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Abstract

Numerical methods for the simulation of shock-induced turbulent mixing have been
investigated, focussing on Implicit Large Eddy Simulation. Shock-induced turbulent
mixing is of particular importance for many astrophysical phenomena, inertial confine-
ment fusion, and mixing in supersonic combustion. These disciplines are particularly
reliant on numerical simulation, as the extreme nature of the flow in question makes
gathering accurate experimental data difficult or impossible.

A detailed quantitative study of homogeneous decaying turbulence demonstrates that
existing state of the art methods represent the growth of turbulent structures and the de-
cay of turbulent kinetic energy to a reasonable degree of accuracy. However, a key ob-
servation is that the numerical methods are too dissipativeat high wavenumbers (short
wavelengths relative to the grid spacing). A theoretical analysis of the dissipation of
kinetic energy in low Mach number flows shows that the leadingorder dissipation rate
for Godunov-type schemes is proportional to the speed of sound and the velocity jump
across the cell interface squared. This shows that the dissipation of Godunov-type
schemes becomes large for low Mach flow features, hence impeding the development
of fluid instabilities, and causing overly dissipative turbulent kinetic energy spectra.

It is shown that this leading order term can be removed by locally modifying the re-
construction of the velocity components. As the modification is local, it allows the
accurate simulation of mixed compressible/incompressible flows without changing the
formulation of the governing equations. In principle, the modification is applicable to
any finite volume compressible method which includes a reconstruction stage. Exten-
sive numerical tests show great improvements in performance at low Mach compared
to the standard scheme, significantly improving turbulent kinetic energy spectra, and
giving the correct Mach squared scaling of pressure and density variations down to
Mach 10−4. The proposed modification does not significantly affect the shock captur-
ing ability of the numerical scheme.

The modified numerical method is validated through simulations of compressible,
deep, open cavity flow where excellent results are gained with minimal modelling
effort. Simulations of single and multimode Richtmyer-Meshkovinstability show that
the modification gives equivalent results to the standard scheme at twice the grid reso-
lution in each direction. This is equivalent to sixteen times decrease in computational
time for a given quality of results. Finally, simulations ofa shock-induced turbulent
mixing experiment show excellent qualitative agreement with available experimental
data.
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C H A P T E R 1

Introduction

1.1 Problem Statement

When considering fluid flow the first question typically asked is: What is the Reynolds
number of the flow? The Reynolds number is a means of determining approximately
whether a flow is laminar or turbulent. A laminar flow is characterised by smooth
motion with large scale, coherent structures. As the Reynolds number increases, the
flow transitions from a stable, laminar configuration to a highly chaotic turbulent state.
This occurs as inertial forces overcome the natural dampening due to viscous effects,
allowing the growth of perturbations in the flow which are naturally unstable. Fully
turbulent flow is characterised by extremely complex flow fields with motion at a huge
range of scales, often behaving in a chaotic manner.

This process is illustrated in Figure 1.1, where a round jet is initially smooth and lam-
inar, becomes unstable and transitions to a fully turbulentflow. The fine scales and
sharp gradients present in the turbulent jet are typical of turbulent flows.

Figure 1.1: Transition from laminar to turbulent flow in a round jet at Reynolds number
approximately 30,000 shown via shadowgraph [186]

Classical examples of instabilities which trigger turbulence include Kelvin-Helmholtz
(KH) and Rayleigh-Taylor (RT) instabilities, examples of which are shown in Figure
1.2. The KH instability occurs in shear layers, causing rollup of the shear layer into
discrete vortices. Indeed, the primary instability in Figure 1.1 is a three dimensional
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form of this. The RT instability is due to unstable stratification (i.e. a heavy gas on top
of a light gas), and causes bubbles of light fluid to rise into the heavy fluid, and spikes
of heavy fluid fall through the light fluid.

Figure 1.2: Kelvin-Helmholtz instability causing wave-like formations in clouds over Mount
Shasta, California (left)[162], and Rayleigh-Taylor billowing in the plume ofMount Etna

(right)[125]

As these instabilities grow exponentially, they can trigger the transition from laminar
to turbulent flow if not suppressed by viscous forces. Once a perturbation has been
amplified through growth of a certain instability, it seeds motion at many different
length scales due to nonlinear interaction in the governingequations. The motion is
passed from large to small scales until, finally, the motion is at a sufficiently small
scale to be damped by viscosity. Through this process the motion of the large scales is
typically governed by the instability mechanism (or mechanisms), whereas the small
scales are usually assumed to be independent of the seeding instability.

Figure 1.3: Transition from linear and nonlinear growth to a turbulent mixing layer for RM
instability of a gas curtain [156]

This thesis is concerned with developing numerical methodsfor the simulation of the
Richtmyer-Meshkov (RM) instability. This is related to the RTinstability, in that it
involves the motion of a heavy and light fluid, driven in this case by an impulsive
instead of continuous acceleration. The impulsive acceleration typically arises due to
a shock wave, which passes from one fluid into another. On the interface between the
two fluids, there is usually a small perturbation, which could be surface roughness,
a slightly non-planar shock, a machined perturbation, or anuneven fluid interface.
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The interaction between this perturbation and the incidentshock wave seeds the fluid
instability. The development of RM instability of a gas curtain from seed perturbation
to turbulent mixing layer is shown in the two-dimensional case in Figure 1.3. The
instability initially grows in a laminar, ordered manner. At late time, further to the right
of the image, the ordered structures become turbulent, enhancing greatly the mixing of
the heavy and light gases.

(a) Cassiopeia A (b) Crab Nebula

Figure 1.4: Remnants of the Cassiopeia A supernova (left) [141] , and the Crab Nebula
(right) [57]

(a) Crushing of the pulsar nebula (one quarter) (b) Inhomogeneous
supernova

Figure 1.5: Numerical simulation of the development of a spherical, homogeneous pulsar
nebula (first three images from the left), and the same case but with inhomogeneous initial

conditions (right). Images are coloured by density on a logarithmic scale [23]

This form of impulsive mixing is important in the understanding of many astrophysi-
cal phenomena, from supernovae to the dynamics of interstellar media. In the past few
decades it has been realised that the assumption of spherical symmetry in the simula-
tions of supernovae are inadequate due to the growth of RM instabilities. Figure 1.4 a)
shows a false colour image of the Cassiopeia A supernova remnants, where the uneven
shape of the remnants is due in part to the combined influence of RM and RT instabil-
ities acting on perturbations within the star before the supernova. Figure 1.4b) shows
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the Crab Nebula, whose development is linked to the expansionof shock-accelerated
material after RM and RT induced mixing. Visualisations of density from two dimen-
sional simulations of pulsar nebula and supernova remnantsby Blondinet al. [23] are
shown in Figure 1.5. The development of RM and RT instabilities can be seen clearly
in the spherical, homogeneous case, however they have a greater influence in the inho-
mogeneous case where mixed material can extend well beyond the area expected from
the homogeneous simulations.

Earth-bound phenomena include inertial confinement fusion, where a spherical capsule
containing thermonuclear material is compressed using a powerful laser until tempera-
tures sufficiently high for fusion reactions to occur is achieved [7]. This one of several
proposed methods for generation of power from fusion, and isan extension of the
methods employed within nuclear bombs.

Early stages Near max. compression After max. compression

Figure 1.6: Simulation results demonstrating the influence of RM and RT instabilities during
the implosion of a spherical capsule [200]

This process is illustrated using via results from three-dimensional numerical simula-
tions in Figure 1.6 [200]. Very high pressures generated at the outside of the capsule
cause it to be compressed. Once a critical level of compression has been reached, igni-
tion is achieved and a burst of energy is released. In this case RM instability occurs at
the interface between the light and heavy materials, triggering turbulent mixing. The
qualitative similarities between these simulations and those of supernovae in Figure
1.5 are striking. In inertial confinement fusion, turbulentmixing has the dual effect
of diluting and cooling the fuel, which reduces the efficiency of the reaction, hence
it important that this phenomena is well understood. One further application of RM
mixing is in the field of supersonic combustion, where weak shocks can be employed
to improve the mix ratios and hence give more efficient combustion.

A key observation regarding all of these applications is that experimental data (es-
pecially quantitative data) is very difficult to measure, most notably in the cases of
astrophysical flows and inertial confinement fusion. Thus understanding of the under-
lying flow physics relies to an unusual level on insights gained through modelling and
numerical simulation.

A numerical method developed for simulating the RM and associated instabilities must
be capable of capturing several simultaneous phenomena. Firstly, the instability grows
from an initially small perturbation meaning that this growth must be simulated accu-
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rately without unwanted dissipation. Secondly, the instability rapidly becomes turbu-
lent due to the combined influence of RM and KH growth, meaning that the numerical
scheme must be able to simulate a chaotic turbulent flow field,and dissipate turbulent
kinetic energy appropriately. As the RM instability is triggered by a shock wave, the
numerical method must be able to simulate compressibility effects, and capture shock
waves with reasonable accuracy. It is essential that both shock waves and low Mach
near-incompressible flow features can be captured accurately, at the same time, with
the same numerical method. Finally, the mixing usually occurs between two different
fluids, hence requiring the physically realistic simulation of two or more fluid species
that have different thermodynamic properties.

The scope of this thesis is to implement, analyse, improve and validate numerical meth-
ods which satisfy all of the above criteria for compressible, turbulent, mixing flows
seeded by the RM instability.

1.2 Structure of the Thesis

The thesis commences with an introduction to turbulent flows. It discusses the key el-
ements from growth of an initially small instability, through to the behaviour of a fully
developed turbulent flow field. It describes the key quantities of interest which will
used later in the thesis to measure the performance of the numerical simulation. Chap-
ter 3 details the numerical methods employed, including thevalidation and selection
of the optimum gas mixture model to use for flows with more thanone component. It
also introduces the numerical approach for unsteady turbulent flows, and initialisation
methods for turbulent flow fields.

Chapter 4 discusses in depth the performance of the standard Finite Volume methods
when applied to the canonical problem of homogeneous decaying turbulence. Several
quantitative metrics are employed to highlight the strengths and weaknesses of each
numerical method. Chapter 5 analyses theoretically the source of dissipation of kinetic
energy in Godunov methods, demonstrating that the dissipation of kinetic energy is
proportional to the speed of sound. Chapter 6 proposes a simple modification to the
standard Godunov type method which improves the resolutionof turbulent flow fields,
especially at low Mach which maintaining shock capturing capability. The modifica-
tion is local in space, and does not require a change in the formulation of the governing
equations.

Validation of the modified numerical scheme against experimental and theoretical re-
sults is conducted in Chapter 7. The numerical methods are applied to a compressible
cavity flow, single and multiple mode Richtmyer-Meshkov instability, and simulations
of a multicomponent, compressible turbulent shock tube experiment. In addition to
validating the numerical methods, the flow physics are also discussed.

Chapter 8 concludes the thesis with a summary of key results and recommendations
for future research.
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1.3 Journal and Conference Publications

Whilst writing the thesis several papers have been written and submitted. At the date
of writing, the following papers have been accepted for journal publication:

Thornber, B.,Mosedale, A., Drikakis, D.,‘On the Implicit Large Eddy Simulation of
Homogeneous Decaying Turbulence’, J. Comput. Phys, 2007

Thornber, B., Drikakis, D. and Youngs, D.,‘Large-eddy simulation of multi-component
compressible turbulent flows using high resolution methods’, Comput. Fluids, 2007

Thornber, B., Drikakis, D.,‘Large Eddy Simulation of Shock-Wave-Induced Turbulent
Mixing’, J. Fluids Eng., 2007

Thornber, B., Drikakis, D.,‘Numerical Dissipation of Godunov Schemes in Low Mach
Flow’, Int. J. Numer. Meth. Fl., 2007

The following papers have been submitted, and are currentlyunder review:

Thornber, B., Drikakis, D., Williams, R.‘On Entropy Generation and Dissipation of
Kinetic Energy in Godunov-type Schemes’, submitted to J.Comput. Phys., 2007

Thornber, B., Mosedale, A., Drikakis, D., Youngs, D.‘An Improved Reconstruction
Method for Compressible Flows with Low Mach Features’, submitted to J. Comput.
Phys, 2007

In addition to journal papers, a number of conference papershave been written and
presented:

Thornber, B., Mosedale, A., Drikakis, D.,‘Large-eddy simulation of Compressible
Turbulent Mixing across Gas Interfaces’, 5th International Symposium on Turbulence
and Shear Flow Phenomena, Germany, 2007

Thornber, B., Drikakis, D.,‘Numerical dissipation of Godunov Schemes in low Mach
flows’, Numerical Methods for Fluid Dynamics, UK, 2007

Thornber, B., Drikakis, D. and Youngs, D.,‘Large-eddy simulation of multi-component
compressible turbulent flows using high resolution methods’, Conference on Turbu-
lence and Interactions, France, 2006

Thornber, B., Drikakis, D. and Youngs, D.,‘High Resolution Methods for Planar 3D
Richtmyer Meshkov Instabilities, 10th International Workshop on the Physics of Com-
pressible Turbulent Mixing, Paris, 2006

Thornber, B., Drikakis, D.,‘Large-eddy Simulation of Isotropic Homogeneous Decay-
ing Turbulence’, ECCOMAS, Netherlands, 2006

Thornber, B., Drikakis, D.,‘ILES of shock waves and turbulent mixing using high-
resolution Riemann solvers and TVD methods’, ECCOMAS, Netherlands, 2006

Thornber, B., Drikakis, D.,‘Approximate Riemann solvers for multi-component flows’,
Workshop on Numerical Methods of Multi-material flow problems, Oxford, 2005
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Fundamentals of Turbulent Flow

2.1 Linear Analysis of the Fundamental Instabilities

The understanding of fluid instabilities is critical in the understanding of transitional
turbulent flows. This is where the flow field has an initially small perturbation, which
grows to form a large feature. This large feature can then combine non-linearly with
the flow field around it to generate a fully turbulent flow. In this subsection, fun-
damental theory regarding the early and late time growth forsingle and multimode
perturbations in the Kelvin-Helmholtz and Richtmyer-Meshkov instabilities will be
summarised. This gives an insight into the dominant flow mechanisms at early times,
which can potentially persist for a considerable period of time after the transition to
turbulent flow.

2.1.1 Kelvin Helmholtz and Rayleigh Taylor

The classical analysis of the Kelvin-Helmholtz (KH) instability considers an incom-
pressible, inviscid shear layer [105]. As the linear analysis is the same, Rayleigh Taylor
instabilities is also considered by including gravitational forces [50]. Figure 2.1 shows
the schematic for the instability. Essentially, two parallel flows are given an infinitesi-
mal perturbation which can be decomposed into separate modes. The stability of each
mode is analysed to find out if it grows in amplitude, shrinks,or remains stable. The
instabilities are centred around the points at the vortex sheet where the fluid is in com-
pression, as indicated in Figure 2.1.

Consider initial conditions as shown in Figure 2.1, where gravity g is chosen to act in
thezdirection. By treating the fluid as irrotational, the analysis employs the concept of
a velocity potential where∇Φ = u such that∇2Φ1 = ∇2Φ2 = 0. The initial pressure is
given asp = p0 − ρ1gzfor z≤ 0 andp = p0 − ρ2gzfor z≥ 0. A normal mode analysis
consists of decomposing the perturbation into a series of linearly independent modes
of the form

S = S∗ expI (kxx+kyy)+st, (2.1.1)
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U2 (> 0), ρ2

U1 (< 0), ρ1

z

x

Figure 2.1: Schematic of the Kelvin-Helmholtz instability (after Drazin and Reid [50])

whereS is the shape of the initial interface,S∗ is the magnitude of the initial interface
perturbation,kx andky are wavenumbers of the perturbation in thex andy direction,

and total wavenumber isk =
√

k2
x + k2

y. If the mode is unstable (i.e. grows in time) then

s will have a positive real component, if stables will have a negative real component.
The solution to this instability (see Drazin and Reid for fullanalysis [50]) is given by
two modes:

s= −Ikx
ρ1U1 + ρ2U2

ρ1 + ρ2
±

(
k2

xρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
− kg(ρ1 − ρ2)

ρ1 + ρ2

)1/2

(2.1.2)

Thus the interface is stable ifkg(ρ2
1 − ρ2

2) ≥ k2
xρ1ρ2(U1 − U2)2, and one mode is stable

and the other unstable ifkg(ρ2
1 − ρ2

2) < k2
xρ1ρ2(U1 − U2)2 Consider simple shear where

g = 0

s= −Ikx
ρ1U1 + ρ2U2

ρ1 + ρ2
±

kx
√
ρ1ρ2(U1 − U2)

(ρ1 + ρ2)
, (2.1.3)

demonstrating that in KH the flow is unstable at all wavelengths, where the modes
grow proportional to the wavenumber, i.e. small wavelengths grow much faster. A
further simplification is gained by settingρ1 = ρ2,U1 , U2,

s= −1
2

Ikx(U1 + U2) ±
1
2

kx(U1 − U2). (2.1.4)

If waves of random orientation are within a mixing layer, thewaves orientated to the
direction of flow (wavenumberkx) will grow most rapidly. The Rayleigh-Taylor (RT)
instability is defined asU1 = U2 = 0, giving,

s= ±
(
kg(ρ2 − ρ1)
ρ1 + ρ2

)1/2

, (2.1.5)

showing that the interface is unstable only if the acceleration g points from the lighter
to the denser fluid. In reality, both the RT and KH instabilities occur over a range
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of wavenumbers at the same time, each wavenumber growing at adifferent rate ac-
cording to it’s respective stability criterion. In addition, these modes travel at a phase
velocity and hence will interact to produce additional modes which also grow, the flow
becoming rapidly more and more complex.

