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Abstract 

Constructed wetland technology is gaining increasing attention as a low cost-efficient 
alternative to high-tech treatment systems for treating municipal and industrial 
wastewaters especially in small communities. However, its application for grey water 
reuse has been rarely investigated whilst performance for nutrients (N and P) still 
remains relatively poor. 
 
Pilot scale study was conducted in which three differently configured subsurface 
constructed wetlands: a horizontal flow reed bed (HFRB), vertical flow reed bed 
(VFRB) and a novel system - Green Roof Water Recycling System (GROW) were 
investigated for their suitability and robustness in treating grey water for reuse across 
a range of influent strengths to represent the limiting conditions observed in the 
literature. The HFRB and the GROW systems were found to be generally limited to 
comply with reuse standards especially at high strength. The release of iron from the 
HFRB media and particulates from the GROW system contributed to the poor 
turbidity of the final effluent from these systems. Overall, all wetland configurations 
were able to effectively treat low strength greywater but only the vertical flow system 
maintained its robustness when high strength greywater was treated. Analysis of the 
systems reveals this was due to the fact that aerobic metabolism is a more suitable 
treatment pathway for greywater. Ultimately, the performance of the vertical system 
was slightly lower but comparable to that of a membrane bioreactor making 
constructed wetlands a suitable technology for greywater recycling.  
 
Also, Bauxol, Red mud, Bayoxide, Ochre, Filtralite-P, Steel slag, concrete, Zeolite 
and various form of limestones were investigated for potential removal of soluble 
reactive phosphorous (SRP) and metals (Cu and Ni) in final sewage effluent for post 
Constructed Wetland System. P capacities exhibited by the different adsorbents 
correlated with type of metal (e.g. Fe, Al, Ca) and their cation exchange capacities. 
Ochre exhibited the best P removal ability with a P capacity of 26 g Kg-1 based on a 
Freundlich isotherm model. The equilibrium sorption capacity of BauxolTM and 
Ochre based on a Dubinin-Radushkevich model was found to be 4.1 and 4.9 mg g-1 
for Cu and Ni unto BauxolTM respectively and 2.6 and 10.2 mg g-1 for Cu and Ni onto 
Ochre respectively. Kinetic and thermodynamic study revealed a spontaneous and 
efficient adsorption process via a pseudo-second order mechanism where intra-
particle diffusion was shown to be the rate limiting step. An aerobic post constructed 
wetland system using Ochre as the bed media for large scale applications is 
suggested. 
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Chapter 1  Introduction 
 
 
1.1 General Iintroduction   

The key driving force to develop and implement sustainable water management 

strategies is to address the issues of available potable water shortage and pollution 

abatement. Water shortage arises primarily from growing demand for clean water due 

to increased population, changing lifestyles, diminishing water resources and 

urbanisation. The UK is amongst 70% of European countries facing water stress 

issues with a water stress index below 10% (Bixio et al., 2005). To illustrate, rainfall 

in the densely populated south-east of England is similar to that of water-stressed 

Mediterranean countries. The water demand in England and Wales has been predicted 

to rise from 162 to ~203 l h-1d-1 between the period 1997 to 2024 (CCDeW Report, 

2003). The additional impact of climate change on domestic demand, industrial and 

commerce, and agricultural & horticultural demand could further increase this figure 

by 1.8%, 2.8% and 20% respectively (CCDeW Report, 2003). The economic water 

regulator (e.g. OFWAT) has also estimated that between the period 2000 to 2025, the 

water requirements of water companies could increase by 1000 Ml. d-1 due to increase 

population and water usage. The government�s commitment to increase the number of 

new of housing units from 150,000 to 200,000 over the next decade (ODPM, 2005) is 

expected to increase pressure on water resources.   

Concern over water issues is not only limited to the amount available to meet 

demand, but also the quality of fresh water (such as river and ground water) which is 

the source of raw water treated by water companies to meet potble supply. With fresh 

water representing a small fraction (~3 %) of world water resource (Gleick et al., 
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2004), the need to control the level of pollutants (e.g. nutrients and heavy metals) 

entering receiving waters from point sources (e.g. wastewater treatment plants) is of 

great importance. This has resulted in the imposition of strict compliance discharge 

limits for effluent from wastewater treatment plants and point source discharges (e.g. 

the EU Urban Wastewater Treatment Directive). Governments therefore seek to 

address the pollution of fresh water sources by imposing stricter legislation on 

discharge criteria, as well as the efficient and appropriate use of potable water as a 

sustainable water management practice.  

 

Wastewater reuse is one possible response to the challenges of fresh water demand, 

water shortages and environmental protection. Raw water sources available for 

recycling include rain water, grey water, and domestic/municipal wastewater. Of 

these, grey water represents the most profitable in terms of its reliability, availability 

and raw water quality (Kujawa-Roeleveld and Zeeman, 2006; Dixon et al., 1999). A 

range of technologies (e.g. biological aerated filters (Laine, 2001), membranes 

bioreactors (MBR) (Liu et al., 2005), membranes (Ahn et al., 1998), soil filters 

(Itayama et al., 2004)) have been applied for grey water reuse applications.  Any 

technology selected for any particular application must produce good water quality, 

be cost effective, suitable to scale and acceptable by the public. Whilst some 

technologies such as membrane systems have demonstrated the ability to produce 

high quality treated effluent (Melin et al., 2006), cost, application to scale and the 

relatively low public perception may limit its application in small communities 

especially in rural areas. In such communities, simple low-tech and efficient systems 

may be most appropriate. Constructed wetland systems are relatively simple and are 
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gaining popularity as an effective and low-cost alternative for wastewater treatment 

especially for villages and small communities where larger high-tech systems are 

deemed inappropriate. Such systems also have added advantages over conventional 

treatment systems in that they require relatively low running costs, can be maintained 

by low skilled personnel, have lower energy requirements and are perceived as a 

natural treatment system.  

 

Constructed wetland technology has been recognised for its significant contribution 

in recoverering water from diverse types of wastewater (IWA, 2000; Hofmann, 

1996). In isolated cases, treated effluents from constructed wetland treatment systems 

have been re-circulated to achieve sustainable use of water resources. Therefore, 

constructed wetlands can be optimised for advanced wastewater treatment for the 

purpose of urban reuse (e.g. for toilet flushing), especially in areas where water 

demand is high. However, constructed wetland technology needs to be optimised for 

nutrients and metals removal to match its ability to remove organics and solids. 

Constructed wetlands have been widely applied successfully in treating different 

types of wastewater such as municipal (Cooper et al., 1996), storm water (Green and 

Martin, 1996), industrial wastewater (Abira et al., 2005) agricultural wastewater and 

runoff (Sun et al., 1999) and recently refinery effluent (Wallace and Kadlec, 2005). 

Reported studies of grey water treatment by constructed wetlands are rare and 

recorded performance for phosphorous and metals removal is relatively poor. Hence 

performance data that will guide the design and operation of wetland systems in a bid 

to optimise efficiencies for diverse applications is desirable.   
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1.2 Research development 

The work reported in this thesis integrates three projects within the domain of 

constructed wetland technology. These include (i) a pilot trial of a �Green Roof Water 

Recycling System� -GROW, which arose out of the need to research and develop 

opportunities for water management within the framework of the Competition Act 

(Water) 1998;  (ii) a pilot trial under Work Package 7 of the EPSRC funded �Water 

Cycle for new development� Project, which focuses on contender technologies such 

as membrane bioreactor, membrane chemical reactor and constructed wetlands; and 

(iii) a study under the auspices of Severn Trent Water Company Limited, Coventry, 

UK. which focuses on identifying suitable adsorbent(s) for use as substrates in 

constructed wetland systems for polishing final effluent from sewage treatment works 

in order to meet stringent consent limit. 

 

1.3 Aims and objectives 

The aims of this thesis are:  

(i) To investigate the suitability and robustness of constructed wetlands 

(CWs) focussing on reliability of performance, technology selection and 

market opportunity for grey water recycling, 

(ii) To determine the appropriate properties of a P adsorbent for use in post 

CWs. 

Based on the above aims, several research objectives identified are: 

 

1. investigate the suitability and robustness of constructed wetland systems 

treating grey water for urban reuse applications, especially for toilet flushing, 



                                        
 
 

5

2. assess the level of compliance of the different wetlands to key water quality 

reuse standards around the world, 

3. assess how the test rigs compare with other candidate technologies for grey 

water treatment and reuse, 

4. investigate the influence of configuration type ( i.e. horizontal and vertical) on 

wetland performance and treated water quality, 

5. investigate the influence of operational parameters ( i.e. influent organic 

loading and hydraulic loading rate) on wetland treatment performance, 

6. investigate the role of oxygen in the aerobic biodegradation of organic matter 

contained within grey water,  

7. investigate how constructed wetlands can be applied as an advance treatment 

option for polishing final sewage effluents to meet stringent consent limits for 

phosphorous and metals, 

8. investigate the relationship between the cation exchange capacity as well as 

the type and percent composition (w/w) of metal ( e.g. Ca, Fe etc) to the  

adsorption capacity of the adsorbents, 

9. investigate the kinetics and thermodynamics of the adsorption process of P 

unto the various adsorbents, 

 

It should be noted that although all work reported in this thesis was carried out by 

Ronnie Frazer-Williams, enumeration of indicator organisms was carried out by 

Gideon Winward, a colleague PhD researcher working alongside the other on the 

WaND project.  
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Chapter 2 Literature review 

 

2.1 A review of constructed wetlands  

2.1.1 Introduction 

Constructed Wetlands are engineered systems designed to utilize natural processes for 

water quality improvements. They perform this function by removing contaminants in 

wastewaters via a combination of physical (filtration, sedimentation), biological 

(microbial processes, plant uptake) and chemical (precipitation, adsorption) 

mechanisms (Kadlec and Knight, 1996).   

 

2.1.1.1 Types and configuration of constructed wetlands  

Constructed wetlands can be divided into two main types: free water surface (FWS) 

wetlands also known as surface flow (SF) and subsurface flow (SSF).  

 

 

Figure 2.1.1a: Schematic diagram of a free water surface (surface flow) wetland.  

Sediment/wetland substrate 

Water 

Floating plants 

Emergent macrophyte 
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Figure 2.1.1b: Schematic diagram of a horizontal flow sub-surface flow wetland.  
 

• Surface flow (SF) wetland 

SF wetland technology started in North America in the 1970s as a result of work with 

natural wetlands systems (IWA, 2000). Surface flow (SF) systems are designed to 

allow a permanent depth of water to be treated flowing horizontally across the 

wetland bed surface with landscape similar to a natural wetland (Figure 2.1.1a). The 

common features of SF wetlands are either a shallow basin of soil or other medium 

with the water level controlled to ensure that the sediment, leaf litter and soil are 

always submerged leaving only the stems of plants above the water level; or a 

treatment wetland that employs a range of macrophytes such as cattail, giant sweet 

manner grass (Glyceria maxima), penny wort (Hydrocotyle umbellate) and common 

reed that form a floating mat. The dimensions of SF wetlands can be quite large and 

often resemble swamps and marshes with diverse ecology (Gray, 2004).   

Direction of flow  
of water 

Inlet 

Outlet 

Bed media 

Emergent 
macrophyte 
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• Sub-surface flow (SSF) wetland 

SSF was first described as the root-zone method (RZM) and was established by the 

work of Siedel and co-workers at the Max Planck Institute in Germany during 1960-

80 (IWA, 2000). Since then, uptake of the technology has spread into many European 

countries and is now used worldwide for treatment of different types of wastewater. 

In sub-surface flow systems, an excavated basin or impermeable plastic container is 

filled with porous media such as gravel, sand or soil (Figure 2.1.1b). Wastewater to 

be treated is encouraged to flow horizontally or vertically through a selected bed 

medium and root zone. �Reed bed� is a term used to describe a sub-surface 

constructed wetland that has been engineered to simulate and optimize natural 

wetland waste water treatment processes and it is now based on the use of mainly 

reeds or cattail as the macrophyte. There are several technological variants of RBCW. 

These include horizontal flow reed bed (HFRB), vertical flow reed bed (VFRB) and 

hybrid reed bed (HRB). 

 

o Horizontal flow (HF) systems 

In horizontal flow systems, water is continuously introduced at the inlet at one end 

close to the bed surface and flows horizontally through the porous medium. The 

treated water is removed at the other end with little or no overland flow. The water 

level is maintained at or slightly below the top of the porous medium.  The porous 

medium supports the emergent aquatic vegetation. The flow of water horizontally 

through the system is intended to pass through the entire bed medium in a plug-flow; 

however short-circuiting can occur (Reed et al., 1998; Fisher, 1991). The depth of the 
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bed can range between 0.5-0.8 m and the gravel size is typically between 10-20 mm. 

A schematic diagram of a typical HFRB is illustrated in Figure 3.1.2. 

 

o Vertical flow (VF) systems 

VF systems are characterised as intermittently batch fed where the wastewater 

percolates down through the bed media.  In between batches, the media is not 

saturated such that air circulates through the voids and refills the bed providing good 

oxygen transfer and hence the ability to nitrify (Cooper et al., 1996). A schematic 

diagram of a typical VFRB showing the pipe network on top of bed is illustrated in 

Figure 3.1.3. VF systems provide efficient removal of organics and suspended solids 

but provide minimal denitrification. Therefore, ammonia-N is usually only converted 

to nitrate-N, resulting in an overall low removal of nitrogen compared to HF systems.  

 

 
• Hybrid systems 

Hybrid systems originated from the system developed by Seidel at the Max Planck 

Institute in Krefeld, Germany (Vymazal, 2006). The design comprises two stages of 

two or more parallel VF beds followed by HF beds in series. Hybrid systems aim to 

achieve higher removal efficiencies not achievable from using single HF or VF 

systems in isolation. Such enhancements are most commonly associated with removal 

of nitrogen. Hybrid systems usually comprises of HF and VF systems in a staggered 

pattern. In VF-HF hybrid system, the first stage VF provides suitable aerobic 

conditions for nitrification followed by the second HF stage which provides suitable 

anoxic-anaerobic condition for denitrification. Whereas in the HF-VF hybrid system 



                                        
 
 

10

the HF removes organics, suspended solids and provide denitrification with further 

removal of organics, solids and nitrification in the secondary VF stage. 

 

• Design of reed bed CWs 
 
The successful use of CW technology for the improvement of water quality depends 

mainly upon proper design and operational specifications. Table 2.1.1 summarises 

key design and operational specifications for the efficient performance of HFRB and 

VFRB. In general, VF systems require less land (1-3 m2 PE-1) compared to HF 

systems (5-10 m2 PE-1). The dimensions of vertical flow systems vary between 1-2 

m2 PE-1; 1 m2 PE-1 for BOD removal only and 2 m2 PE-1 for BOD removal followed 

by nitrification (Cooper and Green, 1995). Precise area of a reed bed is calculated 

based on design specifications given in Table 2.1.1. 

 

Table 2.1.1 Key design and operational specifications for HFRB and VFRB  

Subsurface flow  
Parameter  HFRB VFRB 
Flow  Horizontal, continuously Vertical, intermittent by 

batch 
Bed design equation *

BODiedh KCCQA /)(ln −=
  

PPA 9.025.5** 35.0
1 +=

    

2A = the area of a second 
bed, estimated at 50% 
of 1A  

Specific area (m2 PE-1) 5 -10 1 - 2 
Recommended organic 
loading for 3o treatment 

***8 � 12g BOD5 m2 d-1 **** 25g COD m2 d-1 

Prevailing condition Anaerobic aerobic 
*Cooper et al., 1996, **Grant and Griggs, 2001, ***Kadlec and Knight, 1996, 
****Platzer, 1999 
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Where eC (mg L-1) is effluent concentration, iC (mg L-1) influent concentration, K  

(days-1) is a temperature-dependent first order reaction rate constant,  hA  (m2) is the 

surface area of the bed, and KBOD (m d-1) is the BOD rate constant. A1 and A2 are the 

area of first and second bed in a vertical configuration respectively. 

 

Vegetation  

In the UK, reed beds are commonly planted with common reed (Phragmites 

australis) (Cooper and Green, 1995), but elsewhere it has also been used in 

combination with other species such as Iris (Iris pseudacorus L.), cattail (Typha 

latifolia L.) bulrush (Juncus), sedge (Carex), clubrush (Schoenoplectus), and bur-reed 

(Sparganium) (Vymazal 2002). Reeds can be planted as seeds, seedlings, sections of 

rhizome or as clumps and they can take a minimum of 4 months or up to 3-5 years to 

mature depending on the method of planting. Cooper and Green (1995) reported that 

during the initial period of UK experience with reed bed systems, planting using pot-

grown seedlings at a density of 4 plants per m2 gave successful dense stands of reeds 

whereas planting with rhizome segments with at least one node results in competition 

and slow development of reeds. Similar observations were reported for the Czech 

Republic experience (Vymazal, 2002). 

 
 

o Liners  

Reed beds are lined to contain the water within the system and to prevent leakage 

which might cause pollution to ground water. Various types of liners used include 

puddle clay, high, medium or low density poly ethylene (HDPE, MDPE, and LDPE) 

and bentonite. HDPE, MDPE and LDPE Liners need to be at least 1mm thick. Liners 
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are protected from puncture by a sand layer or a geo-textile e.g. Fibertex both above 

and below the liner.  In the UK, the HDPE, MDPE, and LDPE liners are used and the 

most often used has been Monarflex (IWA, 2000). 

 

o Media  

SSF wetlands have been operated with substrates ranging from fine textured soil to 30 

cm fieldstone. Very small particles have very low hydraulic conductivity and can 

encourage surface flow. Very large gravels have high conductivity but lack the good 

wetted surface area per unit volume suitable for microbial habitat (IWA, 2000). 

Hence, as a compromise, a combination of substrates compost has been used 

depending on the type of water that is being treated and the flow rate required.  With 

regard to VF systems, layers of graded gravel (5-10 mm) topped off with a layer of 

sand have been used, whilst for HF systems, beds can be filled with 5-10 mm washed 

gravel except at the inlet and outlets where 50-200 mm rock will be used in gabions 

(Cooper et al., 1999). Soil and gravel are the most common media of SSF wetlands 

technology in Europe (IWA, 2000). Gravel substrates have also been used extensively 

in USA.  

 

2.1.2 Influence of key design parameters on the performance of HSSF systems 

CWs have been used in treating wastewater of different characteristics including 

domestic wastewater (Vymazal, 2002), various types of industrial wastewater (Dotro 

et al., 2006; Omari et al., 2003; Mays and Edwards, 2001), agricultural wastewater 

(Tanner et al., 1995) and storm waters (Carleton et al., 2000). Recently, they are used 

as a hybrid VF-HF system, in conjunction with facultative and stabilization ponds to 
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meet tertiary standards in Norway (Browne and Jenssen, 2005), used in combination 

with aquatic and soil filters for reclamation of domestic sewage in Chatham County, 

USA (House et al., 1999) and in treatment train together with a filtering and 

chlorination unit for public water supply in Brazil (Elias et al., 2001). In all of these 

applications, CWs have demonstrated consistent high performance in removing 

organic matter such as BOD, COD (Kadlec, 2003); particulate matter (e.g. suspended 

solids, turbidity); and pathogenic organisms (Watson et al., 1989) but less effectively 

for nutrients (N and P compounds) (Vymazal, 2002) (Table 2.1.2). 

 

Table 2.1.2. Typical average removal efficiency of European constructed 
wetlands in selected countries 

Average removal efficiency (%) Parameter 
Europea UKb* Denmarka Czech 

Republicc 
Polandc 

BOD5  79 72 80 88 89 
COD  70 - 66 - - 
TSS - 80 74 84 - 
NTot  40 - 40 51 - 

NH4-N  30 22 34 - - 
PTot  47 - 32 42 - 

*- data quoted are for Severn Trent 3o Reed beds in UK which comprises the majority of CW data in 
the UK  
a-Haberl et al., 1995; b- Green et al., 1999; c-Vymazal, 1999 
 
 
The growing potential of this technology coupled with increasingly strict water 

quality standards demands the need for the optimization of CWs design so that they 

are capable of meeting discharge and reuse requirements for diverse applications.  

 

In view of above, this review examines assumptions inherent in the basic design 

models of horizontal configurations in treatment wetlands with the aim to provide 

further insights on their influence to wetland performances. The VF system was not 

reviewed because they are recent breed of CW technology with much fewer 
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performance data compared to the HF systems available. To achieve this, the 

evolution of CW design for pollutant removal in horizontal systems has been 

reviewed highlighting reasons for the development of newer models. The review 

focuses on the following: 

 

• The generic Kickuth form equation and its suitability for sizing CW and 

predicting treatment efficiency, 

• The operational and design parameter(s) primarily influencing CW 

performance. 

 

2.1.2.1 Models of Horizontal subsurface flow systems 

The principle of the design for CWs subsurface flow (SSF) systems is based on an 

assumption of plug flow movement of water through the wetland with first-order 

reaction kinetics primarily by biological degradation. As an attached biological 

reactor involving microbes, modelling CWs typically combines biological 

degradation and system hydraulics. The basic relationship which has been used to 

simultaneously describe the two components mentioned above is given as:  

 

]exp[ τKCC ie −= �����������������������.�2.1.1

         

Where eC (mg L-1) is effluent concentration, iC (mg L-1) influent concentration, K  

(days-1) is a temperature-dependent first order reaction rate constant and τ (days) is 

hydraulic residence time. The principle of the design for horizontal flow (HF) SSF 

systems is based on Equation 1 and is written as: 
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BODiedh KCCQA /)ln( −=  ���������������������.2.1.2 

 

Where hA  (m2) is the surface area of the bed, dQ (m3 d-1) is average flow, iC (mg L-1) 

is influent BOD5, eC (mg L-1) is effluent BOD5 and KBOD (m d-1) is the BOD rate 

constant. Equation (2.1.2) was originally proposed by Professor Kickuth in Germany 

(Boon, 1985) with KBOD having a value of 0.19 m day-1(IWA, 2000). K is selected 

based on a 95 percentile BOD removal using Equation (2.1.2). Average KBOD of 

operational treatment wetlands reported in the literature is presented in Table 2.1.3. 

The KBOD value varies and this has been reported to be due to the influence or 

biodegradability of the influent water and the type of media used in the bed (Kadlec, 

2000). 

 

Table 2.1.3: Average KBOD of treatment wetland reported for different countries  

Country  Treatment application  K (md-1) reference 
Denmark Secondary  0.068 IWA, 2000 

Czech Secondary  0.13 Vymazal, 1998 
UK Secondary  0.06 Cooper et al., 1996  
UK Tertiary  0.31 Cooper et al, 1996  

USA Tertiary 0.17 IWA, 2000 
 

Design based on Equation 2.1.2 has generally been used to construct horizontal CWs 

and predict removal performance for organic matter usually expressed as BOD in 

constructed wetlands in Europe (Vymazal et al., 1998; Cooper et al., 1996), Australia 

(Mitchel et al., 1998) and the US (Reed et al., 1998). To date, there has been no 

published design equation for the construction of horizontal flow systems based on 
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the removal of other pollutants such as microbial indicators, suspended solids, 

nitrogen and phosphorous other than organics. The removal of these pollutants has 

been based on Equation 2.1.2 (Neralla et al., 2000; Cooper, 1999) assuming that 

adequate removal occurs if the design is suitable for BOD.  

 

During the construction of SSF wetlands, bed slope and cross sectional area are 

selected to encourage plug flow through the bed and avoid flow over the bed surface. 

Bed slope in the lower range of 1-5% is commonly used whilst the hydraulic gradient 

for the whole bed is increased by progressively lowering the outlet (Green and Upton, 

1994). Bed cross sectional area (also known as aspect ratio-i.e. length: width ratio) for 

the bed is usually calculated from Darcy�s Law given as:  

 

)/(* dSdHK
Q

A
f

s
C = ���������������������...�.2.1.3

         

Where CA (m2) is the cross sectional area of the bed, sQ  (m3 s-1) is average flow, fK  

(m s-1) is hydraulic conductivity and dSdH / (m m -1) is the slope of the bed. 

 

Examples of hydraulic conductivity of media of operational treatment wetlands 

reported in the literature are 10-6 m s-1 for peat substrate treating landfill leachate 

(Kinsley et al., 2007) and 1.91×10-4 m s-1 with a pore volume of 30% for a sand 

media substrate treating grey water (Shrestha et al., 2001). The slopes of operational 

CW systems usually range between 1-5%. Examples of slope for HSSF beds from 

inlet to outlet are: 1% in a gravel bed treating household wastewater (Neralla et al., 
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2000), 2% for a CW polishing municipal treated effluent (Cameron et al., 2003). 

Steer et al., (2002) used a 10cm slope to enhance flow from inlet through the outlet of 

the bed whilst in a CW polishing sewage effluent, a bed slope of 0.1% was used in 

the design (Combes and Collett, 1995). 

 

• Evolution of horizontal flow SSF CW models 

o First order models 

An amendment to Equation 2 (Kickuth model) to reflect treatment wetland 

performance data was developed by Kadlec and Knight (1996). The model commonly 

referred to as the K-C* model differs from the original Kickuth equation in two ways: 

Firstly, it is a reversible first-order reaction equation rather than the irreversible 

equation and secondly it includes a non-zero background concentration. It is believed 

that an irreversible first-order model does not satisfactorily describe removal of 

pollutants from treatment wetlands because pollutants in the treated water cannot be 

reduced to zero due to the subsequent release of pollutants from the wetland into the 

treated water (Kadlec and Knight, 1996). Thus the non-zero background 

concentration represents release of pollutants resulting from transformation processes 

within the sediments and sediment water interactions. These processes are mainly 

attributed to production of organics from the decomposition of plant litter and other 

organic materials as well as endogenous autotrophic processes (IWA, 2000; Bavor et 

al., 1988). Background concentrations of BOD lie in the range of 1-10 mg L-1 (IWA, 

2000). The K-C* model is written as: 
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Where:ε  (dimensionless) is porosity, h (m) is water depth, vK (days-1) is volumetric 

rate constant and C*(mg L-1) is non-zero background BOD5. 

 

Values of K and C* vary from one wetland to another and depend on site-specific 

factors such as vegetation type and density, strength of influent wastewater, 

temperature and hydraulic variable (Stein et al., 2007; Kadlec, 2000; Kadkec and 

Knight, 1996).  

 

The K-C* model does not include a water balance across the wetland. Kadlec (1997) 

proposed an amended form of the K-C* model (Equation 2.1.5) which incorporates 

the effects of precipitation and evapotranspiration. Precipitation causes a dilution 

effect whilst evapotranspiration causes a concentration effect. Thus, both 

precipitation and evapotranspiration to some extent influences the system hydraulics 

(Kadlec, 2000). 

 

)/1(]/[1( αα AK

i

e qy
CC
CC +−+=
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−
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α is  Precipitation (m d-1) � evapotranspiration (m d-1), q (m yr-1) is hydraulic loading 

rate, y (m) is fractional distance through wetland (i.e. distance from inlet per length of 

wetland), a  is a constant equal to K for SSF wetland with Dacian flow and other 

terms carry their meaning as previously defined. 

 

Further development of the model by Shepherd et al., (2001) presented a two 

parameter time-dependent retardation model for COD removal in a high waste 

stream. The model is based on the assumption that a high waste stream contains 

multiple pollutants of variable ease of degradation. As a result, easily degradable 

substances with faster removal kinetics are gradually replaced with less biodegradable 

substances with slower removal kinetics. The result is a time dependent constant 

described as: 

 

)1( +
=

τb
K

K o
v  �������������������������..2.1.7 

 

where vK (days-1) is time dependent rate constant, oK (days-1) is the initial 

degradation rate constant, b (days-1) is a time-based retardation coefficient (days-1) 

and τ (days) is the retention time. 

 

Incorporating Equation 2.1.7 into a simple plug flow model gives a time dependent 

retardation model (2.1.8): 
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( )[ ])1ln(exp += − τb
C
C

b
K

o

o ���������������������.�2.1.8

         

The model seeks to account for the steady decrease in pollutant concentration with 

increased treatment time rather than a constant residual (i.e. background) value. 

 

The limitation of first order models for the design of treatment wetlands has been 

recognised (Kadlec, 2000) because one-parameter, two-parameter and three-

parameter versions all attain saturation (i.e. C ≠ 0) with increasing retention time. 

This effect worsens with a one-parameter model having a greater variability in 

background concentration (C*). Three parameter models do correct for dispersion of 

the non-ideal behaviour but cannot correct the degree of treatment influenced by 

short-circuiting (Kadlec, 2000). Evidently, none of the one, two or three parameter 

models are independent of operating conditions thus highlighting the importance of 

wetland hydraulics in improving design models.  

 

o Monod-type model 

The findings of Mitchell and McNevin (2001) further throw light on the limitations of 

existing first-order parameter models. They explained the limitation to first order 

models as due to the fact that biological systems will normally operate under Monod-

type kinetics where degradation rates are limited by pollutant availability at relatively 

low concentration but would reach saturation at relatively high concentrations. Their 

model identified that most wetlands are operating well below their expected 

maximum performance partly because they are undersized and estimated that 
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maximum loading for SSF wetlands approximates to 80 kg ha-1d-1 for BOD based on 

USEPA wetland data in North America. The Mitchell and McNevin (2001) proposed 

Monod model is given as:  

 

CK
CVKr vo +

= , �������������������������..2.1.9 

 

where r is the rate of biological degradation and K is the half saturation constant and 

C (mg L-1) is pollutant concentration. The contaminant concentration is normalised 

against the half saturation constant against the total length of the wetland bed Z given 

as: 

 

C
C

dZ
dC

+
Ω−=

1
�������������������������2.1.10 

 

 and a normalised removal rate ( RR )given as: 

 

Ω
−

= outin
R

CC
R ������������������������...2.1.11  

 

where Z (m) is the length of the wetland bed, Ω  indicates the relative effectiveness of 

the wetland bed and normalizes the maximum possible mass removal on a volumetric 

basis for a given hydraulic residence time or flow rate. A high value of Ω  means that 

the degradation rate is high compared with the flow rate which leads to better 

performance.  
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Although the limitations in the original Kickuth equation for designing and predicting 

pollutant removal performance have been recognised (Kadlec and Knight, 1996) and 

various attempts made to address them through the development of models believed 

to correspond better with wetlands performance (Mitchell and Mcnevin, 2001, 

Shepherd et al., 2001; Platzer, 1999; Kadkec and Knight, 1996), it is the equation still 

widely used to design treatment wetland processes (Mitchell and Mcnevin, 2001; 

IWA, 2000; Kadlec and Knight, 1996). This is because some of these recent models 

would require very large amount of data for proper calibration (IWA, 2000). In 

addition it is still uncertain whether detailed models will provide more accurate 

descriptions of wetland performance in light of the variability displayed by wetland 

data (Kadlec and Knight, 1996). As the processes involved in CWs is complex and 

difficult to predict, this technology at present is limited to organic loading guidelines 

(IWA, 2000).  

