainfall simulation and each sample was analysed in triplicate.

Prior to application the number of PFCs present in the slurry was also enumerated. Ten grams of

moist slurry was added to 200 mL of sterile water and placed on a mechanical shaker for 20 min. This

solution was also serially diluted prior to the membrane filtration.



A statistical analysis (Duncan’s mean test and one–way analysis of variance) of total runoff

volume, average sediment concentration in runoff recorded during the 45 min rainfall, final constant

runoff rates and final sediment concentration was done to evaluate significant differences between treated

and untreated soils, using the Multi range test- Statgraphics 5.1 program.

Results and Discussion

Runoff rates and sediment concentrations

For the untreated plots runoff started 3 minutes after the beginning of the rainfall and became

constant 25 minutes later at a rate of 9 Lmin-1. However, when the slurry was applied on the surface,

runoff increased faster in the first phase of the storm, and reached a maximum discharge of 13 Lmin-1,

which represents a depth of 4.7 mm. At the peak 80% of the rainfall ran off. (Fig.2). Total runoff

collected during the 45min simulation was 58 ± 4 L in untreated soils and 105 ±5 L in treated soil, on

average .

Regarding the soil sediment concentration in runoff, for untreated soils the quantity of material

eroded increased during the first part of the trial until it reached a constant value of about 100 g/min,

which represented a maximum sediment concentration of about 10 gL-1 (Fig. 3), and an erosion rate of

about 0.45 Mg ha-1. A significant linear relationship between soil losses and runoff was observed.

For the treated soils, however, the eroded material behaved differently. The highest erosion rates

were at the beginning of the experiment and subsequently decreased until rates of about 3 g/L were

reached. Total sediment in runoff collected during the 45 min period of simulated rainfall was 30 g in

treated soils vs. 346 g in untreated soils, which represented average sediment concentration in runoff of

2.0 g/L vs. 7.6 g/L. Significant differences were confirmed between treated and untreated soils. Table 1

shows the average value and its standard deviation and the ANOVA.

The application of slurry on the soil surface appeared to have a protective effect on the soils,

reducing erosion but increasing runoff. The repacked soils used in these experiments are likely to have

lower infiltration rates than undisturbed soils due to a loss of structure. Nevertheless, the flumes were

prepared in an identical way for each run and therefore we conclude that the differences observed are due

to the treatment effect.

Effect of simulated rainfall on transport of organic matter and micro-organisms



Organic matter concentrations associated with the sediment collected in the runoff were generally

higher in the first 20 minutes of the experiment and declined gradually as the simulation proceeded (Fig.

4). There were not big differences between simulations. Similar trends were obtained in the three

replications.

The PFC concentrations found in the runoff water, ranged from 1.9× 104 to 1.1 × 106 PFC 100 mL-

1, depending on the initial concentration in the slurry (for the three simulations they were: 5112, 3118 and

11697 FC/g of slurry, respectively), but even during the stages where the concentrations were lower they

were always at least one order of magnitude higher than the European standard (2000/100 mL) given for

bathing waters. The analysis suggests that faecal coliforms were very mobile in the first fifteen minutes of

the experiments but that this rate of transport declined rapidly as the simulation progressed.

There were similarities in the pattern of transport of PFCs and organic matter, i.e. a decrease in

concentration as the experiment proceeded but there was not a good correlation with total soil loss. There

is still a lack of understanding of the way in which the micro-organisms are transported: for example the

proportions adsorbed to mobile and/or immobile sediments or moving in the flow (Yeghiazarian and

Montemagno, 2000) or the influence of applying livestock waste on the surface or incorporating the

wastes into the soil (Quinton, et al., 2003). So, more research is necessary in this area. But the results

indicate that bacterial transport is more likely to be linked to the slurry organic matter particles than to the

soil particles. There was a linear relationship between PFCs and organic sediment (Fig. 5). However, the

linear relationship observed between PFCs and organic matter had different slope and intercept values for

each experimental run, which could be due to the differences in the original concentrations in the slurry or

other factors not yet elucidated.

Conclusions

The application of slurry and manure to the fields has implications for erosion processes. When

manure is applied on the soil surface, the quantity of eroded material decreases but runoff can increase by

up to 30%.

This practice implies an important source of pollution for surface waters. If rainfall takes place

within a short period after application, faecal coliforms in runoff waters reach high concentrations,

especially during the first phases of the rainfall event. This may cause an increase in the concentration of



faecal coliforms in surface water, which could exceed the standards for bathing water quality by more

than one order of magnitude. The distribution patterns of PFCs during the rainfall show that most of them

are transported in association with organic matter particles rather than linked to the soil or suspended in

water.

Acknowledgements

Financial support for the project has been provided by the UK Biotechnology and Biological

Sciences Research Council (BBSRC); grant number 63/MAF12260.

References

APHA. American Public Health Association, Standard methods for the examination of water and

wastewater, 20th ed. Washington, DC., 1998.

J. Baudart, J. Grabulos, J-P. Barusseau, P. Lebaron, Salmonella spp. and fecal coliform loads in coastal

waters from a point vs. non-point source of pollution. J. Environmental Quality 29 (2000) 241-250.

E.E. Geldreich, Pathogenic agents in freshwater resources. Hydrological processes 10 (1996) 315-333.

