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Dynamic Wind Tunnel Facility

College of Aeronautics Report 0801

This document describes the equations of motion of an &iroradel tested in Cranfield’'s 4 degree-
of-freedom (DoF) wind tunnel facility. In previous resdarthe equations have been derived assuming
that the model’s centre of gravity (cg) is coincident witle timbal mechanism about which the model
rotates on the rig. However, in this report a general appragataken with the cg assumed to be located
away from the gimbal. The equations are developed from fhiatiples and reduced to a linearised
form where motion can be represented as small perturbasiboat trim. The equations are also de-
coupled into longitudinal and lateral/direction expressi and converted into state space form. It had
been found in practice that models tested in the facility\angy responsive in heave and can only be
operated open-loop if movement is restricted to purelytimtal motion. Therefore, the equations for
this 3DoF case are also developed. Having obtained theaketkpressions, a series of wind tunnel
tests were conducted on a 1/12 scale BAe Hawk model in ordestablish if the theoretical relations
were valid in practice. The particular technique used ititgghe model was dynamic simulation and
the analysis of the experimental data was performed usisigisyidentification. An established model
structure determination procedure is used to determinelwdtability and control derivatives should be
included in the equations of motion. Frequency domain, tguarror parameter estimation is then
employed to obtain numerical values for the stability andtiad derivatives. For both the longitudinal
and lateral/directional examples described, the final rhsttiecture obtained from experiment matches
that derived from theory. Derivatives values obtained frmamameter estimation and empirical analysis
are also in good agreement.
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Notation

State matrix

Input matrix

State bias term

Observation bias term

Output matrix

Direct matrix

Direction cosine matrix element
Atmospheric turbulence distribution matrix
Measurement noise distribution matrix
Acceleration due to gravity

Moment of inertia in roll

Moment of inertia in pitch

Moment of inertia in yaw

Product of inertia about andy axes
Product of inertia about andz axes
Product of inertia abouj andz axes
Rolling moment

Pitching moment

Model/aircraft mass

Yawing moment

Number of discrete measurement points in time
Number of control surface input variables
Number of state variables

Number of observation variables

Roll rate variable

Roll rate variable at trim

Roll rate perturbation variable and arbitrary point on ftmodel
Pitch rate variable

Pitch rate variable at trim

Pitch rate perturbation variable

Yaw rate variable

Yaw rate variable at trim

Yaw rate perturbation variable

Time

Axial velocity variable

Axial velocity variable at trim

Control input vector

Sideslip velocity variable

Axial velocity variable at trim

Wind tunnel velocity vector

Sideslip velocity perturbation variable
Measurement noise vector

Sideslip velocity perturbation variable
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Heave velocity in body axes at trim
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Axial force

State variable vector

Longitudinal coordinate in axis system
Lateral force

Observation vector

Lateral coordinate in axis system
Normal force

Measurement vector

Normal coordinate in axis system
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Greek Letters

Rudder input

Elevator input

Pitch attitude variable

Pitch attitude variable at trim

Pitch attitude perturbation variable
Geometric scale factor between scale model and full-siredaét
Aileron input

Atmospheric density

Roll attitude variable

Roll attitude variable at trim

Roll attitude perturbation variable
Yaw attitude variable

Yaw attitude variable at trim

Yaw attitude perturbation variable

Q

[

o]

L EED DD M DO N

Subscripts

Initial condition

Aerodynamic force or moment

Aircraft model body axes

Control force or moment

Equilibrium/trim condition
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1 Introduction

The dynamic wind tunnel facility at Cranfield University wasginally developed in the early 1980s
[1, 2] and has been used to investigate a number of aircrafiguoations [3, 4]. Figure 1 shows the
test rig with a 1/12 scale model of the BAe Hawk, which has bessd as a platform for testing the
facility’s instrumentation and hardware. The design of tlaeis relatively simple, with the aircraft
model suspended on a stiff vertical rod, which is itself @it to a Dexion framework. The vertical
rod passes through a gimbal mechanism within the model, showigure 2, that allows the aircraft to
rotate in roll, pitch and yaw and to translate verticallyrgjahe axis of the rod. The rig therefore allows
investigation of 4 degrees of freedom (DoF) of motion (segifé 3). The range of motion that the rig
permits is+30 degrees rotation in roll and pitch, 360 degrees in yaw anaralation of approximately
0.75m in the vertical axis. The gimbal and rod assembly wadenag small and as light as possible to
minimise their influence on the aircraft model and the gimibebrporates precision ballraces and linear
ball bearings to minimize frictional effects. The test gdesigned to be placed in an open section wind
tunnel. The facility currently being used has a working ieecof 1.5m by 1.1m and a maximum speed
of 40m/s inside the working section. The maximum wing spathefmodel is limited to around 0.9m.

Figure 1: 4DoF rig with 1/12 scale BAe Hawk

In earlier work, the equations of motions of a model in thdlitgchad been derived assuming that the
model’s centre of gravity (cg) was coincident with the girimin@chanism. However, this may not be true
in practice, so in this report the equations are developethéocase where the model cg is located away
from the gimbal. It is assumed throughout this report thattitodel being tested has been appropriately
scaled according to similarity and dynamic scaling lawse iBBues of dynamic scaling and similarity are
not discussed here but detailed descriptions can be fouadimber of texts [1, 3, 5, 6]. The effects of
friction between the gimbal mechanism and the rod are alsanaad to be negligible in the development
of the equations.

Having developed the equations of motion from first prinegplan aim of the current research was to
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carry out an experimental analysis to confirm that thesdioakhips were valid in practice. Therefore,
a series of wind tunnel tests were carried out on the 1/12 484k Hawk model, shown in Figure 1.
The approach used in the tests is known as dynamic simulgtiody 4, 7, 8, 9, 10, 11]. In this case,
a dynamically-scaled model with representative contrdiases is mounted on the test rig and flown in
semi-free flight. Specific inputs are applied to the conttofaces, which are deflected using miniature
servo-actuators, and the resultant response of the mothadasured using motion sensors. The stability
and control derivatives can then be extracted from the loptgut data using system identification and
parameter estimation techniques similar to those useceiflighnt test environment.

i

e
i

il

Figure 2: Gimbal mechanism
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Figure 3: Degrees-of-freedom on 4DoF rig

The following section describes the axes systems usedghout this report, while Section 3 defines the
model motion variables. The equations of motion are theivegfrom first principles in Section 4. A
general approach is taken at first before some simplifyisgiaptions are outlined. The equations are
decoupled into linearised longitudinal and lateral/dima@al sets of expressions, which in turn allows
the equations to be written in state space form. Experinhamaysis of the 1/12 scale BAe Hawk is
described in Section 5. This includes a brief descriptiosystem identification as applied to aircraft,
the specific techniques used in the analysis for this repod,a comparison between the theoretical and
experimental results. The report is brought to a close vathesconclusions in Section 6.
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2 Axes Systems

In the development of the equations of motion, two axes systeill be defined, both with origins
initially co-located at the gimbal:

* Rig axes:z,;, points into the tunnel and is assumed to be aligned with theeiuvelocity vector
Vr which is assumed to be parallel to the groupgd, is normal toVz and also parallel to the
ground, and,.;, points vertically down.

* Body axes:z; points along the nose of the aircraft model and is assumed #@itned with the
horizontal fuselage daturg; is normal tox;, and points starboard, ang points down through the
underside of the aircraft model.

Rig axes are fixed in inertial space, while the body axeseatad translate with the aircraft model,
which moves relative to the airflow from the tunnel.

3 Motion Variables

As illustrated in Figure 3, the rig constrains motion alohg,.;, andy,;, axes but allows the model to
translate along,.;,. Rotational motion is allowed about all three axes. Whenionas referenced to the
rig axes, the model moves relative to the airflow with an axé&bcity equal to the tunnel speég and
a heave velocity denotel,;,. The angular rates about;,, y.;, andz,;, are given byP,;,, Q.4 and
R,;, respectively. In body axes, the translational velocity ponents along:;, v, andz, are given by
U, V andW respectively, while the roll, pitch and yaw rates about #imes axes are denotdd| ) and
R.

For disturbed motion, with the aircraft model rolled, pi#chand yawed through anglés © and¥, the
translational velocities in rig axes are transformed irddybaxes using the equation,

U D11 Dya D Vr
V| = [D2a1 D22 Dag 0 (3.1)
W D31 D3z Dsz| |Wiig

where

D11 = cosOcos W
D1y = cosOsin ¥

D13 = —sin©®
Dy =sin®sin®cos ¥ — cos @ sin ¥
Doy = sin ®sin © sin ¥ + cos  cos ¥ (3.2)

Doz = sin ® cos ©
D31 = cos @ sin © cos ¥ + sin ® sin ¥
D39 = cos @sin O sin ¥ — sin ® cos ¥
D33 = cos P cos ©

Therefore,
U D11V + D13Whig
V| = [DaVr + DasWyg (3.3)

w D31V + D33sWiig
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Angular rates are transformed in a similar manner,

P Dllprig + DlZQrig + D13Rrig
Q| = |D2a1Prig + D22Qrig + Doz R, (3.4)
R D31 Prig + D32Qrig + D33 Ryig

It is also worth noting that as the wind tunnel velocity vedte is assumed to act parallel to the ground,
the model’s angle of attack and pitch anglé® are the same.

4 Development of the Equations of Moments

In this section, the equations of motion for a model on ther@gdeveloped from first principles using a
method similar to that used to derive the equations of mdtiom free-flying aircraft.