 

2.1.2.2 Critical review of horizontal flow systems  

To investigate the influence of design and operating conditions on wetlands 

performance, influent and effluent pollutant concentrations (mg.L-1) and design 

parameters (flow rates, hydraulic loading and residence times) from 38 published 

studies were used to create a database. Literature was selected to cover the 

operational range of 0.01 � 0.10 m d-1 hydraulic loading as most treatment wetlands 

reported in the literature lie within this range (Tanner, 2001; Vymazal, 2001).  

Operational parameters were adopted as given in literature. When hydraulic loading 

or residence time was not given, they were calculated from Equations 2.1.12 and 
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2.1.13. Details of operational and water quality parameters used in this case study are 

given in Appendix 7. 

 

A
QHLR = �������...�������������������2.1.12

        

 

τ
εhHLR = �����������������.����������.2.1.13 

 

Where HLR (m d-1) is hydraulic loading rate, Q (m3 d-1) is flow rate, A(m2) is area of 

bed, ε  is porosity of bed media, h(m)  is bed depth and τ (d) is residence time. Value 

ofε (porosity or the fraction of space through which water can flow in the wetland)   

adopted was 0.75 for SF and 0.4 for SSF (IWA, 2000). Pollutant removal efficiency 

was calculated as percent mass removal given as:  

 

i

oi

m
mm −

100 ��������������������������...2.1.14

          

Where im and 0m  are mass loading of inflow and outflow respectively. 

 

The variables analyzed were influent and effluent loading of the following water 

quality parameters (BOD, COD, TSS, NH4-N, NO3-N, PO4-P and total coliforms), 

removal efficiencies according to Equation (11) and HLR. Variables were analyzed 
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by graphical plots with the aid of Microsoft regression equations, Spearman 

correlation ranking and F statistics. 

 

• Wetlands performance  

o Removal efficiency of pollutants in wetlands 

Results show that the ability of treatment wetlands to remove BOD, COD, TSS and 

coliforms from influent wastewater is greater (i.e. 73-83%) than for nutrients (30-

45%). This result is consistent with the literature. For instance, Vymazal (2007) 

reported that total nitrogen and phosphorous removal in most CW is low compared to 

organics and solids and varied between 40-55% for nitrogen removal and 40-60% for 

phosphorous removal respectively. This is because the processes that affect nitrogen 

removal in CWs include nitrification and denitrification, and most treatment wetlands 

(e.g. horizontal or vertical system) cannot achieve high removal of total nitrogen or 

ammonia and nitrate nitrogen because of their inability to provide oxic conditions for 

nitrification and anoxic condition for denitrification simultaneously. To illustrate, 

horizontal systems being saturated and anoxic-anaerobic provide suitable conditions 

to achieve denitrification (Equation 2.1.1) whilst vertical flow systems being 

unsaturated and oxic successfully provide the conditions for nitrification (Equation 

2.1.2). Thus, horizontal flow systems are limited in nitrification whilst vertical flow 

systems are limited in denitrification.  Denitrification occurs in the presence of 

available organic substances and can be illustrated by the following equation (Hauck, 

1984): 

 

OHNCONOOCH 22232 6264)(6 ++→+ − ��������������..2.1.1 
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Nitrification is executed by chemolithotrophic (aerobic) bacteria which are dependent 

on the oxidation of ammonia for the generation of energy for growth. The overall 

nitrification process can be represented as (Schmidt et al., 2003, 2001): 

 

OHHNOONH 2324 22 ++→+ +−+ �����������������2.1.2 

 

Removal of phosphorous in several treatment wetlands has been low because the 

substrates traditionally employed for municipal/domestic wastewater in treatment 

wetlands (e.g. sands and gravels) do not have high enough sorption capacity.   

 

Furthermore, most treatment wetlands are effective in removing organics from 

influent wastewater because they are primarily designed to remove organic matter 

and solids (Vymazal, 2002). Removals up to 95% can easily be achieved if the 

systems are not overloaded. The high and comparable removal efficiencies amongst 

BOD, COD, TSS and coliforms is because significant amount of solids in wastewater 

is organic in nature, and consequently, reduction of solids corresponds with organic 

reduction (Neralla et al., 2000; Gopal, 1999).  

 

Evaluation of wetlands overall performance using 1:1 plot in removing pollutants 

from wastewater revealed that removal efficiency was lower than the expected based 

on the 95 percentile calculated from the Kickuth equation. Corresponding plots of 

predicted effluent concentrations based on the 95 percentile versus measured effluent 

concentrations for all water quality parameters showed data points well below the 1:1 



                                        
 
 

26

removal line (Figures 2.1.2a to 2.1.9a). The 1:1 removal line represents the 100% 

efficiency line. Although 100% would not be achieved in a real situation because of 

subsequent release of organics from the wetland into the effluent waste stream 

(Kadlec and Knight, 1996), the further the points lie to the right of the 95 percentile 

removal line indicates the more undersized the wetlands are for the particular 

application resulting in sub-optimal wetland performance (Mitchell and McNevin, 

2001). Although correlation coefficients for all parameters were low indicating that 

the removal of pollutants were poorly predicted by the first order or Kickuth model, 

evaluation from the line fitting plots also revealed that measured versus predicted 

concentrations for BOD, COD, TSS and total coliforms correlated better (r2 values in 

the range of 0.24 � 0.32) compared to r2 values of 0.08 � 0.16 for nutrients (Figure 

2.1.2a-2.1.9a). This indicate that the removal of BOD, COD, TSS and total coliforms 

from wastewater by treatment wetlands were better described and predicted by the 

models used to design these wetlands. Indeed, it is known that all design equations 

for pollutant removal and treatment performance in treatment wetlands are based on 

BOD despite recognising that removal of nutrients from wetlands cannot be 

adequately described the same way as organics due to different pollutant removal 

pathways (Kern and Idler, 1999). 

 

Rousseau et al., (2004) in a study of model design of horizontal subsurface wetlands 

obtained different surface area from different models for treatment wetlands using a 

single influent and effluent data set. He found that a simple �rule of thumb� model 

predicts several orders of magnitude of surface area larger than first order (including 

Kikuth model), regression and retardation models. He further reported large 
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differences between minimum and maximum calculated surface area by each of these 

models due to parameter uncertainty (i.e. rate constants and background 

concentrations). Rate constants and background concentrations have been reported to 

be strongly dependent on hydraulic loading and influent concentration, which 

consequently renders first order models incapable of acceptable performance design 

(Kadlec, 2000).  Calculation for area based rate constants from collated data in this 

study ranged from 0.02 to 0.34 m.d-1 for domestic/municipal waste water. Despite the 

extreme of this area based rate constant calculated, the mid range values are 

comparable to that of the mid-range area-base rate constants in the range of 0.06 to 

1.00 reported by Rousseau et al., (2004).  

 

According to first order design models which most wetland designs are based on; K 

values from treatment wetlands should ideally be within a narrow range. However, 

such large variations obtained from operational treatment wetlands reflect the impact 

of wetland age, influent concentration and hydraulic loading (Stein et al., 2007; 

Kadlec, 2000; Kadlec, 1997). These collective factors are difficult to account for 

accurately in any model as wetland age varies for any particular wetland and organic 

matter release from wetlands are influenced by local conditions. Addressing these 

factors would produce a complex model which would be difficult to calibrate and 

apply.    

 

• Influence of operational parameters (hydraulic and influent loading) on 

pollutant removal 

o Organics  
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Effluent organic loading (BOD5 and COD) for both SF and SSF treatment wetlands 

showed strong positive correlation with influent organic loading (Tables 2.1.4 & 

2.1.5, Figure 2.1.2b and 2.1.4b). This indicates that the residual concentration of 

BOD in the effluent of most treatment wetlands was influenced by the inlet 

concentration.  Vymazal (2002) reported similar findings for 44 horizontal systems in 

the Czech republic.  

 

 

Table 2.1.4: Regression summary for the effect of operational parameters on 
effluent BOD  

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 1.02x � 1.12, R2 = 0.99, n = 35 y = 0.26x � 0.01, R2 = 0.86, n = 81 
Inf loading vs % 
removal 

y= -0.46x + 53.1, R2 = 0.07, n = 35 y = -0.09x + 53.1, R2 = 0.01, n = 81 

HLR vs % removal y= 11.5x +2.34, R2 = 0.10, n = 35 y = 64.4x + 0.43, R2 = 0.95, n = 81 
 
 

Influent organic loading has been proved to influence wetland performance as 

reflected in effluent residual organics (IWA, 2000). The explanation is that up to an 

optimum loading, removal efficiencies increase as loading increases and correlate 

positively with mass loading rates.  To illiustrate, Ghermandi et al., (2007) reviewed 

25 tertiary surface flow treatment wetlands and found that in 19 cases, effluent BOD  

were below 10 mg L-1 when the systems were not overloaded in terms of influent 

organic loading, whereas in 3 cases, effluent exceeded 30 mg L-1 of which 2 were 

caused by higher than recommended influent BOD loading. Results from other 

operational wetlands for different types of waste water have also exhibited a similar 

effect of influent loading on effluent residual BOD concentrations (e.g. Langergraber 

et al., 2007; Noorvee et al., 2005). 
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The effect of hydraulic loading on effluent organic loading though significant was 

much weaker (p<0.05, Figure 2.1.2c & 2.1.4c). Evaluation of the plots of HLR versus 

BOD (Figures 2.1.2c and 2.1.3a&b) indicates that removal efficiency of organics 

decreased with increased HLR. This is consistent with the literature. For instance, 

Langergraber (et al., 2007), da Motta Marques et al., (2001), Kern and Idler (1999) 
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Table 2.1.5: Regression summary for the effect of operational parameters on 
effluent COD  

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 0.24x + 5.82, R2 = 0.81, n = 23 y= 0.44x � 2.07, R2 = 0.91, n = 42 
Inf loading vs % 
removal 

y= 0.03x + 51.6, R2 = 0.08, n = 23 y=- 0.10x + 70.2, R2 = 0.07, n = 42 

HLR vs % removal y=-7.07x + 60.6, R2 = 0.02 n = 23 y= -131.4x + 74.2, R2 = 0.15, n = 42 
 

(1999) and Geller (1997) reported that organic removal efficiency is improved at 

lower HLR. Figure 2.1.3 (a and b), showed the effect of gravel and sand/soil substrate 

on the removal of BOD organics over a range of HLR and influent loading in SSF 

wetlands. In both substrate types (except gravel for influent loading versus removal), 

removal efficiency decreases with increased HLR. However, the relationship for 

gravel substrate is much looser/weaker compared to sand and soil suggesting that the 

effect of HLR and influent loading on the removal of organic matter is much more 

pronounced in treatment wetlands having sand or soil substrate. A possible 

explanation for this is that increased HLR results in increased organic and suspended 

solids loading. Depending on the nature and loading of solids, increased TSS loading 

may result in bed surface clogging and soil/sand media are much more susceptible to 

clogging and surface overflow compared to gravel. Clogging and overflow of a bed 

usually result in poor effluent quality.   
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Figure 2.1.3a: Relationship between hydraulic loading rate and substrate type 
on the removal of organics (BOD) for SSF wetlands. Bold and broken lines 
represent trend lines for gravel and sand media respectively. 
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Figure 2.1.3b: Relationship between influent organic loading and substrate type 
on the removal of organics (BOD) for SSF wetlands. Bold and broken lines 
represent trend lines for gravel and sand media respectively. 
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o Suspended Solids (SS) 

Strong correlations were observed between influent and effluent SS loading for both 

SF and SSF designs (Figure 2.1.5b). The overall efficiency of SS removal in terms of 

surface loding averaged 60% for subsurface flow and and 34% for surface flow.  The 

difference in percentage between SF and SSF reflects the removal mechanisms of 

solids in both wetland types. There is greater contact between the water and the 

wetland media as water flows through an SSF which encourages filtration compared 

to SF. Removal of SS correlated weakly with influent load (R2=0.17) for SSF whilst 

no relationship was evident between the two for SF. The HLR virtually did not show 

any effect on SS removal for both systems (Table 2.1.6).  

 

Table 2.1.6: Regression summary for the effect of operational parameters on 
effluent SS 

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 0.69x � 1.10, R2 = 0.98, n = 19 y= 0.50x � 10.7, R2 = 0.99, n = 49 
Inf loading vs % 
removal 

y= -0.04x + 40.8, R2 = 0 , n = 19 y= 0.04x � 64.0, R2 = 0.17, n = 49 

HLR vs % removal y= -5.82x + 41.2, R2 = 0.01, n = 19 y= -0.41x + 73.5, R2 = 0.02, n = 49 
 

The plot of HLR against SS removal shows that for both SF and SSF systems, 

removal efficiency decreases as HLR increases and that maximum efficiency tends to 

be achieved within a narrow range of SS (Figure 2.1.5c). These findings are in line 

with Reddy et al., (2001) who found no relationship between SS removal and SS 

mass loading in a SF CW whereas Gearheart (1992) reported approximately 75% of 

TSS removal in the first day retention in his study. Solids removal in treatment 

wetlands is primarily due to physical processes such as filtration and sedimentation as 

wastewater passes through the media, much of which can be retained around the inlet 

bed (Reddy et al., 2001; Cooper et al., 1996). As a result, wetland outlet SS data 
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reflects background concentrations (i.e. C*) and not necessarily wetland dynamics or 

operational characteristics. SS removal in SSF CW is therefore not strongly sensitive 

to HLRs (IWA, 2000). The observed removal pattern of solids in wetlands would also 

mean that an increase in removal rate will not be observed as loading increases as 

indicative of first order kinetics, but rather will increase at low concentration and tend 

towards zero order at high concentration as hypothesized by Mitchell and McNevin 

(2001).   
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o Nutrients (NH4-N, NO3-N, PO4-P) 

Influent loading correlated strongly with effluent loading for both NH4-N and NO3-N. 

However, influent loading did not correlate with NH4-N or NO3-N mass removal 

(Tables 2.1.7 & 2.1.8, Figures 2.1.6 & 2.1.7 b & d).  

 

Table 2.1.7: Regression summary for the effect of operational parameters on 
effluent NH4-N 

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 0.60x + 0.07, R2 = 0.95, n = 23 y= 0.50x + 1.09, R2 = 0.79, n = 51 
Inf loading vs % 
removal 

y= 0.04x + 37.1, R2 = 0.5, n = 23 y= 0.03x � 36.5, R2 = 0, n = 51 

HLR vs % removal y= 0.60x + 0.07, R2 = 0.95, n = 23 y= 0.51x + 1.1, R2 = 0.79, n = 51 
 

Table 2.1.8: Regression summary for the effect of operational parameters on 
effluent NO3-N 

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 0.30x + 0.21, R2 = 0.69, n = 19 y= 0.80x + 0.07, R2 = 0.37, n = 14 
Inf loading vs % 
removal 

y= 7.70x � 5.02, R2 = 0.07, n = 19 y= 1349x -752.9, R2 = 0.06, n = 14 

HLR vs % removal y= -33.3x + 26.3, R2 = 0.05, n = 19 y= 3527.6x -781.7, R2 = 0.04, n = 14 
 

N removal in wetlands undergo complex sequential transformation processes each 

requiring specific environmental conditions. Operational design for significant 

nitrogen removal therefore has to ensure oxic conditions for nitrification and anoxic 

conditions for denitrification. Mass removal of NH4-N and NO3-N did not correlate 

with HLR (Tables 2.1.7 & 2.1.8, Figure 2.1.6 & 2.1.7c) indicating that removal of 

these nutrients is not influenced by HLR. These observations further indicate the 

importance of other factors influencing NH4-N or NO3-N removal but which are not 

included in simple regression relationships. Hence reported N removal from treatment 

wetlands is generally lower than BOD, COD and TSS (Kern and Idler, 1999) and 

highly variable.  
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For phosphate, only the relationship between influent and effluent P loading was 

significant (Tables 2.1.9, Figure 2.1.8b). 

 
Table 2.1.9: Regression summary for the effect of operational parameters on 
effluent PO4-P 

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading Not investigated y= 0.65x � 0.04, R2 = 0.92, n = 38 
Inf loading vs % 
removal 

Not investigated y= -3.93x + 47.7, R2 = 0.01, n = 38 

HLR vs % removal Not investigated y= 29.1x + 44.5, R2 = 0, n = 38 
 

 P removal in treatment wetlands is also complex and variable. Removal is dependent 

mainly on the nature of the bed media which is the major sink for P in wetlands. 

Generally, P removal involves both biotic (uptake by vegetation, periphyton and 

microbes; mineralization of plant litter and soil organic phosphorous) and abiotic 

(sedimentation and burial; adsorption and precipitation; exchanges between soil and 

overlying water column) processes (Reddy et al., 1996). Chick and Mitchell (1995) 

found that these processes are favoured by longer retention times whilst Sun et al., 

(2003) reported P removal not to be affected by increased contact time since 

inorganic chemical reactions are normally rapid. The soil/litter compartment is the 

major long-term storage pool for phosphorous, though some may eventually be 

released to the water column under less reducing conditions and when sorption sites 

became saturated/unavailable (Geary and Moore, 1999; Schonerklee et al.,1996). 

Although regression analysis indicates no relationship between inflow P loading and 

removal efficiency, generally, the plot shows a decrease in removal efficiency with 

increased loading. Geary and Moore (1999) reported sensitivity of P removal to HLR 

possibly because of the ability of the substrate to sorb phosphorous. 
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o Coliforms 

With the exception of influent and effluent loading of coliform counts where strong 

correlations was evident (Table 2.1.10, Figure 2.1.9b), coliform removal was very 

weakly correlated to HLR and influent loading for both SF and SSF wetlands (Table 

2.1.10, Figures 2.1.9c & d).  

 

Table 2.1.10: Regression summary for the effect of operational parameters on 
effluent total coliforms 

Parameter  Surface flow Subsurface flow 
Inf vs Eff loading y= 0.16x � 2489, R2 = 0.70, n = 35 y= 0.70x � 74168, R2 = 0.95, n = 35 
Inf loading vs % 
removal 

y= 6.21x � 126.6, R2 = 0.20, n = 35 y= 8.87x +35.63, R2 = 0.39, n = 35 

HLR vs % removal y= 14.1x + 46.4, R2 = 0.17, n = 35 y= -0.62x + 65.7, R2 = 0.04, n = 35 
 

High removal of indicator organisms is generally reported for treatment wetlands 

despite varying influent load and hydraulic loading. For instance, Soto et al., (1998) 

with an influent count of 7-8 order higher than that in Vymazal et al., (2001) reported 

removal efficiency of 99.9% and 99.3% respectively. Also, da Motta Marques et al., 

(2001) reported removal efficiency of 99% coliform removal at HLR of 6.7 cm.d-1 

compared to 88% at HLR of 13.7 cm.d-1. High removal rates characterised by rapid 

decline to background concentrations for coliforms in treatment wetlands (IWA, 

2000) is indicative of the fact that removal of coliforms from treatment wetlands is 

not primarily influenced by HLR or influent load. An explanation for this could be 

due to the combined physical, chemical and biological factors responsible for the 

removal of microbial indicators from CWs. Physical factors include filtration, 

sedimentation, and aggregation and ultra-violet ray action. Chemical factors include 

oxidation, adsorption and exposure to toxins given off by other microorganisms and 

plants. Biological mechanisms include antibiotics, ingestion by  
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nematodes or protozoans, lytic bacteria and bacteriophages attacks and natural die-off 

(Vymazal, 2002).  

 

2.1.2.3 Review findings  

Results from this case studied showed that despite high removal efficiency reported 

for most wetlands, residual concentrations e.g. for BOD are frequently higher than 

those predicted based on the 95 percentile first-order Kickuth design equation. This 

observation was attributed to most wetlands being undersized and high hydraulic 

loading applications implying that sizing and predicting CWs performance cannot be 

primarily predicted based on Equation 2.1.2 alone. Also correlation results indicate 

that hydraulic and pollutant loading strongly influence wetland performance for 

organic removal (BOD, COD). In all cases, removal generally decreases as loading 

increases. Hydraulic loading was not found to correlate with nutrient removal. This 

highlights the need to incorporate other operational parameters for the efficient 

removal of nutrients in wetlands. Overall, it can be concluded that organic removal 

will be earsier to model in treatment wetlands (e.g. horizontal systems) compared to 

nutrients because their removal can be influenced primarily by the design parameters 

(HLR and influent loading) whilst other factors (e.g. aerobic conditions, redox 

potential, environmental conditions) in addition to HLR and influent loading 

influence removal of nutrients in treatment wetlands. Because the removal of solids 

and indicator organisms (coliforms) are not primarily influenced by the key design 

parameters (HLR and influent loading), it is expected that they will fit into any design 

model developed. 
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2.2 Reuse 

2.2.1 Background 

The primary drivers for implementing water reuse are augmentation of available 

water supply and pollution abatement. Water shortage arises mainly from rising 

demand for clean water due to increases in population, changing lifestyle, 

diminishing water resources, rising economic growth and urbanisation. The 

implementation of water recycling and reuse offers the opportunity to increase 

available water supply, reduce potable water demand and reduce environmental 

impact associated with uncontrolled pollution of water resources. 

 

Of the different sources of water available in urban environments for reuse, grey 

water reuse represents the most profitable option in terms of its reliability, availability 

and raw water quality (Kujawa-Roeleveld, 2006; Dixon et al., 1999).  For instance, 

while rain water is cleaner compared to grey water, it�s availability is dependent on 

season. Grey water on the other hand is produced daily through domestic water use 

such as in bathing, clothes washing, cleaning and cooking. Grey water constitutes a 

major fraction of domestic waste water, amounting to 70% of the total volume 

produced (Kujawa-Roeleveld and Zeeman, 2006; Almeida et al., 1999). With about 

one-third of domestic water consumption used for bathing, showering and hand-

washing; and a further third tending to be used for toilet flushing, the reuse of grey 

water for toilet or urinal flushing could potentially save about a third of potable 

household water demand with a corresponding decrease in water bills (Diaper et al., 

2001; Karpiscak et al., 1990).  
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Despite being less polluted compared to municipal waste water or black water, grey 

water contains high enough pollutant loads to cause a health risk if used untreated or 

not treated adequately. As a result, grey water reuse requires highly efficient and 

reliable treatment systems.   

 

2.2.2 Standards for reuse 

To protect public health and the environment, grey water must be treated to a required 

standard prior to reuse. However, for practical and economic reasons, the level of 

treatment depends on the end-use application. For instance, the degree of treatment 

required for restricted use is different for unrestricted (Table 2.2.1). Countries have 

developed different approaches to protect public health and the environment which 

vary from low technology-low cost-controlled risk to high technology-high cost-low 

risk guidelines (Anderson et al., 2001). Many developed countries have adopted the 

Quantitative Risk Assessment (QRA) approach which focuses on high technology-

high cost-low risk guidelines (Anderson et al., 2001). Examples of the QRA approach 

are the USEPA and Californian standards. Such approaches usually require state-of-

the-art treatment technologies (e.g. Reverse Osmosis, membrane bioreactor) which 

are often expensive and require skilled personnel to meet the required reuse 

standards. Less developed countries have adopted the low technology-low cost-

controlled risk approach based on economic constraints (Anderson et al., 2001). An 

example of a low technology-low cost-controlled risk approach is the World health 

Organization (WHO) standard which is used in many less developed countries 

especially in Africa and Asia.  Low technology-Low cost-controlled risk requires less 

expensive and more easily managed treatment systems such as constructed wetlands, 
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Stabilization ponds and sand filtration. Examples of a range of standards which 

encompasses both the high technology-high cost-low risk (e.g. USEPA) and low 

technology-low cost-controlled risk (WHO) are presented in Table 2.2.1. Evaluation 

of the standards reveals that reuse standards within the developed world (e.g. Europe) 

varies with the UK yet to produce a legally binding sub-potable water quality 

standard.  However, the Building Services Research and Information Association 

(BSRIA, UK) provided published guidelines for grey water and stored rainwater for 

reuse which includes no detectable Faecal coliforms for 90% samples or 14 for any 

sample (Lazarova et al., 2003).  
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2.2.3 Characteristics of grey water 

Conceptually, grey water should have lower concentrations of the various water 

quality pollutants compared to black water. This is because grey water usually 

comprises used water excluding that used for toilet flushing (WC). The exclusion of 

the toilet waste stream from domestic water means grey water has reduced level of 

nitrogen, phosphorous, solids and organic matter, but elevated levels of surfactants, 

oils and salt (Friedler et al., 2004; Eriksson et al., 2002; Günther, 2000). To illustrate, 

urine and faeces comprises ~90% of nitrogen and ~67% of phosphorous in the human 

excreta. Thus, their exclusion from grey water means less N and P levels relative to 

black water. Grey water displays considerable variability in pollutant concentrations 

and discharge volumes, both between locations and between different users of the 

same appliances (Friedler and Butler, 1996). The use of house-hold products and 

individual lifestyles play an important role in influencing the quality of grey water.  

As a result, the variability of grey water is emphasized at small scales where the 

activities of one or a few households have proportionally greater impact on grey 

water quality. Thus, different grey water source have different characteristics (Table 

2.2.2). Solids and turbidity in grey water usually range from 113 to 2410 mg L-1 and 

15.3-240 NTU respectively, and laundry waters are at the upper end of the range 

reported (Eriksson et al., 2002). In a shower grey water source, Ramon et al., (2004) 

reported that colloidal particles constitute the dominant fraction (90%) with a mean 

particle diameter measured as 0.1µm.   
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Organic (e.g. BOD and COD) concentration in grey water reported in the literature 

ranged from ~10 to >5,000 mg L-1. Concentrations usually fall in the range 76-300 

mg L-1 BOD for bathroom fractions, 48-472 BOD mg L-1 for laundry fractions and 5-

1460 BOD mg L-1for kitchen fractions. The high organic load emanating from the 

kitchen reflects the grease, tea, coffee, starch, fats and oils contained with the fraction 

whilst laundry waters contain soaps, detergents and bleaches (Eriksson et al., 2002). 

Low molecular size profile of dissolved organics in low load grey water fractions 

corresponds to low molecular weight, more polar hydrophilic fractions (Jefferson et 

al., 2004). The specific ultraviolet absorbance (SUVA) which indicates the level of 

aromaticity of grey water is usually low (Pidou, 2006) compared to surface water 

(Goslan, 2004) or domestic sewage (Metcalf and Eddy, 2003).  Grey water from 

shower, bathroom sinks are usually deficient in nitrogen and phosphorous. To 

illustrate, Merz et al., (2007) reported a COD: N: P ratio of 100: 14: 1.5, whilst 

Jefferson et al., 2004 reported a ratio of 100: 2.9: 0.05 for shower waters respectively. 

This compares with 100:20: 1 for domestic sewage (Metcalf and Eddy, 2003).   

 

Grey water may contain elevated levels of indicator organisms. Rose et al., (1991) 

reported total coliform levels varying from 10 and 108 cfu 100ml-1 in baths and 

showers grey water sources. Grey water emanating from families with young children 

has been reported to potentially contain high levels of indicator organisms (Lazarova, 

2001; Surendrean and Wheatley, 1999). 

 

Based on its pollutant load, grey water can be broadly classified as light or dark grey 

water (Lazarova et al., 2003). Light grey water comprises used water from shower, 
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bath and hand basins, sinks and is usually less polluted (Friedler et al., 2005). Dark 

grey water includes used water from laundry facilities, dishwashers and kitchen, and 

is generally highly polluted.  Because individual grey water composition is site 

specific and depends on user behaviour, no distinct boundary exists between light and 

dark grey water. Thus there is considerable overlap between light or dark grey 

highlighting the variability of pollutant load in grey water. 

 

A range of processes recently trialled for grey water treatment are discussed in the 

literature. These range from simple filtration followed by disinfection to advanced 

systems such as membrane technology. The selection of appropriate technology for 

grey water is important considering its variability in raw water quality. Any treatment 

process for grey water treatment and reuse must be sufficiently robust to maintain 

effective treatment capable of meeting consent limits under steady and unsteady 

influent conditions such as inputs of substances not normally associated with grey 

water (Jefferson et al., 2004). Currently, technology selection for grey water 

treatment is becoming established and a combination of biological and physical 

separation process in any technology seems the preferred option (Jefferson et al., 

2001). This is because the inclusion of biological process coupled to an efficient 

physical barrier in the treatment system provides efficient removal of organics, solids 

and indicator organisms. The Membrane bioreactor (MBR) which combines 

biological processes and an efficient physical barrier have reportedly produce high 

water quality (Merz et al., 2007; Melin et al., 2006) better to that produced by other 

candidate technologies  (Table 2.2.3). These and comparable membrane systems find 

wider use in urban environments where water saving potential is paramount coupled 
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with space constraints. In contrast, there are communities (e.g. rural areas) where land 

is both affordable and available, and here natural treatment systems such as 

constructed wetlands seem to be appropriate. Thus, technologies for grey water 

recycling must produce consistent high effluent quality irrespective of influent load 

and flow patterns, must be applicable to scale of operation; cost-effective and must be 

acceptable to the user.  
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2.2.4 Previous experiences of grey water treatment using constructed wetland 

technology 

The use of constructed wetland systems for grey water treatment and reuse is 

relatively recent and rare and results from recent pilot and experimental studies of 

CWs for grey water treatment gave relatively good treatment performances. In most 

cases, high removal of organics and solids typical of treatment wetlands (Vymazal, 

2007; IWA, 2000) are reported. To illustrate, a vertical flow CW treating grey water 

of a family of seven gave 98% BOD, 95% COD, 97% TSS and 3-5 logs coliform 

removal (Shrestha et al., 2001). Li et al., (2003) reported a reduction from 80-94 to 

~6 mg L-1 TOC using a combined VFRB and TiO2 at an irradiation time of 6 hours. 

