1	Weathered hydrocarbon wastes: a risk management primer
2	
3	K.J. Brassington ¹ , R.L. Hough ¹ , G.I. Paton ² , K.T. Semple ³ , G.C. Risdon ⁴ , J. Crossley ⁵ , I.
4	Hay ⁶ , K. Askari ⁷ and S.J.T. Pollard ^{1*}
5	
6	¹ Integrated Waste Management Centre, Department of Sustainable Systems, School of
7	Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire,
8	MK43 OAL, UK.
9	² Department of Plant and Soil Sciences, School of Biological Sciences, Cruickshank
10	Building, University of Aberdeen, Aberdeen, Scotland, AB24 3UU, UK
11	³ Department of Environmental Sciences, Institute of Environmental and Natural Sciences,
12	University of Lancaster, Lancaster, LA1 4YQ, UK
13	⁴ TES Bretby, PO Box 100, Bretby Business Park, Burton-on-Trent, DE15 0XD, UK
14	⁵ Dew Remediation Limited, Royds Works, Attercliffe Road, Sheffield, S4 7WZ
15	⁶ Sustainable Manufacturing, PERA, PERA Innovation Park, Melton Mowbray,
16	Leicestershire, LE13 OPB
17	⁷ SLR Consulting Limited, 1 Meadowbank Way, Nottingham, NG16 3TT, UK
18	
19	
20	*Corresponding author <u>s.pollard@cranfield.ac.uk;</u> Tel. +44(0)1234 754101; Fax. +44(0)1234 751671
21	
22	
23	
24	
25	

26	ABSTRACT: We provide a primer and critical review of the characterisation, risk
27	assessment and bioremediation of weathered hydrocarbons. Historically the remediation of
28	soil contaminated with petroleum hydrocarbons has been expressed in terms of reductions in
29	total petroleum hydrocarbon (TPH) load rather than reductions in risk.
30	There are several techniques by which petroleum hydrocarbons in soils can be
31	characterised. Method development is often driven by the objectives of published risk
32	assessment frameworks. Some frameworks stipulate analysis of a wide range of petroleum
33	hydrocarbons <i>e.g.</i> UK approach suggests compounds from EC_5 to EC_{70} be examined.
34	Methods for the extraction of petroleum hydrocarbons from soil samples have been reviewed
35	extensively in the open literature. Although various extraction and analytical methods are
36	available for petroleum hydrocarbons, their results suffer from inter-method variation with
37	gas chromatography methods being used widely. Currently, the implications for risk
38	assessment are uncertain. Bioremediation works well for remediating soils contaminated with
39	petroleum hydrocarbons. As a result, the optimisation of environmental conditions is
40	imperative. For petroleum hydrocarbons in soil, international regulatory guidance on the
41	management of risks from contaminated sites is now emerging. There is also growing support
42	for the move towards compound-specific risk-based approaches for the assessment of
43	hydrocarbon-contaminated land.
44	

Keywords: weathered, hydrocarbons, environmental, risk, management, remediation.

1. INTRODUCTION

_ /	7
-4	•1

48	Contamination of land due to anthropogenic activity, both present and historical, is a
49	global problem. It is estimated there may be as many as 100 000 contaminated sites in
50	England and Wales alone. Contaminated has become a subject of social, legal,
51	environmental and economic concern within many of the world's industrialised countries ¹⁰⁷ .
52	.Land may be contaminated because of past industrial activity, historic disposal practices, or
53	due to an adverse event such as a chemical spill ⁶² . Although a large proportion of
54	contaminated land may be attributable to historical practices, modern industrial processes
55	also produce potential contaminants and thus, contamination of land is an ongoing problem
56	that requires active management.
57	Petroleum continues to be a widely utilised resource throughout the world. Its use has
58	resulted in the contamination through accidental spillage and leakage ⁷¹ . Certain components
59	of petroleum contamination may pose risks to human health, property, watercourses,
60	ecosystems, and other environmental receptors ^{34,30} . Petroleum, in its natural state, is a highly
61	complex mixture of hydrocarbons with minor amounts of other heterogenic compounds such
62	as nitrogen, oxygen and sulphur ³⁴ . The composition of petroleum hydrocarbon products can
63	vary substantially depending on the nature, composition, and degree of processing of the
64	source material ⁷⁰ . Once released to the environment, petroleum products are subject to
65	physical, chemical and biological processes that further change its composition, toxicity,
66	availability and distribution (partitioning) within the environment (Figure 1). Such
67	degradation processes include adsorption, volatilisation, dissolution, biotransformation,
68	photolysis, oxidation, and hydrolysis ^{9,30,50,70,87} . The extent of weathering experienced is
69	particularly important when characterising petroleum contamination prior to remediation ¹⁰⁷ .
70	Whilst there is a large literature describing the composition and properties of petroleum

products⁸⁷, there is a relative paucity of information on the toxicity, distribution, transport, 71 and availability of weathered hydrocarbons in the environment^{71,87}. Here, we provide a 72 primer and critical review of the characterisation, risk assessment and bioremediation of 73 weathered hydrocarbon-fuel products. Current issues are discussed. 74

As with all contaminants, their chemistry determines which environmental compartment 75 they are found in and thus analysed and is also responsible for their environmental fate and 76 transport characteristics. Analytical methods for determining concentrations of hydrocarbons 77 in the soil need to be technically and economically feasible and capable of analysing the 78 range of compounds key to the risk management protocols applied³⁰. Although various 79 extraction and analytical methods are available for petroleum hydrocarbons, their results 80 suffer from inter-method variation as illustrated by Buddhadasa et al. (2002)¹⁶. Additionally, 81 as discussed by Whittaker et al. (1995)¹⁰⁷, methods can suffer from both positive and 82 negative analytical bias⁸⁶. Gas chromatography is a widely used technique for the analysis of 83 petroleum hydrocabons^{47,103,105}. Biodegradation of more amenable components of the 84 petroleum mixture leads to relative enrichment of the more recalcitrant species. Incomplete 85 resolution of this more recalcitrant mixture leads to a characteristic "humped" appearance 86 of the gas chromatograms output. The "hump" is the resulting signal produced by many 87 hundreds of components such as cyclic and branched hydrocarbons and is widely referred to 88 as the unresolved complex mixture (UCM). The shape and position of the UCM is not 89 constant and depends on the nature of the original petroleum contamination and the extent of 90 degradation that has taken place in the ground. These issues need to be addressed when 91 implementing a national risk-based framework, as differences in analytical approach may 92 inadvertently result in excessive or inadequate remediation being performed. 93 Risk assessment now is a well-established requirement for the management of 94 contaminated land⁴ and support tool for environmental management decisions. It is widely

95

96	used as a means of assessing and managing potential impacts to human- and ecosystem
97	health ^{4,99} . Several risk-based frameworks for petroleum hydrocarbons in soil have been
98	published under the auspices of the Total Petroleum Hydrocarbon Criteria Working Group
99	(TPHCWG ⁸⁸), the American Society for Testing and Materials (ASTM ⁵), the Massachusetts
100	Department of Environmental Protection (MaDEP ⁵⁵), the Environment Agency of England
101	and Wales (EA ³²), the American Petroleum Institute (API ³) and the Canadian Council of
102	Ministers of the Environment (CCME ¹⁸), each reflecting national legislation and socio-
103	economic issues ^{3,100,101} . These frameworks, and the exposure assessment methods embedded
104	within them, do not specifically address weathered hydrocarbons, although many
105	acknowledge that petroleum products released to the environment will have undergone some
106	degree of degradation ^{3,6,30,32,55,87} . Weathering of fresh petroleum product makes it very
107	difficult to accurately predict the composition, toxicity and distribution of petroleum at a
108	given site ⁵³ .
109	Historically the remediation of soil contaminated with petroleum hydrocarbons has been
110	expressed in terms of reductions in total petroleum hydrocarbon (TPH) load rather than
111	reductions in risk. This still remains as standard practice in a number of countries, examples
112	include Portugal and the UK ^{30,35} . Recent stakeholder consultations in the UK, and
113	subsequent publications from the Environment Agency, aim to adopt a risk-based framework
114	where remediation is expressed in terms of risk, consistent with other countries (e.g.
115	America ⁸⁵ , Canada ¹⁸ and the Netherlands ¹⁰) ³⁰⁻³² .
116	There are a plethora of approaches to, and techniques available for, the remediation of
117	contaminated land ^{1,3,20,28,33,48,62,108,109} . Choice of approach depends on a number of
118	environmental, economic and human health considerations ⁵¹ . The UK adopts the 'suitable
119	for use' approach as the most appropriate strategy for the sustainable development of
120	contaminated sites ^{23,43} . Within the land remediation sector, the EU Landfill Directive ⁸⁰ is

121	now encouraging the development and implementation of alternative remediation
122	techniques ⁶² and is expected to further increase the cost-effectiveness of bioremediation
123	technologies ^{70,77} . This has resulted in increased interest and use of the technique for the
124	remediation of hydrocarbon-contaminated soils.
125	A complete understanding of the contaminant in question is a key component when
126	estimating potential risks to human health. To achieve this, adequate information regarding a
127	substance's environmental fate, behaviour and distribution, toxicity, concentration, and
128	potential exposure at a site is essential ³⁰ (Figure 2). In this review then, we critically review
129	these considerations for the successful implementation of a risk assessment framework for the
130	bioremediation of weathered petroleum hydrocarbons.
131	
132	2. CHARACTERISATION OF WEATHERED HYDROCARBONS
133	
133 134	2.1. Extraction and analysis
	2.1. Extraction and analysis There are several techniques by which petroleum hydrocarbons in soils can be
134	
134 135	There are several techniques by which petroleum hydrocarbons in soils can be
134 135 136	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk
134 135 136 137	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk assessment frameworks (Table 1) ^{3,5,6,17,53,88} . Many frameworks (e.g. TPHCWG, API, CCME,
134 135 136 137 138	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk assessment frameworks (Table 1) ^{3,5,6,17,53,88} . Many frameworks (e.g. TPHCWG, API, CCME, MaDEP) require the quantification of specific indicators and/or fractions; while others
134 135 136 137 138 139	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk assessment frameworks (Table 1) ^{3,5,6,17,53,88} . Many frameworks (e.g. TPHCWG, API, CCME, MaDEP) require the quantification of specific indicators and/or fractions; while others consider indicator compounds or chemicals of concern (e.g. ASTM) ^{3,17,53,87} (Section 3). It is
134 135 136 137 138 139 140	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk assessment frameworks (Table 1) ^{3,5,6,17,53,88} . Many frameworks (e.g. TPHCWG, API, CCME, MaDEP) require the quantification of specific indicators and/or fractions; while others consider indicator compounds or chemicals of concern (e.g. ASTM) ^{3,17,53,87} (Section 3). It is necessary to use analytical techniques capable of analysing specified aromatic and aliphatic
134 135 136 137 138 139 140 141	There are several techniques by which petroleum hydrocarbons in soils can be characterised. Method development is often driven by the objectives of published risk assessment frameworks (Table 1) ^{3,5,6,17,53,88} . Many frameworks (e.g. TPHCWG, API, CCME, MaDEP) require the quantification of specific indicators and/or fractions; while others consider indicator compounds or chemicals of concern (e.g. ASTM) ^{3,17,53,87} (Section 3). It is necessary to use analytical techniques capable of analysing specified aromatic and aliphatic 'fractions' as well as the specific indicator compounds selected by the different protocols

145 wide range of petroleum hydrocarbons *e.g.* UK approach suggests compounds from an

equivalent carbon number (see section 3) of 5 to 70 be examined (Table 1).

147

148	2.1.1 Extraction of petroleum hydrocarbons from soil and class fractionation
149	Methods for the extraction of petroleum hydrocarbons from soil samples have been
150	reviewed extensively in the open literature. They include purge and trap (volatiles),
151	headspace (volatiles), manual shaking, Soxhlet, ultrasonic extraction, pressurised fluid
152	extraction, microwave-assisted extraction and super-critical fluid extraction ⁸⁶ . For heavily
153	weathered fuel oils, extraction of volatile hydrocarbons is rarely considered. Soxhlet
154	extraction is commonly used in research, yet several risk assessment frameworks adopt
155	manual shake methods, e.g. TPHCWG, the Agency for Toxic Substances and Disease
156	Registry (ATSDR) and the Texas Natural Resource Conservation Commission
157	(TNRCC) ^{1,6,83,86} . This method involves shaking or vortexing 10g (typically) of soil with
158	10ml of an appropriate solvent (typically <i>n</i> -pentane) for 1 hour, after which an aliquot is
159	drawn for analysis ^{1,59} . The popularity of manual shake/vortex methods is due to a
160	combination of convenience and cost; being quicker, easier, more accessible and cheaper than
161	Soxhlet extraction, with no concentration step required prior to analysis ^{34,86} . Additionally
162	legislative analysis requirements within some countries can be met using this method rather
163	than a more exhaustive technique
164	Soxhlet extraction ^{$34,86$} is the benchmark method for the CCME C ₁₀ -C ₅₀ hydrocarbon
165	range and a component of the United Sates Environmental Protection Agency (USEPA)
166	methods for semi- and non-volatile organics in soil ^{19,91} . Soxhlet extraction is a highly
167	exhaustive extraction technique and can handle both air dried and field moist samples, the
168	latter being facilitated through the addition of chemical drying agents, such as anhydrous
169	sodium sulphate, prior to extraction. A wide range of solvent types can be employed making

this technique versatile for different chromatographic end points. The Soxhlet method
generates a relatively large volume of extract requiring concentration prior to chemical
analysis. This may be seen as a disadvantage due to potential contamination and losses during
concentration steps⁸⁶. However losses can be minimised through the use of methods such as
kuderna Danish.