4.1 Absolute Acceleration Components

A point p is arbitrarily chosen within the aircraft model, with coovates {, y, z) with respect to the
origin. The local components of velocity and acceleratibp telative to the origin are denoted v, w
andag, ay, a,. As already mentioned in the introduction, it is assumed ttie origin of the body axes
and the cg of the model are not coincident, with the cg havowdinates £,, y,, z4). See Figure 4.

XU

~ Lp

L ZW
Figure 4: Motion variables, forces and moments with resfrebbdy-axes origin
The velocity components gfrelative to the origin are,
u T — Ry + Qz

v| =|y—Pz+ Rz (4.1)
w Z—Qx+ Py
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If the aircraft model is assumed to be rigid= ¢y = 2 = 0 then,
u —Ry+ Q=
v| = |—-Pz+ Rx (4.2)
w —Qx+ Py
The acceleration componentsgofelative to the origin are given by,
ag U — Rv+ Quw
ay| = |v—Pw+ Ru

a, w— Qu + Pv

(4.3)

By superimposing the velocity components at the origin ¢ivdocal velocity components, the absolute
velocity components at are obtained,

o’ U+u U—-Ry+Qz
V| =|V+v|=|V-Pz+Rx (4.4)
w’ W+ w W — Qx + Py
Similarly, the absolute acceleration components ate given by,
al, W — Rv' + Qu’
ay | = |¥ — Puw' + R/ (4.5)
al, W — Qu + PV
Differentiating (4.4) with respect to time and again asswgra rigid body,
W [U =Ry + Qs
V| =|V—-Pz+Rx (4.6)
W' | | W — Qxz+ Py

Substituting (4.4) and (4.6) into (4.5), the expressioma&fsolute acceleration componenty éfecome,

[a,]  [U-RV+QW —2(Q*+ R?) + y(PQ — R) + 2(Q + PR)
al,| = |V —PW + RU + 2(PQ + R) — y(P?> + R?) + 2(QR — P) (4.7)
.| W QU+ PV +2(PR-Q)+y(QR+P) —2(P?+ Q?)

4.2 Generalised Force Equations

Consider an incremental maés: at pointp. Applying Newton's Second Law, the incremental com-
ponents of force acting on the mass are giverdty:;,, dma; andéma’,. The total force components
acting at the origin are given by summing the force incremener the entire body,

> omal, X
[z 5ma;} = |:Y} (4.8)
> dmal, z

wherea;, a; anda’, are the absolute acceleration components at the cg of thelnfaa, using (4.7), the
resultant force components acting at the body axes cemrgian by,

X U— RV + QW —24(Q% + R?) + y4(PQ — R) + 24(Q + PR)
Y| =m |V —PW + RU +24(PQ + R) — yys(P> + R?) + z,(QR — P) (4.9)
Z

wherem is the total mass of the model.

W — QU + PV +24(PR — Q) + y,(QR + P) — z,(P? + Q?)
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4.3 Generalised Moment Equations

Consider the moments produced by the force acting on thenmental masém at p,

L > om(yal, — zay)
M| =
N

S=dm(zal, — zal)

> om(xay, — yay,)
where L, M and N are the rolling, pitching and yawing momeutspectively. Considering the rolling
moment equation in isolation, expressionsd@randa; from Equation (4.7) can be inserted into (4.10)
to give, after some rearrangement,

(4.10)

L= omy(W —QU+PV)-> omz(V - PW+RU)+ > may(PR - Q)
+P Z sm(y? + 2%) + QRZ om(y? — 2%) + Z omyz(R* — Q%) — Z omzz(PQ+ R) (4.11)

The summation terms in Equation (4.11) represent the manaatt products of inertia about the body
axes centre and are defined as follows:

o)y, = Z(gﬁ + 2%)ém - Moment of Inertia about;,
[Il, = > _(a°+ 2*)dm - Moment of Inertia abous,
I, = > (2°+y*)dm - Moment of Inertia about,
[Iey], = > _ aydm - Product of Inertia about, andy,
1,2, = _yzdm - Product of Inertia abouy, andz,
Ip2], = Z xzdm - Product of Inertia about, and z;

Note that)"(y? — 22)ém = Y (2% + y?)om — > (22 + 2%)dm = [I..2], — [I,yp. Therefore the rolling
moment equation becomes:
L = my(W — QU + PV) —mz(V — PW + RU) + [L.x]yP + [Ly]s(PR — Q)

+ ([Izz]b - [Iyy]b)QR + [IyZ]b(Rz - Q2) - [IxZ]b(PQ + R) (4-12)

It may be that the inertia properties of the model are knowsuabn axis system with an origin located
at the cg rather than the body axes centre. If this is the g#semation about the moments and products
of inertia about the body axes centre can be obtained to psiralel axis theorem,

Taaly, = Too +m(yz+22) (4.13)
Lyyly = Iy + m(x?] + 23) (4.14)
[Le]y = L+m(a) +y;) (4.15)
Layly, = Loy +magy, (4.16)
[Iyz]b = Iy, +mygzg (4.17)
ez, = Iz +magzg (4.18)

wherel,,, Iy, I.., Iy, I,. andI,, are the moments and products of inertia about the model cg and
Y4 andz, are again used to denote the offsets of the cg from the bodyargin. Note that it has been
assumed that there is no angular misalignment between theda@s and axis system at the cg about
which the inertia properties are referenced.

Utilising the above expressions for the inertias and theegdised force equations in (4.9), the rolling
moment equation can be rearranged to give,

L=IL.P+ (L, 1,)QR— I.(PQ+R) — Yz, (4.19)
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In a similar manner, expressions for the pitching and yawmugnents can be developed,

M = I1,,Q— (I; — I.,)PR — I,.(R? — P?) + Xz, — Zz, (4.20)
N = L.R+(I,y — Li:)PQ+ I.(QR— P) + Yz, (4.21)

Hence Equations (4.19) to (4.21) are expressions for thiagppitching and yawing moments about the
body axes origin with the inertias referenced to the cg. M{ste that the terms involving,, and,. have
been neglected. Itis assumed the aircraft model is syneregbout therz-plane, with the mass evenly
distributed. Thereforé,, = I,. = 0. For the same reason, the lateral offgebetween the origin of the
reference axes and the cg will be zero for a symmetric model.

4.4 Linearised Equations of Motion

At trim, it is assumed that the model is not moving relativettie rig and is undergoing no angular
motion. That is,

Wm’ge = Prige = Qrige = Rm’ge = Pe = Qe = Re =0

where the subscript denotes trim conditions. For the most general of casesrithened roll, pitch and
yaw angles of the model relative to the rig are dendigdo. and¥.. Using Equation (3.3), the trimmed
body axes velocity components can be related to the trimigezkes velocity components by,

Ue D11, Dia, Dis.| |Vr D1, Vr
Ve| = |D21, Dz, Das, | | 0| = |DaVr (4.22)
We D31, Dsa, Das, 0 D3y Vi

The definitions of the direction cosine matrix elements heedame as those given in (3.2) with ©
andV replaced by the trim angleB,, ©, and ¥, respectively.

If now the model experiences a small disturbance about thentesulting perturbation in vertical veloc-
ity in rig axes is denoted,.;,, while roll, pitch and yaw rate perturbations about the saig system are

given byp,4, ¢-ig andr,;, respectively. The resulting roll, pitch and yaw attitudes tb the disturbance

areo, 6 andy. The tunnel speelf; is assumed to remain constant.

So, the translational velocity components in body axesrgdee by the disturbance are found from (3.3),

U Ue +u D11VT + Dlgwm'g
VI =|Vetv | = |DaVr+ Dagwyy (4.23)
w We + w D31 VT + Dggwrig

wherewu, v andw denote perturbations in the velocity componetitsl” andW. Similarly, the angular
rates components in body axes are found using (3.4),

P Pe +p p Dllprig + D12qmg + D13rrig
Q| = |Qe+q| = [q| = [D2a1prig + D22¢rig + Da3rrig (4.24)
R Re +r r DSlprig + DSZQM'g + D33rrig

wherep, ¢ andr are the angular rate perturbations in body axes. Express$wrthe direction cosine
elements can now be developed. As an example, the elegniill be considered. Following the
perturbation from trimD;5 can be written as,

D1y = cos(©, + 0) sin(¥, + 1) (4.25)

Equation (4.25) can be expanded by using the trigonometeiatities
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cos(A+ B) = cos Acos B — sin Asin B
sin(A + B) = sin Acos B + cos Asin B

Therefore,

D19 = (cos O, cos  — sin © sin ) (sin W, cos ¥ + cos ¥, sin 1)) (4.26)

It is noted that the attitude perturbatignd and« have small values, hence using small angle theory ,

cos¢ =cosf =cosy ~ 1

sing ~ ¢, sinf ~ 0, siny = 1
and Equation (4.26) reduces to,
D13 = CySy, (4.27)

whereCy = (cos ©,—6sin ©.) andSy, = (sin ¥+ cos ¥, ). Using the above approach, the remaining
direction cosine terms can be written as follows,

Di1 = CyC,

Dy = CySy

D13 =5y

Dot = 5459Cy — CySy

Day = 84898y + CyCy (4.28)
Doz = 54Cy

D3 = C¢S@C¢ + S¢S¢
D3y = CySpSy — SpCly
D33 = CyCy

whereC}, = (cos ke — ksin k.) andSy = (sink, + kcosk.) fork = ¢,0,.

