

THE COLLEGE OF AERONAUTICS CRANFIELD

OPTIMUM MICHEL FRAMEWORKS FOR THREE PARALLEL FORCES by

H.S.Y. Chan

CRAMMESID

Ophmum Michel wramewomks Wom Thee Paralel Foraes
" by $=$
H.S. Y, Cher, B.A.

SUMMARTE

The design of Michen optrum structures to carry whee coplanar forcea has been the most popular topic in this field. Eowever the mathematheat techique involved ao far bas been rather lmited in as much as ony chrictly symmetrical cases have been considered. Fis the intention of the present paper to apply the genera theory of optmum desigh to a rather complicated problem of tha type, and athey in full detall the outcoming mathenatical concepte, both namerical and theorebical.

CONTENTS

Page
Summary

1. Introduction 1
2. Geometrical layout 1
3. Calculation of the virtual displacements 2
a. Volume of the Michell structures 6
4. The limiting case for/d large 8
B. Acknowledgment 10
5. References 10
Table 1 11
Appendir A 12
Appendix B 14
Wgures

1. Zthroduchion

The fundamental problem of structural design is the determination of structures of minimum weight which safely equilibrate a given system of external forces. In the study of two-dimensional optimum Michell structures, it is of some advantage to make use of the analogy with the theory of plane plastic flow, which states that the members of a Michell frame lie along lines which have the save form as the slip lines in the plastic case. Several cases of practical interest wese studied in great detail by A.S. \mathcal{L}. Chan ${ }^{2}$) using this method. The present work is concerned with the optimum design of a framework under a further case of three force loading, which is derived by an extension of the ship line field for one of the classical designs of Michell.

2. Geometrical layout

Consider the loading problem of Figure 1 . The points of application of the forces lie on a straight line, with $O P<P O$. The forces are all perpendicular to the line $00^{\text {s }}$ and in equilibrium. The problem is to construct a Michell structure which equilibrates these forces.

It is already known ${ }^{\text {(1) }}$ that when $O P=P Q^{\prime}$, the optimum structure is as shown in Figure 2. The corresponding slip line field is presented in Figure 3, which shows that the slip lines in the region $A C P A^{\prime} C^{\prime}$ consist of circular arcs and radii, with $A C^{A}$ perpendicular to $A^{3} C$, whereas the slip ines in the squares OAPA', $D^{\prime} \mathrm{CPC}^{\prime}$ are merely orthogonal straight segments.

It is proposed to extend this slip line field outside its original region. The procedure is explained below, and is illustrated in Figures 4 and 5 , because of the symmetry, it is sufficient to consider only the region above OO'.
(2. 1) Begiming with Bigure 1, determine first a point E on $P O^{\prime}$: so that $O P=P R$. Then draw from O, P, \mathbb{E}, the slip line ilelds $O A P, A P C$ and $C P E$, identical with those shown in Figure 3 .
(2. 2) Since the point 0 is a point of application of force, it is possible that it is a singular point similar to the point P. This suggests the introduction of a region OAB similar to APC.
(2.3) Two orthogonal arcs $A B$ and $A C$, are now given, and so the slip line rield can be extended to the whole region $B A C D$ in the manner of Figure 16 of Reference 2.
(2.4) The straight segment $C E$ is perpendicular to $C D$, so the slip line field can now be extended to the whole region DCFF. Here, one set of the slip lines are straight segments which envelope an evolute: the other set of slip lines are then Invalutes". Ssee Reference 2, p. 5\%.

Up to now, the extensions of the slip line fields on either side of 00 are separate from one another. Similar fields under the line OO are also shown in Figure 5. At this stage, they must, if possible, be brought together to complete the final layout.
(2.5) $\mathbb{E} F$ and \mathbb{E}^{\prime}, are two orthogonal slip lines symmetrical with respect to $0 O^{\prime}$,
so a ship line field can be obtaned from them, each curve of which whin intersect 100° at 45°.

The layout of the requared structure may now be obtained from the slip line field of Figure 5 . The necessery structure for the proposed problem is given in Figure 4.

So far, no explanation has been given as to the method of constructing the layout analytically. As would be expected for such a complicated case numerical Solution of the analytical equations will become unavoidable. However. with the powemiul graphical method developed in the theory of plasticity - see for instance Reference 3 , Chapter 6 - one can obtan such a layout with surficient degree of accurecy. The alp line field in Figure 5 was congtructed by this graphical method with an increment of 10° between adjacent glip lines.

