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Formulation and System Identification of the Equations of Motion for a
Dynamic Wind Tunnel Facility

College of Aeronautics Report 0801

This document describes the equations of motion of an aircraft model tested in Cranfield’s 4 degree-
of-freedom (DoF) wind tunnel facility. In previous research, the equations have been derived assuming
that the model’s centre of gravity (cg) is coincident with the gimbal mechanism about which the model
rotates on the rig. However, in this report a general approach is taken with the cg assumed to be located
away from the gimbal. The equations are developed from first principles and reduced to a linearised
form where motion can be represented as small perturbationsabout trim. The equations are also de-
coupled into longitudinal and lateral/direction expressions and converted into state space form. It had
been found in practice that models tested in the facility arevery responsive in heave and can only be
operated open-loop if movement is restricted to purely rotational motion. Therefore, the equations for
this 3DoF case are also developed. Having obtained theoretical expressions, a series of wind tunnel
tests were conducted on a 1/12 scale BAe Hawk model in order toestablish if the theoretical relations
were valid in practice. The particular technique used in testing the model was dynamic simulation and
the analysis of the experimental data was performed using system identification. An established model
structure determination procedure is used to determine which stability and control derivatives should be
included in the equations of motion. Frequency domain, equation error parameter estimation is then
employed to obtain numerical values for the stability and control derivatives. For both the longitudinal
and lateral/directional examples described, the final model structure obtained from experiment matches
that derived from theory. Derivatives values obtained fromparameter estimation and empirical analysis
are also in good agreement.
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Notation

A State matrix
B Input matrix
bx State bias term
by Observation bias term
C Output matrix
D Direct matrix
D Direction cosine matrix element
F Atmospheric turbulence distribution matrix
G Measurement noise distribution matrix
g Acceleration due to gravity
Ixx Moment of inertia in roll
Iyy Moment of inertia in pitch
Izz Moment of inertia in yaw
Ixy Product of inertia aboutx andy axes
Ixz Product of inertia aboutx andz axes
Iyz Product of inertia abouty andz axes
L Rolling moment
M Pitching moment
m Model/aircraft mass
N Yawing moment
N Number of discrete measurement points in time
nu Number of control surface input variables
nx Number of state variables
ny Number of observation variables
P Roll rate variable
Pe Roll rate variable at trim
p Roll rate perturbation variable and arbitrary point on aircraft model
Q Pitch rate variable
Qe Pitch rate variable at trim
q Pitch rate perturbation variable
R Yaw rate variable
Re Yaw rate variable at trim
r Yaw rate perturbation variable
t Time
U Axial velocity variable
Ue Axial velocity variable at trim
u Control input vector
V Sideslip velocity variable
Ve Axial velocity variable at trim
VT Wind tunnel velocity vector
v Sideslip velocity perturbation variable
v Measurement noise vector
v Sideslip velocity perturbation variable
W Heave velocity in body axes
We Heave velocity in body axes at trim
Wrig Heave velocity in rig axes
Wrige Heave velocity in rig axes at trim
w Process noise vector
w Heave velocity perturbation variable
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X Axial force
x State variable vector
x Longitudinal coordinate in axis system
Y Lateral force
y Observation vector
y Lateral coordinate in axis system
Z Normal force
z Measurement vector
z Normal coordinate in axis system

Greek Letters

ζ Rudder input
η Elevator input
Θ Pitch attitude variable
Θe Pitch attitude variable at trim
θ Pitch attitude perturbation variable
λ Geometric scale factor between scale model and full-sized aircraft
ξ Aileron input
ρ Atmospheric density
Φ Roll attitude variable
Φe Roll attitude variable at trim
φ Roll attitude perturbation variable
Ψ Yaw attitude variable
Ψe Yaw attitude variable at trim
ψ Yaw attitude perturbation variable

Subscripts

0 Initial condition
a Aerodynamic force or moment
b Aircraft model body axes
c Control force or moment
e Equilibrium/trim condition
g Coordinates of cg relative to body axes origin and gravitational force or moment
rig Rig axes and rig force
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1 Introduction

The dynamic wind tunnel facility at Cranfield University wasoriginally developed in the early 1980s
[1, 2] and has been used to investigate a number of aircraft configurations [3, 4]. Figure 1 shows the
test rig with a 1/12 scale model of the BAe Hawk, which has beenused as a platform for testing the
facility’s instrumentation and hardware. The design of therig is relatively simple, with the aircraft
model suspended on a stiff vertical rod, which is itself attached to a Dexion framework. The vertical
rod passes through a gimbal mechanism within the model, shown in Figure 2, that allows the aircraft to
rotate in roll, pitch and yaw and to translate vertically along the axis of the rod. The rig therefore allows
investigation of 4 degrees of freedom (DoF) of motion (see Figure 3). The range of motion that the rig
permits is±30 degrees rotation in roll and pitch, 360 degrees in yaw and atranslation of approximately
0.75m in the vertical axis. The gimbal and rod assembly was made as small and as light as possible to
minimise their influence on the aircraft model and the gimbalincorporates precision ballraces and linear
ball bearings to minimize frictional effects. The test rig is designed to be placed in an open section wind
tunnel. The facility currently being used has a working section of 1.5m by 1.1m and a maximum speed
of 40m/s inside the working section. The maximum wing span ofthe model is limited to around 0.9m.

Figure 1: 4DoF rig with 1/12 scale BAe Hawk

In earlier work, the equations of motions of a model in the facility had been derived assuming that the
model’s centre of gravity (cg) was coincident with the gimbal mechanism. However, this may not be true
in practice, so in this report the equations are developed for the case where the model cg is located away
from the gimbal. It is assumed throughout this report that the model being tested has been appropriately
scaled according to similarity and dynamic scaling laws. The issues of dynamic scaling and similarity are
not discussed here but detailed descriptions can be found ina number of texts [1, 3, 5, 6]. The effects of
friction between the gimbal mechanism and the rod are also assumed to be negligible in the development
of the equations.

Having developed the equations of motion from first principles, an aim of the current research was to
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carry out an experimental analysis to confirm that these relationships were valid in practice. Therefore,
a series of wind tunnel tests were carried out on the 1/12 scale BAe Hawk model, shown in Figure 1.
The approach used in the tests is known as dynamic simulation[1, 3, 4, 7, 8, 9, 10, 11]. In this case,
a dynamically-scaled model with representative control surfaces is mounted on the test rig and flown in
semi-free flight. Specific inputs are applied to the control surfaces, which are deflected using miniature
servo-actuators, and the resultant response of the model ismeasured using motion sensors. The stability
and control derivatives can then be extracted from the input/output data using system identification and
parameter estimation techniques similar to those used in the flight test environment.

Figure 2: Gimbal mechanism

Figure 3: Degrees-of-freedom on 4DoF rig

The following section describes the axes systems used throughout this report, while Section 3 defines the
model motion variables. The equations of motion are then derived from first principles in Section 4. A
general approach is taken at first before some simplifying assumptions are outlined. The equations are
decoupled into linearised longitudinal and lateral/directional sets of expressions, which in turn allows
the equations to be written in state space form. Experimental analysis of the 1/12 scale BAe Hawk is
described in Section 5. This includes a brief description ofsystem identification as applied to aircraft,
the specific techniques used in the analysis for this report,and a comparison between the theoretical and
experimental results. The report is brought to a close with some conclusions in Section 6.
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2 Axes Systems

In the development of the equations of motion, two axes systems will be defined, both with origins
initially co-located at the gimbal:

• Rig axes:xrig points into the tunnel and is assumed to be aligned with the tunnel velocity vector
VT which is assumed to be parallel to the ground,yrig is normal toVT and also parallel to the
ground, andzrig points vertically down.

• Body axes:xb points along the nose of the aircraft model and is assumed to be aligned with the
horizontal fuselage datum,yb is normal toxb and points starboard, andzb points down through the
underside of the aircraft model.

Rig axes are fixed in inertial space, while the body axes rotate and translate with the aircraft model,
which moves relative to the airflow from the tunnel.

3 Motion Variables

As illustrated in Figure 3, the rig constrains motion along thexrig andyrig axes but allows the model to
translate alongzrig. Rotational motion is allowed about all three axes. When motion is referenced to the
rig axes, the model moves relative to the airflow with an axialvelocity equal to the tunnel speedVT and
a heave velocity denotedWrig. The angular rates aboutxrig, yrig andzrig are given byPrig, Qrig and
Rrig respectively. In body axes, the translational velocity components alongxb, yb andzb are given by
U , V andW respectively, while the roll, pitch and yaw rates about the same axes are denotedP , Q and
R.

For disturbed motion, with the aircraft model rolled, pitched and yawed through anglesΦ, Θ andΨ, the
translational velocities in rig axes are transformed into body axes using the equation,





U
V
W



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33









VT
0

Wrig



 (3.1)

where

D11 = cos Θ cos Ψ

D12 = cos Θ sin Ψ

D13 = − sin Θ

D21 = sin Φ sinΘ cos Ψ − cos Φ sinΨ

D22 = sin Φ sinΘ sin Ψ + cos Φ cos Ψ (3.2)

D23 = sin Φ cos Θ

D31 = cos Φ sin Θ cos Ψ + sin Φ sinΨ

D32 = cos Φ sin Θ sinΨ − sin Φ cos Ψ

D33 = cos Φ cos Θ

Therefore,




U
V
W



 =





D11VT +D13Wrig

D21VT +D23Wrig

D31VT +D33Wrig



 (3.3)
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Angular rates are transformed in a similar manner,





P
Q
R



 =





D11Prig +D12Qrig +D13Rrig
D21Prig +D22Qrig +D23Rrig
D31Prig +D32Qrig +D33Rrig



 (3.4)

It is also worth noting that as the wind tunnel velocity vector VT is assumed to act parallel to the ground,
the model’s angle of attackα and pitch angleΘ are the same.

4 Development of the Equations of Moments

In this section, the equations of motion for a model on the rigare developed from first principles using a
method similar to that used to derive the equations of motionfor a free-flying aircraft.