As each mode reaches an amplitude comparable to it’s wavelength, the perturbation no
longer grows at an exponential rate, and saturates. It was proposed by Youngs [194]
that the growth follows three stages. First there is exponential growth of the small
wavelengths. As the amplitude reaches the wavelength of themode, the short waves
saturate, and the growth slows. These then get overtaken by the longer waves which
are still growing exponentially (bubble competition). Finally, a self-similar mixing
region is formed, where the late time growth can be describedby scaling arguments
which will be discussed further in Section 2.3.

2.1.2 Richtmyer Meshkov

Richtmyer-Meshkov instabilities [155, 134] can be understood as the impulsive limit
of the Rayleigh-Taylor instability, where the interface acceleration occurs impulsively
as a result of a shock wave or a very rapid acceleration. This is often referred to
as baroclinic deposition of vorticity on the interface. Theanalysis considers the flow
schematic in Figure 2.2 where the flow is at rest, with an initial sinusoidal perturbations
between two fluids of densityρ1 andρ2.

∆u

ρ2

ρ1

z

x

Figure 2.2: Schematic of the Richtmyer Meshkov instability

Beginning with the expression for the growth rate of the RT instability in Equation
(2.1.5), it can be noted that the growth or decay of the interface amplitudeA can be
described by

d2A(t)
dt2

= kg(t)A(t)
ρ2 − ρ1

ρ1 + ρ2
(2.1.6)

If it is assumed that the accelerationg(t) is very large and occurs over a very short
period of time then the increment of velocity,∆u, imparted by this acceleration can
be defined as∆u =

∫
g(t)dt. As the impulse occurs rapidly, Equation (2.1.6) can be

integrated holding all parameters constant except for the acceleration, giving
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Figure 2.3: Experimentally measured early time growth rate compared to linear theory [30]

dA
dt
= k∆uA0

ρ2 − ρ1

ρ1 + ρ2
, (2.1.7)

thus giving the linear growth rate for an instability of wavenumberk. It is unstable
for all impulses regardless of direction of the acceleration. This demonstrates that the
amplitude of the mixing layer grows linearly in time (as opposed to RT and KH which
are both exponential), proportional to the wavenumberk and the Atwood numberAt,
defined as

At =
ρ2 − ρ1

ρ1 + ρ2
. (2.1.8)

This relationship has been tested by Chapman and Jacobs [30] by measuring the growth
of single mode three-dimensional bubbles atAt = 0.15, and results in Figure 2.3
demonstrate good applicability of linear growth up tokA ≈ 1. Similar results have
been gained for shock-induced two dimensional perturbations by Collins and Jacobs
[40], and for strong radiative driven shocks (shock MachMS > 10) by Holmeset al.
[84]. When modelling the passage of a shock wave the densitieschange as compres-
sion occurs. Equation (2.1.7) is typically most accurate when the post-shock amplitude
and densities are employed, where the post-shock amplitudecan be computed by tak-
ing the initial amplitude and multiplying by the mean compression rate,

(ρ1 + ρ2)−

(ρ1 + ρ2)+
. (2.1.9)

Again, the growth of the initial instability is only valid until the amplitude of the wave
reaches the same magnitude as the wavelength, after which a more complex non-linear
or dimensional scaling analysis is required. At late time the interface is composed
of ‘bubbles’, where the lighter fluid penetrates into the heavier fluid, and ‘spikes’,
where the heavier fluid penetrates into the lighter fluid. Thesinusoidal shape usually
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Heavy fluid

Light fluid

Bubble

Spike Spike

Figure 2.4: Non-linear RM development and terminology

becomes mushroom shaped due to Kelvin-Helmholtz instabilities along the interface.
This configuration is illustrated in Figure 2.4.

2.2 Homogeneous Turbulence

Turbulence is an incredibly complex phenomena characterised by extremely chaotic
motion, complex interactions between vastly different sized vortices, and intermittent
viscous dissipation of kinetic energy at the small scales. This section describes qualita-
tively and quantitatively this phenomenology, summarising key theoretical and experi-
mental results as regards turbulent length scales, dynamicbehaviour, and extensions to
anisotropic flows. The full derivations from first principles of material in this section
can be found in any one of several well known texts and is summarised for the sake of
brevity. An interested reader can consult any of [44, 82, 148, 178, 119, 14] for further
details.

2.2.1 Turbulent Length Scales

Figure 2.5 shows a typical distribution of turbulent kinetic energy over the different
scales in wave number space. Considering the case of high turbulent Reynolds num-
bers the energy spectrum can be split up into three main regimes. At the large scales
(low wavenumbers) the eddies are typically problem dependent, usually formed by an
external generating mechanism (a fundamental instability, or wing, for example), and
are characterised by the integral length scaleℓ. At the very high end of the wavenum-
ber scale there is the dissipative range. At this scale the turbulent kinetic energy passed
from the large scales is dissipated by the action of viscosity. This occurs at the Kol-
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Energy containing
scales

sub-Inertial range
E(k) ∝ k−5/3

Dissipative scales
E(k) ∝ exp− f (k,µ)

K
in

et
ic

E
ne

rg
y

Wavenumber (k)
1/ℓ 1/λtay 1/ηK

Figure 2.5: A schematic of a typical turbulent kinetic energy spectrum for homogeneous
turbulence plotted with logarithmic scales

mogorov length scale, denoted byηK [110, 111]. Given a large enough Reynolds
number, there exists a range between the Integral and Kolmogorov length scale where
the flow is independent of both viscous forces and the mechanism which is injecting
energy at the large scales. This is called the sub-inertial range, in which the Taylor mi-
croscale [177],λtay, typically lies. The cascade of energy from the large scalesthrough
to the small scales was famously described in a short poem by L.F. Richardson,

Big whirls have little whirls,
which feed on their velocity.

Little whirls have lesser whirls,
and so on to viscosity.

The relative sizes of the various length scales are determined by consideration of the
nature of the flow field. The integral length scale is chosen asthe scale which reflects
the averaged distance over which the turbulent motion is correlated, which is typi-
cally the size of the largest energy containing vortices. Define the velocity correlation
function and the longitudinal correlation function as

Qi j = ui(x)uj(x + r ), f =
u1(x1)u1(x1 + r)

u2
rms

(2.2.1)

whereui is the turbulent velocity in thei direction,(.) indicates an ensemble average,
andurms is the root mean square turbulent velocity. The integral length scale is defined
as

ℓ =

∫ ∞

0
f (r)dr, (2.2.2)
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alternatively with the assumption of isotropy the following relations can be employed
in spectral space

ℓ =
π

2u2
rms

∫ kmax

0
k−1E(k)dk=

π

2u2
rms

E1D|k=0 =
π

u2
rms

E11|k=0 =
2π

u2
rms

E22|k=0 . (2.2.3)

whereE, E1D, E11, E22 are the three dimensional, one dimensional, longitudinal and
transverse turbulent energy spectra respectively, which will be defined later in this sec-
tion. The Taylor microscaleλtay is the length scale typically used to define the Reynolds
number of a turbulent flow. It is defined from the expansion of the longitudinal corre-
lation function f about ther = 0 axis

f (r) = 1− r2

2λ2
tay

+ ..., (2.2.4)

however it is more commonly calculated from one of the following relations [44]

λ2
tay,i =

u2
i

(∂ui/∂xi)
2
=

15νvisu2
i

ǫ
=

15u2
i

ω2
, (2.2.5)

whereω is the vorticity. The Kolmogorov microscale is defined as thelength scale
at which viscous forces become dominant, thus where the Reynolds number of the
vortices is one, and where the form of the flow is dependent only on the transfer of
energy from the large scales and viscosityνvis. If the smallest eddies are assumed to
haveRe = uηK/νvis ≈ 1, and the velocityu is related to the dissipation rateǫ via
u ∝ (νvisǫ)1/4, then

ηK = (ν3
vis/ǫ)

1/4. (2.2.6)

With the additional assumption of isotropy, this can be computed in several different
ways depending on the definition of the dissipation rateǫ which could be any of

ǫ = 15νvis(∂ui/∂xi)
2
= νvisω2 = 2νvis

∫ ∞

0
k2E(k)dk. (2.2.7)

The length scales are connected to each other through the Reynolds number, which
provide approximate relations of the form

λtay

ℓ
≈
√

15Re−1/2,
ηK

ℓ
≈ Re−3/4. (2.2.8)

It is important to note that many of these relations rely on a relatively simple dimen-
sional observation that



14 Fundamentals of Turbulent Flow

Figure 2.6: Scaling of the dissipation rate measured behind a square mesh grid [174]

ǫ ≈ Cu3
rms

ℓ
, (2.2.9)

whereC is a constant of order 1. This is similar to stating that the typical large scale
eddies break down in a single eddy turnover timeurms/ℓ. As the turbulence is assumed
to be stationary, then the rate at which energy enters the turbulent spectrum equals the
dissipation rate. Figure 2.6 shows a compilation of experimental results by Sreenivasan
[174] demonstrating that this relationship holds well forReλtay > 100.

2.2.2 Kolmogorov Scaling

Given thatReλtay > 100 there exists sufficient separation between the large and small
scales that the vortices are independent of the mechanism generating energy, and the
viscous forces dissipating it. The separation from the large scales is required such that
it can be assumed that the eddies are homogeneous and isotropic. The physics of this
range were first investigated in physical space by Kolmogorov [110, 111] employing
the velocity structure function, defined as

∆vp = [u(x+ ∆x) − u(x)]p, (2.2.10)

wherep is a positive integer. Assuming that there is a homogeneous,isotropic turbulent
field then the velocity structure function can only be a function of separation distancer
and dissipation rate (=energy transfer rate)ǫ. The only possible relation dimensionally
is [110]

∆vp = βpǫ
p/3r p/3, (2.2.11)

whereβp is the Kolmogorov constant. Settingp = 2 gives the two-thirds law, and pos-
sibly more importantly settingp = 3 gives the four-fifths law which is believed to be
exact even assuming turbulent intermittency, whereβ3 = −4/5 [111]. Experimentally,
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it has been shown to be valid for Taylor Reynolds numbers greater than 1000 and when
the length scaler lies within the inertial range [139].

As much analysis of the turbulent flow field is conducted in Fourier space, it is useful
to derive the turbulent kinetic energy spectrum. Firstly, the second order correlation
Qi j is used to give the spectrum tensorφi j (k)

φi j (k) =
1

(2π)3

∫ ∞

−∞
Qi j (r ) exp−Ikr dr , (2.2.12)

Qi j (r ) =
∫ ∞

−∞
φi j (k) expIkr dk. (2.2.13)

Now if r = 0, Equation (2.2.13) simplifies to

1
2

uiui =
1
2

∫ ∞

−∞
φii (k)dk. (2.2.14)

This is essentially a volume integral. In isotropic homogeneous flows, spherical sym-
metry can be assumed. The integral over the vectork can be replaced by an integral in

spherical co-ordinates using the magnitude of the wave vector k =
√

k2
x + k2

y + k2
z

1
2

∫ ∞

−∞
φii (k)dk =

1
2

∫ ∞

−∞
4πk2φii (k)dk. (2.2.15)

The definition of the three dimensional energy spectrum is

∫ ∞

0
E(k)dk=

1
2

uiui , (2.2.16)

giving,

E(k) = 2πk2φii (k). (2.2.17)

Via dimensional analysis similar to that used to gain Equation (2.2.11) the form of the
energy spectrum in the sub-inertial range under the given assumptions must be

E(k) = Ckǫ
2/3k−5/3, (2.2.18)

whereCk is the Kolmogorov constant in wavenumber space. A further implication of
Kolmogorov scaling is that the scaled turbulent kinetic energy spectrum,

E11(k)

(ǫν5
vis)

1/4
, (2.2.19)
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Figure 2.7: Experimental measurements ofE11 (symbols). Experimental data is from [158],
figure reproduced from [148].

should be universal when plotted againstkηK. E11 is the one-dimensional turbulent
kinetic energy spectrum which is typically measured in experiments, defined as the
square of the Fourier transform of the velocity component inthe 1 direction [44, 178],

E11(k1) =
1
2π

∣∣∣∣∣
∫ ∞

−∞
u1(x1) exp−Ik1x1 dx1

∣∣∣∣∣
2

. (2.2.20)

Figure 2.7 summarises experimental data from [158] showingE1D for various flow
types and at variousReλtay. It lends great encouragement that under-resolved simula-
tions of turbulent flows with models for the unresolved components could be applied to
many different flow regimes. The one dimensional turbulent kinetic energy spectrum
allows experimental measurement of the one dimensional Kolmogorov constantCk,11

which is related to Kolmogorov constant via
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Figure 2.8: The one dimensional Kolmogorov constantCk,11 (labelledCk by [175]) plotted
againstReλtay for a variety of flows

Ck,11 =
18
55

Ck. (2.2.21)

This has been measured in several experiments using grid generated turbulence, and
the results were collated by Sreenivasan [175], reproducedin Figure 2.8. At present
there is little evidence for a Reynolds number dependence ofCk, and the data gives a
mean value ofCk,11 = 0.53± 0.055, orCk ≈ 1.6, if data forReλtay < 50 is discarded
[175, 100, 158, 140, 29].

2.2.3 The Decay of Homogeneous Turbulence

The crucial component of a simulation of turbulence is that it can predict certain fun-
damental properties of the real turbulent flow. There are twoprincipal properties which
will be discussed extensively throughout this work; the rate of decay of turbulent ki-
netic energy, and related to this the rate of growth of the dominant length scales.
It is through consideration of the dissipation rate of kinetic energy that many semi-
empirical formulas define growth rates of turbulent mixing layers.

To examine the decay of homogeneous turbulence it is necessary to describe the Karman-
Howarth equation, which governs the evolution of turbulentkinetic energy. It forms
the basis of the theoretical analysis of isotropic, homogeneous turbulence. Next, there
is a brief introduction to the Loitsyanskii and Birkhoff invariants, which are further as-
sumptions used to close the resultant set of equations. These determine the behaviour
of decaying homogeneous, isotropic turbulence governed bythe Karman-Howarth
equation. The work by Oberlack [144] is briefly summarised which uses group theory
to determine the growth rate of the integral length scales, and the decay rate of turbu-
lence kinetic energy under the two principle invariants. These results are discussed in
relation to recent experimental and numerical simulations.

Together this forms a theoretical and experimental guide tothe expected behaviour of
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turbulence generated through numerical simulations.

