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Contact Analysis and Mathematical Modeling

of Traveling Wave Ultrasonic Motors
Meiling Zhu

Abstract—An analysis of the contact layer and a math-
ematical modeling of traveling wave ultrasonic motors
(TWUM) are presented for the guidance of the design of
contact layer and the analyses of the influence of the com-
pressive force and contact layer on motor performance. The
proposed model starts from a model previously studied but
differs from that model in that it adds the analysis of the
contact layer and derives the steady-state solutions of the
nonlinear equations in the frequency domain, rather than in
the time domain, for the analyses of vibrational responses
of the stator and operational characteristics of the motor.
The maximum permissible compressive force of the motor,
the influences of the contact layer material, the thickness
of the contact layer, and the compressive force on motor
performance have been discussed. The results show that by
using the model, one can understand the influence of the
compressive force and contact layer material on motor per-
formance, guide the choice of proper contact layer material,
and calculate the maximum permissible compressive force
and starting voltage.

I. INTRODUCTION

N the last two decades, considerable progress has been
Iachieved in the development of traveling wave ultra-
sonic motors (TWUM). Several detailed reviews [1]—[3]
have been published that describe a range of constructions
and their operating principles and characteristics. The mo-
tors consist of a stator that uses piezoelectric elements to
excite vibrations with a frequency in the ultrasonic range
and a rotor (rotary motors) or a slider (linear motors) that
is driven by a stator via frictional force. Depending on the
geometry of the stator, generally two orthogonal vibra-
tions (e.g., two bending vibrations) are superimposed on
an elliptical motion on the contact surface between the sta-
tor and the rotor. The high-frequency and small-amplitude
vibrations then are rectified by friction force into a lower-
frequency macroscopic rotation of the rotor or a linear mo-
tion of the slider.

The operational performance of the motor (e.g., out-
put speed, torque, power, and efficiency) are determined
mainly by the contact layer material and the compres-
sive force applied on the rotor. To design a TWUM, it
would be valuable to have a mathematical model of the
motor that takes account of the contact interface, guide
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a proper choice of contact layer material and understand
the influence of the compressive force and the contact layer
material on motor performance. Furthermore, it would be
useful for a priori calculation of motor characteristics, such
as no-load speed, stall torque, maximum permissible com-
pressive force, starting up voltage, input power, output
power, and efficiency.

During the last decade, many modeling methods have
been proposed for TWUM. The equivalent electric circuit
method [4], [5] provides an academically pleasing analysis
tool in many fields, but it is not a very useful design tool
for TWUM because it does not accurately model the in-
terface forces: the normal compressive and tangential fric-
tional forces. For example, the frictional force is repre-
sented by a large parallel sequence of resistors and diodes,
the values of which have little physical interpretation. In
addition, the integration of the interface forces over finite
contact regions is not addressed, and the interaction be-
tween the interface forces and the vibrations of the sta-
tor is not included. The finite element method (FEM) has
been developed for the vibrational analysis of piezoelectric
structures [6], and the steady-state performance analysis
of the TWUM [7]. The FEM was extended to the analysis
of a transient response for three-dimensional (3-D) piezo-
electric composite structures. It was shown that this could
be applied to TWUM [8]. However, the contact between
stator and rotor was not fully taken into account in [7]
and [8]. In addition, a detailed finite element (FE) anal-
ysis of the contact surface was presented in [9], but the
interaction between the interface forces and the vibrations
of the stator was not considered. Experimental techniques
[10] provided an interesting method for the determination
of the motor characteristics, such as stall torque, dynamic
frictional coefficient at the contact interface, torque-speed
and efficiency-speed characteristics; but the experimental
technique cannot easily and effectively be used during pre-
liminary design. Many analytical models of TWUM have
been published in the literature [11]-[18]. Most early liter-
ature divided the modeling of TWUM into two steps. Us-
ing either analytical methods [11] or FEM [6]-[8], [19]-]22],
the motor vibration was modeled for the determination of
the mode shape, the resonant frequency, and the vibra-
tion amplitude. Then, under the assumption that the sta-
tor vibrations are not affected by the interface forces and
using an analytical model [12]—[15], or equivalent electric
circuit [5], [23], or FEM [7], [9], the steady-state or tran-
sient characteristics was modeled. Strictly speaking, such
a separation is not perfect because the effects of the con-
tact forces on the stator vibration are not well considered.
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Fig. 1. Geometry of the stator.

The motor that has the component elements (stator, rotor,
and contact interface) should be considered as a coupled
dynamic system. More recent literature has paid great at-
tention to this deficiency. For example, in [16], the contact
forces were calculated and a mathematical model was pre-
sented, which was developed into a design tool of TWUM.
A mathematical model, which incorporates the rotor flex-
ibility into the model [16], was developed in [17]. A sim-
ilar model was proposed for the prediction of the input
and output characteristics of the TWUM in [18]. Another
modeling method, which integrates equivalent electric cir-
cuit, FEM, and mathematical modeling was developed in
[24]. Furthermore, based on the model [24], an optimized
drive control for inverter-fed ultrasonic motors was pro-
posed [25].