The small perturbation assumption can also be used to redaderms on the left hand side of the gen-
eralised force equations in (4.9) and moment equation9)401(4.21). Removing terms that have zero
trim values and neglecting products and squares of smalinbation variables, the force and moment
equations become,

m(t —rVe + qWe + zgq) = X (4.29)

m(o — pWe +rUe + 129 —D2g) = Y (4.30)

m(w — qUe + pVe — mgq) = Z (4.31)

Ipap — Ipoi — mzg(0 — pWe +1rUe + 72y — D2g) = L (4.32)

IyyG +mzg(i — Ve + qWe + 24G) — mag(w — qUe +pVe — qzy) = M (4.33)
L7 — Ipp + mag(0 — pWe +1Ue + 725 — pzg) = N (4.34)

Having dealt with the left hand side of the force and momeniéqns, the terms on the right hand side
can now be considered.

4.5 Disturbance Forces and Moments

It is assumed that the disturbing forces and moments on thikehaoe due to aerodynamic effects, grav-
itational effects and movement of the control surfacesh wie tunnel airflow assumed to be stable. In
addition, the force components acting along ihg, andy,;, axes will be balanced by reaction forces
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from the rig, as motion along these axes is constrained. d@&xample, the force and moment compo-
nents can be written in the form,

X = Xo 4 Xy + Xe + Xrig,
M =M, + M, + M,

where X.;4, represents the components of the rig reaction forces atppgandy,.;, transformed into
body axes, acting alongj,.

4.5.1 Gravitational Terms

Figure 5 shows the relationship between the forces and misnaeting at the body axes origin at trim
and the gravity vector acting at the cg. The following expi@ss can hence be developed,

Xge Dy, D1z, Dz | [ O —mg sin O,
Yg.| = | D21, D2z, Doz, 0 [ = | mgsin P, cos O, (4.35)
Zg, D3y, D3z, D33 | |mg mg cos P, cos O,
Lg. Dy, D1z, Das, 0 —x4mg cos O, sin ¥,
My, | = | D21, D2, Das, | |—xz4mg| = | —x4mg(sin . sin O, sin ¥, + cos P cos U.)| (4.36)
Ng. D3y, D3y, Dss, 0 —xgmg(cos P, sin O sin ¥, — sin O, cos W)
L € M & Xge
(o (T,
J D, Yg
Eazg Yge Zg cg
cg
@, S,
Z Y v
= ;?ﬂg Zgé‘ mg
cg X

Figure 5: Gravitational forces and moments at trim

For the disturbed case,

Xy 1 Yo =0 [Xg, —mgsin ©, + mgy sin @, cos O, — mgh cos P, cos O,
Yol =|-v 1 ¢ Yg.| = | mgysin©, + mgsin @, cos ©, + mge cos . cos O, (4.37)
Z, 0 —¢ 1 Z,, —mg# sin ©, — mg¢ sin Y, cos O, + mg cos P, cos O,
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L, 1w 0] [L,
Myl =|-v 1 ¢l M, (4.38)
N, 0 -6 1][N,
SO
Ly = —zgmgcos O, sin U, — xymgi)(sin @, sin O sin ¥, + cos P, cos V)

+ x4mgb(cos P, sin O sin ¥, — sin O, cos V)

M, = 24mgy cos O, sin ¥, — zymg(sin @, sin O sin ¥, + cos P, cos V)

— xgmg@(cos P sin O sin ¥, — sin ®, cos ¥..)

Ng = —x4mgf cos O, sin ¥, + xymgp(sin @, sin O sin ¥, + cos P, cos ¥,.)

— xgmg(cos P sin O sin ¥, — sin ®, cos ¥..)

where the following %3 matrix is the direction cosine matrix for small perturbas and angles:

1 ¢ -0
- 1 ¢
0 —¢ 1

4.5.2 Aerodynamic and Control Terms

The aerodynamic and control terms are developed using arfsgties expansion about the initial con-
ditions for each of the forces and moments in a similar matotrat described by Cook [12]. Only the
first term in each series is considered significant and thg ligher order derivatives retained are those
with respect tao.

Xo+Xe = Xa, + Xutt + Xy + Xt + Xpp + Xgq + X1 + Xt + Xy + Xl + X (4.39)

Yot Yo = Yo + You+ You+ Yow + Ypp + Yeq + Yor + Yoo + Yon + Ye€ + YC (4.40)

Zo+Ze = Zog 4200420+ 20w+ Zpp+2gq+ 2o+ Zath+2,m+2el+ 2. (4.41)

LotLle = Lo +Llyutlowtlowtlpptlogtlortlowtlm+lee+lcc (442
M, +M, = Mg —l—l\o/luu—l—l\o/lvv—i—l\(}lww—l— I(./Ipp—l—l\(}qu+l\(}lr7‘—|—l\(}|ww

My + M€ +McC (4.43)

No+Ne = Ng, + Nyt + Ny + Nyw + Npp + Nyg + Ny + Nt + Ny + Ne& + Ne¢ - (4.44)

Note the control termsg, £ and( represent inputs about the values needed for trim, hengeatieealso
treated as perturbation variables.

45.3 Rig Terms

The forces that are balanced by the rig along thg andy,;, axes are the sum of the aerodynamic,
control and gravitational forces acting on the model, asvshia Figure 6. To determine the components
that act along the,.;, andy,;, axes, the body axes forces are first transformed into rig axésllows,

1
Xrig Dy Dia D3 —Xatetg
Yrig| = | D21 Doz Do3 —Yatetg

0 D31 D3y Das ~Zatetg
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where the subscript + ¢ + g denotes the sum of aerodynamic, control and gravitatiooales. For
example, the combined force acting on the model along:gheis is given by,

Xaterg = Xao + Xyt + Xov + Xpw + Xpp + Xgq + Xpr + Xy + Xyn

0 0 (4.45)
+Xe& + X ¢+ mgip sin @, cos ©, — mgt) cos P, cos O
Xcz+c+g
®+6
o %
Za+c+g
’ \\AA
¥+
? v Ya+c+g
Figure 6: Forces balanced by the rig
Therefore,
Xrig = _DllXa+c+g - D21Ya+c+g - D3lza+c+g (446)
Yrig = —D12Xaterg — Do2Yaretrg — D32Zatetg (4.47)
These forces can then be transformed back into body axes,
Xrigy D11 D12 Diz| [Xrig
Yorigy | = | D21 Dao2 Dog| [Yrig (4.48)

Zrig, D31 D3z D33 0

Xrigy = — (D} + D) Xaserg — (D11Da1 + D12D92)Y aerg — (D11D31 + D12D32)Za s g
Yrig, = —(D21 D11 + D2sD12)Xgyerg — (D31 + D33)Y aerg — (D21D31 + D22D32)Zarerg
Zvig, = —(D31D11 + D32D12)Xaetg — (D31Da1 + D32D22)Y gieig — (D3 + D35)Zgctg

S0, using the expressions for the gravitational, aerodymatontrol and rig terms, the linearised force
and moment equations (4.29) to (4.34) can be written as,

m(i —rVe + qWe + 244) = (1 — (DF} + D}5))Xasetg
— (D11Do1 + D12D22)Y ayetg — (D11D31 + D12D32)Zg 1 c1g  (4.49)

m(v — pWe +rUe + 71y — pzg) = —(D21D11 + D22 D12)Xactg
+ (1= (D3) + D3))Yaterg — (D21 D31 + DagD32)Zg s cg  (4.50)
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m(w — qUe + pVe — 244) = —(D31D11 + D32D12)Xayetg
— (D31Da1 + D33D23)Y ayetg + (1= (D3) + D33)) Zagerg (4.51)

Ipap — It — mzg(0 — pWe +rUe + 725 — D2g) = Latetg (4.52)
Iy + mzg(i — rVe + qWe + 24G) — mag(w — qUe + pVe — 4zg) = Majeig (4.53)
L,r—I.p+ mwg(i) —pWe + 71U + 724 — ng) = Naotetrg (4.54)

4.6 Simplification of Equations

Itis clear that the expansion of the expressions on the hightl side of Equations (4.49) to (4.54) would
lead to some long and very complex terms, particularly ferfirce equations. To get Equations (4.49)
to (4.54) into a more manageable and practical form, somplijimg assumptions can be made.

To start with, it is usual practice for the model to be trimnéth the bodyzz-plane aligned with the
correspondingcz-plane of the rig axes. Therefore the trimmed roll and yawuakt angles®. and ¥,
are zero. Further, if the model is trimmed at a low angle afckitit may be reasonable to tréat as a
small angle i.e.

cos ©, ~ 1 andsin 9, ~ O,

In this case, the direction cosine matrix for trim reduces to

1 0 -6,
D.=]10 1 0
O, 0 1
Hence, the relationship between trimmed velocity comptmignbody axes and rig axes becomes,
U. 1 0 —6.| |Vr Vr
Vel=10 1 0 0= 0 (4.55)
We O, 0 1 0 V1O,

Following a perturbation from trim, the direction cosinetmabecomes,

1 TZ) _(@e + 9)
D=| —v 1 P (4.56)
(66 + 9) —qu 1

and the body axes velocity components are related to thosg axes by the expression,

U U+ u 1 v —(0.+0) Vr Vr
vi]= v = v 1 ) 0 |= —pVr (4.57)

where products of small perturbations adgdhave been assumed to be negligibly small. From Equation
(4.57) it can be seen firstly that, under the above assungptiba perturbation in axial velocityis zero.
Secondly, the trimmed lateral velocity componéfitis also zero. As well as this, the perturbation in
yaw angley is equal to the negative perturbation in sideslip angte

In a similar manner, the body axes angular rate perturbatioiables can be expressed in terms of the
corresponding rig axes components as,

P p 1 ¢ _(98 + 9) Prig Prig
Q =149 = —T/) 1 Qb Qrig | = | qrig (458)
R r (Bc.+0) —0o 1 Trig Prig
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where again products of small perturbations énchave been neglected. Therefore, under the assump-
tions outlined above, the angular rates in the body axescura ¢o their corresponding angular rates in
rig axes.Note that the terms describing the disturbana®$oand moments can be simplified in a similar
manner.