3. Calculation of the viremal digplacements

For the sake of conyenience, some basic formulae ame stated and notations enplained, using Figure $B^{\text {\% }}$

The layout lines for the structure can be taken separately in each region as co-ordinate curves of a curvinear co-ordinate system (α, p .

Denote $\quad \phi=-\alpha+\beta$
Which is the angle between the positive a-drection and the zaxis. The wadi of chrvature of the α, β curves are denoted by A and B respectively. They are related by

$$
\begin{equation*}
\frac{\partial A}{\partial B}=B \quad, \frac{\partial B}{\partial a}=A \tag{2}
\end{equation*}
$$

The virtual displacements along the α \& curves are denoted by und v. They satisfy the following expressione

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial \alpha}+v=-A e \quad, \quad \frac{\partial u}{\partial \beta} \cdots=-B a \\
\frac{\partial v}{\partial \alpha}-u=A \alpha, \quad \frac{\partial v}{\partial \beta}+u=B e \tag{4}\\
\text { where } \quad \operatorname{so}(\alpha, \beta)=2 e(\alpha+\beta)+\omega(0,0)
\end{array}\right.
$$

is the rotation at any point (α, β) within the region, and \pm e denote the principal strains. In what lollows, the (α, β) co-ordinate systems are so chosen that the direct strain in the α-direction is always $-e$, and that in the β-direction is always te, (see Figure 7).
(3.1) Start from region $O A B$, assuming, the origin 0 to be fixed. Since the (α, β) coordinates coincide with polar co-ordinates, the virtual displacements satisfy the following relations.

[^0]\[

$$
\begin{equation*}
\frac{\partial u}{\partial \alpha}=-e, \frac{\partial V}{\alpha \partial \beta}+\frac{u}{\alpha}=e \quad \frac{\partial V}{\partial \alpha}+\frac{\partial u}{\alpha \partial \beta}-\frac{v}{\alpha}=0 \tag{5}
\end{equation*}
$$

\]

and

$$
u(0,0)=0=v(0,0)
$$

The solution is

$$
\begin{align*}
& u(\alpha, \beta)=-e \alpha \tag{6}\\
& y(\alpha, \beta)=2 e \alpha \beta+k \alpha
\end{align*}
$$

where k is a constant.
(3.2) Consider nest the region OAP, and take the point A as origin. The (α, β) co-ordinates are simply Cartestan co-ordinates, and so

$$
\begin{equation*}
\frac{\partial u}{\partial \phi}=-e, \frac{\partial v}{\partial \beta}=e, \frac{\partial u}{\partial \beta}+\frac{\partial v}{\partial \alpha}=0 \tag{7}
\end{equation*}
$$

Deriving the boundery condition on OA from (6), one obtains the following result.

As

$$
\begin{align*}
& \left\{\begin{array}{l}
u(P)=u(0, r)=r(e-k) \\
v(P)=v(o, r)=r(e-k),
\end{array}\right. \tag{19}
\end{align*}
$$

the constant kis best chosen so that the point is at rest, since this simplifies the remainiag calculations coneiderably.
(3.3) In regions $A P C$ and $C P$, the layout is the same as in (3.1) and (3.2). There is no meed, therefore, to go into the same detail. Arter simple calculation. the following results are obtained.

$$
\begin{align*}
& \text { On AE: } \quad u=-\operatorname{er}, V=\operatorname{er}(2 \beta+1): \omega(A)=e \tag{10}\\
& \text { Ac: } u=-\operatorname{er}(2 \alpha+1): v=\operatorname{er} \tag{11}\\
& \text { CE: } \quad u=-\operatorname{ea}-\operatorname{er}(1+\pi), \quad \forall=\operatorname{ea}(1+\pi)+\operatorname{er} \tag{12}
\end{align*}
$$

Where u, v and $\alpha_{\text {, }} \beta$ in the above equations are consistant with the notations for the virtual displacements and cowrdinates used in regions BACD and DCEF, with points A and C respectively taken as origins, (see Figure 7).