The time taken to extract a sample using Soxhlet extraction and ultimately its cost has 175 initiated investigations into alternative methods. Hawthorne *et al.* $(2000)^{41}$, for example, 176 reviewed methods available for the extraction of PAHs from historically-contaminated soils. 177 Methods reviewed included Soxhlet extraction, pressurized liquid extraction (PLE), 178 supercritical fluid extraction (SFE) and subcritical water extraction (at 300 and 250°C) 179 (SWE). Comparisons were made between hydrocarbon recovery, the effects on the sample 180 matrix, the presence of co-extracted (non-target) matrix material and the relative selectivity 181 for extracting different classes of target organics. 182

The authors concluded that extraction methods that are relatively simple to perform yield 183 the 'dirtiest' extracts; while those yielding cleaner more specific extracts required methods 184 that are relatively complex⁴¹. Soxhlet and PLE yielded much darker and turbid extracts 185 whereas subcritical water extracts were orange to dark orange in colour with moderate 186 turbidity. SFE extracts were light yellow in colour and clear. Soxhlet and PLE yielded more 187 artefact peaks in the gas chromatogram and, due to the extracts from these methods having a 188 high soil matrix content, more frequent cleaning of GC injection ports was required in 189 comparison to SFE extracts⁴¹. However, the development of GC techniques negates this 190 issue due to enhanced sensitivity allowing the analysis of more dilute samples. Although 191 there were minor differences in extraction efficiencies, the quantitative agreement between 192 the methods was reportedly $good^{41}$. It has also been shown by Hollender *et al* $(2003)^{45}$ that 193 ultrasonic extraction and accelerated solvent extraction can achieve higher extraction 194

195	efficiencies when extracting PAHs than Soxhlet extraction. Saifuddin and Chua (2003) ⁷⁴
196	compared Soxhlet extraction to microwave-assisted extraction (MAE) ⁷⁴ . Here, MAE was
197	quicker (~33mins vs. 24hrs for Soxhlet extraction), used less solvent (4ml of solvent
198	compared to 20ml for Soxhlet extraction) and capable of slightly higher extraction
199	efficiencies (82% rather than 77% for Soxhlet extraction). However, samples needed to be
200	free from metallic particles which clearly limits application of this technique to contaminated
201	soils ^{22,34} . Additionally, although MAE achieved higher extraction efficiencies, there was no
202	significant difference between the data for MAE and Soxhlet extraction ($\alpha = 0.05$), thus the
203	benefit of a slight increase in extraction efficiency is questionable ⁷⁴ .
204	Soxhlet extraction is considered a harsh method that extracts a fraction closer to the full
205	capacity of the soil for hydrocarbons, rather than a more biologically relevant analogue of
206	extractability ⁷³ . It has been suggested that methods that only extract environmentally
207	relevant pollutant molecules should be used ^{41,73} . Although any concentration determined by
208	extraction is operationally defined, it may be more appropriate to employ a 'weaker'
209	extraction that may determine a closer analogue of bioavailability and hence potential risk,
210	depending on the use of the data.
211	Non-petroleum based hydrocarbons may result in spurious or elevated TPH
212	concentrations especially when remediation methods employ the use of bulking materials
213	such as woodchip. In order to limit interference, it is necessary to purify samples prior to
214	analysis ¹⁰⁷ . The most commonly used methods of cleanup employ alumina or silica gel
215	(USEPA methods 3611B and 3630C respectively), used by the TPHCWG, ATSDR, TNRCC,
216	CCME and MaDEP risk assessment frameworks ^{1,19,30,53,83} . This cleanup method also
217	facilitates fractionation into aliphatic and aromatic fractions, which is required by MaDEP,
218	TPHCWG, ATSDR and the $EA^{6,30,32,53,85}$. However it is likely that any moderately polar
219	compounds will be retained in the silica matrix including any which increase in polarity as a

220	result of biotransformation. This may be an issue when analysing weathered hydrocarbon
221	wastes and those undergoing remediation. Attempts to automate the fractionation procedure
222	have resulted in incomplete resolution of the aliphatic and aromatic fractions. Whilst come
223	well resolved components could be eliminated by subtraction, incomplete separation does not
224	address any UCM present. The key fractions affected involve the mono- and di-aromatics.
225	Extracted samples often need to be concentrated prior to analysis, and before and/or after
226	cleanup steps where an unacceptable level of dilution may be introduced <i>e.g.</i> Soxhlet
227	extraction ^{34,86,93} and class fractionation ^{34,86,98} . There are several concentration methods that
228	can be used: Kuderna Danish concentration, nitrogen evaporation, and rotary evaporation. A
229	concentration step is further source of error. For example, identification errors may occur if
230	samples are evaporated too exhaustively during sample preparation using methods such as
231	rapid nitrogen evaporation, where volatile components are most likely to be lost ⁵⁰ . The use of
232	a keeper solvent such as acetonitrile and methods such as Kurderna Danish, as specified by
233	the USEPA Soxhlet extraction protocol, are considered to minimise such losses ⁸⁶ .
234	Due to the wide carbon range covered by hydrocarbon products and the tiered nature of
235	some risk assessment frameworks, it is clear that no single analysis technique is likely to be
236	sufficient for analysing soil samples. It would seem sensible that if a tiered risk assessment is
237	used then a systematic tiered analysis strategy be matched to it, as progression to higher tiers
238	and thus higher levels of analytical complexity may not in all situations be necessary. The
239	use of tiered analytical approaches are increasingly being applied in oil spill
240	identification ^{102,103} . For example, Wang <i>et al.</i> (1997) ¹⁰² used a 5 tiered analytical approach
241	that enabled the identification of oil type, degree of weathering and biodegradation.
242	Many of the risk assessment frameworks for petroleum hydrocarbons specify preferred
243	extraction and analytical techniques; some having published their own recommended
244	methods (CCME, TNRCC, TPHCWG and MaDEP ¹⁹ ; Table 1 ^{1,56,57,83}). The majority specify

245	manual shake or vortexing methods with an appropriate solvent to extract the sample,
246	followed by alumina or silica gel clean up and fractionation into aliphatic and aromatic
247	compounds ^{1,30,53,83} . The MaDEP approach specifies volatile petroleum hydrocarbon (VPH)
248	and extractable petroleum hydrocarbon (EPH) determinations. The VPH method uses a
249	purge and trap approach, whereas the EPH method specifies extraction using
250	dichloromethane (DCM), cross-referring to the USEPA extraction method followed by silica
251	cleanup and fractionation prior to analysis ^{56,57} . The CCME method specifies purge and trap
252	for the fraction range C_6 - C_{10} , or Soxhlet extraction followed by silica gel clean up and
253	fractionation for the C_{10} - C_{50} range ¹⁹ . However, it is stated that suitable alternative techniques
254	can be used on the condition that validation data can demonstrate that the alternative method
255	provides data comparable to the benchmark protocol ¹⁹ . The CCME method allows for use of
256	USEPA methods, adding further quality control measures ¹⁹ . Although in prescribing
257	methods the CCME is also allowing laboratories to use in-house methods, the validation
258	requirement of these methods should ensure the production of comparable data across
259	laboratories with the presumption of comparable risk assessment and remediation outcomes.
260	Neither the EA nor ASTM specify methods for the extraction of petroleum hydrocarbons in
261	risk assessment, however the EA is to adopt performance criteria rather than prescribing
262	specific approaches 5,32 . Here, as with the CCME, the emphasis is on quality and reliability of
263	data rather than the use of specific 'gold standard' techniques.

265 2.1.2. Methods for analysis of petroleum hydrocarbons

The techniques used for the analysis of petroleum hydrocarbons can be grouped by their measurement outcome: quantitation of the petroleum hydrocarbon load; of the concentration of different groups of hydrocarbons; or the concentration of specific target compounds⁸⁶. There are also methods for the rapid on-site screening of contaminated soils. However, the

majority of these are based on the measurement of vapours derived from the vadose zone by 270 either in situ soil gas measurements or headspace analysis. In the case of weathered 271 petroleum hydrocarbons, the relevance of such methods will depend upon time and alteration 272 mechanisms. Further analysis would also be required to enable the analysis of components 273 with low volatility present within weathered hydrocarbons¹⁰⁷. 274 Methods that generate total petroleum hydrocarbon concentrations and group (fraction) 275 concentrations are considered to be non-specific techniques¹⁰³. These generate basic 276 information that is a surrogate for contamination, e.g. a single TPH concentration. Such data 277 are not suitable for risk assessment in isolation^{34,86}. However, they are inexpensive, quick 278 and easy and, as such, can offer a useful screening tool^{34,86}. The most commonly used 279 specific methods include gas chromatography (GC), gas chromatography mass spectrometry 280 (GC-MS), gas chromatography with flame ionization detection (GC-FID), infrared 281 spectrometry (IR), thin layer chromatography (TLC) and gravimetric analysis⁸⁶. Gas 282 chromatographic methods are the most preferred TPH measurement techniques as they offer 283 relative sensitivity, selectivity, and can be used to identify risk critical compounds. As the 284 compositions of crude oil and petroleum products are highly complex and display a high 285 degree of between-oil variation, unique chemical 'fingerprints' for each oil can be isolated. 286 These can be used to aid identification of the source of weathered oil contamination¹⁰³. 287 Techniques such as GC require additional skills/experience compared to other methods and 288 require that samples are volatile at the operating temperature of the column²². Issues also 289 arise with co-elution of compounds as petroleum hydrocarbons comprise many isomers with 290 similar boiling points and thus retention times. Weathered hydrocarbons typically exhibit 291 low volatility, high boiling temperatures and require high column operating temperatures. 292 This can vary depending upon the starting product and whether sorbed or mobile fractions are 293 under analysis. GC techniques can be adapted to enable the analysis of specific hydrocarbon 294

ranges, such as gasoline range organics (GRO) and diesel range organics (DRO)³⁴ but are
often unable to resolve a large proportion of UCMs, characteristic of weathered petroleum
hydrocarbons ¹⁰⁷. This may become an issue as more toxicological data becomes available in
the future.

Gas chromatography coupled with mass spectrometry detection (GC-MS) is routinely 299 applied for the identification and measurement of individual petroleum hydrocarbons. These 300 methods have a high level of selectivity, with the ability to confirm compound identity 301 though the use of retention time and unique spectral patterns. GC-MS requires specialist 302 operation and interpretation of the data and, as such, it can be more expensive that other GC 303 methods depending on the market forces. GC-MS offers target analyte confirmation, non-304 target analyte identification and can be used to separate hydrocarbon classes⁴⁷. Even with 305 ready benchtop availability, some jurisdictions have felt unable to recommend GC-MS 306 analysis of petroleum hydrocarbons to inform risk assessments⁴⁷. The analysis requirements 307 of current frameworks can be easily met, relatively cheaply by GC-FID. The MaDEP 308 method adopts GC-FID methods along with the majority of risk assessment frameworks. 309 In response to the difficulties with traditional methods for the analysis of weathered 310 petroleum hydrocarbons, alternative and specialised methods have been developed¹⁰⁷. 311 Whittaker et al., in reviewing both conventional and novel analytical techniques for the 312 characterisation of refractory wastes, highlighted several of these including simulated 313 distillation gas chromatography (GC-SIMDIS), thin-layer chromatography with flame 314 ionisation detection (TLC-FID), high-performance liquid chromatography (HPLC) and laser 315 desorption laser photoionisation time-of-flight mass spectrometry (L²TOFMS)¹⁰⁷. 316 The coupling of curie point pyrolysis to GC-MS (Py-GC-MS) is an alternative method to 317 conventional techniques for the analysis of non-volatile compounds such as rubbers, paints 318

and synthetic plastics and has been applied to several sample matrices including soil¹⁵.

