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ABSTRACT

In recent years it has become accepted that Logistics and Supply Chain systems are
susceptible to uncertainty by the generation of deterministic chaos [Wilding, 19983;
Levy, 1994; Mosekilde & Larsen, 1988]. In this paper an explanation of a methodology
for detecting and quantifying deterministic chaos within measured supply chain data is
discussed. The paper describes the use of Lyapunov exponents [Peitgen, Jurgens, &
Saupe, 1992; Wolf, 1986] and how these can be used to determine the average
predictability horizon of a chaotic system [Wilding, 1997b]. This can then be used as a
method of quantifying the amount of uncertainty from chaos within a system. The
magnitude of the Lyapunov exponent gives a reflection of the time scale over which the
dynamics of the system are predictable, so the exponent can be used to approximate the
average prediction horizon of a system [Wolf et al., 1985; Shaw, 1981]. After this
prediction horizon has been reached the future dynamics of the system become
unforecastable. This occurs because any cause and effect relationship between current
data and previous data becomes increasingly blurred and is eventually lost.

INTRODUCTION

When detecting chaos within measured data one is looking for the key characteristics of
the following definition. The definition used in this work is adapted from that proposed
by Kaplan and Glass [Kaplan & Glass, 1995 p.27] and Abarbanel [Abarbanel, 1996
p.15]:

Chaos is defined as aperiodic, bounded dynamics in a deterministic system with
sensitivity dependence on initial conditions, and has structurein phase space.

The key terms can be defined as follows:

e Aperiodic; the same state in never repeated twice.

e Bounded; on successive iterations the state stays in a finite range and does not
approach plus or minus infinity.

e Deterministic; thereis adefinite rule with no random terms governing the dynamics.



e Sensitivity to initial conditions; two points that are initially close will drift apart as
time proceeds.

e Structure in Phase Space; Nonlinear systems are described by multidimensional
vectors. The space in which these vectors lie is called phase space (or state space).
The dimension of phase space is an integer [Abarbanel, 1996]. Chaotic systems
display discernible patterns when viewed [ Stacey, 1993a; Stewart, 1989].

CHAOSANALYSISMETHODOLOGY

Figure 1 depicts the key stages of the analysis methodology used to detect and quantify
deterministic chaos present within time series data generated within supply chains. The
following paragraphs will give an overview of each stage.

Step 1 - Definethe null hypothesis
Proving definitively the existence of chaos from observed data would require an infinite
amount of data. This therefore requires a stochastic technique that will make use of an
gopropriate null hypothesis.  This procedure means that one does not set out to prove the
exigence of chaos but to rgject some other null hypothesis that implies chaos is not present.
The procedure of hypothesistesting iswiddy used in Satisticd anaysis and asmilar gpproach
can be used for determining whether chaosis present in data. Kanji [Kanji, 1993] describes a
five step method for hypothesistesting.
Wilding [Wilding, 1997b] used a deterministic smulation to ensure that no uncertainty was
present from external sources. However, a cautious approach was taken in the research and the
possibility of unattributed “ computer noise” becoming a mgor influence on the results is aso
to beinvestigated. Thisresulted in the following null hypothesis:
“The dynamics are linear with Gaussian white noise random inputs, or the
dynamicsarelinear exhibiting periodic behaviour.”

Step 2 - Identify discriminating statistic to test the null hypothesis.

To demongrate that any data is inconsistent with the null hypothesis a discriminating statistic
needsto be sdected. This quantity can be cadculated for the measured data and aso for a set of
data that is known to be consistent with the null hypothesis. There are many discriminating
datistics that can potentialy be used in the analysis of chaotic systems however one of the
most robust and commonly used isthe Lyapunov exponent [Abarbane, 1996; Kaplan & Glass,
1995; Peitgen, Jurgens, & Saupe, 1992; Sprott & Rowlands, 1995]. This quantifies sengtivity
to initid conditions and can aso differentiate between random, periodic and stable behaviour
[Sprott & Rowlands, 1995]. The Lyapunov exponent enables a clear measure of “sengtivity to
initia conditions’ to be made which can be used for the cdculation of average prediction
horizons [Wilding, 1997g]. The average prediction horizon can then be used to quantify the
uncertainty generated within the system. The magnitude of the exponent aso differentiates
between aperiodic data and stable or periodic data

If the maximum exponent is negative the system is stable or periodic. If the valueis zero the
system is stable or periodic but may be closeto bifurcation, i.e. the system ismarginaly stable
[Peitgen, Jurgens, & Saupe, 1992; Wolf et d., 1985].

If the system has a positive Lyapunov exponent prediction may gtill be possible in the short
term. The exponent can be used to give an indication how stable the system is and over what
period of time a smdl error is magnified to a level that makes digtinguishing it from the



originad signd impossible.

Step 3 - Reconstruct the attractor

To recongtruct the attractor to which the measured data proceeds both geometric and agorithm
based gpproaches are used.

The measured data from the smulation required the initid transients to be removed so the
seady state data was used for reconstruction. Plotting the measured data against time and
noting on the graph where any fluctuations settled down achieves this. A further check on the
datato ensure noinitid transents are present was the test for boundedness outlined in step 5 of
the methodol ogy.

Return maps [Kaplan & Glass, 1995 p.303; Gleick, 1987 p.143] were then produced, this gave
aview of the overal structure of the attractor. This made it possible to distinguish between
random, periodic and possible chaotic behaviour.