At this stage, the classical solution of the structure in Figure 2 is already determined. From $\$ 12$), the virtual displacements of the point \mathbb{E} (which corresponds to point O^{s} in Figure 2) are

$$
\begin{equation*}
u=-\operatorname{er}(2+\pi), v=\operatorname{er}(2+\pi) \tag{13}
\end{equation*}
$$

The resultant vertical displacement is

$$
\sqrt{u^{2}+v^{2}}=\sqrt{2}(2+\pi) \text { er }=(2+\pi) \text { ed } .
$$

and so the volume V of the structure is

$$
\begin{equation*}
V=(2+3) d \cdot \frac{F}{2 f}=\left(1+\frac{\pi}{2}\right) \frac{E d}{2} \tag{14}
\end{equation*}
$$

whewe I is the allowable stress in the members of the gtructure.
(3.4 For region BACD, the complete analysis had been carried out already in Referevce 2, and the recults ace as follows.

$$
\begin{align*}
& \alpha=2 e(\alpha+\beta)+\alpha(A)=2 e(\alpha+\beta)+e \tag{15}
\end{align*}
$$

The boundary conditions on $C D$ car be obtained by setting $\alpha=\frac{3}{2}, \beta=0$,
(S.5) Mregion DCE ${ }^{\text {m }}$: the (α, β) co-ordinates are shown in Figure 7. By Henckys theorem ${ }^{\text {B }}$, the variable β ie identical with that in region BACD on corresponding a-ines. Since one set of alip lines are straight segmente, the calculation of the layout is quite straight forward, taking into account the boundary conditions on CD , Reference 2,84 , case 2t. The results are

$$
\begin{equation*}
A(\alpha, \beta)=1 \quad, \quad B(\alpha, \beta)=\alpha+B(0, \beta)=\alpha+r\left[\sum_{0}(\sqrt{2 \pi \beta})+\sqrt{\frac{\pi}{2 \beta}} I_{1}(\sqrt{2 \pi \beta})\right] \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\omega=2 e \beta+\omega(c)=e(2 \beta+1+\pi) \tag{1.9}
\end{equation*}
$$

$$
\begin{align*}
& v(\alpha, \beta)=\alpha \omega+v(0, \beta)=(2 \beta+1+\pi) \operatorname{er}+\operatorname{er}\left[(1+2 \beta) I_{0}(\sqrt{2} \pi \beta)+\sqrt{2 \pi \beta} I_{2}(\sqrt{2 \pi})\right] \tag{20}
\end{align*}
$$

(3.6) winally, in region FE ${ }^{8}$, the (α, β) co-ordinates are shown also in Figure 7. By Henckys theorem, the variable β is still identical with that of the previous case for corresponding α-lines. From (18), the radius of curvature \mathbb{E} of this new co-ordinate system satisfies

$$
\begin{equation*}
B(0, \beta)=r\left[1+r_{0}(\sqrt{2 \pi \beta})+\sqrt{\frac{\pi}{2 \beta}} I_{1}(\sqrt{2 \pi \beta})\right] \tag{21}
\end{equation*}
$$

* $I_{k}(Z)$ denotes the modified Bessel function of the $k^{-t h}$ order, $I_{k}(Z)=i^{-k_{j}}(i Z)$.

Because of symmetry, $\quad A(\alpha, \beta)=\mathbb{B}(\beta, \alpha)$.
and so $\quad A(a, 0)=B(0,0)=r\left[1+I_{0}(\sqrt{2 \pi \alpha})+\sqrt{\frac{\pi}{2 \alpha}} I_{2}(\sqrt{2} \pi \alpha)\right]$
From (19) $\quad a=2 e(\alpha+\beta)+\operatorname{as}(\alpha)=2 e(\alpha+\beta)+e(1+\pi)$
Using equation (2) and the boundary conditions (21), (23), A, and B can be obtained from the following tommla (Reference 2, equetion (27):

$$
\begin{align*}
& A(\alpha, \beta)=A(\alpha, 0) M_{0}(2 \sqrt{\alpha \beta})+\int_{0}^{\infty} \mathbb{I}_{0}(2 \sqrt{(\alpha-\beta) \beta}) \frac{\partial(\beta, 0)}{\partial s} d s+ \\
& \quad+\int_{0}^{\beta}(2 \sqrt{\alpha(\beta-\eta)}) B(o, n d \eta \tag{25}
\end{align*}
$$