However, a mathematical model that can guide the
choice of the contact-layer material and can be useful to
understanding the operational characteristics of the motor
under the action of a compressive force has not yet been
developed. In this paper, a contact-layer analysis and a
mathematical model of the TWUM is presented for these
purposes. The model developed here gives insight into the
influences of the compressive forces and the contact-layer
material on operational characteristics. The analysis of
contact layer is based on the consideration of contact-layer
deformation, strain, and stress within it. A mathematical
model proposed starts from the model previously stud-
ied by Hagood [16] but differs from the Hagood model in
that it adds the analysis of the contact layer and steady-
state solutions of the nonlinear equations are derived in
the frequency domain, rather than in time domain, for the
analyses of the vibrational responses of the stator and op-
erational characteristics of the motor. Using the model can
guide the choice of proper contact-layer material, the de-
sign of the dimensions, and the prediction of the maximum
permissible compressive force and starting-up voltage of
the TWUM.

II. DESCRIPTION OF THE MOTOR

A detailed description of the configuration and the
working principle of TWUM can be found in the literature
[1], [2]. A 3-D view is shown in Fig. 1. The motor consists
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of a rotor and a stator to which a piezoceramic ring, which
excites a traveling wave, is bonded. A contact layer, which
greatly affects the motor performance, is bonded to the ro-
tor. The piezoceramic ring is divided into two parts, each
part consisting of a number of sectors with alternating po-
larizations. By applying two electric fields with a phase
shift of 90 degrees to the piezoceramic ring, two orthogo-
nal bending vibrations with the same eigenfrequencies and
the same number of nodal diameters can be simultaneously
excited in the stator. As a result, a flexural traveling wave
is formed. When the flexural traveling wave propagates
along the stator circumference, the particles on the sta-
tor surface perform elliptical motions. Under the action of
a compressive force, the rotor contacts the stator surface
and obtains the vibration speed of surface particles in the
tangential direction; as a result, the rotor rotates.

ITII. CONTACT ANALYSIS

The deformation and distributions of stresses of the con-
tact layer under the action of a compressive force are de-
rived in this section. For simplicity, the following assump-
tions have been made during the contact analysis:

o The stator is assumed to be a rigid body with a bend-
ing profile.

e The contact layer is assumed to have no mass without
dissipation.

« Although the contact layer is circular, it is treated as a
straight beam because its width is much smaller than
its radius.

The contact interface between the stator and the rotor
is schematically shown in Fig. 2, where 2a, d, h., P, A
represent the contact length, the penetration of the stator
into the contact layer, the thickness of the contact layer,
the compressive force, and the wavelength of the traveling
wave, respectively.

Under the action of a compressive force P, the rotor
contacts the stator surface over areas centered on the wave
crests of the traveling wave. Therefore, these contact areas
are distributed and move along with the traveling wave. It
is advantageous to introduce two coordinate systems into
the analysis, one for the x,y, z coordinate system moving
with the traveling wave, the other for the z, g, Z coordinate
system fixed to the stationary stator shown in Fig. 2. The
relationship between the two coordinate systems is:

where w is the angular frequency of the traveling wave and
t the time. As a result, the contact areas are stationary
relative to the z,y, z coordinate system.

When the piezoceramic ring is subjected to an electrical
field, a traveling wave can be excited in the stator. The
expression is:

way (1, 0,1) = W (r) cos (?9 - wt> , 2)
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Fig. 2. Contact interface.

where wg, (7, 0, t) is the out-of-plane displacement of the
midplane of the stator with 6 = % and r = y, and the
subscript s denotes the stator, and W(r) is the amplitude
of the traveling wave at arbitrary radius r of the stator.

Under the action of the compressive force, the deforma-
tion of the contact layer can be expressed as shown in (3)
(see next page), where §(R,z) is the deformation at con-
tact radius R, d = W(R) (1 — cos 2T”a) and dj is the initial
contact deformation of the contact layer under the action
of P and is given by dy = % 1{_% %P with v, G, S being
the Poisson’s ratio, the shear modulus, and the contact
area of the contact layer. Whether the rotor is able to ro-
tate depends on the input voltage. Without input voltage
on the piezoceramic ring, clearly W(R) = 0, so there is no
movement. For an input voltage less than Vg, the starting-
up voltage under the action of P, W(R) < %, the rotor
cannot rotate. However, for an input voltage larger than
Vs, W(R) > %, the rotor may be able to rotate depending
on the value of the compressive force.