The Karman-Howarth Equation

This brief derivation follows the methodology in [82] and [124]. The evolution in time
of (ui)A (uj)B, whereA andB are two points separated in space, can be written as

∂

∂t
(ui)A (uj)B = (ui)A

∂

∂t
(uj)B + (uj)B

∂

∂t
(ui)A. (2.2.22)

The equation forui at the pointA reads:

∂

∂t
(ui) +

(
Uk + uk

) ∂ui

∂xk
= −1

ρ

∂p
∂xi
+ νvis

∂2

∂xk∂xk
(ui) . (2.2.23)

where Uk is the mean flow velocity. Multiplying this equation by (uj)B, and the
corresponding equation for (uj)B by (ui)A yields an evolution equation for the sec-
ond order velocity correlation. In addition, a co-ordinatesystem is chosen where
ξk = (xk)B− (xk)A as the exact location of A and B does not matter. Taking the assump-
tion that the flow is isotropic and incompressible then the pressure-velocity correlations
are zero, this gives

∂

∂t

(
Qi, j

)
A,B
− ∂

∂ξk

[(
S∗ik, j

)
A,B
+

(
S∗i,k j

)
A,B

]
= 2νvis

∂2

∂ξk∂ξk

(
Qi, j

)
A,B
. (2.2.24)

The second term on the left hand side is a second order tensor,which is labelledSi, j.
Dropping the A,B notation

∂

∂t
Qi, j − Si, j = 2νvis

∂2

∂ξk∂ξk
Qi, j . (2.2.25)

In the case of incompressible flow, an isotropic tensor of thethird order can be ex-
pressed in terms of one scalar. As the diagonal terms are of prime interest, i.e.Si,i,
then, after applying a contraction and noting thatδii = 3, andξiξi = r2, Equation
(2.2.25) becomes

∂

∂t
Qi,i (r, t) − Si,i (r, t) = 2νvis

1
r2

∂

∂r
r2 ∂

∂r
Qi,i (r, t) . (2.2.26)

For isentropic, incompressible flows the velocity correlation functions can be simpli-
fied significantly, and the above equation can be written in terms of the second and
third order correlation functionsf andκ3

∂

∂t

(
u2

rmsf
)
− u3

rms

1
r4

∂

∂r

(
r4κ3

)
= 2νvisu

2
rms

1
r4

∂

∂r

(
r4∂ f
∂r

)
, (2.2.27)
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κ3 (r, t) =

(
u2

1

)
A

(u1)B

u3
rms

. (2.2.28)

This is the Karman-Howarth equation for homogeneous isotropic turbulence [101]. In
Fourier space:

∂

∂t

∫ k

0
E(k, t)dk=

∫ k

0
F(k, t)dk− 2υ

∫ k

0
k2E(k, t)dk+ Hk(k, t), (2.2.29)

F(k, t) = 2πk2Fi,i(k, t) =
1
π

∫ ∞

0
kr sin(kr)Si,i(r, t)dr, (2.2.30)

E(k, t) =
1
π

∫ ∞

0
kr sin(kr)Qi,i(r, t)dr, (2.2.31)

whereS is the third order correlation tensor at locationsA andB, H(k, t) is the energy
supplied to the turbulent flow as a function of wavenumber.F(k, t) is often called the
‘energy transfer spectrum function’, as this gives the contribution from inertial transfer
of energy from different wave numbers to the total energy.

Loitsyanskii and Birkhoff Invariants

These two invariants form the heart of two different descriptions of decay of a ho-
mogeneous isotropic turbulent field, giving additional conditions which constrain the
solution to a certain form. They arise through consideration of the behaviour of the
system asr tends to infinity, or as the wave numberk tends to zero. By taking the sec-
ond moment of the Karman-Howarth equation it can be shown by invoking continuity
for an incompressible fluid that the rate of decay ofQi,i must be at least faster thenr−n

with n > 1. Taking the fourth moment gives:

∂

∂t

(
u2

rms

∫ ∞

0
r4 f

)
dr −

(
u3

rmsr
4k

)∣∣∣∣
∞

0
= 2νvisu

2
rms

(
r4∂ f (r, t)

∂r

)∣∣∣∣∣∣
∞

0

. (2.2.32)

It can be shown that under the assumption of isotropy and homogeneity, the second
term on the left hand side, and the term on the right hand side equal zero. Integrating
with respect to time gives the Loitsyanskii invariant:

u2
rms

∫ ∞

0
r4 f dr = I1. (2.2.33)

However, Proudman and Reid [152] showed by assuming a certaindistribution of the
turbulent field that the assumption regarding the decrease of the third order velocity
correlations as r tends to infinity does not hold, implying that the Loitsyanskii invari-
ant varies during the decay process. This was shown to be truein a later paper by
Batchelor and Proudman [15]. In the final stage of decay the third order correlations
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can be neglected as compared to the effects of the viscous forces, thus the Loitsyanskii
invariant becomes constant.

Birkhoff [21] demonstrated that the energy spectrum need not be proportional tok4 as
k tends to zero, but that the leading order term can be of orderk2. He also pointed
out that there is no reason for an initial energy spectrum to tend towards ak4 structure
unless it is initially designed to do so. He also noted that this implies the divergence of
the Loitsyanskii invariant, but proposed that

∫ ∞

0
r2Qi,i(r, t)dr = u2

rms lim
r→∞

r3 f (r, t) = I2, (2.2.34)

is an invariant, thus called the Birkhoff invariant. It is also called the Saffman invariant,
after Saffman who considered the production of homogeneous turbulence via a set of
random impulsive forces with convergent integral moments of cumulants. Through
this consideration he arrived at the same conclusion as Birkhoff, demonstrating that
the energy spectrum is of the orderk2 if the force is solenoidal and not bounded with
increase in volume.

Decay Rates

In this section the decay rates present in large Reynolds number turbulence is exam-
ined, i.e. where the viscous terms in Equation (2.2.27) can be neglected, and then
the decay rates during the final period of decay when viscous effects are dominant.
The traditional approach to determining decay rates is outlined in [82], where it is as-
sumed that turbulence decays self-similarly. Utilising the Taylor microscale as defined
in Equation (2.2.4), the behaviour of the Karman-Howarth equations asr tends to zero
can now be examined. AtO(r2) the equation reduces to:

∂

∂t

u2
rms

1−
1
2

r2

λ2
tay


 = 2νvisu

2
rms

1
r4

∂

∂r

r4 ∂

∂r

1−
1
2

r2

λ2
tay


 + O(r2) + ... (2.2.35)

Differentiating, and removing the second term in the time derivative as it is second
order inr,

3
2
∂

∂t

(
u2

rms

)
=

15νvisu2
rms

λ2
tay

+ O(r2) + ... (2.2.36)

However, this equation cannot be solved analytically without further assumptions, as
bothu2

rms andλtay depend ont. It is clear from this equation that the turbulent kinetic
energy dissipation rateǫ is:

ǫ = −3
2
∂

∂t

(
u2

rms

)
=

15νvisu2
rms

λ2
tay

. (2.2.37)
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Now, assume thatf (r, t) andκ3(r, t) are functions ofψ = r/L only, whereL is some
length scale which is a function of time only. Substituting this into the Karman-
Howarth equation,and replacing∂

∂t

(
u2

rms

)
using Equation (2.2.36), gives an ordinary

differential equation forf (ψ),

10f +
λ2

tay

νvis

1
L

dL
dt
ψ

d f
dψ
+

urms

νvis

λ2
tay

L
1
ψ4

d
dψ

(
ψ4κ3

)
+ 2

λ2
tay

L2

1
ψ4

d
dψ

(
ψ4 d f

dψ

)
. (2.2.38)

This can only be solved if the coefficients are proportional to each other - or if we
can neglect one of the terms. For example asRe→ ∞ we can neglect the constraint
λtay

L = const.. It is reasonable to assume that the decay is self-similar tothe energy
containing eddies, thus the integral length scaleℓ(t) is chosen forL, defined as:

ℓ(t) =
∫ ∞

0
f (r, t)dr. (2.2.39)

This, together with the assumption ofRe→ ∞ leads to the following conditions:

urms

νvis

λ2
tay

ℓ
= const.,

λ2
tay

νvis

1
ℓ

dℓ
dt
= const. (2.2.40)

In the case of invariance of Loitsyanskii’s integral the following relation can be added:

u2
rmsℓ

5 = const. (2.2.41)

Combining this constraints gives the following decay rates:

u2
rms ∝ (At+ B)−10/7, ℓ ∝ (At+ B)2/7, λ2

tay ∝
25νvis

3

(
t +

B
A

)
. (2.2.42)

This solution was already recognised by Kolmogorov [110]. Next, for Birkhoff’s in-
variant:

u2
rmsℓ

3 = const. (2.2.43)

Leading to:

u2
rms ∝ (At+ B)−6/5, ℓ ∝ (At+ B)2/5, λ2

tay ∝ 7νvis(t +
B
A

). (2.2.44)

Oberlack [144] approached this solution method in a new way using group theory.
Given the following scaling invariants under a certain choice of scaling group:

r̂ =
r

t
2

σ+3

, f̂ =
u2

rmsf

t−2σ+1
σ+3

, κ̂3 =
u3

rmsκ3

t−3σ+1
σ+3

. (2.2.45)
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ForRe→ ∞ this gives:

lim
r→∞

f (r) ≈ r−σ, or lim
k→0

E(k) ≈ kσ. (2.2.46)

Returning to Equation (2.2.39) and substituting from Equations (2.2.45):

ℓ(t) ∝ t
2

σ+3 , u2
rms ∝ t−2σ+1

σ+3 . (2.2.47)

Invariance of Loitsyanskii’s integral implies thatσ = 4, and Birkhoff’s integral implies
thatσ = 2, thus recovering the initial solutions in Equations (2.2.42) and (2.2.44). In
addition, Oberlack considers the case where the integral length scale is constant, i.e. it
is constrained. In this caseℓ = const. thusσ = ∞, yielding:

u2
rms ∝ t−2, λtay ∝ t1/2. (2.2.48)

This decay rate has already been determined by Taylor [177] by assuming that the work
done by the large eddies corresponds to the dissipation rate, i.e. thatǫ = Au3

rms/ℓ =

∂u2
rms/∂t. In addition, there is one case that is fully consistent withall of the constraints

given in Equation (2.2.38) without neglecting viscous terms:

u2
rms ∝ t−1, λtay ≈ ℓ ∝ t1/2. (2.2.49)

This is the case of complete self preservation of the correlation functions with decay
in time. Interestingly, Oberlack concludes that only the conservation of energy de-
terminesσ, and demonstrates that Birkhoff’s integral in the limit of infinite Reynolds
number is in agreement with this. In the final stages of decay the interactions between
different sized eddies becomes negligible compared to the direct effects of viscosity.
Note that in this regime the Loitsyanskii integral is an exact invariant with respect to
time. Thus the Karman-Howarth equation is reduced to:

∂

∂t
Qi,i (r, t) = 2νvis

1
r2

∂

∂r
r2 ∂

∂r
Qi,i (r, t) . (2.2.50)

The general solution after application of the invariance ofLoitsyanskii’s integral is:

Qi,i(r, t) = −4At−
5
2

(
3− r2

4νvist

)
exp

(
−r2

8νvist

)
, (2.2.51)

u2
rms ∝ t−

5
2 . (2.2.52)

After application of Birkhoff’s integral:

u2
rms ∝ t−

3
2 . (2.2.53)
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Table 2.1: Turbulence decay rates - Note that in addition to the listed assumptions, both
models only apply to homogeneous, isotropic incompressible turbulence

Invariant Loitsyanskii Birkhoff
Property u2

rms ℓ λtay u2
rms ℓ λtay

DecayRe→ ∞ -10/7 2/7 1/2 -6/5 2/5 1/2
f , κ3 = func(r/ℓ(t)) only

Assumptions E(k=0,t) finite and
and analytic.

Implications limr→∞ r4κ3 = 0 limk→0 E(k, t) ∝ k2

limk→0 E(k, t) ∝ k4

DecayRe→ 0 -5/2 - - -3/2 - -
Assumption limk→0 E(k, t) ∝ k4 limk→0 E(k, t) ∝ k2

DecayRe→ ∞, constrained -2 0 1/2 -2 0 1/2
Assumption ℓ = const.

ǫ = Au3
rms/ℓ

More recent analysis using renormalisation group analysisby Yakhot and Orszag [193]
gave kinetic energy decay rates of -1.47. Finally, Yakhot [192] proposed a new time
dependent integral scale and integral invariant, which only holds in the upper end of
the inertial range. This gives the same decay rate as with theLoitsyanskii invariant
but does not have the limitations of this invariant. Table 2.1 summarises the decay
exponents, and the assumptions inherent in their derivation.

Finally the decay rate can also be ’reverse engineered’ froma given energy spectrum.
Assuming that for small wavenumbers the energy spectrum is of the form E(k) =
Akm, and above this it follows a Kolmogorov scalingE(k) = Cǫ2/3k−5/3, this can be
substituted into the simplified dynamical equationd(u2

rms)/dt = −ǫ to gain the decay
rate as a function of time. This method was introduced by Comte-Bellot and Corrsin
[41].

To date the experimental results are not conclusive, however they appear to be favour-
ing Birkhoff’s invariant. Conclusive results are extremely hard to gain as they should
be at high Reynolds number, in a very large wind tunnel (to reduce wall effects) and for
a very long period of decay so that the exponent can be determined accurately. The po-
sitioning of the virtual origin of the decay (B in Equation (2.2.42) and (2.2.44)) remains
a key issue, as this effects dramatically the decay exponent gained. Examining theex-
cellent summary papers of Comte-Bellot and Corrsin [41], Mohammed and LaRue
[138] and Skrbek and Stalp [169] gives mixed results. Data summarised in [41] shows
a wide range of scatter, decay exponents ranging from−1.0 to −1.37. More careful
results reported in [41] with the level of isotropy improvedby a secondary contraction
gave decay rates of−1.25 with an error of 4%. Mohammed and LaRue [138] report
results at higherReλtay of −1.3± 0.02. To increase the maximum Reynolds number ac-
tive grids have been developed to ’stir’ the flow. This leads to higher anisotropy, where
the mean turbulent velocities in the streamwise direction can be up to 20% greater than
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those in the cross-stream direction. Results from Mydlarskiand Warhaft [140] give
decay rates of−1.21.

Skrbek and Stalp [169] examine the rate of decay assuming a model spectrum in a
similar manner to [41], however truncating it at a large scale to model the effects of
an enclosed experiment, and at a small scale to model the effects of viscosity. They
show analytically that the rate of decay should increase slowly as the Reynolds number
decreases. By analysing previous data sets and new experiments in superfluid Helium
they propose that Birkhoff’s invariant holds true. The most recent results atReλtay =

720 have been reported by Kanget al. [100] where the exponent was−1.25, however
in this case the integral length scale was approximately onequarter the size of the wind
tunnel.

2.3 Shock-Induced Turbulent Mixing Zones

The assumption that the turbulent flow is isotropic and homogeneous allows consid-
erable simplification of the governing equations, as can be seen in the derivation of
the Karman-Howarth equation. Without this simplification the analysis becomes in-
tractable in the majority of cases. Headway is typically made by assuming that the
flow develops in a self-similar manner, that is that the same flow field at two different
instants can be made to fit the same function by good choice of scaling parameters.

This concept can be illustrated for a spatially developing mixing layer. Take a reference
length L which is some measure of the mean width at a fixed point in space, and
reference quantity∆U then the non-dimensional mean longitudinal velocity profile
Ũ = U/∆U at several points in the development of the mixing layer collapses to the
same curve when plotted against ˜x = x/L. Furthermore, these assumptions can be
inserted into the mean continuity equation, yielding a linear increase of mixing layer
width with respect to space [148],

dL
dx
= GR

∆U
Umean

(2.3.1)

whereGR is the growth rate, andUmean the average of the upper and lower velocities.
Considering a temporally developing self similar mixing layer in a similar manner
leads to a growth rate ofGR∆U, where in both spatial and temporal layersGR is re-
ported from 0.06 to 0.11.

It is generally assumed that the width of the turbulent mixing zone generated by a fully
developed Richtmyer-Meshkov instability grows proportionally to tθ, whereθ is a pos-
itive number typically less than 1. Several approaches havebeen developed based on;
the development of an isolated slab of turbulence; self similarity arguments; ‘bubble
competition’; and momentum-drag formulations. It should be noted that only multi-
mode initial perturbations are considered. Single mode perturbations are not represen-
tative of typical initial conditions as their late time behaviour tends to be dominated
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by the appearance of large, coherent structures, usually inthe form of parallel vortex
pairs in two dimensions [91], or vortex rings in three dimensions [30, 183].