4.6.1 Gravitational Terms

Using the above assumptions, Equations (4.37) and (4.38)eacduced to,

X, [~mg(®. +6)

Yg = mygeo (4.59)
1 Zg myg

L, —zgmgt

My| = | —z4mg (4.60)
| Ng Tgmyo

4.6.2 Aerodynamic and Control Terms

The aerodynamic and control terms remain largely unchafrged those given in Equations (4.39) to

(4.44). However, if it can be assumed that, following a disémce from trim, the model experiences
motion only in the longitudinal plane or the lateral/diiectl plane then Equations (4.39) to (4.44) can
be simplified.

Firstly, for the case in which the model's response to théudisince is restricted to the longitudinal
plane, motion can be completely described by axial forceaXpmal force Z, pitching moment M, motion
variablesw, ¢, 6 and elevator input (remembering that: is assumed to be insignificant). The lateral-
directional forces and moments (Y, L, N), motion variablesy( r, ¢, 1) and control surface inputg,(

¢) are all assumed to be zero. Therefore, derivatives of X, &Mrwith respect to lateral-directional
variables are negligible and the decoupled longitudined@aamic and control terms can be written as,

Xo+Xe = Xq, + )O(ww + f(qq + )°<u-,u> + )0(7717 (4.61)
Zo+2Z, = Z,, +iww+qu+iwu‘;+inn (4.62)
M, +M., = Mae+|€/lww+|\°/qu+l\°/lww+l\°/lnn (4.63)

Similarly, the decoupled lateral-directional aerodynamind control terms can be found by assuming
motion due to a disturbance can be characterised complstddyeral force Y, rolling moment L, yawing
moment N, motion variables, p, r, ¢ and and control surface inputsand(,

Yot+Ye = Yo + \O(Uv + \O(pp + \O(Tr + \0(55 + \O(CC (4.64)
Lat+Lle = Lo +Low+Lptlr+leetloc (4.65)
Ne +Ne. = Ng, + ﬁvv + &pp + IQITT + Klgf + &CC (4.66)

4.6.3 Rig Terms

Again, the forces that are balanced by the rig alongithgandy,.;, axes are the sum of the aerodynamic,
control and gravitational forces acting on the model ancctiveponents that act along the;, andy,.;,
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axes are found by transforming the body axes into rig axes,

1

Xrig 1 ¢ _(66 + 9) - _Xa+c+g
Yorig| = - 1 ¢ —Yatetg (4.67)
0 (@e + 9) _¢ 1 _Za+c+g

Considering first the longitudinal case, the force alongithg-axis is found to be,
Xm’g = _Xa+c+g - Za+c+g(®e + 9) (4.68)

where the longitudinal motion is again assumed to be deedipbm lateral/directional motion, resulting
in ¢ =1 = 0. Next, for the lateral case, the force along thg-axis is,

Yrig = —Xatetg® — Yatetg — Latetg® (4.69)

The expressions for the rig forces given in Equations (4a68l)(4.69) can now be transformed into body
axes with the equation,

X”Qb 1 ¢ _(@e + 9) Xrig _Xa-‘rc-‘rg - Za+c+g(®e + 9)
YTigb = _¢ 1 qb YTig = _Ya+c+g (470)
Z”Qb (98 + 9) —¢ 1 0 _Xa+c+g(®e + 9)

and the resulting expressions can be summed with the giani$ aerodynamic and control terms to
give the X, Y and Z force equations,

m(gWe + chj) = —Za+c+g(@e +0) (4.71)
m(v — pWe +rUe + 724 — pzg) = 0 (4.72)
m(w —qU,. — wg‘]) = Za+c+g - Xa-i—c—i—g(@e + 9) (4-73)

Note that theu term in Equation (4.71) has been droppedudas assumed to be zero. Expanding the
terms X, yc4+4 and Z, .., terms, Equations (4.71) to (4.73) become:

m(qWe + 200) = —(Zay + Zuww + Zgq + Zito + Zyn + mg)(©. +6)  (4.74)
m(0 — pWe +rUe +1xg —pzg) = 0 (4.75)
m(w — qUe — 244) = Z,, +iww+qu+iww+inn+mg (4.76)

—(Xa, + Xow + Xgq + Xt + Xyn — mg(©, + 0))(0, + )

At trim, by definition, the forces are balanced and all pdxdtion variables are zero, hence from Equa-
tions (4.74) and (4.76),

—(Zg, + mg)®. =0 4.77)
Zy, +mg—X4,0e =0 (4.78)

and Equations (4.74) to (4.76) can be reduced to:

m(gWe +24¢) = 0 (4.79)
m(v — pWe +rUe + 724 — pzg) = 0 (4.80)
m(h — qUe — 249) = Zuw +Zgq + Zuth + Zn (4.81)

where, again, products of perturbations &hdare assumed to be insignificant. The moment equations
can be expressed as,

Ipap — It — mzg(0 — pWe + rUe + fag — D2g)
=Ly, + |0_U’U + Iipp + I(irr + Iigf + E(C —xymgy)  (4.82)
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Iyyq + mzg(qWe + 244) — mag(w — qUe — 4zg)
= I\O/Iww + N?Iqq + N?Iwzb + I\O/Inn —xymg (4.83)

L7 — Lp.p + mag (0 — pWe + rUe + 72y — p2g)
= Ng, + Nyv + Npp + Nor + Ne€ + NeC + z,mgé (4.84)

For the trim case, all moments on the model are balanced hperalrbation variables are zero therefore,

I—ae =0 (485)
Mgy, —xgmg =0 (4.86)
Ng, =0 (4.87)

The X and Y force expressions given in Equations (4.79) an80j4can also be utilised so that the
moment equations become,

Loop— L7 = Iivv + Epp + I(irr + Iigﬁ + E(C — Tgmgip (4.88)
Iyd — mag(t — qUs — 244) = Myw + Myq + Myt + M, (4.89)
L.r—1.p = IQIUU + Klpp + Iglrr + ngf + KICC +xgmgd (4.90)

4.7 Equations for 3DoF Case

In practice, it has been found that the wind tunnel modeld terbe very responsive in heave, risking
damage as they quickly reach the end stops on the verticaDwe option for dealing with this problem
is to implement some form of closed-loop height control eysthat will prevent the model from reaching
the vertical limits. An alternative solution is to compligteestrict the motion of the model along thg,-
axis and allow the model to only undergo rotational motiomn§equently the model is constrained to
manoeuvre only in 3DoF.

For the 3DoF case, the body axes velocity components afteddla the wind tunnel velocity vector by
the following expressions,

U U, 1 v —(0.+0) Vr Vr
V= v = v 1 ) 0|=| —YVr (4.91)
W We +w (O +0) —0¢ 1 0 V(O +0)

The relationship between angular velocities in body axekthose in rig axes remains the same as that
given in Equation (4.58).

For the force equations (4.79) to (4.81), the X and Y expoessiemain unchanged from the 4DoF case.
However, for the Z equation, the aerodynamic, control aaditational forces are now entirely balanced
by the rig hence the right hand side of Equation (4.81) reslt@eero,

m(gWe + 244) = 0 (4.92)
m(v — pWe +rUe + 72y — p2zg) =0 (4.93)
m( — qU, — x44) = 0 (4.94)

In terms of the moment equations, the roll and yaw equatioasdentical to those given in (4.88) and
(4.90). For the pitch equation, the Z force component appgamn the left hand side of Equation (4.89)
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reduces to zero, hence for the 3DoF case, the moment equatien

Lop— 1.7 = |0_UU + Iipp + Iiﬂ" + Iigf + IO_CC — Tgmgyp (4.95)
Iyi = Myw+Myg+ Myt + My (4.96)
Lot — Lap = Nyo+ Npp + Npr + Ne€ + NeC + zgmge (4.97)

4.8 State Space Representation

For subsequent analysis, it is convenient to have the emsatif motion in state space form. To achieve
this, the force and moment equations must first be rearrapgdidat terms involving state time deriva-
tives appear on the left hand side of the equations, white s&riable terms appear on the right hand
side. Considering first the longitudinal equations (4.81J &.89) for the 4DoF case,

(m— iw)w —mzy§ = 2w+ (iq +mU.)q + 27777 (4.98)
—(I\D/Iw + maxg)w + (Iyymxf])q' = I\O/Iww + (I\O/Iq —magUe)q + I\O/Inn (4.99)

The above expressions can be rewritten in the form

Mx(t) = A’x(t) + B'u(t) (4.100)
where
x'(t)=[w ¢ ut)=n
M — (zn —Zy) —maz, A | Lw ng + mU,) | Zn
_(MU} + mx!]) (Iyy + ml’f]) My, (Mq - mnge) Mn
The state space form is obtained by dividing through (4.1D9Ghe mass matrii,
X(t) = Ax(t) + Bu(t) (4.101)

whereA = M~!A’ andB = M ~!B’. So the longitudinal state space equations of motion aendy,

wl | zw % w 2
M B |:mw mﬂ M + [mnn] T (4.102)

The stability and control derivatives appearing in £handB matrices are known as concise derivatives.
The definitions for each derivative, for both the 4DoF and B@ases, are given in Appendix A.