320	Recently, Buco et al. evaluated this technique for the analysis of the 16 PAHs included in the
321	USEPA priority pollutant list, and demonstrated repeatability within the range of classic
322	techniques (RSD = 3.4%) with good accuracy for the measured PAHs ¹⁵ . This technique is
323	quick, involves no cleanup and does not require an extracting solvent. Particularly effective
324	for low-molecular-mass PAHs, high molecular mass PAH quantification was complicated by
325	reduced sensitivity. This may limit Py-GC-MS use for analysis of weathered petroleum
326	hydrocarbons ¹⁵ . Additionally the small sample volume used makes the homogenization of
327	samples critical for accurate analysis ¹⁵ . These authors concluded that Py-GC-MS is suited to
328	use as an alternative screening method for contaminated soil or sediment ¹⁵ .

331 3. RISK MANAGEMENT FRAMEWORKS FOR HYDROCARBONS

332

Risk assessments should provide an "objective, scientific evaluation of the likelihood of 333 unacceptable impacts to human health and the environment"⁶⁵. Where a 'pollutant linkage' 334 between the source of a hazard and a receptor is present^{3,70,103,105}, estimates of exposure are 335 often used to characterise risks to human health, comparing the potential intake of 336 contaminants with acceptable or tolerable intakes inferred from toxicological or 337 epidemiological studies. Many risk assessment frameworks adopt a three tiered approach 338 with increasingly sophisticated levels of data collection and analysis⁵. As assessors move 339 through the tiers, the generic and conservative approach of the earlier tiers is replaced with 340 more detailed and site-specific assumptions^{3,5,30}, although each tier aims to be protective of 341 human health^{3-5,30,32,55}. The progression to higher tiers involves additional cost due to 342 increased analytical and site investigation requirements. This expenditure enables a more 343 complete characterisation of contaminants resulting in a more comprehensive risk assessment 344

345	and more cost-effective corrective action (risk management) plans ⁵ . Site-specific
346	assumptions resulting from use of the higher tiers may increase the cost-effectiveness of the
347	remediation, and so assessors need to balance the increased cost and time against potential
348	benefits before proceeding to the next level ⁵ . Cost-benefit analysis techniques are built into
349	some risk assessment frameworks to facilitate decision making for tier transission ³ .
350	Different countries and organisations consider aspects of risk assessment frameworks
351	differently. For example, residential exposure scenarios have not been considered as relevant
352	in the API framework ³ . This is because the most realistic future use for exploration and
353	production (E&P) sites are for ranch, agricultural or parkland land uses.
354	Hydrocarbon-contaminated soils contain many hundreds of different compounds.
355	Although it may be feasible to identify each of the compounds present, this would be
356	unnecessarily time consuming. Further, data describing the toxicity, partitioning, fate and
357	transport characteristics of the different compounds are not currently available ^{3,55} .
358	Identification and assessment of all compounds would be burdensome which would not be
359	practicable for stakeholders ^{30,32} . Therefore, surrogate measures for carbon fractions of
360	toxicological significance, such as boiling point and carbon number ranges, have been used to
361	simplify the assessment process ⁵ . Furthermore, risk management frameworks have focused
362	on a limited subset of key components, using broad observations regarding the characteristics
363	of known petroleum hydrocarbons to group compounds into fractions and identify key toxic
364	compounds for use as indicators ^{3,5} . Typically, petroleum fractions are used to consider
365	threshold health effects while indicator compounds are used to evaluate non-threshold health
366	effects ³² .
367	Approaches such as the ASTM ⁵ risk-based corrective action (RBCA) framework use

indicator compounds as a surrogate for risk. This approach was deemed by $MaDEP^{53}$ as

insufficient for characterising risks posed at a petroleum hydrocarbon release site and

370	fractions were introduced. The definitions of specific fractions are derived from either the
371	carbon number (C_n) or equivalent carbon (ECn) number. For example, MaDEP uses
372	fractions to evaluate the threshold contaminants and indicator compounds (or 'target
373	analytes') to evaluate non-threshold toxicity ^{5,30,53} . The MaDEP approach is one of the few
374	approaches that use carbon numbers. Here TPH fractions are based upon "chemical
375	structure, carbon number, and structure activity relationships" ⁵⁴ . The majority of
376	frameworks use equivalent carbon numbers (EC _n), <i>e.g.</i> TPHCWG ³⁰ because these are
377	considered more closely related to the mobility of a compound in environmental media ³⁰ . As
378	such, ECn are based on "a range of physical-chemical properties and simple partitioning
379	models" ⁸⁴ . In practice, the boiling point of the compound of interest on a non-polar GC
380	column is used to derive EC_n , assuming the relationship between boiling point and EC is the
381	same for both aromatics and aliphatics. In characterising the toxicity of a fraction, surrogate
382	compounds or mixtures that are well characterised and characteristic of a particular fraction
383	are often used ^{30,87} .

The validity of the equivalent carbon number may be challenged. For example, the TPHCWG derive EC_n using a simple empirical binomial model parameterised using data describing the boiling point (T_B, °C) and carbon number of 75 key hydrocarbons; where K₁ and K₂ are empirical constants, and C is the intercept (Equation 1).

$$EC_{n} = K_{1}[T_{B}]^{2} + K_{2}[T_{B}] + C$$
(1)

At best, this provides only a rough estimate of EC_n (e.g. a measured EC value of 31.3 for benzo[a]pyrene compared to the calculated value of 30.0 using Equation 1). Also, a T_B of 548 should relate to EC_{44} , however calculating this from Equation 1 provides a value of $EC_{34.6}$. Clearly there is a disparity between the TPHCWG model and the empirical data. Different parameterisations will have an effect on calculated EC_n . Figure 3 shows a series of fitted binomial models based on four different parameterisation data sets. As the boiling point

increases, a clear disparity emerges between the *n*-alkanes and the PAHs. This can be seen 395 most clearly in the "empirical" plot (Figure 3), between boiling point 450 and 550 °C, where 396 PAHs have markedly lower EC numbers than the *n*-alkanes. Figure 3 suggests that the EC_n 397 approach is unsuitable, particularly for substances $EC_{>20}$. Simple empirical models, such as 398 Equation 1, do not hold true; and the theory that T_B can be used to calculate EC_n 399 representative of normalisation to the *n*-alkanes appears to be incorrect. However, the 400 implications for risk assessment are likely to be minimal, considering the heterogeneity of 401 soils. 402

Aromatic and aliphatic compounds differ in their toxicity, solubility and fate and 403 transport characteristics⁵⁵. Because of this, and the evidence shown in Figure 3, some 404 frameworks employ fractions where aliphatic compounds are considered separately to 405 aromatic, which are further fractionated by (equivalent) carbon number (Table 2). Each 406 fraction may then be treated as if it were a separate compound in the environment^{3,53,87} 407 However, the 'New Zealand Approach'⁶⁰ only considers aliphatic fractions while the 408 aromatic faction is addressed separately by direct measurement of BTEX and PAH 409 concentrations³⁰. 410

Toxicity values are assigned to the fractions and indicators used. This is achieved through 411 the process of review and/or extrapolation of available toxicological data on hydrocarbon 412 mixtures and specific hydrocarbon compounds⁵⁴. The number of fractions and their ranges 413 vary between frameworks (Table 2), and in general build upon or adapt the fractions defined 414 by TPHCWG and MaDEP. Various bodies have adapted these ranges. For example, The 415 New Zealand approach uses three aliphatic fractions, while the TPHCWG approach employs 416 13 analytical fractions (6 aliphatic, 7 aromatic) covering the range from $EC_5 - EC_{35}^{-30,55,84,85}$. 417 The API extended the fractions used by the TPHCWG so that there is a $>EC_{21}-EC_{44}$ 418 aromatic fraction and a >EC₁₆-EC₄₄ fraction along with an additional EC₄₄₊ combined 419

420	aliphatic and aromatic fraction (as it is not physically possible to separate hydrocarbons of
421	this size into fractions) 3 (Table 2). This step was taken due to the TPHCWG fractions not
422	encompassing hydrocarbons with carbon numbers greater 35 which can make up to 60% $^{\rm w}\!/_{\rm w}$
423	of some crude oils ³ and is characteristic of weathered hydrocarbons. It was also considered
424	that the TPHCWG fractions were appropriate for most refined products but not the crude oils
425	present at the majority of E&P sites ³ . Toxicological and fate and transport data for these
426	heavier hydrocarbons (>EC $_{35}$) are sparse ⁵⁵ . As such, the API assigned the characteristics of
427	the next closest aliphatic or aromatic carbon number fractions to the EC_{35} - EC_{44} aliphatic and
428	aromatic ranges ^{3,6,30,54,87} deriving oral and dermal reference doses of 0.03mg/kg/day and
429	0.8mg/kg/day respectively (as EC ₄₄ has extremely low volatility no inhalation reference dose
430	was set by API ³). The EA approach extends these carbon ranges further (Table 2), resulting
431	in 16 fractions, giving an overall range from EC_5 - EC_{70} . Further to the TPHCWG fractions,
432	the EA added an aromatic EC_{35} - EC_{44} range , an aliphatic EC_{35} - EC_{44} range and a combined
433	aromatic and aliphatic EC_{44} - EC_{70} range ^{30,32} . Research is currently underway to examine the
434	implications of this extended set of hydrocarbon ranges ⁶⁸ . The use of surrogate data from the
435	next closest hydrocarbon fraction may be overly conservative and thus not cost-effective. In
436	the case of the API approach, the next closest fraction usually encompasses petroleum
437	hydrocarbons with lower molecular weights, and as such would be characterised with a
438	greater degree of mobility within the environment ³ . Further research into the characteristics
439	of heavier compounds may provide a more complete understanding of their behaviour within
440	the environment and potential risks to human health. It could also potentially result in a
441	reduction in the analysis and remediation requirements enabling the risk assessment to
442	become more streamlined.

4. BIOREMEDIATION

446	The bioremediation of contaminated soils has been extensively reviewed. Bioremediation
447	methods utilise naturally occurring biological processes to transform, decrease or eliminate
448	polluting substances ^{13,28,33,40,62} . Theoretically, optimal conditions are provided for bacteria or
449	fungi to degrade or transform more complex compounds (e.g. contaminants) into relatively
450	simple constituents that may pose a lesser potential risk to humans or ecosystems. An
451	idealised bioremediation method would use harmless reagents, enable the process to be
452	carried out quickly and efficiently (on-site), and result in an acceptable soil product that can
453	be re-used with little/no further modification ¹⁵ . Compared to other remediation approaches,
454	bioremediation often has greater analytical and process control requirements. From an
455	engineering perspective, the processes and logistics of bioremediation are relatively simple ³³ .
456	Any increased expense due to greater analytical and process requirements is usually offset by
457	lower capital costs ^{20,33} . In 2000, an EA survey indicated that organic pollutants accounted for
458	83% of contaminants remediated at contaminated sites in England and Wales ³⁰ ,
459	demonstrating the applicability of bioremediation within the UK land remediation sector.
460	The disadvantages of bioremediation include the potential unpredictability of
461	performance, difficulties in scaling up from laboratory to field and relatively long
462	(weeks/months) remediation times. Bioremediation is not universally suitable for all
463	contaminants ⁴⁸ . High concentrations of heavy metals and other highly toxic compounds can
464	be prohibitive of microbial growth ⁴⁸ , or still leave the remediated soil unfit for purpose and
465	classed as contaminated due to the residual presence of inorganic contaminants. Although
466	bioremediation can breakdown potentially toxic contaminants, this process may result in the
467	formation of metabolites that are toxic in their own right ³³ . Contaminants need to provide an
468	energy and carbon source to enable microbial growth, and so need to be biologically

degradable or transformable^{27,48}. Hence, biological remediation systems are more suited to
 organic contaminants, including weathered petroleum hydrocarbons⁴⁸.