Using the displacement functions commonly used in me-
chanics, the stress and strain distributions in the contact
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layer can be obtained. The displacement functions can
be [26]:

up(x,z) = A(z) + B(x)z, A
wy(z, 2) = J(x) + L(z)z, )
where wu,(z, z) and w,(x, z) represent the tangential and
local normal displacements of the contact layer, with the
subscript r denoting the rotor and are not functions of
y as the contact layer is treated as a straight beam due
to its narrow width. A(z), B(z), J(z), and L(z) are the
functions determined in the following.
The contact layer is bonded to the substrate of the ro-
tor, so ur(x,0) = 0 and w,(z,0) =0 at z = 0. As a result,
A(zx) =0, J(z) =0 and:

ur(x, z) = B(x)z,

S
wnl,2) = L), ?)
where L(x) is determined by the expression: w,(x, —h¢) =
—0(R,x), and

L) = _d-W(R) (hlc— cos 22) 7

if W(R) >dy, a< %, (6)

where B(z) is obtained from the following relationships
and derivations.

The relationships between the strains and the displace-
ment functions are:

~ Ougp(w,2) _ 0B(z)

(@, 2) = Ox or
ex(z,2) = W = L(x),
N (7)
_ Oup(w,2) | Owp(z,2) OL(z)
Vor(2,2) = 0z + or B(z) + o
when z =0 and z = —hg:

Yzz(,0) = B(z),

8
Yoz (¥, —he) = B(z) — )

OL(x)
Oz

The relationships between the averaged stresses and
strains are:

he.

ul0) = 106 () + £y(0) + & ()] + 26 (2),
50(@) = 2L o) 2y ) 2 (1) + 267, (2,
B 220G _ _ _
o.(x) = 1—2 [€x(2) + &y(z) + € (2)] + 2G€z(x),(9
Toz(2,0) = Gyz2(2,0) = GB(x)
Toz(T, —he) = Gypz(x, he) = G | B(x) — ag—f)hc ,

where 7,(z), dy(x), and &.(z) are the averaged stresses
of the contact layer; 7,,(x,0), Tz, (x, —h¢) and 4. (z,0),
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_d07
O0(R,x) = 7
—[d=W(R) (1 - cos

— [do + W(R) cos Zx

2

)]

vz (2, —h.) are the shear stresses and strains, respectively,
acting on the z = 0 and z = —h, surfaces; é;(x), €,(z) and
€.(x) are the averaged strains and:

) EZ(.L“) = L(.L“),
(10)

with assumption that €,(z) = 0.

Because a/h. > 1, using the stress analysis, as shown
in Fig. 2, yields the following equilibrium equation of the
contact layer in the x direction:

Aoy (z)  Tpa(x,—he) — To2(2,0)
= . 11
dx he (11)
Substitution of (9) into (11) yields:
0?B(z)  OL(x)
he(1—v) 9 oa (12)
Solving (12) gives:
B W(R)A . 27
B(z) = RS TTeT— sin - +ciz+ca,

if W(R) > do, a < iy (13)

2

where ¢; and co are integrated constants determined by
the boundary conditions at (x,z) = (Fa, —h.). Because
€.(Fa) = 0, substitution of (13) into (10) yields ¢; =
mW(R) cos 2L a. With p(z) denoting the distribution
of the normal compressive stress within the contact re-
gions, then:

p(z) = 0.(x) = -k, W(R) (cos 2%33 — cos 2{@) )

if W(R) > do, a < A (14)

2

where k,, = %}% The resultant of the distribu-

tion of the normal compressive forces is given by:
a
P=n / p(z)bdx
—a

= —2nbk,W(R) i sin 2—7Ta — acos 2—7Ta ,

A
HW(R) > do, a < 7,

where n is the number of wavelengths along the stator and
b is the contact width between the stator and the rotor.

The tangential stress 7(z) is equal to 7. (z, —h.) and:

1 2
—hi(l—y)
A
+#xcos2—ﬂa+c
h2(1—v) ) (

in the case of no slipping; (16)

T(x) = pwsignp(x), in the case of slipping,
where g is the frictional coefficient and sign is the sign
function.

Outside the contact regions, p(z) = 7(z) = 0.

IV. MODEL OF THE STATOR

This section will start from the Hagood [16] model and
derive nonlinear governing equations of motion of the sta-
tor. But the model derived here differs from the Hagood
model in that it adds the analysis of the contact layer,
and steady-state solutions of the nonlinear equations are
derived in the frequency domain, rather than in time do-
main, for the analyses of the vibrational responses of the
stator and operational characteristics of the motor. Us-
ing the model, the maximum permissible compressive force
and starting-up voltage of the TWUM is given in the sec-
tion.

According to [27], the generalized Hamilton’s principle
can be written as:

t1
/ / (6H — 6K )dvdt =
to Vs+Vp

t1
/ l/ Gi5ui+/(fi5ui+%5¢i)d5] dt, (17)
to Vet+Vp S

where ty and t; are the two arbitrary time, ¢ is the varia-
tion operator, H is the electric enthalpy, K is the kinetic
energy, G; is the body force, f; is the traction along the
boundary surface, ¢; is the electric charge, u; is the com-
ponent of the displacement vector of the stator, ¢; is the
electric potential, and 7 = 1, 2 and 3. V,; + V}, denotes the
entire domain of the volume of the stator with s and p,
respectively, denoting the substrate of the stator and the
piezoceramic ring, and S denotes the boundary of the do-
main. The terms on the right-hand side of (17) are the
virtual work.
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The electric enthalpy H is defined as:

H=U - D;E;, (18)
where Uy is the internal energy, E; and D; are the electric
field and the electric displacement, respectively.