The lateral/directional equations are converted in antidehmanner to that outlined above for the
longitudinal case. Again, using the 4DoF case as an exargpjgations (4.80), (4.88) and (4.90) are
rearranged to give,

mo — mzgp +maxgr = mWep — mU,r (4.103)
Lap — Lowi = Lo+ Lpp+ Lor 4 Le€ + Le¢ — zgmany (4.104)
—Lpp+ Lot = Nyv+ Nyp + Npr + Ne& + NeC + zgmgop (4.105)

With reference to equation (4.100), the state vegtarontrol vectoru, mass matriXv, stability matrix
A’ and control matriA’ for the lateral/directional case are:

X't)=[v p r ¢ ¢ ut) = (
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m —mzy; mzg 0 0 0 mWe —mU, 0 0 0 O

0 I.., —-I.,., 0 O Iiv Iip IiT 0 —xgmg Io_g Iic
M= 10 _I:cz Izz 00 A= Rlv Rlp &7« Tgmg 0 B = K'g RIC

0 0 0 120 0 1 0 0 0 0 0

0 0 0 01 0 0 1 0 0 0 0
so the state space lateral/directional equations of mamome:

v Yo Yp Yr Yo Yy [V Ye e

]5 lv lp l,n l¢ lw p l& lc

Tl =1|ny np Ny ng ngl| [7|+ [ne n¢ [ ] (4.106)

b 0 1 0 0 0]]¢ 0 ol

¥ 0 0 1 0 0] |v 0 0

Again, Appendix A contains definitions for each of the coadierivatives in equation (4.106).

5 Experimental Analysis of 1/12 Scale BAe Hawk Data

Having developed the equations of motion from first prinesplsome experiments were carried out to
establish whether these theoretical relationships wdig ivepractice. The tests were performed on the
1/12 scale BAe Hawk model shown earlier in Figure 1.

An off-the-shelf inertial measurement unit (IMU), shownHkigure 7, was used to record the model
motion. The IMU comprised a set of three MEMS accelerometitiree MEMS rate gyros and three
solid state magnetometers. The range of these senorstv?gret 150 deg/s and-2 Gauss respectively.
A Kalman filter was used to fuse data from the sensors andgeam accurate measure of the model’'s
Euler angles. The analogue to digital conversion of the oredssignals was 16-bit binary and data was
sampled from each of the sensors at a maximum rate of 100 Hzudithwas physically very compact,
with dimensions of 5.%4.5x 1.1cm and a weight of 33 grams.

Control surface deflections were achieved using miniatergosactuators (also shown in Figure 7),
based on radio controlled aircraft technology. These wassipally connected to the relevant control
surfaces using standard model control linkages. Commarttie tservo-actuators were transmitted from
a computer “ground station” through a Bluetooth wirelesswoek. The resultant motion recorded by
the sensors was then sent back via the wireless network gréled station. The use of the Bluetooth
network avoided the need to physically connect any cabbrtge model, or test rig, thereby eliminating
a possible source of interference.

The determination of the equations of motion from experitaletata is known as system identification.
Figure 8 illustrates the basic principle of the process,ciitan be applied to both flight test and wind
tunnel data. A known input is applied to the aircraft to exdtie dynamics of interest and on board
sensors are used to measure the aircraft’s response. bignggut/output information, a mathematical
model of the aircraft dynamics can be constructed.

The major stages involved in the system identification pilaoe are shown in the block diagram in Figure
9. The first step is the design of the experiments which wilubed to excite the aircraft dynamics of
interest. This requires some prior knowledge of the velsidgnamic characteristics and also includes
the selection of appropriate instrumentation to measuwanthtion variables. Once the data has been
recorded, the first stage in the analysis is to verify the isterscy of the measurements before they are
utilised in later stages of the system identification precdsis check on the data, usually termed data
compatibility check or flight path reconstruction, is penfied by analytically generating the time history
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Figure 7: MEMS IMU and miniature servo-actuator
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Figure 8: lllustration of system identification
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of a given variable using well-defined kinematic relatidpshand measurements from other variables.
For example, the attitude angles can be reconstructed egrating the rate gyro data. If the measured
and reconstructed responses match then the data is saititebsatically consistent. On the other hand,
if the measured and reconstructed responses do not matehymeydels for each of the sensors can be
postulated and the kinematic equations provide a meansfonaing these error parameters. Having
accounted for errors in the data, the core stage of the asady® determine the most appropriate form
of the equations to describe the measured response andnbatesthe numerical values of the stability
and control derivatives appearing in the equations. Thisi@svn as model structure determination and
parameter estimation respectively. The final step in thdyaisais to validate the identified dynamics
and this is usually done by comparing the response with aa&pset of data not used in the preceding
analysis. If the validation process is successful then tiadyais is halted and the final model of the
aircraft dynamics has been obtained. Otherwise, the aralyasy have to be repeated using a different
eqguation structure or parameter estimation techniqueevare cases, the experiments may have to be
performed again.

Prior knowledge of

aircraft dynamics Design & Selection of
Flight Test Manoeuvres

l Flight test data

Data Compatibility Check

Kinematically
consistent data
Model Structure
Determination
&
Parameter Estimation

Independent i Results
d
&ﬁ Model Validation }7
Final Model

Figure 9: Block diagram of system identification process

This report concentrates on the model structure deterroma@nd parameter estimation steps of the
analysis. It is therefore assumed that the data compaétibitialysis has already been performed on the
data.

As well as estimating the model’s stability and control datives, it was necessary to estimate an equiv-
alent time delay caused principally by the need to transnttraceive data through the wireless network.
Accurate knowledge of this time delay was important as itleesn shown that time shifts in the data
lead to degraded estimates of the stability and controlatves, particularly if the time shift is in the
control input [13]. The block diagram in Figure 10 illustatthe process of transmitting and logging
the data. The control inputs were time-logged when the usemtand was applied at the ground sta-
tion and the resultant response was time-logged when tlzevekzd received from the sensors. Along
with the pure time delay introduced by the wireless netwdhlk, equivalent time delay parameter also
accounts for the phase-lag introduced by unmodelled higktthigh-frequency dynamics. This could
include the dynamics of the sensors and associated filtlemsekh as nonlinearities such as backlash in
the control linkages [14]. The state-space equations olomatcorporating a time delay can be written
in the general form,

%(t) = AX(t) + Bu(t — 7) (5.1)

wherer is a vector of time delays for each of the control inputs. Inegal, the state variables contained
in the state vectox may not be measured directly. They are related to the ougmidbles using the
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equation,
y(t) = Cx(t) + Du(t — 1) (5.2)

wherey is the output vector containing the variables which are meaksduring the experiment. The
system matrice€ andD may also contain the stability and control derivatives. dality, the elements
of y are measured a¥ discrete points in time,

z(tg) =y(tg) +v(ty) k=1,2,....N (5.3)

wherez is the measurement vector containing measured values eféheents ofy andv is a vector of
noise corrupting the measurementsyofThe elements oi» are assumed to be independent, Gaussian
random variables with zero mean.

Actuator input
transmitted Measured response

through wireless Control surface Resultant transmitted thraugh
netiwork Actuator outpLt deflection response wireless netiwork

" . Response
at Ground station ctustor Linkage Model Gsoe::év:;t?;n

Input time-logged Response time-logged

Figure 10: Transmission and logging of data

The choice was made to perform the analysis in the frequenayadh, which is better suited to the
estimation of time delays than time domain approaches. Asl#ta is sampled at discrete time points,
time domain estimates of have to be integer multiples of the data sampling titvte unless the data is
interpolated before hand. For the frequency domain, asrthlysis is performed at discrete frequencies
rather than discrete time points, the elements @fre identified directly as real numbers regardless of
the value ofAt. A second reason for adopting a frequency domain approashtheaobservation of an
undesirable structural vibration in the rig during the gesthis can be seen in Figure 11, which shows
a plot of the Fourier sine series coefficients of the anglettaick data against frequency. The Fourier
sine series coefficients with large amplitudes locatedexjuencies below 3Hz belong to the model’'s
rigid body dynamics. Above 3Hz, the amplitudes reduce tdatively small and constant value, which
corresponds to noise in the data. However, the amplitudgease again at approximately 8-9Hz. This
is caused by the structural vibration. By performing par@mestimation in the frequency domain,
the analysis can be restricted to a given band of frequemcidsthus, the rigid body dynamics can be
isolated from the higher frequency structural vibration.

The experimental data was transformed into the frequenayado using a chirp-z Fourier transform,
which allows the frequencies of interest to be specifiedtianily [15]. The lower frequency limit (in
Hertz) was chosen as 2/T, where T is the duration of the mameeunder analysis. This meant that, for
each frequency, there was at least two full sinusoidal vawes. The upper limit was selected so that
the model dynamics of interest were included in the frequérand and was typically chosen as 3Hz. A
resolution of 0.02Hz was used.

The parameter estimates were obtained using the equat@meethod. For the state space system given
by Equations (5.1) and (5.2), the aim of the equation errprageh is to find a model which matches the
time derivatives of the statesderived from the measured data.

In the frequency domain, Equations (5.1) to (5.3) become
jorX(wr) = AX(wg) + Bl(wy)e /T (5.4)
Y(wr) = CX(wy) + Di(wy)e (5.5)
Z(Ldk) = y(wk) + D(wk) k=1,2,...,N (5.6)
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Figure 11: Fourier sine series coefficients of the angletathtsignal against frequency

where™ denotes a variable transformed into the frequency domain.gns the vector of/NV discrete
frequencies in rad/s. The equivalent time delay term mdieeparameter estimation problem a nonlinear
one, hence it was not possible to solve the equation errdnigmousing linear regression. Instead, the
modified Newton-Raphson technique, normally applied indilgput error formulation, was used for the
equation error method. As this algorithm is iterative, juiged specification of initial values for the
unknown parameters, unlike linear regression which is astioeé method. However, the equation error
method is robust to starting values of the parameters [1db]tamas found that the initial estimates could
all be set to zero without affecting convergence.