2.3.1 Growth of a Self-similar Turbulent Zone

Barenblatt [12] discussed the case of an isolated sheet of developing turbulence. This
is equivalent to assuming that the perturbations present inthe initial condition have
gone past the initial linear stage of growth dictated by Richtmyer’s formula (Equa-
tion (2.1.7)) and become a fully turbulent mixing layer. Assuming that the flow is
not deformed by a mean shear, then the evolution of turbulentkinetic energyqK =

(u2 + v2 + w2)/2 is governed by a balance of turbulent diffusion and dissipation into
heat,

∂qK

∂t
= −

∂(q′Kw′ + p′w′/ρ)

∂z
− ǫ, (2.3.2)

whereq′K is the turbulent energy fluctuation,w′ is the turbulent fluctuation in the di-
rection of expansion of the mixing layer, andp′ is the fluctuating pressure. Assuming
a turbulent energy eddy diffusion coefficient,Kq, then dimensional analysis gives

Kq = L
√

qK , ǫ =
bq3/2

K

L
, (2.3.3)

whereL is a reference length scale, which can be taken asL = Ch(t), whereh is a
measure of the width of the mixing zone, andb is a positive coefficient. Inserting these
into Equation (2.3.2) gives

∂qK

∂t
=
∂(Ch(t)

√
qK)

∂z
−

bq3/2
K

Ch(t)
. (2.3.4)

In the case where viscosity equals zero (b = 0) then the solution can only depend on
the initial magnitude of the kinetic energyK0 =

∫ δtz

−δtz
qK(z,0)dz, t, z andC. Herez is

the position within the mixing zone in the direction of the expansion, and it is assumed
that the initial turbulent kinetic energy profile is given asa function ofz. The initial
distribution of the mixing zone extend from−δtz ≤ z≤ δtz. Dimensional analysis then
gives

qK =
K2/3

0 t−2/3ξ2
0(1− ζ2)2

36C
, h(t) = ξ0K1/3

0 t2/3, (2.3.5)

where the positive constantξ0 = (135C2/4)1/3, is determined from energy conserva-
tion andζ = z/h(t). This gives an upper limit on the growth of the mixing layer.If
the dissipation is finite (b , 0) then the solution is now not completely self-similar,
additionally dependent onb. The asymptotic late time form now becomesh(t) ∝ t1−µ
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whereµ ≥ 1/3. Hence the influence of turbulent viscosity is to slow the development
of the mixing layer. It should be emphasised that this is under the assumption of partial
self-similarity, and additionally it is assumed that the turbulence is in free decay, i.e.
any influence of the initial perturbations has been forgotten.

This argument was further developed by Youngs [196] who employed the following
model equations,

d(LqK)
dt

= −bu3,
dW
dt
= u,where L = cW+ dλmin, (2.3.6)

where the reference lengthL is taken as the minimum perturbation length scaleλmin,
andb, c andd are model constants. Taking initial conditions ofW = 0 andu = ∆u
then

W
λmin
=

d
c


(
1+

c∆ut
θdλmin

)θ
− 1

 , (2.3.7)

whereθ = 2/(3+ bc) again recoveringθ = 2/3 for the case of zero viscosity, but now
including some influence of the initial conditions. Ramshaw [154] also gainedθ = 2/3
when dissipation is zero via a Lagrangian description of themixing layer width.

Gauthier and Bonnet [63] extended the establishedk− ǫ methodology to model shock
tube experiments. By analysis of the the diffusion term in the turbulent kinetic energy
equation, and assuming self-similar growth, leads to a growth of the mixing layer
proportional tot1/3. Huang and Leonard [86] proposed a new self-similar decay of
homogeneous turbulence which was shown to give a growth rateof t1/4 at late times
where the Reynolds number is low [150]. Mikaelian [136] used the impulsive limit of
the RT instability within a model for developing turbulent kinetic energy, predicting
that the mixing layer grows as 0.14∆u(At)t at late times.

More recently, Zhou [202] has applied theory developed for turbulent flows with an ex-
ternal agent to the RM instability. It is assumed that the energy flux through the inertial
range, and the dissipation rateǫ are the same, and that the energy flux is proportional
to the typical time scale of the low wavenumber features (according to turbulence the-

ories). For homogeneous, isotropic turbulenceτHDT = (kU(k))−1 =
(
k3E(k)

)−1/2
. From

dimensional analysis the dissipation rate is determined by

ǫ = C2τ(k)k4E2(k). (2.3.8)

As RM turbulence is anisotropic in thez-direction (the direction of shock propagation)

then the wavenumber is chosen ask =
√

k2
x + k2

y, i.e. a two-dimensional spectra in the

plane perpendicular to shock propagation. The time scale associated with the develop-
ment of the large scales is estimated from Richtmyer’s lineartheory, Equation (2.1.7),
giving τRM = (k(At)∆u)−1. Substituting this into Equation (2.3.8) gives
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E(k) = C [(At)∆uǫ(z)]1/2 k−3/2. (2.3.9)

A key observation made by Zhou is that whenτRM << τHDT then the spectra should
take the form above, else the turbulence will become fully developed and revert to a
Kolmogorov form. Next the growth rate of the mixing layer is determined using a
similar approach to that described by Comte-Bellot and Corrsin[41] for homogeneous
isotropic turbulence. Consider the model spectrum

E(k, z) =

{
c1(z)km if k < kL

c2 [(At)∆uǫ(z)]1/2 k−3/2 if k > kL
, (2.3.10)

where the two portions of the spectra are matched atk = kL. The kinetic energy
qK =

∫ ∞
0

E(k)dk can be computed from this. As the flow field is assumed to be in-
compressible and freely decaying then, similar to the approach by Youngs [196], the
two-equation turbulence model reduces to

DqK

Dt
= −E, (2.3.11)

DE
Dt
= CEE2/qK , (2.3.12)

whereE is thez averaged dissipation rate. Taking the derivative ofqK computed from
the assumed spectrum, and inserting this into Equation (2.3.11), then comparing with
Equation (2.3.12) gives

qK(t) = qK,0

[
1+

(
2m+ 3
m+ 1

− 1

)
E0t/qK,0

] 2m+3
m+1

, (2.3.13)

and the mixing layer width is implied from the approximation

W ≈
q3/2

K

E =
q3/2

K,0

E0

[
1+

(
2m+ 3
m+ 1

− 1

)
E0t/qK,0

] m+3
2m+4

, (2.3.14)

hence the final growth rate depends crucially on the form of the energy spectrum at low
wavenumbers, as is the case for homogeneous isotropic turbulence. Withm = 4 this
gainsθ = 7/12, form= 2, θ = 5/8. It is additionally noted that with specially chosen
conditionsm could equal 1, in which caseθ = 2/3. For freely decaying turbulence the
above considerations can be applied to a Kolmogorov spectrum, using grid turbulence
data to fix the coefficientCE, giving θ ≈ 0.29− 0.4, as discussed further in Clark and
Zhou [37].

Finally, Llor [123] has examined the behaviour of a freely decaying slab of turbulence
with respect to the invariance of angular momentum at the large scales. The results
additionally used the observations by Kolmogorov that given a low wavenumber range
which scaleskc then there exists an invariant of the formI = kλc+1. From this it
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can be shown that for self-similar decay the kinetic energyqK ∝ t−n, andλ ∝ t1−n/2,
wheren = (2c + 2)/(c + 3) (i.e. θ = 1 − n/2). Assuming a Saffman impulse field as
initial conditions for the turbulent slab, this gaven = 4/3 equal toθ = 1/3. Llor also
proposes a maximum decay rate of turbulent kinetic energy ofn = 10/7, corresponding
to θ = 2/7.

It should be noted that these analysis are typically applicable to moderate Atwood
numbers where the growth exponent of the bubble and spike canbe assumed to be
close [37]. AsAt→ 1 then there is little or no shear force applied to the spike side of
the interaction. This means that the initial linear growth is not slowed by interaction
with the second fluid, and hence does not form a vortex or turbulent mixing layer.
This Atwood number dependence is not considered in the models presented within
this section.

2.3.2 ‘Just-Saturated’ Mode Analysis

The previous subsection details the behaviour of a slab of fully developed turbulence,
making the essential assumption that either all modes present in the initial problem
have become saturated (i.e. they are past the linear stage ofgrowth characterised by
Richtmyer’s formula) or that the remaining long wavelength modes are at low levels
and do not influence the growth rate of the mixing layer. The models outlined in this
section investigate the growth of a mixing layer where the perturbations have not yet
become linearly saturated. This means that the short wavelengths can be nonlinear
(turbulent), but that these can be overtaken by longer wavelengths growing at a slower
but more persistent rate.

An analysis by Dimonteet al. [46] showed that if the mixing layer width is governed
by the width of the ‘just saturated’ bubble, then the total width (envelope described by
the saturated modes) should grow withθ = 1/2. This was derived by assuming that
the ‘just saturated’ mode has amplitudea ≈ CRM/k, i.e. ka ≈ CRM, whereCRM should
be of order one. Given linear growth of each mode to this amplitude, the governing
equation isda/dt = (At)k∆ua0. Substitutingk = CRM/a, W = 2a, andW0 = 2a0 then
d(W2)/dt = 4CRM(At)∆uW0. The solution of this equation is

W ≈
√

W2
0 + 4CRMAt∆u(t − t0) (2.3.15)

Youngs [198] proposed a modification to the growth rate by including the effects of
initial conditions. Assuming that the power spectrum of theinitial perturbation is
represented byP(k) ∝ Ckm then the mean amplitude as a function of wavelength is
a(λ) ∝

√
kP(k) = C1/2k(m+1)/2. The velocity corresponding to the each wavenumber

is thenv(k) = C1/2(At)∆uk(m+3)/2. A structure of size 1/k appears in timet = 1/kv(k).
Linking the width of the mixing layerW with the wavelengthλ gives

W ≈ λ ≈
(
C1/2(At)∆ut

)2/(m+5)
, (2.3.16)
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thus givingθ = 2/(m+ 5). Youngs argues that growth from mode coupling alone is
approximatelyθ = 0.24, hence if the linearised growth rate is faster than this (m< 3.3)
thenθ is dependent on initial conditions.

Inogamov [89] proposed another variant based upon the expansion of the mixing layer
due to linearly saturated modes, considering a power spectrum of the initial pertur-
bations which becomes constant at low wavenumbers (long wavelengths). He then
examines the differences in velocity fluctuations at a given scale, denoted byλ, con-
cluding that

un,m = (At+)
√

n2 +m2∆uan,m, (2.3.17)

uλ =< |u(x, t) − u(x− λ, t)| >∝
√

n2 +m2un,m, (2.3.18)

whereun is the linear velocity perturbation for each individual two-dimensional mode
numbern and m, and At+ the post-shock Atwood number. It is argued thatuλ ∝
λ2

iniuλini/λ
2 whereλini is the characteristic average perturbation wavelength. Assuming

that the rate of increase of mixing layer widthW is proportional to the mean velocity
difference of the just saturated mode, ie.dW/dt ∝ uλ|λ=W gives the differential equation

dW
dt
∝ uλiniλ

2
ini/W

2, (2.3.19)

with solutionW ∝ t1/3. It should be noted that this solution is only valid for initial per-
turbations of a certain type. More specifically, the amplitude of the Fourier harmonics
of the perturbation should not change significantly in the region ±n from the mode
numbern. Implicit in this assumption is that the range of the Fourierharmonics is suf-
ficiently wide - narrow band solutions would not follow the proportionality argument
in Equation (2.3.18).

2.3.3 Bubble Merger Models

The late time behaviour of the RM instability can be considered through the class of
Bubble merger models. These assume a phenomenological approach, considering the
dominant modes at the limit of linear growth, and the mergingof these dominant modes
to create larger structures.

It is usually assumed that the bubbles grow according to potential flow, following a
method by Layzer [116]. Assuming that the velocity is inviscid, irrotational (u =
−∇Φ), and incompressible (∇2Φ = 0) a solution is sought which matches the initial
conditions and Bernoulli’s equation

Φt −
1
2

(Φ2
z + Φ

2
r ) − gz= a(t). (2.3.20)
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The resulting asymptotic bubble velocity based on potential flow models is equal to
Cb/s/kt, which implies that a possible solution for the width of the mixing layer could
be logarithmic in time [26]. The subscripts (.)b/s indicate the coefficient for the (b)ubble
or (s)pike respectively. Recently,Cb/s has been derived as 2/3 by Hechtet al. [79],
2/(1± At.) by both Goncharov [66] and Oron [145] and 1 by Sohn[172].

Bubble merger models track the development of individual bubbles, which are allowed
to grow and interact with neighbouring bubbles, such that a bubble of sizeλ1 can
interact with a bubble of sizeλ2 over a period of time to generate a final bubble of
sizeλ1 + λ2. Two dimensional results published by Alonet al. [6] (employing the
multimode potential defined by Hechtet al.[79]) gaveθb ≈ 0.4, andθs ≈ θb (1+ At),
however later results gained by Oronet al. [145] extended the bubble merger model
to three dimensions givingθb ≈ 0.25, caused by the reduced rate of bubble merger in
three dimensions.

2.3.4 Momentum-Drag Models

Another phenomenological method of analysing RM mixing is adapted from the anal-
ysis of Rayleigh-Taylor (RT) instabilities. The late time behaviour of the RT instability
was modelled by Youngs [195] as a balance between buoyancy and drag for bubbles
and spikes. This gave two equations for the evolution of the interface

(ρ1 + κ1ρ2) Vol1
dU1

dt
= B1(ρ1 − ρ2)Vol1 −C1ρ2U

2
1S1, (2.3.21)

(ρ2 + κ2ρ1) Vol2
dU2

dt
= B2(ρ2 − ρ1)Vol2 −C2ρ1U

2
2S2, (2.3.22)

whereρ1,2 are the densities of the light and heavy material,U1,2 is the velocity of the
tip of the light and heavy material, whereU1,2 = dH1,2/dt. The volume of the structure
is denoted byVol and the surface areaS. Equation (2.3.21) refers to the evolution
of the upward moving bubble, and Equation (2.3.22) refers tothe evolution of the
downward moving spike. This is a balance of mass times acceleration on the left, and
the forces of buoyancy and drag on the right. This requires the specification of three
model constants, the added massκ, buoyancyB and drag coefficientC. Settingg = 0,
and dividing the equations by the volume of the structure gives

dU1

dt
= −C′1

U2
1

L1
, (2.3.23)

dU2

dt
= −C′2

U2
2

L2
, (2.3.24)

C′1,2 =
C1,2(1− (−1)1,2At)

1+ κ1,2 + (−1)1,2(1− κ1,2)At
, (2.3.25)
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Figure 2.9: RM late time growth rateθ for the bubble and spike as a function of Atwood
numberAt [48]

whereL = Vol/S. As with the previous models, this gives asymptotic growth of
H1,2 ∝ tθ1,2, whereθ1,2 is typically derived from experimental and numerical data where
C′1,2 = 1/θ1,2 − 1 [47, 48]. Youngs’ model assumes thatL1 = L2 = min(H1,H2) = H2.
Taking C′1,2 = C′ = 3.67 from experimental data [48] givesθ1 = 0.21 andθ2 =

1/(1+C′
√
ρ2/ρ1), giving excellent results over a range of Atwood numbers [45].

2.3.5 Experimental Data

Experimental data has a wide scatter, primarily due to what appears to be a strong
dependence on initial conditions. Dimonte and Schnieder [47] measure the growth rate
at At ≈ 0.9, for a Mach> 10 shock. They determined the value ofθ = 0.5±0.1, higher
than previous investigations, suggesting an Atwood numberdependence on the growth
rate. The dependence of the growth rateθ on the Atwood number was investigated in a
linear electric motor experiment [48]. The results are reproduced in Figure 2.9, where
the relationship between the bubble and spike growth rate was found to be

θS = θB

(
1+ At
1− At

)0.21±0.05

= θB

(
ρ2

ρ1

)0.21±0.05

, for 0.15≤ At ≤ 0.96, (2.3.26)

however in this case the issue of initial conditions was not investigated. In an as-
sessment of the potential flow models, three dimensional single mode experiments at
At = 0.15 conducted by Chapman and Jacobs [30] show the best agreement with the
potential models of Goncharov [66] and Oron [145], who stateHb/s = (2/(1± At))/kt.

Experiments in air and sulphur hexafluoride (At ≈ 0.67) conducted by Prasadet al.
[150] examined the influence of initial conditions on the late time growth of the tur-
bulent mixing layer. The initial conditions were taken as a series of large scale sinu-
soidal perturbations, broken by a high wavenumber component introduced via a wire
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mesh. There is a dependence of initial conditions, the largest wavelengths producing
the thickest mixing layer, however it is a weak dependence asthe growth exponent
over all experiments is 0.26≤ θ ≤ 0.33.
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Numerical Methods

3.1 Governing Equations

The three dimensional compressible Euler equations for a generalised co-ordinate sys-
tem can be written in conservative variables as

∂U
∂t
+
∂E
∂ξ
+
∂F
∂η
+
∂G
∂ζ
= 0, (3.1.1)

where,
U =

[
ρ, ρu, ρv, ρw, e

]T
, (3.1.2)

E =
[
ρu, ρu2 + p, ρuv, ρuw, (e+ p)u

]T
, (3.1.3)

F =
[
ρv, ρuv, ρv2 + p, ρvw, (e+ p)v

]T
, (3.1.4)

G =
[
ρw, ρuw, ρvw, ρw2 + p, (e+ p)w

]T
, (3.1.5)

U = JU, (3.1.6)

E = J(Eξx + Fξy +Gξz), (3.1.7)

F = J(Eηx + Fηy +Gηz), (3.1.8)

G = J(Eζx + Fζy +Gζz), (3.1.9)

e= ρi + 0.5ρ(u2 + v2 + w2), (3.1.10)

and J,ρ, i, u, v, w are the Jacobian of the cell volume under consideration, density,
internal energy and Cartesian velocity components respectively. The subscripts(.)x

indicate a partial derivative with respect tox. The system of equations is completed
with the specification of an equation of state, which for an ideal gas is

p = ρi (γ − 1) . (3.1.11)
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3.2 The Finite Volume Godunov Method

The governing equations are solved using the Godunov method[65]. The problem
of interest is typically split into a number of finite volumes(or ’control volumes’)
where the initial values for the conserved variables are specified at the beginning of the
simulation. The conserved variables are then evolved by computing the fluxes (E,F,
andG above) across the interfaces of each control volume. The first order method
proposed by Godunov can be summarised in one dimensional form as:

Un+1
j = Un

j +
∆t
∆x

(
F j−1/2 − F j+1/2

)
, (3.2.1)

where the inter-cell numerical fluxF j+1/2 is computed based on the solution to the
Riemann problem using

(
Un

j ,U
n
j+1

)
, and similarlyF j−1/2 is computed from the Riemann

problem using
(
Un

j ,U
n
j−1

)
.