The variation of H is:

0H ({e}, {E}) = {0}"o{e} — {D}"o{E},

where {e} is the strain vector, {E} is the electric field
vector, {o} is the stress vector, and {D} is the electric
displacement vector.

The kinetic energy K is defined as:

(19)

K = (i) pis), (20)
where {1} is the velocity vector of the stator and p is the
density of the stator.

Because the structure of the stator under consideration
is a thin plate, according to elastic mechanics, the plate is
considered to be under plane stress. In addition, the polar-
ization of the piezoelectric ring is in the z direction, and
the voltages are only applied to the polarized direction.
Therefore, the electric field and the electric displacement
are nonzero in the z direction only. As a result, {E} = E;
and {D} = Ds.

The constitutive equations for piezoelectric material un-
der plane stress are:

{0} = leplle) — o7 Bs o
D3 = [6]{6} + EpEg,
where {0} = {0, 0o, Tra}7, [c,] is the elastic constant ma-
trix of the piezoelectric material, {¢} = {e,,9,7r0}7, [€]
is the piezoelectric constant matrix and [e] = [es1, €31, 0],
and €, is the dielectric constant.
The constitutive equations for the substrate of the sta-
tor are:

{o} = lesl{e}

where [cg] is the elastic constant matrix of the substrate
of the stator.

Substituting (21) and (22) into (19) gives (23) (see next
page) where, for the PZT layer, the first term on the right-
hand side is the variation of the elastic strain energy of the
PZT layer, the second and third terms are the variations
of the electromechanical coupling energy, and the fourth
term is the variation of the electric energy; for the stator
substrate there is the variations of the elastic strain energy
only.

For the virtual work on the right-hand side in (17), the
first term is zero because G; = 0, and the second term
is equal to the sum of the variations of the normal work
and the tangential work. The effect of the tangential trac-
tion upon the out-of-plane vibration of the stator is rather
small, which had been confirmed by the simulation results
in [16]. The simulation results are understandable and can

(22)
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be physically interpreted. Because the tangential traction
is vertical to the out-of-plane vibration of the stator, the
work done by the tangential traction is equal to zero. In
addition, the tangential traction has a different sign in the
contact region, part of work done by the tangential trac-
tion is partly canceled by each other. Therefore, neglect
the tangential work term and merely consider the normal
work term in the governing equations of motion of the sta-
tor. The variation of the normal work is:

wt+2ma/\
oW, = nb/ p(Z)ows, (R, Z,t)dE.
wt—27a/\

(24)

The third term is [ ¢idpids = [ qsdpads.

Due to small, in-plane inertia, it is assumed that in-
plane displacements of the midplane are zero, that is,
Ugy (7,0,t) = 0 and v, (r,6,t) = 0. According to the Kir-
choff’s plate theory, the displacement vector of the stator
can be written in the cylindrical coordinate system as:

- (I)inertiawso (7", 97 t)a

{ui} =
(25)

T
1} . It should be noted

that due to 6 = L, y=y=r,z=2z,thel,y, z coordinate
system is written as the r, 8, z coordinate system.
The relationship between the stator strains and the dis-

placements is:

o z
where ®@ipertia = {—ZW -z

! %‘)JQ‘J

Er -
{5} = 1Y) = LmecthO (7", 9; t)v (26)

Yro
82

z z

where Lmec =3 =0 5 ~ 2 o
N7
T 9rof - 1?00

If the out-of-plane displacement of the midplane of the
stator can be expressed as:

Wsq (’I“, év t) = (I)mech(ra é){fi (t)}7 (27)

where ®pecn(r,0) = {g(r) sinnf g(r) cos né}, {&)} =
{&t) &)} g(r) is the vibrational shape function in the
r direction, @pech(r, 6) is the vibrational shape function,

and {&(t)} is the vector of the generalized out-of-plane
displacements of the stator vibration, then:

{E} = Nmech{gi (t)}7

where Npech is the operator matrix and Npech =
Lmech(I)mech (7", 0) .

According to the requirements of producing a traveling
wave in the stator, the piezoceramic ring is divided into
two parts, A and B, with a phase shift of 7 in space, and

(28)
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SH — {{s}T[cp]é{s} —{e}Te]T6{E3} — Esle]é{e} — €, F36E3, for the PZT layer,

{e}"lea]o{e},

the ring has three electrodes: one common electrode with
an electric potential of zero is bonded to the stator; the
other two electrodes are A and B excited by two applied
voltages with a phase shift of 7.