4.1 Absolute Acceleration Components

A point p is arbitrarily chosen within the aircraft model, with coordinates (x, y, z) with respect to the
origin. The local components of velocity and acceleration of p relative to the origin are denotedu, v, w
andax, ay, az. As already mentioned in the introduction, it is assumed that the origin of the body axes
and the cg of the model are not coincident, with the cg having coordinates (xg, yg, zg). See Figure 4.

Figure 4: Motion variables, forces and moments with respectto body-axes origin

The velocity components ofp relative to the origin are,





u
v
w



 =





ẋ−Ry +Qz
ẏ − Pz +Rx
ż −Qx+ Py



 (4.1)



13

If the aircraft model is assumed to be rigidẋ = ẏ = ż = 0 then,




u
v
w



 =





−Ry +Qz
−Pz +Rx
−Qx+ Py



 (4.2)

The acceleration components ofp relative to the origin are given by,




ax
ay
az



 =





u̇−Rv +Qw
v̇ − Pw +Ru
ẇ −Qu+ Pv



 (4.3)

By superimposing the velocity components at the origin ontothe local velocity components, the absolute
velocity components atp are obtained,





u′

v′

w′



 =





U + u
V + v
W + w



 =





U −Ry +Qz
V − Pz +Rx
W −Qx+ Py



 (4.4)

Similarly, the absolute acceleration components atp are given by,




a′x
a′y
a′z



 =





u̇′ −Rv′ +Qw′

v̇′ − Pw′ +Ru′

ẇ′ −Qu′ + Pv′



 (4.5)

Differentiating (4.4) with respect to time and again assuming a rigid body,




u̇′

v̇′

ẇ′



 =





U̇ − Ṙy + Q̇z

V̇ − Ṗ z + Ṙx

Ẇ − Q̇x+ Ṗ y



 (4.6)

Substituting (4.4) and (4.6) into (4.5), the expressions for absolute acceleration components ofp become,




a′x
a′y
a′z



 =





U̇ −RV +QW − x(Q2 +R2) + y(PQ− Ṙ) + z(Q̇+ PR)

V̇ − PW +RU + x(PQ+ Ṙ) − y(P 2 +R2) + z(QR− Ṗ )

Ẇ −QU + PV + x(PR− Q̇) + y(QR+ Ṗ ) − z(P 2 +Q2)



 (4.7)

4.2 Generalised Force Equations

Consider an incremental massδm at pointp. Applying Newton’s Second Law, the incremental com-
ponents of force acting on the mass are given byδma′x, δma′y andδma′z . The total force components
acting at the origin are given by summing the force increments over the entire body,





∑

δma′x
∑

δma′y
∑

δma′z



 =





X
Y
Z



 (4.8)

wherea′x, a′y anda′z are the absolute acceleration components at the cg of the model. So, using (4.7), the
resultant force components acting at the body axes centre are given by,





X
Y
Z



 = m





U̇ −RV +QW − xg(Q
2 +R2) + yg(PQ− Ṙ) + zg(Q̇+ PR)

V̇ − PW +RU + xg(PQ+ Ṙ) − yg(P
2 +R2) + zg(QR− Ṗ )

Ẇ −QU + PV + xg(PR − Q̇) + yg(QR+ Ṗ ) − zg(P
2 +Q2)



 (4.9)

wherem is the total mass of the model.
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4.3 Generalised Moment Equations

Consider the moments produced by the force acting on the incremental massδm atp,




L
M
N



 =





∑

δm(ya′z − za′y)
∑

δm(za′x − xa′z)
∑

δm(xa′y − ya′x)



 (4.10)

where L, M and N are the rolling, pitching and yawing moments respectively. Considering the rolling
moment equation in isolation, expressions fora′z anda′y from Equation (4.7) can be inserted into (4.10)
to give, after some rearrangement,

L =
∑

δmy(Ẇ −QU + PV ) −
∑

δmz(V̇ − PW +RU) +
∑

δmxy(PR − Q̇)

+ Ṗ
∑

δm(y2 + z2) +QR
∑

δm(y2 − z2) +
∑

δmyz(R2 −Q2) −
∑

δmxz(PQ+ Ṙ) (4.11)

The summation terms in Equation (4.11) represent the moments and products of inertia about the body
axes centre and are defined as follows:

[Ixx]b =
∑

(y2 + z2)δm - Moment of Inertia aboutxb

[Iyy]b =
∑

(x2 + z2)δm - Moment of Inertia aboutyb

[Izz]b =
∑

(x2 + y2)δm - Moment of Inertia aboutzb

[Ixy]b =
∑

xyδm - Product of Inertia aboutxb andyb

[Iyz]b =
∑

yzδm - Product of Inertia aboutyb andzb

[Ixz]b =
∑

xzδm - Product of Inertia aboutxb andzb

Note that
∑

(y2 − z2)δm =
∑

(x2 + y2)δm−
∑

(x2 + z2)δm = [Izz]b − [Iyy]b. Therefore the rolling
moment equation becomes:

L = my(Ẇ −QU + PV ) −mz(V̇ − PW +RU) + [Ixx]bṖ + [Ixy]b(PR− Q̇)

+ ([Izz]b − [Iyy]b)QR + [Iyz]b(R
2 −Q2) − [Ixz]b(PQ + Ṙ) (4.12)

It may be that the inertia properties of the model are known about an axis system with an origin located
at the cg rather than the body axes centre. If this is the case,information about the moments and products
of inertia about the body axes centre can be obtained to usingparallel axis theorem,

[Ixx]b = Ixx +m(y2
g + z2

g) (4.13)

[Iyy]b = Iyy +m(x2
g + z2

g) (4.14)

[Izz]b = Izz +m(x2
g + y2

g) (4.15)

[Ixy]b = Ixy +mxgyg (4.16)

[Iyz]b = Iyz +mygzg (4.17)

[Ixz]b = Ixz +mxgzg (4.18)

whereIxx, Iyy, Izz, Ixy, Iyz andIxz are the moments and products of inertia about the model cg andxg,
yg andzg are again used to denote the offsets of the cg from the body axes origin. Note that it has been
assumed that there is no angular misalignment between the body axes and axis system at the cg about
which the inertia properties are referenced.

Utilising the above expressions for the inertias and the generalised force equations in (4.9), the rolling
moment equation can be rearranged to give,

L = IxxṖ + (Izz − Iyy)QR− Ixz(PQ+ Ṙ) − Yzg (4.19)
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In a similar manner, expressions for the pitching and yawingmoments can be developed,

M = IyyQ̇− (Ixx − Izz)PR − Ixz(R
2 − P 2) + Xzg − Zxg (4.20)

N = IzzṘ+ (Iyy − Ixx)PQ+ Ixz(QR− Ṗ ) + Yxg (4.21)

Hence Equations (4.19) to (4.21) are expressions for the rolling, pitching and yawing moments about the
body axes origin with the inertias referenced to the cg. Notealso that the terms involvingIxy andIyz have
been neglected. It is assumed the aircraft model is symmetric about thexz-plane, with the mass evenly
distributed. ThereforeIxy = Iyz = 0. For the same reason, the lateral offsetyg between the origin of the
reference axes and the cg will be zero for a symmetric model.

4.4 Linearised Equations of Motion

At trim, it is assumed that the model is not moving relative tothe rig and is undergoing no angular
motion. That is,

Wrige = Prige = Qrige = Rrige = Pe = Qe = Re = 0

where the subscripte denotes trim conditions. For the most general of cases, the trimmed roll, pitch and
yaw angles of the model relative to the rig are denotedΦe, Θe andΨe. Using Equation (3.3), the trimmed
body axes velocity components can be related to the trimmed rig axes velocity components by,





Ue
Ve
We



 =





D11e D12e D13e

D21e D22e D23e

D31e D32e D33e









VT
0
0



 =





D11eVT
D21eVT
D31eVT



 (4.22)

The definitions of the direction cosine matrix elements are the same as those given in (3.2) withΦ, Θ
andΨ replaced by the trim anglesΦe, Θe andΨe respectively.

If now the model experiences a small disturbance about trim,the resulting perturbation in vertical veloc-
ity in rig axes is denotedwrig, while roll, pitch and yaw rate perturbations about the sameaxis system are
given byprig, qrig andrrig respectively. The resulting roll, pitch and yaw attitudes due to the disturbance
areφ, θ andψ. The tunnel speedVT is assumed to remain constant.

So, the translational velocity components in body axes generated by the disturbance are found from (3.3),





U
V
W



 =





Ue + u
Ve + v
We + w



 =





D11VT +D13wrig
D21VT +D23wrig
D31VT +D33wrig



 (4.23)

whereu, v andw denote perturbations in the velocity componentsU , V andW . Similarly, the angular
rates components in body axes are found using (3.4),





P
Q
R



 =





Pe + p
Qe + q
Re + r



 =





p
q
r



 =





D11prig +D12qrig +D13rrig
D21prig +D22qrig +D23rrig
D31prig +D32qrig +D33rrig



 (4.24)

wherep, q andr are the angular rate perturbations in body axes. Expressions for the direction cosine
elements can now be developed. As an example, the elementD12 will be considered. Following the
perturbation from trim,D12 can be written as,

D12 = cos(Θe + θ) sin(Ψe + ψ) (4.25)

Equation (4.25) can be expanded by using the trigonometric identities
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cos(A+B) = cosA cosB − sinA sinB
sin(A+B) = sinA cosB + cosA sinB

Therefore,

D12 = (cos Θe cos θ − sin Θe sin θ)(sin Ψe cosψ + cos Ψe sinψ) (4.26)

It is noted that the attitude perturbationφ, θ andψ have small values, hence using small angle theory ,

cosφ = cos θ = cosψ ≈ 1
sinφ ≈ φ, sin θ ≈ θ, sinψ ≈ ψ

and Equation (4.26) reduces to,

D12 = CθSψ (4.27)

whereCθ = (cos Θe−θ sinΘe) andSψ = (sin Ψe+ψ cos Ψe). Using the above approach, the remaining
direction cosine terms can be written as follows,

D11 = CθCψ

D12 = CθSψ

D13 = −Sθ
D21 = SφSθCψ − CφSψ

D22 = SφSθSψ + CφCψ (4.28)

D23 = SφCθ

D31 = CφSθCψ + SφSψ

D32 = CφSθSψ − SφCψ

D33 = CφCθ

whereCk = (cos ke − k sin ke) andSk = (sin ke + k cos ke) for k = φ, θ, ψ.