471

472 **4.1. Bioremediation techniques**

The choice of bioremediation technique can depend on a number of site specific factors, 473 including the type, mobility, concentration and volume of a contaminant, the soil structure, 474 surrounding geology, the proximity to structures and potential receptors, and intended end 475 use^{13,20,28,33,62}. There is no single method for every situation and often combinations of 476 techniques are implemented at sites with multiple contamination sources. Bioremediation 477 processes can be divided into in-situ and ex-situ. In-situ methods include monitored natural 478 attenuation 12,13,28,43,48,58,62 , biosparging 13,25,62 and bioventing 13,33,36,48,62 . They have the 479 advantage of not requiring the excavation or removal of soil^{13,20,33,62}. They are able to deal 480 with deep contamination and enable remediation both under and around buildings 20 . These 481 techniques minimise problems with dust, and hence worker exposure may be reduced^{20,33,62}. 482 *In-situ* techniques can adapt, enhance and control bioremediation conditions. However, they 483 are limited by the degree of process control that can be used. In comparison, ex-situ methods 484 are contained and offer a higher degree of process control with greater control over time²⁷. 485 Techniques can be performed on or off site depending on the restrictions present at a 486 particular site²⁰. Overall, *ex-situ* methods are considered to be more efficient than *in-situ* 487 techniques¹³ and can deal with higher concentrations of contaminants²⁷. *Ex-situ* techniques 488 include landfarming, composting, biopiling and bioreactor treatments³³. 489 'Landfarming' (also known as 'land treatment') is a simple technique used to treat large 490 areas of land. Land farming has been used for the remediation of many waste types, but 491

mainly for the remediation of hydrocarbon contaminated soils^{13,20,46}. Landfarming involves the excavation and spreading (to 0.3-0.5m thickness²⁸) of contaminated soil over a bunded

area (incorporating a leachate collection system and impermeable liner material^{13,28,62}) which 494 is tilled to aerate the soil at regular intervals^{20,28,33}. Composting is an aerobic process using 495 systems that involve the construction of piles, often using bulking agents to increase porosity 496 and facilitate airflow^{13,33}. Anaerobic conditions can also be used to compost wastes; 497 however, this can result in the synthesis of unpleasant odorous compounds such hydrogen 498 sulphide²⁰ and the generation of methane. Purpose built closed reactor composting systems 499 can be used to compost wastes, and have been used as the basis of soil treatment centres in 500 mainland Europe ^{13,20,62}. Here, the soil is combined with water to form a slurry which is 501 continuously mixed using mechanical agitators, giving rise to improved contact between the 502 pollutants and the microorganisms^{33,62}. Closed systems provide a high degree of process 503 control over environmental conditions and allow for the control and treatment of volatile 504 compounds. However they are more expensive than open systems such as windrows³³. 505 Engineered biopiles are an intensive static pile version of composting that enable greater 506 control over important environmental factors that effect biotransformation rates (i.e. oxygen, 507 water and nutrient levels¹³) compared to other methods. This intensive method is especially 508 useful when space is limited¹³. Details regarding biopile design and operation can be found 509 elsewhere^{11,13,20,28,40}. 510 As highlighted by some of the responses to the EAs survey²⁷, the timescale in which 511 pollutants can be remediated is an important consideration when selecting the most 512 appropriate remedial treatment to use at a given site. Cost, guaranteed insurance, and risk 513 reduction were also cited as reasons for not using bioremediation methods. Engineered 514

⁵¹⁵ biopiles offer a high degree of control, have a smaller footprint and are comparatively quick,

yet they are not as expensive as closed bioreactor systems (~ $\pm 10-40$ per m³ vs. ~ $\pm 30-150$ per

 m^{3} ¹³. This makes biopiling attractive to contaminated land remediation specialists,

s18 especially as the high degree of control allows the processes to be optimised for

519 biotransformation of specific pollutants of interest.

Bioremediation works well for remediating soils contaminated with petroleum 520 hydrocarbons ^{36,49}. Most studies have reported biotransformation to be rapid in the initial 521 stages of bioremediation, with rates seen to asymptote as the weathered proportion is 522 biotransformed^{26,37,111}. Weathered petroleum hydrocarbons have typically been present in the 523 soil for a long period of time, they display relatively low bioavailability, and thus are more 524 recalcitrant in the environment⁴⁰. As a result, the optimisation of environmental conditions is 525 imperative for the remediation of land contaminated with weathered petroleum 526 hydrocarbons⁴⁰. Giles *et al.* (2001) studied the bioremediation of weathered oil sludge (C₂₀-527 C_{38}) in composting piles. A biotransformation of 97% % ^w/_w TPH was achieved after 10 528 weeks. This study showed that indigenous bacterial populations were more suited to 529 biotransforming the sludge²⁸. Unexpectedly, the bulking agent used had a greater effect on 530 biodegradation than augmentation with a consortia of oil-degrading bacteria. The authors 531 suggested that the bulking agent achieved higher degradation rates (complete compost) due to 532 the presence of indigenous hydrocarbon-degrading microorganisms. However, this may have 533 been due in part to the increased adsorption capacity of the amended soil matrix. It was 534 suggested that this material was effective at modulating the temperature thus maintaining the 535 bacteria within their optimal range³⁸. 536

537

538 4.2. Optimising bioremediation

539 Contaminated soils usually contains a number of microbial species capable of degrading 540 the contaminants present²⁸. The degradation process can be enhanced through biostimulation 541 and bioaugmentation. The former refers to the enhancement of the bioremediation process by 542 optimising specific environmental parameters such as temperature, pH, oxygen partial

543	pressure, moisture and nutrient levels ^{33,62} . The latter describes the augmentation of
544	bioremediation systems with commercially available microbial cultures which, in some cases,
545	perform specific functions ^{13,28,40,62} . Bioaugmentation may be required where native microbial
546	populations are insufficient to achieve effective biotransformation. For example
547	Phanerochaete chrysosporium (white rot fungus) can aid in the degradation of problematic
548	recalcitrant compounds ²⁸ . However, it should be noted that resulting increased costs are
549	rarely justified by the benefits ²⁸ . Additionally, it was shown by Trindade et al. (2005) ⁸⁹ and
550	Giles et al. (2001) ³⁸ that indigenous micororganisms can be better adapted and more resistant
551	to the contaminants present, with greater remediation potential than foreign organisms ^{28,38,89} .
552	Typically, the addition of foreign organisms are not required when degrading hydrocarbons ¹¹ .
553	To grow, microorganisms require an electron donor (source of energy) and an electron
554	acceptor as a means of extracting energy from the electron donor. Thus, electron acceptors
555	play a key role in the biotransformation of a contaminant (the energy source – electron
556	donor). Potential electron acceptors for microbial activity are (in order of energy yield,
557	highest first): oxygen, nitrate, iron, manganease, sulphate, carbon dioxide and organic
558	carbon ⁴⁹ . Clearly as oxygen yields the highest amount of energy it is the preferred electron
559	acceptor and is important to optimise its diffusion into- and concentration within the soil
560	matrix (typically need to keep oxygen in the soil gas $>2\%$).
561	Different bacterial classes require different temperature ranges to achieve optimum
562	growth. For example, mesophiles grow from about 15° to $45^{\circ}C^{49}$ whereas thermophiles grow
563	best between 45° and $65^{\circ}C^{33,49}$. Typically during bioremediation mesophilic temperatures
564	are common, with Giles <i>et al.</i> $(2001)^{38}$ having found optimum growth for the bacteria present
565	during the bioremediation of a weathered oil sludge to be less than $45^{\circ}C^{38}$.
566	The pH of the soil can inhibit microbial activity and also affect the solubility of
567	important nutrients such as phosphorus ^{33,49} . The typical optimum pH range for

568	bioremediation is from pH 5.0 – 9.0, with a pH of 7.0 being preferable. Giles <i>et al.</i> $(2001)^{38}$
569	reported a soil pH of 6.1 during the bioremediation of a weathered oil sludge, suggesting that
570	the 'typical' bioremediation pH range is likely to be suitable for weathered petroleum
571	hydrocarbons.

572	Water is essential for microbial growth and maintenance and also serves as a transport
573	medium though which organic compounds, contaminants and nutrients are transported into
574	the cells and waste products from the cells ^{33,49} . Achieving a suitable water balance within the
575	biopile can be critical as dry zones may result in decreased microbial activity ³³ . Conversely,
576	saturation inhibits gas exchange resulting in anaerobic conditions ³³ . The typical optimum
577	water content range is within 55-80% by weight of the water-holding capacity 13,49 . Bacteria
578	also require nutrients (carbon, nitrogen, phosphorous, and in lesser quantities potassium,
579	sodium, magnesium, calcium, iron, chloride and sulphur ¹³) for the assimilation and synthesis
580	of new cell materials ^{13,33,49} . The depletion of nutrients can effect the biotransformation of
581	contaminants, in response biroemediation systems can be amended with fertilisers containing
582	appropriate quantities of the rate-limiting nutrients ^{11,40} .
583	It is clear that successful bioremediation relies on the optimisation of several parameters.

It is clear that successful bioremediation relies on the optimisation of several parameters
Thus, prior to the remediation of contaminated land it can be useful to assess the treatability
of the soil and identify requirements for bioremediation.

586 587

588 5. DISCUSSION

589

The preceding sections of this review have provided an overview of the issues for the management of risks from weathered hydrocarbons. Summarising this material is insightful in that it illustrates trends and approaches from a variety of perspectives. The view expressed

is that thirty years of research into petroleum microbiology and bioremediation have 593 bypassed an important observation - that many hydrocarbon-contaminated sites posing 594 potential risks to human health harbour weathered, 'mid-distillate' or heavy oils. These sites 595 present considerable challenges to remediation over and above those posed by fresh or more 596 refined petroleum distillates. Critically, there are important scientific components that drive 597 risk management for these wastes and specifically the partitioning of risk-critical compounds 598 within the oil/soil matrix. 599

Whilst early work suggested the recalcitrance of these wastes to microbial breakdown, 600 we now know that the risks from these wastes can be actively managed through optimising 601 treatment process parameters during bioremediation. This said, the 'in-field' verification of 602 ex-situ technologies such as biopiling, continues to be expressed in many countries in terms 603 of reductions in total petroleum hydrocarbon (TPH) load, or 'losses' from the soil being 604 treated, rather than by reference to reductions in risk. An observation from the UK is that the 605 absence of risk from the vocabulary of many remediation operators and remediation projects 606 reduces stakeholder (regulatory, investor, landowner and public) confidence in technology 607 performance, and in doing so, limits the market potential of these technologies. 608

For weathered hydrocarbon wastes, risk management decisions are complicated by the 609 gross complexity of the source term, the effects of weathering on the bioavailability of risk 610 critical contaminants and the variable performance of remedial technologies under authentic 611 site conditions. For heavy oils (the viscous (50-360 mPa s), high-boiling (ca. 300 - >600 °C) 612 products such as No. 6. fuel oil with carbon ranges in excess of C_{20}), their inherent 613 complexity is further compounded as they weather in the environment on account of biotic 614 and abiotic losses that shift their chemical composition towards recalcitrant, asphaltenic 615 products of increased hydrophobicity.

616

617	These changes raise an important feature of hydrocarbon contaminated land that is often
618	overlooked – that the source term, the oil matrix, is itself a strong partition medium for risk
619	critical compounds and weathering imparts further hydrophobicity to the oil matrix.
620	Compositional changes dramatically affect the partitioning behaviour of these source terms
621	prior to, during and following biological treatment. Risk critical components (e.g. the higher
622	ring polynuclear aromatic hydrocarbons (PAH)) in weathered oils are less bioavailable
623	because they are effectively partitioned within the source term in accordance with Raoult's
624	Law. Sun and Boyd (1991) ⁷⁸ first suggested the concentration of residual oil within a oil-soil
625	matrix required for it to act as a discrete partition medium (ca. 1000 mg/kg) and suggested
626	that this residual oil, as the original source of priority contaminants, could typically be ten
627	times more an effective partition medium than soil organic matter for hydrophobic organics.
628	This is rarely represented within the fate and transport models that support the environmental
629	exposure assessment of hydrocarbons with the possibility that regulatory exposure
630	assessment models may dramatically over estimate the availability of risk-critical compounds
631	through exposure routes. There is prior art here. Zemanek et al. (1997) ¹¹³ showed that
632	between 71-96% ^w /w of PAH in weathered diesel-contaminated loam soils were partitioned to
633	residual oil (at 2-6% w/w of the total soil composition) in petroleum and weathered creosote-
634	contaminated soils, with 84% $^{\text{w}}$ /w of benzo[a]pyrene partitioned to the residual oil phase.
635	Woolgar and Jones $(1999)^{110}$ estimated oil - water partition coefficients (termed log K _{mw}) for
636	a series of PAH to be between 4.5 - 6.5, dependent on the source term. Under these
637	conditions, highly partitioned constituents in weathered hydrocarbon waste matrices may be
638	biologically inaccessible to microbial communities and resistant to biotransformation.
639	However, their very inaccessibility may, but not necessarily, also restrict the dose available
640	to receptors. Clearly, attempts to improve the bioavailability of these components to
641	microorganisms during bioremediation may also result in increased human exposure. In

estimating the fate of pollutants in complex environmental matrices, the application of 642 fugacity models ⁵² for predicting the relative phase distributions and concentrations of 643 contaminants and their metabolites during treatment^{75,76} is now proving valuable for 644 informing exposure assessments and the optimisation of *in-situ* remediation. These 645 approaches have yet to be applied to the biopiling of weathered oils or to account for the 646 partitioning behaviour of PAH in weathered non-aqueous phase liquids (NAPL) within the 647 unsaturated zone. In short, the relationships between chemical presence, toxic response, 648 bioavailability and risk for weathered hydrocarbons have yet to be fully elucidated and 649 coupled into a meaningful risk management framework, though work is progressing^{29-32,81}. 650 One of the obvious research needs is to authenticate human exposures to oil/soil matrices in 651 the context of contaminated land and, in particular, to explore the bioavailability of risk-652 critical compounds (benzene, benzo[a]pyrene) in light of these newly revealed partition 653 relationships. 654

