
“The Detection & Quantification of Chaos in Supply Chains”, Logistics in the Information Age, Proceedings of
4th International Symposium on Logistics, pp 89-94, (Eds: M.Maffatto, K.Pawar), SG Eitoriali, Florence, Italy,
July 1999. ISBN 88-86281-37-4

THE DETECTION & QUANTIFICATION OF CHAOS IN SUPPLY CHAINS

Dr. Richard D. Wilding (1)

(1)Cranfield Centre for Logistics & Transportation,
Cranfield School of Management,

Cranfield, Bedford, MK43 0AL, England.

ABSTRACT
In recent years it has become accepted that Logistics and Supply Chain systems are
susceptible to uncertainty by the generation of deterministic chaos [Wilding, 1998a;
Levy, 1994; Mosekilde & Larsen, 1988]. In this paper an explanation of a methodology
for detecting and quantifying deterministic chaos within measured supply chain data is
discussed. The paper describes the use of Lyapunov exponents [Peitgen, Jurgens, &
Saupe, 1992; Wolf, 1986] and how these can be used to determine the average
predictability horizon of a chaotic system [Wilding, 1997b]. This can then be used as a
method of quantifying the amount of uncertainty from chaos within a system. The
magnitude of the Lyapunov exponent gives a reflection of the time scale over which the
dynamics of the system are predictable, so the exponent can be used to approximate the
average prediction horizon of a system [Wolf et al., 1985; Shaw, 1981]. After this
prediction horizon has been reached the future dynamics of the system become
unforecastable. This occurs because any cause and effect relationship between current
data and previous data becomes increasingly blurred and is eventually lost.

INTRODUCTION
When detecting chaos within measured data one is looking for the key characteristics of
the following definition. The definition used in this work is adapted from that proposed
by Kaplan and Glass [Kaplan & Glass, 1995 p.27] and Abarbanel [Abarbanel, 1996
p.15]:

Chaos is defined as aperiodic, bounded dynamics in a deterministic system with
sensitivity dependence on initial conditions, and has structure in phase space.

The key terms can be defined as follows:
 Aperiodic; the same state in never repeated twice.
 Bounded; on successive iterations the state stays in a finite range and does not

approach plus or minus infinity.
 Deterministic; there is a definite rule with no random terms governing the dynamics.



 Sensitivity to initial conditions; two points that are initially close will drift apart as
time proceeds.

 Structure in Phase Space; Nonlinear systems are described by multidimensional
vectors. The space in which these vectors lie is called phase space (or state space).
The dimension of phase space is an integer [Abarbanel, 1996]. Chaotic systems
display discernible patterns when viewed [Stacey, 1993a; Stewart, 1989].

CHAOS ANALYSIS METHODOLOGY

Figure 1 depicts the key stages of the analysis methodology used to detect and quantify
deterministic chaos present within time series data generated within supply chains. The
following paragraphs will give an overview of each stage.

Step 1 - Define the null hypothesis
Proving definitively the existence of chaos from observed data would require an infinite
amount of data. This therefore requires a stochastic technique that will make use of an
appropriate null hypothesis. This procedure means that one does not set out to prove the
existence of chaos but to reject some other null hypothesis that implies chaos is not present.
The procedure of hypothesis testing is widely used in statistical analysis and a similar approach
can be used for determining whether chaos is present in data. Kanji [Kanji, 1993] describes a
five step method for hypothesis testing.
Wilding [Wilding, 1997b] used a deterministic simulation to ensure that no uncertainty was
present from external sources. However, a cautious approach was taken in the research and the
possibility of unattributed “computer noise” becoming a major influence on the results is also
to be investigated. This resulted in the following null hypothesis:

“The dynamics are linear with Gaussian white noise random inputs, or the
dynamics are linear exhibiting periodic behaviour.”

Step 2 - Identify discriminating statistic to test the null hypothesis.
To demonstrate that any data is inconsistent with the null hypothesis a discriminating statistic
needs to be selected. This quantity can be calculated for the measured data and also for a set of
data that is known to be consistent with the null hypothesis. There are many discriminating
statistics that can potentially be used in the analysis of chaotic systems however one of the
most robust and commonly used is the Lyapunov exponent [Abarbanel, 1996; Kaplan & Glass,
1995; Peitgen, Jurgens, & Saupe, 1992; Sprott & Rowlands, 1995]. This quantifies sensitivity
to initial conditions and can also differentiate between random, periodic and stable behaviour
[Sprott & Rowlands, 1995]. The Lyapunov exponent enables a clear measure of “sensitivity to
initial conditions” to be made which can be used for the calculation of average prediction
horizons [Wilding, 1997a]. The average prediction horizon can then be used to quantify the
uncertainty generated within the system. The magnitude of the exponent also differentiates
between aperiodic data and stable or periodic data.
If the maximum exponent is negative the system is stable or periodic. If the value is zero the
system is stable or periodic but may be close to bifurcation, i.e. the system is marginally stable
[Peitgen, Jurgens, & Saupe, 1992; Wolf et al., 1985].
If the system has a positive Lyapunov exponent prediction may still be possible in the short
term. The exponent can be used to give an indication how stable the system is and over what
period of time a small error is magnified to a level that makes distinguishing it from the



original signal impossible.