The small perturbation assumption can also be used to reducethe terms on the left hand side of the gen-
eralised force equations in (4.9) and moment equations (4.19) to (4.21). Removing terms that have zero
trim values and neglecting products and squares of small perturbation variables, the force and moment
equations become,

m(u̇− rVe + qWe + zg q̇) = X (4.29)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = Y (4.30)

m(ẇ − qUe + pVe − xg q̇) = Z (4.31)

Ixxṗ− Ixz ṙ −mzg(v̇ − pWe + rUe + ṙxg − ṗzg) = L (4.32)

Iyy q̇ +mzg(u̇− rVe + qWe + zg q̇) −mxg(ẇ − qUe + pVe − q̇xg) = M (4.33)

Izz ṙ − Ixz ṗ+mxg(v̇ − pWe + rUe + ṙxg − ṗzg) = N (4.34)

Having dealt with the left hand side of the force and moment equations, the terms on the right hand side
can now be considered.

4.5 Disturbance Forces and Moments

It is assumed that the disturbing forces and moments on the model are due to aerodynamic effects, grav-
itational effects and movement of the control surfaces, with the tunnel airflow assumed to be stable. In
addition, the force components acting along thexrig andyrig axes will be balanced by reaction forces
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from the rig, as motion along these axes is constrained. So, for example, the force and moment compo-
nents can be written in the form,

X = Xa + Xg + Xc + Xrigb

M = Ma + Mg + Mc

where Xrigb
represents the components of the rig reaction forces alongxrig andyrig transformed into

body axes, acting alongxb.

4.5.1 Gravitational Terms

Figure 5 shows the relationship between the forces and moments acting at the body axes origin at trim
and the gravity vector acting at the cg. The following expressions can hence be developed,





Xge

Yge

Zge



 =





D11e D12e D13e

D21e D22e D23e

D31e D32e D33e









0
0
mg



 =





−mg sin Θe

mg sin Φe cos Θe

mg cos Φe cos Θe



 (4.35)





Lge

Mge

Nge



 =





D11e D12e D13e

D21e D22e D23e

D31e D32e D33e









0
−xgmg

0



 =





−xgmg cos Θe sin Ψe

−xgmg(sin Φe sin Θe sinΨe + cos Φe cos Ψe)
−xgmg(cos Φe sin Θe sin Ψe − sin Φe cos Ψe)



 (4.36)

Figure 5: Gravitational forces and moments at trim

For the disturbed case,




Xg

Yg

Zg



 =





1 ψ −θ
−ψ 1 φ
θ −φ 1









Xge

Yge

Zge



 =





−mg sin Θe +mgψ sin Φe cos Θe −mgθ cos Φe cos Θe

mgψ sin Θe +mg sin Φe cos Θe +mgφ cos Φe cos Θe

−mgθ sinΘe −mgφ sin Φe cos Θe +mg cos Φe cos Θe



 (4.37)
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



Lg
Mg

Ng



 =





1 ψ −θ
−ψ 1 φ
θ −φ 1









Lge

Mge

Nge



 (4.38)

so

Lg = −xgmg cos Θe sinΨe − xgmgψ(sin Φe sin Θe sin Ψe + cos Φe cos Ψe)

+ xgmgθ(cos Φe sinΘe sin Ψe − sinΦe cos Ψe)

Mg = xgmgψ cos Θe sinΨe − xgmg(sin Φe sin Θe sin Ψe + cos Φe cos Ψe)

− xgmgφ(cos Φe sinΘe sin Ψe − sinΦe cos Ψe)

Ng = −xgmgθ cos Θe sin Ψe + xgmgφ(sin Φe sin Θe sin Ψe + cos Φe cos Ψe)

− xgmg(cos Φe sinΘe sin Ψe − sinΦe cos Ψe)

where the following 3×3 matrix is the direction cosine matrix for small perturbations and angles:




1 ψ −θ
−ψ 1 φ
θ −φ 1





4.5.2 Aerodynamic and Control Terms

The aerodynamic and control terms are developed using a Taylor series expansion about the initial con-
ditions for each of the forces and moments in a similar mannerto that described by Cook [12]. Only the
first term in each series is considered significant and the only higher order derivatives retained are those
with respect toẇ.

Xa + Xc = Xae + X
o

uu+ X
o

vv + X
o

ww + X
o

pp+ X
o

qq + X
o

rr + X
o

ẇẇ + X
o

ηη + X
o

ξξ + X
o

ζζ (4.39)

Ya + Yc = Yae + Y
o

uu+ Y
o

vv + Y
o

ww + Y
o

pp+ Y
o

qq + Y
o

rr + Y
o

ẇẇ + Y
o

ηη + Y
o

ξξ + Y
o

ζζ (4.40)

Za + Zc = Zae + Z
o

uu+ Z
o

vv + Z
o

ww + Z
o

pp+ Z
o

qq + Z
o

rr + Z
o

ẇẇ + Z
o

ηη + Z
o

ξξ + Z
o

ζζ (4.41)

La + Lc = Lae + L
o

uu+ L
o

vv + L
o

ww + L
o

pp+ L
o

qq + L
o

rr + L
o

ẇẇ + L
o

ηη + L
o

ξξ + L
o

ζζ (4.42)

Ma + Mc = Mae + M
o

uu+ M
o

vv + M
o

ww + M
o

pp+ M
o

qq + M
o

rr + M
o

ẇẇ

+M
o

ηη + M
o

ξξ + M
o

ζζ (4.43)

Na + Nc = Nae + N
o

uu+ N
o

vv + N
o

ww + N
o

pp+ N
o

qq + N
o

rr + N
o

ẇẇ + N
o

ηη + N
o

ξξ + N
o

ζζ (4.44)

Note the control termsη, ξ andζ represent inputs about the values needed for trim, hence they are also
treated as perturbation variables.

4.5.3 Rig Terms

The forces that are balanced by the rig along thexrig andyrig axes are the sum of the aerodynamic,
control and gravitational forces acting on the model, as shown in Figure 6. To determine the components
that act along thexrig andyrig axes, the body axes forces are first transformed into rig axesas follows,





Xrig

Yrig

0



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33





−1 



−Xa+c+g

−Ya+c+g

−Za+c+g




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where the subscripta + c + g denotes the sum of aerodynamic, control and gravitational forces. For
example, the combined force acting on the model along thexb axis is given by,

Xa+c+g = Xae + X
o

uu+ X
o

vv + X
o

ww + X
o

pp+ X
o

qq + X
o

rr + X
o

ẇẇ + X
o

ηη

+X
o

ξξ + X
o

ζζ +mgψ sin Φe cos Θe −mgθ cos Φe cos Θe

(4.45)

Figure 6: Forces balanced by the rig

Therefore,

Xrig = −D11Xa+c+g −D21Ya+c+g −D31Za+c+g (4.46)

Yrig = −D12Xa+c+g −D22Ya+c+g −D32Za+c+g (4.47)

These forces can then be transformed back into body axes,




Xrigb

Yrigb

Zrigb



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33









Xrig

Yrig

0



 (4.48)

Xrigb
= −(D2

11 +D2
12)Xa+c+g − (D11D21 +D12D22)Ya+c+g − (D11D31 +D12D32)Za+c+g

Yrigb
= −(D21D11 +D22D12)Xa+c+g − (D2

21 +D2
22)Ya+c+g − (D21D31 +D22D32)Za+c+g

Zrigb
= −(D31D11 +D32D12)Xa+c+g − (D31D21 +D32D22)Ya+c+g − (D2

31 +D2
32)Za+c+g

so, using the expressions for the gravitational, aerodynamic, control and rig terms, the linearised force
and moment equations (4.29) to (4.34) can be written as,

m(u̇− rVe + qWe + zg q̇) = (1 − (D2
11 +D2

12))Xa+c+g

− (D11D21 +D12D22)Ya+c+g − (D11D31 +D12D32)Za+c+g (4.49)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = −(D21D11 +D22D12)Xa+c+g

+ (1 − (D2
21 +D2

22))Ya+c+g − (D21D31 +D22D32)Za+c+g (4.50)
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m(ẇ − qUe + pVe − xg q̇) = −(D31D11 +D32D12)Xa+c+g

− (D31D21 +D32D22)Ya+c+g + (1 − (D2
31 +D2

32))Za+c+g (4.51)

Ixxṗ− Ixz ṙ −mzg(v̇ − pWe + rUe + ṙxg − ṗzg) = La+c+g (4.52)

Iyy q̇ +mzg(u̇− rVe + qWe + zg q̇) −mxg(ẇ − qUe + pVe − q̇xg) = Ma+c+g (4.53)

Izz ṙ − Ixz ṗ+mxg(v̇ − pWe + rUe + ṙxg − ṗzg) = Na+c+g (4.54)

4.6 Simplification of Equations

It is clear that the expansion of the expressions on the righthand side of Equations (4.49) to (4.54) would
lead to some long and very complex terms, particularly for the force equations. To get Equations (4.49)
to (4.54) into a more manageable and practical form, some simplifying assumptions can be made.

To start with, it is usual practice for the model to be trimmedwith the bodyxz-plane aligned with the
correspondingxz-plane of the rig axes. Therefore the trimmed roll and yaw attitude angles,Φe andΨe

are zero. Further, if the model is trimmed at a low angle of attack, it may be reasonable to treatΘe as a
small angle i.e.

cos Θe ≈ 1 andsinΘe ≈ Θe

In this case, the direction cosine matrix for trim reduces to,

De =





1 0 −Θe

0 1 0
Θe 0 1





Hence, the relationship between trimmed velocity components in body axes and rig axes becomes,




Ue
Ve
We



 =





1 0 −Θe

0 1 0
Θe 0 1









VT
0
0



 =





VT
0

VTΘe



 (4.55)

Following a perturbation from trim, the direction cosine matrix becomes,

D =





1 ψ −(Θe + θ)
−ψ 1 φ

(Θe + θ) −φ 1



 (4.56)

and the body axes velocity components are related to those inrig axes by the expression,




U
V
W



 =





Ue + u
v

We + w



 =





1 ψ −(Θe + θ)
−ψ 1 φ

(Θe + θ) −φ 1









VT
0
wrig



 =





VT
−ψVT

VT (Θe + θ) + wrig



 (4.57)

where products of small perturbations andΘe have been assumed to be negligibly small. From Equation
(4.57) it can be seen firstly that, under the above assumptions, the perturbation in axial velocityu is zero.
Secondly, the trimmed lateral velocity componentVe is also zero. As well as this, the perturbation in
yaw angleψ is equal to the negative perturbation in sideslip angle−β.

