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1. .utroduction

The fundamental problem of structural design is the determination of
structures of minimum weight which safely equilibrate a given system of external
forces. In the study of two-dimensional optimum Michell structures, it is of
some advantage to make use of the analogy with the theory of plane plastic flow,
which states that the members of a Michell frame lie along lines which have the
game form as the slip lines in the plastic cage. BSeveral cases of practical interest
were studied in great detail by A.S, L, Chanm}using this method. The present
work is concerned with the optimum design of a framework under a further case
of three force loading, which is derived by an extension of the slip line field for
one of the classical designg of Michell.

2. Geometrical lavout

Congider the loading problem of Figure 1. The points of application of the
forces lie on a straight line, with OP< Y. The forces are 21l perpendicular to
the line 007 and in eguilibrium. The problem is o consiruct a Michell structure
which eguilibrates these forces.

It iz already kngwmgmtha’s when OF = P07, the optimum structure is as shown
in Figure 2. The corresponding slip line field is presented in Figure 3, which
shows that the slip lines in the region ACPA’C’ consist of circular arcs and radii,
with AC' perpendicular to A’C, whereas the slip lines in the sguares OAFPA’ |

G 'CPC’ are merely orthogonal siraight segments.

it ig proposed to exiend this slip line field outside its original region. The
procedure is explained below, and is illustrated in Figures 4 and 5, because of
the symmetry, it is sufficient to consider only the region above OO’
{2.1) Beginning with Figure 1, determine first a point E on PQO’, so that OP = PE,
Then draw from O, P, E, the slip line fields OAP, APC and CPE, identical with
those shown in Figure 3.

{2.2} Since the point O is a point of application of force, ii is possible that it is
a singular point similar to the point P. This suggests the introduciion of a region
OAB similar o APC,

{2.3} Two orthogonal arcs AR and AC, are now given, and so the slip line field
can be extended to the whole region BACD in the manner of Figure 16 of Reference
2

&

{2.4) The straight segment CE is perpendicular to CD, so the slip line field can
now be extended to the whole region DCEF. Here, one set of the slip lines are
straight segments which envelope an 'evolute!; the other seat of =lip lines are then
finvolutes®. {see Reference 2, p. 5},

Up to now, the extensions of the slip line fields on either side of OO are
separate from one another. Similar fields under the line OO are also shown in
Figure 5. At this stage, they must, if possible, be brought together to complete
the final layout,

(2.5) EF and EF’, are two orthogonal slip lines symmetrical with respect to OO’
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The layout of the reg
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given in Figure 4,

8o far, no explanation has been given as to the method of constructing the
layout analytically. As would be expected for such a complicated case, numerical
solution of the analytical equations will become unaveoidable, However, with the
powerful graphical method developed iun the theory of plasticity - see for instance
Heference 3, Chapler 8 - one can amaiz such a layout with sufficient degree of

i p line field %"1 Figure B by t graphical
method with an increment of 10° between a
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The layout lines for the siructure can be taken separately in each region
88 COo w@rdmme curves of a curvilinear co-ordinate system (o, Bl

Denote d =-gta {1}
which ig the angle between the positive ¢ -direction and the x-axis. The radii

P

|2
of curvature of the «, & curves are denoied by & and B respectively. They
re related by

&S A gy =1 )
‘:"‘.f: = B , L8 - 4 (2)
of Sey
The virtual digp”aﬁememg along the ¢ , B curves are denoted by v and v.
They satisfy the following expressions
du du
v + v = -Ae ) 5 VT -Ba
[ & S fay
! ‘ (3
L Ay 6 o7
Vv b
= - u = Awm : T +y = Be
o0 3B
where wio ,8) = 2ele +B)+ wic.o) (4}

is the rotation at any point { o, B} within the region, and #* e denote the principsal
strains. In what follows, the { &, B} co-ordinate systems are so chosen that the
direct strain in the ¢-direction is always -e, and that in the g -direction is
always +e, {see Figure 7).

{3.1) Stari from region OAB, assuming, the origin O {o be fizxed. BSince the
{ @, B ) co=ordinates coincide with polar co-ordinates, the virtual displacements
satisfy the following relations.

e
Most of the notations used here are identical with those in Ref., 2.



du 3V ) 3V Su v
T % e, T 4+ = =e T e {5)
Sor 208 o 30 3B o
and wlo.0) = o = vio, o},
L wa.Bl= -eq .
The solution is o 8
* vig,p)= 2ZeaB +ka {6}
where k ig a consgtant.
{3.2) Consider next the region OAP, and take the point A ag origin. The (o, B )
co-~ordinates are simply Cariesian co-ordinaies, and so
du Sv du dv
w— = mg  , T =g e e = () {7}
it 3B OB dox

Deriving the boundary condition on OA from {8}, one obtains the following
result,

% 1 - - =l =N ad =3 T
%”uﬁ o, B &0 + er kg 8)
viy, 8) = es8 + ky -~ kr
oaf T3 . - = anff 3
wP) = ulo,r) = xle -k}
WiP) = vio.r) = rie -k}

the constant k ig beat chosen so that the point P is at rest, since this simplifies
the rﬁmamwg calculations considera ably.

a8 APC and CPE, the layout is the same as in (3.1} and (3.2).
! s no need, therefore, to go into the same detail. After simple calculation,
the following results are obtained.