The time series was then reconstructed using time lag embedding techniques [Kaplan & Glass,
1995 p.308; Takens, 1981; Mane, 1981]. This was done to obtain an accurate embedding
dimension that could then be used to obtain the discriminating satistic. Three techniques were
used, enabling cross-checking and promoting confidence in the embedding dimension figure.
The capacity and corrdation dimension were caculated and aso plotted againgt embedding
dimensons [Grassberger & Procaccia, 1983; Sprott & Rowlands, 1995]. Using the Takens
embedding theorem [Takens, 1981] vaues of embedding dimens on were aso calculated from
the capacity and corrdation dimensions. Percentage fdse nearest neighbours againgt
embedding dimension graphs [Abarband, 1996 p.260] were dso used to obtain vaues for
embedding dimensions. Using these three techniques a robust gpproximation of the
embedding dimension could be obtained despite only finite amounts of measured data being
available.

Step 4 - Calculate the discriminating statistic.

Once the embedding dimension has been ca culated the Lyapunov exponent can be ca culated
for the measured data This gives a measure of sengtivity to initial conditions and aso
distinguishes between aperiodic, stable or periodic data.

Step 5 - Ensure “boundedness’ of data.

Dynamics can be said to be bounded if the data stays within a finite range and does not
goproach infinity as time increases. However, to test for bounded stability, one would in
theory, need to wait until time is equd to infinity. A relaed concept for assessing
boundedness is that of “stationarity” [Kaplan & Glass, 1995 p.314]. A time series can be
described as gationary when it displays “smilar behaviour” throughout its duration. “Similar
behaviour” is defined if the mean and standard deviation remain the same throughout the time
series.  Ensuring that the mean and standard deviation in onethird of the time seriesis equa to
that in the remaining two thirds can assess this. (One could use quarters or tenths if so
desred.)

An dternative gpproach, which is more gpplicable to andysis of chaotic data, is splitting the
measured data into two {for convenience these will be called data sets 2 and 3. Dataset 1is
the origina data with initid transents removed} and calculating the discriminating statistics
for these data sets. If these values are of the same magnitude as each other and dso data set 1
then one can be confident that the data.is bounded.

If the data was found not to be bounded an investigation of whether dl theinitia transents had



been removed from the initial datawas carried out.

Step 6 - Generate and analyse “ surrogate” data.

“Surrogate data’ is the method used for the generation of data consstent with the null
hypothesis. The technique involves performing a Fourier transformation on the measured data,
the phase of each Fourier component is set to a random value between 0 and 2 &, and then an
inverse Fourier transformation is undertaken. This technique removes any deterministic
relaionships within the data but preserves the power spectrum and correlaion function
[Kaplan & Glass, 1995 pp.343 344; Sprott & Rowlands, 1995]. It therefore generates data
consistent with the null hypothesis.

Once again, by cadculating the discriminating statistic for the surrogate data sets one can
generate a range of vaues for data consstent with the null hypothesis. Then by seeing if the
discriminating dtatistic for the measured data fals within this range further evidence is
provided of whether the measured datais cong stent with the null hypothesis.

The discriminating tatistic was then cdculated for the surrogate data and compared with the
vaue for data set 1. If these are of the same magnitude it indicates the data generated
conformsto the null hypothesis.

Step 7 - Review evidence from steps 1 - 6.

By reviewing the evidence obtained from steps 1 to 6 it is possible to demonstrate whether the
datafailsto adhereto the null hypothesis and thus exhibits the properties of deterministic chaos
i.e. “Chaos is defined as aperiodic, bounded dynamics in a determinigtic system with
sengitivity dependence oninitial conditions, and has structurein phase space” .

If the systems investigated are shown to exhibit chaotic behaviour this will provide
evidence that uncertainty within the supply chain may result from the internal processes
used to control the system.

CALCULATING THE PREDICTION HORIZON

The magnitude of the Lyapunov exponent gives a reflection of the time scale over which the
dynamics of the system are predictable, so the exponent can be used to gpproximate the
average prediction horizon of a system [Wolf et d., 1985; Shaw, 1981]. After this prediction
horizon has been reached the future dynamics of the system become unforecastable. This
occurs because any cause and effect rdationship between current data and previous data
becomes increasingly blurred and is eventualy lost. For a discrete system the Lyapunov
exponents are measured in bitg/iterations (where bits = binary digits).

If the Lyapunov exponent is known, an approximation of how far ahead the future behaviour is
predictable can be made. This can be caculated by dividing the relative accuracy with which
the two nearby points are specified by the Lyapunov Exponent [Wolf et d., 1985].

For example, if the system has a positive exponent of 0.75 and an initid point is specified with
an accuracy of 1x10° or 20 hits (To describe 1x10° in binary code 20 hits are required i.e.
11110100001001000000 = 1x10°), then future behaviour would be unpredictable after 26
iterations (20/0.75). After thistime the smal initid uncertainty will cover the whole attractor
requiring anew measurement of the system to describe its behaviour.

For example, if the inventory within a warehouse can be specified with an accuracy of 1x10°
i.e. 1000 +/- 1 units of inventory then this equates to an accuracy 1111101000 (10 bits), and the
inventory control system behaves chaoticaly with a Lyapunov exponent of 0.15 bits/iteration.



Then time until accuracy can only be specified with accuracy of 1 bit or 1 unit of inventory is
10/0.15 = 67 days. After this period of time the exponentia increase in the error renders any
methods of prediction invalid.

CONCLUSION

This paper has presented a robust methodology for the detection and quantification of
chaos. The methodology has been successfully applied to the detection of chaos from
simulated supply chains and has enabled the development of new management
guidelines for supply chain re-engineering [Wilding, 1998a; Wilding, 1998b]. A more
detailed discussion of the methods outlined in the paper can be found in [Wilding,
1997h].
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