In a similar manner, the body axes angular rate perturbationvariables can be expressed in terms of the
corresponding rig axes components as,





P
Q
R



 =





p
q
r



 =





1 ψ −(Θe + θ)
−ψ 1 φ

(Θe + θ) −φ 1









prig
qrig
rrig



 =





prig
qrig
prig



 (4.58)
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where again products of small perturbations andΘe have been neglected. Therefore, under the assump-
tions outlined above, the angular rates in the body axes are equal to their corresponding angular rates in
rig axes.Note that the terms describing the disturbance forces and moments can be simplified in a similar
manner.

4.6.1 Gravitational Terms

Using the above assumptions, Equations (4.37) and (4.38) can be reduced to,





Xg

Yg

Zg



 =





−mg(Θe + θ)
mgφ
mg



 (4.59)





Lg
Mg

Ng



 =





−xgmgψ
−xgmg
xgmgφ



 (4.60)

4.6.2 Aerodynamic and Control Terms

The aerodynamic and control terms remain largely unchangedfrom those given in Equations (4.39) to
(4.44). However, if it can be assumed that, following a disturbance from trim, the model experiences
motion only in the longitudinal plane or the lateral/directional plane then Equations (4.39) to (4.44) can
be simplified.

Firstly, for the case in which the model’s response to the disturbance is restricted to the longitudinal
plane, motion can be completely described by axial force X, normal force Z, pitching moment M, motion
variablesw, q, θ and elevator inputη (remembering thatu is assumed to be insignificant). The lateral-
directional forces and moments (Y, L, N), motion variables (v, p, r, φ, ψ) and control surface inputs (ξ,
ζ) are all assumed to be zero. Therefore, derivatives of X, Z and M with respect to lateral-directional
variables are negligible and the decoupled longitudinal aerodynamic and control terms can be written as,

Xa + Xc = Xae + X
o

ww + X
o

qq + X
o

ẇẇ + X
o

ηη (4.61)

Za + Zc = Zae + Z
o

ww + Z
o

qq + Z
o

ẇẇ + Z
o

ηη (4.62)

Ma + Mc = Mae + M
o

ww + M
o

qq + M
o

ẇẇ + M
o

ηη (4.63)

Similarly, the decoupled lateral-directional aerodynamic and control terms can be found by assuming
motion due to a disturbance can be characterised completelyby lateral force Y, rolling moment L, yawing
moment N, motion variablesv, p, r, φ andψ and control surface inputsξ andζ,

Ya + Yc = Yae + Y
o

vv + Y
o

pp+ Y
o

rr + Y
o

ξξ + Y
o

ζζ (4.64)

La + Lc = Lae + L
o

vv + L
o

pp+ L
o

rr + L
o

ξξ + L
o

ζζ (4.65)

Na + Nc = Nae + N
o

vv + N
o

pp+ N
o

rr + N
o

ξξ + N
o

ζζ (4.66)

4.6.3 Rig Terms

Again, the forces that are balanced by the rig along thexrig andyrig axes are the sum of the aerodynamic,
control and gravitational forces acting on the model and thecomponents that act along thexrig andyrig
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axes are found by transforming the body axes into rig axes,





Xrig

Yrig

0



 =





1 ψ −(Θe + θ)
−ψ 1 φ

(Θe + θ) −φ 1





−1 



−Xa+c+g

−Ya+c+g

−Za+c+g



 (4.67)

Considering first the longitudinal case, the force along thexrig-axis is found to be,

Xrig = −Xa+c+g − Za+c+g(Θe + θ) (4.68)

where the longitudinal motion is again assumed to be decoupled from lateral/directional motion, resulting
in φ = ψ = 0. Next, for the lateral case, the force along theyrig-axis is,

Yrig = −Xa+c+gψ − Ya+c+g − Za+c+gφ (4.69)

The expressions for the rig forces given in Equations (4.68)and (4.69) can now be transformed into body
axes with the equation,





Xrigb

Yrigb

Zrigb



 =





1 ψ −(Θe + θ)
−ψ 1 φ

(Θe + θ) −φ 1









Xrig

Yrig

0



 =





−Xa+c+g − Za+c+g(Θe + θ)
−Ya+c+g

−Xa+c+g(Θe + θ)



 (4.70)

and the resulting expressions can be summed with the gravitational, aerodynamic and control terms to
give the X, Y and Z force equations,

m(qWe + zg q̇) = −Za+c+g(Θe + θ) (4.71)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = 0 (4.72)

m(ẇ − qUe − xg q̇) = Za+c+g − Xa+c+g(Θe + θ) (4.73)

Note that theu̇ term in Equation (4.71) has been dropped asu is assumed to be zero. Expanding the
terms Xa+c+g and Za+c+g terms, Equations (4.71) to (4.73) become:

m(qWe + zg q̇) = −(Zae + Z
o

ww + Z
o

qq + Z
o

ẇẇ + Z
o

ηη +mg)(Θe + θ) (4.74)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = 0 (4.75)

m(ẇ − qUe − xg q̇) = Zae + Z
o

ww + Z
o

qq + Z
o

ẇẇ + Z
o

ηη +mg (4.76)

−(Xae + X
o

ww + X
o

qq + X
o

ẇẇ + X
o

ηη −mg(Θe + θ))(Θe + θ)

At trim, by definition, the forces are balanced and all perturbation variables are zero, hence from Equa-
tions (4.74) and (4.76),

−(Zae +mg)Θe = 0 (4.77)

Zae +mg − XaeΘe = 0 (4.78)

and Equations (4.74) to (4.76) can be reduced to:

m(qWe + zg q̇) = 0 (4.79)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = 0 (4.80)

m(ẇ − qUe − xg q̇) = Z
o

ww + Z
o

qq + Z
o

ẇẇ + Z
o

ηη (4.81)

where, again, products of perturbations andΘe are assumed to be insignificant. The moment equations
can be expressed as,

Ixxṗ− Ixz ṙ −mzg(v̇ − pWe + rUe + ṙxg − ṗzg)

= Lae + L
o

vv + L
o

pp + L
o

rr + L
o

ξξ + L
o

ζζ − xgmgψ (4.82)
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Iyy q̇ +mzg(qWe + zg q̇) −mxg(ẇ − qUe − q̇xg)

= M
o

ww + M
o

qq + M
o

ẇẇ + M
o

ηη − xgmg (4.83)

Izz ṙ − Ixzṗ+mxg(v̇ − pWe + rUe + ṙxg − ṗzg)

= Nae + N
o

vv + N
o

pp + N
o

rr + N
o

ξξ + N
o

ζζ + xgmgφ (4.84)

For the trim case, all moments on the model are balanced and all perturbation variables are zero therefore,

Lae = 0 (4.85)

Mae − xgmg = 0 (4.86)

Nae = 0 (4.87)

The X and Y force expressions given in Equations (4.79) and (4.80) can also be utilised so that the
moment equations become,

Ixxṗ− Ixz ṙ = L
o

vv + L
o

pp+ L
o

rr + L
o

ξξ + L
o

ζζ − xgmgψ (4.88)

Iyy q̇ −mxg(ẇ − qUe − xg q̇) = M
o

ww + M
o

qq + M
o

ẇẇ + M
o

ηη (4.89)

Izz ṙ − Ixz ṗ = N
o

vv + N
o

pp+ N
o

rr + N
o

ξξ + N
o

ζζ + xgmgφ (4.90)

4.7 Equations for 3DoF Case

In practice, it has been found that the wind tunnel models tend to be very responsive in heave, risking
damage as they quickly reach the end stops on the vertical rod. One option for dealing with this problem
is to implement some form of closed-loop height control system that will prevent the model from reaching
the vertical limits. An alternative solution is to completely restrict the motion of the model along thezrig-
axis and allow the model to only undergo rotational motion. Consequently the model is constrained to
manoeuvre only in 3DoF.

For the 3DoF case, the body axes velocity components are related to the wind tunnel velocity vector by
the following expressions,
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 (4.91)

The relationship between angular velocities in body axes and those in rig axes remains the same as that
given in Equation (4.58).

For the force equations (4.79) to (4.81), the X and Y expressions remain unchanged from the 4DoF case.
However, for the Z equation, the aerodynamic, control and gravitational forces are now entirely balanced
by the rig hence the right hand side of Equation (4.81) reduces to zero,

m(qWe + zg q̇) = 0 (4.92)

m(v̇ − pWe + rUe + ṙxg − ṗzg) = 0 (4.93)

m(ẇ − qUe − xg q̇) = 0 (4.94)

In terms of the moment equations, the roll and yaw equations are identical to those given in (4.88) and
(4.90). For the pitch equation, the Z force component appearing on the left hand side of Equation (4.89)
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reduces to zero, hence for the 3DoF case, the moment equations are,

Ixxṗ− Ixz ṙ = L
o

vv + L
o

pp+ L
o

rr + L
o

ξξ + L
o

ζζ − xgmgψ (4.95)

Iyy q̇ = M
o

ww + M
o

qq + M
o

ẇẇ + M
o

ηη (4.96)

Izz ṙ − Ixzṗ = N
o

vv + N
o

pp+ N
o

rr + N
o

ξξ + N
o

ζζ + xgmgφ (4.97)

4.8 State Space Representation

For subsequent analysis, it is convenient to have the equations of motion in state space form. To achieve
this, the force and moment equations must first be rearrangedso that terms involving state time deriva-
tives appear on the left hand side of the equations, while state variable terms appear on the right hand
side. Considering first the longitudinal equations (4.81) and (4.89) for the 4DoF case,

(m− Z
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ηη (4.98)
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2
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o

ηη (4.99)

The above expressions can be rewritten in the form

Mẋ(t) = A′x(t) + B′u(t) (4.100)

where

xT(t) = [w q] u(t) = η

M =

[

(m− Z
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Z
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η

M
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η

]

The state space form is obtained by dividing through (4.100)by the mass matrixM ,

ẋ(t) = Ax(t) + Bu(t) (4.101)

whereA = M−1A′ andB = M−1B′. So the longitudinal state space equations of motion are given by,

[

ẇ
q̇

]

=

[

zw zq
mw mq

] [

w
q

]

+

[

zη
mη

]

η (4.102)

The stability and control derivatives appearing in theA andB matrices are known as concise derivatives.
The definitions for each derivative, for both the 4DoF and 3DoF cases, are given in Appendix A.