3.3 Time Integration

Several time stepping methods are employed within this thesis, and are described in
this subsection in order of increasing accuracy. The first isa second-order dual time
stepping scheme proposed by Jameson [92]. The governing equations can be written
as:

∂U
∂t

n+1

+ F(Un+1) = 0, (3.3.1)

where (.)n+1 indicates a quantity evaluated at the current time step. This is an implicit
method, thus applying a second-order accurate expansion:

∂U
∂t

n+1

= −
(
3/2Un+1 − 2Un + 1/2Un−1

∆t

)
. (3.3.2)

An explicit sub time step is utilised until the above flux has converged, using a first-
order integration in the sub time step∆τ, where the sub iterations are labelled with an
m:

Um+1 − Um

∆τ
+

3/2Um− 2Un + 1/2Un−1

∆t
+ F(Um) = 0. (3.3.3)

Once the sub iterations have converged to a specified limit, the value atm+ 1 becomes
the value atn+ 1 and the sub iterations are completed. Additionally, four fully explicit
Runge-Kutta (RK) time stepping methods have been implementedas these methods
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perform better in simulations with shock waves. The simplest version is the second-
order method defined as:

U1
j = Un

j +
1
2
∆t
∆x

F
(
Un

j

)
, (3.3.4)

Un+1
j = Un

j +
∆t
∆x

[F
(
U1

j

)
], (3.3.5)

Next a second-order TVD version [164]:

U1
j = Un

j +
∆t
∆x

F
(
Un

j

)
, (3.3.6)

Un+1
j = Un

j +
1
2
∆t
∆x

[F
(
Un

j

)
+ F

(
U1

j

)
], (3.3.7)

and a third-order Total Variation Diminishing (TVD) Runge-Kutta method [69]:

U1
j = Un

j +
∆t
∆x

F
(
Un

j

)
, (3.3.8)

U2
j = Un

j +
1
4
∆t
∆x

[F
(
Un

j

)
+ F

(
U1

j

)
], (3.3.9)

Un+1
j = Un

j +
1
6
∆t
∆x

[F
(
Un

j

)
+ F

(
U1

j

)
+ 4F

(
U2

j

)
]. (3.3.10)

Finally, a third order extended stability method is employed where the Courant-Friedrichs-
Levy (CFL) number has a limit of 2 [173]:

U1
j = Un

j +
1
2
∆t
∆x

F
(
Un

j

)
, (3.3.11)

U2
j = Un

j +
1
2
∆t
∆x

[F
(
U1

j

)
], (3.3.12)

Un+1
j =

1
3

(
2U2

j + Un
j +
∆t
∆x

[F
(
U2

j

)
+ F

(
U1

j

)
]

)
. (3.3.13)

3.4 Higher-order Spatial Accuracy

Higher-order spatial accuracy is achieved in this thesis using van Leer’s ‘Monotone
Upstream-centred Schemes for Conservation Laws’ (MUSCL) technique [187], and
‘Weighted Essentially Non-Oscillatory’ (WENO) methods [11]. The base range of
standard extrapolation methods used are

• Second-order: Minmod (MM), van Leer (VL) and van Albada (VA)([184, 53]
and references therein)
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• Third-order (M3) [203]

• Fifth-order (M5) [107]

• WENO fifth- and ninth-order (W5 and W9)[11]

For MUSCL extrapolation, the left and right states of the conservative (or primitive)
variables at the cell faces are computed as

UL
i+1/2 = Ui +

1
4

(1− c) φlim
(
r lim,L

i

)
(Ui − Ui−1) + (1+ c) φlim


1

r lim,L
i

 (Ui+1 − Ui)

 ,

(3.4.1)

UR
i+1/2 = Ui+1 −

1
4

(1− c) φlim
(
r lim,R

i

)
(Ui+2 − Ui+1) + (1+ c) φlim


1

r lim,R
i

 (Ui+1 − Ui)

 ,

(3.4.2)

r lim,L
i =

Ui+1 − Ui

Ui − Ui−1
, r lim,R

i =
Ui+1 − Ui

Ui+2 − Ui+1
, (3.4.3)

whereU is the vector of cell averaged conserved (or primitive) variables,c is a free
parameter which is set to 1/3 for the third-order limiter, and the cells are labelled by
the integeri. It should be noted that the parameterc does not influence the accuracy
of the second-order limiters considered here as they are symmetric (See Appendix A
for the definition of this criteria). For multicomponent flows primitive variables are
usually extrapolated as this provides better resolution ofcontact surfaces. In this study
the following limiters are considered

φlim
MM = min

(
1, r lim

i

)
, (3.4.4)

φlim
VA =

r lim
i

(
1+ r lim

i

)

1+ (r lim
i )2

, (3.4.5)

φlim
VL =

2r lim
i

1+ r lim
i

, (3.4.6)

φlim
M3 = 1−

(
1+

2Nrlim
i

1+ (r lim
i )2

) (
1−

2r lim
i

1+ (r lim
i )2

)N

. (3.4.7)

M3 includes a ’steepening’ parameterN to improve the resolution of discontinuities,
in this thesisN = 2. All of the above limiters are constrained in the normal fashion
to first-order accuracy at local maxima and minima. The fifth order MUSCL scheme
(M5) is slightly more complex [107]



3.4 Higher-order Spatial Accuracy 37

φ∗limM5,L =
−2/r lim,L

i−1 + 11+ 24r lim,L
i − 3r lim,L

i r lim,L
i+1

30
, (3.4.8)

φ∗limM5,R =
−2/r lim,R

i+2 + 11+ 24r lim,R
i+1 − 3r lim,R

i+1 r lim,R
i

30
, (3.4.9)

where the ratio of the slopes is defined slightly differently:

r lim,L
i =

Ui+1 − Ui

Ui − Ui−1
, r lim,R

i =
Ui − Ui−1

Ui+1 − Ui
, (3.4.10)

and monotonicity is maintained by limiting the above extrapolations using

φlim
M5,L = max(0,min(2,2r lim,L

i , φ∗limM5,L)), (3.4.11)

φlim
M5,R = max(0,min(2,2r lim,R

i , φ∗limM5,R)). (3.4.12)

The WENO methodology takes a weighted average of several possible stencils to
choose the ‘smoothest’ option [11, 165, 166, 95]. This is an extension of the Essen-
tially Non-Oscillatory (ENO) scheme presented by Hartenet al. [76]. It is not strictly
monotone (hence the ‘essentially’ label), however, close to an isolated discontinuity
the weights for stencils which cross the discontinuity should become very small. By
combining the stencils in this manner very high order accuracy can be achieved, in
smooth regions of flow the order of accuracy is 2r − 1, wherer is the number of points
in each of the candidate stencils. Hence a ninth order methodrequires a stencil of five
cells each side of the interface where the fluxes are computed.

To demonstrate the concept, the third order WENO reconstruction is outlined, for
which r = 2. Given celli the two polynomials are defined as,

pi(x) = Ui +
Ui − Ui−1

∆x
(x− xi) , (3.4.13)

pi+1(x) = Ui +
Ui+1 − Ui

∆x
(x− xi) . (3.4.14)

The polynomials are then combined to give the reconstructedquantity for celli,

Pi =
ai

0

ai
0 + ai

1

pi(x) +
ai

1

ai
0 + ai

1

pi+1(x) (3.4.15)

ai
0 =

C0

(10−16+ (IS)i)2
, ai

1 =
C1

(10−16+ (IS)i+1)2
, (3.4.16)

where the coefficientsCk are determined for optimal weighting and the smoothness
indicators (IS) are calculated by (IS)i = (Ui −Ui−1)2 and (IS)i+1 = (Ui+1−Ui)2. Finally,
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10−16 is a small number used to prevent divisions by zero in a perfectly smooth flow.
The values forUi−1/2,R andUi−1/2,L are given by insertingx = xi−1/2 andx = xi+1/2 into
Equation (3.4.15).

Regarding the time taken to complete the very high order accuracy simulations, the
ratio of CPU times to that required to carry out the second-order van Leer simulations
is 1.2 for M5 and W5, and 2.5 for W9. This does not include communication times
for parallel computations as these depend on the hardware used and the number of par-
allel blocks utilised. This was not significant for the number of processors employed
(maximum of 512 processors for the multimode RM simulations).

3.5 Multicomponent flows

3.5.1 Introduction

The complete approach to simulating multi-component flows is to have a different set
of governing equations for each component. However, this thesis is concerned with
the simulation of miscible, single phase fluids. With this inmind, several simplifying
assumptions can be made. Firstly it is assumed that two gasesin a single cell have
the same velocity. This means that only one set of momentum equations are required.
Secondly, the assumption of instantaneous temperature equilibrium between the gas
species is made, so that only one energy and continuity equation is required (see [137]).

Thus the remaining task is to add an additional one or two governing equations which
advect a quantity that can be used to compute the parameters required for the equa-
tion of state. There are several possible model equations, each based on different
assumptions. A key issue with multicomponent models is conservation of pressure
equilibrium. It has been shown that fully conservative models fail to preserve pressure
equilibrium across a moving material interface when the temperature is different on
each side [1, 31, 38, 85, 93, 103, 104, 114]. Note that these oscillations do not appear
in the single gas case, and are not related to the order of accuracy of the scheme.

Following on from this apparent failure of fully conservative schemes, a number of
quasi-conservative or non-conservative schemes were proposed. Quirk and Karni [153]
built upon the earlier paper by Karni [102] to develop a scheme based on the non-
conservative equations corrected at shock waves with good results. Jennyet al. [93]
modified the energy equation to render the computation of theconservative variables
a single fluid computation hence reducing the oscillations present in the basic scheme.
Karni [103] added an additional non-conservative governing equation for the pressure,
which successfully removed the oscillations present in themodified Sod shock tube
problem. Abgrall [2] proposed a ‘quasi-conservative’ method, named so as it produces
results with extremely small conservation errors. Abgralland Karni [3] proposed a
non-conservative numerical method in which two fluxes are computed at the cell face,
which also removes the pressure oscillations, at a computational cost.
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However, Wanget al. [191] derived a new model based on total enthalpy conserva-
tion of the mixture (henceforth labelled as ’ThCM’) within a control volume. As the
model is fully conservative it captures strong shock waves accurately, and due to the
method of formulation the resulting numerical scheme showed no pressure oscillations
in several test cases when using an exact Riemann solver.

Finally, Johnsen and Colonius [97] recently proposed an alternative method of solution
of the model equations of Shyue [167] using the HLLC solver. This removes pressure
oscillations completely from the resulting solution.

This section validates the multicomponent method used throughout the rest of the pa-
per. It compares the mass fraction model, quasi-conservative models of Abgrall [2]
and Johnsen [97], and the fully conservative model of Wanget al. [191]. First the
model equations are described, then (if not presented in theoriginal publications) ap-
proximate Riemann solvers are derived. These are validated at first order accuracy in
space on several test cases, and extension to higher order isdescribed. Finally, a higher
order test case is used to illustrate the behaviour of the selected schemes using realistic
methods.

3.5.2 Model Equations

Mass Fraction

In this model an additional equation is added to the Euler equations to track the mass
fractionY = ρ1/ (ρ1 + ρ2) = ρ1/ρ , whereY = 1 indicates a cell containing only species
1, andY = 0 is only species 2. A value between 0 and 1 indicates a mixture. Thus the
mass conservation equation for a two species computation can be solved by adding a
single equation to the Euler equations:

∂ρY
∂t
+
∂ρuY
∂ξ
+
∂ρvY
∂η
+
∂ρwY
∂ζ

= 0. (3.5.1)

It is assumed that within each cell the two fluids have exactlythe same temperature,
pressure and velocities, thus from Dalton’s law of partial pressures:

γ (Y) =
cv1γ1Y+ cv2γ2 (1− Y)

cv1Y+ cv2 (1− Y)
. (3.5.2)

ThCM Model

The multi-component model proposed by Wanget al. [191] is based on the conserva-
tion of total enthalpy within the fluid mixture. The initial model derived requires two
additional equations:
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∂

∂t

(
ρχ

M

)
+
∂

∂ξ

(
ρuχ
M

)
+
∂

∂η

(
ρvχ
M

)
+
∂

∂ζ

(
ρwχ
M

)
= 0, (3.5.3)

∂

∂t

(
ρ

M

)
+
∂

∂ξ

(
ρu
M

)
+
∂

∂η

(
ρv
M

)
+
∂

∂ζ

(
ρw
M

)
= 0, (3.5.4)

whereM is the molecular mass of the mixture, and the variableχ is defined as,

χ =
ρi
p
+ 1, (3.5.5)

for a perfect gas,

χi =
γi

γi − 1
, χ =

∑

i=1,N

χi . (3.5.6)

The mass fractions and volume fractions can be calculated from

Y1 =
1/M− 1/M2

1/M1 − 1/M2
, (3.5.7)

α1 =
Y1M
M1

=
1−M/M2

1−M1/M2
. (3.5.8)

If the volume fraction is used to initialise a simulation,

M =M2

(
1− α

(
1− M1

M2

))
, (3.5.9)

χ = α1 (χ1 − χ2) + χ2. (3.5.10)

Quasi-conservative Approach

The model equations of Abgrall [2] and Shyue [167] are based on the advection of
a thermodynamic quantity which does not allow pressure oscillations at a material
interface. For an ideal gas it requires the addition of one equation,

∂κ

∂t
+ u

∂κ

∂ξ
+ v

∂κ

∂η
+ w

∂κ

∂ζ
= 0. (3.5.11)

whereκ = 1/(γ − 1). It is clear that this equation is not in conservative form, as
when cast in conservative form oscillations in the pressurefield will occur. The clear
advantage in this system is that a single equation can represent several gas components,
as the advected quantity is the mixtureγ. This is the ideal gas version of the model
equations employed by Johnsen and Colonius [97].
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Allaire et al. [4] use a different approach, removing the continuity equation and re-
placing it with the following,

∂α1ρ1

∂t
+
∂α1ρ1u
∂ξ

+
∂α1ρ1v
∂η

+
∂α1ρ1w
∂ζ

= 0, (3.5.12)

∂α2ρ2

∂t
+
∂α2ρ2u
∂ξ

+
∂α2ρ2v
∂η

+
∂α2ρ2w
∂ζ

= 0, (3.5.13)

∂α1

∂t
+ u

∂α1

∂ξ
+ v

∂α1

∂η
+ w

∂α1

∂ζ
= 0, (3.5.14)

where the final equation is not conservative. The equation set is closed by computing
the mixtureγ from the volume fractions.

3.6 Riemann Solvers

In this section the Riemann solvers employed for each gas model is described. The
derivations are restricted to Cartesian grids for simplicity, within the code they are
implemented in a fully curvilinear manner. The mass fraction and ThCM models are
solved in a fully coupled manner, and the derivation of the new approximate Riemann
solvers are detailed here. For the quasi-conservative models, an outline of the Riemann
solver is given, as the code employs the Roe scheme proposed in[4], and the HLLC
scheme proposed by Johnsen and Colonius [97].