Details of this integration are presented in Appendiss A, and the result gives, from (A, A), (A.10),

$$
\begin{align*}
& A(\alpha, \beta\}=\mathbb{P}\left\{\left(2+\frac{\pi}{2}\right) I_{0}(2 \sqrt{\alpha \beta})+\sqrt{\frac{\beta}{\alpha}} I_{2}(2 \sqrt{\alpha \beta})+\sqrt{\frac{2 \beta}{2 \alpha+3}} I_{2}(\sqrt{2 \beta(2 \alpha+\pi})+\right. \\
& +\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)!} \cdot\left(\frac{\pi}{2}\right)^{1+k}\left(\frac{a \alpha}{2 \beta+\pi}\right)^{1+k) / 2} \cdot \frac{1}{1+1 \sqrt{2 \alpha(2 \beta+\pi})+} \\
& +\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)!} \cdot\left(\frac{\pi}{2}\right)^{1+k} \cdot\left(\frac{2 \beta}{2 \alpha+\pi}\right)^{(1+k \sqrt{2} 2} \cdot{ }^{1}+k \sqrt{2 \beta(2 \alpha+\pi)}+ \\
& \left.+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k-(k+2)} \cdot\left(\frac{\pi}{2}\right)^{2+k} \cdot\left(\frac{2 \alpha}{2 \beta+3}\right)^{(1+k) / 2} \cdot 1+k^{(\sqrt{2 \alpha(2 \beta+\sqrt{2})}}\right) \tag{26}
\end{align*}
$$

The formulea for the virtual displacements are obtained by adding equation (3) in pairs

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}=-A e-B e(2 \alpha+2 \beta+1+\pi) \tag{27}\\
\frac{\partial v}{\partial \alpha}+\frac{\partial v}{\partial \beta}=B e+A e(2 \alpha+2 \beta+1+\pi)
\end{array}\right.
$$

Letring $\alpha=\alpha+\beta, T=\alpha-\beta,(27)$ becomes

$$
\begin{align*}
& 2 \frac{\partial u}{\partial \sigma}=-A e-B e(2 \sigma+1+\pi) \\
& 2 \frac{\partial v}{\partial \sigma}=B e+A e(2 \sigma+1+\pi) \tag{28}
\end{align*}
$$

Theoretically speaking, once the values of u and v on the boundary are known, this set of equations can be integrated along the line $T=$ constant to obtain $u(\alpha, \beta)$ and $v(\alpha, \beta)$. Owing to the complexity of equation (26), it does not seem possible to obtain an analytical expression for u. v. However, for the solution of the present problem, it is of interest to calculate only those values of t, V on the line $T=0$.

Letting $\alpha=\frac{0}{2}=P$ in (28) and noticing (22), the following integral expression is derived,

$$
\begin{align*}
u(\mu, \mu) & =u(E)-\frac{e}{2} \int_{0}^{2 \mu}(2 \sigma+2+\pi) A\left(\frac{0}{2}, \frac{\sigma}{2}\right) d o \\
& =-(2+\pi) \text { er }-\int_{0}^{1} \mu(A \mu t+2+\pi) A(\mu t, \mu t) d t
\end{align*}
$$

where

$$
\begin{align*}
A(\mu t, \mu t) & =r\left\{\left(2+\frac{\pi}{2}\right) M_{0}(2 \mu t)+I_{1}(2 \mu t)+\sqrt{\frac{2 \mu t}{2 \mu t+\pi}} I_{M}(\sqrt{2 \mu t(2 \mu t+\pi)}+\right. \\
& \left.+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\left[\frac{2}{k+1}+\frac{\pi}{2 k+4}\right] \cdot\left(\frac{\pi}{2}\right)^{1+k} \cdot\left(\frac{2 \mu t}{2 \mu t+\pi}\right)^{(1+k) / 2} \cdot 1_{1+k}^{(\sqrt{2 \mu} \mu(2 \mu t+\pi)}\right\} \tag{30}
\end{align*}
$$

Finally, by symmetry, $\quad V(\mu, \mu)=-u(\mu, \mu)$
Detalled consideration of the numerical calculations is given in Appendix B. The results are shown in Table 1.

4. Volume of the Michell structures

Before calculating the volume of the structures, it is necessary to relate the (α, β) co-ordinates to distances along OPO'.