A detailed mathematical description of the modified NewRaphson technique and its application in
frequency domain estimation is not given here. The intetestader can find this material covered in
Klein and Morelli [15]. A brief summary of the important rélenships in the algorithm, however, is
given below. The cost function to be minimized is

N
J(v) = N> ol (wr,7)S,00(wk,v) + Nn [Spu| (5.7)
k=1

whereS,,,, is a real diagonal matrix whose elements are the power gpetdnsities of the elements
of v and the symbot denotes the complex conjugate transpose. The vectammtains the unknown
parameters to be determined. In the formulation of the éguatrror method, the state derivatives are
treated as measured valugéyy) in Equation (5.6) is replaced bjwiX(wy) and the equation errors, or
innovations, are defined as

v(wi) = Z(wk) — AX(wk) + Bl(wy) (5.8)

Estimates of the power spectral density matrix are obtdired
R N
S = ZﬁT(wk’v‘?)'}(wk>:}l) (59)
k=1

where” is used to denote an estimated vector and the vector of ptgaestimates for thih iteration
is calculated from,

Yi =Yi-1 + Ay (5.10)
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The parameter update is given by
?I)]" [2I(v)

Ay = — 5.11

K [37874 [ Oy ] &1

Convergence is achieved and the process is halted whenl#itiggechange in the cost function and/or
the update to the parameter estimates from one iteratidretoext falls below a user-defined threshold.

In Equation (5.11), the second-order gradient of the thefoostion with respect to the parameter vector
is known as the Fisher information, or Hessian, matrix. dicates the curvature of the cost function to
variations in each of the unknown parameters and is an irmpbfactor in determining the accuracy of
the parameter estimates. The statistical accuracy of tfenmder estimates on the basis of the Cramer-
Rao inequality. This can be written as,

PI)]
OvoyT
In other words, the information matrix gives a theoreticaiimum for the achievable parameter covari-

ance. An exact solution for the information is difficult totaim in practice. For the modified Newton-
Raphson algorithm, it is calculated approximately from,

Cov(4) > [ (5.12)

&*J(v) 05w o OP(wr)
H~ o7 ~ 2NRe kzzo 3y S, 3y (5.13)

where the difficult to compute second-order partial derrestof with respect tey have been neglected.
The validity of this approximation improves the closer tlaegmeter estimates get to the real derivative
values.

From the Cramer-Rao inequality, three important statiktioetrics of the parameter estimates can be
calculated. Firstly, the Cramer-Rao bound of ttieparameter estimate is defined as,

CR =/(H )y i=1,...,n, (5.14)

wheren,, is the number of unknown parameters. The Cramer-Rao bounddes a measure of the
minimum expected standard deviation of the parameter thatd\be obtained from analysis of repeated
manoeuvres.

In practice, the Cramer-Rao bound under predicts the saatigarameters estimates for repeated ma-
noeuvres, particularly when the estimation is performeth@atime domain. This is due to the fact that
in the development of the estimation algorithms, the intiona v are assumed to be characterised by
Gaussian, white noise. This means that the power of the moseenly distributed across the frequency
range[0, fv| where fy = 1/2At is the Nyquist frequency. In reality, innovations are comlias the
noise power is concentrated within a particular frequeraaydb For aircraft parameter estimation, this
occurs in the frequency band corresponding to the rigid lalysivamics [15]. Coloured innovations is due
to errors in the model specification and the noise on the meds@riables themselves being coloured.
From experience, the Cramer-Rao bounds obtained from toneaoh estimates can be around 5 to 10
times smaller than the corresponding standard deviatibés [[n the frequency domain, however, the
analysis is restricted to the frequencies in which the rigidy dynamics are situated. Despite the noise
being coloured, the power of the noise in this low frequenagdis relatively constant. Therefore, the
assumptions made about the noise in the development ofdgbetam match more closely in practice
when the analysis is performed in the frequency domain rdtian in the time domain. In turn, the
Cramer-Rao bounds obtained from frequency domain estmatiould match more closely to the stan-
dard deviations. However, it has been found that a factor isfill needed [14, 16]. So for thih
parameter estimate, the standard deviation is given appabely by,

o; ~ 2CR; = 21/ (H™1);; (5.15)
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The second statistical metric is parameter insensitivityich for theith parameter is given by,

1
l; = (5.16)
The insensitivity is a measure of how much a parameter vanée changed without causing an increase
in the cost function. It therefore provides a measure of theificance of each parameter and can be
used to determine the most appropriate form of the equatibrmtion for a given response.

It is convenient to express both the Cramer-Rao bound aedsits/ity as a percentage of the identified
parameter value,

x 100 (5.17)

k3

CR - |&

l; =

~'7 x 100 (5.18)

At first glance, it may appear from Equations (5.14) and (bthét the Cramer-Rao bound and insensi-
tivity are the same. However, there is a subtle differende/den the two. The insensitivity is approxi-
mately the conditional standard deviation of the parametémate, given that all other parameters are
known. The Cramer-Rao bound is an approximation of the wfiional standard deviation [16].

The third metric is the pair-wise correlation betweendtheand thejth parameters which is defined as,
-1
H;;

pPij = —F/——
—1g-1
v/ Hii Hy;

The absolute value qf;; (for i # j) falls between 0 and 1. i§;; = 1, then theith andjth parameters
are linearly dependent and are both accounting for the s#ewt g the model describing the aircraft's
response. This means that accurate estimates for botlatiegiv cannot be obtained, as many weighted
combinations of the two parameters could be used equalltevitithe measured motion. The solution is
to hold one of the parameters fixed at some appropriate vatlliestimate the other derivative as normal.
In practice, because of measurement errors, it is rare topfind 1 but correlation coefficients greater
than 0.9 can indicate near-linear dependency between thelénvatives and should be investigated
further [15, 17].

ij=1,....n, (5.19)

A major drawback of pair-wise correlation analysis is thaian only be used reliably to indicate corre-
lation between two parameters. It may not show linear degerel between three or more parameters.
An example of where correlation between multiple paransetan occur is in aircraft requiring stability
augmentation. If more than one motion variable is being facklio the control surface as part of the
control law, then those motion variables and the contraliimgll all be linearly dependent in some way.
A method of detecting correlation between multiple parargeis the uncertainty or confidence ellipsoid
[14, 16]. For theth parameter with Cramer-Rao bound CHRis can be expressed as [14],

—1yg—1(. ;

O - T 5.20
whereT is a diagonal matrix containing the sensitivities from Bipra(5.16) andH~!(:, i) denotes the
ith column of the inverse of the information matrix. Corriatis indicated if any of the elements of
Ocr, are relatively big in comparison to the element correspundd theith parameter.

An approach to model structure determination based on #histital metrics described above is outlined
by Tischler [14]. The Cramer-Rao bounds and insensitviiee both assigned threshold values. The
aim of the process is to obtain a set of equations for whichhallderivatives meet these limits and
therefore have a roughly constant degree of confidenceiallpitparameter estimation is carried out
with all possible parameters included in the model strgctdihe insensitivities are checked against the
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threshold and derivative with the highest insensitivitgeeding the limit is removed from the analysis

by being set to zero or some other appropriate a-priori valubparameter estimation is repeated. This
process continues until all derivatives remaining in thedelstructure have insensitivities within the

threshold. At this stage, it may be that all derivatives hageeptable insensitivities but the Cramer-
Rao bounds of some parameters are large. This is most likedytal correlation between parameters,
so the confidence ellipsoid for the parameter with the bigGeamer-Rao bound is analysed. If linear

dependence between parameters is indicated then a chordeiaf parameter to drop must be made.
This decision can be a difficult one and it may be useful to oglyan understanding of the physics of

the aircraft to choose which derivative to remove from thalelatructure. At each step in the process,
the value of the cost function is also analysed. If a signiticacrease in the cost function occurs as a
result of removing a parameter from the model then that paranis re-entered into the equations and
the current model is acceptable as the final model structure.

Suggested guidelines for satisfactory parameter estimareCR; <20% (with CR; calculated from
Equation (5.15)) and; <10% [14]. However, it should be noted that these thresholds aggested
for the case where the cost function is expressed in termeqfiéncy response curves, separated into
magnitude and phase components. The errors between thanedasd predicted response is weighted
according to the coherence at each discrete frequency.r@uteeis a measure of the linearity between
the input and output data. The difference in the formulatdrihe cost function for the frequency
response case and that given in Equation (5.7) means théétiniion of the information matrix for the
two methods also differs. Therefore, the limits@R; <20% andl; <10% may not be reliable guidelines
for the equation error method. However, the Cramer-Rao dhousensitivity, pair-wise correlation and
confidence ellipsoid make no assumptions about which estimeechnique is being used, so an attempt
to carry out a model structure determination analysis, laintd that described above (but using the
equation error method), on data obtained from the 4DoFitiagilas made. The goal of the process was
to obtain a model structure in which the parameters all hadn@r-Rao bounds and insensitivities of
similar magnitudes.

It is worth noting that other approaches to the aircraft nhattecture determination process exist, most
notably the modified stepwise regression technique [15, H8Jvever, as already pointed out, the need
to account for the time delay means that this particular case cannot to be formulated egrassion
problem. Hence, the method described above is viewed asdbeappropriate for the current applica-
tion.