 

In a case study using the locally available macrophyte (Coix lacryma-jobi) in reed 

beds to treat grey water for restricted reuse applications in Monteverde, Costa Rica, 

Dallas et al., (2004) reported that the final effluent meet the national reuse standard of 

<40 mg L-1 BOD and < 1,000 cfu 100ml-1. In another study, Dallas and Ho (2005) 

reported a 3-5 log reduction in faecal coliform and >87% reduction in BOD for 

influent loadings of 5 and 10 L day-1 irrespective of media type (plastic bottle 

segments versus crushed rock) and planted bed (Coix lacryma-jobi) versus unplanted 

bed.  In a study evaluating the effectiveness of Triglochin huegelii, an indigenous 

wetland macrophytes species in Western Australia removing nutrients from domestic 

grey water, Mars et al., (2003) reported that more nitrate and ammonia removal 

occurred in the planted systems compared to the unplanted systems whilst only the 

subsurface system retain significant amount of P irrespective of whether plants were 

used. Experiences from a study on grey water treatment using a pilot unit comprising 
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of a three-chamber sedimentation tank, a horizontal flow wetland, a sand filter and an 

artificial pond in the Ecovillage Toarp, Sweden also gave encouraging results with  

BOD7, COD and thermostable coliforms being reduced from 165 to <5 mg L-1, 361 to 

<60 mg L-1 and 4-6 logs cfu 100ml-1 respectively (Fittschen and Niemczynowicz, 

(1997). Gross et al., (2007a) reported a trial study using Recycled Vertical Flow 

Bioreactor (RVFB) (i.e. a system which recycles the effluent to the influent for a 

second treatment) to treat synthetic grey water enriched with wastes from a dining 

hall. They reported that the system produced effluent with E. coli concentrations ( 

0.1±0.05 cfu 100ml-1) that complied with the USEPA water quality criteria for 

recreational reuse but much higher viable S. auresis and P aeruginosa were 

consistently present ( i.e. 1.8 to 4.7 cfu 100ml-1) in the effluent after 72 hours of 

treatment period (Gross et al., 2007a).  

 

To date, the most probable characteristic of grey water which has been shown to limit 

its purification by biological treatment is its nutrient deficiency (Jefferson et al., 

2004, 2001). Gross et al., (2007b) carried out a study with nutrient deficient grey 

water using reed beds planted with the macrophyte Luctuca sativa. They reported that 

although plant growth was retarded, there was no evidence of poor treatment 

efficiency of the system. A 100% and 80% reduction of BOD and COD organics, 

98% total suspended solids and a 3 to 4 log reduction of faecal coliform after 8 hours 

using a recycled vertical flow constructed wetland (RVFCW) was achieved.  

 

Although there are few recorded performances from studies on grey water treatment 

by constructed wetlands, there is a paucity of data on the influence of design 
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parameters (influent and hydraulic loading) and configuration type (i.e. vertical and 

horizontal flow systems) on treatment performance. In addition, the effect of wetland 

treatment on the distribution of hydrophobicities (i.e. HPO, HPI and TPI fractions of 

organic matter) in grey water before and after treatment is currently unavailable.  

Hence performance data from that will provide information on the treatability of grey 

water as well as the suitability and robustness of the constructed wetland technology 

is desirable.  

 

2.3 Media for Phosphorous removal in Constructed Wetland Systems 

2.3.1 Background 

Phosphorous (P) immobilization in constructed wetlands (CW) occurs via adsorption 

to media, chemical precipitation, uptake by plants and algae and incorporation into 

organic matter (Kadlec and Knight, 1996).  Sorption of P to the wetland media has 

been recognised as one of the most important removal mechanism in CWs (Faulkner 

and Richardson 1989).  Despite being a sink for P removal, wetland media longevity 

is limited by their finite P-sorption capacity which decreases rapidly after a short 

period of time, usually 4 � 5 years (Vymazal, 2004; Kadlec and Knight, 1996). 

Consequently, the selection of substrate material with high P capacity and appropriate 

physico-chemical characteristics suitable for use in constructed wetland system 

(CWS) is important. The substrate material must also be cheap and locally available 

to reduce costs of construction.  

 

Several studies have been carried out on different adsorbent for their potential use in a 

CWS (Jahansson and Westholm, 2002). These adsorbents range from natural 
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materials (e.g. minerals, sands, soils, marine sediments and rocks), industrial by-

products (e.g. slags) and man-made products (e.g. light weight aggregates-LWA). 

Results from studies on the sorption capacities of these adsorbents vary widely (Table 

2.3.1) as does the physical and chemical composition which together determines the 

suitability of any adsorbent for use in a CWS.  
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2.3.2 Influence of adsorbent characteristics on P retention in Constructed Wetlands 

System (CWS) 

The amount of P removed from wastewater is influenced by the metal (e.g. Fe, Al and 

Ca) content of the adsorbent material (Zhu et al., 1997). These materials contain 

reactive Fe, Al and Ca hydro(oxide) groups on their surfaces which encourages the 

precipitation and complexation of the metal phosphates. To illustrate, P removal by 

slag is believed to occur via the release of +2Ca and −OH  resulting in an increase in 

pH followed by Ca-phosphate precipitates as monetite ( 4CaHPO ) and hydroxyapatite 

( )()( 345 OHPOCa ) (Baker et al., 1998).  Ligand exchange reactions in which 

phosphate displaces water or hydroxyls from the surface of Fe and Al hydrous oxides 

to form monodentate and binuclear complexes within the coordination sphere have 

also been reported in CWS (Faulkner and Richardson, 1989).  

 

The retention of P in CWS is controlled by the prevailing conditions of pH and redox 

potential within the bed media (Faulkner and Richardson 1989; Richardson, 1985). 

This is because sorption and desorption of P through Fe, Al and Ca is pH dependent. 

For instance, in acidic-neutral conditions, P is adsorbed on hydrous oxides of Fe- and 

Al-phosphates whereas precipitation of insoluble Ca-phosphates occurs at alkaline pH 

(Qualls and Richardson, 1995). To illustrate, Ca adsorbents dissociate in water to 

yield an alkaline solution (pH>7). The +2Ca in solution combines with P to form the 

stable hydroxyapatite complex which has its lowest solubility at pH>9.5 (Tan, 1993). 

Weber et al., (2007) reported that Ca-phosphates precipitate at pH~10 is the dominant 

P removal mechanism of Electric arc furnace steel slag adsorbent in CWS. Al 
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adsorbents in solution forms 3)(OHAl  which combine with P strongly at pH 6-8 to 

form insoluble polymeric 3)(OHAl . Fe adsorbent reacts with P to form 

4POFeOOH − complexes at an optimum pH of 5-7 (Lijklema, 1977).  

 

Redox potential ( hE ) influence P adsorption or desorption in CWS. hE below +250 

mV cause the reduction of +3Fe to +2Fe  releasing associated P (Faulker and 

Richardson, 1989). At reduced redox (e.g. anaerobic) conditions, crystalline Al and 

Fe minerals are transformed to the amorphous forms. Patrick and Khalid (1974) 

reported that amorphous Al and Fe hydrous oxides have higher P sorption capacity 

than their crystalline counterpart due to their larger number of singly-coordinated 

surface hydroxyl ions.  

 

P removal is also influenced by the adsorptive surface area of the adsorbent (Vymazal 

et al., 1998). Fine grained materials have larger surface area and consequently exhibit 

higher sorption capacity relative to a lump/coarse size adsorbent. However, finer 

materials often have low hydraulic property which leads to surface overflow and 

consequently decreased contact between sorbet solution and adsorbent in the middle 

of the bed.  Therefore, suitable adsorbent should be sufficiently permeable to allow 

flow through the bed, prevent surface channelling and overflow (Kadlec and Knight, 

1996). P removal is greater in subsurface flow-SSF configuration compared to surface 

flow-SF configuration (Chapter 2, section 2.1). This is because SSF allows increased 

contact between sorbate and adsorbent for adsorption which is important in P 

removal.  
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Other physical properties of adsorbents which would permit their use in a CWS are 

bulk density and uniformity coefficient (d60/d10). Bulk density >1 g cm-3 and 

uniformity coefficient >2 are considered suitable (Arias and Brix, 2005). These 

properties enhance good hydraulic performance of the system and avoid clogging in 

the beds. Research results from CWS around the world show that sandy materials 

have a much lower permeability compared to gravel and crushed rock (Vymazal, 

2004).   

 

 2.3.3 P removal in Constructed Wetland Systems 

Treatment wetlands efficiently remove organics and suspended solids from 

wastewater (Cooper et al., 1999) but do not achieve high removal of P from 

wastewater (Vymazal, 2004). Data from most operational treatment wetlands show 

low P removal because the media such as pea gravel and crushed stones often used do 

not have high P sorption capacity because of inadequate Fe, Ca or Al content (Brix et 

al., 2001). To illustrate, Vymazal (2004) reported an average removal of P from 

municipal or domestic wastewater of ~46% in 25 horizontal subsurface flow 

constructed wetlands using pea gravel or crushed stones as bed media in the Czech 

Republic. Soils samples collected from three constructed wetlands at the Byron Site 

in Northern New South Wales, Australia gave a P capacity in the range of 4.2-5.2 g 

Kg-1 (Sakadevan and Bavor, 1998). In comparison, industrial by-products such as 

blast furnace slag and steel slag from the Australian Steel Mills Limited gave a P 

sorption capacity of 44.2 g Kg-1. Similarly, a much higher removal (e.g.77%) was 

recorded from 10 horizontal subsurface CWs in Norway where selective media (such 

as iron-rich sand, manufactured light-weight ceramic particle aggregate) with high P 



 64

sorption capacity are used (Mǽehlum and Jensen, 1998). Similarly, test results 

showed that a Norwegian-manufactured light weight aggregate (LWA) FiltraliteTM 

(A/S Norsk Leca) has P removal rates of ~95% in subsurface flow constructed 

wetlands during the first 5 years of operation (Jenssen et al., 1996).  Leader et al., 

(2005) reported a 98% reduction in P from a secondary municipal wastewater in a 

pilot unit of vertical flow CW which has a co-treatment reactor of iron and lime 

compared to an 87% from the unit without the co-treatment reactor. 

 

A study on a pilot system combining batch-fed reactors of iron and lime with vertical 

flow CW mesocosms reduced an influent P level from anaerobic digested dairy 

wastewater from 7.68 to 5.95 (22%).  A pilot CWS comprising of an Electric Arc 

Furnace (EAF) steel slag added as a post treatment unit to a horizontal subsurface 

flow CW to reduce P from a dairy farm effluent in Vermont, Canada improved the 

removal efficiency of the system by 74% (Weber et al., 2007). However, the use of 

EAF steel slag alone in CW bed media has shown to inhibit macrophyte growth, 

whilst a combination of slag, granite and limestone of sizes between 2-20mm used as 

a post polishing unit at the outlet of a 28 m2 CW treating fish farm supernatant gave 

more than 75% removal efficiency during the first year of operation (Chazarenc et al., 

2007).  

 

A major limitation in the use of limestone and steel slag as bed substrate for P 

retention in CWS is the elevated pH in the final effluent due to the net release 

of −OH from the dissolution of 3CaCO . Weber (2006) reported an effluent pH of 11 

for the first three weeks which only gradually reduced to 8.0 during the last two 
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months of a trial study from an EAF steel slag unit. Chazarenc et al., (2007) reported 

an increase in pH from 7.1 in the inlet wastewater to 10.3 in the final effluent of an 

EAF steel slag unit. It is therefore important that if such materials are used for P 

removal in wastewaters in full scale systems, a pH reducer will be required prior to 

discharge into receiving waters. Naylor et al., (2003) showed that the addition of a 

post peat unit to the EAF unit could act as a pH reducer in a full scale system. 

 

Materials with small particle size such as sands have lower permeability and can 

cause surface overflow. Finer adsorbents have also been reported to cause clogging of 

outlet pipes of such systems (Johansson, 1999; Baker et al., 1998). Man-made 

adsorbents such as Light weight aggregates (LWA) may be expensive to produce.  

 

2.3.4 Adsorption models  

The aim of applying adsorption equations to adsorption data is to understand the 

processes involved in phosphorous (P) adsorption or desorption. In general, two-

parameter equations (e.g. Freundlich and Langmuir) are often used compared to 

three-parameter (e.g. Langmuir-Freundlich) because of the convenience in evaluating 

two rather than three isotherm parameters. Amongst the various adsorption equations, 

the Freundlich and Langmuir are the two most commonly used equations.   

 

• The Freundlich model 

The Freundlich isotherm equation is normally written as: 

 

n
Fe CKq /1=  (n>1) 
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where K and n are Freundlich constants related to adsorption capacity and the 

intensity of adsorption. Values of n close to 1 indicate that the adsorbent has a large 

adsorptive capacity at high molecular equilibrium concentration. The linear form of 

the Freundlich equation for adsorption is given as:  

 

eFe C
n

Kq log1loglog += ���������������������..2.3.1 

The Freundlich model encompases the heterogeneity of the adsorbent surface as well 

as the exponential distribution of adsorption sites and adsorption energies.  

 

• The Langmuir model 

 

The Langmuir equation was first developed to describe the adsorption of gases by 

solids. The linear form of the Langmuir equation for adsorption is given as:  

 

o

e

Loe

e

Q
C

KQq
C

+= 1  ������������������������...2.3.2 

 

where Ce is the concentration of the sorbate in solution at equailibrium (mg L-1), qe is 

the mass of molecules adsorbed per unit weight of materials (mg g -1), KL is a 

constant related to the binding strength of molecules onto the material (L g-1 ) and Qo 

is the maximum adsorption capacity (mg g -1).  

 

 The Langmuir model is governed by the following assumptions (Moore, 1972): 
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• the solid surface contains a fixed number of adsorption sites; 

• each site can only bind one molecule of the adsorbing species; 

• the energy of adsorption is the same for all sites and does not depend on the 

fraction occupied; there is no interaction between adsorbed molecules on 

adjacent sites. 

 

In addition to the Langmuir and Freundlich models, the Dubinin-Radushkevich (DR), 

and Temkin equations have also been applied to experimental isotherm sorption data. 

 

The linear form of the Dubinin-Radushkevich (DR) isotherm model is given as:  

 

DRoe Kqq −= lnln ε2 ����������������������...�2.3.3 

 

where ε is the Polanyi potential which is related to the equilibrium concentration as 

follows, 

 

ε 















+=

eC
RT 11ln  ����������������...�����. ...2.3.4 

 

where KDR (KJ2 mol -2) is related to the free energy of adsorption and oq (mg g -1) is 

the Dubinin-Radushkevich isotherm constant related to the degree of sorbate sorption 

by the adsorbent surface. 

 

The Temkin Isotherm 



 68

The Temkin isotherm (Choy et al., 1999) is given: 

 

)ln( ee AC
b

RTq = �������������������������.2.3.5 

 

A linear form of the Temkin isotherm can be written as: 

  

ee C
b

RTA
b

RTq lnln += ������������������...���..2.3.6 

where
b

RTB = �������������������������..�2.3.7 

 

A plot of qe versus ln Ce enables the constants A and B to be determined. A (L g-1) is 

a constant related to energy of adsorption.   

 

Three parameter (Langmuir-Freundlich and Redlich-Peterson) isotherms  

The Langmuir-Freundlich isotherm equation is written as: 

 

)1/(
11
n

L
n

mLe CKCqKq += ��������������������...2.3.8 

 

where all terms carry their usual meanings. For the Langmuir-Freundlich isotherm, 

the efficiency of adsorption RL is modified to: 

 

)1(
1

/1 n
oL

L CK
R

+
=  ������������������������..2.3.9  
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and all terms carry their usual meaning.  

 

Efficiency of adsorption 

The efficiency of the adsorption process can be investigated by the dimensionless 

separation term RL. RL values are calculated using the equation: 

 

oL
L CK

R
+

=
1

1 �����������������������...�2.3.10 

 

where Co is the initial concentration of the sorbate concentration (mg L-1). 

The parameter RL determines the shape of the adsorption isotherm and 0<RL>1 

indicates a high affinity adsorption. 

 

The free energy of adsorption 

The standard free energy change of the adsorption process can be calculated 

according to the Dubinin-Radushkevich equation given as: 

 

DRK
E

2
1= ��������������������������2.3.11 

 

where E is standard free energy (KJ mol-1) and KDR carry it�s usual meaning in 

Dubinin-Radushkevich equation. 
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The standard free energy change ( oG∆ ) for the adsorption process can also be 

calculated using the Langmuir constant KL given as: 

 

RT
G

K

o

L

∆=






 1ln ���������������������...���..2.3.12 

 

R is a gas constant (8.3145 J mol-1 K-1) and T is temperature in Kelvin. 

 

Column adsorption analysis 

Adsorption of sorbate on an adsorbent can also be investigated using column 

experiments in which process parameters such as effect of influent flow rate, sorbate 

concentration and bed depth on adsorbent can be assessed. In the adsorption column, 

the influent containing the sorbate flows through the stationary bed of the adsorbent. 

As the influent passes through the column, increasing amount of sorbate is adsorbed 

while the remaining sorbate concentration exits the column. As the experiment 

progresses, the adsorption zone moves further away from the inlet point towards the 

exit. When the adsorption zone has moved through the column, the concentration of 

the adsorbate at the exit equals the inlet concentration. A plot of effluent sorbate 

concentration as a function of time or volume throughput is known as a breakthrough 

curve. The characteristic shape of a breakthrough curve depends on bed capacity, 

influent concentration and flow rate (Ghorai and Pant, 2005).  

Evaluation of breakthrough analysis can be assessed using models of Lin and Huang 

(1999) and Bohart and Adams (1920). The time taken for breakthrough to occur when 
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a sorbate solution travels a column length (bed depth) containing an adsorbent 

proposed by Bohart and Adams (1920) is given as: 

   

[ ] tCKe
C
C

oa
FZNKo oa −−=












− 1ln1ln / ���������������. (2.3.13) 

 

where No is the adsorption capacity (mg solute per g adsorbent), Ka is the rate 

constant in bed depth service time (L (mg h)-1) and Z is bed depth/length of column 

(m). The breakthrough profile in the original equation is given as:  

 

1/ −+
= FWKtCK

tCK

o

t
aoa

oa

ee
e

C
C

��������������������� (2.3.14) 

 

where W is the bed capacity (total weight of sorbate adsorbed). 

 

Lin and Huang (1999) developed equation (2.3.14) for a sorbate concentration 

flowing through a stationary adsorption column: 

 









+
+=

P
p

k
t

1
ln1τ ����������������������. (2.3.15) 

 

For a symmetrical breakthrough plot and at 50% breakthrough (i.e. Ct/Co = 0.5), 

equation (2.3.15) simplifies to: 
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τFCW oe = �������������������������� (2.3.16) 

 

2.4 Summary of knowledge gaps of Constructed Wetland System for grey water 

treatment and P removal  

To date, there is a paucity of data from constructed wetland systems treating grey 

water. Consequently, information with regard which type of constructed wetland 

configuration (i.e. vertical or horizontal) is more suitable for grey water and how the 

operational and design conditions of the technology influence treatment is 

unavailable. It is also important to assess its role in grey water reuse and its reliability 

in performance. Such information would demonstrate where constructed wetland 

technology fit into an array of existing technology for grey water treatment and reuse 

and where possible market might exist. 

 

With regard the application of constructed wetland technology for P removal,  

identifying an adsorbent with high sorption capacity, appropraite physico-chemial 

properties for use as a wetland substrate and whose effluent pH falls within discharge 

limit (6-9) is still being sought. 
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CHAPTER 3  Materials and methods 

 

3.1 Constructed wetlands for grey water recycling 

3.1.1 Materials 

3.1.1.1 Study site and grey water source 

The site for the grey water study was located at the back of Fedden students� family 

flats at Cranfield University campus (Figure 3.1.1). Influent grey water was sourced 

from  

 

 

Figure 3.1.1: Grey water collection system showing Fedden family flats, pipe 
network which channels grey water to holding tanks in container (inset) and 
study site.  
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grey water tank 
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eighteen specially plumbed student flats within the accommodation blocks.  Water 

from baths, showers and bathroom basins drained to a communal sump from which it 

was pumped underground to two inter-connected holding tanks using a submersible 

pump with a level control (Figure 3.1.1). Both the sump and the holding tanks had 

overflow connections to sewer.  The holding tanks were mixed using a submersible 

pump and a recirculation system.  The system provided a real grey water source with 

which any technology could be tested. The grey water was of low organic strength 

compared to typical values reported in the literature (Table 4.1.2). To enable a 

medium - high grey water organic strength to be tested, a supplementary dosing 

system was installed. The high strength supplementary dosing solution was a 10% v/v 

mixture of Tesco Value shampoo in tap water. The grey water strength was 

supplemented with shampoo and not laundry detergents or food-based products so as 

not to change the composition of the grey water but rather to increase the organic 

concentration. The resulting solution was a high strength feed and not a dark grey 

water. The high strength supplementary solution and the real low strength grey water 

were pumped at fixed intervals (10 minutes every three hours) into a second holding 

tank from which the mixture was pumped to the treatment wetlands. The real grey 

water is referred to in this study as low strength and the supplemented grey water as 

high strength.  

 

3.1.1.2 Pilot constructed wetland technologies  

The experimental systems consisted of three pilot - scale subsurface constructed 

wetlands: a horizontal flow reed bed (HFRB), vertical flow reed bed (VFRB) and the 

Green Roof Water Recycling System �GROW�. 
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3.1.1.2.1 Horizontal and vertical flow reed beds 

The horizontal flow reed bed (HFRB) and vertical flow reed bed (VFRB) constructed 

wetlands systems were established in June 2004 at Cranfield University by �RIBS� � 

Oceans-ESU, Bradford, UK. Both beds comprised a double skinned plastic container 

( × 2m × 1m) and planted with the common reed (Phragmites australis) to a depth of 

0.7m in a sand: soil: compost medium (ratio 65:25:10) with coarse gravel (20 mm) 

around the inlet zone for the HFRB and around the outlet (collection) zones for both 

beds. Since the boxes were double skinned, lining was not necessary. 

 

Figure 3.1.2: Schematic diagram of the horizontal flow system showing 
distribution pipes. Pipes are buried in 20 � 40mm∅  washed gravel mound, 
followed by sand /compost/soil mix (ratios-65/25/10) to 100mm from top. 
 
 

 

 

 

 

 

 

 

Figure 3.1.3: Vertical flow distribution and collection pipes. Pipes are buried in 
150mm (from base) 20 � 40mm∅  washed gravel, followed by ~700mm 
sand/compost/soil mix (ratios - 65/25/10). 
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Oceans-ESU, Bradford, UK. Both beds comprised a double skinned plastic container 

(3m × 2m ×1m) and planted with the common reed (Phragmites australis) to a depth 

of 0.7m in a sand: soil: compost medium (ratio 65:25:10) with a coarse gravel 

(20mm) around the inlet zone for the HFRB and around the outlet (collection) zones 

for both beds. Since the beds were double skinned, lining was not necessary. 

 

3.1.1.2.2 Green Roof Water Recycling System 

The Green Roof Water Recycling System �GROW� is a patented invention of Water 

Works, London, UK; patent number GB 2375761 established in June 2004.  The 

GROW system was designed to sit on a pitched roof suitable for use in urban new 

developments where ground space is limited. However, with a wooden frame, GROW 

can be used on a flat roof or at ground level.  

 

The test rig (~7m2) comprised five rows of two troughs (connected in series) and 

placed onto a tiered wooden framework to represent a sloping roof. The first trough 

was approximately 1m above the ground and the lowest was 0.7m above ground. 

Weight is an important design consideration for GROW as it is intended to be located 

on roof tops with an approximate weight of 50 Kg m-2 (WWUK). Hence troughs were 

filled to approximately 10 cm depth with Optiroc (light-weight expanded clay). 

Optiroc media was selected for the GROW system due to its light weight. Gravel 

chippings (10 � 20mm diameter) were used to top the Optiroc to a height of ~16 cm. 

This was to prevent the Optiroc from floating and blocking weirs within the system. 

Influent grey water entered the rig via an inlet well into the first trough.  It then 

flowed horizontally through the media until reaching a well at the end of the row, 
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whereupon it flowed down a weir to the subsequent row. After passing through each 

row, the effluent exited the rig via an  

Inlet well (+filter)                                       1  

 

Unplanted; gravel & Optiroc only 

                                                            2 

 

 Iris pseudocorus (6) 

                                                              4 

 

Saururus cernuus (8) 

                                                            3 

 

Glyceria variegates (6) 

                                                              5 

 

Juncus effusus (6) 

                                                            6 

 

Iris versicolor (6) 

                                                              8 

 

Caltha palustris (7) 

                                                            7 

 

Lobelia cardinalis (8) 

                                                              9 

 

Mentha aquatica (7) 

 

 

 Mentha aquatica 

(7) 

                           10 

Outlet well 

(+media restrainer) 

 

Figure 3.1.4: Schematic diagram of �GROW�. Arrows indicate direction of flow 
of grey water through the rig. The numbers in parenthesis refers to the number 
of plants of each species within troughs. 
 

outflow pipe from the well at the end of the final row. A baffle and a weir within each 

trough were intended to force the flow through the whole of the media, reducing the 
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potential for short-circuiting. The entire system was covered with a reinforced 

membrane to prevent entry of rainwater.  Aquatic marginal plants, selected for 

pollutant removal and aesthetic characteristics (WWUK), were inserted into the 

media (according to Figure 3.1.4) through small slits in the membrane. A removable 

filter at the inlet of the first trough prevented entry of materials such as hair and other 

debris that might cause clogging. A coarse mesh (~2 mm) over the outlet hole in 

trough 10 prevented media from being washed into the effluent pipe. Aeration was 

provided for one hour each day via a porous hose lying at the bottom of each trough.  

 

3.1.3 Methods 

3.1.3.1 Monitoring periods 

After construction or establishment, constructed wetlands require a few months for 

vegetation and biofilm establishment, as well as enough time for the development of 

litter and standing dead compartments (Billore et al., 1999). Hence the first 

monitoring period covered the start-up of the treatment wetlands at a low hydraulic 

loading rate (160 L.d-1) in order to allow vegetation and microorganisms to 

acclimatise.  During the second period referred to as �low strength� in this study, the 

hydraulic load was increased to 480 L.d-1.  Aproximately 77 L of grey water is 

produced per person per day in a residence occupied by 2 people (Dixon et al., 1999), 

thus this provided each constructed wetland with grey water equivalent to that 

produced by approximately six people. Data from the first period (three months after 

commissioning) were not incorporated into result analysis as they do not truly reflect 

wetlands performance but rather system settling-in phase.  
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3.1.3.2 Operating conditions 

• Hydraulic loading rate 

At start up and for the subsequent three months, all three systems received 160 L d-1 

grey water applied on a continuous flow basis for HFRB and GROW and supplied as 

ten batches over 24 hours for the VFRB system. The hydraulic load on each system 

was increased to 480 l d-1 for the monitoring period reported in this study (September 

2004 to January 2007). This corresponds to hydraulic loading rates of 0.08 m d-1 for 

the reed beds and 0.07 m d-1 for GROW.  

 

• Hydraulic residence time  

Hydraulic residence time (HRT) for rows and rigs was assessed using lithium (Li) 

tracer according to the method outlined in Headley and Kadlec (2005). Tracer was 

added to the influent stream at the inlet well for GROW and with the influent stream 

for the reed beds. Water samples were collected at hourly intervals from outlet pipe 

for the reed beds, whilst at weirs at the end of each row for row tracer studies and 

sampling point after row 5 for the GROW rig. Li concentration in the samples was 

measured using ICP spectrophotometer. The hydraulic residence times were 2.1 days 

for both the HFRB and GROW rig and 2 hours per batch for the VFRB.  

 

3.1.3.3 Porosity and hydraulic conductivity 

Hydraulic conductivity of used and unused reed bed media was determined by the 

Falling Head Permeameter whilst that of GROW for the unused gravel and Optiroc 

was determined by measuring the fraction of pore volume to total volume occupied 

by gravel and Optiroc in a measuring cylinder.   
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• Falling Head Permeameter  

 
 

 
 
Figure 3.1.5: Schematic diagram of the Falling Head Permeameter 
 

The falling head method measures the permeability of fine textured soils where the 

rate of flow would be too small to measure with a constant head permeameter. The 

hydraulic head at the top-gradient end is allowed to decline with time.  Undisturbed 

samples taken at 0.5 cm and 30 cm below bed surface from both reed beds were 

saturated overnight to remove all air. This was essential as the presence of air will 

restrict the flow of water and when saturated, flow from the manometer will be equal 

to flow through the saturated soil sample. The falling head tubes containing water has 

its lower end attached to the top of the soil core. The rate of fall of water in the 

manometer tube as the water passes through each soil sample was determined by 

Soil sample

To constant 
head supply 

tap 

Falling head 
manometer tube 

h1 @ t1 

Outflow 

l 

h2 @ t2 
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recording the time taken for the level in the tube to drop 20 cm. All hydraulic 

determinations were conducted in duplicate. Based on Darcy�s law, the discharge 

through the saturated soil sample is proportional to the difference in hydraulic head 

between the inlet and outlet as well as the hydraulic conductivity (K) of the bed 

media given as: 

 

l
hKAQ ∆= ��������������������������... 3.1.1 

 

where A (m2), is the cross sectional area of the soil sample and l (m) is height of soil 

sample in metres.  Equation 3.1.1 on integration yields equation 3.1.2 from which the 

hydraulic conductivity, K (m s-1) was calculated. 
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where a(m2) is the cross sectional area of the manometer tube,  h1 and h2 are water 

height at manometer tube before and after experiment respectively, t1 and t2 is the 

start time and end time ( in seconds) taken  for the water to drop  20cm down the 

manometer tube.. 

 

3.1.3.4 Sampling for water quality parameters 

Influent and effluent water were generally sampled for water quality analysis twice-

weekly between 09:00-10:00 hours between July 2004 and September 2005 and 
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thereafter less frequent (once weekly) between October 2005 and March 2006. 