On AB: u = -er , v = er{(2g +1) , w(A) = e {10}
s u = -~er {2a+1} , v = er {11}
CE: u = =-ey ~er{l+gx} , v = egllix)+ er {12)

where u, vand ¢, B in the above equations are consistant with the notations
for the virtual displacements and co-ordinates used in regions BACD and DCEF,
with points A and C respectively taken as ovigins, {see Figure 7).

At this stage, the classical solution of the siructure in Figure 2 is already
determined. From (12}, the virtual displacements of the point E {which corresponds
to point Q! in Pigure 2) are

u = ~eri2+w) , v = er{d +ax) {13}

The resultant vertical displacement is

U2+ v2 = I {24+ ader = {2+ w)ed
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{20}

are shown alsc in Figure

is al wnh that of the previous
cage for correspsnding o-lines. From {18}, the radius of curvature £ of this
new co-ordinate gystem ssatisfies

il

Blo, B}

J' -
ri 1
L

(V2xp } J {21)

e ~-th -k .
1, {Z}) denotes the modified Bessel function of the k th order, KkQZE =1 JK(JLZ}.,



Because of symmetry, Alg,s) = Bl s, @,‘9‘ , {22}

and 80 Aa,ol = Blo,a)=1» } 1+ EJ(@@:’:@ + /JL Ig (/2 o) § {23)
‘ N 2¢

From (198}, wm= Zeflg + Bl wiB)l = Zelo + BY+e{l +x} {24}

Using equation {2} and the boundary conditions {21}, (23), A, and B can be
obtained from the following formule (Reference 2, eguation {27):

g

PuS— e ~ 4
Ala,B) = Alo,o) 12456 ) + [ zmm e “Al.ddge
83

I

+ j I &2‘1’*@ [ “W-;g\ﬁ }Blo, n)dyq (25)

9]

Details of this integration are presented in Appendix A, and the result

gives, from {A.4), (A.10),
Yo - . 4’ P R S I - N Pt [ﬁé‘gﬂm B — )
Alo, B8} = gk%,g e .&@g?;ngﬂ K;‘f&“ 142 @ﬁ;%\g Gy ﬁ;:"gglwgwwﬁi—%-"f +
© i+k 14k} 2
: ? iﬁ“iﬁk (ﬂf&s\h 'Eigwi 2y . \>%m+kh ) v fg ig o+ o
C /L k) \2) Bt o g oot Bt )
a=g
& k 1+k (i+k)/ 2
To(-1) I ; 2p e e
! Z eyt "\ 2 \Za+ = g 28 o+ =)+
2+k {1+k}/2
. ﬁ (20 N s ESThETT L (289
4 €<ﬁ> 1\?@“”} . i’ﬂg 2028+ wl) (26)

The formulea for the virtual displacements are obiained by adding equation

{3) in pairs

Su au
e Eeme = - Ae - Be 2+ 38 + 14 5 )
ooy 38 © ot *
{ v {27)
Sy v
e e = Be + Ae (2g + 28 +1 4+ x)
oy 3B .
TLetilng o = G+ B, T == 8, {27) becomes

3
29~ = -fe - Be(2¢g +1+x)

o

{28}
2m = Be + Ae (2¢ +1+ ¢)



Theoretically speaking, once the values of u and v on the boundary are
known, this set of equations can be integrated along the line 7 = constant to
obtain ula ,B Jand vio ,8 ). Owing to the complexity of equation {28}, it does
not seem possible {o obtain an analytical expression for u, v. Howewver, for the
solution of the present problem, it is of interest to calculate only those values

of u, v on the line v = o©.

Letting o = %— = B in {28} and noticing {22), the following integral
expression is devived, 9
u
e ‘ N
we = u® - [ o 2+ na( €
N 272,
0
3 i(\.v‘
= ~{2+uler - e | uldpt+2+ )AL, pi)dt, (29)
o
where
e w N YT
Algt, i) = v~ (? o €2 ut) v T (2w t) o+ e TAY2 {2 4 )+
tpt, pt) L\ 2/@% i {2 u N Zpten {2 i
2 k 1+k {1+k)/2 :
Tooetr e x ] aN T ozpe N
T/ K [kl 2ked \2 ) \Zuta) o+ il EHERET
k=0
130}
Finally, by symmetry, vlp,ul = - uwlp,p ) {31)

Detailed congideration of the numerical calculations is given in Appendix B,
The results are shown in Table 1.