3.6.1 Mass Fraction Model

The Scalar Non-Conservative Invariants

To derive an approximate Riemann solver for each flux dimensional splitting is applied.
Thus for the fluxE

∂Ũ
∂t
+
∂Ẽ
∂x
= 0, (3.6.1)

where thẽU denotes the reconstructed conservative variables andẼ the corresponding
flux. Expanding (3.6.1) for each of the governing equations,and reducing to primitive
variables

∂ρ̃

∂t
+ ũ

∂ρ̃

∂x
+ ρ̃

∂ũ
∂x
= 0, (3.6.2)

ρ̃
∂ũ
∂t
+ ρ̃ũ

∂ũ
∂x
+ ρ̃

∂p̃
∂x
= 0, (3.6.3)
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ρ̃
∂̃v
∂t
+ ρ̃ũ

∂̃v
∂x
= 0, (3.6.4)

ρ̃
∂w̃
∂t
+ ρ̃ũ

∂w̃
∂x
= 0, (3.6.5)

∂p̃
∂t
+ ũ

∂p̃
∂x
+ ρ̃a2∂ũ

∂x
= 0, (3.6.6)

ρ̃
∂Ỹ
∂t
+ ρ̃ũ

∂Ỹ
∂x
= 0. (3.6.7)

wherea is the speed of sound. The time derivative of the conservative variables is
replaced to introduce the vector of the conservative variables evaluated at the next time
step. We develop̃U in Taylor series expansion around the time levelt.

Ũ(t + ∆t) = Ũl(t) + ∆̃xŨx + Ũt∆t , (3.6.8)

whereŨl (l = 0,1,2) are the variables along the characteristics,l, and the the interval
∆̃x is defined by introducing a wave speedλeig such that:

∆̃x = λeig∆t. (3.6.9)

Eq. (3.6.8) can be solved with respect toŨ(t)

Ũt =
Ũ − Ũl

∆t
− λeigŨx . (3.6.10)

The characteristic derivativẽUt is substituted into equations (3.6.2) to (3.6.7):

(ρ̃ − ρl)
∆t

+ ρ̃x

(
ũ− λeig

)
+ ρ̃ux = 0, (3.6.11)

ρ̃

(
(̃u− ul)
∆t

+ ũx

(
ũ− λeig

))
+ p̃x = 0, (3.6.12)

ρ̃

(
(̃v− vl)
∆t

+ ṽx

(
ũ− λeig

))
= 0, (3.6.13)

ρ̃

(
(w̃− wl)
∆t

+ w̃ξ

(
ũ− λeig

))
= 0, (3.6.14)

(p̃− pl)
∆t

+ p̃x

(
ũ− λeig

)
+ ρ̃a2ux = 0, (3.6.15)

ρ̃

(
Ỹ− Yl

)

∆t
+ ρ̃Ỹx

(
ũ− λeig

)
= 0. (3.6.16)

As each equation sums to zero, the method suggested by Courantand Hilbert [43] can
be used. Multiply each equation by a constant and add them together:
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1
∆t

[
c1 (ρ̃ − ρl) + c5 (p̃− pl) + ρ̃

{
c2 (̃u− ul) + c3 (̃v− vl) + c4 (w̃− wl) + f

(
Ỹ− Yl

)}]
+

c1ρ̃x

(
ũ− λeig

)
+ ρ̃

[
ux

{(
c1 + c5a

2
)
X + c2

(
ũ− λeig

)}
+ vxc3

(
ũ− λeig

)
+

wxc4

(
ũ− λeig

)
+ c6Ỹx

(
ũ− λeig

)]
+ p̃x

[
c2 + c5

(
ũ− λeig

)]
= 0. (3.6.17)

As the coefficientsc1−6 are arbitrary, then if (3.6.17) equals zero, each of the individual
components must equal zero, giving:

c1 (ρ̃ − ρl)+c5 (p̃− pl)+ ρ̃
{
c2 (̃u− ul) + c3 (̃v− vl) + c4 (w̃− wl) + c6

(
Ỹ− Yl

)}
= 0,

(3.6.18)

and,

c1

(
ũ− λeig

)
= 0, (3.6.19)

(
c1 + c5a

2
)
+ c2

(
ũ− λeig

)
= 0, (3.6.20)

c3

(
λ

eig
0 − λ

eig
)
= 0, (3.6.21)

c4

(
λ

eig
0 − λ

eig
)
= 0, (3.6.22)

c2 + c4

(
ũ− λeig

)
= 0, (3.6.23)

c6

(
ũ− λeig

)
= 0. (3.6.24)

As the coefficients can be any constant, thenλeig
0 = ũ from (3.6.19). This implies that

c1 = −c5a2 from (3.6.20), andc2 = 0 from (3.6.23). Substituting this into (3.6.18)
yields:

c5

[
(p̃− pl) − a2 (ρ̃ − ρl)

]
− ρ̃

{
c3 (̃v− vl) + c4 (w̃− wl) + c6

(
Ỹ− Yl

)}
= 0. (3.6.25)

As this equation must be true regardless of the choice of coefficients, they can be
arbitrarily set to zero giving the following set of equations:

(p̃− p0) − a2 (ρ̃ − ρ0) = 0, (3.6.26)

(̃v− v0) = 0, (3.6.27)

(w̃− w0) = 0, (3.6.28)
(
Ỹ− Y0

)
= 0. (3.6.29)
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However, settingc1 = 0 and consider equations (3.6.18) to (3.6.24) again:

c2 =
c5a2

(
λ

eig
0 − λeig

) , (3.6.30)

Inserting the above into (3.6.23):

(
λ

eig
0 − λ

eig
)2
= a2, (3.6.31)

giving the eigenvaluesλeig = λ
eig
1 = λ

eig
0 + a andλeig

2 = λ
eig
0 − a. Forλeig

1 ,

(p̃− p1) + ρ̃a (̃u− u1) = 0, (3.6.32)

for λeig
2 ,

(p̃− p2) − ρ̃a (̃u− u2) = 0, (3.6.33)

where (.)1 and (.)2 indicate values evaluated along theλeig
1 andλeig

2 characteristic lines,
respectively. Thus there are now six characteristic equations for the six unknown aver-
aged flow values needed to determine the flux at the cell face.

Converting to Conservative Form

The next step is to convert equations (3.6.26)-(3.6.33) to conservative variables. Up
until this point the only assumption that is introduced is that the characteristic lines are
straight, not curved as they are in reality. Now the differences can be expressed using
the chain rule of differentiation (for exampleρ∆u+ u∆ρ = ∆(ρu)):

∆u =
∆ (ρu) − u∆ρ

ρ
, ∆v =

∆ (ρv) − v∆ρ
ρ

, (3.6.34)

∆w =
∆ (ρw) − w∆ρ

ρ
, ∆Y =

∆ (ρY) − Y∆ρ
ρ

. (3.6.35)

For the pressure extra care must be taken, as in a multi-component flow the ratio of spe-
cific heats can vary across an interface. Adapting a methodology utilised in Drikakis
and Tsangaris [54] for an arbitrary equation of state, the pressure difference is ex-
pressed as:

∆p = pi∆i + pρ∆ρ + pY∆Y. (3.6.36)

From (3.1.10) the difference in internal energyi can be written as:

ρ∆i = ∆e− [
u∆ (ρu) + v∆ (ρv) + w∆ (ρw)

] − i∆ρ. (3.6.37)

Substituting (3.6.37) into (3.6.36):
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∆p = Q∆ρ +
pi

ρ

[
∆e− (u∆ (ρu) + v∆ (ρv) + w∆ (ρw)

]
+

pY

ρ
(∆ (ρY) − Y∆ρ) , (3.6.38)

Q = pρ + qK
pi

ρ
− i

pi

ρ
, qK =

1
2

(u2 + v2 + w2). (3.6.39)

Next these differences are substituted into equations (3.6.26)-(3.6.33), and renaming

(ρu) = l, (ρv) = m, (ρw) = n, (ρY) = o, (3.6.40)

Thus,

(ρ̃ − ρ0)

(
Q− a2 − Y

pY

ρ

)
+

pi

ρ

[
(̃e− e0) −

(
u
(̃
l − l0

)
+ v (m̃−m0) + w (̃n− n0)

)]
+

pY

ρ
(̃o− o0) = 0, (3.6.41)

− (ρ̃ − ρ0) v+ (m̃−m0) = 0, (3.6.42)

− (ρ̃ − ρ0) w+ (̃n− n0) = 0, (3.6.43)

(̃o− o0) − Y (ρ̃ − ρ0) = 0, (3.6.44)

(ρ̃ − ρ1)

(
Q− aλeig

0 − Y
pY

ρ

)
+

(̃
l − l1

) (
a− u

pi

ρ

)
− (m̃−m1) v

pi

ρ
− (̃n− n1) w

pi

ρ
+

(̃e− e1)
pi

ρ
+

pY

ρ
(̃o− o1) = 0, (3.6.45)

(ρ̃ − ρ2)

(
Q+ aλeig

0 − Y
pY

ρ

)
−

(̃
l − l2

) (
a+ u

pi

ρ

)
− (m̃−m2) v

pi

ρ
− (̃n− n2) w

pi

ρ
+

(̃e− e2)
pi

ρ
+

pY

ρ
(̃o− o2) = 0. (3.6.46)

Repeating the technique by Courant and Hilbert [43], multiplythe above equations by
the coefficientsc1−6

ρ̃ρ+l̃ l+m̃m+ñn+ẽe+õo = ρ0ρ+l0l+m0m+n0n+o0o+e0e+2a2 (c5R1 + c6R2) , (3.6.47)

Where,

ρ = c1

(
Q− a2 − Y

pY

ρ

)
−c2v−c3w+c5

(
Q− aλeig

0 − Y
pY

ρ

)
+c6

(
Q+ aλeig

0 − Y
pY

ρ

)
−c4Y,

(3.6.48)
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l = c5

(
a− u

pi

ρ

)
− c6

(
a+ u

pi

ρ

)
− c1u

pi

ρ
, (3.6.49)

m= − (c1 + c5 + c6) v
pi

ρ
+ c2, (3.6.50)

n = − (c1 + c5 + c6) w
pi

ρ
+ c3, (3.6.51)

e=
pi

ρ
[c1 + c5 + c6] , (3.6.52)

o = c4 +
pY

ρ
(c1 + c5 + c6) , (3.6.53)

2a2R1 = (ρ0 − ρ1)

(
aλeig

0 − Q+ Y
pY

ρ

)
+ (l0 − l1)

(
u

pi

ρ
− a

)
+ (m0 −m1) v

pi

ρ
+

(n0 − n1) w
pi

ρ
− (e0 − e1)

pi

ρ
− (o0 − o1)

pY

ρ
, (3.6.54)

2a2R2 = − (ρ0 − ρ2)

(
Q+ aλeig

0 − Y
pY

ρ

)
+ (l0 − l2)

(
u

pi

ρ
+ a

)
+ (m0 −m2) v

pi

ρ
+

(n0 − n2) w
pi

ρ
− (e0 − e2)

pi

ρ
− (o0 − o2)

pY

ρ
. (3.6.55)

This system of equations must be inverted to solve forc5 and c6. First combining
(3.6.49) and (3.6.52):

c5 − c6 =
l + λeig

0 e

a
. (3.6.56)

Next add (3.6.48) to (3.6.49) multiplied byu, (3.6.50) multiplied byv, (3.6.51) multi-
plied byw, and (3.6.53) multiplied byY:

c5 + c6 =
ρ + lu +mv+ nw+ eH+ oY

a2
, (3.6.57)

H = qK + i +
p
ρ
, a2 = p

pi

ρ2
+ pρ. (3.6.58)

Now c5 andc6 can be obtained by subtraction and additions of (3.6.56) and(3.6.57).

c5 =
1

2̃a2

[
ρ + l (u+ a) +mv+ nw+ e

(
H + aλeig

0

)
+ oY

]
,

c6 =
1

2̃a2

[
ρ + l (u− a) +mv− +nw+ e

(
H − aλeig

0

)
+ oY

]
.



3.6 Riemann Solvers 47

Settingρ = 1, l = m= n = e= o = 0, then:

c5 = c6 =
1

2a2
.

Inserting this into (3.6.47), an equation for the cell face value ofρ̃ is gained:

ρ̃ = ρ0 + R1 + R2. (3.6.59)

Likewise, settingl = 1, ρ = m= n = e= o = 0, then:

c5 =
(u+ ã)

2a2
, (3.6.60)

c6 =
(u− ã)

2a2
, (3.6.61)

thus,

l̃ = l0 + (u+ a) R1 + (u− a) R2. (3.6.62)

An identical operation for̃m, ñ, and̃eyields:

m̃= m0 + v (R1 + R2) , (3.6.63)

ñ = n0 + w (R1 + R2) , (3.6.64)

ẽ= e0 +
(
H + aλeig

0

)
R1 +

(
H − aλeig

0

)
R2. (3.6.65)

For õ,

c5 = c6 =
Y

2a2
,

õ = o0 + Y (R1 + R2) . (3.6.66)

Compact Form

Now, examining the final equations, they can be rewritten in amore compact form
suitable for computation. Starting with (3.6.59):

ρ̃ = ρ0 + ρ + r1 + r2, (3.6.67)

ρ =
pi

ρs2

[
e− e0 − ρ0

(
Q
ρ

pi
− Y

pY

pi

)
− pY

pi
o0

]
, (3.6.68)

e= l0u+m0v+ n0w, (3.6.69)
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r1 =
1

2a2

{
ρ1

(
Q− aλeig

0 − Y
pY

ρ

)
+ l1

(
a− u

pi

ρ

)
− pi

ρ
(m1v− n1w+ e1) + o1

pY

ρ

}
,

(3.6.70)

r2 =
1

2a2

{
ρ2

(
Q+ aλeig

0 − Y
pY

ρ

)
− l2

(
a+ u

pi

ρ

)
− pi

ρ
(m2v− n2w+ e2) + o2

pY

ρ

}
.

(3.6.71)

Similarly,
l̃ = l0 + (u+ a) r1 + (u− a) r2 + uρ, (3.6.72)

m̃= m0 + v (r1 + r2 + ρ) , (3.6.73)

ñ = n0 + w (r1 + r2 + ρ) , (3.6.74)

ẽ= e0 +
(
H + aλeig

0

)
r1 +

(
H − aλeig

0

)
r2 + Hρ, (3.6.75)

õ = o0 + Y (ρ + r1 + r2) . (3.6.76)

Equations (3.6.67) to (3.6.76) give the characteristic based conservative variables which
can then be used to calculate the interface flux following Godunov’s method.

3.6.2 Total Enthalpy Conservation of the Mixture Model

The Scalar Non-Conservative Invariants

To derive an approximate Riemann solver for each flux the methodology in Section
3.6.1 can be followed in considering the dimensionally split fluxes in equation (3.6.1).
Expanding for each of the governing equations, and reducingto primitive variables:

∂ρ̃

∂t
+ ũ

∂ρ̃

∂x
+ ρ̃

∂ũ
∂x
= 0, (3.6.77)

ρ̃
∂ũ
∂t
+ ρ̃ũ

∂ũ
∂x
+ ρ̃

∂p̃
∂x
= 0, (3.6.78)

ρ̃
∂̃v
∂t
+ ρ̃ũ

∂̃v
∂x
= 0, (3.6.79)

ρ̃
∂w̃
∂t
+ ρ̃ũ

∂w̃
∂x
= 0, (3.6.80)

∂p̃
∂t
+ ũ

∂p̃
∂x
+ ρ̃a2∂ũ

∂x
= 0, (3.6.81)

ρ̃
∂χ̃

∂t
+ ρ̃ũ

∂χ̃

∂x
= 0, (3.6.82)

ρ̃
∂

∂t
1

M̃
+ ρ̃ũ

∂

∂x
1

M̃
= 0. (3.6.83)
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wherea is the speed of sound. The time derivative of the conservative variables is
replaced to introduce the vector of the conservative variables evaluated at the next time
step, as detailed in Section 3.6.1:

(ρ̃ − ρl)
∆t

+ ρ̃x

(
ũ− λeig

)
+ ρ̃ux = 0, (3.6.84)

ρ̃

(
(̃u− ul)
∆t

+ ũx

(
ũ− λeig

))
+ p̃x = 0, (3.6.85)

ρ̃

(
(̃v− vl)
∆t

+ ṽx

(
ũ− λeig

))
= 0, (3.6.86)

ρ̃

(
(w̃− wl)
∆t

+ w̃ξ

(
ũ− λeig

))
= 0, (3.6.87)

(p̃− pl)
∆t

+ p̃x

(
ũ− λeig

)
+ ρ̃a2ux = 0, (3.6.88)

ρ̃
(χ̃ − χl)
∆t

+ ρ̃χ̃x

(
ũ− λeig

)
= 0, (3.6.89)

ρ̃

(
1
M̃
− 1
Ml

)

∆t
+ ρ̃

(
1

M̃

)

x

(
ũ− λeig

)
= 0. (3.6.90)

Multiply each equation by a constant and add them together:

1
∆t

[
c1 (ρ̃ − ρl) + c5 (p̃− pl) + ρ̃ {c2 (̃u− ul) + c3 (̃v− vl)+

c4 (w̃− wl) + c6 (χ̃ − χl) + c7

(
1

M̃
− 1
Ml

)}]
+ c1ρ̃x

(
ũ− λeig

)
+

ρ̃
[
ux

{(
c1 + c5a

2
)
X + c2

(
ũ− λeig

)}
+ vxc3

(
ũ− λeig

)
+

wxc4

(
ũ− λeig

)
+ c6χ̃x

(
ũ− λeig

)
+ c7

(
1

M̃

)

x

(
ũ− λeig

)]
+ p̃x

[
c2 + c5

(
ũ− λeig

)]
= 0.