Furthermore, according to the polarization pattern of
the piezoelectric ring, the relationship between the electric
potentials, the electrodes shape, and the applied voltages
can be written as:

63(0,2,) = = [®eree, (0) Petoc, (é)} {velem (t)}

Velecp (t)
elec (é) {veleci (t) } )

hy
hz i=A, B,

(29)
where ¢3(6,z,t) is the electric potential applied on the
piezoelectric ring, {velec, (t)} is the applied electric voltage
vector, h, is the thickness of the piezoelectric ring, and
Delec, (0) and Pgjecy, (A) are the polarization functions of
the part A and B of the piezoelectric ring.

The relationship between the electric field Eg(é,z,t)
and the electric potential ¢5(0, z,t) is:

ES(éa 2 t) = _8¢3(59;Z7t)

As a result, the relationship between the electric field
and the applied electric voltages is:

FEs (é, Z, t) = Nelec(é){veleci (t)}

where Nejee(0) = —Pelec(6)-

Substituting the expression of the virtual work, (20) and
(23) into (17), and carrying out variations of the vector
{&(t)} and electric voltage vector {velec, (t)} result in the
nonlinear governing equations for the motion of the stator.

MA&®)} + C{&(t)} + KA&()}
= O{Velec, (1)} + {Fgm}

(30)

(31)

i=1,2.

OT{&(1)} + Ol fvetee, (1)} = {ass(1)}. (32
where

My = My, + My,,

K, = Kvb + Kvp,
MVS - / ((I)inertiaq)mech)Tps(I)inertialq)mechdv;

Vs
MV,, = / ((I)mertla(I)mech)Tpp(I)inertial(I)mechdv;
(33a)

KVS / mech mechdv
KV,, / ech mechdv

(23)
for the stator substrate,
. Am
sin —a
Fyn, = —2knnbg®(R) | a — —2— | &(0),
By
Cs = 2Mswns,
(33b)

Ce = / elec Nejecdv,
0= / ech

where M, Cs, and K, represent the modal mass matrix,
the coefficient matrix of modal damping, and the modal
stiffness matrix of the stator, respectively. Every compo-
nent of Mg, Cs, and K is denoted by the correspond-
ing lower case letter as follows: ¢ is an empirically added
damping factor, w, is the natural frequency of the stator

kS
ms*

O represents the electromechanical coupling matrix and
describes the conversion of the applied electric voltages to
equivalent forces on the stator. Therefore, © is called the
electromagnetic coupling factor matrix. { F,, } denotes the
generalized force vector, C, is the electric capacity matrix
of the piezoelectric ring and {gs;(t)} is the electric charge
vector produced on the piezoelectric ring surface. Through
the calculation for My, Cs, K, C¢, and O, it can be found
that the matrices, M, K, Cs, and C¢, are diagonal. The
matrix, O, has zero diagonal elements and has nonzero,
nondiagonal elements. Taking any one of (32) obtains (34)
for derivation of the solutions to the nonlinear governing
equations of motion.

elec d’U

without action of the compressive force, and w,, =

m&i(t) + csi(t)
. Am
sin —a
+ ks + 2knnb92(R) a——7=
BY
gi (t) = GiveleCJ (t)
i=1,j=B;i=2 j=A (34)
Let:
Velec, (1) = V cos(wt + @), (35)
Veleey (t) = Vsin(wt + @),

with V' being the amplitude of the applied electric voltages
and ¢ the unknown and the amount that the output lags
the input. Furthermore, let:

&1(t) = A(t) sinwt,

§2(t) = A(t) coswt, (36)
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where A(t) is the unknown and a quantity relative to the
amplitude of the traveling wave. Because only the steady-
state solution of the stator vibration is discussed here, A(t)
is independent of time and denoted by A. From (2), (27),
and (36), the statement that W(R,t) = Ag(R) can be
derived. As a result, W (R, t) also is independent of time
and denoted by W(R). Let n = -, substitution of (35)
and (36) into (34) obtains the solution as:

A= Af
2¢n
tan () = - ,
sin —a k
14 2nbg?(R) | a — v k—n —n?
By

(37)

where Ay denotes the static deflection produced by the
direct electric voltages, § is the magnification factor of the
static deflection in the case of vibration, and:

oV
o=
1
p Y
, sin—-a | . ,
\/K1+2nbg (R) | a— T k—s—n] + (267m)
A

(38)

where a is the half of contact length and determined by
(39).

P f—
Ao

—2k,nbg(R) (% sin 2%(1 — acos 2TWa)

sin4™q | k,
VIL+2nbg*(R) | a— —p2= | 2% =P + (200)°

S

A
(39)
where (39) is derived from (16) and (37).
Asa— %, the compressive force P tends to be:
—2k;nnbg(R)é
P = 4 SN e :
VIT+2mbg?(R)5 22 =P + (2a1) - (40)

The compressive force in (40) is called the maximum
compressive force of the motor and denoted by Pyax. Be-
cause, when the compressive force is larger than the Py ax,
the motor cannot rotate.
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In addition, according to the condition that W (R) > %
and (37), a starting-up voltage of the motor (V;) under the
action of a compressive force is obtained and:

V>i1—21/ he ks
"7 4G 1—v 27RbOg(R)

L AT 2

, sin—-a | g, ,

VI 1+2nbg™(R) | a — —4F 0 + (2¢m)”.
£ )k (a1)

V. PERFORMANCE OF THE MOTOR

The rotation of the rotor in a steady-state condition is
determined by:

Crd = Mcontact - Mapplied; (42)
where C). is the damping coefficient of the motor, ¢ is the
angular speed of the rotor, Mcontact is the torque produced
by friction between the stator and the rotor, and M,ppiica
is the external load applied to the rotor.