The regulation of site remediation now requires adoption of a risk-based approach and 655 this extends to technology verification²⁹. Whereas the effectiveness of an environmental 656 technology in treating pollution has historically been expressed as a percentage reduction in 657 the pollutant concentration released to, or found in, a media of concern, regulators are 658 increasingly concerned with mass, toxicity and risk reductions within the multimedia, 659 multiphase environment. For petroleum hydrocarbons in soil, international regulatory 660 guidance on the management of risks from contaminated sites is now emerging. As shown in 661 this review, much of this guidance promotes the use of risk management frameworks to 662 guide decision-making, the application of reference analytical methodologies and the 663 derivation and use of acute, sub-chronic, and chronic toxicological criteria for these wastes. 664 These frameworks adopt a variety of approaches to the evaluation of risk-critical components 665 within the hydrocarbon waste-soil matrix. 666

667	In the US, a substantive research effort has focused on integrating hydrocarbon fate and
668	transport, petroleum microbiology and environmental diagnostics to inform regulatory
669	processes for site management under the Superfund Program. ThermoRetec $(2000)^{81}$,
670	reporting for the Petroleum Environmental Research Forum (PERF), provide an authoritative
671	account of the central importance of partitioning within soil-bound hydrocarbons in
672	developing environmentally acceptable endpoints (remedial objectives). Drawing on a
673	detailed understanding of NAPL and residual oil fate and behaviour, this work is now
674	influencing the development of remediation criteria for petroleum hydrocarbon in soils in the
675	US for human health, groundwater and ecological receptors, and a reappraisal of the level of
676	residual petroleum hydrocarbons that can be left at remediated sites without posing an
677	unacceptable risk. In contrast, weathered, mid-distillate and heavier oil sources are generally
678	given a narrow treatment by these reviews and frameworks. The Environment Agency
679	$(2003)^{30}$ have recognised this in their recent consultation on principles for evaluating the
680	human health risks from petroleum hydrocarbons in soils, and have called for views. One of
681	the few environmental exposure assessments explicitly to address heavy oils has been
682	discussed in a recent article relating to worker and visitor exposure following the wrecking of
683	the oil tanker 'Erika' in 65 km south of the Brittany coast ⁷ . Here, inhalation, dermal and oral
684	PAH exposures from beached No. 6 fuel oil were estimated and found to be negligible for
685	beach cleaners and tourists (occasional visitors) coming into to contact with heavy oil,
686	demonstrating the feasibility of this level of risk analysis for these problematical wastes.
687	The move towards risk-based corrective action (RBCA) has been slow in the UK and,
688	whilst some progress has been made in integrating the aspects of analysis, exposure
689	assessment and technology verification ²⁹ , there are gaps in the current knowledge base.
690	Specifically: (i) analytical strategies in the UK are not generally targeted at the
691	bioavailability of risk-critical components; (ii) risk assessments do not regularly account for

692	highly weathered residues encountered at many sites (API, 2001); and (iii) treatment
693	'success' is still supported by reductions in hydrocarbon load in isolation of combined
694	reductions in toxicity, chemical mass and risk. In a typical study, Al Awadhi <i>et al.</i> $(1996)^2$
695	report an 80% ^w /w reduction in oil from heavy oil-laden landfarming plots in Kuwait over a
696	15 month research period and Milne et al. (1998) between 30-50% ^w /w reductions in TPH
697	from heavy refinery sludge treated in amended composting plots over the treatment period.
698	Guerin (2000) ³⁹ reports a 5 –year performance study of a land treatment facility for oil
699	wastes from heavy vehicle maintenance. Most of these studies and many of those since (e.g.
700	Tien et al., (1999) ⁸² and Owens and Bourgouin, (2003) ⁶⁷) follow a pattern of reporting
701	reductions in TPH load as a presumed surrogate for risk reduction.
702	A contributing factor to the over-reliance on TPH as an indicator of treatment
703	performance in isolation of other parameters, has been the cost of implementing more
704	sophisticated diagnostic techniques and their low uptake within the sector. This has been, in
705	part, as result of the absence of a regulatory framework. Nevertheless, researchers have been
706	concerned with improved diagnostics methods (the analysis of specific carbon number
707	ranges); the fingerprinting of hydrocarbon wastes for source identification (for liability
708	disputes) and in tracking biotransformation; and with biological techniques as indicators of
709	the impact of hydrocarbon contamination on soil function. Recent initiatives have included
710	the development of reference methods for the analysis of petroleum hydrocarbons from nC_{6} -
711	$C_{50}^{19,83}$, the application of biomarker analysis (<i>n</i> -alkane: substituted <i>n</i> -hopane indices) to
712	bioremediation verification ^{45,61,100} and the validation of microbial bioassays for petroleum
713	hydrocarbons in soil ^{24,68} . Our own work ⁶⁹ , building on that of Prince <i>et al.</i> $(1994)^{72}$
714	demonstrated that the ratio of total alkanes ($\sum n$ -alkanes) to $17\alpha(H)21\beta(H)$ -hopane to be the
715	most sensitive of a series of biomarker ratios in reflecting oily waste depletion in a 256-day
716	soil microcosm study.

719 6. CONCLUSIONS

721	Risk assessment is a well-established paradigm for the management of contaminated
722	land ⁴ . However, the move towards risk-based corrective action has been slow. Recent
723	stakeholder consultations in the UK, and subsequent publications from the Environment
724	Agency, aim to adopt a risk-based framework where remediation success is expressed in
725	terms of risk rather than TPH load reductions.
726	There are several risk assessment frameworks for land contaminated with petroleum
727	hydrocarbons including those published by TPHCWG ⁸⁸ , ASTM ⁵ , MADEP ⁵⁵ , Environment
728	Agency ³² , API ³ and CCME ¹⁸ . However, none of these specifically deal with weathered
729	petroleum hydrocarbons, which are widely acknowledged to have major qualitative and
730	quantitative differences compared to non-weathered petroleum hydrocarbons ⁸⁷ . Additionally,
731	there are variations between frameworks that may result in different recommendations e.g.
732	the level of remediation to be achieved. As shown, the use in some frameworks of deriving
733	equivalent carbon numbers from empirical relationships representative of normalisation to the
734	<i>n</i> -alkanes appears to be incorrect. In general, variations between frameworks occur in the
735	determination of the range used, how toxicity is assessed and how soil samples are analysed.
736	Beyond the regulatory perspective, researchers have been involved in improving
737	diagnostics methods (the analysis of specific carbon number ranges); the fingerprinting of
738	hydrocarbon wastes for source identification (for liability disputes) and in tracking
739	biotransformation; and with biological techniques as indicators of the impact of hydrocarbon
740	contamination on soil function. There has also been increased interest in the use of fugacity

741	models for	r making inferences about the fate and transport of risk-critical compounds within	
742	contaminated soils.		
743	Many o	of these advances have yet to be synthesised into regulatory tools. However, there is	
744	growing support for the move towards compound-specific risk-based approaches for the		
745	assessment of hydrocarbon-contaminated land.		
746			
747	Acknowle	edgments – This work is funded under a Department of Trade and Industry-	
748	Research Council Bioremediation LINK Grant and supported by a consortium of industrial		
749	partners (PROMISE). KJB is funded by an EPSRC CASE Award supported by the		
750	FIRSTFA	RADAY partnership. RLH is supported by BBSRC Grant BB/B512432/1 and is a	
751	Cranfield University Academic Fellow. The views expressed are the authors' alone.		
752			
753	7. REFERENCES		
754 755	1. AF	EHS, Characterization of C6-C35 Petroleum Hydrocarbons in Environmental	
756		mples – The Direct Method., Available at:	
757		p://www.aehs.com/publications/catalog/contents/Direct%20Method.PDF (October	
758		04), 2000.	
759		Awadhi, N., Al-Daher, R., ElNawawy, A., and Balba, M. T., Bioremediation of	
760		I-Contaminated Soil in Kuwait, J. Soil Contam., Vol. 5, No. 3, pp. 243-260, 1996.	
761		PI, Risk-based Methodologies for Evaluating Petroleum Hydrocarbon Impacts at	
762		and Natural Gas E&P Sites, API Publication 4709, Regulatory and Scientific	
763		fairs Department American Petroleum Institute Publishing Services, Washington,	
764		C, 2001.	
765		CADIS Geraghty & Miller International Inc., Risk Assessment Comparison Study,	
766		6830024, NICOLE/ISG, 2004	

767	5.	ASTM, Emergency Standard Guide for Risk-Based Corrective Action Applied at
768		Petroleum Release Sites, ES 48-94, ASTM, Philadelphia, 1994.
769	6.	ATSDR, Toxicological Profile for Total Petroleum Hydrocarbons (TPH), U.S.
770		Department of Health and Human Services, Agency for Toxic Substances and Disease
771		Registry, Atlanta, Georgia, 1999.
772	7.	Baars, BJ., The Wreckage of the Oil Tanker 'Ericka' - Human Heath Risk
773		Assessment of Beach Cleaning, Sunbathing and Swimming, Toxicol. Lett., Vol. 128,
774		pp. 55-68, 2002.
775	8.	Barakat, A. O., Mostafa, A. R., Qian, Y., and Kennicutt, M. C., Application of
776		Petroleum Hydrocarbon Chemical Fingerprinting in Oil Spill Investigations - Gulf of
777		Suez, Egypt, Spill Sci. Technol. B., Vol. 7, No. 5-6, pp. 229-239, 2002.
778	9.	Barakat, A. O., Qian, Y., Kim, M., and Kennicutt, M. C., Chemical Characterisation
779		of Naturally Weathered Oil Residues in Arid Terrestrial Environment in Al-Alamein,
780		Egypt, Environ. Int., Vol. 27, pp. 291-310, 2001.
781	10.	Barrs, A. J., Theelen, R. M. C., Janssen, P. J. C. M., Hesse, J. M., van Apeldoorn, M.
782		E., Meijerink, M. C. M., Verdam, L., and Zeilmaker, M. J., Re-evaluation of human-
783		toxicological maximum permissible risk levels, RIVM Report 711701 025, RIVM,
784		Netherlands, 2001.
785	11.	BATTELLE, Biopile design and construction manual, Technical Memorandum TM-
786		2189-ENV, NFESC, California, 1996.
787	12.	Bhupathiraju, V. K., Krauter, P., Holman, HY. N., Conrad, M. E., Daley, P. F.,
788		Templeton, A. S., Hunt, J. R., Hernandez, M., and Alvarez-Cohen, L., Assessment of
789		in-Situ Bioremediation at a Refinery Waste Contaminated Site and an Aviation
790		Gasoline Contaminated Site, Biodegradation, Vol. 13, pp. 79-90, 2002.

13. BIOWISE, Contaminated Land remediation - A Review of Biological Technology,

792 DTI, Oxon, UK, 2000. .

793	14.	Boehm, P. D., Douglas, G. S., Burns, W. A., Mankiewicz, P. J., Page, D. S., and
794		Bence, A. E., Application of Petroleum Hydrocarbon Chemical Fingerprinting and
795		Allocation Techniques After the Exxon Valdez Oil Spill, Mar. Pollut. Bull., Vol. 34,
796		No. 8, pp. 599-613, 1997.
797	15.	Buco, S., Moragues, M., Doumenq, P., Noor, A., and Mille, G., Analysis of
798		Polycyclic Aromatic Hydrocarbons in Contaminated Soil by Curie Point Pyrolysis
799		Coupled to Gas Chromatography-Mass Spectrometry, an Alternative to Conventional
800		Methods., J. Chromatogr. A, Vol. 1026, pp. 223-229, 2004.
801	16.	Buddhadasa, S. C., Barone, S., Bigger, S. W., and Orbell, J. D., Australian
802		Approaches to Improving Methods for the Analysis of TPH Contamination in Soil, in
803		17th WCSS at Thailand, 2002.
804	17.	CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil:
805		Scientific Rationale, CCME, Winnipeg, Manitoba, Canada, 2000.
806	18.	CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil:
807		Technical Supplement, CCME, Winnipeg, Manitoba, Canada, 2001.
808	19.	CCME, Reference methods for the Canada-wide standard for petroleum
809		hydrocarbons in soil - Tier 1 Method., Publication No. 1310, CCME, Winnipeg,
810		Manitoba, Canada, 2001.
811	20.	Cookson, J. T. J., Bioremediation Engineering: Design and Application, McGraw-
812		Hill, New York, 1995.
813	21.	Coulon, F., Pelletier, E., Gourhant, L., and Delille, D., Effects of Nutrient and
814		Temperature on Degradation of Petroleum Hydrocarbons in Contaminated Sub-
815		Antartic Soil, Chemosphere, Vol. 58, pp. 1439-1448, 2005.