Referring to the co-ordinate system in region $F \mathbb{F}^{8}$, the direction cosines of the tangent lines to the co-ordinate curves are given by, Reference 2, equation (22)).

$$
\begin{align*}
& \cos \beta=\frac{1}{A} \frac{\partial x}{\partial \alpha}=\frac{1}{B} \frac{\partial y}{\partial \beta} \tag{32}\\
& \sin \beta=\frac{1}{A} \frac{\partial y}{\partial \alpha}=\frac{-1}{B} \frac{\partial x}{\partial \beta}
\end{align*}
$$

where ϕ is defined by (1). This equation (32) gives

$$
\begin{align*}
& x=\int^{\{\alpha, \beta)}(A \cos \beta d \alpha-B \sin \phi d \beta) \tag{33}\\
& y=\int^{\alpha, \beta)}(A \sin \phi d \alpha+B \cos \hat{\beta} d \beta)
\end{align*}
$$

which takes a rather simple form when integrated along the line EOA. For any point $O^{\prime}\left(\alpha, \beta\right.$) on $E O^{\prime}$, the following relations are satisfied.

$$
\left\{\begin{array}{c}
\alpha=\mu=\beta \\
\cos \phi=1, \sin \beta=0 \tag{34}\\
A(\psi, \mu)=B(\mu, \mu)
\end{array}\right.
$$

Substituting (34) into (33) gives

$$
\begin{equation*}
x=\int_{0}^{\mu} A\left(\alpha, \alpha \mid d \alpha=\int_{0}^{\mu} B(\beta, \beta) d \beta=y\right. \tag{35}
\end{equation*}
$$

The integral

$$
x=\int_{0}^{1,} A(\alpha, \alpha) d \alpha=\int_{0}^{2} A(\mu t, \mu t) d t
$$

can be calcuiated in exactly the same way as that of equation (29). Referring to Figure 7 , the final relation is

$$
\begin{equation*}
2-d=B O^{b}=\sqrt{x^{2}+y^{a}}=\sqrt{2 x} \tag{37}
\end{equation*}
$$

Notice that the angle must be less than 135°, otherwise the slip line fields at point O will overlap. This shows that the length, \& will attain an upper limit when $\mu=135^{\circ}$. A curve is plotted in Figure 8 , showing this relationship, and the corresponding mumerical results are shown in Table 1.

Another but less accurate way of obtaining the relation between $/ / d$ and μ is to measure the graphical layout of Figure 5 , for several values of μ. With the help of interpolation, the relation at any position of $\mathbb{E} O^{\prime}$ can be found.

The volume of the structures can now be determined. Assuming $O, P_{2} Q^{\prime}$, are the points of action of the forces, then, referring to Figure 1 once more,

$$
\begin{equation*}
F_{2}=\frac{d}{d+b} F \tag{38}
\end{equation*}
$$

The resultant displacement of the point Q^{\prime} is. from (29), (31), along the line of action of the force F_{2} and its magnitude is equal to $-\sqrt{2 u(\mu, \mu)}$. Since
the points O and P are at west, the wolmme of the required structure is

The numerical regults are ghown also in Table 1. A curve is ploted in Figure 9 indicating the complete set of solmions.

An approximate estimate of the volume required may be obtained from Tigure 10. This has been constructed using the graphical method. Reference 2. (6), and from thic. the loads carried by each member can be calculated by statical analysis starting trom point O^{*}. The length of each member can be obtained by measurement. This gives an approwimate solution for the required structure. An example of such a calculation is recorded by the numbers attached on each member of Higure 10 . Some values are tabulated below for a direct comperison with the theoretrel results.

$4 / d$	$\frac{V}{\text { Ed }}$ (eq. 189$)$	$\frac{\text { VI }}{\text { Fa }}$ (graphical solution)
3	8.5708	-
1.5	3.1366	3.269
2	3.5896	3.63
2.5	3.9862	4.082
3	4.2882	4.398
3.5	4.5702	4.68
4	4.8210	4.938
4.5	5.0462	5.182
5	5.2495	5.402

5. The hmiting case for eldange.

It is shown in Table that the soluthon exist only ror those cases satisfying

$$
\begin{equation*}
1 \leqslant \frac{\theta}{d}<149.1764 \tag{40}
\end{equation*}
$$