(3.6.91)

As the coefficients are arbitrary, then if (3.6.91) equals zero, each of the individual
components must equal zero, giving:

c1 (ρ̃ − ρl) + c5 (p̃− pl) + ρ̃ {c2 (̃u− ul) + c3 (̃v− vl)+

c4 (w̃− wl) + c6 (χ̃ − χl) + c7

(
1

M̃
− 1
Ml

)}
= 0, (3.6.92)

and,
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c1

(
ũ− λeig

)
= 0, (3.6.93)

(
c1 + c5a

2
)
+ c2

(
ũ− λeig

)
= 0, (3.6.94)

c3

(
λ

eig
0 − λ

eig
)
= 0, (3.6.95)

c4

(
λ

eig
0 − λ

eig
)
= 0, (3.6.96)

c2 + c4

(
ũ− λeig

)
= 0, (3.6.97)

c5

(
ũ− λeig

)
= 0, (3.6.98)

c7

(
ũ− λeig

)
= 0, (3.6.99)

As the coefficients can be any constant, thenλeig
0 = ũ from (3.6.93). This implies that

c1 = −c5a2 from (3.6.94), andc2 = 0 from (3.6.97). Substituting this into (3.6.92)
yields:

c5

[
(p̃− pl) − a2 (̃ρ − ρl)

]
− ρ̃ {c3 (̃v− vl)+

c4 (w̃− wl) + c6 (χ̃ − χl) + c7

(
1

M̃
− 1
Ml

)}
= 0. (3.6.100)

As this equation must be true regardless of the choice of coefficients, these can be
arbitrarily set to zero giving the following set of equations:

(p̃− p0) − a2 (ρ̃ − ρ0) = 0, (3.6.101)

(̃v− v0) = 0, (3.6.102)

(w̃− w0) = 0, (3.6.103)

(χ̃ − χ0) = 0, (3.6.104)
(

1

M̃
− 1
M0

)
= 0. (3.6.105)

However, if settingc1 = 0 and considering equations (3.6.92) to (3.6.99) again:

c2 =
c5a2

(
λ

eig
0 − λeig

) , (3.6.106)

Inserting the above into (3.6.97):

(
λ

eig
0 − λ

eig
)2
= a2, (3.6.107)
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giving the eigenvaluesλeig = λ
eig
1 = λ

eig
0 + a andλeig

2 = λ
eig
0 − a. Forλeig

1 ,

(p̃− p1) + ρ̃a (̃u− u1) = 0, (3.6.108)

for λeig
2 ,

(p̃− p2) − ρ̃a (̃u− u2) = 0, (3.6.109)

where (.)1 and (.)2 indicate values evaluated along theλeig
1 andλeig

2 characteristic lines,
respectively. There are now six characteristic equations for the six unknown averaged
flow values needed to determine the flux at the cell face.

Converting to Conservative Form

The next step is to convert equations (3.6.101)-(3.6.109) to conservative variables. The
differences can be expressed using the chain rule of differentiation:

∆u =
∆ (ρu) − u∆ρ

ρ
, ∆v =

∆ (ρv) − v∆ρ
ρ

, ∆w =
∆ (ρw) − w∆ρ

ρ
, (3.6.110)

∆χ =
∆ (ρχ/M) − χ∆ρ/M

ρ/M , ∆

(
1
M

)
=
∆ (ρ/M) − (1/M)∆ρ

ρ
. (3.6.111)

Utilising the methodology from Drikakis and Tsangaris [54]for an arbitrary equation
of state, the pressure difference is expressed as:

∆p = pi∆i + pρ∆ρ + pχ∆χ. (3.6.112)

From (3.1.10) the difference in internal energyi can be written as:

ρ∆i = ∆e− [
u∆ (ρu) + v∆ (ρv) + w∆ (ρw)

] − i∆ρ. (3.6.113)

Substituting (3.6.113) into (3.6.112):

∆p = Q∆ρ+
pi

ρ

[
∆e− (u∆ (ρu) + v∆ (ρv) + w∆ (ρw)

]
+

pχ
ρ

(∆ (ρχ) − χ∆ρ) , (3.6.114)

Q = pρ + qK
pi

ρ
− i

pi

ρ
, qK =

1
2

(u2 + v2 + w2). (3.6.115)

Next these differences are substituted into equations (3.6.101)-(3.6.109), and renaming

(ρu) = l, (ρv) = m, (ρw) = n, (ρχ/M) = o, (ρ/M) = q (3.6.116)

giving,
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(ρ̃ − ρ0)
(
Q− a2

)
+

pi

ρ

[
(̃e− e0) −

(
u
(̃
l − l0

)
+ v (m̃−m0) + w (̃n− n0)

)]
+

pχ
q

[
(̃o− o0) − χ (̃q− q0)

]
= 0, (3.6.117)

− (ρ̃ − ρ0) v+ (m̃−m0) = 0, (3.6.118)

− (ρ̃ − ρ0) w+ (̃n− n0) = 0, (3.6.119)

(̃o− o0) − χ (ρ̃ − ρ0) = 0, (3.6.120)

(ρ̃ − ρ1)
(
Q− aλeig

0

)
+

(̃
l − l1

) (
a− u

pi

ρ

)
− (m̃−m1) v

pi

ρ
− (̃n− n1) w

pi

ρ
+

(̃e− e1)
pi

ρ
+

pχ
q

[
(̃o− o1) − χ (̃q− q1)

]
= 0, (3.6.121)

(ρ̃ − ρ2)
(
Q+ aλeig

0

)
−

(̃
l − l2

) (
a+ u

pi

ρ

)
− (m̃−m2) v

pi

ρ
− (̃n− n2) w

pi

ρ
+

(̃e− e2)
pi

ρ
+

pχ
q

[
(̃o− o2) − χ (̃q− q2)

]
= 0. (3.6.122)

Next, repeating the technique by Courant and Hilbert [43], multiply the above equa-
tions by the coefficientsc1−7

ρ̃ρ+ l̃ l+m̃m+ñn+ẽe+õo+q̃q = ρ0ρ+l0l+m0m+n0n+o0o+q0q+e0e+2a2 (c6R1 + hR2) ,
(3.6.123)

Where,

ρ = c1

(
Q− a2

)
− c2v− c3w+ c6

(
Q− aλeig

0

)
+ c7

(
Q+ aλeig

0

)
− c5

M , (3.6.124)

l = c6

(
a− u

pi

ρ

)
− c7

(
a+ u

pi

ρ

)
− c1u

pi

ρ
, (3.6.125)

m= − (c1 + c6 + c7) v
pi

ρ
+ c2, (3.6.126)

n = − (c1 + c6 + c7) w
pi

ρ
+ c3, (3.6.127)

e=
pi

ρ
[c1 + c6 + c7] , (3.6.128)

o = c4 +
pχ
q

(c1 + c6 + c7) , (3.6.129)
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q = c5 −
χpχ
q

(c1 + c6 + c7) − c4χ, (3.6.130)

2a2R1 = (ρ0 − ρ1)
(
aλeig

0 − Q
)
+ (l0 − l1)

(
u

pi

ρ
− a

)
+ (m0 −m1) v

pi

ρ
+

(n0 − n1) w
pi

ρ
− (e0 − e1)

pi

ρ
−

pχ
q

[
(o0 − o1) − χ (q0 − q1)

]
, (3.6.131)

2a2R2 = − (ρ0 − ρ2)
(
Q+ aλeig

0

)
+ (l0 − l2)

(
u

pi

ρ
+ a

)
+ (m0 −m2) v

pi

ρ
+

(n0 − n2) w
pi

ρ
− (e0 − e2)

pi

ρ
−

pχ
q

[
(o0 − o2) − χ (q0 − q2)

]
. (3.6.132)

This system of equations must be inverted to solve forc6 and c7. First combining
(3.6.125) and (3.6.128):

c6 − c7 =
l + λeig

0 e

a
. (3.6.133)

Next add (3.6.124) to (3.6.125) multiplied byu, (3.6.126) multiplied byv, (3.6.127)
multiplied byw, (3.6.129) multiplied byχ/M, and (3.6.130) multiplied by 1/M:

c6 + c7 =
ρ + lu +mv+ nw+ eH+ oχ/M + q/M

a2
, (3.6.134)

H = qK + i +
p
ρ
, a2 = p

pi

ρ2
+ pρ. (3.6.135)

Now c6 andc7 can be obtained by subtraction and additions of (3.6.133) and (3.6.134).

c6 =
1

2̃a2

[
ρ + l (u+ a) +mv+ nw+ e

(
H + aλeig

0

)
+ o

χ

M +
q
M

]
, (3.6.136)

c7 =
1

2̃a2

[
ρ + l (u− a) +mv− +nw+ e

(
H − aλeig

0

)
+ o

χ

M +
q
M

]
. (3.6.137)

Settingρ = 1, l = m= n = e= o = q = 0, then:

c6 = c7 =
1

2a2
. (3.6.138)

Inserting this into (3.6.123), an equation for the cell facevalue ofρ̃ is gained:

ρ̃ = ρ0 + R1 + R2. (3.6.139)
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Likewise, settingl = 1, ρ = m= n = e= o = 0 = q = 0, then:

c6 =
(u+ ã)

2a2
, (3.6.140)

c7 =
(u− ã)

2a2
, (3.6.141)

thus,

l̃ = l0 + (u+ a) R1 + (u− a) R2. (3.6.142)

An identical operation for̃m, ñ, and̃eyields:

m̃= m0 + v (R1 + R2) , (3.6.143)

ñ = n0 + w (R1 + R2) , (3.6.144)

ẽ= e0 +
(
H + aλeig

0

)
R1 +

(
H − aλeig

0

)
R2. (3.6.145)

For õ,
c6 = c7 =

χ

2Ma2
, (3.6.146)

õ = o0 +
χ

M (R1 + R2) . (3.6.147)

For q̃,

c6 = c7 =
1

2Ma2
, (3.6.148)

õ = q0 +
1
M (R1 + R2) . (3.6.149)

Compact Form

Now, examining the final equations, they can be rewritten in amore compact form
suitable for computation. Starting with (3.6.139):

ρ̃ = ρ0 + ρ + r1 + r2, (3.6.150)

ρ =
1
a2

[
pi

ρ
(e− e0) +

pχ
q

(χq0 − o0) − ρ0Q

]
, (3.6.151)

e= l0u+m0v+ n0w, (3.6.152)

r1 =
1

2a2

{
ρ1

(
Q− aλeig

0

)
+ l1

(
a− u

pi

ρ

)
−m1v

pi

ρ
− n1w

pi

ρ
+ e1

pi

ρ
−

pχ
q

(χq1 − o1)

}
,

(3.6.153)
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Gas 1 Gas 2 Gas 2

j − 1 j j + 1

j − 1/2 j + 1/2
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Similarly,
l̃ = l0 + (u+ a) r1 + (u− a) r2 + uρ, (3.6.155)

m̃= m0 + v (r1 + r2 + ρ) , (3.6.156)

ñ = n0 + w (r1 + r2 + ρ) , (3.6.157)

ẽ= e0 +
(
H + aλeig

0

)
r1 +

(
H − aλeig

0

)
r2 + Hρ, (3.6.158)

õ = o0 +
χ

M (ρ + r1 + r2) . (3.6.159)

q̃ = q0 +
1
M (ρ + r1 + r2) . (3.6.160)

Equations (3.6.150) to (3.6.160) give the characteristic based conservative variables
which can then be used to calculate the inter-cell flux following Godunov’s method.

Conservation of Pressure Equilibrium

It has been shown previously that the Mass Fraction model does not maintain pressure
equilibrium, e.g., see [1, 31, 38, 85, 93, 103, 104, 114]. However, it was reported by
Wanget al. [191] that the ThCM model conserved pressure equilibrium. This is not
the case, as will be demonstrated in this subsection. In the original paper by Wanget
al. the error was introduced as they only examined the case wherethe density is equal
on both sides of the contact surface.

Considering the flow through the three computational cells shown in Figure 3.1, where
the contact surface is located atj − 1/2, it can be shown that the pressure equilibrium
within the cell is not maintained. The contact surface between two gases is located at
j − 1/2 and is moving at a constant velocityu. Assume (.)2 quantities in the cellj and
j+1, and (.)1 in cell j−1 at time leveln. Using the approximate Riemann solver derived
here the characteristics-based variables computed are exact. Given a first order in time
and space discretisation, the pressure at the next time stepin cell j can be written as
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pn+1

pn
=

[
(γ1 − 1) (1− νu) + (γ2 − 1) νu

]
[T1 (1− νu) + T2νu]

T1 (1− νu) (γ1 − 1) + T2νu (γ2 − 1)
, (3.6.161)

where the identitiescv = R/ (γ − 1) andρ = pM/RuT have been utilised, whereT
is the temperature,R the specific gas constant,Ru the universal gas constant, andν =
∆t/∆x . This result is similar to that gained by Jennyet al. [93] for the γ model.
Thus for either the Mass Fraction or ThCM two-equation model,pressure equilibrium
is maintained if any of the following conditions are satisfied:

• The two temperatures are equal,

• νu equals one or zero.

In [191] the authors suggest using the one-equation ThCM model, however the perfor-
mance is much worse with the one-equation model as pressure oscillations occur if the
two densities are different. This is much more restrictive than temperature equivalence.

3.6.3 Quasi-Conservative Methods

Roe Scheme

The equations of Abgrall [2] are solved using a Roe scheme of similar nature to that
proposed by Allaireet al. [4], except that it has been extended to three dimensions
from their one dimensional description. This is described here for multicomponent
flows consisting of two perfect gases. Details of the derivation of the standard Roe
scheme is given in Toro [184]. The derivation of the Roe schemerequires knowledge
of the flux Jacobian of the system, the eigenvalues and eigenvectors, and the wave
strengths. Given a direction split system of the form,

∂U
∂t
+ A (U)

∂U
∂x
= 0, (3.6.162)

the flux JacobianA is given by,

A =


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1
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−uv −uv v u 0 0 0
−uw −uw w 0 u 0 0
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κ
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(
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)
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0 0 0 0 0 0 u



, (3.6.163)
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β1,2 =
1
κ

(
qK − δ1,2

)
, κ1,2 =

∂ρ1,2i1,2
∂p1,2

, δ1,2 =
∂ρ1,2i1,2
∂ρ1,2

, (3.6.164)

κ = α1κ1 + α2κ2, M =
1
κ

(ρ1δ1 − ρ1i1) −
1
κ

(ρ2δ2 − ρ2i2) , (3.6.165)

This Jacobian gives five repeated eigenvalues

λ
eig
2 = λ

eig
3 = λ

eig
4 = λ

eig
5 = λ

eig
6 = u, (3.6.166)

and two non-repeated

λ
eig
1 = u− a λ

eig
7 = u+ a, (3.6.167)

where the speed of sounda is defined as

a2 = (H − qK) κ−1. (3.6.168)

The eigenvectors are not unique, as there are five repeated eigenvalues. This means that
any linear combination of the first five eigenvectors of the system is itself an eigenvec-
tor (replacing one of the original five). With some manipulation the eigenvectors can
be cast into the following form

K1 =
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K5 =
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. (3.6.170)

The Roe flux can be written as
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Fi+1/2 =
1
2

(FL + FR) − 1
2

7∑

j=1

∣∣∣∣λeig
j

∣∣∣∣ δ jK j . (3.6.171)

The Roe scheme uses Roe averages to compute the wave strengthsδ across each lin-
earised wave in the Riemann problem. Defining the Roe average quantity as

a =

√
ρLaL +

√
ρRaR√

ρL +
√
ρR

, a =

√
ρLaR+

√
ρRaL√

ρL +
√
ρR

. (3.6.172)

The wave strengths are

δ1 =
(
∆p− ρa∆u

)
/2a2, (3.6.173)

δ2 = ∆ (ρ1α1) −
Y1

a2
∆p, (3.6.174)

δ3 = ∆ (ρ2α2) −
Y2

a2
∆p, (3.6.175)

δ4 = ∆ (ρv) − v∆ρ, (3.6.176)

δ5 = ∆ (ρw) − w∆ρ, (3.6.177)

δ6 = ∆α, (3.6.178)

δ7 =
(
∆p+ ρa∆u

)
/2a2. (3.6.179)

where the speed of sound of the mixturea is estimated numerically as

a2 =

2∑

i=1

Yiκia2
i

κ
. (3.6.180)

from the wave strengths and the eigenvalues the last term in Equation (3.6.171) can be
rewritten as

1
2

7∑
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∣∣∣∣λeig
j

∣∣∣∣ δiK j = |u− a| δ1
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,

(3.6.181)

B = ∆ (ρi) +
u2
+ v2
+ w2

2
∆ρ − H∆p

a2
. (3.6.182)
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It should be noted that as the equation for the evolution ofα1 is decoupled from the
other equations it is not solved using the Roe scheme. Instead, it is solved separately
at using a simple upwind scheme following Allaireet al [4]. If the scheme is at first
order this is

Fi+1/2 =
1
2

(u+ |u|)∆α1, (3.6.183)

Fi−1/2 =
1
2

(|u| − u)∆α1. (3.6.184)

If it is second or higher order

Fi+1/2 =
1
2

(
uRα1,R+ uLα1,L

) − 1
4
|uR+ uL|

(
α1,R− α1,L

) − α1

2
(uR+ uL) . (3.6.185)

As the Roe scheme does not prevent unphysical expansion shocks, the standard ‘en-
tropy fix’ proposed by Harten and Hyman [77] is applied to the eigenvalues to prevent
this occurring.