22. Dean, J. A., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995 816

- B17 23. DETR, Contaminated Land: Implementation of Part IIA of the Environmental
 B18 Protection Act 1990, DETR Circular 2/2000, 2000.
- 24. Dorn, P. B. and Salinitro, J. P., 'Temporal Ecological Assessment of Oil
 Contaminated Soils Before and After Bioremediation', *Chemosphere*, Vol. 40, No. 4,
 pp. 419-426, 2000.
- DTI, *Biological Methods for Contaminated Land Management*, available at:
 http://www.biowise.org.uk/core_files/Ciria%20publication.pdf (accessed 2004), 2003.
- Ellis, B., Reclaiming Contaminated Land: *In Situ/Ex Situ* Remediation of Creosote and Petroleum Hydrocarbon-Contaminated Sites, in *Bioremediation Field Experience*,
- Lewis Publishers, United States, pp. 107-143, 1994.
- 27. Environment Agency, *Survey of remedial techniques for land contamination in*
- 828 England and Wales, R & D Technical Report P401, Environment Agency,

Almondsbury, Bristol, 2000.

- Environment Agency, *Remedial Treatment Action Data Sheets*, Agency Management
 Systems Document: Data Sheet No. DS-01, Environment Agency, 2002.
- Environment Agency, *Model procedures for the management of land contamination*(CLR11) Version 2v2, Environment Agency, Solihull, 2003.
- 30. Environment Agency, *Principles for Evaluating the Human Health Risks from*
- 835 Petroleum Hydrocarbons in Soils: A consultation Paper, R & D Technical Report P5-
- 836 080/TR1, Environment Agency, Almondsbury, Bristol, 2003.
- 837 31. Environment Agency, *Review of Comments on: Environment Agency Public*
- 838 Consultation Paper Principles for Evaluating the Human Health Risks from
- 839 *Petroleum Hydrocarbons in Soils*, Science Report P5-080/TR2, Environment Agency,
- Almondsbury, Bristol, 2004.
- 841 32. Environment Agency, The UK Approach for Evaluating Human Health Risks from

842		Petroleum Hydrocarbons in Soils, Science Report P5-080/TR3, Environment Agency,
843		Almondsbury, Bristol, 2005.
844	33.	Eweis, J. B., Ergas, S. J., Chang, D. P. Y., and Schroeder, E. D., Bioremediation
845		Principles, McGraw-Hill, Boston, 1998.
846	34.	Farrell-Jones, J., 'Petroleum Hydrocarbons and Polyaromatic Hydrocarbons', in
847		Thompson, C. K. and Nathanail, P. C., Chemical Analysis of Contaminated Land,
848		Blackwell, Oxford, pp. 132-176, 2003.
849	35.	Ferguson, C. C., Assessing the Risks from Contaminated Land Sites: Policy and
850		Practice in 16 European Countries, Land Contamination and Reclamation, Vol. 7, No.
851		2, pp. 33-54, 1999.
852	36.	Flathman, P. E., Jerger, D. E., and Exner, J. H., Bioremediation Field Experience,
853		Lewis Publishers, United States, 1994.
854	37.	Fogel, S., Full-Scale Bioremediation of No. 6 Fuel Oil-Contaminated Soil: 6 Months
855		of Active and 3 Years of Passive Treatment, in Bioremediation Field Experience,
856		Lewis Publishers, United States, pp. 161-175, 1994.
857	38.	Frysinger, G. S., Gaines, R. B., Xu, L., and Reddy, C. M., Resolving the Unresolved
858		Complex Mixture in Petroleum-Contaminated Sediments, Environ. Sci. Techol., Vol.
859		37, pp. 1653-1662, 2003.
860	39.	Giles, W. R. JR., Kriel, K. D., and Stewart, J. R., Characterization and Bioremediation
861		of a Weathered Oil Sludge, Environmental Geosciences, Vol. 8, No. 2, pp. 110-122,
862		2001.
863	40.	Guerin, T. F., Long-Term Performance of a Land Treatment Facility for the
864		Bioremediation of Non-Volatile Oil Wastes, Resour. Conserv. Recy., Vol. 28, pp.
865		105-120, 2000.

41. Harries, N., Doherty, M., and Sweeney, R., *Biopile Field Demonstration at the*

867		Avenue Coking Works, CL:AIRE Demonstration Project Report: TDP6, Contaminated
868		Land: Application in Real Environments (CL:AIRE), London, 2004.
869	42.	Hawthorne, S. B., Grabanski, C. B., Martin, E., and Miller, D. J., Comparisons of
870		Soxhlet Extraction, Pressurized Liquid Extraction, Supercritical Fluid Extraction and
871		Subcritical Water Extraction for Environmental Solids: Recovery, Selectivity and
872		Effects on Sample Matrix., J. Chromatogr. A, Vol. 892, pp. 421-433, 2000.
873	43.	Hejazi, R. F., Husain, T., and Khan, F. I., Landfarming Operation of Oily Sludge in
874		Arid Region Human Health Risk Assessment, J. Hazard. Mater. B, Vol. 99, pp. 287-
875		302, 2003.
876	44.	Holgate, G., The New Contaminated Land Regime: Part IIA of the Environmental
877		Protection Act 1990, Land Contamination and Reclamation, Vol. 8, pp. 117-132,
878		2000.
879	45.	Hollender, J., Koch, B., Lutermann, C., and Dott, W., Efficiency of Different Methods
880		and Solvents for the Extraction of Polycyclic Aromatic Hydrocarbons from Soils,
881		Intern. J. Environ. Anal. Chem., Vol. 83, No1, pp. 21-32, 2003. 46. Hough, R.
882		L., Whittaker, M., Fallick, E., Preston, T., Farmer, J. G., and Pollard, S. J. T.,
883		Identifying Source Correlation Parameters for Hydrocarbon Wastes Using
884		Compound-Specific Isotope Analysis, Environ. Pollut., In Press, 2006.
885	47.	Howat, D. R., Frequently asked questions on the remediation and reclamation of soil
886		and groundwater, Alberta Environment, Alberta, 2002.
887	48.	Hutcheson, M. S., Pedersen, D., Anastas, N. D., Fitzgerald, J., and Silverman, D.,
888		Beyond TPH: Health-Based Evaluation of Petroleum Hydrocarbon Exposures, Regul.
889		Toxicolo. Pharm., Vol. 24, pp. 85-101, 1996.
890	49.	Hyman, M. and Dupont, R. R., Groundwater and Soil Remediation: Process Design

and Cost Estimating of Proven Technologies, American Society of Civil Engineers,

Virginia, 2001.

893	50.	Jorgensen, K. S., Puustinen, J., and Suortti, AM., Bioremediation of Petroleum
894		Hydrocarbon-Contaminated Soil by Composting in Biopiles, Environ. Pollut., Vol.
895		107, pp. 245-254, 2000.

- Kaplan, I. R., Galperin, Y., Alimi, H., Less, R.-P., and Lu, S.-T., Patterns of Chemical
 Changes During Environmental Alteration of Hydrocarbon Fuels', *Ground Water Monit. R.*, Vol. 16, No. 4, pp. 113-124, 1996.
- Kaufman, A. K., Selection of Bioremediation for Site Cleanup: Decision Factors, in
 Bioremediation Field Experience, Lewis Publishers, United States, pp. 51-58, 1994.
- 53. Mackay, D., Finding Fugacity Feasible, *Environ. Sci. Technol.*, Vol. 13, No. 10, pp.
 1218-1223, 1979.
- MADEP, Interim Final Petroleum Report: Development of Health-based Alternative
 to the Total Petroleum Hydrocarbon (TPH) Parameter, Massachusetts Department of
 Environmental Protection, Executive Office of Environmental Affairs,

906 Commonwealth of Massachusetts, Boston, MA, 1994.

- 907 55. MADEP, Draft Updated Petroleum Hydrocarbon Fraction Toxicity Values for the
 908 VEP/EPH/APH Methodology, Massachusetts Department of Environmental
- Protection, Executive Office of Environmental Affairs, Commonwealth of
 Massachusetts, Boston, MA, 2002.
- 911 56. MADEP, Characterizing Risks Posed by Petroleum Contaminated Sites:
- 912 Implementation of the MADEP VEP/EPH Approach, Policy #WSC-02-411, Policy
- 913 #WSC-02-411, Massachusetts Department of Environmental Protection, Executive
- 914 Office of Environmental Affairs, Commonwealth of Massachusetts, Boston, MA,
- 915 2002.
- 916 57. MADEP, Method for the determination of extractable petroleum hydrocarbons

- (EPH), Revision 1.1, Massachusetts Department of Environmental Protection, 917 Executive Office of Environmental Affairs, Commonwealth of Massachusetts, 918 Boston, MA, 2004. 919
- 58. MADEP, Method for the determination of volatile petroleum hydrocarbons (VPH), 920 Revision 1.1, Massachusetts Department of Environmental Protection, Executive 921
- Office of Environmental Affairs, Commonwealth of Massachusetts, Boston, 2004. 922
- 59. Margesin, R. and Schinner, F., Review Biological Decontamination of Oil Spills in 923 Cold Environments, J. Chem. Technol. Biot., Vol. 74, pp. 381-389, 1999. 924
- 60. McMillen, S. J., Magaw, R. I., and Carovillano, R. L., Risk-Based Decision-Making 925 for Assessing Petroleum Impacts at Exploration and Production, The Department of 926 Energy and the Petroleum Environmental Research Forum, Tulsa, OK, 2001.
- 61. Ministry for the Environment, Guidelines for Assessing and Managing Petroleum 928 Hydrocarbon Contaminated Sites in New Zealand, Ministry for the Environment, 929 New Zealand, 1999. 930
- 62. Moldowan, J. M., Dahl, J., McCaffrey, M. A., Smith, W. J., and Fetzer, J. C., 931 Application of Biological Marker Technology to Bioremediation of Refinery by-932

Products, Energ. Fuel., Vol. 9, No. 1, pp. 155-162, 1995. 933

- 63. Nathanail, P. C. and Bardos, P. R., Reclamation of Contaminated Land, John Wiley & 934 Sons, England, 2004. 935
- 64. National Environment Protection Council, Schedule B (3): Guideline on laboratory 936
- analysis of potentially contaminated soils, National Environment Protection Council, 937
- Available from: http://www.ephc.gov.au/pdf/cs/cs_03_lab_analysis.pdf (accessed 938 01/07/05), 1999. 939
- 65. New South Wales Environment Protection Agency, Draft Guidelines for the 940 Assessment of Former Gasworks Sites, New South Wales Environment Protection 941

942 Agency, Sydney, 2003.

- 943 66. NICOLE, *CLAIRNET/NICOLE Joint Statement: Better Decision Making Now*,
 944 available at: www.nicole.org/publications/NICOLEjoint2.PDF (accessed 2005), 1998.
- 945 67. Oil Industry Environmental Working Group, *Draft, sampling protocols and analytical*946 *methods for determining petroleum products in soil and water*, Oil Industry

947 Environmental Working Group, Available from:

- http://www.mfe.govt.nz/publications/hazardous/sampling-protocols-oil-may99.pdf
 (accessed 01/07/05), 1999.
- 68. Owens, J. and Bourgouin, C., Biological Treatment of Hydrocarbon Contaminated
 Soils for Channel Tunnel Rail Link Project, London, England, in *ConSoil 2003, 8th International FZK/TNO Conference on Contaminated Soil* in Ghent; FZK/TNO,

953 Belgium, pp. 2157-2162, 2003.

- 954 69. Pollard, S. J. T., Hough, R. L., Brassington, K., Sinke, A., Crossley J, Paton, G. I.,
 955 Semple, K., Risdon, G., Jackman S.J, Bone, B., Jacobsen, C., and Lethbridge G,
- 956 Optimising the Biopiling of Weathered Hydrocarbons Within a Risk Management
- 957 Framework PROMISE, in *CL:AIRE and FIRST FARADAY Joint Conference on*

958 *Contaminated Land* 27-28th April, 2005 at International Convention Centre,
959 Birmingham, UK, 2005.