If this relation does not hold, op becomes very small in comparison with $P O^{\prime}$, and $H P$ ma it is then natural to approximate the loadinge at O and P by a force \mathbb{P}^{*} per wnit length continuously distributed on the circumierence of a circle Q, with $O P$ as diameter and center Q lying midway between O and \mathbb{P}. (see Figure 11 , such that the resultant is a vertical force F and a moment $F_{2} \cdot\left(\frac{d}{2}+\ell\right)$ at Q 。

Such a loading problem is known as Michells Cantlever (Reference 1 , ex. 1 . the slip line field of which consists of equiangular spirals. If polar co-ordinates (0,0) are introduced at center Q, the spirals have the form, (Reference 4, (3, 15$) /$.

$$
\begin{array}{ll}
\alpha \text {-curves } & \rho=k e^{\theta-2 \beta+\frac{\pi}{4}} \\
\rho-\text { curves } & \rho=k e^{-\theta+2 \alpha-\frac{\pi}{4}},
\end{array}
$$

Which shows that the co-ordinate curves

$$
\rho=\text { const. and } \theta=\text { const }
$$

are lines of principal strain, frepresented by dotted lines in Figure 12) if u, v are virtual displacements along p and θ directions: then

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial \rho}=0, \frac{\partial v}{\rho \partial \theta}+\frac{u}{\rho}=0 \\
\frac{\partial u}{\partial \partial \theta}+\frac{\partial v}{\partial \rho}-\frac{y}{\rho}=2 e
\end{array}\right.
$$

(e is the allowable strainy, which gives

$$
\begin{align*}
& u=C_{1} \sin \theta=C_{2} \cos \theta \tag{43}\\
& v=C_{\sin }+C_{\sin } \cos \theta+C_{3} \beta+2 e_{p} \ln p
\end{align*}
$$

where C_{2}, C_{2}, C_{3}, are constants of integration. Assuming the point Q to be fired, then $G_{2}=C_{0}=0$. The third constant can be chosen to bring the point O^{\prime} to rest, that is

$$
\begin{equation*}
C_{3}=-2 e \ln t a+\frac{d}{2} \tag{44}
\end{equation*}
$$

The Firtual displacements at the boundery of the circle a are, by (43) and (44).

$$
\left\{\begin{array}{l}
u=0 \tag{45}\\
y=-\frac{d}{2} \cdot 2 e 1 n\left(1+2 \frac{b}{d}\right)
\end{array}\right.
$$

The wolume of the structure is then given by the work by ${ }^{*}$. The result is

$$
\begin{align*}
\text { erV } & =\int_{0}^{2 \pi} \int_{0}^{*} \cdot \frac{d}{2} \cdot 2 e \ln \left(1+2 \frac{b}{d}\right) d \theta \\
& =2 e 1 n\left(1+2 \frac{b}{d}\right) \cdot \int_{0}^{2 \pi} m^{*} \cdot \frac{d}{2} d \theta \\
& =2 e 1 n\left(1+2 \frac{b}{d}\right) \cdot F_{2} \cdot\left(\frac{d}{2}+\ell\right) \tag{46}
\end{align*}
$$

Finally, by using (38), the above expression can be put into a form similar to (39).

$$
\begin{equation*}
\bar{V}=\left(2-\frac{d}{d+d}\right) \cdot \ln \left(1+2 \frac{e}{d}\right) \cdot \frac{F d}{f} \tag{47}
\end{equation*}
$$

The numerical values of (47) are ploted as a dotted line in pigure 9 , which indicates the gmilarty of the two solutions. If the original loading problem of S 2 has been formulated in the manner used here, then equation (47) would give the required volume of atructure. The layout of the Michell Cantilever can be extended to infinity, and this gives a more complete solution, The present solution, however, covers what may be expected to be a practical range of geometrical layouts.

A further remark may be made. If the port pis situated above 00 and the angle $O P O^{\prime}$ is greater than a xight angle, a similar approach can be adopted. Michells oxiginat structure fow the case $O P=P O$ and the corresponding extension of the slip line field are shown in Figures 13 and 14.

Acknowledgment

The authow wishes to acknowledge the gudarce given by Erofessor W. S. Hemp who firet ptmulated the auhoris interest in this subject and has provided invaluable suggestions for the complethon of this paper.