It is assumed that, if the tangential speed of the stator
vibration at the contact point differs from the tangential
speed of the rotor, slipping occurs. Otherwise, sticking oc-
curs. The frictional force is described by Coulomb’s law,
that is:

f(x) = psignp(x), (43)

where f(z) is the frictional force, u is the frictional coeffi-
cient, and sign is the sign function and:

1, if vstator > Vrotors
sign = 0, if Ustator = Vrotors (44)
_]-; lf Ustator < Urotor
in which:
2 2
Ustator — _hct_ﬂ-W(R)w COS —’/TiC N (45)
A A
Urotor = R, (46)

where vUstator and vpotor denote the tangential velocities of
the stator and rotor, respectively, h.; denotes the distance
from the central layer of the stator to the contact surface.
As a result, Mcontact can be expressed as:

a
Mcontact = —2n,uRb/ signp(z)dx. (47)
0
If the speed of the rotor is taken to be:
2 2
Urotor = _hctTﬂ-W(R)w COS Tﬂ-xk? (48)

where x; denotes the point at which the speed of the rotor
is equal to the speed of one point of the stator. Through
solving (42) and finding the point xj, the speed of the
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TABLE 1
MATERIAL PROPERTY PARAMETERS OF THE STATOR.

Piezoelectric

Substrate ring
Materials Phosphor bronze PZT-4
Young’s modulus E(GPa) 112 80
Poisson ratio v 0.33 0.31
Density p (kg/m?) 7790 8790
Piezoelectric constant dz1(m/V) 0 —127 x 1012
Dielectric constant €3 (F/m) 0 1127 €9

rotor versus the external load applied to the rotor can be
obtained for a steady-state condition. On this basis, many
other characteristics of the motors, including the efficiency,
the output power, the input power, and the stall torque of
the motors can be obtained.

VI. NUMERICAL RESULTS AND DISCUSSIONS

To obtain numerical results from the present model, the
shape function, g(r), is introduced:

2 3
T—7T r—r;
= + 49
g(r) a@ (’I‘O —’I“i> @2 <7“0 —Ti) ’ ( )

where a1 and ag are the coefficients determined by the
Rayleigh Ritz method, r; is the inner-radius of the stator
and r, is the outer-radius of the stator. The function satis-
fies the geometric boundary conditions at the inner-radius,
that is g(r;) = 0 and ¢'(r;) = 0. The material parameters
used here are shown in Table I and the 3-D configuration
in Fig. 1.

The piezoceramic ring has the same structure as Shin-
sei’s largest disk type of TWUM and can excite a trav-
eling wave with nine wavelengths. MATLAB (The Math
Works, Inc., Natick, MA) software is used for the simula-
tion and the function, fzero, which can find a zero of one
equation with one variable, is used to solve (39) and (42).
The maximum permissible compressive force of the motor,
the influences of the contact layer material, the thickness
of the contact layer, and the compressive force on motor
performance are discussed in this section.

A. Mazimum Permissible Compressive Force of the
Motor (Pmax)

The Pnax as a function of frequency has been simulated
for different contact layer material and is shown in Fig. 3
for specific values of V', h., and ¢. From Fig. 3, it can be
observed that, the Young’s modulus of the contact layer
material has different influence on the P,,,, in a different
frequency range. For :’—ﬂ < 1, the motor system seems to
be a static system and the higher value the Young’s mod-
ulus of the contact layer material, the greater the contact
stiffness and the higher the P, .x. For wﬁ > 1, the motor
system seems to be a dynamic system because, in this case,
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Fig. 3. Maximum permissible compressive forces of the motor where
V =150 V, he = 0.5 mm, and ¢ = 1%.

Ppax is determined by the mass, the stiffness of the sta-
tor, and the contact layer and the damping. For wi >1
and near 1, the less the contact stiffness, the higher the
Prax. The phenomenon is very similar to dynamic design
of shafts at high speed in which the lower the stiffness the
higher the load the shaft can be subjected to.