Following review of the performances of all three CWs, the VFRB was selected for 

unsteady state studies. Sampling for unsteady state studies was generally carried out 

weekly till January 2007. The following water quality parameters were monitored 

throughout the study period: Biological oxygen demand (BOD5), chemical oxygen 

demand (COD), suspended solids (SS), turbidity, temperature, pH, dissolved oxygen 

(DO2), indicator organisms (total coliforms, E .coli and faecal coliforms). 

Determination of NO3-N and PO4-P were also changed from fortnightly to once 

monthly concurrently. Water samples for other determinations such as fractionation, 

dissolved organic carbon, and particle size analysis were sampled when necessary. 

Water samples were collected in previously acid washed PVC containers. Sample 

bottles for microbial analysis were always sterilised before use. Representative 

samples of influent were collected at an inlet tap connected to the HFRB. Effluents 

from all three wetlands were collected at similarly located outlet taps from the 

respective beds.  Samples were generally analysed immediately after collection or 

stored at 5oC. In no cases were samples analysed after 24 hours.  

 

3.1.3.5. Analytical methods 

• Physical methods 

Temperature was determined in-situ whilst dissolved oxygen was measured 

immediately after sample collection using a DO analyser/meter using the Jenway 

9071 portable dissolve oxygen meter. pH was measured using the Jenway 3540 pH 

and conductivity meter after calibration of the instrument. Turbidity was measured 

with HACH 2100N turbidimeter (Camlab Ltd, Cambridge, UK) after being dispersed 
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for 30 seconds in an ultrasonic bath (Scientific Laboratory Suppliers, Hull, UK). 

Particle sizes of influent grey water and wetland effluents were measured by laser 

diffraction (Malvern Mastersizer 2000, Malvern UK). 

 

• Chemical methods 

Biological Oxygen Demand (BOD5) was measured using the procedure 5 day 

Biochemical Oxygen Demand from the Standard Methods for Examination of Water 

and Wastewater (APHA, 1998). Merck cell tests (Merck, VWR International, Poole, 

UK) were used for the following tests: chemical oxygen demand (COD) (0-150, 25-

1500 mg L-1), Ammonia nitrogen (NH4-N) (0.5-5.0 mg L-1), Nitrate nitrogen (NO3-N) 

(0.5-5.0 mg L-1), Phosphate phosphorous (PO4-P) (0.5-5.0 mg L-1). 

 

o Dissolved organic carbon 

Dissolve organic carbon (DOC) was measured as non purgeable organic carbon 

(NPOC) using a Shimadzu TOC-5000A analyser (Shimadzu, Milton keynes, UK).  

 

o Ultraviolet and specific ultraviolet absorbance 

Ultraviolet (UV) absorbance was measured at 254 nm using a Jenway 6505 UV/Vis 

spectrophotometer (Patterson Scientific Ltd., Luton, UK). Specific Ultra Violet 

Absorbance, SUVA (m-1L mg-1) - a measure of relative aromaticity or the 

contribution of aromatic structures to DOC (Metcalf and Eddy, 2003) was calculated 

as  

 

[(UV-254/DOC) ×100]����������������������. 3.1.4 
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o High performance size exclusion chromatography (HPSEC) 

HPSEC was carried out on samples filtered samples using an HPLC (Shimadzu VP 

Series, Shimadzu, Milton Keynes, UK) with a UV detection set of 254nm.  

 

o Fractionation of organics 

Distribution of hydrophobicities were obtained based on fractions retained on the 

XAD-4 and XAD-8 resin as outlined in Malcolm and McCarthy (1992). It involves 

separating dissolve organic matter present in grey water and constructed wetland 

effluents into their hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) 

components by XAD-8 and XAD-4 resin adsorption techniques. The procedure is 

categorised in three phases: preparation of the resin, separation of the dissolve 

organic matter into fractions and determination of organic matter in each fraction 

using a TOC analyser.  

 

! Resin preparation 

The cleaning method employed for the resins used in this study was a modified 

sequential Soxhlet extraction method according to Thurman and Malcolm (1981). 

Both XAD-8 and XAD-4 resins were separately slurried with 0.1M NaOH (1.5 L) 

and the fines decanted off. The resin was then stored in methanol for 24 hours after 

which the resins were Soxhlet extracted for 48 hours each with methanol, acetonitrile 

and methanol (~1.8 L). Following the sequential Soxhlet extraction, the resins were 

packed into the fractionation column and rinsed with ultrapure water until the column 
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eluate DOC was <1 mg L-1. The resins were finally rinsed with 250 ml each of 0.1M 

NaOH, 0.1M HCl and rinsed with DI water before use and in between extractions.  

 

! Resin fractionation and DOC measurement 

1 litre influent grey water and constructed wetland effluents were filtered through a 

0.45 µm glass fibre filter to remove suspended matter (Fujita et al., 1996). The filtrate 

was acidified to pH 2 using 1M HCl. The acidified filtered sample was put through 

the XAD-8/XAD-4 column pair. The eluate from both resins contained the 

hydrophilic fraction. The organic matter retained in the XAD-8 and XAD-4 columns 

were eluted with 0.1M NaOH. The eluate from the XAD-8 column was the 

hydrophobic fraction and the XAD-4 the transphilic fraction. The organic content in 

each fraction was determined by measuring the DOC using a TOC analyser. The resin 

fractions obtained consisted of HPO, TPI and HPI. The recovery of the DOC was 

quantified by measuring samples volumes passed through the resin, the volume of 

fraction produced and the DOC concentration measured by the TOC analyser. 

 

o qualitative identification of iron 

About 5 ml aliquot of influent and wetland effluent was treated with aqueous 

ammonia and caustic alkali to test for the presence of iron. An orange/rusty brown 

precipitate characteristic of iron confirmed the presence of iron. The concentration of 

dissolved iron in samples were analysed using an ICP Spectrophotometer. 
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• Microbial methods 

Enumeration of total coliforms and Esherichia coli (MPN cfu 100ml-1) was carried 

out using the method Colilert 18 with quanti-tray 2000 (Idexx, UK) and faecal 

enterrococci (MPN cfu 100ml-1) using the Enterolert with quanti-tray 2000 (Idexx, 

UK).  

 

o Determination of microbial activity of constructed wetland media 

Microbial activity of bed media was determined by an enzyme (dehydrogenase) 

assay. Soil: sand: compost media (for the reed beds) and an aliquot of suspension 

from gravel and Optiroc shaken in tap water from the GROW rig were incubated with 

2, 3, 5-triphenyl tetrazolium chloride for 24 hours at 37oC, followed by extraction and 

measurement of the formazan formed by the microbes present in the innoculum. 

 

Fresh soil-sand-compost from HFRB and VFRB was sampled along a vertical 

gradient using a half-inch diameter polyvinyl chloride (PVC) pipe. Sampling was 

done on three separate occasions and was carried out to obtain samples from much of 

the bed surface. For �GROW�, 200 ml container full with gravels and Optiroc from 

troughs were shaken in 10 ml DI water to obtain slurry. 2.5 ml sample of slurry and 

2.5g samples of reed bed media pooled by quartering were placed into capped glass 

tubes for microbial activity investigation and moisture content determination 

respectively.  1.75 ml of 1% 2, 3, 5-triphenyl tetrazolium chloride (TTC) solution was 

added to each glass tube followed by 0.5 ml of 3% CaCO3. The contents in the glass 

tubes were mixed using a vortex mixer for ~45 seconds to obtain a homogenous 

mixture. Tubes were then placed in test tube rack and completely wrapped with a tin 



 87

foil to prevent contact with light as TTC is light sensitive. The rack was incubated at 

37oC for 24 hours in the dark during which dehydrogenase enzymes convert the TTC 

to a red coloured substance called Formazan. Formazan is insoluble in water but 

soluble in methanol. Hence, following the 24 hours incubation period, 25 ml 

methanol was added to the glass tubes to dissolve the formazan. Tubes were 

whilmixed to obtain a homogenous mixture of its content and allowed to settle for 1 

hour after which a representative 5 ml samples were transferred from the glass tubes 

using a disposable plastic pipette into a cuvette. The absorbance was read at 485nm. 

Dehydrogenase activity was calculated according to the equation: 

 

)(
54.29)24( 111

gdryweight
volumeabsorbncehggFormazan ××=−−−µ ��������..  3.1.5 

 

3.1.3.6 Maintenance and management 

All three wetlands were usually inspected twice weekly. Reeds (Phragmites australis) 

shoots were trimmed down to about 50cm at the end of winter between 2004 and 

2007 to remove dead plant stem and to allow the redevelopment of new strands of 

reeds. Dead leaves on bed surface were always removed to allow air diffuse into the 

bed. Weeding was done once monthly. Weeding is believed to maintain the hydraulic 

conductivity of the bed surface.  Influent pipes of all three wetlands were flushed 

once weekly. For GROW, major maintenance included regular (at least fortnightly) 

cleaning of filter at inlet wells, cut back of proliferated plant shoots and leaves above 

membrane and trimming of proliferated roots. All influent pipes were lagged during 

winter to prevent freezing. 
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3.1.3.7 Statistical analysis 

A one-way analysis of variance was performed (Genstat 8th editon, release 8.1. Lawes 

Agricultural Trust, Rothamsted, UK) to determine differences between influent grey 

water and effluent from each wetland.  Water sample (influent, effluent from HFRB, 

VFRB and GROW) was incorporated as the factor while each water quality parameter 

in turn provided the y variate. Data for microbial indicator, turbidity and suspended 

solids were log10 transformed to meet the assumptions of ANOVA. Fisher�s LSD test 

was used to identify significant differences.  

 

3.2 Reactive barriers for the removal of Phosphorous and metals (Cu and Ni) from 

2o sewage effluent 

 

3.2.1 Materials  

3.2.1.1 Sample (adsorbent) preparation 

Table 4.2.1 list the different adsorbent investigated in this study for P removal ability. 

All adsorbent except for Ochre, Red mud and Bauxol were rinsed with deionised (DI) 

water to remove dust particles, oven dried at 105 oC and cooled in a desiccator prior 

to their use. Ochre obtained in slurry (moisture content ~ 90%) was oven dried at 105 

oC prior to analysis. Red mud was obtained in power. Portion of Red mud was 

neutralized with sea water to obtain Bauxol according to procedure outlined in 

McConchie et al., (1999 and references therein). The material formed (BauxolTM 

slurry) was filtered using a CF/C filter paper,   oven dried at 105 oC, cooled in a 

desiccator and re-crushed to obtain a fine powder. This material was used in this 
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research as BauxolTM.  BauxolTM and Ochre, were also used to investigate their ability 

to remove Cu and Ni from sewage effluent. 

 

3.2.1.2 Analysis of samples 

In general, samples for soluble reactive phosphorous (SRP) were analysed using the 

Merck cell test kit.  pH was measured using the Jenway 3540 pH and conductivity 

meter after calibration of the instrument. Chemical composition and mineralogy were 

investigated using a scanning electron microscope coupled with energy dispersive X-

ray spectroscopy (SEM-EDS, Scanning Electron Microscope XL 30 SFEG, Philips, 

The Netherlands) and XRD (Powder X-ray diffractometer D5005, Siemens, 

Germany) tools. Porosity, bulk density and Cation exchange capacity (CEC) of the 

adsorbents were determined using standard soil science procedure methods 

(Bascomb, 1964). Surface area was measured using 10 point nitrogen adsorption BET 

method (using liquid nitrogen bath) on the Gemini Analyser (Micromeritics). Prior to 

the measurement, the samples were degassed (using N2) at 100oC overnight using 

FlowPrep060. Two reference materials: Kaolinite and carbon black and one 

replicated sample were included in the analysis protocol for quality control purpose. 

The surface area analysis was performed under the following conditions: 500 mmHg 

min-1 evacuation rate, 760 mmHg. min-1 saturation pressure, 5s equilibrium time.  

 

3.2.1.3 Batch isotherms and kinetic experiments 

Batch equilibrium isotherms were done by using sewage effluent ( typical quality: 

SRP - 5.3 ± 0.5 mg L-1; COD - 67.5 ± 5.1 mg L-1; pH - 7.3 ± 0.4; SS - 12.0 ± 6.8 mg 

L-1; turbidity 1.41 ± 0.1 NTU) spiked with phosphate solutions (~1mgP ml-1) to 
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increase the P working range from ~5 to 10 mg L-1. Phosphate solution was prepared 

by dissolving anhydrous potassium orthophosphate (KH2PO4) powders (Fisher 

Scientific BDH analytical reagent grade) in deionised (DI) water. Known mass of 

adsorbents were shaken with 100ml aliquots of sewage effluent (range 0- 10 mg L-1) 

in a 250ml erlenmeyer flask at 150 rpm using an orbital shaker for 24hrs at 20oC. 

Blanks containing adsorbent in DI water were included in all experiment. At the end 

of the 24 hr period, the solutions were filtered through GF/C filter. The equilibrium 

pH of the filtrate was measured and immediately analysed for SRP.  Optimum contact 

time and kinetic studies was determined by shaking a known mass of the adsorbent in 

sewage effluent (5 mg L-1 phosphate) over a given period of time. Aliquots were 

withdrawn, filtered and determined for SRP. 

 

Batch adsorption studies for Cu and Ni were carried out by agitating in an orbital 

shaker a suspension of 0.1g sorbent in 100 ml sewage effluent containing known 

amount of Cu and Ni salts in a 250ml erlenmeyer flask for 24hrs at 150 rpm at 20oC. 

Both Cu and Ni salts used were of analytical grade. Blanks containing adsorbent in 

DI water were included in all experiment. At the end of the experimental period (24 

and 10hrs for isotherm and kinetic investigation respectively), all samples were 

filtered through a CF/C filter paper. Cu and Ni concentrations before and after 

experiment were determined using graphite Furnace Atomic Absorption 

Spectrophotometer according to standard procedure (APHA, 1998). Kinetic study 

was determined by shaking a known mass of the adsorbent in sewage effluent over a 

predetermined (10 hour) period. Aliquots were withdrawn, filtered and determined for 

Cu and Ni as previously stated. 
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3.2.1.4 Bed volume experiments 

Bed volume experiments were carried out using rectangular trays for steel slag, Ochre 

and bay oxide and column for Filtralite-P, Bauxol and red mud. Both columns and 

trays were fed continuously with treated sewage effluent using peristaltic pump 

(Watson Marlow, Bredel pump, UK). Columns and trays were kept saturated. The 

columns were fed from the top but with the outlet pipe set at the surface of adsorbent 

in the column to keep the columns saturated. Flow onto and through the trays was 

horizontal to mimic horizontal flow in wetlands. The detention times for various bed 

volume trials were as follows: Ochre - 6 hrs, Bay oxide - 6 hrs, Steel slag 1 and 25hrs, 

Filtralite-P- 1 hr. Samples from the inflow and outflow trays were taken regularly 

whilst sampling in the columns were done hourly and later daily or regularly. 

Samples were analysed for SRP concentration using Merck�s cell kit and pH as stated 

previously.  

 

3.2.1.5 Regeneration experiments 

Following adsorption experiments, the spent adsorbents for Ochre and Steel slag were 

rinsed with DI water and oven dried. Appropriate amount were placed in desorbing 

reagents (0.05M NaHCO3, HCl , NaOH and NaCl) under static conditions for 24 

hours in five batches for Ochre and steel slag until desorption was almost complete. 

The desorbed phosphate was determined by analysing the desorbing media using the 

Merck cell kit and ICP analyser. The reusability of the adsorbent following 

desorption was determined for steel slag bed volume experiments. 
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3.2.2 Data evaluation 

Experimental equilibrium sorption data from both phosphorous (P) and metal (CU 

and Ni) studies were examined by fitting data on linear plots of two-parameter 

isotherm models � Freundlich, Langmuir and Dubinin-Radushkevich. Data obtained 

for P removal from bed volume studies were examined using the models of Bohart 

and Adam (1920) and Sheng and Huang (1999).  

 

The linear form of the Freundlich equation for adsorption is given as:  

 

eFe C
n

Kq log1loglog += ��������������������.. (3.2.1) 

 

where, qe (mg.g-1) is the amount of phosphate adsorbed per unit weight, Ce (mg.L-1) is 

the equilibrium phosphate concentration, KF (mg.g-1)  and 1/n (mg.g-1) are Freundlich 

constants related to adsorption capacity and adsorption intensity respectively. 

 

The linear form of the Langmuir equation for adsorption is given as:  
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where, KL (L g-1) is the Langmuir isotherm adsorption constant related to the enthalpy 

of adsorption, Qo (mg.g-1) is the adsorption capacity and Ce (mg. L-1) is the 

equilibrium concentration.  
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The linear form of the Dubinin-Radushkevich (DR) isotherm model is given as:  

 

DRoe Kqq −= lnln ε2 ����������������������. (3.3.3) 

 

ε is Polanyi potential which is related to the equilibrium concentration as follows, 
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where KDR (KJ2 mol -2) is related to the free energy of adsorption and oq is the 

Dubinin-Radushkevich isotherm constant related to the degree of sorbate sorption by 

the adsorbent surface. 

 

The efficiency of the adsorption process was investigated by the dimensionless 

separation constant, RL (equation 5) to determine the efficiency of phosphate 

adsorption. RL values in the range 0<RL<1 indicates a high affinity adsorption. 
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where Co ( mg.L-1) is the initial SRP concentration.  

The energy change (E) for the adsorption process was determined from the Dubinin-

Radushkevich equation given as: 
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DRK
E

2
1= ��������������������������. (3.2.6) 

 

Data from P bed volume trials were analysed using models of Lin and Huang (1999) 

and Bohart and Adams (1920). The time taken for breakthrough to occur when a 

sorbate solution travels a column length (bed depth) containing an adsorbent 

proposed by Bohart and Adams (1920) is given as: 
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where No is the adsorption capacity (mg solute per g adsorbent), Ka is the rate 

constant in bed depth service time (L (mg h)-1) and Z is bed depth/length of column 

(m). The breakthrough profile in the original equation is given as:  
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where W is the bed capacity (total weight of sorbate adsorbed). 

 

Lin and Huang (1999) developed equation (3.2.9) for a sorbate concentration flowing 

through a stationary adsorption column: 
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For a symmetrical breakthrough plot and at 50% breakthrough (i.e.Ct/Co = 0.5) 

Equation (3.2.9) simplifies to: 

 

τFCW oe = �������������������������� (3.2.10) 

 

3.2.3 Statistical analysis 

One way analysis of variance was performed to test for significant differences at 5% 

level. Correlation analysis between variables was performed using the Spearman�s 

correlation ranking. The relationship assumed that the P-sorption capacity (dependent 

variable) was influenced by the CEC or Fe, Al, Si and Ca content (independent 

variable) of the adsorbents. 
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CHAPTER 4  Constructed wetlands for grey water treatment and reuse 

 

4.1 Results  

4.1.1 Influent grey water quality 

A summary of the physical, chemical and microbiological parameters of the influent 

grey water during the monitoring period is presented in Table 4.1.1. Pollutant 

parameters in influent grey water displayed considerable variability in concentration 

throughout the monitoring period and this is evident in scatter plots of pollutant 

parameters (Appendix 4). Such variations are consistent with reported variability of 

pollutant concentration in grey water within individual sites (Jefferson et al., 2004; 

Lazarova et al., 2003; Eriksson et al., 2002; Jefferson et al., 1999). This is because, 

domestic grey water quality is site specific and reflects differences in lifestyle of 

individuals (Ramon et al., 2004; Eriksson et al., 2002). Variability of grey water 

pollutant load is emphasised at smaller scales where the activities within one 

household have a proportionally greater impact on grey water quality. The period 

covered in this study covers approximately three academic years. Thus, it is possible 

that change in occupancy between academic years and individual user behaviour of 

personal products may have contributed to the varying influent concentration during 

the monitoring period. To illustrate further, BOD and turbidity of low strength 

influent grey water from the same source averaged 22.3±1.2 mg L-1 and 25.6±3.1 

NTU in 2004 compared to 16.7±1.0 mg L-1 and 15.6±2.3 NTU in 2005 academic 

season respectively. 
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With the exception of dissolved oxygen and nutrients, level of pollutants increased 

considerably from low to high strength when light grey water was dosed with 

shampoo to increase the organic load so that it was comparable to reported ranges in 

the literature (Table 4.1.2). The resulting organic strength (155.8±9.3 mg. L-1; COD 

475.0±54.9 mg. L-1) corresponds to mid range domestic grey water strength reported 

in the literature (Eriksson et al., 2002).  

 

Table 4.1.1. Summary of influent grey water quality, Values represent mean ±se 
except for indicator organisms which is log10 units, n = number of replicate 
samples. 

Parameters   Low strength High strength 
Physical (mg. L-1)   
 DO2  3.2±0.3(n=67) 1.8±0.3(n=22) 
 Turbidity NTU) 18.9±1.8(n=70) 62.9±11.7(n=28) 
 Suspended solids   28.0±3.8(n=70) 86.7±12.5(n=27) 
Chemical(mg. L-1)   
 BOD5 19.3±0.9(n=71) 155.8±9.3(n=25) 
 COD 84.4±3.8(n=40) 475.0±54.9(n=13) 
 NO3-N 1.5±0.2(n=20) 1.2±0.6(n=5) 
 NH4-N 1.7±0.4(n=20) 0.3±0.1(n=5) 
 PO4-P  0.7±0.1(n=20) 0.3±0.1(n=5) 
Microbial indicators (cfu 100 ml-1)   
 Total coliform 6.0±5.4(n=57) 7.7±7.3(n=16) 

 E. coli 3.4±2.8(n=57) 3.2±2.6(n=16) 
 Faecal enterococci  3.9±3.6(n=57) 3.1±3.0(n=16) 

 

 This resulted in a three-fold increase in turbidity and solids whilst BOD and COD 

organics increased six and eight-fold respectively (Table 4.1.1). The magnitude of 

DOC increase was similar to BOD and COD organic. Of the three microbial quality 

indicators (total coliform, E. coli and faecal enterococci) monitored in the influent 

grey water, only total coliform showed an increased with approximately 2 log10 units  

compared to the low strength grey water. The concentration of E. coli at high strength 

was similar to low strength whilst faecal enterococci decreased (Table 4.1.1). The 2 
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log10 increase in the total coliforms may have been due to the presence of the 

opportunistic pathogen Pseudomonas aeruginosa in the influent grey water, which 

increased in a similar trend to total coliform from low to high strength grey water 

(Winward, 2007). Winward (2007) showed that total coliforms were suitable 

indicators for Pseudomonas aeruginos in the influent grey water during the study 

period.  

 

The influent grey water utilized during low strength period (light grey water) was 

weak in terms of organic strength with mean BOD concentrations of 19.3±0.3 mg.L-1. 

Such concentration lies at the low end of the range for typical grey water strength 

from similar sources (bath, hand basin and sink) reported in the literature (Table 

4.1.2). The very low organic strength of the influent grey water compared to literature 

values (Table 4.1.2) could be attributed to the lifestyles and water usage of occupants 

in the Feden flats. The BOD: COD ratio gives an indication of the biodegradability of 

organics within a particular source water. The BOD: COD ratio of the influent grey 

water during the monitoring period ranged from 0.21 at low strength to 0.23 at high 

strength.  
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Table 4.1.2 Comparison of grey water characteristics 

Category  Reference  Grey water source 
BOD (mg L-1)   
8.7-34 This study (LS) Hand basin, showers, sinks 
225-840 This study (HS) Hand basin, showers, sinks & dosing 

shampoo 
59 Friedler et al., 2005 Bath, shower and washbasin 
42-84 Nolde,1999 Bath, shower 
96-181 Al-Jayousi, 2003 Handbasins, showers, sinks 
BOD:COD 
0.21-0.23 This study Hand basin, showers, sinks 
0.34-0.35 Jefferson et al., 2004 Hand basin, showers, sinks 
0.37 *Friedler et al., 2005 Bath, shower and washbasin from 

university family flats  
0.46 Ramon, 2004 Shower water 
0.50-0.91 Merz et al, 2007 Shower water 
0.3-0.8 Metcalf and Eddy, 2003; 

Gray, 2004 
Domestic sewage 

C:N:P 
100:3.3:0.9 This study (LS) Hand basin, showers, sinks 
100:0.3:0.1 This study (HS) Hand basin, showers, sinks 
100:2.3:0.1 Jefferson et al., 2004 Bath 
100:2.9:0.1 Jefferson et al., 2004 Shower 
100:8.0:0.2 Jefferson et al., 2004 Hand basin 
100:20:1 Metcalf and Eddy, 2003 Domestic sewage 
* = calculated from average total BOD and COD reported. 

 

Biodegradability of waste waters usually range from 0.3 to 0.8 (Metcalf and Eddy, 

2003). Low ratios (e.g. <0.3) are less biodegradable. This implies the biodegradability 

of the grey water used in this study (e.g. 0.21-0.23<0.3) was low. It was lower than 

grey water obtained from similar source reported in the literature (Table 4.1.2). The 

lower value of BOD: COD of the influent grey water suggest that some degradation 

occurred in the pipework between source and grey water collection tank. 

Investigation showed that 30% degradation occurred between the collection tank and 

inlet point of the wetlands. This is demonstrated by a reduction of BOD5 from 21 to 

15 mg.L-1 and COD from 136 to 94 mg.L-1 when comparing samples from the 
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collection tank to the inlet of the wetlands. This result is in agreement with findings 

of changes in grey water quality on storage. To illustrate, Dixon et al., (2000) showed 

that storage of grey water can improve its water quality through settling of suspended 

materials, and aerobic growth and anaerobic release of soluble COD. Gross et al., 

(2007a) reported that domestic grey water undergo rapid, short � term changes in 

waste composition in storage. Jefferson et al., (1999) reported that grey water follow 

first order decay kinetics equating to a 50% organic reduction over a four hour period. 

 

The specific ultraviolet absorbance (SUVA) of the grey water throughout the study 

period was less than 1 L.mg-1.m-1. It has been shown that waters with low SUVA (<3 

L.mg-1.m-1) contain predominantly hydrophilic and low MW materials (Goslan, 

2004). The hydrophilic nature of the grey water was confirmed by results obtained 

from XAD fractionation and HPSEC studies. The Hydrophilic content as revealed by 

XAD fractionation average 70%.  Results of HPSEC corroborate the findings from 

SUVA and XAD fractionation. The majority of the organic material contained within 

the grey water had an eluted time of ~10-12 minutes (Figure 4.1.1).  
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Figure 4.1.1 HPSEC chromatogram of influent grey water at high strength 

 

This elution time has been reported to correspond to smaller MW hydrophilic 

fractions in contrast to high MW hydrophobic fractions which have a much shorter 

elution time of ~6 minutes (Fearing et al., 2004). According to reported calibration 

between elution time of organics through a chromatographic column and MW of 

dissolved organics of NOM, fractions molecular size of 0.5 � 1 KDa and >5KDa 

corresponds to an elution time of 10.5 � 10.8 and <8 minutes respectively (Goslan, 

2004). In comparison to other grey water sources, Jefferson et al., (2004) reported 

molecular sizes of >5 KDa, 3-4 KDa and 0.5-1 KDa corresponding to elution times of 

6.4-6.7 minutes, 7.6-7.8 minutes and 9.7-9.9 minutes respectively of organic 

molecules contained in grey water. Elsewhere, a much larger molecular size 

distribution of organic molecules in grey water has been reported. For, instance, 

Ramon et al., (2004) reported MW sizes in the range <200 Da to >1µm (~52% = 

>400 KDa, 30 KDa -200 KDa = ~34%) for organics in shower grey water based on 
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result on COD rejection by filtration at different MWCO ratings. In comparison, 

typical sizes of natural organic matter (NOM) in wastewater range from 2 to 5 KDa 

for hydrophobic organics and <2 KDa for hydrophilic organics (Fearing et al., 2004). 

A 30% HPO content of this grey water source is comparable to a range of 30-40% 

reported for individual shower water (Pidou, 2006) but less than 40-60% reported for 

river water (Parsons and Jefferson, 2006; Goslan, 2004).  

 

Nutrient (N and P) concentrations (measured as NH4-N, NO3-N and PO4-P) in 

influent grey water were low (Table 4.1.1) and consistently below reuse standard (e.g. 

<10 mg L-1 NH4-N for toilet flushing in China, Ernst et al., 2005) throughout the 

duration of the study. The low values of N and P in this grey water source is typical 

of light grey water ( grey water emanating from bath, shower, sinks and handbasins 

with low levels of N and P concentrations) due to the absence of kitchen and laundry 

wastewaters (Eriksson et al., 2002; Baker, 1998; Shin et al., 1997). The COD: N: P 

ratio at low and high strength was low, averaging 100:3.3:0.09 and 100:0.3:0.07 

respectively. Consequently, in both low and high strength period, C: N were >>10:1 

indicating nutrient deficiency.  The optimum ratio for biological treatment has been 

quoted as 100:5:1 (Gray, 2004). Ratios below this value potentially reduce the 

efficiency of biological processes (Gray, 2004, Jefferson et al., 2004). Indeed, 

nutrient (N or P) and trace metals (Zn or Cu) additions to light grey water to correct 

nutrient imbalance have been shown to increase the efficacy of biological systems 

treating grey water (Jefferson et al., 2001). 
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The level of physical pollutants (solids and turbidity) contained within the influent 

grey water was highly variable throughout the monitoring period (Figures 17 & 18, 

Appendix 4). To illustrate, concentrations of turbidity and solid in the influent grey 

water range from 3 to 488 NTU and 3-332 mg L-1 for turbidity and suspended solids 

respectively. The mean suspended solid mass loading of 2.24 and 6.96 g m-2 d-1 at 

low and high strength respectively are within the range of 1- 10 g m-2 d-1 suspended 

solids loads recommended to treat secondary domestic wastewaters under temperate 

conditions (Kadlec and Knight, 1996). However, care must be taken when applying 

these �rule of thumb� guidelines as other factors such as the nature of wastewater and 

substrate effective particle size (e.g. d10) influence treatment performance (Austin et 

al., 2007).  Particle sizes of solids in the influent grey water range from 1 - 900 µm.  