4. Volume of the Michell structures

Before calculating the volume of the siructures, it is necessary to relate
the (@, B )} co-ordinates to distances along QPO .

Referring to the co-ordinate system in region FEF ', the direction cosines
of the tangent lines to the co-ordinate curves are given by, (Reference Z, equation

(22)),

1 Ox 1 dy
cos p = = . L LY

A % B 3 (32)
; . L 9y _ -1 8x
sin § = % St B op

where ¢ is defined by (1). This equation (32) gives



(o ,B}

x = j {Acosgdy- B sing dg)
{a.p ! {33}
r ; ¢ -

v o= j (A sin p Beosg dp )

{34)

{35)
E{“\ {‘\

x = Ao, o e = ; wth dt (36}
o b
(o] O

can be calculated in exactly the same way as that of equation {29). Referring to
Figure 7, the final relation is

{37)

Notice that the le u must be less than fi;%SQg otherwise the slip line fields
at point O wiﬂmmferlap, Thig shows that the length, £ , will attain an upper lmit
when u = 135°. A curve iz plotted in Figure 8, showing this relationghip, and
the corresponding rumerical results are shown in Table 1.

Another but less accurate way of obtaining the relation between? /d and u
is to measure the graphical layout of Figure 5, for several values of p. With
the help of interpolation, the relation at any position of EQ? can be found,

. . &
The volume of the structures can now be determined. Assuming O, P, O,
are the pointe of action of the forces, then, referving to Figure 1 once more,

a .
% = 93 B {38}

The resultant displacement of the point 07 is, from {219}&&{31}& along the
line of action of the force ¥, and its magnitude is equal to - ¥ 2u({p , p). Since



the poinite O and P are atl 3 tructure is

LA {39}

The numerical resulis are shown also in Table 1. A curve is plotied in Figure
¢ indicating the complete set of @izx'ii@ms‘

reguired may be obiained fr@m

> graphical method, {Reference 2,
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1.5 . d.269
2.5 3. 4.082
3 4. &88: 4,388
3.5 4.5702 4,88
4 4.8210 4.838
4.5 5.0462 5.182
5 5.2408 5.402
. Th
It
18 — < 148,1764 {40}
d
If this mesg very small in comparison with
200, and Ty h i to approximate ‘ihe lpadings at O and P by
a force ¥ per unit length co *z’im ously disiributed on the circumference of a circle
Q, with OP as diameter and center @ lying midway between O and P, {see Figure

11%, such that the resuliant is a vertical force B2 and a moment Fy . @27 + &)

Such a loading problem is known as Michell's Cantilever (Reference 1, ex. 1},
the slip line field of which congists of equiangular spirals., If polar co- (}rdmates
{p,8 ) are introduced at center @, the spirals have the form, (Reference 4, (3. 3.15}),

, k>ois a constant {41)




which shows that the co-ordinste curves

are lines of principal strain, nregente , Hu, v
are virtual displacemenis along p and 8 dirsctions, then
ou g 9V LB _ g4
[ 2 e e ¢
< ! | {42}
L 3u av v ]
-+ - - T = 2e
po@ op 2
fe is the sllowable strain}), which gives
g = Csing -~ Ty coss
v = Czein® + Ccos® + Cyp + 2eplnp

tion. Assuming the point @ to be
can be chosen to bring the point O°
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{44],

The volume of the structure is then given by the work by ¥ .  The result is
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=311 -

{eq. 37}

0 5,1416 1. 0000 2.5708
5 6.9360 1.3372 2,9677
10 9.1725 1.7317 3.3578
i5 11.9515 2.10384 3.7426
20 15,3953 2. 7342 4.1298
25 18,6527 3.3681 4,4991
30 24,9043 4.1113 4.8724
35 31,3698 4.9832 5.2430
40 39,3156 5. 0066 5.6112
45 49. 0646 7. 2082 5.9775
5 81.0088 5.6196 68,3431
55 75,6220 10.2780 6.7053
80 93.4789 12,2274 7. 0671
85 115, 2746 14.5193 7.4278
70 141.8499 17.2149 7.7876
75 174.2214 20,3862 8.1464
80 213.6173 24.1180 8.5046
85 261.5221 28.5105 8.8620
90 319,7278 33,6820 9.2188
95 390. 3979 39.7721 9,5751
100 476.1433 46, 9456 9.9309
105 580,1131 55.3969 10,2863
110 706, 1051 65. 3557 10,6412
115 858.6982 77.0934 10.9958
120 1043,4130 90.9303 11,3500
125 1266.8977 107, 2448 11.7040
130 1537.1629 126, 4841 12,0577
135 1863, 8560 149.1764 12,4111

Table 1.
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This expression can be derived, for example, by taking limit in Sonine's first
finite integral, see ¥ 12,11 of Reference 7,
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FIG. 7. CURVILINEAR CO-ORDINATE SYSTEMS
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MICHELL CANTILEVER

FIG. 13