5.1 Longitudinal Example

For the tests on the Hawk model, heaving motion was resttasoeonly 3DoF motion was allowed.
The input used to excite the dynamics was a 0.3s 1-1-2 nmaptisiput to the elevator [19] (see Figure
12). The wind tunnel velocityyr, was 30m/s, with the model trimmed at an angle of atiack= 0°,
resulting in®, = W, = 0. The Hawk’s centre of gravity was also coincident with kheation of the
gimbal, thereforer, = z, = 0. Using the derivative definitions in Appendix A, for thesgi conditions
the normal force derivatives,, and z, should theoretically be zero ang = U. = V7. Therefore, the
theoretical state equation can be expressed as,

w(t)] { 0 zq] {w(t)] { 0 }

. = + t— 5.21
) = Lo ] [a)) + L) e =70 &2
wherer, is the time delay on the elevator input. While pitch rates measured directly, the normal
velocity w is derived from angle of attack/pitch attitude data. So thipat equation for this case is,

-1 0 e
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Table 4 contains theoretical estimates of the derivatimelSquation (5.21) from empirical analysis of
the Hawk model [1], therefore a comparison between thawmetind the experimental derivatives can be
made.

Parameter Estimate

Zw 0
2g 30
2y 0
M -1.64
my -4.01
My -2.60
T -

Table 4: Empirical estimates of derivatives

For the analysis of the experimental data, all derivativesiitially treated as free parameters to be
estimates so the starting state equation is,

wt)| 2w zg| |w(t) My

] e el ) R M K 629
Table 5 shows the initial parameter estimates for the madeattsire given by Equation (5.23). Two
parametersz,, and z,, standout having both large Cramer-Rao bounds and higimsiiséty factors
in relation to the other derivatives. The Cramer-Rao bowfds, and z, are around two orders of
magnitude greater than those for the other parametersg Wiglinsensitivities are an order of magnitude
larger in comparison. With the highest insensitivity of 8%, the choice is made to repeat the parameter
estimation process with,, removed from the model by holding its value at zero. The tesilthe second
parameter estimation analysis are shown in Table 6. In cosguato the initial estimates given in Table
5, the values of the parameters retained in the model havaimethalmost constant. At the same time,
the cost function value has also remained virtually unckdngvith a slight decrease froth= 123.27
to J = 122.94. The fact that the parameter estimates and thewustidn are largely unaffected by the
removal ofz,, from the model structure validates the choice of fixing trasgmeter at zero. Focusing
on the remaining terms in the equations of motion, againas a significantly larger Cramer-Rao bound
and insensitivity when compared to the other derivativdseré&fore, for the third parameter estimation
stepz, is also held at a fixed value of zero.

Par. # CR% 1% Par. ¥ CR% 1%

zw  0.035 189.60 89.53 zw  0.000 - -

zg 28583 1.40 0.47 z, 28566  1.40 0.47

z; -0.096 165.75 55.68 z, -0.103 155.65 52.33
m, -1.552 473 1.79 m, -1.552 471 1.80

mg -3.805 10.54 3.14 mg -3.851 10.15 3.1

m, -2.114  6.97 2.25 my, -2.122  6.96 2.25

,  0.253 2.93 1.03 ,  0.253 2.92 1.02

J =123.27 J =122.94
Table 5: Initial parameter estimates Table 6: Parameter estimates,; dropped

Table 7 shows the results of removing from the model. Again, the parameter estimates are largely
unaffected by fixingz, at zero and, in fact, the Cramer-Rao bounds of some of theatlisgs have
dropped. The cost function has also reduced slightly ftbm 122.94 toJ =122.57. Hence, it can
again be concluded that a more appropriate model struautedcribe the measured response has been
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obtained by removing,, from the analysis. Note that the Cramer-Rao bounds andsitséres of the
remaining parameters are all now of similar magnitudes.

Par. 4 CR% 1%

Z 0000 - -
z, 28719 099 047
z, 0000 - -

m, -1.553 472 181

mg -3.968 9.97 3.05

m, -2173 6.88 222

m, 0255 274 1.00
J =122.57

Table 7: Parameter estimates,-dropped

Having removed;, from the model, the structure obtained from the experiniefsta is the same as that
predicted from theory (see Equation (5.21)). Also, congmariof the derivative values in Table 7 with
those in Table 4 indicate a very close match between the galpand experimental estimates, which
match to within 5. Consequently the choice was made to halt the identificatidhis point. Figure 12
shows the time histories @ andq derived from the measured data against the responses trembed
from the identified model. Also shown is the elevator inpuedito excite the longitudinal dynamics.
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Figure 12: Comparison of measured and identified respoosdmal model structure

5.2 Lateral/Directional Example

For this example, the tests on the Hawk were carried out atdh®e conditions as for the longitudinal
case described in Section 5.1. The rudder input for the erpet was a 1-1-2 multistep input of similar
duration [19] (see Figure 13) . The wind tunnel velocity Was-30m/s, with the model trimmed at angle
of attacka, = Odeg, resulting ir®, = W, = 0. The Hawk’s centre of gravity was also coincident with

the location of the gimbal, thereforg, = z, = 0.

For the data analysed in this example, a control input totexbe dynamics was applied to the rudder
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only so the identification of the derivatives due to ailerailection£ cannot be identified from these
particular measurements. From Appendix A, the derivativdh respect to roll attitudeb and yaw
attitude) should also be zero, ag = z, = 0. For the same reason, the theoretical values of lateneg fo
derivatives arey, = y, = y¢c = 0 andy, = -U, = -Vy. Under these assumptions, the lateral/directional
equations of motion given reduce to,

W(t) 0 0 w] [v@) 0
pA)| =l L L| |p@)| + |l | Ct—1c) (5.24)
7(t) ny np ne| [r(t) ne

wherer, is the time delay on the rudder input. The roll ratand the yaw rate are measured directly
but the sideslip velocity is obtained from angle of sideslip/yaw attitude data. Thipwuequation in
this case is,

B(t) Ve 0 0] [o®)] [0
pt)| =1 0 1 Of [p)|+ [0 C(t—7¢) (5.25)
r(t) o o 1| |[r@®)] |o

It may be reasonable to assume that the rolling motion caugétke rudder input will be insignificant in
comparison to the yawing motion. In this case, the roll eignadnd derivatives with respect tocan be
removed from Equation (5.24) giving,

m B L»? iii] m * m ‘ (5.26)

Empirically derived estimates [1] for the parameters in &opun (5.26) are shown in Table 8, again
allowing a comparison with experimental estimates.

Parameter Estimate

Yo 0
Yr -30
Yc 0
Ty 1.28
Ty -1.53
ne -0.67
T¢ -

Table 8: Empirical estimates of derivatives

For the parameter estimation analysis, the initial modeatcstre was taken to be,

o(t) Yo yp yr| [v(t) Y
PO =l L L| [p@)] + ]| C(t—1) (5.27)
7(t) ny np el [r(t) ne

As some rolling motion following the rudder input was obsstwhen the tests were carried out the roll
equation and derivatives with respectp@re included in the initial model. Table 9 shows the results
for the initial parameter estimation analysis. The deneay, clearly stood out as having the highest
insensitivity. Therefore, it was removed from the model #ralanalysis was repeated. This was done a
number of times with the successive removal of the derigally, /¢, [, andl, (results shown in Tables
10 to 14). At this stage of the process, the analysis hadaiteticthat there was insufficient information
in the data to reliably identify any of the rolling moment watives. Howevery, andn, were still
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candidate terms for the model structure, thereforeas dropped as a state variable and instead treated
as a pseudo input [17]. Hence the equations of motion wereargged to give,

U(t) Yy Yr U(t) 0 Yp C(t - TC)

At R S R | (6:26)
Comparison of Tables 13 and 14 shows that, when the modelsteuwvas rearranged as above, the cost
function value dropped significantly.

Par. A CR% 1% Par. A CR% 1%
Yo 0.057 86.27 29.28 Yo 0.059 69.16 28.13
Yp 0.981 60.02 19.08 Yp 0.927 50.81 20.14
yr  -29.943 0.87 0.30 yr  -29.938 0.64 0.30
Ye 0.001 7645.70 2541.16 Ye 0.000 - -
ly 0.187 82.21 27.04 ly 0.189 81.34 26.79
Ly -1.199  151.03 47.41 Ly -1.199 150.74 47.39
ly -0.438 187.18 62.82 Iy -0.427 191.50 64.41
l¢ 0.098 193.11 62.05 l¢ 0.102 183.98 59.48
Ny 0.955 3.51 1.15 Ny 0.955 3.51 1.15
n, -0.876  44.96 14.08 n, -0.875 4499 14.09
n,  -1.375 14.05 4.35 n. -1.376 14.05 4.34
ne  -0.603 6.69 2.18 ne  -0.603 6.70 2.18
¢ 0.262 2.35 0.95 T¢ 0.262 2.33 0.95
J =170.75 J =170.76
Table 9: Initial parameter estimates Table 10: Parameter estimateg--dropped
Par. 4 CR% 1% Par. 4 CR% 1%
Yo 0.063 64.91 26.41 Yo 0.066 61.86 25.16
Yp 0.877 53.54 21.24 Yp 0.899 52.23 20.73
yr -29.924 0.64 0.30 yr  -29.912 0.64 0.30
Ye 0.000 - - Ye 0.000 - -
ly 0.224 61.18 22.63 ly 0.164 79.49 31.33
Ly -1.708 87.55 33.37 Ly -1.067 133.43 54.20
ly 0.000 - - ly 0.000 - -
l¢ 0.168 82.75 36.20 l¢ 0.000 - -
Ny 0.958 341 1.15 Ny 0.960 3.42 1.15
n, -0.884 4443 13.97 n, -0.806 48.71 15.37
n, -1.389 1391 431 n, -1.402 13.80 4.28
ne -0.605 6.69 218 ne  -0.604 6.66 2.19
¢ 0.262 230 0.95 ¢ 0.261 2.26 0.96
J =169.22 J =174.32
Table 11: Parameter estimatels dropped Table 12: Parameter estimatels dropped

The next two parameters to be removed from the model steicterey,,, followed byy, (Tables 15
and 16). When this was carried out, it can be seen from Tabikdt@he insensitivities of the remaining
parameters were all of a similar magnitude. However, ther@reRao bound of., was high in com-
parison to the other derivatives. As described above, antea with high Cramer-Rao bound but low
insensitivity could be an indication of correlation amohg derivatives. Therefore, the confidence el-
lipsoid for n,, was examined, See Table 17 ( note that the elements have ¢sed 8 unity). The table
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indicates that the high Cramer-Rao boundfgrmay have been high due to some correlation with
n, andng, although the values are moderate. To investigate furf@ameter estimation was repeated
one more time with,, eliminated from the model. The results are shown in Table 18.