Particle size in the range of 5-200 µm have been reported for grey water (Ramon et 

al., 2004). Similarly, Jefferson et al., (2001) reported particle size from different 

bathroom sources to be in the range of 10-100 µm. This indicates that the influent 

grey water used in this study occasionally contained larger particles compared to 

those reported in earlier studies which also reflect the variability in particle size of 

solids in grey water (Jefferson et al., 2004).  

 

Total coliforms, E. coli and faecal enterocci in the low strength grey water averaged 

6.0±5.4, 3.4±2.8 and 3.9±3.6 log10 respectively. In the high strength grey water, the 

concentrations of total coliforms were approximately 2 log10 units greater. Mean 

concentration for E. coli remained fairly constant whilst that of faecal enterocci fairly 

decreased slightly (Table 4.1.1). In general, mean concentration of total coliform in 

both low and high strength grey water is at the high end of literature data for grey 
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water from similar sources (bath, shower and sink) of between 3.0 and 3.5 log10 cfu 

100ml-1 (Eriksson et al., 2003; Nolde, 1999). Rose et al., (1991) reported total 

coliforms varying between 1 and 8 log10 cfu 100 ml-1 of grey water originating from 

showers and bath. The level of faecal enterococci (~104) recorded in this study is also 

at the upper end of literature data. For instance, levels of faecal enterococci as high as 

105 in grey water usually corresponds to sources emanating from families having 

younger children (Lazarova, 2003: Lazarova, 2001; Surendran and Wheatley, 1999 

Rose et al., 1991). 

 

4.1.2 Wetlands performance 

4.1.2.1 Organics 

Result of the treatment efficiency of the three constructed wetlands fed with low 

strength grey water revealed overall removal of BOD5 of 89%, 95% and 93% for the 

HFRB, VFRB and GROW respectively. Corresponding residual effluent BOD5 

concentrations were 2±0.1, 1±0.1 and 1.3±0.1 mg.L-1 for HFRB, VFRB and GROW 

respectively (Figure 4.1.2). Comparison of the performance of the different wetland 

systems revealed no significant difference (P>0.05, n = 71) between the distribution 

of effluent concentrations produced from the three technologies (Figure 4.1.2).  

Comparison of the distributions revealed that all three technologies were capable of 

robustly treating light grey water. This is evidence by the shape of the cumulative 

curves presented in Figure 4.1.3. 
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Figure 4.1.2 Performance of the technologies during low strength grey water 
treatment 
 

0%

20%

40%

60%

80%

100%

0 10 20 30 40

BOD5 (mg L-1)

Pe
rc

en
til

e

Influent HFRB VFRB
GROW USEPA Std Australia Std

 
 
 

Figure 4.1.3: Percentile curves for the three wetlands removing organics at low 
strength 
 

The influent grey water was represented by a robustness gradient (i.e. ratio of the 

change in percentile on the y-axis to the change in cumulative value of the x-axis) of 

5 whilst the gradient of the wetlands were 27, 32 and 51 for HFRB, VFRB and 
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GROW respectively. All treatment robustness curves are characterized by a tail near 

the maximum observed values indicating what percentage of the performance is most 

variable. In the current case, the tail occurred for only the top 20% of the data and 

decayed at a gradient of 4, 4 and 12 for HFRB, VFRB and GROW respectively. The 

robustness gradient and tailing of robustness curves are indicative of highly robust 

technologies (Jefferson et al., 2000). 

 

Supplementing the grey water with a bathing shampoo to increase the organic content 

resulted in influent grey water BOD5 of 155±9.3 mg.L-1 which is towards the high 

end of previously reported grey water strengths of 90-185 mg.L-1 for similar grey 

water source (Jefferson et al, 2004). Thus, the two trial periods represent the range of 

possible situations that may be encountered. Treated grey water concentrations at 

high strength were 51±7.5, 4.3±1.3 and 76.2±9.5 mg.L-1 with corresponding removal 

efficiencies of 66%, 97% and 53 % for HFRB, VFRB and GROW respectively 

(Figure 4.1.4, Table 1 Appendix 4). In contrast to the low strength tests where 

residual concentrations were not significantly different (p>0.05, n = 71) from each 

other,  
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Figure 4.1.4: Performance of the technologies during high strength grey water 
treatment. 
 

 

treatment performances at high strength from the three wetlands were found to be 

highly significant from each other (p<0.0001, n = 25). There was a notable decrease 

in the performance of the HFRB and the GROW system when organic load was 

increased from low to high strength (Figure 4.1.5), therefore a correlation analyses 

was carried out to investigate the effect of influent grey water on wetland residual 

concentration. Result showed that concentration of influent grey water correlated 

strongly with residual organics in wetland effluents, especially for HFRB and GROW 

(rs= 0.50, P<0.001 for HFRB; rs = 0.59, P<0.01 for GROW, rs =-0.22, P<0.001 for 

VFRB). In terms of compliance to worldwide standards, the VFRB, HFRB and 

GROW systems met the USEPA standard of 10 mg.L-1 BOD5 on 80%, <10% and 

<10% respectively of the samples (Figure 4.1.5). Equivalent analysis to the less 

stringent Australian standard still resulted in very low compliance (~15%) for both 
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HFRB and GROW whilst compliance for VFRB increased from 80% to 90% (Figure 

4.1.5).  
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Figure 4.1.5: Cumulative plots for influent grey water and wetlands effluent at 
high strength. 
 

Compared to the robustness of the three technologies treating the low strength grey 

water, a much lower robustness was achieved at high strength (Figures 4.1.3 and 

4.15). For instance, the response of the robustness curves of both the HFRB and 

GROW show similar shaped curves to the influent curve. In contrast, the observed 

resistance to sudden deviation from the y-axis by the VFRB indicates that the VFRB 

was more robust compared to the HFRB and GROW. 

 

Wetland residual COD concentration at low strength averaged 22.9±2.6 for HFRB, 

14.6±2.1 for VFRB and 14.8±2.8 for GROW with corresponding removal efficiencies 

of 73%, 83% and 83% respectively. Differences in average removal efficiencies were 
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not significant (p>0.05, n = 40). At high strength, an average influent COD 

concentration of 475±0 was only significantly reduced by VFRB (mean residual of 

29.1±8.2 corresponding to 94% removal). Residual concentrations for the HFRB and 

GROW averaged 117.5±14.7 and 148.1±20.1 mg L-1 corresponding to a removal of 

75% and 69% respectively. In contrast to the low strength feed where removal 

efficiency of COD was lower compared to BOD in all three wetlands, at high 

strength, removal efficiency of COD was greater than BOD for HFRB and GROW 

(Table 1, Appendix 4).   

 

The ability of the three wetlands to remove organic matter during low strength and 

high strength trials was also reflected in the BOD: COD ratio of the treated effluents. 

The BOD: COD ratios of the wetlands at low strength were 0.095, 0.08 and 0.09 for 

HFRB, VFRB and GROW respectively. These ratios lie at the top end of a ratio of 

0.1-0.3 obtained for final treated effluent (Metcalf and Eddy, 2003). Comparative 

data in the literature reported a BOD: COD ratio of 0.04 for an MBR unit treating 

shower water from sports and leisure club (Merz et al., 2007).  At high strength, the 

BOD: COD ratio of the treated effluents for both HFRB and GROW increased to 0.45 

and 0.50 respectively. These values fall outside the range of 0.1-0.3 for final treated 

effluent and mid way the range of 0.3-0.8 for untreated waste water (Metcalf and 

Eddy, 2003). This indicates deterioration of treatment performance at high strength. 

The BOD: COD ratio for the VFRB remained low, averaging 0.17. In comparison, 

Pidou (2006) obtained a BOD: COD ratio of 0.11 and 0.02 for the same grey water 

source reported in this study using an MCR and MBR respectively in a 

complementary study. 
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4.1.2.2 Total dissolved organic carbon and fraction removal 

All three CWs efficiently remove DOC at low strength. Residual DOC in wetland 

effluents averaged 3.8, 45 and 3.3 mg. L-1 for HFRB, VFRB and GROW respectively. 

Differences between residual DOC of the three wetlands were not significant (p>0.05, 

n = 3). However, at high strength, significant (P=0.01, n = 8) differences in treatment 

performance in removing dissolved organic carbon (DOC) was observed, with an 

average removal of 57% for VFRB, 3% for HFRB and 26% for GROW. Residual 

DOC in wetland effluents at high strength averaged 35.5±6.6, 15.3±7.9 and 25.9±7.5 

mg. L-1 for HFRB, VFRB and GROW respectively. DOC from CW in the range of 

2.9 to 10.5 mg. L-1 treating lagoon effluent of influent concentration 15-25 mg. L-1 

has been reported (Pinney et al., 2000). Influent DOC level was found to influence 

residual DOC in the three wetland effluents. This relationship was explored using 

linear regression analyses with influent DOC as an independent variable and effluent 

DOC as the dependent variable. DOC removal from all three CWs correlated 

significantly and strongly with influent DOC level (R2 = 0.94 for VFRB; 0.82 for 

HFRB and 0.96 for GROW). Furthermore, the removal of DOC from VFRB 

generally decreased below 50% at influent DOC concentration of ≥ 40 mg.L-1, whilst 

minimal removal occurred in HFRB and GROW at influent concentration of ≥ 20 

mg.L-1. BOD: TOC ratios of the three wetland effluent averaged 1.46, 0.29 and 2.9 

for HFRB, VFRB and GROW respectively. The BOD: TOC ratio for the VFRB is in 

agreement to values of 0.2 � 0.5 normally observed for final treated effluent. The 

ratios for HFRB and GROW are well above this range and lie mid way in the range of 

1.2 � 2 for untreated waste water (Metcalf and Eddy, 2003). 
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The result of XAD fractionation of the influent grey water and wetland effluents at 

low strength revealed that all three CWs removed hydrophilic (HPI) fractions and 

hydrophobic (HPO) fractions (Figure 4.1.6a and b) with HFRB and GROW 

exhibiting the most effective removal of the HPI fraction. At high strength when total 

DOC rose to ~60 mg L-1, all three CWs demonstrated lack of ability to remove the 

HPI fractions (Figure 4.1.7a and b). The percentage distribution of DOC in wetland 

effluents were, 46% HPI, 25% TPI and 29% HPO in VFRB; 65% HPI, 16% TPI and 

19% HPO in HFRB and 64% HPI, 18% TPI and 18% HPO in GROW effluents. The 

level of HPI in HFRB and GROW effluents was significantly higher than in VFRB 

(p<0.05, n = 5). 
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Figure 4.1.6a: Total DOC (mg L-1) in hydrophilic (HPI) and hydrophobic (HPO) 
fractions in influent and wetland effluents at low strength 
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Figure 4.1.6b: Percent DOC in hydrophilic (HPI) and hydrophobic (HPO) 
fractions in influent and wetland effluents at low strength  
 

0

5

10

15

20

25

30

Infuent HFRB VFRB GROW

Technology

DO
C 

fra
ct

io
n 

(m
g 

L-1
)

HPI TPI HPO

  
Figure 4.1.7a: Total DOC (mg L-1) in hydrophilic (HPI), transphilic (TPI) and 
hydrophobic (HPO) fractions in influent and wetland effluents at high strength.  
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Figure 4.1.7b: Percent DOC in hydrophilic (HPI), transphilic (TPI) and 
hydrophobic (HPO) fractions in influent and wetland effluents at high strength  
 

Molecular weight profile of the three wetland effluents measured by high 

performance size exclusion chromatography (HPSEC) with UV detection is presented 

(Figure 4.1.8). Results of chromatograms revealed that all three wetland effluents 

contain high proportion of UV absorbing substances. High UV absorbing substances 

at elution time ~10 minutes corresponds to low MW hydrophilic molecules (Goslan,  

2004).  
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Figure 4.1.8 HPSEC chromatograms of wetland effluents during high strength 

 

Compared to the influent grey water HPSEC chromatogram (Figure 4.1.1), the 

increase proportion of HPI molecules in all three wetland effluents indicate that 

transformation occurred as a consequence of wetland treatment. It is possible that the 

increase in HPI in the wetland effluents may have been derived from the wetlands or 

transformation from higher MW HPO fractions based on previous studies confirming 

release of DOC into the effluent waste stream (Barber et al., 2001; Kadlec and 

Knight, 1996). Comparison between chromatograms of wetland effluents revealed a 

relatively greater proportion of molecular sizes at elution times 5-6 minutes and ~9 

minutes for VFRB compared to HFRB and GROW.   

 

4.1.2.3 Solids and turbidity 

Despite the variability of suspended solids load in influent grey water, all three 

wetlands efficiently removed suspended solids from the influent grey water at low 
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strength. Residual concentrations of the wetlands averaged 7.4±0.9 mg L-1 for HFRB, 

2.2±0.3 mg L-1 for VFRB and 2.8±0.4 mg L-1 for GROW. Effluent turbidity for the 

three wetlands averaged 15.5 NTU for HFRB, 10.6 for VFRB and 0.6 for GROW. 

Solid to turbidity ratios were 0.47 for HFRB, 0.21 for VFRB and 4.67 for GROW 

indicating that VFRB was best at removing colloids. In order to characterise the 

suspended solids present in the grey water and the size range removed by the 

wetlands, influent and effluent samples were analysed for particle volume 

distributions using particle size analyser (Figure 4.1.9). Results revealed that the 

particle sizes from the GROW effluent were below the detection limit (0.02 µm) of 

the instrument. This therefore explains the high efficiency of the GROW system in 

removing turbidity as reflected in a mean turbidity of 0.6NTU. The efficiency of 

GROW in removing turbidity at low strength can be appreciated considering that the  

turbidity value for drinking water is 0.6 NTU and 1 NTU for MBR permeate (Friedler 

et al., 2005). GROW was also effective in removing colloidal matter since particle 

size on random sampling gave no reading below 0.02 µm. The size distribution of the 

HFRB and VFRB are characterised by d50 (median size) of 94.6±4.9µm and 0.2±0µm 

for HFRB and VFRB respectively (Figure 4.1.9). The sizes of particles contained in 

the VFRB effluent were generally smaller compared to the HFRB.  
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Figure 4.1.9: Particle size distribution of Influent grey water and HFRB and 
VFRB effluents at low strength. 
 

At high strength, mean residual SS concentration of the three CWs differed 

significantly (P<0.001, n = 27). Corresponding residual solids in the final effluent 

were 31.1±3.0 mg L-1 for HFRB, 9.3±1.2 mg L-1 for VFRB and 18.6±1.7 mg L-1 for 

GROW. Turbidity profiles were similar to those of solids at high strength. For both 

solids and turbidity, residual concentrations in wetland effluents were significantly 

different from each other (p<0.05). Suspended solids to turbidity ratios were 2.66 for 

HFRB, 4.23 for VFRB and 0.72 for GROW. The low suspended solids to turbidity 

ratio for GROW is reflected in the range of particle size (<1 to 1000 µm) present in 

GROW effluent. In the effluent of GROW, three secondary peaks around 10, ~75 and 

~500 were evident (Figure 4.1.10). The release of biofilms and particulates as a result 

of excessive root growth within the troughs of the GROW system contributed to the 

poor removal efficiency at high strength trial.  
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Figure 4.1.10: Particle size distribution of influent grey water and CW effluents 
at high strength 
 

The relatively high level of solids in the HFRB effluent compared to the VFRB was 

due to the presence of iron (III) hydroxides in the HFRB effluent. Because the HFRB 

system was anoxic-anaerobic, dissolved iron leeched out with the effluent which on 

exposure to air oxidises to form the rusty brown coloured iron (III) hydroxides.  This 

did not happen with the VFRB since the latter was aerobic. The presence of dissolved 

iron in the HFRB effluent was confirmed qualitatively using aqueous alkali and 

hydroxide. A pale green gelatinous precipitate with aqueous alkali which remains 

insoluble in excess was used to confirm qualitatively the presence of iron according 

to Equations 4.1 and 4.2 below.  

 

)(2)(
2

)( )(2 saqaq OHFeOHFe →+ −+ (Pale green)��������������..�4.1 

)(3)()(2 )()( saqs OHFeOHOHFe →+ − (Rusty brown)�����������...�4.2 
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Following qualitative confirmation of dissolved iron in the HFRB effluent, 

quantitative determination was carried out. Typical concentrations of total iron in 

HFRB effluent was 14.5±2.1 mg L-1.  Nivala et al., (2007) reported a decrease in 

performance from 90% to 0% for BOD5 and NH4-N removal for a horizontal flow 

CW treating landfill leachate due to clogging of effluent pipes with iron precipitates 

as a result of conversion of dissolved iron in leachate with air around the orifices of 

pipes. 

 

HFRB effluent analysed by particle distribution at low and high strength revealed that 

the primary peaks occurred at about 100 and 10 µm respectively. The shapes of the 

turbidity robustness curves revealed that GROW was efficient and robust in removing 

turbidity at low strength but not at high strength (Figures 4.1.11 and 4.1.12). The 

robustness curve for GROW was characterised by a tail only at the top 20% of the 

data at low strength. In contrast, both the HFRB and VFRB systems were unable to 

effectively remove turbidity from the influent grey water. This was evident by the  

significant deviation from the y- axis for virtually all the data set (Figure 4.1.11).  

 

Performance at high strength was in contrast to low strength for VFRB and GROW. 

GROW showed no ability to remove solids and this was evident with the immediate 

and continuous impact of increase solid concentration at high strength (Figure 

4.1.12). The robustness curve of GROW was similar to the influent grey water curve. 

Reasons for the decreased performance of the GROW system at high strength is 

discussed in section 4.1.2.7 & 4.1.2.8.  In contrast, the VFRB demonstrated increase  
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Figure 4.1.11: Percentile plots for HFRB, VFRB and GROW removing turbidity 
from influent grey water at low strength 
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Figure 4.1.12: Percentile plots for HFRB, VFRB and GROW removing turbidity 
from influent grey water at high strength 
 

performance in removing turbidity from low to high strength (Figure 4.1.11 and 

4.1.12). Compliance to the 2 NTU reuse standard of GROW decreased from 80% to 

12% whilst that of VFRB increased from 20 to 68%. Turbidity of the HFRB effluent 
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remained poor despite removal of solids because of the presence of colloidal iron (III) 

phates as previously explained. 

 

4.1.2.4 Indicator organisms 

The three CWs demonstrated differences in ability to remove indicator 

microorganisms from the influent grey water throughout the duration of the study. At 

low strength, total coliform, E coli and faecal enterococci log removal averaged 2.7, 

2.1 and 2.1 for HFRB; 4.8, 3.3 and 2.2 for VFRB and 3.8, 2.4 and 2.2 for GROW at 

low strength.  Residual levels of indicator organisms in the three wetland effluents 

were only significantly different from each other for total coliform. Comparable log 

removals were recorded for HFRB and VFRB at high strength (3.3, 2.3 and 2.1 log 

reduction for total coliform, E coli and faecal enterococci respectively for HFRB and 

3.3, 2.0 and 3.0 log reduction for total coliform, E coli and faecal enterococci 

respectively for VFRB) but GROW demonstrated considerable decreased 

performance (1.7, 0.6 and 1.8 log reduction for total coliform, E coli and faecal 

enterococci respectively).  

 

The magnitude of log removal recorded in this study is comparable to those reported 

in the literature. For instance, average total coliform count at low strength is 

comparable to reported effluent count of 80-740 cfu 100ml-1 for horizontal flow CW 

treating raw sewage in the Czech Republic (Vymazal et al., 2001) as well as a three 

log removal reported for grey water treatment using a microfiltration membrane 

(Jefferson et al., 2000). Furthermore, the high removal efficiency at low strength is in 

agreement with literature data where comparable efficiency has been reported. To 
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illustrate, average total coliform count at low strength is comparable to reported 

effluent count of 80-740 cfu 100ml-1 for horizontal flow CW treating raw sewage in 

the Czech Republic. Removal at high strength was lower compared to low strength 

(Table 1, appendix 4), and average residual counts ranging from 2.8×104 to 1.3 ×106 

cfu 100ml-1 are comparatively lower to that reported 3900 cfu 100ml-1 for effluent 

total coliform counts for secondary treatment in England (Stott et al., 1996).   

 

Comparison of robustness curves for the three wetlands in removing total coliform, E 

coli and faecal enterococci from the influent grey water over the monitoring period 

revealed that overall, the VFRB was superior to both the HFRB and GROW (Figure 

4.1.13 a, b & c). To illustrate, tailing of the robustness curves was minimal and more 

gradual in VFRB compared to the HFRB and GROW for all three indicator 

organisms monitored. Calculated decay gradients of the three wetland technologies 

removing total coliforms from influent grey water averaged 14, 19 and 14 for VFRB, 

HFRB and GROW respectively. Gradient for removing E coli from influent grey 

water averaged 22, 40 and 14 for VFRB, HFRB and GROW respectively whilst 

gradient for removing faecal enterococci averaged 26, 31 and 37 for VFRB, HFRB 

and GROW respectively. 

 



 122

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10

Total coliforms log10(c+1)) cfu 100 ml-1

Pe
rc

en
til

e
Influent HFRB VFRB
GROW Germany Std EU Bathing Std

 

 

Figure 4.1.13a: Percentile plots of the three constructed wetlands in removing 
total coliform from influent grey water at high strength. 
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Figure 4.1.13b: Percentile plots of the three constructed wetlands in removing E. 
coli from influent grey water at high strength. 
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Figure 4.1.13c: Percentile plots of the three constructed wetlands in removing 
faecal enterococci from influent grey water at high strength. 
 

Result of average microbial activity on bed media at high strength for combined 

upper and middle sections of the two reed beds was comparable (345.1 µg Formazan 

cm-3 for VFRB and 435.8µg Formazan cm-3 for HFRB). Microbial activity for 

GROW was much lower (1.4 µg Formazan cm-3). It must be noted that whilst the 

investigation was carried out using soil/sand/compost mixture for the reed beds, that 

for GROW was obtained from gravel which have a much smaller surface area for 

microbial attachment compared to the soil/sand/compost mixture. The importance of 

the results of microbial activity of the two reed beds suggests that the aerobic 

conditions could have been the major contributing factor of the VFRB in removing 

organic and indicator organisms more efficiently than the HFRB at high strength. 
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4.1.2.5 Dissolve oxygen, Eh and pH 

At low strength, mean influent dissolved oxygen (3.2±0.2 mg L-1) generally rose 

during treatment (4.5±0.2, 7.5±0.3 and 7.2±0.3 mg L-1 for HFRB, VFRB and GROW 

respectively). The relatively higher dissolved oxygen concentration for VFRB 

compared to HFRB reflects the more aerobic conditions which prevail in 

conventional vertical flow CWs. Mean redox ( hE )  measurements for the HFRB and 

VFRB at 10 cm below the surface were -45 and +245 mV respectively confirming  

anoxic-anaerobic and aerobic conditions in HFRB and VFRB respectively. At high 

strength, the mean redox ( hE ) measurement for all three wetlands decreased, ranging 

from +( 20 � 100) mV in the VFRB, and -(100 � 250) mV for HFRB and GROW 

across the bed surfaces for the reed beds and in the gravel and Optiroc media in 

GROW. Dissolved oxygen decreased correspondingly (Table 4.1.1, Appendix 4). 

During the entire study period, there was a significant but weak correlation between 

influent temperature and effluent dissolved oxygen for both the HFRB and VFRB 

(P<0001, R2=0.24 for HFRB and P=0.0025, R2=0.13 for VFRB). The correlation for 

GROW was not significant. 

 

Mean influent pH of 7.3 at low strength was slightly reduced to a mean of 7.0 in both 

HFRB and VFRB but was unaffected by passage through GROW (effluent pH 7.3). 

At high strength, mean influent pH of 7.0 increased slightly in GROW (effluent pH 

7.2), unchanged in VFRB (effluent pH 7.0) and decreased slightly in HFRB (effluent 

6.8). In both periods, effluent pH of the three CWs were not significantly different 

from each other (p>0.05, n=68 low strength, n=20 high strength). 

 



 125

4.1.2.6 Loading tolerance and unsteady state trials of the VFRB 

Due to the inability of the HFRB and GROW systems to cope with the sustained 

increase in pollutant load at high strength, only the VFRB was used for unsteady state 

trials to assess its tolerance to variability in organic load.  Three hydraulic loads 

(0.03, 0.06 and 0.08 m d-1) and four organic loading applications of 0.51, 1.52, 6.4 

and 12.4 gBOD m-2 d-1 at steady state conditions were tested on the VFRB treating grey 

water. Result show that average mass removal of organics were proportional to 

influent organic mass loading. For instance, mass removal of 1.03, 5.58, 16.5 g m-2 d-

1 and 35.7 equates to an influent mass loading of 2.27, 6.75, 18.59 and 38.0 g m-2 d-1.  

However, effluent COD were sometimes higher at elevated loading rate (Figure 

4.1.14, Figure 20 Appendix 4).   
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Figure 4.1.14: Effect of influent loading on VFRB residual concentration at four 
different hydraulic loading  
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Mass removal of 16.5 g m-2 d-1 and 35.7 g m-2 d-1 compares favourably with reported 

mass removal rates of operational and pilot treatment wetlands in the literature. In this 

trial, a suspended solid mass removal of 3.44 g m-2 d-1 and 6.72 g m-2 d-1 were 

associated with a COD mass removal of 16.5 g m-2 d-1 and 35.7 g m-2 d-1 respectively. 

This equates to a SS/COD ratio of 4.8 - 5.3.  This large ratio may suggest high 

particulate organics and that the removal of solids resulted in decrease organics. The 

removals recorded in this trial are comparable to those reported in the literature. For 

instance, Chazarenc et al., (2007) reported a suspended solid mass removal of 7.2 g 

m-2 d-1 associated with a COD mass removal of 11.6 g m-2 d-1 for a wetland treating 

anaerobic fish farm supernatant.  

 

Results of steady and unsteady state trial using Tesco and Ecover washing-up  

shampoos (Ecover was chosen to compare a non- toxic washing up liquid (Pidou, 

2006) to a bathing shampoo ) at steady concentration in the range of 150-200 mg L-1 

and Tesco shampoo under fluctuating high and low BOD5 concentration in the range 

of 100 � 600 mg L-1 coupled with 7 days resting between high organic loads is shown 

in Figure 4.1.15. As demonstrated by the plot, effluent quality failed to meet the 

USEPA BOD5 standard of 10 mg L-1 whenever influent concentration exceeded 200 

mg L-1. Effluent organic concentration was directly influenced by influent organic 

loading as demonstrated by the loading and removal plot above (Figure 4.1.14). 
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Figure 4.1.15: Performance of VFRB during unsteady state trials at 320 L d-1 
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Figure 4.1.16: Percentile plots for VFRB during steady and unsteady states. SS-
1, SS-2 and US represent influent at steady state trial 1 and 2 respectively, and 
US at Unsteady state.  
 

Evaluation of the performance data during unsteady trials gave ~60% compliance at 

unsteady state compared to ~80% to the USEPA standard for steady state trials 

(Figure 4.1.16). Both steady state trials for Ecover and Tesco shampoos gave similar 

result exhibiting robust performance as indicated by non deviation from the y-axis for 

influent concentration up to 150 mg. L-1 followed by effluent BOD exceeding the 10 
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mg. L-1 limit when sustained influent concentration of ≥200 mg. L-1  was fed into the 

bed (Figures 4.1.15 & 4.1.16). Comparison of the robustness curves for the steady 

and unsteady state runs shows that whilst tailing occurred for the last 20% of the data 

for the steady state trial, tailing occurred for 50% of the data at unsteady state. This 

indicates that robust performance is achieved at steady state rather than unsteady state 

conditions in agreement with findings that CWs are susceptible to loading 

fluctuations (IWA, 2000).  

 

4.1.2.7 The influence of oxygenation and plant type on the treatment performance of 

GROW  

The main purpose of designing shallow troughs in the GROW system was to ensure 

oxygen saturation of the bed matrix via diffusion of air from the atmosphere into the 

bed matrix (WWUK) so as to enhance aerobic microbial degradation (Cooper, 1999). 

Mean dissolved oxygen concentrations along the treatment path during low and high 

strength ranged from 5.8 to 7.6 and 0.06 to 0.87 mg L-1 respectively. This is 

corroborated by redox potential (Eh) measurement at low and high strength which 

averaged ~250mV and ~ -210mV respectively indicating aerobic and anoxic-

anaerobic conditions at low and high strength respectively.  The measured level of 

dissolved oxygen at high strength was insufficient to support aerobic microbial 

degradation (Kadlec and Knight, 1996) and this was reflected in the overall decreased 

removal efficiency from 93% to 53% from low to high strength respectively. 

Increased aeration to the GROW troughs from 1 hour to 24 hours daily resulted in 

improved treatment performance (Figure 4.1.17).   
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Figure 4.1.17: Level of pollutants in final GROW effluent under two aeration 
regimes at high strength 
 

Removal efficiency increased from 53% to 86% for BOD5, 69% to 82% for COD and 

59% to 67% turbidity respectively when aeration was increased. Evaluation of the 

results under the two aeration regimes revealed that the removal efficiency for COD 

was higher than that for BOD5 at 1 hour aeration whilst removal efficiency for COD 

was lower than BOD5 at 24 hour aeration. Removal efficiencies for COD are usually 

lower than for BOD5 for treatment wetlands (Vymzal, 2002) due to the presence of 

pollutants which are recalcitrant to biological degradation (Gray, 2004). Thus, the 

removal efficiency trend at 24 hour aeration is in agreement with observations 

reported in the literature. The higher removal efficiency for COD over BOD5 at 1 

hour aeration suggests decreased microbiological degradation. This is corroborated by 

the BOD: COD values for both aeration regimes. For instance, BOD: COD ratio at 1 

hour and 24 hours aeration averaged 0.48 and 0.37 respectively. This indicates that 

the effluent at 24 hour aeration contained less biodegradable organic content than 

effluent at 1 hour aeration.  Despite the improved performance of GROW under 
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continuous aeration, residual effluent concentration of 25.4±2.2 of BOD5 mg L-1 from 

an influent concentration of 117.8±12.3 and a BOD: COD ratio of 0.37 indicates that 

appreciable organic matter was still present in the final effluent. The value of 0.37 

falls outside the range of 0.1 to 0.3 for final effluent (Metcalf and Eddy, 2003). 