The lateral/directional equations are converted in an identical manner to that outlined above for the
longitudinal case. Again, using the 4DoF case as an example,Equations (4.80), (4.88) and (4.90) are
rearranged to give,

mv̇ −mzgṗ+mxg ṙ = mWep−mUer (4.103)

Ixxṗ− Ixz ṙ = L
o

vv + L
o

pp+ L
o

rr + L
o

ξξ + L
o

ζζ − xgmgψ (4.104)

−Ixz ṗ+ Izz ṙ = N
o

vv + N
o

pp+ N
o

rr + N
o

ξξ + N
o

ζζ + xgmgφ (4.105)

With reference to equation (4.100), the state vectorx, control vectoru, mass matrixM , stability matrix
A′ and control matrixA′ for the lateral/directional case are:

xT(t) = [v p r φ ψ] u(t)T = [ξ ζ]
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so the state space lateral/directional equations of motionbecome:
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ṗ
ṙ
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(4.106)

Again, Appendix A contains definitions for each of the concise derivatives in equation (4.106).

5 Experimental Analysis of 1/12 Scale BAe Hawk Data

Having developed the equations of motion from first principles, some experiments were carried out to
establish whether these theoretical relationships were valid in practice. The tests were performed on the
1/12 scale BAe Hawk model shown earlier in Figure 1.

An off-the-shelf inertial measurement unit (IMU), shown inFigure 7, was used to record the model
motion. The IMU comprised a set of three MEMS accelerometers, three MEMS rate gyros and three
solid state magnetometers. The range of these senors were±2g, ±150 deg/s and±2 Gauss respectively.
A Kalman filter was used to fuse data from the sensors and provide an accurate measure of the model’s
Euler angles. The analogue to digital conversion of the measured signals was 16-bit binary and data was
sampled from each of the sensors at a maximum rate of 100 Hz. The unit was physically very compact,
with dimensions of 5.7×4.5×1.1cm and a weight of 33 grams.

Control surface deflections were achieved using miniature servo-actuators (also shown in Figure 7),
based on radio controlled aircraft technology. These were physically connected to the relevant control
surfaces using standard model control linkages. Commands to the servo-actuators were transmitted from
a computer “ground station” through a Bluetooth wireless network. The resultant motion recorded by
the sensors was then sent back via the wireless network to theground station. The use of the Bluetooth
network avoided the need to physically connect any cabling to the model, or test rig, thereby eliminating
a possible source of interference.

The determination of the equations of motion from experimental data is known as system identification.
Figure 8 illustrates the basic principle of the process, which can be applied to both flight test and wind
tunnel data. A known input is applied to the aircraft to excite the dynamics of interest and on board
sensors are used to measure the aircraft’s response. Using this input/output information, a mathematical
model of the aircraft dynamics can be constructed.

The major stages involved in the system identification procedure are shown in the block diagram in Figure
9. The first step is the design of the experiments which will beused to excite the aircraft dynamics of
interest. This requires some prior knowledge of the vehicle’s dynamic characteristics and also includes
the selection of appropriate instrumentation to measure the motion variables. Once the data has been
recorded, the first stage in the analysis is to verify the consistency of the measurements before they are
utilised in later stages of the system identification process. This check on the data, usually termed data
compatibility check or flight path reconstruction, is performed by analytically generating the time history
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Figure 7: MEMS IMU and miniature servo-actuator

Figure 8: Illustration of system identification
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of a given variable using well-defined kinematic relationships and measurements from other variables.
For example, the attitude angles can be reconstructed by integrating the rate gyro data. If the measured
and reconstructed responses match then the data is said to bekinematically consistent. On the other hand,
if the measured and reconstructed responses do not match, error models for each of the sensors can be
postulated and the kinematic equations provide a means for estimating these error parameters. Having
accounted for errors in the data, the core stage of the analysis is to determine the most appropriate form
of the equations to describe the measured response and to estimate the numerical values of the stability
and control derivatives appearing in the equations. This isknown as model structure determination and
parameter estimation respectively. The final step in the analysis is to validate the identified dynamics
and this is usually done by comparing the response with a separate set of data not used in the preceding
analysis. If the validation process is successful then the analysis is halted and the final model of the
aircraft dynamics has been obtained. Otherwise, the analysis may have to be repeated using a different
equation structure or parameter estimation technique. In severe cases, the experiments may have to be
performed again.

Figure 9: Block diagram of system identification process

This report concentrates on the model structure determination and parameter estimation steps of the
analysis. It is therefore assumed that the data compatibility analysis has already been performed on the
data.

As well as estimating the model’s stability and control derivatives, it was necessary to estimate an equiv-
alent time delay caused principally by the need to transmit and receive data through the wireless network.
Accurate knowledge of this time delay was important as it hasbeen shown that time shifts in the data
lead to degraded estimates of the stability and control derivatives, particularly if the time shift is in the
control input [13]. The block diagram in Figure 10 illustrates the process of transmitting and logging
the data. The control inputs were time-logged when the user command was applied at the ground sta-
tion and the resultant response was time-logged when the data was received from the sensors. Along
with the pure time delay introduced by the wireless network,the equivalent time delay parameter also
accounts for the phase-lag introduced by unmodelled high-order/high-frequency dynamics. This could
include the dynamics of the sensors and associated filters, as well as nonlinearities such as backlash in
the control linkages [14]. The state-space equations of motion incorporating a time delay can be written
in the general form,

ẋ(t) = Ax(t) + Bu(t− τ ) (5.1)

whereτ is a vector of time delays for each of the control inputs. In general, the state variables contained
in the state vectorx may not be measured directly. They are related to the output variables using the
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equation,

y(t) = Cx(t) + Du(t− τ ) (5.2)

wherey is the output vector containing the variables which are measured during the experiment. The
system matricesC andD may also contain the stability and control derivatives. In reality, the elements
of y are measured atN discrete points in time,

z(tk) = y(tk) + ν(tk) k = 1, 2, . . . , N (5.3)

wherez is the measurement vector containing measured values of theelements ofy andν is a vector of
noise corrupting the measurements ofy. The elements ofν are assumed to be independent, Gaussian
random variables with zero mean.

Figure 10: Transmission and logging of data

The choice was made to perform the analysis in the frequency domain, which is better suited to the
estimation of time delays than time domain approaches. As the data is sampled at discrete time points,
time domain estimates ofτ have to be integer multiples of the data sampling time∆t, unless the data is
interpolated before hand. For the frequency domain, as the analysis is performed at discrete frequencies
rather than discrete time points, the elements ofτ are identified directly as real numbers regardless of
the value of∆t. A second reason for adopting a frequency domain approach was the observation of an
undesirable structural vibration in the rig during the tests. This can be seen in Figure 11, which shows
a plot of the Fourier sine series coefficients of the angle of attack data against frequency. The Fourier
sine series coefficients with large amplitudes located at frequencies below 3Hz belong to the model’s
rigid body dynamics. Above 3Hz, the amplitudes reduce to a relatively small and constant value, which
corresponds to noise in the data. However, the amplitudes increase again at approximately 8-9Hz. This
is caused by the structural vibration. By performing parameter estimation in the frequency domain,
the analysis can be restricted to a given band of frequenciesand, thus, the rigid body dynamics can be
isolated from the higher frequency structural vibration.

The experimental data was transformed into the frequency domain using a chirp-z Fourier transform,
which allows the frequencies of interest to be specified arbitrarily [15]. The lower frequency limit (in
Hertz) was chosen as 2/T, where T is the duration of the manoeuvre under analysis. This meant that, for
each frequency, there was at least two full sinusoidal waveforms. The upper limit was selected so that
the model dynamics of interest were included in the frequency band and was typically chosen as 3Hz. A
resolution of 0.02Hz was used.

The parameter estimates were obtained using the equation error method. For the state space system given
by Equations (5.1) and (5.2), the aim of the equation error approach is to find a model which matches the
time derivatives of the statesẋ derived from the measured data.

In the frequency domain, Equations (5.1) to (5.3) become

jωkx̃(ωk) = Ax̃(ωk) + Bũ(ωk)e
−jωkτ (5.4)

ỹ(ωk) = Cx̃(ωk) + Dũ(ωk)e
−jωkτ (5.5)

z̃(ωk) = ỹ(ωk) + ν̃(ωk) k = 1, 2, . . . , N (5.6)



29

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

Frequency (Hz)

F
ou

rie
r 

S
in

e 
S

er
ie

s 
C

oe
ffi

ci
en

ts

Figure 11: Fourier sine series coefficients of the angle of attack signal against frequency

where˜ denotes a variable transformed into the frequency domain and ωk is the vector ofN discrete
frequencies in rad/s. The equivalent time delay term makes the parameter estimation problem a nonlinear
one, hence it was not possible to solve the equation error problem using linear regression. Instead, the
modified Newton-Raphson technique, normally applied in theoutput error formulation, was used for the
equation error method. As this algorithm is iterative, it required specification of initial values for the
unknown parameters, unlike linear regression which is a one-shot method. However, the equation error
method is robust to starting values of the parameters [15] and it was found that the initial estimates could
all be set to zero without affecting convergence.