Par. A CR% 1% Par. A CR% 1%

Yo 0.068 59.93 24.39 Yo 0.074 5489 2251
Yp 0.811 57.44 22.88 Yp 0.568 82.80 32.93
yr -29.893 0.63 0.30 Y -29.891 0.64 0.30

ye 0000 - - ye 0000 - -

ly 0.112 9851 46.52 ly 0.000 - -

l, 0000 - - l, 0000 - -

I, 0.000 - - Iy 0.000 - -

. 0000 - - . 0000 - -

Ty 0.966 3.38 1.14 Ty 0.981 3.35 1.14

Ny -0.885 44.27 13.99 Ny -1.490 26.55 8.40

ny -1.393 1386 4.31 Ny -1.237 15.35 4.90

ne -0.601 6.69 2.20 ne -0.583 6.92 2.29

s 0.262 2.26 0.96 T 0.259 2.37 1.01

J=172.63 J =100.93
Table 13: Parameter estimatefs €ropped Table 14: Parameter estimatels dropped

(p set as a pseudo input)

With n,, removed, the model structure matched that predicted fr@oryh The estimates of the deriva-
tives in Table 18 also matched closely to the empirical \&lgigen in Table 8. The agreement between
experimental and empirical estimates was not as good whevas included in the model structure. As
well as this, withoutr, in the equations, the Cramer-Rao bounds of most of the rengaparameters
fell, particularly forn,.. However, the cost function increased slightly with the ogai of the parame-
ter. Figure 13 shows the time historieswoindr derived from the measured data against the responses
reconstructed from the identified model. Reconstructeporeses with and without,, are shown and it
can be seen that, visually at least, there is very littlecd#fihce between the two identified responses. It
is therefore a borderline decision as to whethgshould remain in the model. However, on balance, it
is probably appropriate to eliminatg, from the final model. This decision could be based simply en th
principle of parsimony which says that given two models \utiiave similar levels of fidelity, the better
model is that which has the fewer number of parameters [17].

5.3 Comments on the Experimental Results

In both the examples described above, the model structieendi@ation procedure was found to work

well, with the final models derived from the wind tunnel datatoling the equations of motion predicted
from theory. This may be unsurprising considering the aaghoused was originally developed for

rotorcraft applications [14], in which the equations of mnotcan be far more complex than those outlined
in this report. It is also worth noting that, despite usingféetent parameter estimation technique, the
suggested guidelines @fR; <20% andl; <10% have worked well for the two examples. It is clear,
however, that the process of model structure determin&ione that cannot be used blindly but instead
works best when utilised in conjunction with a physical usteEnding of the aircraft dynamics. This is

especially true in cases where the statistical metricsgpwdlicting advice on whether or not a parameter
should be retained in the equations of motion.
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Par. 4 CR% 1% Par. 4 CR% 1%
Yo 0.102 33.66 16.78 Yo 0.000 - -
Yp 0.000 - - Yp 0.000 - -
yr -29.827 0.63 0.31 yr -29.817 0.70 0.35
Ye 0.000 - - Ye 0.000 - -
Iy 0.000 - - Iy 0.000 - -
Ly 0.000 - - Ly 0.000 - -
I, 0.000 - - I, 0.000 - -
l¢ 0.000 - - l¢ 0.000 - -
Ty 0.979 335 1.14 Ty 0.984 3.33 1.13
n, -1.457 27.16 8.60 n, -1.459 27.15 8.60
n, -1.238 15.35 4.90 n, -1.252 15.19 4.85
ne -0.582  6.94 229 ne -0.582 6.95 2.30
¢ 0.259 238 1.01 ¢ 0.259 238 1.01
J =100.36 J =100.06
Table 15: Parameter estimateg,-dropped Table 16: Parameter estimateg,-dropped

Parameter O¢cgr

np

U 0.001
Ty -0.633
ny 1.000
ny -0.572
ne -0.584
T¢ 0.112

Table 17: Confidence ellipsoid elements fgrdropped

6 Conclusions

The equations of motion of an aircraft model tested in Créaifiel degree-of-freedom (DoF) dynamic
wind tunnel have been developed. In previous research,gqhatiens have been derived assuming that
the model’s centre of gravity (cg) is coincident with the gehmechanism about which the model rotates
on the rig. However, in this report, a general approach wentavith the cg assumed to be located away
from the gimbal. The equations were developed from firstgipies and reduced to a linearised form
where motion can be represented as small perturbationg atvou The equations were also decoupled
into longitudinal and lateral/direction expressions aadverted into state space form. It had been found
in practice that models tested in the facility were very cegive in heave and could only be operated
open-loop if movement was restricted to purely rotationation. Therefore, the equations for this 3DoF
case were also developed. Having obtained theoreticaésgjuns for the equations of motion, a series
of wind tunnel tests were conducted on a 1/12 scale BAe Hawdtefria order to establish if the theo-
retical relations were valid in practice. The particulashieique used in testing the model was dynamic
simulation and the analysis of the experimental data wafpaeed using system identification. An
established model structure determination procedure wag to determine which stability and control
derivatives should be included in the equations of motiaegBency domain equation error parameter
estimation was then used to obtain numerical values for tdglisy and control derivatives. For both
the longitudinal and lateral/directional examples démadj the final model structure obtained from ex-
periment matched that derived from theory. Derivativesi@alobtained from parameter estimation and
empirical analysis were also in good agreement.



39

Par. A CR% 1%
ye  0.000 - -

y, 0000 - -

Y. -29.812 0.71 0.35
yo 0000 - .

ly 0.000 - -

, 0000 - -

I, 0.000 - -

o 0000 @ - .
Ty 0.912 3.13 1.44
n, 0000 - -
ny -1.682 11.06 4.26
ne -0.672 568 2.34
T 0.264 2.36 1.01

J =101.53

Table 18: Parameter estimates,-dropped
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Figure 13: Comparison of measured and identified respoosdmal model structure
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A Definition of Concise Derivatives

A.1 Longitudinal Derivatives
A.1.1 A4DoF Case

The denominator for each of the derivatives is given by:

o

Z(Mw + mﬂj‘g)

(Iyy + mwg)(m —Zy) —mx,

while each of the numerators can be expressed as follows,

Zw iw(Iyy —i—mwz) +mxg|\0/lw
Zg (2(] + mUe)(Lyy + m:ng) + (I\O/Iq —maxgUe)magy
Zy in(Iyy + mwz) + l\o/lnmxg

My - iw(l\o/lw +mag) + N?Iw(m — iw)

my (iq—l—mUe)(Mw+mwg)+(Oq—mnge)(m—iw)
Z,(Myy +mag) + My(m — Z4)

A.1.2 3DoF Case

The denominator for each of the derivatives is given by:

o

2(|\/|u', + mwg)

m(Iyy + mz? 9

5) —mz

while each of the numerators can be expressed as follows,

(o]

Zw 1 maxgMy,
2g + mUc(Lyy + mwz) + (l\o/lq — mxgUe)may
Zy I\O/Inmzng

M © mMy

my mUe(I\O/Iu, +mxg) + m(l\o/lq —mayUe)

o]
my, : mMy,

(A.1)

(A.2)
(A.3)
(A.4)
(A.5)
(A.6)
(A7)

(A.8)

(A.9)
(A.10)
(A.11)

(A.12)
(A.13)

(A.14)
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A.2 Lateral/Directional Derivatives

Note that the lateral/directional derivatives given irstbection are the same for both the 4DoF and 3DoF
cases. The denominator for each of the derivatives is giyen b

m(Ipel.. — I2,) (A.15)

while each of the numerators can be expressed as follows,

Yo - I(iv([mng — Ip.may) + &U(Ixzng — Ipamay) (A.16)
vp © mWollualoz — I2) + Lp(Lowmzy — Lomag) + Np(Lomzg — Ligmay) (A.17)
yr o —mUe(Ippl,. — I2.) + Iir(Imng — I.mazy) + &T(Ixzng — Ipymaxy) (A.18)
Yo =+ xgmg(lzzmzy — Ipzzmag) (A.19)
Yy —xgmg(l.mzg — Izzmag) (A.20)
ye Io_g(Imng — Ipomaxy) + Klg(lmng — Ipzmay) (A.21)
ye EC(Imng — I.mzy) + K‘(([xzng — Ipymazy) (A.22)
l, : LymIL,+Nyml,, (A.23)
I, : LymL,+LymI,. (A.24)
L+ LymL. +Noml,, (A.25)
lg - ajgnglm (A.26)
Ly - —:Ugm2glzz (A.27)
le : LemL.+Neml,, (A.28)
le : LemIL.+Neml,. (A.29)
Ty IO_UmIm + Iglvmlm (A.30)
ny : LymI,. + NpmI, (A.31)
ne ¢ LomIy, + NpmIp, (A.32)
ng xgm2gfm (A.33)
Ny - —wgnglxz (A.34)
ng Iigmlm + |<I5mLmc (A.35)

ne IO_CmeZ—I—IQICmIm (A.36)