B. Influence of the Contact Layer Material on
Motor Performance

However, from Fig. 3, it cannot be concluded that the
contact layer with a lower Young’s modulus always gives
improved motor characteristics for Wi > 1 and near 1. The
frequency responses of the amplitude of the traveling wave
of the stator, the contact length between the stator and
rotor and rotation speed of the rotor for different con-
tact layer material have been simulated and are shown in
Fig. 4 with P, Mypplied; V, he, p, and ¢ having values of
—80 N, 0.15 Nm, 50 V, 0.5 mm, 0.18 and 1%, respectively.
From these figures, it can be seen that the contact layer
material only has a small effect on the amplitude of the
traveling wave of the stator, but it has great effect on the
contact length and the rotation speed of the motor. There
is a notch shape of the contact length when the frequency
is near to the resonant frequency of the motor system.
The main reason is that, when the motor system works
near to the resonant frequency, the amplitude of the vi-
bration of the stator has a peak shape. This leads to the
distribution of the normal compressive stress with a very
larger amplitude, which based on (15) when P holds a
constant. Due to the large amplitude of the normal com-
pressive force between the contact surface, it only needs a
short contact length to balance the compressive force. So
the contact length sharply reduces when the frequency is
near to the resonant frequency of the motor system, and
there is a notch shape of the contact length. Therefore,
it is concluded that the contact stiffness only has a small
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effect on the stator vibration system due to a small shift
of the peak and the lower the Young’s modulus, the longer
the contact length and the lower the rotation speed of the
motor. The phenomenon can be explained by means of
the contact stiffness. It is well-known that the lower the
Young’s modulus, the lower the contact stiffness. So the
contact layer with a lower Young’s modulus has a larger
contact length under the action of the same compressive
force. Therefore, in order to balance the external load, a
longer contact length results in a lower speed of the rotor.
This can be interpreted by the distribution of the tangen-
tial velocities of the stator and rotor, shown in Fig. 2. At
points A and B, the speed of rotor is equal to the speed
of stator. Due to the different relative speed between the
stator and rotor, zones I, II, and III have different direc-
tions of frictional forces. In the zones I and III, the speed
of the rotor is larger than the speed of the stator. The fric-
tional forces F; and Fj;; are opposite to the direction of
the rotor speed. In zone II, the speed of the rotor is less
than the speed of the stator. The frictional force F; has
the same direction as the rotor speed. Under the action
of external load F., the balance equation of the forces is
that ¥, = F;y; — F; — Fyy; for the contact surface. Under
the action of the same external force and even F, = 0,
in order to remain the balance equation, a longer contact
length causes points A and B to move toward points C
and D, respectively. So a longer contact length results in a
lower speed of the rotor. It should be mentioned that the
friction coefficient is strongly related to different contact
layer material. But here, in order to discuss the influence
of the contact layer stiffness on motor performance, the
friction coefficient is taken to be a constants.

The load response of the motor for different contact
layer material has been simulated. The motor speed versus
external applied loads is shown in Fig. 5, where P, V| h., u,
and ¢ are taken as —80 N, 150 V, 0.5 mm, 0.18, and 1%,
respectively. Again, it is observed that the contact-layer
material has a great effect on the speed-load characteris-
tic of the motor. When using material with a low Young
modulus, the motor has a soft, speed-load characteristic.
For a high value of Young modulus, the motor has a hard,
speed-load characteristic. Therefore, taking all these con-
siderations into account, the choice of the contact-layer
material should be based not only on the maximum per-
missible compressive force of the motor, but also on the
frequency response and the load characteristics of the mo-
tor.

C. Influence of the Thickness of the Contact Layer on
Motor Performance

In order to understand the influence of the thickness of
the contact layer on motor performance, the load response
of the motor at different contact-layer thickness has been
simulated. The motor speed verse external load applied is
shown in Fig. 6, in which the contact-layer material is ny-
lon and the parameters of P, V', w, u, and ¢ are taken to be
the same as in Fig. 5. From Fig. 6, it is observed that the
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he = 0.5 mm, p=0.18, and ¢ = 1%.
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Fig. 6. Load response of rotation speed of the rotor for different
thickness of the contact layer where the contact-layer material is
PTFE, P=80N,V = 150 V, w = 1.0355wn, he = 0.5 mm, p = 0.18,
and ¢ = 1%.

contact-layer thickness not only has a great effect on the
rotation speed of the rotor, but also on the stall torque
of the motor. The thinner the contact layer, the higher
the no-load speed of the rotor and the stall torque. There-
fore, within the imposed limit by machining, the contact
layer should be designed to be as thin as possible to max-
imize the motor performance. The reason for this is that
a thinner contact layer has a higher contact stiffness and
a shorter contact length. This results in a higher speed of
the rotor.

D. Influence of the Compressive Force on
Motor Performance

The TWUM usually work at or near the resonant fre-
quency of the motor and can have better performance.
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For example, the motor is able to receive a larger input
power and output high speed and high torque for a given
input voltage. But the compressive force causes the reso-
nant frequency of the motor change. For this reason, it is
very valuable to find the resonant frequency of the motor
under a compressive force.