A detailed mathematical description of the modified Newton-Raphson technique and its application in
frequency domain estimation is not given here. The interested reader can find this material covered in
Klein and Morelli [15]. A brief summary of the important relationships in the algorithm, however, is
given below. The cost function to be minimized is

J(γ) = N
N

∑

k=1

ν̃
†(ωk,γ)S−1

νν
ν̃(ωk,γ) +N ln |Sνν| (5.7)

whereSνν is a real diagonal matrix whose elements are the power spectral densities of the elements
of ν and the symbol† denotes the complex conjugate transpose. The vectorγ contains the unknown
parameters to be determined. In the formulation of the equation error method, the state derivatives are
treated as measured values;ỹ(ωk) in Equation (5.6) is replaced byjωkx̃(ωk) and the equation errors, or
innovations, are defined as

ν̃(ωk) = z̃(ωk) − Ax̃(ωk) + Bũ(ωk) (5.8)

Estimates of the power spectral density matrix are obtainedfrom

Ŝνν =

N
∑

k=1

ν̃
†(ωk, γ̂)ν̃(ωk, γ̂) (5.9)

whereˆ is used to denote an estimated vector and the vector of parameter estimates for theith iteration
is calculated from,

γ̂i = γ̂i−1 + ∆γ (5.10)
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The parameter update is given by

∆γ = −
[

∂2J(γ)

∂γ∂γT

]T [

∂J(γ)

∂γ

]

(5.11)

Convergence is achieved and the process is halted when the relative change in the cost function and/or
the update to the parameter estimates from one iteration to the next falls below a user-defined threshold.

In Equation (5.11), the second-order gradient of the the cost function with respect to the parameter vector
is known as the Fisher information, or Hessian, matrix. It indicates the curvature of the cost function to
variations in each of the unknown parameters and is an important factor in determining the accuracy of
the parameter estimates. The statistical accuracy of the parameter estimates on the basis of the Cramer-
Rao inequality. This can be written as,

Cov(γ̂) ≥
[

∂2J(γ)

∂γ∂γT

]−1

(5.12)

In other words, the information matrix gives a theoretical minimum for the achievable parameter covari-
ance. An exact solution for the information is difficult to obtain in practice. For the modified Newton-
Raphson algorithm, it is calculated approximately from,

H ≈ ∂2J(γ)

∂γ∂γT
≈ 2NRe

[

N−1
∑

k=0

∂ν̃
†(ωk)

∂γ
Ŝνν

∂ν̃(ωk)

∂γ

]

(5.13)

where the difficult to compute second-order partial derivatives ofν̃ with respect toγ have been neglected.
The validity of this approximation improves the closer the parameter estimates get to the real derivative
values.

From the Cramer-Rao inequality, three important statistical metrics of the parameter estimates can be
calculated. Firstly, the Cramer-Rao bound of theith parameter estimate is defined as,

CRi =

√

(H−1)ii i = 1, . . . , nγ (5.14)

wherenγ is the number of unknown parameters. The Cramer-Rao bound provides a measure of the
minimum expected standard deviation of the parameter that would be obtained from analysis of repeated
manoeuvres.

In practice, the Cramer-Rao bound under predicts the scatter of parameters estimates for repeated ma-
noeuvres, particularly when the estimation is performed inthe time domain. This is due to the fact that
in the development of the estimation algorithms, the innovations ν are assumed to be characterised by
Gaussian, white noise. This means that the power of the noisein evenly distributed across the frequency
range[0, fN ] wherefN = 1/2∆t is the Nyquist frequency. In reality, innovations are coloured as the
noise power is concentrated within a particular frequency band. For aircraft parameter estimation, this
occurs in the frequency band corresponding to the rigid bodydynamics [15]. Coloured innovations is due
to errors in the model specification and the noise on the measured variables themselves being coloured.
From experience, the Cramer-Rao bounds obtained from time domain estimates can be around 5 to 10
times smaller than the corresponding standard deviations [16]. In the frequency domain, however, the
analysis is restricted to the frequencies in which the rigidbody dynamics are situated. Despite the noise
being coloured, the power of the noise in this low frequency band is relatively constant. Therefore, the
assumptions made about the noise in the development of the algorithm match more closely in practice
when the analysis is performed in the frequency domain rather than in the time domain. In turn, the
Cramer-Rao bounds obtained from frequency domain estimation should match more closely to the stan-
dard deviations. However, it has been found that a factor of 2is still needed [14, 16]. So for theith
parameter estimate, the standard deviation is given approximately by,

σi ≈ 2CRi = 2

√

(H−1)ii (5.15)
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The second statistical metric is parameter insensitivity,which for theith parameter is given by,

Ii =
1√
Hii

(5.16)

The insensitivity is a measure of how much a parameter value can be changed without causing an increase
in the cost function. It therefore provides a measure of the significance of each parameter and can be
used to determine the most appropriate form of the equationsof motion for a given response.

It is convenient to express both the Cramer-Rao bound and insensitivity as a percentage of the identified
parameter value,

CRi =
∣

∣

∣

CRi

γi

∣

∣

∣
× 100 (5.17)

Ii =
∣

∣

∣

Ii
γi

∣

∣

∣
× 100 (5.18)

At first glance, it may appear from Equations (5.14) and (5.16) that the Cramer-Rao bound and insensi-
tivity are the same. However, there is a subtle difference between the two. The insensitivity is approxi-
mately the conditional standard deviation of the parameterestimate, given that all other parameters are
known. The Cramer-Rao bound is an approximation of the unconditional standard deviation [16].

The third metric is the pair-wise correlation between theith and thejth parameters which is defined as,

ρij =
H−1

ij
√

H−1

ii H−1

jj

i, j = 1, . . . , nγ (5.19)

The absolute value ofρij (for i 6= j) falls between 0 and 1. Ifρij = 1, then theith andjth parameters
are linearly dependent and are both accounting for the same effect in the model describing the aircraft’s
response. This means that accurate estimates for both derivatives cannot be obtained, as many weighted
combinations of the two parameters could be used equally well to fit the measured motion. The solution is
to hold one of the parameters fixed at some appropriate value and estimate the other derivative as normal.
In practice, because of measurement errors, it is rare to findρij = 1 but correlation coefficients greater
than 0.9 can indicate near-linear dependency between the two derivatives and should be investigated
further [15, 17].

A major drawback of pair-wise correlation analysis is that it can only be used reliably to indicate corre-
lation between two parameters. It may not show linear dependence between three or more parameters.
An example of where correlation between multiple parameters can occur is in aircraft requiring stability
augmentation. If more than one motion variable is being fed back to the control surface as part of the
control law, then those motion variables and the control input will all be linearly dependent in some way.
A method of detecting correlation between multiple parameters is the uncertainty or confidence ellipsoid
[14, 16]. For theith parameter with Cramer-Rao bound CRi, this can be expressed as [14],

Θ̄CRi
=

T−1H−1(:, i)

CRi
(5.20)

whereT is a diagonal matrix containing the sensitivities from Equation (5.16) andH−1(:, i) denotes the
ith column of the inverse of the information matrix. Correlation is indicated if any of the elements of
Θ̄CRi

are relatively big in comparison to the element corresponding to theith parameter.

An approach to model structure determination based on the statistical metrics described above is outlined
by Tischler [14]. The Cramer-Rao bounds and insensitivities are both assigned threshold values. The
aim of the process is to obtain a set of equations for which allthe derivatives meet these limits and
therefore have a roughly constant degree of confidence. Initially, parameter estimation is carried out
with all possible parameters included in the model structure. The insensitivities are checked against the
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threshold and derivative with the highest insensitivity exceeding the limit is removed from the analysis
by being set to zero or some other appropriate a-priori valueand parameter estimation is repeated. This
process continues until all derivatives remaining in the model structure have insensitivities within the
threshold. At this stage, it may be that all derivatives haveacceptable insensitivities but the Cramer-
Rao bounds of some parameters are large. This is most likely due to correlation between parameters,
so the confidence ellipsoid for the parameter with the biggest Cramer-Rao bound is analysed. If linear
dependence between parameters is indicated then a choice ofwhich parameter to drop must be made.
This decision can be a difficult one and it may be useful to relyon an understanding of the physics of
the aircraft to choose which derivative to remove from the model structure. At each step in the process,
the value of the cost function is also analysed. If a significant increase in the cost function occurs as a
result of removing a parameter from the model then that parameter is re-entered into the equations and
the current model is acceptable as the final model structure.

Suggested guidelines for satisfactory parameter estimates areC̄Ri ≤20% (with CRi calculated from
Equation (5.15)) and̄Ii ≤10% [14]. However, it should be noted that these thresholds are suggested
for the case where the cost function is expressed in terms of frequency response curves, separated into
magnitude and phase components. The errors between the measured and predicted response is weighted
according to the coherence at each discrete frequency. Coherence is a measure of the linearity between
the input and output data. The difference in the formulationof the cost function for the frequency
response case and that given in Equation (5.7) means that thedefinition of the information matrix for the
two methods also differs. Therefore, the limits ofC̄Ri ≤20% and̄Ii ≤10% may not be reliable guidelines
for the equation error method. However, the Cramer-Rao bound, insensitivity, pair-wise correlation and
confidence ellipsoid make no assumptions about which estimation technique is being used, so an attempt
to carry out a model structure determination analysis, similar to that described above (but using the
equation error method), on data obtained from the 4DoF facility was made. The goal of the process was
to obtain a model structure in which the parameters all had Cramer-Rao bounds and insensitivities of
similar magnitudes.

It is worth noting that other approaches to the aircraft model structure determination process exist, most
notably the modified stepwise regression technique [15, 18]. However, as already pointed out, the need
to account for the time delayτ means that this particular case cannot to be formulated as a regression
problem. Hence, the method described above is viewed as the most appropriate for the current applica-
tion.

5.1 Longitudinal Example

For the tests on the Hawk model, heaving motion was restrained so only 3DoF motion was allowed.
The input used to excite the dynamics was a 0.3s 1-1-2 multistep input to the elevator [19] (see Figure
12). The wind tunnel velocity,VT , was 30m/s, with the model trimmed at an angle of attackαe = 0°,
resulting inΘe = We = 0. The Hawk’s centre of gravity was also coincident with thelocation of the
gimbal, thereforexg = zg = 0. Using the derivative definitions in Appendix A, for the given conditions
the normal force derivativeszw andzη should theoretically be zero andzq = Ue = VT . Therefore, the
theoretical state equation can be expressed as,

[

ẇ(t)
q̇(t)

]

=

[

0 zq
mw mq

] [

w(t)
q(t)

]

+

[

0
mη

]

η(t− τη) (5.21)

whereτη is the time delay on the elevator input. While pitch rateq is measured directly, the normal
velocityw is derived from angle of attack/pitch attitude data. So the output equation for this case is,

[

α(t)
q(t)

]

=

[

1/VT 0
0 1

] [

w(t)
q(t)

]

+

[

0
0

]

η(t− τη) (5.22)
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Table 4 contains theoretical estimates of the derivatives in Equation (5.21) from empirical analysis of
the Hawk model [1], therefore a comparison between theoretical and the experimental derivatives can be
made.