 

In addition to insufficient oxygen to support aerobic microbial degradation in the 

GROW troughs at high strength, another factor which hinders the GROW system�s 

ability at high strength was the increased level of suspended solids due to dislodged 

biofilms reintroduced into the effluent waste stream. This was due to frequent 

excessive root growth and bulging sections of plants roots such as Glyceria, Juncus 

species when plants outgrow the toughs. These created channels and short-circuiting 

within the bed media and sometimes overflow of untreated water (on average once 

monthly) in some of the troughs. As a result, portions of the grey water did not filter 

through the media resulting in high amounts of settleable solids in the effluent. 

Consequently, the level of solids/particle sizes in the effluent stream progressively 

increased towards the end of the GROW process train rather than exhibiting a 

decrease (Figure 4.1.18).  

 



 131

0

3

6

9

12

15

0.01 0.1 1 10 100 1000 10000

Particle size (microns)

%
 V

ol
um

e
Influent Row 1 Row 2
Row 3 Row 4 Final effluent

 

Figure 4.1.18: Distribution of particle size along the treatment path of GROW 

 

The particle size distribution analysis shows an increased proportion of smaller 

particle size from Row 1 to Row 4. Thus, although larger size particles were removed 

from the influent grey water, smaller particles were subsequently released into the 

effluent waste stream. The increased level of larger solids in the final effluent could 

be due to release of such sizes into the effluent waste stream in Row 5. 

 

Sampling of effluent waste stream in wells of Rows 1 to 5 of the GROW system in 

order to investigate removal and transformation of pollutants along the treatment path 

revealed that removal of organics at high greywater strength was limited to Row 1. 

For instance, 95%, 77% and 70% of the total BOD5, COD and DOC removal 

occurred within the first row of GROW (Figure 4.1.19). Similar trends in the  

removal patterns of organics and solids along the treatment path were observed for 

indicator organisms (Figure 4.1.20).  
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Figure 4.1.19: Concentration of BOD5, COD and suspended solids along 
treatment path of GROW. 
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Figure 4.1.20: Total coliform (TC), E. coli and Faecal enterococci (F. E) along 
the treatment path of GROW at high strength 
 

4.1.2.8 Maintenance, management and hydraulic conductivity 

The most common maintenance undertaken in both reeds beds during the study 

period was weeding and flushing of inlet pipes which on average required 1-2 hours 

per week. Weeding was done by hand. With regards to the HFRB, a common 
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problem encountered during the study period was maintaining the water level just 

above the bed surface. At high strength, descaling of rusty brown iron(III)hydroxide 

precipitates along the effluent outlet pipe was done fortnightly. The water level was 

kept about at bed surface by regularly adjusting the loop end that is attached to the top 

of the bed. Maintaining the GROW system was more demanding compared to the 

reed beds. Between the period July 2006 and August 2006, an average maintenance 

time of ~20 hours was spent on maintenance and management. The time required to 

maintain GROW can substantially be reduced if certain modifications to the design 

are made. For instance, using miniature plants instead of larger plants used in full 

scale wetlands would eliminate or at least significantly reduce extensive root and 

shoot growth which requires frequent trimming. This would minimise the release of 

particulates in treated waste stream by bulging and proliferated root growth. It would 

also minimise flooding in troughs.  

 

The hydraulic conductivity of the unused sand/soil/compost media of the reed beds 

was measured as 7.53 m d-1. After six months of operation, the hydraulic conductivity 

of the reed beds were 0.97 and 3.31 m d-1 at 5 -15cm below the reed bed surface for 

HFRB and VFRB respectively and  0.17 m d-1 at 30-40 cm down the VFRB. The 

lower hydraulic conductivity of the used media compared to the unused media could 

be due to accumulation of organic matter within the pores of the used media. 

However, it is clear why the hydraulic conductivity of the VFRB was higher than that 

of the HFRB. The hydraulic conductivity of the VFRB measured after 2 years of 

operation before the start of the unsteady state trials was 3.24 m d-1 at 5 -15cm below 

the reed bed surface. Consistency of similar hydraulic conductivity over a two year 
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period indicates that the VFRB was not affected by surface  clogging which is a 

common problem encountered by vertical flow systems. Possible reason for 

unchanged permeability of the VFRB media could be attributed to the regular 

weeding of schedule.  

 

Discussion 

4.2 Constructed wetlands for grey water treatment and reuse 

4.2.1 Reclaimed water quality and compliance to world wide standard for reuse 

The reuse of treated grey water can substantially reduce demand on potable water. 

However, adequate treatment is required to ensure that the reclaimed water is safe for 

public use. All three CWs produced water quality capable of meeting any reuse 

standard for organics (e.g. BOD5, COD and DOC) at low strength, though the grey 

water strength in terms of organic concentration was quite low, at the low end of 

range reported in the literature (Table 1, Appendix 4) and at a low enough level to 

comply with less stringent reuse standard without treatment (Table 4.2.1). However, 

the wetlands did not produce an effluent that would meet consent limits for turbidity 

and indicator organisms (objectives 1& 2). 

 

Table 4.2.2 lists the overall level of compliance of the three constructed wetlands 

assessed for grey water reuse during the study.  All three CWs exhibited varying 

degrees of limitation with complying to reuse standards. Compliance was well below 

100% level for key water parameters. The VFRB was the only technology to come 

close to compliance to stringent reuse standards. Both the horizontal configurations 

(HFRB and GROW) were unable to comply fully (i.e. 100%) with even the least 
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stringent reuse standard (Table 4.2.2) (objective 4). To illustrate, the USEPA requires 

that the 10 mg L-1 BOD5 standard is consistently met (Asano, 1998).  This 

requirement was almost met by the VFRB (96%) which complied consistently with 

the less stringent Australian standard of 20 mg L-1 BOD5 (Figure 4.1.3). HFRB and 

GROW were unable to fully comply with any of the standards. Also, compliance with 

the USEPA  
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Table 4.2.2: Comparison of compliance levels for the three wetlands and an 
MBR and MCR monitored simultaneously during steady state trials to world 
wide standards (objectives 1- 3) 

Technologies  
Organization  

 
Parameter 

 
Standard HFRB VFRB GROW MBR MCR

BOD 10 79 96 67 100 100 1USEPA 
Turbidity 2 0 33 75 100 93 

2BSRIA Faecal 
coliforms 

nd* 18 61 33 100 100 

Turbidity 2 0 33 75 100 93 3Japan 
E. coli nd* 26 56 44 100 100 
BOD 10 79 96 67 100 54 
SS 10 57 92 78 100 100 

4Israel 

Faecal 
coliforms 

1 62 93 70 100 100 

BOD 20 79 100 79 100 92 
SS 30 87 100 99 100 100 

5Queensland, 
Australia 

Total 
coliforms 

100 15 77 58 100 100 

6WHO Faecal 
coliform 

1000 99 100 99 100 100 

*: Not detectable 
1USEPA, 2Mustow and Grey, 1997, 3Tajima, 2005, 4Gross et al., 2007, 5Queensland, 
6Queensland . MBR and MCR data from Pidou et al., 2007. 
 

standard requires no detectable E. coli in 100 ml sample. In this study, E. coli was 

detected in the VFRB, HFRB and GROW 6%, 70% and 40% at low strength and 

81%, 56% and 100% at high strength respectively. Based on the robustness plots and 

experimental data, the chances of the VFRB meeting 100% compliance throughout 

the monitoring period could have been improved if the maximum influent organic 

concentration was ~200 mg L-1. For instance, the upper or critical influent organic 

concentration above which the 10 BOD5 mg L-1 consent limit could no longer be met 

was ~200 mg L-1 for VFRB and 60-75 mg L-1 for GROW and HFRB respectively 

(Figures 4.1.3 & 4.1.5).  

 

Comparison of wetlands performance with other contender contender technologies 

used for grey water reuse purposes showed that membrane technology (e.g. MBRs) 
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and biological aeration filters (BAF) produce consistently lower residuals in organics, 

turbidity and indicator organisms compared to CWs (Tables 4.2.1). This observation 

was also evident in this study (Table 4.2.2) (objective 3). Pidou et al., (2007) and 

Melin et al., (2006) reported 100% and 95% compliance levels for MBR  and BAF 

respectively  for the BOD 10 mg.L-1  USEPA reuse standard. The superior turbidity 

removal demonstrated by MCR and MBR technologies can be explained by the 

presence of the physical barrier which retains solids/particulates larger than its pore 

size (e.g. 0.1µm). With this membrane pore size, most solids would be retained as 

majority of particulate sizes in the grey water fraction used in this study and domestic 

waste water exceed 0.1µm (this study, Metcalf and Eddy, 2003). In comparison, CW 

cannot produce similar effluent quality in terms of turbidity compared to MCR and 

MBR. This is because the media of CW usually consist of coarse gravel or sand with 

size (e.g. 0.06-4 mm, Langergraber et al., 2007; 4-8mm, Masi et al., 2007) far larger  

than membrane pore size (0.1 µm) in MBR, an order of magnitude three or more 

times pores size for CW compared to MBR. Consequently, small colloidal particles 

and even microorganisms which can easily be retained by the physical barrier in MCR 

and MBR processes cannot be retained in CW.  Furthermore, 100% removal of 

indicator organisms in CW cannot be achieved due to natural inputs from the system 

(Kadlec and Knight, 1996).  

 

In general, the performance of all three CWs was poor compared to the MBR tested 

simultaneously during the study period, and it must be noted that the influent organic 

loading of 38.0 g COD m-2 d-1 fed onto the constructed wetlands at high strength was 

outside the recommended load of 25 g COD m-2 d-1 (Platzer, 1999) generally required 

to produce good effluent quality for the given wetlands. For the MBR system 
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however, the organic loading rate (OLR) applied to the pilot rig equate to 0.98 kg 

COD m-3 d-1 which falls within the range (0.26 � 3.2 kg COD m-3 d-1) usually reported 

for MBR systems (Pidou, 2006).  

 

4.2.2 Wetlands performance 

4.2.2.1 Organic removal 

All three CWs achieved good removal of organics (i.e. BOD5, COD and DOC) from 

the influent grey water at low strength. Residual concentrations of 0-7.5 mg.L-1 from 

the three wetlands are comparable to highly efficient grey water treatment achieved 

by biological and chemical systems reported in the literature. For example, an MBR 

system treating grey water of strength BOD5 59 mg.L-1 from sports and leisure club 

produced an effluent of BOD5 4 mg.L-1 (Merz et al., 2007). A treatment system 

consisting of two reed beds in series planted with Coix lacryma followed by a pond 

and soakaway treating grey water produced an effluent BOD5 of 1-10 (Dallas et al., 

2004). A Rotatory Biological Contactor (RBC) and fluidised-bed reactor treating grey 

water produced an effluent BOD5 of less than 5 mg.L-1 (Nolde, 1999). A reuse unit 

consisting of a filtration stage (0.3 mm mesh filter and 1m2 surface of filtration), 

sedimentation and disinfection with sodium hydroclorite gave an effluent COD of 78 

mg.L-1 (March et al., 2004).  

 

Effluent DOC at low strength for the three wetlands (3.3 - 4.5 mg.L-1) fell within the 

lower end of the range reported in the literature for various technologies. To illustrate, 

Li et al., (2003) reported 5 mg.L-1 in grey water treated effluent using a vertical flow 

constructed wetland followed by TiO2 photocatalytic oxidation at an irradiation time 

of 3 hours. DOC values for the three wetlands effluents were also comparable to 
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limits suggested for DOC in discharge waters for ground water recharge (Jekel and 

Ernst, 1999). The removal efficiencies (89-97%) of the three CWs in terms of 

organics at low strength is at the upper end in the range ~70 to >90% achievable in 

CWs (e.g. Table 2.1 and 2.2).  

 

 In contrast to the performance at low strength, a dramatic decrease in performance of 

the HFRB and GROW in removing organics was evident when a sustained influent 

concentration of BOD5 155± mg.L-1 was fed to the wetlands at high strength. Residual 

concentrations for HFRB and GROW were BOD5 51.0±7.5 mg.L-1 and BOD5 

76.2±9.5 mg.L-1 respectively. These equates to a removal efficiency of 66% for 

HFRB and 53% for GROW which are at the lower end of reported efficiencies for 

BOD removal in CW (e.g. Table 2.1 & 2.2).  In contrast, the VFRB exhibited 

improved performance from 95% to 97% despite the increase in organic strength from 

19.3±0.9 mg.L-1 to 155.8±9.3 mg.L-1.  The VFRB was robust and residual 

concentration in the VFRB effluent at high strength averaged 4.3±1.3 mg.L-1.   

 

BOD reduction is related to microbial activity resulting in a decrease in dissolved 

oxygen in the waste water. BOD is reduced when dissolved oxygen is utilised for 

respiration and nitrate reduction (Kadlec, 1995). The low efficiency of the HFRB and 

more especially the GROW system was primarily attributed to insufficient oxygen to 

support microbial degradation of organics contained in the influent grey water. The 

HFRB is anaerobic in design and therefore improved performance could only have 

been achieved by either increasing the size of the bed or limiting the influent organic 

concentration within the range of 60-75 mg.L-1. This range is the upper limit as 

demonstrated by the HFRB robustness curve before  effluent no longer meet the 10 
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mg L-1 consent limit (Figures 4.1.2 & 4.1.5) and is in agreement with experimental 

data as seen in scatter plot (Figures 19a & b, Appendix 4). The results of residual 

BOD5 and dissolved oxygen for the HFRB were however comparable to horizontal 

flow systems utilised for secondary treatment reported in the literature (e.g Cirelli et 

al., 2007; Vymazal et al., 1998). This indicates that the influent load of 12.5 g m-2 d-1 

for BOD5 and 38 g m-2 d-1 for COD for a surface area of 6 m2 can be treated to meet 

secondary treatment limits but not a tertiary limit.  

 

The GROW system showed increased efficiency from 69% to 82% in removing 

BOD5 when aeration was increased from 1hour to 24 hours confirming that the 

performance of GROW in removing organics at high strength was at least partially 

limited to available oxygen. The decreased performance in BOD5 and COD removal 

of the HFRB and GROW was reflected in the BOD: COD ratios of the effluents. The 

BOD: COD ratios at high strength were 0.45 and 0.50 for HFRB and GROW 

respectively. This represents about a six-fold increase in BOD: COD ratios for both 

technologies reflecting a dramatic decrease in effluent quality. In contrast, the BOD: 

COD ratio for the VFRB effluent remained low at high strength averaging 0.17 which 

is at the top end of the range 0.1-0-3 for final effluent.  

 

As in BOD5 and COD, there was significantly higher residual DOC in the effluents of 

HFRB and GROW compared to that from the VFRB at high strength. The notable 

difference between these systems at high strength was related to aerobic conditions 

and flow pattern (objective 6). The HFRB and GROW were both horizontal 

configurations and anoxic-anaerobic whilst the VFRB was vertical and aerobic. 

Compared to other studies, effective removal of DOC has been reported for soil 
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aquifer treatment (SAT) of domestic wastewater and secondary effluent (Rauch and 

Drewes, 2004; Quanrud et al., 2003; Quanrud et al., 2001). SAT and VFRB have 

similar mode of operation with respect to flow and aerobic conditions. In this type of 

treatment, the combine active filtration and aerobic microbial degradation as the 

wastewater percolates through an unsaturated filter material believed to be a 

biologically active zone (Rauch and Drewes, 2004), may have contributed to 

significant removals of DOC. The higher residual DOC in the HFRB and GROW 

compared to the VFRB may be due to wetland derived DOC and reduced biological 

degradation in the horizontal flow systems. To illustrate, wetlands have been 

documented to release soluble organics to the effluent waste stream (Pinney et al., 

1999; Kadlec and Knight, 1996); and wetlands with shorter HRT experience a lower 

DOC leaching from plant material compared to wetlands with longer HRT (Pinney et 

al., 1999). Wetland DOC or organic matter release however depends on wetland age 

and strength of influent waste water (Pinney et al., 1999; Kadlec and Knight, 1996).  

 

The overall change (i.e. increase or decrease) in the hydrophobic and hydrophilic 

fractions of the low strength grey water after passing through all three wetlands was 

minimal.  This could be attributed to the low DOC level of the influent grey water and 

the relatively young age of the beds. A relatively new wetland releases lower DOC to 

the effluent waste stream compared to a mature wetland (Kadlec and Knight, 1996) 

and DOC in wetland effluent is dependent on influent level (Pinney et al., 1999). At 

high strength, the effect was obvious, with a shift towards the more hydrophilic (most 

polar and lower MW) molecules in final effluents. Larger weight hydrophobic (HPO) 

fractions were preferentially removed from the influent grey water.  This result is 

consistent with the findings that HPI fractions comprise the largest proportion of 
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secondary effluents (Quanrud et al., 2004; Ma et al., 2001). The decreased removal 

efficiency of the HPI fraction at high strength could be attributed to a combination of 

reduced biodegradation, wetland derived HPI and transformation from other fractions 

contained in the influent grey water. However, conclusive investigations were not 

carried out to confirm the primary cause of increased HPI in wetland effluents at high 

strength. Overall, aerobic conditions within the bed matrix influenced the treatment 

performance of the wetlands in removing organics from the influent grey water 

(objective 6).  

 

4.2.2.2 Solids and turbidity 

Solids and turbidity removal efficiencies for the three wetlands at low and high 

strength follow the same general trend as organics. This is because particulate organic 

matter constitutes a significant proportion of solids in wastewater, and consequently, 

reduction in particulates correlates with BOD reduction (Gopal, 1999). The main 

mechanism for the removal of solids in CWs is sedimentation and filtration (Vymazal 

et al., 1998). This was evident in the GROW system. For example, a minimum of 

50% of total solids were removed from the influent grey water after passage through 

the first row of GROW which contains only bed media (gravel and Optiroc). The 

incorporation of baffles, wells and weirs into the GROW design provided additional 

barriers and may have created further opportunities for sedimentation of finer 

particles. Effluent residual solids were higher in HFRB than VFRB and it was 

concluded that the bed substrate influenced this. To illustrate, the bed substrate was 

iron rich (e.g. ~1% exchangeable Fe). In aerobic conditions, iron is in the form of Fe3+ 

and in anaerobic conditions Fe2+. Fe2+ is soluble in water whilst Fe3+ is virtually 

insoluble in water forming sediments. It was evident during the monitoring period that 
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soluble iron washed out with the effluent from the HFRB which on exposure to air 

oxidises to form colloidal iron (III) hydroxide as described in Section 4.1.8. This 

resulted in increased suspended solid content in the HFRB effluent. 

 

Grow successfully removed turbidity at low strength, consistently meeting the 2 NTU 

standard despite variability in turbidity of influent (Figure 17 Appendix 4). The 

effluent from the GROW system was even less turbid (mean 0.6±0.1NTU) than that 

reported (2-5 NTU) for a combined reed bed and pond system (Dallas et al., 2004). It 

was comparable to effluent turbidity of <1NTU from post-membrane treatment (Al-

Jayyousi, 2003) and 0.3-0.4 NTU for MBR treatment (Jefferson et al., 2001). The 

design of the GROW system may have contributed to turbidity removal performance 

by sedimentation and filtration. Performance of the VFRB in removing turbidity 

improved at high strength. Although the HFRB removed turbidity from the influent 

grey water, its ability to do so was inferior to the VFRB. In addition, turbidity in the 

HFRB effluent deteriorated as a result of the dissolved iron that was leached out of 

the HFRB being oxidised to the colloidal iron (III) phosphate.  

 

4.2.2.3 Microbial quality of wetland effluents 

The microbial quality of the wetland effluents was much more stable at low strength 

but showed considerable variability at high strength. The microbial quality of the 

wetland effluents at low strength is in the range consistent with those reported 

previously for grey water treatment (e.g. Dallas and Ho, 2005) and domestic 

wastewater (e.g. Hench et al., 2003). Residual concentrations consistently complied 

with mandatory EU bathing water directive standards and WHO standards for reuse 

(<104 cfu 100 ml-1 total coliforms).   However, these reductions were insufficient to 
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meet stringent reuse standard such as USEPA. Therefore, a post treatment disinfection 

step would be required to meet a stringent consent standard.  

 

Overall, the VFRB was superior to the other two wetlands in removing indicator 

organisms. This was attributed to the aerobic conditions in the VFRB compared to the 

anoxic-anaerobic condition in the HFRB. To illustrate, it has been shown that the 

level of gas saturation in an unsaturated media influences the extent to which 

indicator organisms are adsorbed, with a preference to adhere to gas-water or gas-

solid interfaces (Powelson and Mills, 2001; Wan et al., 1994). With more air in the 

VFRB compared to the HFRB, this suggests that the presence of air in the VFRB 

accounted for its higher removal efficiency. Removal rates for all three wetlands 

decreased at high strength when light grey water was supplemented with an organic- 

and surfactant-rich shampoo. Organics and surfactants reduce bacterial adsorption in 

porous media by competing for adsorption sites (Stevik et al., 2004), thus reducing 

the available surfaces for adsorption (Powelson and Mills, 2001).  

 

4.2.2.4 Nutrients, oxygen, pH, temperature 

Influent concentrations of nitrogen (measured as NH4-N and NO3-N) and 

orthophosphate (PO4-P) were consistently low, frequently below 5 mg. L-1 (Figures 

21-23, Appendix 2). Nevertheless, denitrification occurred in the HFRB especially 

during the high strength trial period when the bed was anaerobic. Nitrification was 

evident in the VFRB throughout the monitoring period because sufficient oxygen was 

available.  
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One of the most important removal mechanisms of phosphorous in CWs is chemical 

precipitation of metal (Ca, Al and Fe) phosphates. In aerobic conditions, iron is in the 

form of Fe3+ and in anaerobic conditions Fe2+. Orthophosphate forms a stable 

insoluble complex with Fe3+ but forms a soluble complex with Fe2+. Since residual 

levels of dissolved iron were confirmed in the HFRB effluent and not in the VFRB 

effluent, this implies that leaching of soluble iron(II)phosphate accounted for the  

higher residual phosphate level in the HFRB effluent.  

 

Dissolve oxygen (DO2) generally rose after passage through the wetlands at low 

strength (Appendix 4). DO2 in the wetland effluents at low strength (4.5±0.2 HFRB, 

7.2±0.3 VFRB and 6.9±0.3) fall in the range of ~50% to full saturation. These values 

are indicative of good effluent quality as they fall within the range of >50% saturation 

requirement for reuse effluent in Germany (percentage saturation level for reuse is 

unavailable for the USEPA or Australian standards). At high strength, DO2 of HFRB 

and GROW effluent decreased to mean values of 3.3±0.2 and 3.7±0.4 respectively 

reflecting deterioration in water quality. 

 

Effluent pH did not change significantly (p>0.05) on passage through the wetlands. 

Changes in pH of wetland effluents were always within approximately half to one pH 

unit. Effluent pH of GROW was comparatively higher than those of HFRB and 

VFRB, likewise pH of HFRB was generally higher than those of VFRB. This was 

attributed to the predominant denitrification process which prevails in horizontal flow 

beds compared to nitrification in vertical flow beds. Denitrification produces 

alkalinity whilst nitrification decreases alkalinity. However, effluent pH of the three 

CWs were comparable with effluent reported for other studies (e.g. pH 6-8; Al-
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Jayyousi, 2003 and pH 7.5, March et al., 2004) and fall within the range of 6-9 

accepted for reuse. 

 

4.2.2.5 Temperature and seasonal trends 

Influent temperature was generally higher than the wetland effluents throughout the 

monitoring period. There was a strong positive correlation between influent and 

wetland effluent temperatures throughout the monitoring period (P<0.001) but no 

strong correlation between influent or effluent temperature with other water quality 

parameters. Effluent temperature of the GROW system was as low as 0oC and 

freezing problems were encountered for GROW during the winter periods in 2004, 

2005 and 2006. Water in the wells of the GROW system was frequently frozen. No 

freezing problems were encountered for the HFRB or the VFRB. 

 

Only data collated during the low strength trial were analysed for seasonal trends as 

this dataset covers a full year. Only temperature and DO2 showed seasonal trends 

(Appendix 4). DO2 was lowest in Autumn and highest in Winter.  High DO2 in winter 

could generally be attributed to windy conditions. Of the various water quality 

parameters, seasonal change was only notable for indicator organisms. Seasonal 

temperature change influenced removal of indicator organisms in the HFRB. Highest 

removal occurred when temperature increases. Sunlight is one of the mechanisms of 

coliform reductions in CWs and it is likely that inactivation by UV radiation reached 

it peak during summer. This is consistent with findings from studies of HFRBs 

(Karathanasis et al., 2003; Quinoez-Diaz, 2001). No such seasonal change was 

evident for the VFRB or GROW. The lack of clear seasonal change of key water 
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parameters is in line with findings that sub-surface CW show lack of temperature 

sensitivity (Bavor et al., 1988).  

 

4.2.2.6 Influence of design and operational conditions on wetlands performance 

The constructed wetlands investigated in the current study were designed based 

hydraulic loading rates of 0.08, 0.07 and 0.08 m.d-1 for the HFRB, GROW and the 

VFRB respectively. These are in line with standard design numbers for such 

applications (Cooper, 1999) which equate to around 2 m2.PE-1. However, one of the 

key characteristics of greywater is its variability from one site to another such that 

technologies must be able to handle a wide range of organic loading rates to be 

suitable (Pidou et al., 2007). This is especially important as it is not common to pre 

sample greywater prior to system design as normally the collection system is installed 

at the same time as the technology. The current testing approach attempts to 

understand the implications of this for wetland systems by testing at both low and 

high strength.  

 

At low strength, organic loading to all wetlands averaged 1.5 g.m-2.d-1 which equates 

to a tertiary treatment application in municipal sewage works. Reported loading rates 

for tertiary treatment HFRB suggests a range between 0.5 and 1 m2.PE-1 (Cooper and 

Green, 1995; Copper, 1999). This suggests the wetlands tested were below the critical 

design level and so contained a high level of process redundancy. In comparison, at 

high strength the loading rate was 12.5 g.m-2.d-1 which equates to a secondary 

treatment level for municipal sewage applications (Kadlec and Knight, 1996). The 

required design rates for municipal sewage treatment under these conditions for 

HFRB is 5 m2.PE-1 (Copper, 1999; Cooper and Green, 1995). Similarly, at high 
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strength the design rate for a VFRB is 25 gCOD. m2 d-1 (Paltzer, 1999) which is 

below the operating level of 38 gCOD. m2 d-1. As such the tested wetlands were above 

the limiting design rate at high strength and should be highly challenged. 

 

Analysis of the data generated across the trial indicated that the HFRB and GROW 

deviated from a high treatment level beyond ~7 gBOD. m2 d-1 whereas the VFRB 

performance was much better across the higher loading rates (Figure 4.2.1) (objective 

5).  
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Figure 4.2.1 Effect of influent organic loading on wetlands residual BOD5  
concentration. 
 

The data enables an estimate of the design loading rates of wetlands for greywater 

treatment as ~7 for HFRB and ~14 VRFB gBOD m-2 d-1. The findings of the effect of 

organic loading on the treatment performance of the CWs are consistent with the 

literature. For example, Langergraber et al., (2007) found that a VFRB receiving pre-

treated wastewater plant effluent with an organic loading of 20 g COD m-2 d-1 met the 

Austrian effluent standard all year round whilst loadings of 27 g COD m-2 d-1 and 40 g 
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COD m-2 d-1 met effluent standard part of the time and not at all in winter 

respectively. Similar effects of organic loading on wetlands performance have been 

reported (Chazarenc et al., 2007; Noorvee et al., 2005).  

 

At the hydraulic loading rate tested in the current trial which equates to an influent 

BOD of up to 200 mg.L-1, results indicate that vertical flow systems are widely 

applicable for grey water treatment. More detailed analysis of the VFRB indicated 

that the high effluent BOD concentrations were linked to reduction in the dissolved 

oxygen concentration (Figure 4.2.2). This suggests that improved performance at high  
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Figure 4.2.2: Relationship between VFRB effluent dissolve oxygen and BOD5 
during high strength period 
 

loading rates may be possible with enhanced oxygen transfer as has been shown for 

sewage applications (Weedon, 2003). Typical minimum oxygen transfer rates in 

VFRBs are reported to be 28 g O2 m-2 d-1 (Cooper, 2005), although it is acknowledged 

that this varies considerably depending on design and especially hydraulic loading 

cycles (Platzer, 1999). In the current study at high rate, an estimated OTR of 12 g O2 
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m-2 d-1 suggested the bed was operating under an oxygen limited growth environment. 

This is manifested in a limiting hydraulic or organic loading rate so that the OTR 

potential of the system is met during the feed/drain cycle. In this study, OTR during 

the high strength trial of 12 O2 m-2 d-1 for the VFRB implies that the bed was 

operating below this value. As a result, treatment efficiency decreased because the 

available oxygen was insufficient to support aerobic microbial degradation of 

organics in the influent grey water. For an operational wetland with fixed bed size and 

steady influent organic concentration, OTR could only be controlled by reducing the 

volumetric flow so that the oxygen demand of the total organic load entering the bed 

is met principally by the aeration potential of the bed via diffusion of air. It is for this 

reason that organic loading correlates strongly and positively with effluent residual 

organic concentration. In this study, an upper influent BOD5 limit of ~200 mg L-1 at a 

flow rate of 320 L d-1 would have improved the OTR and increased the chance of 

consistent compliance with the 10 BOD5 mg L-1 consent limit. This is evident in 

Figure 4.1.15 where during unsteady state trial, this consent limit was exceeded 

whenever influent BOD5 concentration exceeded 200 mg L-1 even though flow was 

reduced from 480 to 320 L d-1.  In comparison with the literature, few studies have 

reported OTR. For instance, Weedon (2003) reported OTR of 28-35 gO2.m-2.d-1 from 

a VRFB treating domestic wastewater from two neighbouring households.  

 

4.2.2.7 Influence of design and planting regime on GROW�s performance  

Although high influent organic loading affected the performance of GROW, there 

appears to be process redundancy within the GROW system. This was exemplified by 

analysis of organic and solids removal along the pathway of GROW at high strength. 

Results showed that 95%, 77%, 70% and 94% of the total BOD5, COD, DOC and SS 
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removal occurred within the first row of the system. Similar results were obtained for 

all three indicator organisms (total coliform, E. coli and faecal indicator organisms) 

along the treatment path of GROW. 