- Pollard, S. J. T., Whittaker, M., and Risden, G. C., The Fate of Heavy Oil Wastes in
 Soil Microcosms I: a Performance Assessment of Biotransformation Indices, *Sci.*
- 962 *Total Environ.*, Vol. 226, pp. 1-22, 1999.
- Pollard, S. J. T., Hrudey, S. E., and Fedorak, P. M., Bioremediation of Petroleum- and
 Creosote-Contaminated Soils: a Review of Constraints, *Waste Manage. Res.*, Vol. 12,
 pp. 173-194, 1994.
- 966 72. Pollard, S. J. T., Hrudey, S. E., Rawluck, M., and Fuhr, B. J., Characterisation of

967		Weathered Hydrocarbon Wastes at Contaminated Sites by GC-Simulated Distillation
968		and Nitrous Oxide Chemical Ionisation GC-MS, With Implications for
969		Bioremediation, J. Environ. Monitor., Vol. 6, pp. 713-718, 2004.
970	73.	Prince, R. C., Elmendorf, D. L., Lute, J. R., Hsu, C. S., Haith, C. E., Senius, J. D.,
971		Dechert, G. J., Douglas, G. S., and Butler, E. L., $17\alpha(H)$, $21\beta(H)$ -Hopane As a
972		Conserved Internal Marker for Estimating the Biodegradation of Crude Oil, Environ.
973		Sci. Technol., Vol. 28, pp. 142-145, 1994.
974	74.	Reid, B. J., Jones, K. C., and Semple, K. T., Bioavailability of Persistent Organic
975		Pollutants in Soils and Sediments- a Perspective on Mechanisms, Consequences and
976		Assessment, Environ. Pollut., Vol. 108, pp. 103-112, 2000.
977	75.	Saifuddin, N. and Chua, K. H., Extraction of Tetrachloroethylene From Weathered
978		Soils: A Comparison Between Soxhlet Extraction and Microwave-Assisted
979		Extraction, Malaysian Journal of Chemistry, Vol. 5, No. 1, pp. 030-033, 2003.
980	76.	Sims, R. C., Subsurface Environment Fugacity Framework, TCE Case Study,
981		available at: http://www.engineering.usu.edu/uwrl/fugacity/fugacity.html (accessed
982		2003), 2003.
983	77.	Sims, R. C. and Sims, J. L., Chemical Mass Balance Approach to Field-Scale
984		Evaluation of Bioremediation, Environ. Prog., Vol. 14, No. 1, pp. F2-3, 1995.
985	78.	Sims, R. C., Soil Remediation Techniques at Uncontrolled Hazardous Waste Sites: A
986		Critical Review, J. Air Waste Manage., Vol. 40, No. 5, pp. 704-732, 1990.
987	79.	Sun, S. B. and Boyd, S. A., Sorption of Polychlorobiphenyl (PCB) Congeners by
988		Residual PCB-Oil Phases in Soils, J. Environ. Qual., Vol. 20, No. 3, pp. 557-561,
989		1991.
990	80.	Swannell, R. P. J., Croft, B. C., Grant, A. L., and Lee, K., Evaluation of
991		Bioremediation Agents in Beach Microcosms, Spill Sci. Technol. B., Vol. 2, No. 2/3,

992 pp. 151-159, 1995.

- 81. The Council of the European Union, Council Directive 1999/31/EC of 26 April 1999
 on the Landfill of Waste, *Official Journal of the European Communities*, 1999.
- 82. ThermoRetec Consulting Corporation, *Environmentally Acceptable Endpoints for Hydrocarbon-contaminated Soils*, Prepared for Petroleum Environmental Research
 Forum Project 94-06 (Research Area 1), 2000.
- 83. Tien, A. J., Altman, D. J., Worsztynowicz, A., Zacharz, K., Ulfig, K., Manko, T., and
- Hazen, T. C., Bioremediation of a Process Water Lagoon at a Southern Polish Oil
- 1000 Refinery DOE's First Demonstration Project in Poland, in *Fourth International*
- 1001 Symposium and Exhibition on Environmental Contamination in Central and Eastern
- 1002 *Europe (Warsaw '98)* at Institute for International Cooperative Environmental
- 1003 Research at the Florida State University; Florida State University, USA, 1999.
- 1004 84. TNRCC, Total Petroleum Hydrocarbons, TNRCC Method 1005, Revision 03,
- 1005 Revision 03, Texas Natural Resource Conservation Commission, Austin, Texas, 2001.
- 1006 85. TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 3:
 1007 Selection of Representative TPH Fractions Based on Fate and Transport
- 1008 *Considerations.*, Amherst Scientific, Amherst, Massachusetts, 1997.
- 1009 86. TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 4:
- 1010 Development If Fraction Specific Reference Doses (RfDs) and Reference
- 1011 Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH), Amherst Scientific,
- 1012 Amherst, Massachusetts, 1997.
- 101387. TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 1:1014Analysis of Petroleum Hydrocarbons in Environmental Media, Amherst Scientific,
- 1015 Amherst, Massachusetts, 1998.
- 1016 88. TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 2:

- 1017 *Composition of Petroleum Mixtures*, Amherst Scientific, Amherst, Massachusetts,
 1018 1998.
- 1019 89. TPHCWG, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 5:
 1020 Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the
 1021 Working Group Approach, Amherst Scientific, Amherst, Massachusetts, 1999.
- 90. Trindade, P. V. O., Sobral, L. G., Rizzo, A. C. L., Leite, S. G. F., and Soriano, A. U.,
 Bioremediation of a Weathered and a Recently Oil-Contaminated Soils From Brazil: a
- 1024 Comparison Study, *Chemosphere*, Vol. 58, No. 4, pp. 515-522, 2005.
- 1025 91. USEPA, Method 3541 Automated Soxhlet extraction, USEPA, USA, 1994.
- 1026 92. USEPA, *Method 3500B Organic extraction and sample preparation*, USEPA, USA,
 1027 1996.
- 1028 93. USEPA, *Method 3540C Soxhlet Extraction*, USEPA, USA, 1996.
- 1029 94. USEPA, Method 3545 Pressurised fluid extraction (PFE), USEPA, USA, 1996.
- 1030 95. USEPA, *Method 3550B Ultrasonic extraction*, USEPA, USA, 1996.
- 1031 96. USEPA, *Method 3546 Microwave extraction*, USEPA, USA, 2000.
- 1032 97. USEPA, *Method 3570 Microscale solvent extraction*, USEPA, USA, 2002.
- 1033 98. USEPA, *Method 3611B Alumina column cleanup and separation of petroleum* 1034 *wastes*, USEPA, USA, 1996.
- 1035 99. USEPA, *SW-846 On-Line*, available at:
- 1036 http://www.epa.gov/epaoswer/hazwaste/test/main.htm (accessed 2005), 2005.
- 1037 100. Vegter, J., Lowe, J., and Kasamas, H., *Sustainable Management of Contaminated* 1038 *Land: An Overview*, Austrian Federal Environment Agency, on behalf of
- 1039 CLARINET, Austria, 2002.
- 101. Vegter, J. J., 'Sustainable Contaminated Land Management: a Risk-Based Land
 Management Approach', *Land Cont. Rec.*, Vol. 9, No. 1, pp. 95-100, 2001.

- 1042 102. Vik, E. A., Bardos, P., Brogan, J., Edwards, D., Gondi, F., Henrysson, T., Jensen, B.
- K., Jorge, C., Mariotti, C., Nathanail, P., and Papassiopi, N., 'Towards a Framework
 for Selecting Remediation Technologies for Contaminated Sites', *Land Cont. Rec.*,

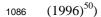
1045 Vol. 9, No. 1, pp. 119-127, 2001.

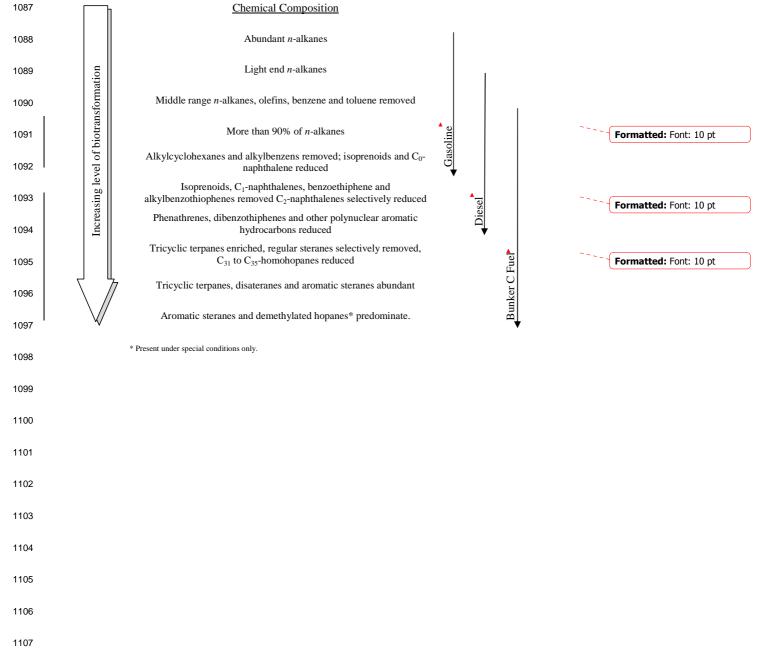
- 103. Wang, Z. and Fingas, M., 'Differentiation of the Source of Spilled Oil and Monitoring
 of the Oil Weathering Process Using Gas Chromatography-Mass Spectrometry', *J. Chromatogr. A*, Vol. 712, pp. 321-343, 1995.
- 1049 104. Wang, Z., Fingas, M., Landriault, M., Sigouin, L., Feng, Y., and Mullin, J., 'Using
 1050 Systematic and Comparative Analytical Data to Identify the Source of an Unknown

1051 Oil on Contaminated Birds, J. Chromatogr. A, Vol. 775, pp. 251-265, 1997.

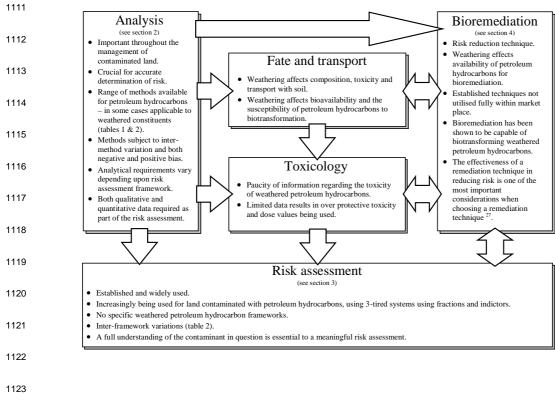
- 1052 105. Wang, Z., Fingas, M., and Page, D. S., Oil Spill Identification, *J. Chromatogr. A*, Vol.
 1053 843, pp. 369-411, 1999.
- 1054 106. Wang, Z., Fingas, M., and Sergy, G., Chemical Characterisation of Crude Oil
 1055 Residues From an Artic Beach by GC/MS and GC/FID, *Environ. Sci. Technol.*, Vol.
 1056 29, pp. 2622-2631, 1995.
- 1057 107. Wang, Z. and Fingas, M. F., Development of Oil Hydrocarbon Fingerprinting and
 1058 Identification Techniques, *Mar. Pollut. Bull.*, Vol. 47, pp. 423-452, 2003.
- 1059 108. Whittaker, M., Pollard, S. T. J., and Risden, G., The Fate of Heavy Oil Wastes in Soil
 1060 Microcosms II: a Performance Assessment of Source Correlation Indices, *Sci. Total* 1061 *Environ.*, Vol. 226, pp. 23-34, 1999.
- 1062 109. Whittaker, M., Pollard, S. J. T., and Fallick, T. E., Characterisation of Refractory
 1063 Wastes at Heavy Oil-Contaminated Sites: a Review of Conventional and Novel
- Analytical Methods, *Environ. Technol.*, Vol. 16, pp. 1009-1033, 1995.
- 1065 110. Wood, P., Remediation Methods for Contaminated Sites, in, *Assessment and*
- 1066 *Reclamation of Contaminated Land*, The Royal Society of Chemistry, Cambridge, pp.

115-139, 2001. 1067

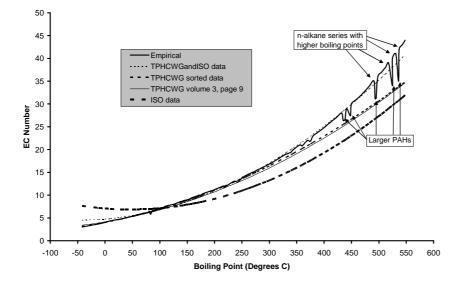

1070


- 111. Wood, P. A., Remediation Methods for Contaminated Sites, in Issues in 1068 Environmental Science and Technology: Contaminated Land and Its Reclamation, 1069 The Royal Society of Chemistry, Cambridge, pp. 47-71, 1997.
- 112. Woolgar, P. J. and Jones, K. C., Studies on the Dissolution of Polycyclic Aromatic 1071 Hydrocarbons From Contaminated Materials Using a Novel Dialysis Tubing 1072
- Experimental Method, Environ. Sci. Technol., Vol. 33, pp. 2118-2126, 1999. 1073
- 113. Xu, R., Lau, A. N. L., Lim, Y. G., and Obbard, J. P., Bioremediation of Oil-1074 Contaminated Sediments on a Inter-Tidal Shoreline Using a Slow-Release Fertiliser 1075
- and Chitosan, Mar. Pollut. Bull., Vol. 51, pp. 1062-1070, 2005. 1076
- 114. Xu, R., Yong, L. C., Lim, Y. G., and Obbard, J. P., Use of Slow-Release Fertilizer 1077 and Biopolymers for Stimulating Hydrocarbon Biodegradation in Oil-Contaminated 1078 Beach Sediments, Mar. Pollut. Bull., Vol. 51, pp. 1101-1110, 2005. 1079
- 115. Zemanek, M. G., Pollard, S. J. T., Kenefick, S. L., and Hrudey, S. E., Multi-Phase 1080 Partitioning and Co-Solvent Effects for Polynuclear Aromatic Hydrocarbons (PAH) 1081
- in Authentic Petroleum- and Creosote-Contaminated Soils, Environ. Pollut., Vol. 98, 1082

No. 2, pp. 239-252, 1997. 1083


1084 FIGURES & TABLES:

1085 Figure 1: General petroleum hydrocarbon degradation pattern (modified after Kaplan et al.,



- 1108 Figure 2: Illustration of the interactions of the key elements involved in remediation of
- 1109 weathered petroleum hydrocarbon contaminated land.