Parameter Estimate
zw 0
zq 30
zη 0
mw -1.64
mq -4.01
mη -2.60
τη -

Table 4: Empirical estimates of derivatives

For the analysis of the experimental data, all derivatives are initially treated as free parameters to be
estimates so the starting state equation is,

[

ẇ(t)
q̇(t)

]

=

[

zw zq
mw mq

] [

w(t)
q(t)

]

+

[

mw

mη

]

η(t− τη) (5.23)

Table 5 shows the initial parameter estimates for the model structure given by Equation (5.23). Two
parameters,zw and zη, standout having both large Cramer-Rao bounds and high insensitivity factors
in relation to the other derivatives. The Cramer-Rao boundsof zw and zη are around two orders of
magnitude greater than those for the other parameters, while the insensitivities are an order of magnitude
larger in comparison. With the highest insensitivity of 89.53%, the choice is made to repeat the parameter
estimation process withzw removed from the model by holding its value at zero. The results of the second
parameter estimation analysis are shown in Table 6. In comparison to the initial estimates given in Table
5, the values of the parameters retained in the model have remained almost constant. At the same time,
the cost function value has also remained virtually unchanged, with a slight decrease fromJ = 123.27
to J = 122.94. The fact that the parameter estimates and the cost function are largely unaffected by the
removal ofzw from the model structure validates the choice of fixing this parameter at zero. Focusing
on the remaining terms in the equations of motion, againzη has a significantly larger Cramer-Rao bound
and insensitivity when compared to the other derivatives. Therefore, for the third parameter estimation
stepzη is also held at a fixed value of zero.

Par. γ̂ C̄R% Ī %

zw 0.035 189.60 89.53
zq 28.583 1.40 0.47
zη -0.096 165.75 55.68
mw -1.552 4.73 1.79
mq -3.805 10.54 3.14
mη -2.114 6.97 2.25
τη 0.253 2.93 1.03

J = 123.27

Table 5: Initial parameter estimates

Par. γ̂ C̄R% Ī %

zw 0.000 - -
zq 28.566 1.40 0.47
zη -0.103 155.65 52.33
mw -1.552 4.71 1.80
mq -3.851 10.15 3.11
mη -2.122 6.96 2.25
τη 0.253 2.92 1.02

J = 122.94

Table 6: Parameter estimates -zw dropped

Table 7 shows the results of removingzη from the model. Again, the parameter estimates are largely
unaffected by fixingzη at zero and, in fact, the Cramer-Rao bounds of some of the derivatives have
dropped. The cost function has also reduced slightly fromJ = 122.94 toJ =122.57. Hence, it can
again be concluded that a more appropriate model structure to describe the measured response has been
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obtained by removingzη from the analysis. Note that the Cramer-Rao bounds and insensitivities of the
remaining parameters are all now of similar magnitudes.

Par. γ̂ C̄R% Ī %

zw 0.000 - -
zq 28.719 0.99 0.47
zη 0.000 - -
mw -1.553 4.72 1.81
mq -3.968 9.97 3.05
mη -2.173 6.88 2.22
τη 0.255 2.74 1.00

J = 122.57

Table 7: Parameter estimates -zη dropped

Having removedzη from the model, the structure obtained from the experimental data is the same as that
predicted from theory (see Equation (5.21)). Also, comparison of the derivative values in Table 7 with
those in Table 4 indicate a very close match between the empirical and experimental estimates, which
match to within 5%. Consequently the choice was made to halt the identificationat this point. Figure 12
shows the time histories ofw andq derived from the measured data against the responses reconstructed
from the identified model. Also shown is the elevator input used to excite the longitudinal dynamics.
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Figure 12: Comparison of measured and identified responses for final model structure

5.2 Lateral/Directional Example

For this example, the tests on the Hawk were carried out at thesame conditions as for the longitudinal
case described in Section 5.1. The rudder input for the experiment was a 1-1-2 multistep input of similar
duration [19] (see Figure 13) . The wind tunnel velocity wasVT=30m/s, with the model trimmed at angle
of attackαe = 0deg, resulting inΘe = We = 0. The Hawk’s centre of gravity was also coincident with
the location of the gimbal, thereforexg = zg = 0.

For the data analysed in this example, a control input to excite the dynamics was applied to the rudder



35

only so the identification of the derivatives due to aileron deflectionξ cannot be identified from these
particular measurements. From Appendix A, the derivativeswith respect to roll attitudeφ and yaw
attitudeψ should also be zero, asxg = zg = 0. For the same reason, the theoretical values of lateral force
derivatives areyv = yp = yζ = 0 andyr = -Ue = -VT . Under these assumptions, the lateral/directional
equations of motion given reduce to,





v̇(t)
ṗ(t)
ṙ(t)



 =





0 0 yr
lv lp lr
nv np nr









v(t)
p(t)
r(t)



 +





0
lζ
nζ



 ζ(t− τζ) (5.24)

whereτζ is the time delay on the rudder input. The roll ratep and the yaw rater are measured directly
but the sideslip velocityv is obtained from angle of sideslip/yaw attitude data. The output equation in
this case is,





β(t)
p(t)
r(t)



 =





1/VT 0 0
0 1 0
0 0 1









v(t)
p(t)
r(t)



 +





0
0
0



 ζ(t− τζ) (5.25)

It may be reasonable to assume that the rolling motion causedby the rudder input will be insignificant in
comparison to the yawing motion. In this case, the roll equation and derivatives with respect top can be
removed from Equation (5.24) giving,

[

v̇
ṙ

]

=

[

0 yr
nv nr

] [

v
r

]

+

[

0
nζ

]

ζ (5.26)

Empirically derived estimates [1] for the parameters in Equation (5.26) are shown in Table 8, again
allowing a comparison with experimental estimates.

Parameter Estimate
yv 0
yr -30
yζ 0
nv 1.28
nr -1.53
nζ -0.67
τζ -

Table 8: Empirical estimates of derivatives

For the parameter estimation analysis, the initial model structure was taken to be,





v̇(t)
ṗ(t)
ṙ(t)



 =





yv yp yr
lv lp lr
nv np nr









v(t)
p(t)
r(t)



 +





yζ
lζ
nζ



 ζ(t− τζ) (5.27)

As some rolling motion following the rudder input was observed when the tests were carried out the roll
equation and derivatives with respect top are included in the initial model. Table 9 shows the results
for the initial parameter estimation analysis. The derivative yζ clearly stood out as having the highest
insensitivity. Therefore, it was removed from the model andthe analysis was repeated. This was done a
number of times with the successive removal of the derivativeslr, lξ, lp andlv (results shown in Tables
10 to 14). At this stage of the process, the analysis had indicated that there was insufficient information
in the data to reliably identify any of the rolling moment derivatives. However,yp andnp were still
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candidate terms for the model structure, thereforep was dropped as a state variable and instead treated
as a pseudo input [17]. Hence the equations of motion were rearranged to give,

[

v̇(t)
ṙ(t)

]

=

[

yv yr
nv nr

] [

v(t)
r(t)

]

+

[

0 yp
nζ np

] [

ζ(t− τζ)
p(t)

]

(5.28)

Comparison of Tables 13 and 14 shows that, when the model structure was rearranged as above, the cost
function value dropped significantly.

Par. γ̂ C̄R% Ī %

yv 0.057 86.27 29.28
yp 0.981 60.02 19.08
yr -29.943 0.87 0.30
yζ 0.001 7645.70 2541.16
lv 0.187 82.21 27.04
lp -1.199 151.03 47.41
lr -0.438 187.18 62.82
lζ 0.098 193.11 62.05
nv 0.955 3.51 1.15
np -0.876 44.96 14.08
nr -1.375 14.05 4.35
nζ -0.603 6.69 2.18
τζ 0.262 2.35 0.95

J = 170.75

Table 9: Initial parameter estimates

Par. γ̂ C̄R% Ī %

yv 0.059 69.16 28.13
yp 0.927 50.81 20.14
yr -29.938 0.64 0.30
yζ 0.000 - -
lv 0.189 81.34 26.79
lp -1.199 150.74 47.39
lr -0.427 191.50 64.41
lζ 0.102 183.98 59.48
nv 0.955 3.51 1.15
np -0.875 44.99 14.09
nr -1.376 14.05 4.34
nζ -0.603 6.70 2.18
τζ 0.262 2.33 0.95

J = 170.76

Table 10: Parameter estimates -yζ dropped

Par. γ̂ C̄R% Ī %

yv 0.063 64.91 26.41
yp 0.877 53.54 21.24
yr -29.924 0.64 0.30
yζ 0.000 - -
lv 0.224 61.18 22.63
lp -1.708 87.55 33.37
lr 0.000 - -
lζ 0.168 82.75 36.20
nv 0.958 3.41 1.15
np -0.884 44.43 13.97
nr -1.389 13.91 4.31
nζ -0.605 6.69 2.18
τζ 0.262 2.30 0.95

J = 169.22

Table 11: Parameter estimates -lr dropped

Par. γ̂ C̄R% Ī %

yv 0.066 61.86 25.16
yp 0.899 52.23 20.73
yr -29.912 0.64 0.30
yζ 0.000 - -
lv 0.164 79.49 31.33
lp -1.067 133.43 54.20
lr 0.000 - -
lζ 0.000 - -
nv 0.960 3.42 1.15
np -0.806 48.71 15.37
nr -1.402 13.80 4.28
nζ -0.604 6.66 2.19
τζ 0.261 2.26 0.96

J = 174.32

Table 12: Parameter estimates -lζ dropped

The next two parameters to be removed from the model structure wereyp, followed byyv (Tables 15
and 16). When this was carried out, it can be seen from Table 16that the insensitivities of the remaining
parameters were all of a similar magnitude. However, the Cramer-Rao bound ofnp was high in com-
parison to the other derivatives. As described above, a parameter with high Cramer-Rao bound but low
insensitivity could be an indication of correlation among the derivatives. Therefore, the confidence el-
lipsoid fornp was examined, See Table 17 ( note that the elements have been scaled to unity). The table
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indicates that the high Cramer-Rao bound fornp may have been high due to some correlation withnv,
nr andnξ, although the values are moderate. To investigate further,parameter estimation was repeated
one more time withnp eliminated from the model. The results are shown in Table 18.