Step 3 - Reconstruct the attractor
To reconstruct the attractor to which the measured data proceeds both geometric and algorithm
based approaches are used.
The measured data from the simulation required the initial transients to be removed so the
steady state data was used for reconstruction. Plotting the measured data against time and
noting on the graph where any fluctuations settled down achieves this. A further check on the
data to ensure no initial transients are present was the test for boundedness outlined in step 5 of
the methodology.
Return maps [Kaplan & Glass, 1995 p.303; Gleick, 1987 p.143] were then produced, this gave
a view of the overall structure of the attractor. This made it possible to distinguish between
random, periodic and possible chaotic behaviour.
The time series was then reconstructed using time lag embedding techniques [Kaplan & Glass,
1995 p.308; Takens, 1981; Mane, 1981]. This was done to obtain an accurate embedding
dimension that could then be used to obtain the discriminating statistic. Three techniques were
used, enabling cross-checking and promoting confidence in the embedding dimension figure.
The capacity and correlation dimension were calculated and also plotted against embedding
dimensions [Grassberger & Procaccia, 1983; Sprott & Rowlands, 1995]. Using the Takens
embedding theorem [Takens, 1981] values of embedding dimension were also calculated from
the capacity and correlation dimensions. Percentage false nearest neighbours against
embedding dimension graphs [Abarbanel, 1996 p.260] were also used to obtain values for
embedding dimensions. Using these three techniques a robust approximation of the
embedding dimension could be obtained despite only finite amounts of measured data being
available.

Step 4 - Calculate the discriminating statistic.
Once the embedding dimension has been calculated the Lyapunov exponent can be calculated
for the measured data. This gives a measure of sensitivity to initial conditions and also
distinguishes between aperiodic, stable or periodic data.

Step 5 - Ensure “boundedness” of data.
Dynamics can be said to be bounded if the data stays within a finite range and does not
approach infinity as time increases. However, to test for bounded stability, one would in
theory, need to wait until time is equal to infinity. A related concept for assessing
boundedness is that of “stationarity” [Kaplan & Glass, 1995 p.314]. A time series can be
described as stationary when it displays “similar behaviour” throughout its duration. “Similar
behaviour” is defined if the mean and standard deviation remain the same throughout the time
series. Ensuring that the mean and standard deviation in one third of the time series is equal to
that in the remaining two thirds can assess this. (One could use quarters or tenths if so
desired.)
An alternative approach, which is more applicable to analysis of chaotic data, is splitting the
measured data into two {for convenience these will be called data sets 2 and 3. Data set 1 is
the original data with initial transients removed} and calculating the discriminating statistics
for these data sets. If these values are of the same magnitude as each other and also data set 1
then one can be confident that the data is bounded.
If the data was found not to be bounded an investigation of whether all the initial transients had



been removed from the initial data was carried out.

Step 6 - Generate and analyse “surrogate” data.
“Surrogate data” is the method used for the generation of data consistent with the null
hypothesis. The technique involves performing a Fourier transformation on the measured data,
the phase of each Fourier component is set to a random value between 0 and 2 , and then an
inverse Fourier transformation is undertaken. This technique removes any deterministic
relationships within the data but preserves the power spectrum and correlation function
[Kaplan & Glass, 1995 pp.343 344; Sprott & Rowlands, 1995]. It therefore generates data
consistent with the null hypothesis.
Once again, by calculating the discriminating statistic for the surrogate data sets one can
generate a range of values for data consistent with the null hypothesis. Then by seeing if the
discriminating statistic for the measured data falls within this range further evidence is
provided of whether the measured data is consistent with the null hypothesis.
The discriminating statistic was then calculated for the surrogate data and compared with the
value for data set 1. If these are of the same magnitude it indicates the data generated
conforms to the null hypothesis.

Step 7 - Review evidence from steps 1 - 6.
By reviewing the evidence obtained from steps 1 to 6 it is possible to demonstrate whether the
data fails to adhere to the null hypothesis and thus exhibits the properties of deterministic chaos
i.e.: “Chaos is defined as aperiodic, bounded dynamics in a deterministic system with
sensitivity dependence on initial conditions, and has structure in phase space”.
If the systems investigated are shown to exhibit chaotic behaviour this will provide
evidence that uncertainty within the supply chain may result from the internal processes
used to control the system.

CALCULATING THE PREDICTION HORIZON

The magnitude of the Lyapunov exponent gives a reflection of the time scale over which the
dynamics of the system are predictable, so the exponent can be used to approximate the
average prediction horizon of a system [Wolf et al., 1985; Shaw, 1981]. After this prediction
horizon has been reached the future dynamics of the system become unforecastable. This
occurs because any cause and effect relationship between current data and previous data
becomes increasingly blurred and is eventually lost. For a discrete system the Lyapunov
exponents are measured in bits/iterations (where bits = binary digits).
If the Lyapunov exponent is known, an approximation of how far ahead the future behaviour is
predictable can be made. This can be calculated by dividing the relative accuracy with which
the two nearby points are specified by the Lyapunov Exponent [Wolf et al., 1985].
For example, if the system has a positive exponent of 0.75 and an initial point is specified with
an accuracy of 1x106 or 20 bits (To describe 1x106 in binary code 20 bits are required i.e.
11110100001001000000 = 1x106), then future behaviour would be unpredictable after 26
iterations (20/0.75). After this time the small initial uncertainty will cover the whole attractor
requiring a new measurement of the system to describe its behaviour.
For example, if the inventory within a warehouse can be specified with an accuracy of 1x103

i.e. 1000 +/- 1 units of inventory then this equates to an accuracy 1111101000 (10 bits), and the
inventory control system behaves chaotically with a Lyapunov exponent of 0.15 bits/iteration.



Then time until accuracy can only be specified with accuracy of 1 bit or 1 unit of inventory is
10/0.15 = 67 days. After this period of time the exponential increase in the error renders any
methods of prediction invalid.

CONCLUSION

This paper has presented a robust methodology for the detection and quantification of
chaos. The methodology has been successfully applied to the detection of chaos from
simulated supply chains and has enabled the development of new management
guidelines for supply chain re-engineering [Wilding, 1998a; Wilding, 1998b]. A more
detailed discussion of the methods outlined in the paper can be found in [Wilding,
1997b].
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