Rererences

1. Michell. A.G.M.
2. Chan, A.S.L.
3. Hill, R.
4. Hemp, WI. S.
5. C.I.T.
6. Bailey, W, N.
7. Watson, C. N.
8. N. P. L.

The Imit of economy of material in frame structures. Phil. Mag, Series VI, Vol. 8. 1904. pp. 589.597

The design of Michell optimum structures. College of Aeronautics Report $142,1960$.

Mathematical Theory of Plasticity. Oxford, Clarendon Press, 1950.

Theary of structural design. College of Aeronautics Report 115, 1958.

Tables of integral transforms, V. 2. Bateman Manuscript Project. McGraw Hin. 195 知.

On integrals involving Bessel functions. Quart. J. Math. Oxford Series, Vol. 9. 1938. pp. 141-147.

Theory of Bessel Functions. Cambridge Univ. Press, 1944.

Modern Computing Method.
Notes on Applied Science, No. 16, 1961.

$\begin{gathered} \text { M } \\ \text { degrees } \end{gathered}$	$\frac{\mathrm{u}(\mathrm{~s} \cdot \mathrm{~h} \cdot}{(\mathrm{mer})} \mathrm{eq} .293$	$\frac{2}{d}(\mathrm{deq} .37)$	$\frac{V i}{F d}(e q \cdot 39)$
0	5.1416	1.0000	2.5708
5	6.9360	1.3372	2.9677
10	9.1725	1.7317	3.3578
15	11.0515	2.1934	3.7426
20	15.3953	2.7342	4.1228
25	19.6527	3.3681	4.4991
30	24.9043	4.1113	4.8724
35	31.3698	4.9832	5.2430
40	39.3158	6.0066	5.6112
45	49.0646	7.2082	5.9775
50	61.0086	8.6196	6.3421
55	75.6220	10.2780	6.7053
60	93.4789	12.2274	7.0671
65	115.2746	14.5193	7. 4278
70	141.8499	17.2149	7.7876
75	174.2214.	20.3862	8.1464
80	213.6173	24.1180	9.5046
85	261.5221	28.51 .05	8.8620
90	319.7278	33.6880	9.2188
95	390.3979	39.7721	9.5751
100	476.1433	46.9456	0.9309
105	580.1131	55.3969	10.2863
110	706.1051	65.3557	10.6412
115	858.6982	77.0934	10.9958
120	1043.4130	90.9303	11.3500
125	1266.8977	107.2448	11.7040
130	1537.1629	126.4841	12.0577
135	1863.8560	149.1764	12.4111

Table 1.

Appendix A
mategration of equation (25)
From equations (2t) and (23), it is found that

$$
\begin{align*}
& B\left(O_{0} r_{1}\right)=r\left[1+I_{0}(\sqrt{2 \pi n})+\sqrt{\frac{\pi}{2 n}} I_{1}(\sqrt{2 \pi n})\right]
\end{align*}
$$

and because

$$
\begin{equation*}
\lim _{\mathbb{L}} Z^{-k} I_{k}(Z)=\frac{1}{2^{k}(k+1)} \text { for any } k>a_{5} \tag{*}
\end{equation*}
$$

therefore

$$
A(0,0)=3\left(2+\frac{x}{2}\right)
$$

Subetthting from (A.1.2) in (25):m

$$
\begin{aligned}
& +r \int_{0}^{8} x_{0}\left(2 \sqrt{a(8-\eta)}\left[1+r_{0}(\sqrt{2 \pi \eta})+\sqrt{\frac{\pi}{2 \eta}} x_{2}(\sqrt{2 \pi n})\right] d \eta\right.
\end{aligned}
$$

Nest, by substitutheg $y=\cos ^{2} g, \eta=p \sin ^{2} y$, the two integrals can be combined to give the following

$$
\begin{aligned}
& A(\alpha, \beta)=A(0,0) x_{0}(2 \sqrt{\alpha \beta})=2 \pi \int_{0}^{\frac{\pi}{2}} \operatorname{m}_{0}(2 \sqrt{\alpha \beta} \cos \xi)\left[\sqrt{\frac{\pi \alpha}{2}} \frac{\mathbb{I}_{0} \sqrt{2 \sin } \sin b}{\sin b}+\right.
\end{aligned}
$$

This expression can be derived, for example, by taking limit in Sonineis first finite integral, see 12.11 of Reference 7.