Par. γ̂ C̄R% Ī %

yv 0.068 59.93 24.39
yp 0.811 57.44 22.88
yr -29.893 0.63 0.30
yζ 0.000 - -
lv 0.112 98.51 46.52
lp 0.000 - -
lr 0.000 - -
lζ 0.000 - -
nv 0.966 3.38 1.14
np -0.885 44.27 13.99
nr -1.393 13.86 4.31
nζ -0.601 6.69 2.20
τζ 0.262 2.26 0.96

J = 172.63

Table 13: Parameter estimates -lp dropped

Par. γ̂ C̄R% Ī %

yv 0.074 54.89 22.51
yp 0.568 82.80 32.93
yr -29.891 0.64 0.30
yζ 0.000 - -
lv 0.000 - -
lp 0.000 - -
lr 0.000 - -
lζ 0.000 - -
nv 0.981 3.35 1.14
np -1.490 26.55 8.40
nr -1.237 15.35 4.90
nζ -0.583 6.92 2.29
τζ 0.259 2.37 1.01

J = 100.93

Table 14: Parameter estimates -lv dropped
(p set as a pseudo input)

With np removed, the model structure matched that predicted from theory. The estimates of the deriva-
tives in Table 18 also matched closely to the empirical values given in Table 8. The agreement between
experimental and empirical estimates was not as good whennp was included in the model structure. As
well as this, withoutnp in the equations, the Cramer-Rao bounds of most of the remaining parameters
fell, particularly fornr. However, the cost function increased slightly with the removal of the parame-
ter. Figure 13 shows the time histories ofv andr derived from the measured data against the responses
reconstructed from the identified model. Reconstructed responses with and withoutnp are shown and it
can be seen that, visually at least, there is very little difference between the two identified responses. It
is therefore a borderline decision as to whethernp should remain in the model. However, on balance, it
is probably appropriate to eliminatenp from the final model. This decision could be based simply on the
principle of parsimony which says that given two models which have similar levels of fidelity, the better
model is that which has the fewer number of parameters [17].

5.3 Comments on the Experimental Results

In both the examples described above, the model structure determination procedure was found to work
well, with the final models derived from the wind tunnel data matching the equations of motion predicted
from theory. This may be unsurprising considering the approach used was originally developed for
rotorcraft applications [14], in which the equations of motion can be far more complex than those outlined
in this report. It is also worth noting that, despite using a different parameter estimation technique, the
suggested guidelines of̄CRi ≤20% and Īi ≤10% have worked well for the two examples. It is clear,
however, that the process of model structure determinationis one that cannot be used blindly but instead
works best when utilised in conjunction with a physical understanding of the aircraft dynamics. This is
especially true in cases where the statistical metrics giveconflicting advice on whether or not a parameter
should be retained in the equations of motion.
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Par. γ̂ C̄R% Ī %

yv 0.102 33.66 16.78
yp 0.000 - -
yr -29.827 0.63 0.31
yζ 0.000 - -
lv 0.000 - -
lp 0.000 - -
lr 0.000 - -
lζ 0.000 - -
nv 0.979 3.35 1.14
np -1.457 27.16 8.60
nr -1.238 15.35 4.90
nζ -0.582 6.94 2.29
τζ 0.259 2.38 1.01

J = 100.36

Table 15: Parameter estimates -yp dropped

Par. γ̂ C̄R% Ī %

yv 0.000 - -
yp 0.000 - -
yr -29.817 0.70 0.35
yζ 0.000 - -
lv 0.000 - -
lp 0.000 - -
lr 0.000 - -
lζ 0.000 - -
nv 0.984 3.33 1.13
np -1.459 27.15 8.60
nr -1.252 15.19 4.85
nζ -0.582 6.95 2.30
τζ 0.259 2.38 1.01

J = 100.06

Table 16: Parameter estimates -yv dropped

Parameter Θ̄CRnp

yr 0.001
nv -0.633
np 1.000
nr -0.572
nζ -0.584
τζ 0.112

Table 17: Confidence ellipsoid elements fornp dropped

6 Conclusions

The equations of motion of an aircraft model tested in Cranfield’s 4 degree-of-freedom (DoF) dynamic
wind tunnel have been developed. In previous research, the equations have been derived assuming that
the model’s centre of gravity (cg) is coincident with the gimbal mechanism about which the model rotates
on the rig. However, in this report, a general approach was taken with the cg assumed to be located away
from the gimbal. The equations were developed from first principles and reduced to a linearised form
where motion can be represented as small perturbations about trim. The equations were also decoupled
into longitudinal and lateral/direction expressions and converted into state space form. It had been found
in practice that models tested in the facility were very responsive in heave and could only be operated
open-loop if movement was restricted to purely rotational motion. Therefore, the equations for this 3DoF
case were also developed. Having obtained theoretical expressions for the equations of motion, a series
of wind tunnel tests were conducted on a 1/12 scale BAe Hawk model in order to establish if the theo-
retical relations were valid in practice. The particular technique used in testing the model was dynamic
simulation and the analysis of the experimental data was performed using system identification. An
established model structure determination procedure was used to determine which stability and control
derivatives should be included in the equations of motion. Frequency domain equation error parameter
estimation was then used to obtain numerical values for the stability and control derivatives. For both
the longitudinal and lateral/directional examples described, the final model structure obtained from ex-
periment matched that derived from theory. Derivatives values obtained from parameter estimation and
empirical analysis were also in good agreement.
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Par. γ̂ C̄R% Ī %

yv 0.000 - -
yp 0.000 - -
yr -29.812 0.71 0.35
yζ 0.000 - -
lv 0.000 - -
lp 0.000 - -
lr 0.000 - -
lζ 0.000 - -
nv 0.912 3.13 1.44
np 0.000 - -
nr -1.682 11.06 4.26
nζ -0.672 5.68 2.34
τζ 0.264 2.36 1.01

J = 101.53

Table 18: Parameter estimates -np dropped
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Figure 13: Comparison of measured and identified responses for final model structure
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A Definition of Concise Derivatives

A.1 Longitudinal Derivatives

A.1.1 4DoF Case

The denominator for each of the derivatives is given by:

(Iyy +mx2
g)(m− Z

o

ẇ) −mx2
g(M

o

ẇ +mxg) (A.1)

while each of the numerators can be expressed as follows,

zw : Z
o

w(Iyy +mx2
g) +mxgM

o

w (A.2)

zq : (Z
o

q +mUe)(Iyy +mx2
g) + (M

o

q −mxgUe)mxg (A.3)

zη : Z
o

η(Iyy +mx2
g) + M

o

ηmxg (A.4)

mw : Z
o

w(M
o

ẇ +mxg) + M
o

w(m− Z
o

ẇ) (A.5)

mq : (Z
o

q +mUe)(M
o

ẇ +mxg) + (M
o

q −mxgUe)(m− Z
o

ẇ) (A.6)

mη : Z
o

η(M
o

ẇ +mxg) + M
o

η(m− Z
o

ẇ) (A.7)

A.1.2 3DoF Case

The denominator for each of the derivatives is given by:

m(Iyy +mx2
g) −mx2

g(M
o

ẇ +mxg) (A.8)

while each of the numerators can be expressed as follows,

zw : mxgM
o

w (A.9)

zq : mUe(Iyy +mx2
g) + (M

o

q −mxgUe)mxg (A.10)

zη : M
o

ηmxg (A.11)

mw : mM
o

w (A.12)

mq : mUe(M
o

ẇ +mxg) +m(M
o

q −mxgUe) (A.13)

mη : mM
o

η (A.14)
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A.2 Lateral/Directional Derivatives

Note that the lateral/directional derivatives given in this section are the same for both the 4DoF and 3DoF
cases. The denominator for each of the derivatives is given by:

m(IxxIzz − I2
xz) (A.15)

while each of the numerators can be expressed as follows,

yv : L
o

v(Ixxmzg − Ixzmxg) + N
o

v(Ixzmzg − Ixxmxg) (A.16)

yp : mWe(IxxIzz − I2
xz) + L

o

p(Ixxmzg − Ixzmxg) + N
o

p(Ixzmzg − Ixxmxg) (A.17)

yr : −mUe(IxxIzz − I2
xz) + L

o

r(Ixxmzg − Ixzmxg) + N
o

r(Ixzmzg − Ixxmxg) (A.18)

yφ : xgmg(Ixzmzg − Ixxmxg) (A.19)

yψ : −xgmg(Izzmzg − Ixzmxg) (A.20)

yξ : L
o

ξ(Ixxmzg − Ixzmxg) + N
o

ξ(Ixzmzg − Ixxmxg) (A.21)

yζ : L
o

ζ(Ixxmzg − Ixzmxg) + N
o

ζ(Ixzmzg − Ixxmxg) (A.22)

lv : L
o

vmIzz + N
o

vmIxz (A.23)

lp : L
o

pmIzz + L
o

pmIxz (A.24)

lr : L
o

rmIzz + N
o

rmIxz (A.25)

lφ : xgm
2gIxz (A.26)

lψ : −xgm2gIzz (A.27)

lξ : L
o

ξmIzz + N
o

ξmIxz (A.28)

lζ : L
o

ζmIzz + N
o

ζmIxz (A.29)

nv : L
o

vmIxz + N
o

vmIxx (A.30)

np : L
o

pmIxz + N
o

pmIxx (A.31)

nr : L
o

vmIxz + N
o

rmIxx (A.32)

nφ : xgm
2gIxx (A.33)

nψ : −xgm2gIxz (A.34)

nξ : L
o

ξmIxz + N
o

ξmIxx (A.35)

nζ : L
o

ζmIxz + N
o

ζmIxx (A.36)