The frequency responses of the motor for different com-
pressive force have been simulated, and the amplitude of
the traveling wave of the stator is shown in Fig. 7, in which
the contact-layer material is PTFE and the parameters of
Mapplied; V', he, 1, and < are taken to be the same as in
Fig. 4. In Fig. 7, the peak position of P being equal to
zero corresponds to the resonant frequency of the stator
with piezoceramics, and the peak positions of P not be-
ing equal to zero correspond to the resonant frequencies
of the motor under different compressive force. Especially
emphasizing here, the resonant frequency of the motor un-
der the compressive force is not the resonant frequencies
of the stator because the compressive force changes the
resonant frequency of the motor. However, the resonant
frequency of the stator usually is tested and used for the
driving frequency, although it is not the resonant frequency
of the motor. The main reason is that most measurement
instruments of vibration only allow input a small signal to
excite measured systems. If using the instruments to mea-
sure the resonant frequency of the motor under action of
a practical compressive force of the motor, the compres-
sive force would completely suppress the small vibration
excited by the small signal. So, using the resonant fre-
quency of the stator instead of the resonant frequency of
the motor for the time being. How to measure the reso-
nant frequency of the motor under a larger compressive
force is an open question and needs to be solved in the fu-
ture. From this point, it seems more valuable for using the
present model to predict the resonant frequency. Further-
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more, from Fig. 7, another two features can be observed.
With the increase of the compressive force, the curve on
the left-hand side of the peak frequency more dramatically
steepens and the pull-out phenomenon is exhibited. The
pull-out phenomenon is referred to the curve of the left-
hand side is steeped and the curve of the right-hand side
becomes more gradual with the increase of the frequency.
It is not clear what causes the pull-out phenomenon. But
the author thinks that the nonlinear characteristic of the
motor system causes this. It is well-known that there is a
jump phenomenon in strong nonlinear systems. Due to the
appearance of the contact force in the governing equation
in (15), the motor system is a nonlinear system. The larger
the contact force, the stronger the pull-out phenomenon.
The larger the compressive forces, the larger the ampli-
tude of traveling waves of the stator at the same exci-
tation frequency on the right-hand side of the peak fre-
quency. Therefore, in an allowable range, the compressive
force should be applied to be as large as possible, and the
excitation frequency chosen to be on the right-hand side
of the peak frequency.

The load responses of the motor for different compres-
sive forces have been simulated and shown in Fig. 8, in
which the contact-layer material is PTFE, the contact
lengths are all less than half the wavelength, and the pa-
rameters V', w, h¢, 4, and ¢ are taken to be the same as in
Fig. 5. From Fig. 8, two features can be observed. No-load
speed of the motor increases with an increase of the com-
pressive force. This can be understood and explained by
means of the amplitude of the traveling wave of the stator.
The reason is that the amplitude of the traveling wave in
the steady state becomes larger with an increase of the
compressive force. The stall torque increases proportion-
ally with the compressive force. It is noted that the con-
clusion is true only if the contact length is less than half
wavelength. Otherwise, it is false. Furthermore, in order
to show the false, the case is simulated that the contact
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length is larger than half wavelength when P = 120 N.
The load response of the motor for different compressive
forces is shown in Fig. 9, in which the parameters of V,
w, he, p, and ¢ are taken to be the same as in Fig. 5 and
the contact-layer material is nylon. From Fig. 9, it is ob-
served that the no-load speed of the motor first increases
with the compressive force, then dramatically decreases
with the increase of the compressive force, and the stall
torque is not proportional to the compressive force in the
case of P = 120 N because the contact length is over half
wavelength.

VII. CONCLUSIONS

This paper focuses on a contact analysis of TWUM and
incorporates the analysis into the model previously studied
by Hagood for a proper choice and design of contact-layer
material and parameters and for understanding how the
compressive force governs motor performance. The model
here differs from the Hagood’s model. A new contact anal-
ysis model is proposed. The steady-state solution to the
nonlinear governing equations of motion of the stator is
derived in the frequency domain, rather than in the time
domain. The present model can predict some special char-
acteristics and behavior of the motors, including the max-
imum compressive force of the motor, the starting-up volt-
age, the stall torque, the pull-out phenomenon, the reso-
nant frequency of the motor under the action of the com-
pressive force, and the effect of the contact-layer material
and the thickness of the contact layer on the motor char-
acteristics.

By use of the proposed model, a series of frequency re-
sponse and operational characteristics of the motor perfor-
mance have been simulated. The influences of the contact-
layer material, the thickness, and the compressive force
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on the motor performance are discussed and physically in-
terpreted. They are useful to understand the influence of
the compressive force and contact-layer material on motor
performance. They also are used for a prior calculation of
motor characteristics, such as no-load speed, stall torque,
maximum permissible compressive force, starting-up volt-
age, natural frequency, input power, output power, and
efficiency. However, the present model does not take into
account the effect of the tangential forces on the stator
vibration and does not consider the viscoelastic behavior
of the contact layer and the variation of the dynamic fric-
tion versus the axial preload and sliding speed. In spite of
these deficiencies, the present model is a step forward, a
further development in analyzing the contact layer and so
will be of assistance in the design of the TWUM with high
performance.
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