The integrands in (A. St have the standard forms. for which the result of integration can be homd, for ingtanee, in Refecences 5, 6,7 , They are

$$
\begin{aligned}
& \int_{0}^{\frac{2}{2}} \pi_{0}(p \cos g) \sin g \cos b d \xi=\frac{1}{p^{2}} \int_{0}^{p} x_{0}(2) L d z=\frac{\operatorname{La}(\mathrm{p})}{p} \\
& \int_{0}^{\frac{3}{3}} \operatorname{r}_{0}\left(p \operatorname { c o s } y x _ { 0 } \left(q \sin y \sin y \cos d y=\frac{\sqrt{4} d p^{2}+q^{2}}{\sqrt{p^{2}+q^{2}}}\right.\right.
\end{aligned}
$$

where p, q are independent of .
Comparing these general formulae with equation (A. 5), the Rinall result is

$$
\begin{aligned}
& A(\alpha, \beta)-A(0,0) \Lambda_{0}(2 \sqrt{\alpha \beta})=\left\{\sqrt{\sigma} I_{\alpha}(2 \sqrt{\alpha \beta})+\sqrt{\frac{2 \beta}{2 \alpha+3}} \cdot 1 \sqrt{2 \beta}(\sqrt{2 \beta(2 \alpha+\pi)})\right. \\
& +\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)^{1 /}} \cdot\left(\frac{\pi}{2}\right)^{1+k} \cdot\left(\frac{8 a}{2 \beta+3 k}\right)^{(1+k / / 2} \cdot L_{1+k}^{(\sqrt{2} a(2 \beta+\pi)}
\end{aligned}
$$

Appendix B

Wumericet analysis of equation (29)

Before applying any method of ramerical integration, it is of some interest to exemine the geries

more caremuy,

Makng use of the following resnit, fee Reference 7, 8 . 2 gh
the modulus of the k-hterm of the series is

This shows that the series of (D. W) converges even faster than the exponentia series. and integration term by term is therefore permissible, Furthermore, gmming the sexies (b, 1) from in $=$ Whows. by using (B. J),

$$
\begin{align*}
& \sum_{k=N}^{\infty} a_{k}(\mu N)<\left(2+\frac{\pi}{2}\right) e^{\frac{4}{2}(2 \mu+\pi)} \sum_{k=N}^{\infty} \frac{\left(\frac{\pi}{2}(1)^{1+k}\right.}{\Gamma(k+1)!]^{2}} \\
& \left.<\left(2+\frac{\pi}{2}\right) e^{\frac{[2}{2}(2 \mu+\pi)} \sum_{k=M}^{2} \frac{(\mu)^{1+2}}{(N+1) \cdot(N+2)^{K-N}}\right)^{2} \\
& =\left(2+\frac{\pi}{2}\right) e^{\frac{\mu}{2}(2 \mu+n)} \cdot \frac{\left.\frac{\pi}{2} \mu\right)^{1+N}}{[(N+1)]^{2}} \cdot \sum_{k=N}^{\infty}\left[\frac{\frac{\pi}{2} \mu}{(N+2)^{2}}\right]^{k-M} \\
& \left.=\left(2+\frac{\pi}{2}\right) e^{\frac{3}{2}(2 \mu+\pi)} \frac{\left(\frac{\pi}{2 \mu}\right)^{1+N}}{[(N+1))^{2}}\left[1-\frac{\pi}{2} \mu / N+2\right)^{2}\right] \tag{B,A}
\end{align*}
$$

provided that $\{N+2\}^{2} s \frac{4}{2} \%$ This result cen be used to estimate the number of terms required in numerical calculations.

For the numerical integration of equation (29) (and (36), Simpsonis Rule is adopted, Which is particularly suitable for automatic computing, (see for Instance Reference 8). The detail of the mumexical wom can best be explained by the flow diagram of computing below. The resut of computing shows that up to geven terms of the series (E. 1) have been used, and the interval of integuation [0.1] has been diviced up into 128 equal parta.

Fig.

fic. 2
$r=d / \sqrt{2}$

F1G. 3

OPTIMUM DESIGU FOR THREE PARALLEL FORCES

Ficic. $\quad \phi=-a+p$

F16.11.

fig. 12 michell cantiever

FIG. 13

[^0]: *

 Most of the notations used here are identical with those in Ref. 2.