J.S. Hansen, J.E. Ongerth, J.E., Effects of time and watershed characteristics on the concentration of

Cryptosporidium oocysts in river water. Applied and Environmental Microbiology 57 (1991) 2790-2795.

F. León-González, M.M. Hernández-Serrano, J.D. Etchevers, F. Payán-Zelaya, V. Ordaz-Chaparro,

Short-term effect on macroaggregation in a sandy soil under low rainfall in the Valley of Mexico. Soil

and Tillage Research 56 (2000) 213-217.

MAFF, Code of good agricultural practice for the protection of water. MAFF Publications, London,

1998 (Second edition).

D.W. Nelson, L.E. Sommers, Total carbon, organic carbon and organic matter, in D.L. Sparks, A.L. Page,

P.A. Helmke, R.H. Loeppet, P.N. Soltanpour, M.A. Tabatasi (Eds), Methods of soil analysis, Part 3.

Chemical methods, Madison, Winconsin, 1996, pp. 961-1010,

J. Nyamangara, J. Gotosa, S.E. Mpofu, Cattle manure effects on structural stability and water retention

capacity of a granitic sandy soil in Zimbabwe. Soil and Tillage Research 62 (2001) 157-162.

J.E. Ongerth, H.H. Stibbs, Identification of Cryptosporidium oocysts in river water. Applied and

Environmental Microbiology 53 (1987) 672-676.



E. Ouédraogo, A.M. Mando, N.P. Zombré, 2001, Use of compost to improve soil properties and crop

productivity under low input agricultural system in West Africa., Agriculture, Ecosystems and

Environment 84 (2001) 259-266.

F. Pinamonti, G. Zorzi, Experiences of compost use in agriculture and in land reclamation projects, in: De

Bertoldi, M. et al., (Eds). The Science of Composting: Part I. Blackie, Glasgow, UK, 1996, pp. 517-527.

M. Poulton, J. Colbourne, P.J. Dennis, Thames Water’s experience with Cryptosporidium. Water Science

and Technology 24 (1991) 21-26.

J.N. Quinton, S.F. Tyrrel, M.C. Ramos, 2003. The effect of incorporating slurries on the transport of

faecal coliforms in overland flow. Soil Use and Management 19 (2003) 185-186

H.E. Skerrett, C.V. Holland, The occurrence of Cryptosporidium in environmental waters in the greater

Dublin area. Water Research 34 (2000) 3755-3760.

Soil Survey Staff. Soil Taxonomy. A basic system of Soil Classification for Making and Interpreting Soil

Surveys (Second Edition). United States Department of Agriculture, Natural Resources Conservation

Service, Washington, USA. (1999)

S.F. Tyrrel, The microbiological quality of water used for irrigation. Irrigation News 27 (1999) 39-42.

M.D. Wyer, D. Kay, H.M. Dawson, G.F.Jackson, F. Jones, J.Yeo, J. Whittle, Delivery of microbial

indicator organisms to coastal waters from catchment sources. Water Science and Technology 33 (2)

(1996) 37-50.

L.L. Yeghiazarian, C.D. Montemagno, Incorporation of the Water Erosion Prediction Project (WEPP) in

the modeling of the transport of pathogenic microorganism from non-point sources of pollution. Soil

Erosion Research for the 21st Century. In J.C.II Ascough, C. Flanagan, (Eds). American Society of

Agricultural Engineers. St, Joseph MI, 2001, pp. 127-130



Table 1. Average values and ANOVA of total runoff (TRU: total runoff in untreated soils; TRT: total

runoff in treated soils), sediment concentration in total runoff (SCRU: total sediment in runoff for

untreated soils; SCRT: total sediment in runoff for treated soils), final runoff rates (FRRU: final runoff

rates for untreated soils; FRRT: final runoff rates for treated soils) and final sediment concentration in

runoff (FSCRU: final sediment concentration in runoff for untreated soils; FSCRT: final sediment

concentration in runoff for treated soils).

Average ± stad. Deviation F p value

TRU (L)

TRT (L)

SCRU (g/L)

SCRT (g/L)

FRRU (L/min)

FRRT (L/min)

FSCRU (g/L)

FSCRT (g/L)

58.4 ± 4.2

105.0 ± 4.7

7.5 ± 0.9

2.0 ± 0.4

2.69 ± 0.08

1.84 ± 0.02

97.0 ± 1.4

1.91 ± 0.03

48.6

42.73

29.17

152.19

*0.0022

*0.0073

*0.0001

*0.0011

* Statistical significant difference between means at 95% confidence level.



Fig.1. Diagram representing the flume type used for the rainfall simulation



Fig.2. Runoff volume evolution along the rainfall simulation for the slurry treated (RVT) and untreated

soils (RVU). (Each line corresponds to one simulation S1-S2-S3)
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Fig.3. Sediment concentration evolution along the rainfall simulation for slurry treated (SCRT) and

untreated (SCRU) soils. (Each line corresponds to one simulation S1-S2-S3)
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Fig.4. Evolution of the organic sediment concentration with time for the different simulations of treated

soils (simulations S1-S2-S3).
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Fig.5. Evolution of the faecal coliforms lost from the soil along the time in each simulation (simulations

S1-S2-S3).
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Fig.6. Relationship between FC 100 mL-1 and the organic matter content in the sediment for each

simulation (simulations S1-S2-S3).
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