- 1133 Figure 3: Estimated equivalent carbon number using Equation 1 parameterised with four
- 1134 different data sets. The measured data are also provided for comparison.

Table 1: Summary of the analysis methods developed for several risk assessment frameworks

	Massachusetts Department of Environmental Protection ⁵⁴	Total Petroleum Hydrocarbon Criteria Working Group ⁸⁵⁻⁸⁹	Canadian Council of Ministers of the Environment ¹¹⁸	New Zealand ⁶¹	New South Wales ⁶⁴
Description	Use of two methods. Volatile petroleum hydrocarbon (VPH) method ⁵⁷ and extractable petroleum hydrocarbon (EPH) method ⁵⁶ developed by MaDEP. The EPH method refers to USEPA methods for sample extraction ^{57,98} .	Use of 'The Direct method' (AEHS) ¹ developed for the TPHCWG framework. Based upon USEPA SW-864 test methods ⁹⁷ and MaDEP EPH method ⁵	Recommends the use of benchmarked methods ¹⁹ , however also allows the use of non-benchmarked methods providing that validation data demonstrate that the substitute method provides data comparable to the benchmark method.	Permits the use of a variety of methods, including those prepared by the Oil Industry Environmental Working Group (1999) ⁶⁷ which outlines methods for several different petroleum products often referring the reader to USEPA documentation ^{67,99} .	Recommends the use of methods specified in the National Environmental Protection Councils (NEPC) Schedule B(3): Guideline on Laboratory Analysis of Potentially Contaminated Soils (1999) ⁶³ . Where no suitable analytical method is available it recommends the use of USEPA ⁹⁷ ., or equivalent methods ⁶⁴ All chemical analysis should be carried out in laboratories currently accredited by the national association of testing authorities (NATA).
Reported Range	C_5 to C_{36}	C ₆ to C ₃₅	C ₆ to C ₅₀	C ₆ to C ₃₆	C_7 to C_{36}
Sample collection	EPH method uses amber glass wide mouth sample jars with Teflon lined screw caps. These are cooled immediately after collection and extracted within 14days of receiving the sample. VPH method uses specially designed air tight collection vials with Teflon-lined septa screw caps stored at 4°C and preserved with methanol before analysis within a maximum of 28 days.	Wide mouth glass jars with Teflon lined caps stored at 4°C. Analysis must be performed within 14 days of sample collection.	Wide mouth glass jars with aluminium foil or Teflon-lined lids. Samples must completely fill the jars. Samples are not chemically preserved but are cooled to 4°C. Laboratory sample handling procedure is also outlined.	100ml (volatiles) and 250ml (semi-volatiles) Borosilicate jars with Teflon-lined cap and completely filled. Stored at 4°C in the dark.	Use of USEPA ⁹⁷ or equivalent methods

	Massachusetts Department of Environmental Protection	Total Petroleum Hydrocarbon Criteria Working Group	Canadian Council of Ministers of the Environment ¹⁸	New Zealand	New South Wales
Extraction technique	VPH method uses Purge and trap with methanol. EPH method uses DCM for extraction and solvent exchanges into hexane. Using USEPA methods 3540C ⁹² (Soxhlet), 3545A ⁹³ (pressurised fluid extraction (PFE)), 3541 ⁹⁰ (Automated Soxhlet extraction), 3546 ⁹⁵ (Microwave extraction) and 3570 ⁹⁶ (microscale solvent extraction (MSE)).	Vortex or shaker method using <i>n</i> -pentane.	Purge and trap for C_6 to C_{10} range using methanol. Soxhlet is the benchmarked method for the C_{10} to C_{50} range.	For the C_{10} to C_{36} range any method that can be demonstrated to meet the performance criteria can be used. For the C_6 to C_9 range purge and trap is used.	USEPA methods 3540B ⁹⁷ or C ⁹² (Soxhlet extraction), 3550B ⁹⁴ (sonication extraction) or sequential bath sonication and agitation described by NEPC ⁶³ .
Evaporation	The EPH method uses those specified by the USEPA. However, after fractionation the use of gentle stream of air or nitrogen is recommended to bring the sample to the required volume.	N/A	Uses an evaporation vessel after extraction for the C_{10} to C_{50} range. After silica gel cleanup rotary evaporator is the benchmarked method to reach the required sample volume.	Permits the use of any method that can be demonstrated to meet the performance criteria.	USEPA methods specified for extraction using Kurderna- Danish (K-D) evaporation.
	Evaporation is not applicable to the VPH method.				
Clean up /fractionation	Silica gel clean up for EPH method. Not applicable to VPH method.	Extract fractionation using alumina or silica.	One of two specified clean up steps for C_{10} to C_{50} range, not fractionated.	Clean up steps and fractionation are optional as this may not be required for each sample/analytical approach.	Solvent exchange into hexane followed by K-D evaporation and treated with silica gel as described in USEPA method 1664 ^{64,97} .
Analysis Technique	EPH uses GC/FID [*] . VPH may use either GC/FID [*] or GC/PID [#] .	GC/FID*	GC/FID*	For the C_{10} to C_{36} range GC/FID^* is used and for the C_6 to C_9 range $GC/MS^{\$}$ is used.	GC/MS ^{\$} , or GC/FID [*] , however the use of GC/MS ^{\$} to identify unusual mixtures is noted as being necessary when analysing by GC/FID [*] .

*GC/FID refers to gas chromatography with flame ionisation detection #GC/PID refers to gas chromatography with photoionisation detection \$GC/MS refers to gas chromatography with mass spectroscopy detection

	American Society for testing and materials ⁵	Massachusetts Department of Environmental Protection ⁵³	Total Petroleum Hydrocarbon Criteria Working Group ⁸⁴⁻⁸⁸	Agency for Toxic Substances and Disease Registry ⁶	Canadian Council of Ministers of the Environment ¹⁸	American Petroleum Institute ³	Environment Agency ³²	New Zealand ⁶⁰	New South Wales ⁶⁴	National Institute for Public Health and the Environment ¹⁰
Indicator Compounds	Uses 'chemicals of concern' only.	Use most toxic and those most frequently tested for.	Uses most toxic compounds only.	Uses most toxic compounds only	Uses most toxic and those most frequently tested for	Uses most toxic compounds only	Most toxic and most prevalent in petroleum hydrocarbon- contaminated environment	Use of 'contaminants of concern' to address most toxic substances and aromatics	Individual compounds identified	Uses most toxic and those most frequently tested for
Fractions Number	None	6 Analytical fractions (3 aromatic, 3 aliphatic), using 4 toxicity values(3 aliphatic, 1 aromatic.	13 analytical fractions (6 aliphatic, 7 aromatic), using 7 toxicity values (3 aliphatic, 4 aromatic).	Similar to TPHCWG. Minor modification to aromatic groups to include BTEX compounds in same fraction	4 fractions, based on TPHCWG, separate evaluation of aliphatic and aromatic compounds not required	14 fractions based on TPHCWG (7 aromatic, 6 Aliphatic and 1 aliphatic and aromatic combined)	16 fractions based on TPHCWG and API (7 Aliphatic, 8 Aromatic and 1 aliphatic and aromatic combined)	3 aliphatic fractions	2 petroleum hydrocarbon fractions	7 fractions based on toxicity values (3 aliphatic and 4 aromatic)
Basis	N/A	Carbon number	Equivalent carbon number	Equivalent carbon number	Equivalent carbon number	Equivalent carbon number	Equivalent carbon number	Equivalent carbon number	Not defined	Equivalent carbon number
Application of approach	RBCA 3 tiered look-up tables for tier 1 and increasing use of site-specific information in tiers 2&3.	Not tiered as appropriate method is selected prior to assessment. 3 methods can be used – increasing specificity with methods 1 generic 3 site-specific.	RBCA 3 tiered look up tables for tier 1 and increasing use of site-specific into in tiers 2&3.	RBCA 3 tiered look up tables for tier 1 and increasing use of site-specific into in tiers 2&3.	RBCA 3 tiered look up tables for tier 1 and increasing use of site specific information in tiers 2 &3.	Modified TPHCWG approach.	Modified TPHCWG approach within UK context.	Use of a 3- tired approach, moving from generic guidelines to less conservative values using site-specific information.	None specified	Use of a tiered approach, moving from generic to less conservative values using site-specific information in tiers 2 and 3.

Table 2: Summary of risk assessment used by several different jurisdictions (modified after Environment Agency, (2003)³⁰)

	American Society for testing and materials ⁵	Massachusetts Department of Environmental Protection	Total Petroleum Hydrocarbon Criteria Working Group	Agency for Toxic Substances and Disease Registry	Canadian Council of Ministers of the Environment	American Petroleum Institute	Environment Agency	New Zealand	New South Wales	National Institute for Public Health and the Environment
Analysis	No recommended method of analysis	Use of two methods developed by MaDEP for volatile petroleum hydrocarbons (VPH) ⁵⁷ and Extractable petroleum hydrocarbons (EPH) ⁵⁶	The 'Direct Method', developed by AEHS. ¹	The 'Direct Method' ¹	Benchmarked methods for the C_6 to C $_{10}$ and C $_{10}$ to C $_{50}$ ranges 19 .	Modified 'Direct Method' for C ₄₄ + range.	No specified methods, however are to adopt performance criteria - MCERTS ³²	Use of method prepared by the Oil Industry Environment Working Group ⁶⁶ .	Dependent on source of threshold concentration. Using NEPC methods ⁶³ .	Single analytical method (NEN 5733) recommended.
Additivity effects	Not recommended	Precautionary based on addition of hazard quotients across fractions	Precautionary based on addition of hazard quotients across fractions	Precautionary. Developing index of concern based on addition of hazard quotients across fractions for compounds affecting same target organs of systems	Not advised due to different toxicological end points and exposure pathways of different fractions	Precautionary based on addition of hazard quotients across fractions	Assumes additivity of toxicological effects across all fractions, unless there are scientific data to the contrary.	Additivity of excess lifetime cancer risk for non- threshold substances. Precautionary approach, as for ATSDR	Not discussed in guidance document	Precautionary approach, based on addition of hazard quotients across fractions
Range		nC_5-nC_{36} Aliphatics, nC_9-nC_{22} Aromatics	EC ₅ -EC ₂₁ Aliphatics, EC ₅ -EC ₃₅ Aromatics	EC_5 - EC_{21} Aliphatics, EC_5 - EC_{35} Aromatics	EC ₆ -EC ₅₀	EC ₆ to EC ₄₄₊	EC ₅ to EC ₇₀	EC ₇ to EC ₃₆	EC ₆ to EC ₄₀	EC ₅ to EC ₃₅

1151 List of main acronyms and definitions

1152	API	American Petroleum Institute
1153	ASTM	American Society for testing and materials
1154	ATSDR	Agency for Toxic Substances and Disease Registry
1155	BTEX	Benzene, toluene, ethylbenzene and xylene
1156	CCME	Canadian Council of Ministers of the Environment
1157	EA	Environment Agency (UK)
1158	EPH	Extractable petroleum hydrocarbon
1159	GC	Gas Chromatography
1160	GC-MS	Gas Chromatography mass spectroscopy
1161	GC-FID	Gas Chromatography with flame ionisation detection
1162	MaDEP	Massachusetts Department of Environmental Protection
1163	РАН	Polynuclear aromatic hydrocarbons
1164	RIVM	National Institute for Public Health and the Environment
1165	TNRCC	Texas Natural Resource Conservation Commission
1166	TPH	Total petroleum hydrocarbon
1167	TPHCWG	Total Petroleum Criteria Working Group
1168	UCM	Unresolved complex mixture
1169	USEPA	United States Environmental Protection Agency
1170	VPH	Volatile petroleum hydrocarbon
1171		