 

There is still ongoing debate of the importance of plants (macrophytes) for pollutant 

removal in constructed wetlands (Brix, 1997). In some studies, pollutant removal did 

not differ significantly between planted and unplanted beds (e.g. da Matta Maeques et 

al., 2001). Other studies have shown that plants play an important role in treatment 

(e.g. Al-Omari and Fayyad, 2003; de Sousa et al., 2003; Mars et al., 2003). The 

primary functions of plants in treatment wetlands are believed to be provision of 

surface area for microbial degradation, generation of oxygen from roots into the the 

rhizophere and maintaining hydraulic conductivity (Brix, 1997; Kadlec and Knight, 

1996). However, oxygen release from roots is estimated to be low (5 g m-2 d-1, 

Platzer, 1998) compared to the oxygen required (28-30 g m-2 d-1 Cooper, 2005; 

Platzer, 1998) for degradation of organic matter and nitrification. Tanner (2001) 

reported annual removal of 2-8% N and 1.9-5.3% P in treatment wetlands. In the 

GROW system, one hour per day aeration was provided via the porous pipe and 

together with a low organic load, results of mean dissolved oxygen from the GROW 

effluent at low strength and effluent  DO2 during winter months when the plants 

almost died would suggest that the contribution of the plants were minimal. At high 

strength, effluent DO2 level during summer and winter months remained low which 

could possibly support the above the notion of minimal contribution of plants in 

providing DO2.   
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The plants used in the GROW system were originally selected based on treatment 

capabilities and/or aesthetic properties (WWUK). Iris, Juncus and Glyceria species 

have been utilised in constructed wetlands for wastewater treatment (e.g. Kadlec and 

Knight 1996; van Oostrom, 1994). Planting density has become established for more 

commonly utilised species such as Phragmites australis (3-10 plants per m2) (e.g. 

Cooper and Green, 1995), however there is little or no information in the literature on 

appropriate planting densities for the majority of species used in the GROW system. 

 

All the plants used during the trial period proliferated on the feed water during 

summer, autumn and spring but as expected were reduced mainly to below ground 

biomass during winter (Appendix 4). Plants generally recovered well after the winter 

period to produce abundant growth during the second growing season. Shoot growth 

was intended to be restricted to above ground biomass. However, it became evident 

that shoots of Juncus effuses in Row 3 were proliferating beneath the membranes 

which resulted in the membrane becoming pushed upwards and shoots encroaching 

into other rows. Of more significance was the increase in shoot proliferation, bulging 

rhizomes and increased root densities which fill sections of troughs and causing 

overflows and short circuiting of water movement in the system. The disturbance 

generated suspended particulate material and dislodged biolilms formed on the gravel 

and Optiroc media and plant roots. The obvious effect of this was reflected in very 

poor effluent quality (e.g. high suspended solids and high residuals in organic, 

increased coliform counts).  Thus, Iris pseudomonas, Juncus effuses, Glyceria 

variegates and Caltha palustris were not appropriate for a wetland trough system 

such as GROW. Although roots of Mentha aquatica were also quite extensive, 
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spreading into wells of rows, there was no evidence that the tiny roots of Mentha had 

any negative effect to the hydraulic flow of water in Rows 9 and 10.  

   

4.2.2.8 Rate constant 

The parameters of first order models are referred to as rate constants but in fact 

depend upon operational and structural characteristics of the wetland (Kadlec 2000; 

Kadlec, 1997). Design variables such as hydraulic loading and influent loading have 

been shown to influence the one parameter rate constant- KBOD. Average KBOD for the 

three wetlands were 1.04, 1.38 and 1.26 (m d-1) for HFRB, VFRB and GROW 

respectively for the low strength period. These values are much higher than that 

reported for grey water treatment using a novel recycled vertical flow CW (0.16 m d-1, 

Gross et al., 2007a) but fall within the range of those reported for domestic waste 

water in horizontal flow treatment wetlands and batch systems (Stein et al ., 2007; 

Rousseau et al.,  2004; Kadlec, 2000). KBOD at high strength changed with a one-half 

decrease for both HFRB and GROW whilst that of VFRB doubles. As all other 

conditions during low and high strength period were unchanged, changes in KBOD can 

be explained as a result of the increase in organic pollutant concentration. KBOD has 

been thought to be influenced by the biodegradability of the feed water and the type 

of media used in the bed (Kadlec, 2000).  

 

4.2.2.9 The influence of clogging and age on the performance of VFRB system 

VFRB systems are succeptible to surface clogging which can lead to overflow 

(Cooper, 2005).  This is because influent wastewater is fed into the bed by repeated 

application on the bed surface. If a wastewater contains high suspended solid 

concentration with low degradability, then the rate of accumulation will be greater 
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than the rate of degradation. A nett accumulation of solids on the bed surface can lead 

to poor oxygen transfer from the atmosphere in to the bed matrix causing insufficient 

oxygen to support microbial degradation. In this study, there was no incident of 

clogging and surface flooding. This was possibly due to the young age of the bed (i.e. 

three years of operation after commissioning) and frequent weeding (usually 

fortnightly). Old VFRB with many years of operation without proper maintenance do 

encounter problems of surface clogging and flooding. Weeding improves the 

performance of treatment wetlands (Cooper, 2005; Cooper et al., 2005).  

 

There is a paucity of data relating to the effect of age on the performance of VFRB. 

However, it is expected that a properly maintained bed will continue to produce good 

performance within the normal design conditions of hydraulic and influent pollutant 

loading. A mature bed normally contribute more dissolve organic matter to the 

effluent waste stream than a relatively young bed due to internal processing within the 

bed matrix (Pinney et al., 2000; Kadlec and Knight, 1996), but this effect is secondary 

to the hydraulic and influent loading which primarily influences wetland effluent 

quality (IWA, 2000; Kadlec and Knight, 1996). Cognisant of this, the results obtained 

for the VFRB in this study would be expected to be similar if this study had been 

conducted using a much older (e.g a ten year old VFRB), properly maintained (e.g. 

weeding, cleaning of effluent pipes, sufficient time between dosing to allow aeration 

of bed before the next batch of influent dose) and managed bed (i.e. operated within 

its design limit).   
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4.2.2.10 Implication of findings of study for reuse 

The results of the trials indicate that wetlands are appropriate technologies for 

greywater treatment. However, typical design approaches are insufficient as they do 

not reflect the variability of greywater and indicate that hydraulic design could result 

in underperforming systems. The key result was that even under conditions of 

excessive loading, the VFRB treated the greywater to a good standard although failed 

to comply with the USEPA ( regarded as one of the most stringent reuse standard) 

20% of the time. Irrespective of this, the VFRB was shown to be robust to the needs 

of greywater treatment and so can be considered a suitable option for consideration. 

At the current time, the leading technology for greywater recycling is an MBR (Pidou 

et al., 2007) although such technologies are known to suffer from poor public 

perception in relation to sustainability and environmental concerns. Consequently, the 

VRFB offer a suitable alternative and offers a different range of perceptive benefits. 

 

In comparison, constructed wetlands are less expensive compared to MBR with 

respect to investment, energy and operational cost. The major cost in a CW are land 

acquisition and construction which is estimated to be in the range of 25-250 US$ ha-1 

depending on size (Kadlec and Knight, 1996). Costs relating to energy and 

maintenance are minimal since energy is limited to pumping and some wetlands can 

even function gravimetrically thus eliminating the need for pumps. Maintenance costs 

merely involve cleaning of distribution pipes, weed control, plant harvesting, 

sampling and site inspection. To illustrate, Gross et al., (2007) reported expenditure of 

US$ 600 constructing a recycled vertical flow constructed wetland for grey water 

treatment for a household and an annual cost of US$ 100 for maintenance. In the case 

of MBR, investment and operational cost are both expensive. Though investment cost 
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can be site specific, specific membrane cost for an MBR is estimated about 30 US$ m-

2 (Aquarec reports, 2006).  Operational costs in MBR include energy, membrane 

replacement, personnel, and maintenance. Dallas and Ho (2004) reported total cost 

(excluding supervision and design) of a reed bed for grey water treatment in Costa 

Rica to be US$ 250 per household. In comparison, Brewer et al., 2000 reported an 

estimated cost of £1,000 (~US$ 500) for grey water treatment for toilet flushing in 

Liverpool, UK for three adults using MBR. 

 

In light of the above, the implementation of CW technology would find wider use in 

villages, rural and small communities and developing countries where land is cheap 

and available. In contrast, because of its small footprint, niche markets for MBRs 

would include urban areas where space is limited and saving potential is high.   
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Chapter 5 Reactive barriers for the removal of Phosphorous (P) and metals (Cu 

and Ni) from sewage effluent 

 

5.1.1Physico-chemical characteristics of adsorbents 

The physico-chemical characteristics of the various adsorbents used to investigate P 

and metal (Cu and Ni) removal ability from sewage effluent is presented (Table 

5.1.1). The Cation exchange capacity (CEC) of the different adsorbents varied widely 

from 1 to 83 meq 100g-1 sample. Ochre, Bayoxide, Bauxol and Red mud which are 

predominantly Fe rich exhibited significantly higher (p<0.05) CEC (e.g. 60-80 times 

greater) than the others which are calcium rich (Table 5.1.1). The mineral content of 

the adsorbents as revealed by EDX and XRD showed that the limestone and shell 

adsorbents are primarily composed of calcite, Ochre and Bayoxide composed of 

geothite, Red mud and BauxolTM composed of haematite whilst Filtralite-P is 

composed of silicate minerals (Appendix 5). EDX analysis revealed a w/w% increase 

in P from unused to used adsorbents as follows,  0 to 0.3% for Filtralite-P, 0 to 1% for 

Bayoxide and 0.2 to 2.6% for Steel slag. The larger increase for Steel slag compared 

to Bayoxide and Filtralite-P could be due to the fact that the Steel slag sample was 

obtained from completed bed volume experiment whilst the other two were samples 

previously used for batch isotherm experiment. The adsorbents used in the bed 

volume experiment were in contact with a larger volume of sewage effluent compared 

to 100ml sewage effluent for isotherm experiment.  
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Table 5.1.1: Physico-chemical properties of adsorbents 

Adsorbent  C.E.C 
(meq.100g-1) 

Porosity 
(%) 

Bulk 
density 
(g cm-3) 

Main chemical 
composition 

Ochre 83.00 65-80 0.8 FeO(OH)* 
Bayoxide  76.85 80 0.4 FeO(OH) 
Bauxol  82.12 N.D N.D N.D 
BauxolTM  68.18 N.D N.D Fe2O3,CaSiO3 Ca2SiO4 
Red mud 64.90 N.D N.D Fe2O3,CaSiO3 Ca2SiO4 
Steel slag 35.35 55 1.53 Ca2SiO4, AlFeO3, 

CaFeO3, FeCO3, 
Filtralite-P 72.05 68 0.3 SiO2, Al2SiO5 FeFe2O4 
Zeolite  11.43 55 0.9 KCa4Si8O20(OH).8H2O, 

Ca(Si7Al2)O18.6 H2O 
Shell <1 82 0.4 CaCO3 
Carboniferous 
limestone 

~2 52 1.3 CaMg(CO3)2, CaCO3 

Dolomitic limestone ~1 52 1.2 CaMg(CO3)2 
Oolitic limestone 1.54 62 0.9 CaCO3 
Dowlow limestone 2.66 55 1.1 CaCO3 
Concrete ~1 60 1.0 SiO2, CaCO3 

*From Heal et al., 2005 
ND = not determined 
N.B. Chemical composition in bold denotes main constituent of mineral from XRD. 
 

Porosity of the adsorbents was comparable but bulk density varied considerably 

(Table 5.1.1). The specific surface area for most of the adsorbents could not be 

measured because they were unable to fit into the machine. The specific area of Red 

mud and Ochre were 11.61±0.02 and 295.28±1.77 m2 g-1 respectively. Particle size of 

the various adsorbents differed markedly, ranging from <1mm for Red mud and 

BauxolTM to ~10mm for portions of Ochre and steel slag.   
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5.1.2 Phosphorous capacity 

Result obtained for P capacity calculated from the Freundlich isotherm of the various 

adsorbent ranged from 0.01 to 26.5 mg g-1. The results of P removal from sewage 

effluent by the various adsorbent differed significantly (p<0.05) as reflected in the P 

capacity plot presented (Figure 5.1.1). As P capacities and CEC varied between  
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Figure 5.1.1: P capacities of different adsorbents according to Freundlich 
isotherm at 298K. Value of 0.01 mg g-1 represent average measurement for all 
the limestone adsorbents 
 

adsorbents, correlation analyses were carried out to investigate the effect of CEC and 

type of metal present on adsorbent P removal ability. Results showed that P capacity 

of the various adsorbents correlated strongly (P=0.0002, R2 = 0.74) with the 

percentage of the dominant element (e.g. Fe, Ca, Al, Si) as well as with CEC of the 

adsorbent (P=0.00003, R2 = 0.87), confirming that P capacity of adsorbent was 

influenced by type of metal and CEC of adsorbent. Following preliminary screening 

of the various adsorbents, the following adsorbents (Ochre, Bayoxide, Bauxol, Red 

mud, Bayoxide, Steel slag and Filtralite-P) were the focus of further investigation for 

P removal ability. Results of batch isotherm studies for the three adsorption models 
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((Freundlich, Langmuir and Dubinin-Radushkevich (DR)) used to investigate 

adsorption characteristics of the various adsorbents is presented (Figure 5.1.2a, b & 

c).  
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Figure 5.1.2a: Equilibrium Freundlich plot of mean P (n=3) adsorption data for 
seven adsorbents. 
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Figure 5.1.2b: Equilibrium Langmuir plot of mean P (n=3) adsorption data for 
seven adsorbents. 



 162

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

ε2( KJ2  mol-2)

Ln
 q

e (
m

g 
g-1

)

Ochre BauxolTM Filtralite-P Steel slag
Red mud Bay oxide Bauxol

 

Figure 5.1.2c: Equilibrium Dubinin-Radushkevich plot of mean P (n=3) 
adsorption data for seven adsorbents. 
 

The slopes and intercepts of plots were used to calculate model parameters. Results of 

model parameters from the three adsorption models are summarised in Tabe 5.1.2. 

Values of P capacities of the adsorbents calculated by the three models vary in 

magnitude but generally consistent in trend (Table 5.1.2). In all three models Ochre 

exhibited the highest P capacities confirming it to be the best adsorbent amongst those 

tested for P removal ability.  

 

Table 5.1.2: Summary of model parameters for P removal from sewage effluent 
by selected adsorbents. 

Freundlich Langmuir DR  
 
Adsorbent  

KF  
(mg g-1) 

1/n Qo 
(mg g-1) 

KL 
(L g-1) 

RL qo 
(mg g-1) 

-E 
(KJ mol -1) 

Ochre 26.5 0.39 73.6 0.89 0.12 61.1 1.2 
Bauxol 8.1 0.64 71.8 0.11 0.52 33.9 0.6 
BauxolTM 5.5 0.45 22.4 0.23 0.34 14.9 0.5 
Red mud 4.5 0.41 14.4 0.61 0.16 11.0 0.7 
Bay oxide 5.2 0.33 9.6 2.31 0.05 8.2 3.0 
Steel slag 1.8 1.17 1.8 6.0 0.03 2.2 1.8 
Filtralite-P 2.0 0.99 2.9 0.2 0.33 2.2 1.4 
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Of the three models, the Freundlich equation seems to provide the best fit to the 

experimental data. For instance, the P capacity for the Freundlich model averaged 

26.5 mg g-1. P capacity from the kinetic experiment averaged 33.4 mg g-1. This 

observation is in agreement with previous independent reports that the Freundlich 

adsorption model explains P adsorption better compared to the Langmuir model (e.g. 

Sanyal et al., 1993; Ratkowsky, 1986). This may be due to the fact that Freundlich 

model encompasses heterogeneity in adsorption materials surface and accounts for 

decreased affinity of adsorption with increasing saturation. In comparison, Langmuir 

model assume constant binding energy during the adsorption process. Based on the 

fact that most of the adsorbent investigated in this study are heterogeneous in 

chemical composition and external surface morphology, the Freundlich model seems 

closer to reality than the Langmuir. In comparison, Arias et al., (2001) found no 

correlation between P capacities obtained for different sands with actual removal of P 

from column experiments. Barrow (1978) reported that the Langmuir model seldom 

applies to complex reactions which involve more than one steps in the adsorption 

process.  

 

The Freundlich constant 1/n is related to the adsorption intensity. The value of 1/n for 

all the adsorbents except Steel slag for Freundlich isotherm are less than unity which 

is indicative of favourable adsorption. For Ochre, Bayoxide, Bauxol and Red mud, n 

lies between 2 and 8 indicative. Values within this range indicate that there is a high 

chance of achieving complete adsorption in the adsorption process (Mckay et al., 

1980). The dimensionless separation constant ( LR ) of the various adsorbents which 

describes the efficiency of the adsorption process ranged from 0.03 to 0.52. Values of 

LR <1 indicate favourable adsorption process. These results agree with the findings of 
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the Freundlich model. The free energy of the adsorption process (E) for the various 

adsorbents is negative indicative of a spontaneous adsorption process. 

 

5.1.3 Bed volume trials 

Bed volume trials were also carried out to (i) confirm P removal ability obtained from 

initial isotherm studies and (ii) provide insight as to how long the tested media can be 

used before exceeding the discharge limit of 0.5 mg L-1. Results of average P capacity 

of the different adsorbents calculated using equations 9, 10 and 12 for bed volume 

trials are as summarised in Table 5.1.3. Only P capacity for Steel slag and Filtralite-P  

 

Table 5.1.3 Comparison of P capacity from Bed volume trials for various 
adsorbents 
Adsorbent  Capacity (mg Kg-1  ) HRT(hr) Bed volume 
Ochre 4.1 ×103 1 115 
Ochre 4.2 ×103 5 700 
Steel slag  1.5 ×103 1 1800 
Steel slag  3.3 ×103  24 115 
Filtralite-P 1.2 ×103  1 250 
 

represents a possible maximum limit as they were conducted to completion and hence 

were saturated before the end of the study. The high P capacity of Ochre (evident 

from isotherm and kinetic results) and the relatively low inlet P concentration of 4-7 

mg L-1 is believed to have contributed to the  inability of Ochre to reach saturation 

within the time of saturation for Steel slag and Filtralite-P. However, bed volume trial 

of Ochre was conducted until effluent target (0.5 mg P L-1) was exceeded (Figure 

5.1.3). Although bed volume trial shows that Filtralite-P, Steel slag and Ochre at 1 

hour HRT were unable to meet the 0.5 mg P L-1 target, they were capable of removing 

P from the sewage effluent. Thus, they may not be appropriate for tertiary treatment 

for this contact time but could be appropriate for secondary treatment. 
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Figure 5.1.3a:  Removal of SRP from sewage effluent by fixed bed pilot trial 
using 10mm Steel slag at 1 hour HRT 
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Figure 5.1.3b:  Removal of SRP from sewage effluent by fixed bed pilot trial 
using 10mm Steel slag at 24 hours HRT.  
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Figure 5.1.3c:  Removal of SRP from sewage effluent by fixed bed pilot trial 
using Filtralite-P at 1hour HRT.  
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Figure 5.1.3d:  Removal of SRP from sewage effluent by fixed bed pilot trial 
using Ochre at 1 hour HRT.  
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Figure 5.1.3e:  Removal of SRP from sewage effluent by fixed bed pilot trial 
using Ochre at 5 hour HRT. 
 

Despite this, Ochre gave a P capacity higher than Steel slag and Filtralite-P indicative 

of its superior ability. Also, effluent from Ochre bed volume trial was consistently 

≤0.5 mg L-1 SRP up to a volume throughput of ~250BV compared to Filtralite-P and 

Steel slag. Filtralite-P was unable to meet the 0.5 mg L-1 SRP target whilst this target 

was met by Steel slag at optimal contact time only up to ~60 bed volume throughput 

(Figure 5.1.4.). 

 

The shapes of the breakthrough curves of Ochre at 5 hours HRT and Steel slag at 1 

hour HRT show distinct pattern. (Figure 5.1.4). In the Steel slag breakthrough curve,  
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Figure 5.1.4: Breakthrough curves for Ochre at 5 hours HRT and Steel slag at 1 
hour HRT 
 

there appears to be no clear mass transfer zone. The curve rises continuously with no 

break until it reaches the saturation point. In contrast, the curve for Ochre exhibited a 

distinct mass transfer zone between ~250 to ~500 BV before levelling off at ~ Ct/Co  

of 0.35. However, as saturation occurs at Ct/Co = 1, it is possible that Ochre might 

exhibit another similar shape breakthrough curve between Ct/Co of 0.5 to 1. Similar 

shaped breakthrough curve to Steel slag was obtained for the adsorption of fluoride on 

activated alumina (Ghorai and Pant, 2004). The contrasting shape of the breakthrough 

curve of Ochre compared to Steel slag may reflect differences in mechanism of 

adsorption. Surface precipitation, mass transfer and diffusion are well established 

pathways for P adsorption on adsorbents depending on the type of adsorbent and 

metal (e.g. Ca, Al, Fe) present. The Steel slag used in this study is predominantly 

calcium rich although smaller amount of iron (II) carbonate is present (Table 2, 

appendix 5). Ochre however, is composed almost entirely of geotite (FeOOH). 

However, the shape of a breakthrough is believed to depend on inlet flow rate, 

concentration, bed capacity (Ghorai and Pant, 2004).  
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5.1.4 Kinetics and thermodynamics of the P adsorption process  

Graphical plot for the removal of P from sewage effluent over time showed that P 

removal was characterised by high initial adsorption rate for most of the adsorbents 

notably for Bay oxide, Bauxol, BauxolTM and Ochre (Figure 5.1.5).  
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Figure 5.1.5: Adsorption of phosphate from 5 mg. L-1 final sewage effluent as a 
function of time at 298K under dynamic condition.   
 

However, the rate of adsorption varied considerably from 0.0003 to 0.0964 g mg -1 hr 

(Figure 5.1.6; Table 5.1.4). This variation was attributed to varying surface 

area/particle size of the adsorbent and adsorbent dose (Table 5.1.4). To illustrate, 

particle size of 10mm for Steel slag resulted in an adsorbent dose of 30 g L-1 whilst a 

particle size of <1mm for BauxolTM and Red mud resulted in an adsorbent dose of 1-2 

g L-1. 
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Figure 5.1.6: Pseudo-second order rate plot for the removal of phosphate from 5 
mg. L-1 final sewage effluent as a function of time at 298K under dynamic 
condition.   
 

 

Table 5.1.4: Comparison of pseudo second order rate constant for the removal of 
P from sewage effluent by different adsorbents  

Adsorbent Adsorbent  
dose (g L-1) 

Rate constant  
(g mg -1. hr) 

R2 

Red mud 1 0.0003 0.65 
Filtralite-P 10 0.0536 0.90 
BauxolTM 2 0.0012 0.64 
Steel slag 30 0.0964 0.91 
Bay oxide 20 0.0104 0.96 

Ochre 1 0.0076 0.95 
 

Kinetic data for P adsorption onto the various adsorbents were fitted to pseudo-first 

order Lagergren and pseudo-second order to investigate the mechanism of adsorption. 

The Lagergren first order (calculations not shown) was ruled out because its 

regression was not significant (r2 ≤0.14). Hence, P removal by the adsorbents did not 

follow the Lagergren first order kinetics. The pseudo-second order fitted the 

experimental data well (Figure 5.1.7, R2≥0.95).  
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Figure 5.1.7a: Pseudo second order plot for the adsorption of phosphate from 
sewage effluent onto different adsorbents at 298K under dynamic conditions. 
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Figure 5.1.7b: Pseudo second order plot for the adsorption of phosphate from 
sewage effluent unto Ochre at 298K under dynamic conditions. 
 

The calculated equilibrium concentration ( eq ) from the pseudo second order model 

(41.5 mg. g-1) for Ochre was very close to the mean experimental equilibrium value 

(37.8±1.8 mg. g-1), confirming that adsorption occurred by a Pseudo second-order 

mechanism. Calculated rate constant from the model plot was 93.2 g. mg. hr -1.  
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The intra-particle model which also is used to further investigate pseudo-second order 

adsorption kinetics gave a clear understanding of the stages involved during the 

adsorption of P unto Ochre (Figure 5.1.8b).  Intra-particle diffusion plots indicate  
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Figure 5.1.8a: Plot of intra-particle diffusion model for adsorption of P onto 
Ochre at 298K under dynamic conditions 
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Figure 5.1.8b: Plot of intra-particle diffusion model for adsorption of P onto 
Ochre at 298K under dynamic conditions 
 

multi-linear phases of three steps for the adsorption process (Annadurai et al., 2002). 

This is in agreement with the intra-particle diffusion plot of the kinetic data of P 
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adsorption onto Ochre (Figure 5.1.7). The intra-particle plot for Filtralite-P did not  

show a distinct phase 1, but rather a gradual continuum between phases 1 and 2.  

 

In the intra-particle plot for Ochre, phase 1 was the most rapid (gradient of ~16 mg. g-

1 hr-½) and was completed within 2 hrs. The gradient of phase 2 referred to as the 

intra-particle rate constant (Kp ~ 5 mg. g-1 hr-½) was less rapid followed by phase 3, 

the final equilibrium phase where intra particle diffusion slows down due to very low 

adsorbate concentration in solution.  The first phase of intra-particle mechanism has 

been reported to be a rapid external surface adsorption or instantaneous adsorption 

stage, the second is the gradual adsorption where intra particle diffusion is rate-

controlled and the third is the final equilibrium phase where intra particle diffusion 

slows down due to very low adsorbate concentration in solution (Özacar, 2003).  

 

5.1.5 Regeneration studies 

Results of P fractions from five sequential extractions using 0.05M NaCl, HCl, 

NaHCO3 and NaOH under static conditions showed that recovery of P from Ochre 

was only possible using an alkaline medium (Figure 5.1.7). Recovery of P from Ochre 

was more effective at pH 12 (more alkaline medium) than pH 9 (Figure 5.1.9). These 

results support the findings of Zeng et al., (2004) that P adsorption onto goethite  

(constituent of Ochre) decreases with increasing alkalinity. Desorption test conducted 

by shaking 10g used Ochre with 100 ml DI water for 24 hours gave only 4 mg P g-1 

(equivalent of ~2% that released by 0.05M NaOH).  
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Figure 5.1.9: Regeneration of used Ochre with 0.05M NaCl, HCl, NaHCO3 and 
NaOH under static conditions for 12 extractions.  
 

5.1.6 Cu and Ni sorption capacity of Ochre and BauxolTM 

Result of sorption capacities of Cu and Ni by Ochre and BauxolTM computed by the 

Freundlich, DR and Langmuir equations differ in magnitude but are not significantly 

different from each other (p=0.08, n=3). The parameter coefficients of the three 

models used to investigate the adsorption process is summarised in Table 5.1.5. 

Sorption capacities of Ochre and BauxolTM for Cu are generally comparable whilst 

that for Ochre generally doubles BauxolTM for Ni in all three models. Overall, 

sorption capacities obtained from the Langmuir and DR models are comparable and 

higher than that of Freundlich. The experimental sorption data for the adsorption of 

Cu and Ni in sewage effluent by Ochre and BauxolTM however gave better fit with 

Freundlich and DR models compared to the Langmuir (Figure 5.1.10 a, b and c). This 

may be due to the fact that the assumptions of the Langmuir model (i.e. constant 

binding energy throughout the adsorption process, monolayer adsorption and no 

interaction between adsorbed molecules on adjacent sites) are incompartible with the 

heterogeneous chemical composition and physical surface (Appendix 5) of Ochre and 
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BauxolTM. The Freundlich model however encompasses these adsorbent properties of 

the adsorbents.  

 

Table 5.1.5: Isotherm parameters for the adsorption of Cu and Ni unto BauxolTM 
and Ochre.  

Freundlich DR Langmuir  
Adsorbent 

 
Metal Kf 

(µg. g-1) 
1/n oq  

(mg.g-1) 
-E 
(KJ 
mol-1) 

Qo 
(mg. g-1)  

KL 
( L µg-1)  

RL 

BauxolTM  36.6 1.23 4.1 0.08 5 0.012 0.84-0.74 
Ochre  

Cu 
Cu 38.7 0.98 2.6 0.05 10 0.0035 0.62-0.38 

BauxolTM  31.6 0.79 4.9 0.01 20 0.0006 0.40-0.78 
Ochre  

Ni 
Ni 93.3 0.96 10.2 0.04 50 0.0014 0.08-0.39 
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Figure 5.1.10a: Langmuir equilibrium plot for the adsorption of Cu and Ni unto 
BauxolTM and Ochre. 
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Figure 5.1.10b: Freundlich equilibrium plot for the adsorption of Cu and Ni unto 
BauxolTM and Ochre. 
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Figure 5.1.10c: Dubinin-Raduskevich equilibrium plot for the adsorption of Cu 
and Ni unto BauxolTM and Ochre. 
 

The Freundlich isotherm parameter 1/n measures the adsorption intensity of Cu and 

Ni onto Ochre and BauxolTM. The 1/n values of Cu and Ni onto Ochre and Ni unto 

BauxolTM are less than unity. The adsorption of Cu onto BauxolTM is characterised by 

a 1/n value greater than unity indicative of a convex Freundlich isotherm (Horsfall 

and Spiff, 2005).  
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In order to predict the efficiency of the adsorption process, the dimensionless 

separation constant LR  was determined. The LR  values computed for both Cu and Ni 

were less than unity (Table 5.1.4) indicative of a favourable adsorption. Furthermore, 

the mean free energy (E) of the adsorption process computed using the DR model was 

also negative indicative of a spontaneous adsorption process.   

 

5.1.7 Kinetics and thermodynamics of Cu and Ni adsorption by Ochre and BauxolTM 

The removal of Cu and Ni from sewage effluent by BauxolTM and Ochre was rapid 

(Figure 5.1.11a & b). Initial removal of Cu and Ni by BauxolTM and Ochre was not  

significantly different (p>0.05) from the average removal over the entire 10 hr period.  
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Figure 5.1.11a: Percent removal of Cu and Ni in sewage effluent by Ochre and 
BauxolTM under dynamic conditions at 293K. 
 

This implies a short contact time for both adsorbent is adequate for Cu and Ni 

adsorption from sewage effluent. The short contact time may be due to the high 

surface affinity that governs transition metals (e.g Cu and Ni) adsorption onto goethite 
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(component of Ochre) Trivedi et al., (2001).  Metal adsorption onto goethite is also 

influenced by the hydration shell of metal (Trivedi et al., 2001). 

 

0

500

1000

1500

2000

0 2 4 6 8 10 12

Contact time (hours)

Am
ou

nt
 a

ds
or

be
d 

(µ
g 

g-1
)

Ochre(Cu) BauxolTM(Cu) Ochre(Ni) BauxolTM(Ni)

 

Figure 5.1.11b: Amount of Cu and Ni removed in sewage effluent by Ochre and 
BauxolTM under dynamic conditions at 293K. 
 

The amount of Ni adsorbed by BauxolTM and Ochre over a 10 hour period averaged 

852.1 and 1335.3 µg g-1 respectively whilst average Cu capacity by BauxolTM and 

Ochre were 1172.6 and 799.9 µg g-1 over a 10 hour period respectively.  The results 

revealed that BauxolTM adsorb more Cu than Ni whilst Ochre adsorbed more Ni than 

Cu. However, these differences were not significant (p>0.05, n=3). Removal of Cu 

and Ni BauxolTM and Ochre was best described by the pseudo second order kinetic 

model (Figure 5.1.12). However, insufficient data was obtained due to limited time 

available to investigate further the details of the adsorption mechanism. 
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Figure 5.1.12. Pseudo-second order plot for the adsorption of Cu and Ni in 
sewage effluent by BauxolTM and Ochre under dynamic conditions at 293K. 
 

Table 5.1.6: Summary of pseudo second order kinetic parameters for the 
adsorption of Cu and Ni unto BauxolTM and Ochre under dynamic conditions. 
Number of replicate for experimental value is 3. 

 K (g. µg-1 
hr-1 

eq ( µg .g-1)
calculated 

eq ( µg .g-1) 
experimental

r2 

BauxolTM(Cu) 1.1 ×10-2 1,250 1,117± 142 0.99 
Ochre (Cu) 1.7 ×10-3 909 878±65 0.95 
BauxolTM(Ni) 2.0 ×10-1 714 805±132 0.76 
Ochre (Ni) 1.2 ×10-3 1,429 1,460±252 0.76 

 

The calculated pseudo-second order model parameters and correlation coefficients are 

presented in Table 5.1.6.  The calculated equilibrium concentration ( eq ) from the 

pseudo second order model was comparable to experimental equilibrium values 

(Table 4.2.4), confirming that adsorption occurred by a Pseudo second-order 

mechanism. Result of the thermodynamics governing the adsorption of Cu and Ni 

removal from sewage effluent by is also summarized in Table 4.2.4. The efficiency of 

adsorption and spontaneity of the adsorption process as denoted by RL and E 

respectively are indicative of high efficient and feasible adsorption. 
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5.2 Discussion 

5.2.1 P capacity of adsorbents 

The physical and chemical properties of the adsorbents investigated in this study 

influenced their adsorption capacities (objective 7). P capacities obtained for the 

various adsorbents in this study showed that the Fe rich minerals (e.g. Ochre, Bay 

oxide, Bauxols and Red mud) better removed P from sewage effluent compared to Ca 

rich adsorbents (e.g. limestones). In comparison, P capacities of 26, 500, 5,200 and 

5500-8100 mg Kg-1 for Ochre, Bayoxide and Bauxol obtained in this study is 

comparable to those reported by Heal et al., (2004, 2005) for Ochre, Parfitt et al., 

(1975) for FeOOH and β-FeOOH, Akhurst et al., (2006) for Bauxol and Lopez et al., 

(1998) for Red mud. Other reported P capacities of 650-700 mg Kg-1 for Shale 

(Drizzo et al., 1999) and 1390 mg Kg-1 for Norwegian light weight aggregate (Zhu et 

al., 1997) earlier thought to be at the higher end of good P removal adsorbents seems 

inferior to Ochre. The sorption values for Ochre, Bay oxide, Bauxols and Red mud 

are orders of magnitude higher than those measured in other wetland substrates (Table 

5.2.1) suggesting that the use of these substrates could greatly improve the 

performance of constructed wetlands for  

 

Table 5.2.1 Comparison of P adsorption capacities of different wetland 
substrates 
Adsorbent  Adsorption capacity (mg P g-1) Source  
Gravel  0.03-0.05 Heal et al., 2004 
Steel slag 0.38 Heal et al., 2004 
Blast furnace slag 0.40-0.45 Heal et al., 2004 
Fly ash 0.62 Heal et al., 2004 
Shale 0.73 Drizzo et al., 1998 
LWA 1.3 Drizzo et al., 1998 
Steel slag 1.8 This study 
Ochre 26.5 This study 
Ochre 26.0 Heal et al., 2005 
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phosphorous removal. The results are consistent with the expectation that Fe 

oxyhydroxides are amongst the most effective adsorbents for P removal from solution 

(Li and Stanforth, 2000). 

 

The P capacities of most of the calcium rich adsorbents suggest that although they are 

capable of removing a measure of P from wastewater, their capacities are too small if 

applied in real situation. Furthermore, the results obtained for these absorbents are for 

batch isotherm studies which are considered an overestimation of real full scale 

results (Drizzo et al., 2002) because the potential development of biofilm (Drizzo et 

al., 2002), hydraulic regime, residence time and P concentration (Arias and Brix, 

2005) using real wastewater reduce the capacity of adsorbents compared to lab-scale 

experiments.  

 

As the results obtained in this study were carried out under aerobic conditions, the 

sorption capacity of Ochre could have been lower if the experiment had been carried 

out under anaerobic conditions. To illustrate, iron(II)phosphate form in anaerobic 

condition is less stable compared to iron(III)phosphate form under aerobic condition   

(i. e. dissociation constant of iron(II)phosphate is 561 KJ mol-1 which is far lower than 

2956 KJ mol-1 for iron(III)phosphate) (Skoog et al., 2003). Consequently, 

solubilization of iron(II)phosphate can occur far more easily compared to 

iron(III)phosphate and this could lead to leaching of dissolve phosphate from an 

anaerobic CWS. Srption isotherm studies are normally carried out in an aerobic 

environment and therefore literature data for studies carried out in anaerobic 

environment are unavailable to make comparisons.  
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5.2.2 Bed volume trials 

A residence time of ~5 hours (compared to ~24 hours optimal contact time) for Ochre 

was able to produce water quality of ≤0.5 mgP L-1 up to 250BV irrespective of 

fluctuating influent concentration. In comparison, this effluent quality was only 

produced using Steel slag at optimal contact time for a limited time (60BV) when 

influent P does not exceed 4 mg L-1. This implies that the use of Ochre based 

treatment system would treat larger volume of sewage effluent at shorter time more 

efficiently compared to Steel slag or other adsorbents with P capacity comparable to 

Steel slag. In comparison with the literature, Berg et al., (2005) achieved 1900BVs 

using crushed gas concrete to treat a biological sewage effluent strength ranging from 

5-12 mgP L-1 to meet a target of 2 mgP L-1. Based on the results of this study which 

shows that the 0.5 mg L-1 target was reached at Ct/Co ~0.1,  2 mg L-1 target could be 

reached at ~500-1000BV for this Ochre system at ~5 hours. The BV capacity 

achieved in adsorption experiment is dependent on influent concentration and type of 

adsorbent used. For instance, Thirunavukkarasu et al., (2003) achieved a BV of 1140 

and 3240 for a 5 µg L-1 and 10 µg L-1 respectively using an influent strength of 500 

µg L-1 for As(V) removal from waste water using granular ferric hydroxide, whilst  

Clifford et al., (1999) achieved a BV of 400-800 for a target of 2 µg L-1 using an 

influent strength of 21 µg L-1 for As(V) removal from waste water.  

 

Effluent from the Steel slag system was consistently > pH 10 (outside consent 

discharge limit pH 6-8) compared to a pH ~7 for Ochre. Removal of P from sewage 

effluent and pH of effluent was strongly correlated (P= 0000, r2 = 0.7). This is 

because; Ca2+ combines with P forming hydroxyapatite with lowest solubility at pH > 
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9.5 (Stumm and Morgan, 1996; Tan, 1993). Fe however combines with P to form 

FeOOH-PO4 (s) complexes, which occurs at optimum pH 5-7 (Lijklema, 1977). 

 

5.2.3 Kinetics and thermodynamics of adsorption 

Ochre, Bayoxide, Bauxol, Red mud, Filtralite-P and Steel slag all exhibited high 

initial P adsorption rate (objective 9). The high removal rate observed for Ochre and 

BauxolTM in this study is consistent with the literature. For instance, Akhurst et al., 

(2006) reported a P reduction of 46% within 24 hours using an adsorbent dose of 4 g 

BauxolTM L-1. In this study, a reduction of 42% within 48 hours was achieved using 

an adsorbent dose of 2g BauxolTM L-1. 

 

McHaffie et al., (2000) reported a reduction from 5 to <0.01 mg P L-1 within 8 

minutes whilst a reduction of 4.8 to 1 mg P L-1 was obtained in 48 hours in this study. 

However, a much larger adsorbent dose (volume artificial P solution to mass of Ochre 

ratio of 10:1) was used in McHaffie et al., (2000)  compared to that used in this study 

volume of sewage solution to mass of Ochre ratio of 1000:1.   

 

The dimensionless separation (RL) and free energy (E) of the adsorption processes are 

indicative of favourable and spontaneous adsorption. Favourable adsorption of 

phosphate unto FeOOH (component of Ochre) and BauxolTM had also been reported 

by Zeng et al., (2004) and Akhurst et al., (2006) respectively. 

 

Adsorption of P from sewage effluent onto Ochre proceeded via a pseudo-second 

order mechanism (objective 9). Three distinct linear adsorption phases consistent with 

the intra-particle mechanism was evident. The first phase of intra-particle has been 
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reported to be a rapid external surface adsorption, the second is the gradual adsorption 

where intra-particle diffusion is rate controlled and the third is the final equilibrium 

phase where intra-particle diffusion slows down due to very low adsorbate 

concentration in solution (Özacar, 2003; Annadurai et al., 2002). It is proposed that 

the first phase involves rapid ligand exchange with surface −OH groups at reactive 

sites and the formation of a binuclear bridging complex between a phosphate group 

and two surface Fe atoms followed by a slower penetration of phosphate into the solid 

matrix via sites and pores (Parfitt, 1989). Similar mechanism has been proposed for 

phosphate adsorption onto goethite by Hongshao and Stanforth (2001). The second 

and gradual adsorption where intra-particle diffusion is rate controlled is believed to 

be the chemical sorption phase in the pseudo-second order mechanism (Ho and 

McKay, 1999). Hongshao and Stanforth (2001) describe the adsorption of phosphate 

onto goethite as a two-phase reaction on the adsorbent surface; the first phase being a 

rapid surface complex formation followed by a gradual surface precipitate on the 

adsorbed layer. They identified an exchangeable ion phase in the surface precipitate 

which could describe the third phase of the intra-particle model.  

 

5.2.4 Desorption and regeneration studies 

Desorbability is a measure which indicate the degree of P desorption from an 

adsorbent (He et al., 1999). The low/negligible desorbability of sorbed P on Ochre in 

water, neutral and acid medium but which increases at high pH (e.g. strong alkali) 

indicates that the interaction is not easily reversible and that strong chemical bonding 

occurred during the sorption process. Parfitt (1989) reported that P adsorption unto 

Ochre becomes more stable with time. Fe precipitates with phosphate under acidic 

conditions (Arias et al., 2001) and P adsorption unto geothite (FeOOH) decrease with 
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increase alkalinity (Zeng et al., 2004). These findings implies that the use of Ochre as 

substrate in constructed wetland systems would not readily leach sorbed P or toxic 

metals while making it possible to regenerate spent Ochre to increase the longevity of 

the treatment system. This would reduce the cost and disruption associated with 

frequent excavations and the high volume of material required for reconstruction. 

 

5.2.5 Life expectancy of Ochre, Filtralite-P and Steel slag based CWS 

The results obtained from the sorption isotherm and bed volume studies for Ochre and 

Steel slag can be extrapolated to determine the expected lifetime of a CWs using 

either Ochre or Steel slag as a substrate. One approach is that of Jensen and Krogstad 

(2003). They estimated lifetime of CWS by multiplying the maximum sorption 

capacity with the total mass of filter material. This assumption together with the 

assumptions that the land area required to treat wastewater from one person is 5m2  

and at a wetland depth of 0.6m (EC/EWPA, 1990), then 3m2 or 4.5 tonnes of substrate 

would be needed to treat the effluent from one person. Using this approach, the 

lifetime estimated by Drizzo et al., (1998), Heal et al., (2005) and for adsorbents 

investigated in this study is compared in Table 5.2.3. 

 

Table 5.2.2 Comparison of estimated lifetimes according to procedure of Jensen 
and Krogstad (2003) for 3m2 area per person 
Adsorbent  Lifetime (years) Source  
Shale 7 Drizzo et al., 1998 
Steel slag 41 This study 
Filtralite-P 12 This study 
Ochre 224 Heal et al., 2005 
Ochre 271 This study 
 

Although the calculations of the above estimated lifetimes does not take into account 

the decline in flow rates and chanellization through ill-distributed flow, yet the results 
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clearly indicate considerable longevity in a properly designed CWS with Ochre based 

system compared to Shale or Steel slag or Filtralite-P. Also, it is well documented in 

the literature that CWs undergo a sharp decline in ability to remove P from waste 

water after few years of commissioning. For instance, Wolstenholme and Bayes, 

(1990) reported a decline after 2 years using pulverised fuel ash, (Mann and Bavor, 

1993) reported a decline after 1-2 years using a gravel-based system in Richmond 

Australia, Maehlum et al., (1995) reported a decline after 2-3 years using LECA, 

Kadlec and Knight (1996) showed that initial P removal rates from wetland systems 

in the USA are often in excess of 90% but decline sharply after 4-5 years. This is 

because P accumulates in substrates until they are saturated. This suggests that the use 

of adsorbent with high P sorption capacity is essential since substrate accounts for the 

majority of P immobilized in treatment wetlands (Richard, 1989). This makes Ochre 

an excellent candidate to increase the longevity of treatment wetlands for diverse 

applications of P removal.  

  

As treatment wetlands are utilised to achieve a desired discharge target, the actual  

expected lifetimes presented in Table 5.1.2 would be far less for specific applications 

such as tertiary treatment. For instance, the Ochre based trial system achieved the 0.5 

mg L-1 limit up to a volume throughput of ~250 BV although it was still far below the 

saturation point of the adsorbent. Similarly, the Steel slag system produced the same 

effluent quality only up to ~60 BV. Hence calculating expected lifetimes using 

equation 5.2.1 assuming a HFS operating 1.2 m3 d-1 having a volume of 50 m3 will 

have an approximate lifetimes of 86 and 7 years respectively.  

 

5.2.1 
V

tQBV *=
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Where BV is bed volume throughput (dimensionless), Q is flow rate (m3 d-1), time (d) 

and V is volume (m3). 

 

The aim of fitting experimental sorption data to an adsorption model is to predict the 

sorbent capacity and describe the adsorption process. As the ultimate aim of 

adsorption capacities is for design purposes, it is therefore important that correct 

isotherm coefficients for the experimental data are established. This was achieved by 

fitting experimental data to three established and widely used models (Freundlich, 

Langmuir and Dubinin-Radushkevich) to obtain the best fit. Furthermore, model 

parameter coefficients and their corresponding thermodynamic outputs collectively 

provide insight into the adsorbent ability, efficiency and mechanism involved in the 

adsorption process, thereby providing a complete understanding of adsorption 

process. Fitting experimental data in this study to the Freundlich, Langmuir and 

Dubinin-Radushkevich   models confirms the above statement. For instance, the 

adsorption capacities from the three models vary in magnitude, with that from 

Freundlich much smaller compared to the Langmuir and Dubinin-Radushkevich   

(Table 4.2.3), but it is the adsorption capacity predicted by the Dubinin-Radushkevich 

isotherm that came closest to adsorption capacities calculated from equilibrium and 

rate studies. Furthermore, the Freundlich model also modelled the sorption data better 

compared to the Langmuir model having greater regression coefficients. This may be 

because the Freundlich equation is an empirical model which encompasses adsorbent 

heterogeneity and accounts for decreased affinity of adsorbate with increasing 

saturation. In comparison, the Langmuir model assumes constant binding energy 

during adsorption process, monolayer adsorption on an ideal surface. The Freundlich 
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model thus seem closer to reality compared to the Lanmuir model. For instance, 

ESEM analysis revealed heterogeneous surfaces for BauxolTM and Ochre which is 

considered incompatible with ideal localised adsorption without interaction on 

identical sites for the Langmuir model (Ruthven, 1984).  

 

The Freundlich model allows an evaluation of the adsorption intensity (indicated by 

1/n) of Cu and Ni unto BauxolTM and Ochre to be assessed. A higher 1/n value for Cu 

compared to Ni for BauxolTM indicates a preferential adsorption of Cu over Ni. This is 

reflected in Fig 4.2.8 where removal of Cu is higher than Ni and consistent with the 

free energy of adsorption computed for the DR model and Langmuir constant related 

to energy of absorption (Table 4.2.3). A similar finding was reported by Clark et al., 

(2002).  With regards Ochre, 1/n value for the adsorption of Cu and Ni by Ochre are 

comparable and this is exemplified in the rate plot (Figure 4.2.9). The comparable 

energy change of adsorption for Cu and Ni unto Ochre and 1/n value from the 

Freundlich model indicates that both metals had no inhibitory effect on the adsorption 

of the other. This observation is consistent with the findings of Balistrieri and Murray 

(1982) who reported that the presence of Pb, Zn, Cd, −3
4PO and −2

3CO  had no 

inhibitory effect on the adsorption of Cu onto goethite.  

 

Reasons for the preferential adsorption of Cu over Ni for BauxolTM as oppose to 

Ochre is not clearly known. In general, preferential adsorption of heavy metals is 

influenced by the stable oxidation state of the metal in solution and its ionic radii 

(Richard, 1996; Horsfall and Spiff, 2005). Cu and Ni are both commonly divalent, 

with similar ionic radii and hydration energies (Cu2+: 0.71Å, -2100 KJ mol-1; Ni 2+: 

0.69 Å, -2105 KJ mol-1), therefore it is unlikely that these parameters influenced their 
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preferential ability to sorb unto BauxolTM.  Adsorption of heavy metals (positive ions) 

onto solid surfaces (negative surfaces) can be explained in terms of Lewis acid -base 

or hard and soft acid-base reactions, and Ni and Cu are both borderline Lewis acids 

(Ralph, 1973). Hence, the preferential adsorption of Cu and Ni unto BauxolTM could 

be explained as a consequence of the nature of the heterogeneous chemical 

composition of BauxolTM (see Table 5.1.1), the influence of the various elements 

present in BauxolTM and surface attractive forces (Pradhan et al., 1999).  

 

The adsorption of Cu in solution by goethite has been reported to take place via inner-

sphere complexes mechanism (Peacock and Sherman, 2005). Using sorption isotherm 

and EXAFS spectra, they showed that Copper(II) absorbs as (CuO4Hn)n−6 and 

binuclear (Cu2O6Hn)n−8 complexes forming inner-sphere complexes with 

iron(hydr)oxide by corner-sharing with two or three edge-sharing Fe(OH)6 polyhedra.  

 

The data in Table 5.1.4 for RL (adsorption efficiency) and energy change (E) indicate 

that adsorption of Cu and Ni by BauxolTM and Ochre is favourable and spontaneous. 

Kinetic study performed at fixed initial concentration at different time intervals 

indicate that adsorption of Cu and Ni onto BauxolTM and Ochre follows pseudo 

second order reaction kinetics.   

 

Sorption capacities obtained in this study are comparable to a range of values reported 

for different adsorbents in the literature. For instance, Lopez et al., (1998) reported 

capacities of 19.7 and 10.9 mg.g-1 for Cu and Ni adsorption unto BauxolTM 

respectively; Liu et al., (2007) reported a sorption capacity of 25 mg.g-1   for Cu unto 

BauxolTM; Yavuz et al., (2003), reported sorption capacity of 1.7 and 10.8 mg.g-1 for 
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Cu and Ni unto raw Kaolinite; Brown et al., (2000) reported a sorption capacity of 8 

mg.g-1 for Cu unto Peanut Hull. Although, the findings of this study show that both 

BauxolTM and Ochre could effectively be used to remove Cu and Ni from sewage 

effluent, the size of the adsorbents are unsuitable for use in constructed wetland 

system due to problems of clogging. Therefore, remaking these samples into 

appropriate size would be required. These should be followed by durability and 

sorption capacity tests.   
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CHAPTER 6  Conclusions and recommendations 

Conclusion 

The application of constructed wetlands for greywater treatment was shown to be 

appropriate. Performance at the two ends of the influent strength spectrum revealed 

that all configurations of wetlands can treat low strength greywater but horizontal 

systems exhibited more limited scope as the concentration increases (objective 1). The 

ability of the three wetlands to remove organic matter from the influent grey water 

was primarily influenced by the influent organic loading (objective 5). Residual 

concentration of BOD5, COD and TOC increased as influent organic concentration 

increases. Overall compliance to the USEPA standard for reuse averaged 96% for the 

VFRB, 79% for the HFRB and 67% for GROW for BOD5 and 0% for the HFRB, 

33% for the VFRB and 75% for the GROW system for turbidity (objective 2 - 4). 

Although the VFRB was best overall with no evidence of clogging on the bed surface 

during the study period, clogging would have resulted in a decreased performance of 

the VFRB due to poorer diffusion of air into the bed to support aerobic microbial 

degradation (objective 6).  This study reveals that the removal mechanism of key 

pollutants such as organics, solids and indicator organisms that are present in grey 

water is similar to those occurring in domestic wastewater in constructed wetland 

systems.  

 

Both the HFRB and the GROW system removed turbidity from the influent grey 

water. However, the formation of colloidal ferric phosphate in the HFRB effluent and 

the release of solids as a result of continued proliferated root growth from larger 

plants within the troughs of GROW resulted in an overall high turbidity in the final 

effluent.  The use of a bed substrate which does not contain iron would have resulted 



 192

in a lower turbidity in the final effluent. Improvement of the GROW system could be 

achieved by the use of miniature wetland plants which will reduce the possibility of 

proliferated or extensive root growth caused by larger plants in troughs that resulted 

in the release of biofilms and particulates into the effluent stream. In addition, 

increased aeration would be required to enable the GROW system to treat higher 

organic strength grey water.  

 

Overall, the study shows that CW based on vertical configurations are most 

appropriate for greywater treatment (objective 3). The principle reason for this was 

shown to be that aerobic degradation pathways are more appropriate and develop 

more robust solutions. The effluent quality and general robustness of the VFRB was 

similar but slightly poorer than that of a membrane bioreactor (e.g. 96% compliance 

to the USEPA BOD standard for reuse for the VFRB compared to 100% compliance 

for the MBR). Consequently, VFRB offer a suitable alternative to MBR, providing 

choices with either intensive or extensive solutions that are suitable for greywater 

recycling (objectives 2 - 3).  Overall, constructed wetlands have a place within the 

range of available technologies for grey water treatment and reuse. In particular, there 

would be market opportunities in small communities and environment where land is 

cheap and available. 

 

The use of Ochre, Bauxol, BauxolTM, Red mud, Bayoxide, Filtralite-P, Steel slag, 

Concrete, Zeolite and various form of limestones were investigated for potential 

removal of soluble reactive phosphorous (SRP) and metals (Cu and Ni) in final 

sewage effluent for post Constructed Wetland System. The type of metal (e.g. Fe, Al, 

Ca) present in the adsorbents and their cation exchange capacities strongly influenced 
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P capacities exhibited by the various adsorbents (objective 8). Bauxol, BauxolTM, Red 

mud, Bayoxide, Ochre, Filtralite-P, Steel slag were found to have a significantly 

higher P capacity compared to the limestone adsorbents. Ochre exhibited the best P 

removal ability with a P capacity of 26 g Kg-1 based on a Freundlich isotherm model. 

Result also showed that the equilibrium sorption capacity of BauxolTM and Ochre 

based on a Dubinin-Radushkevich model was 4.1 and 4.9 mg g-1 for Cu and Ni unto 

BauxolTM respectively and 2.6 and 10.2 mg g-1 for Cu and Ni onto Ochre respectively. 

Thus, they could both be regarded as a low-cost economic adsorbent for toxic metals 

from sewage effluent. Kinetic and thermodynamic study revealed a spontaneous and 

efficient adsorption process via a pseudo-second order mechanism where intra-

particle diffusion was shown to be the rate limiting step (objective 9).   

 

Cognisant of the fact that the results presented in this study were carried out under 

aerobic conditions and that iron (III) phosphate/ferric phosphate ( 4FePO ) formed 

under aerobic conditions is more stable compared to 243 )()( POFe  formed under 

anaerobic condition, the sorption capacity could have been much lower if the study 

had been carried out under anaerobic conditions. Overall, it may be concluded that 

Ochre offers a suitable, low-cost and natural means for the removal or polishing of P, 

Cu and Ni in sewage effluent from wastewater treatment plant and thus could be an 

alternative to more costly techniques.  

 

With current increasing emphasis on sustainability in terms of protecting and 

conserving the environment, cost, waste generation and other environmental hazard 

associated with any treatment process, an Ochre based constructed wetland system is 

a genuine possibility in the near future. A proposed setup of a treatment system for P 
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removal would be a vertical flow CW followed by an aerobic contact bed using Ochre 

as the bed substrate (objective 7).  

 

 Recommendations for further work 

1. Further studies should be carried out to determine more accurately the optimal 

organic load in relation to surface area (m2 PE-1) required to treat high strength 

grey water using the HFRB and GROW treatment wetlands.  

 

2. The effect of very low temperature (winter conditions), influence of phosphate 

speciation on P removal by Ochre and development of ~10mm Ochre pellet 

sizes using binding agents containing some Ca and Al substance which would 

ensure good hydraulic property when used in wetland system should be the 

focus of future research.  

 

3. Pilot scale work under actual environmental conditions in the field would be 

required to determine maximum sorption capacity of Bauxol and Ochre for 

metals and what factors would limit or influence its adsorption.  

 

4. A comparative study on sorption of P onto Ochre under aerobic and aerobic 

conditions. 
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Appendix 1: Photos of Constructed wetlands 
 
 

 
Figure 1: Photo of HFRB 
 
 
 

 
Figure 2: Photo of VFRB 
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Figure 3: Photo of �GROW�  
 

 
Figure 4: Photo of �GROW� with membrane showing internal features 
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Appendix 2 Media of GROW 
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Appendix 3: Tracer response curves of Constructed wetlands and rows of 
GROW. Vertical lines represent nominal hydraulic residence time. 
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Figure 6: Tracer response curve for HFRB 
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Figure 7: Tracer response curve for VFRB 
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Figure 8: Tracer response curve for GROW rig 
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Figure 9: Tracer response curve for Row 1 of GROW 
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Figure 10: Tracer response curve for Row 2 of GROW 
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Figure 11: Tracer response curve of Row 3 of GROW 
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Row 4

0

5

10

15

20

25

0 2 4 6 8 10 12 14

Time (hours)

Li
 c

on
ce

nt
ra

tio
n 

(m
g.

L
-1

)

 
Figure 12: Tracer response curve of Row 4 of GROW 
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Figure 13: Tracer response curve of Row 5 of GROW 
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Appendix 4: Influent and constructed wetland effluent parameters over the 
experimental monitoring period 
 
 
Table 1: Mean removal efficiency of pollutants (%) and microbial indicators (log 

reduction) during study 

Parameters HFRB VFRB GROW 
 LS HS LS HS LS HS 
BOD5 89 66 95 97 93 53 
COD 73 75 83 94 83 69 
SS 74 64 92 89 90 79 
Turbidity 18 82 44 96 97 59 
NH4-N 47 none 93 42 67 38 
NO3-N 34 83 none 50 none 38 
PO4-P 63 none 87 75 06 none 
Total 
coliform 

2.7 3.3 4.8 3.3 3.8 1.7 

E. coli 2.1 2.3 3.3 2.0 2.4 0.6 
Faecal 
enterococci 

2.1 2.2 2.2 3.0 2.2 1.8 
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Figure 14: Influent grey water and CW effluent temperature during the 
monitoring period. 
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Figure 15: Influent grey water and CW effluent pH during the monitoring 
period. 
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Figure 16: Influent grey water and CW effluent dissolve oxygen during the 
monitoring period. 
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Figure 17: Influent grey water and CW effluent turbidity during the monitoring 
period. 
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Figure 18: Influent grey water and CW effluent suspended solids during the 
monitoring period. 
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Figure 19a: Influent grey water and CW effluent BOD5 at low strength during 
the monitoring period. 
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Figure 19b: Influent grey water and CW effluent BOD5 at high strength during 
the monitoring period. 
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Figure 20: Influent grey water and CW effluent COD during the monitoring 
period. 
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Figure 21: Influent grey water and CW effluent NH4-N during the monitoring 
period 
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Figure 22: Influent grey water and CW effluent NO3-N during the monitoring 
period 
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Figure 23: Influent grey water and CW effluent PO4-P during the monitoring 
period 
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Figure 24a: Influent grey water and CW effluent total coliforms during the 
monitoring period 
 
 
 
 

0

1

2

3

4

5

01/08/04

09/11/04

17/02/05

28/05/05

05/09/05

14/12/05

24/03/06

Monitoring period

E.
 c

ol
i 

(lo
gy

+1
), 

cf
u 

10
0m

l-1

Influent HFRB VFRB GROW

 
Figure 24b: Influent grey water and CW effluent E. coli during the monitoring 
period 
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Figure 24c: Influent grey water and CW effluent faecal coliforms during the 
monitoring period 
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Appendix 5: EDX and XRD spectra of adsorbents 
 

 
Figure 25: EDX and XRD spectra of BauxolTM 

 
Figure 26: EDX and XRD spectra of Ochre 
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Figure 26: EDX and XRD spectra of Bayoxide 
 

 
Figure 27: EDX and XRD spectra of Filtralite-P 

Goethite
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