HLLC Scheme

The HLLC method proposed by Johnsen and Colonius has been implemented to solve
the single equation version of the quasi-conservative system. The single species ver-
sion of the HLLC method is detailed in Toro [184], and the addition of the equation for
the transport ofκ requires only slight modification. Firstly, the direction split transport
equation forκ is recast as,

∂κ

∂t
+
∂uκ
∂ξ
− κ∂u

∂ξ
= 0. (3.6.186)

The first two terms of this equation are conservative, and theflux for this can be solved
in an identical manner to the flux of density in the continuityequation. The third term
is added as a source term. This is reformulated as a finite volume flux by integrating
over a volume giving (in one dimension)

∫ i+1/2

i−1/2
κ
∂u
∂x

dx≈ κi(u
HLLC
i+1/2 − uHLLC

i−1/2 ), (3.6.187)

where the integral has been evaluated to second order accuracy in κ. Finally, the veloc-
ities are computed using

uHLLC =
1+ sign(s∗)

2
(uL + s−(β∗L − 1))+

1− sign(s∗)
2

(uR + s+(β∗R− 1)), (3.6.188)
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β∗L,R =
sL,R− uL,R

sL,R − s∗
, s− = min(0, sL), s+ = max(0, sR), (3.6.189)

where the required wave speeds are estimated using a primitive variable Riemann so-
lution to the pressure and velocity in the intermediate region of the Riemann problem,
exactly as detailed in [184], pp.303-305.

3.7 Numerical Test cases

In this section four test cases are presented to validate thenew Riemann solvers and
highlight the strengths and weaknesses of each multi-component model. The test cases
have been chosen to be representative of the three dimensional compressible problems
which are the focus of this thesis. These are shock interactions, typically with a sta-
tionary interface. It is important that spurious oscillations are minimised, and that the
solution is as accurate as possible. Air is the most commonlyemployed driver gas,
however shock tube experiments also employ Helium or Sulphur-Hexafluoride (SF6)
as the second gas. This generates a relatively large densityratio, and hence Atwood
number.

The number of pointsNx = 100 for all simulations, however the ThCM model has been
run withNx = 400 at fifth-order accuracy for each test case as a reference solution. This
reference solution is independent of model employed (excepting pressure oscillations,
where present). The Courant numberC = 0.6 to aid direct comparison to previous
papers. Piecewise constant reconstruction (first order in space) is employed, along with
third order TVD Runge-Kutta in time (see section 3.3 for full details). The coarse grid
and low order scheme has been chosen to highlight the performance of the Riemann
solvers.

Throughout this section Mass Fraction is abbreviated to ’MF’, Total Enthalpy Con-
servation of the Mixture to ’ThCM’, the Allaireet al. quasi-conservative method is
denoted by ‘QCA’, and the Johnsen and Colonius quasi-conservative method ‘JC’.
The ThCM reference results are denoted by ‘REF’.

3.7.1 Test A: Modified Sod Shock Tube Problem

A modified version of the Sod shock tube problem [171] is used to compare the per-
formance of the schemes with previous work with the same or similar test case, such
as Abgrall and Karni [3], Chargyet al. [31], Karni [103], and Larrouturou [114]. The
Riemann problem is defined initially as:

(ρ,u, p, γ)L = (1,0,1,1.4) ,

(ρ,u, p, γ)R = (0.125,0,0.1,1.2) .



3.7 Numerical Test cases 61

Position

D
en

si
ty

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

MF
ThCM
QCA
JC
REF

(a) Density

Position
P

re
ss

ur
e

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

MF
ThCM
QCA
JC
REF

(b) Pressure

Position

V
el

oc
ity

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

MF
ThCM
QCA
JC
REF

(c) Velocity

Position

E
ne

rg
y

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

MF
ThCM
QCA
JC
REF

(d) Energy

Position

γ

0 0.2 0.4 0.6 0.8 11.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

MF
ThCM
QCA
JC
REF

(e) γ

Figure 3.2: Results for Test A
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Additionally cv,L = cv,R completely defines the problem.

Figure 3.2 compares the performance of the models at timet = 0.2s. As a broad
observation, all models perform well. The MF model suffers from an undershoot in
density profile (Figure 3.2(a)), and a non-physical jump in velocity over the contact
surface as illustrated in Figure 3.2(c). This jump in velocity across the contact surface
is analogous to the behaviour observed in first-order simulations by Karni [103]. Karni
showed that the rate of convergence of this error as mesh resolution increases is ex-
tremely slow. The ThCM model is superior to the MF model in thisexample, showing
no density undershoot at the contact surface and a reduced velocity jump. QCA and
JC perform the best, effectively reducing this error to zero. The slight overshoot in the
velocity at the tail of the expansion wave in the QCA solution is a remnant of the initial
discontinuity and is not considered to be indicative of any particular weakness in the
model.

The two quasi-conservative models capture the position of the shock most accurately,
however the ThCM model performs much better at the contact surface, and along with
the MF model appear to be the least diffusive.

3.7.2 Test B: Helium Slab

This problem is a right facing shock wave passing through a slab of stationary He-
lium located at 0.4 < x < 0.6, producing a series of reflected and transmitted shock
waves inside the slab. This is a more complex problem, however, it is representative
of many scenarios of practical interest such as Richtmyer Meshkov instabilities and
shock-bubble interactions. The problem is defined as follows:

(ρ,u, p, γ, cv)x<0.25 = (1.3765,0.3948,1.57,1.4,717.2) ,

(ρ,u, p, γ, cv)0.25<x<0.4 = (1,0,1,1.4, ,717.2) ,

(ρ,u, p, γ, cv)0.4<x<0.6 = (0.138,0,1,1.67,3114.9) ,

(ρ,u, p, γ, cv)0.6<x<1.0 = (1,0,1,1.4, ,717.2) .

and has been presented previously in [2, 191]. The results are detailed in Figure 3.3
for time t = 0.3s. At this low resolution there is very little difference between the
different models, indeed, they form a single line. However, oscillations can be seen
in the higher-order, higher resolution ThCM reference simulation. This is due to the
difference in temperature as the shock passes through the material interface, and is
completely inhibited by numerical dissipation in the lowerresolution simulation.

A refined simulation was conducted by increasing the number of cells in the x direction
Nx to 400, and using the van Leer second-order limiter. A close up of the pressure and
velocity profiles in the central region of the problem is shown in Figure 3.4. There are
oscillations in the pressure and velocity field for the MF model are generated as the
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Figure 3.3: Results for Test B
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Figure 3.4: Pressure and velocity fields for Test B at second-order accuracy and Nx = 400

shock passes through the material interface. In the ThCM model these oscillations sig-
nificantly smaller, however, they are still present. These one-dimensional oscillations
would translate to the spurious generation of vortices in two and three dimension. Both
quasi-conservative methods conserve pressure equilibrium excellently at low and high
orders of accuracy.

3.7.3 Test C: Shock - SF6 Slab

This problem is a right facing shock wave passing through a slab of stationary SF6
located at 0.4 < x < 0.6, producing a series of reflected and transmitted shock waves
inside the slab. This test case highlights schemes which have slight deviations from
the actualγ, which is very close to one in SF6. The initial conditions are,

(ρ,u, p, γ, cv)x<0.25 = (1.3765,0.3948,1.57,1.4,717.2) .

(ρ,u, p, γ, cv)0.25<x<0.4 = (1,0,1,1.4, ,717.2) ,

(ρ,u, p, γ, cv)0.4<x<0.6 = (5.5,0,1,1.076,686.3) ,

(ρ,u, p, γ, cv)0.6<x<1.0 = (1,0,1,1.4, ,717.2) .

and the output time ist = 0.4s. Once more, all models perform well, only QCA giving
a discrepancy in the speed of the reflected shock wave. As withthe previous problem,
the reference solution has an oscillation at the material interface. The error in the
physical model is not dissipated by the numerical scheme at high resolution.

The results from the same simulation with a second order van Leer limiter andNx =

400 for all methods is shown in Figure 3.6. This illustrates that the pressure spike
when using the MF model is significant when computing a realistic test problem. With
less dissipative limiters the pressure spikes represent a significant problem and can
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Figure 3.5: Results for Test C
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Figure 3.6: Pressure and velocity fields for Test C at second-order accuracy and Nx = 400

cause negative energies. The more closely coupled ThCM modelgives lower oscil-
lations, and the quasi-conservative models are without oscillation. More importantly,
the quasi-conservative models are significantly better resolved in the regions between
the reflected and transmitted shocks, whereas the ThCM model does not achieve the
plateau values. This shows a long time and distant influence of the small oscillations
generated at the material interface on the overall flow structure.

3.7.4 Test D: Strong Shock Wave

Some important situations involve strong shock waves, a typical example of this would
be the strengthening of a curved shock. This could occur via diffraction of an initially
plane shock wave, or as a result of a converging cylindrical or spherical shock.

To test the performance of the schemes in this case, Test C hasbeen run again but with
a Mach 10 shock wave. This is defined as follows:

(ρ,u, p, γ, cv)x<0.25 = (5.714,9.762,116.5,1.4,717.2) .

where the rest of the domain is initialised as for Test C. Results are shown in Fig-
ure 3.7 for timet = 0.1s. The main purpose of this test case is to demonstrate that
the JC method does not perform well in the presence of strong shocks. The non-
conservative formulation, and the method of solution give strong variations inγ as the
shock changes form across a material interface, and also as it initially smears to the
grid. There is a variation of greater than 3% for shocks aboveMach=3.5, and this
becomes worse with increasing resolution and order of accuracy. Indeed, this problem
could not be run atNx = 400 for the JC model as pressure becomes negative whenγ

drops below 1.

The results for MF, ThCM and QCA are good, however there is a difference in the po-
sition of the reflected shock. The MF and ThCM models perform better than the QCA
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Figure 3.7: Results for Test D
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model as they have closer shock speeds to the converged solution, and match better to
the pressure profile. However, the QCA model does not have pressure oscillations at
the material interface which exist in the MF and ThCM models.

3.7.5 Discussion

Several observations can be made about the multicomponent models tested. The MF
model generates significant oscillations at the material interface due to imperfections
in the physical model. Closer coupling of the molecular weight and γ in regions
dominated by numerical dissipation leads to reduced pressure oscillations when em-
ploying the ThCM model. The oscillations are eliminated in the QCA and JC quasi-
conservative methods.

The JC quasi-conservative method is generally superior to the other methods, giving
more sharply resolved features, especially in the shock-SF6 test case. However, it per-
forms badly for strong shock waves due to the treatment of thenon-conservative ad-
ditional equation. This could be prohibitative in simulations with strongly converging
shock waves.

Based on the test cases in this section, the ThCM model using thenew characteristics
based Riemann solver appears to be the best compromise for flows where reasonably
strong shocks are present and it is important to get signal speeds as accurate as possible,
but the JC HLLC Riemann solver is clearly much better in all other cases. The ThCM
model is employed primarily within this thesis as a conservative choice ensuring that
the values ofγ remain within the prescribed bounds, preventing problems created ifγ
drops below one.

3.8 Numerical Methods for Unsteady Turbulent Flows

3.8.1 Direct Numerical Simulation

Direct Numerical Simulation (DNS) involves the use of an extremely fine grid such that
all of the fluid motion from the largest energy containing scales to the smallest flow
features at the Kolmogorov scale are resolved. In this method there are no approxi-
mations introduced by statistical closure of the Navier-Stokes equations and thus an
’exact’ solution is gained. Unfortunately huge computational resources are required to
perform DNS for typical engineering problems with the present computational power.
The approximate size of the smallest eddies is the Kolmogorov scaleηK, computed as
follows, whereℓ is the integral length scale:

ηk = ℓ

(
uℓ
ν

)−3/4

= Re−3/4ℓ
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Assuming that this is the required order of magnitude of the mesh, then the total num-
ber of points must be the volume of the domain divided by the ’Kolmogorov volume’:

Nx ∼
L3

box

η3
K

∼
L3

box

ℓ3
Re9/4

Thus:
Re≤ N4/9

x

The maximum typical permissable time step is of the order of∆t = ∆x/u, thus the
number of time iterations can be written as:

Nt ∼
T
∆t
∼ T
ηK/u

∼ T
ℓ/u

Re3/4

The total simulation time is thus:

Computer Time∝ NtNx ∝
(

T
ℓ/u

) (Lbox

ℓ

)3

Re3 (3.8.1)

This equation demonstrates that the computational time of any simulation increases
proportionally with the Reynolds number cubed. Using relationship (3.8.1) it has been
shown that on a Teraflop computer a simulation of box sizeLbox = 10ℓ atRe= 50,000
would take 24 years to complete [44, 148]. As many large scalesimulations easily run
into Re∼ 1× 106 the limitations of DNS are clearly illustrated.

As the small scales typically contain little energy compared to the larger scales, this
computational expense can be reduced by modelling the contribution of the smaller
eddies. This approach is called Large Eddy Simulation (LES).

3.8.2 Large Eddy Simulation

Large Eddy Simulations (LES) reduce the computational expense of simulating turbu-
lent flows by assuming that at high Reynolds numbers the small scales are ’universal’.
This concept assumes that the small scales are the same in every flow, whether the
initial large scale eddies are formed from separation from atransonic airfoil, or in a
tidal channel. Considering the kinetic energy spectrum in Figure 2.5, a LES will aim to
resolve all of the energy containing scales (which vary in form from problem to prob-
lem), and some of the inertial range. The rest of the inertialrange and the dissipation
range is modelled in such a way that energy is removed from the’resolved’ vortices in
an identical manner as it would be removed if the ’unresolved’ vortices were present.
An example LES applied to two dimensional shock-induced mixing is shown in Fig-
ure 3.8. The fine scale structures present in the experiment are not directly simulated
by the numerical method, but the dissipation of the numerical method is employed to
model their effects.
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Figure 3.8: Experimental (left) and numerical (right) solutions for development of a shocked
gas column RM instability [58]

Mathematically, the Navier Stokes equations are filtered spatially (with assumed tem-
poral correspondence), giving:

∂ρ

∂t
+ ▽ (ρũ) = 0 (3.8.2)

∂ρũ
∂t
+ ▽ · (ρũũ) = f + ▽ · σ − ▽ · τSGS (3.8.3)

∂E
∂t
+ ▽ ·

[
(E + p)ũ

]
= Q+ ▽ ·

(
κθ ▽ T̃ + ũ · σ

)
− ▽ · FSGS (3.8.4)

σ = 2µS̃ + µb ▽ ·ũ (3.8.5)

S =
[
▽ũ+ (▽ũ)T

]
/2− (▽ · ũ) /3 (3.8.6)

where:
τSGS= ρuu− ρ̄ũũ (3.8.7)

FSGS= (E + p) u−
(
E + p

)
ũ (3.8.8)

and(.) indicates spatially averaged and˜(.) is the Favre weighted average, i.e. ˜u = ρu/ρ.
These equations are exact for a given equal spaced filter, however they are not in closed
form. The quantities labelled (.)SGS rely on information from the unresolved scales,
where SGS stands for ’sub-grid scale’. This data is not available within the simulation,
and thus has to be modelled.

In the traditional form of LES, these sub-grid scale terms are modelled explicitly by
addition extra terms to close the system of equations. LES has had great success when
applied to incompressible flows however compressible flows with discontinuities con-
tinue to be a source of immense difficulty.

There are several key issues. Firstly, existing models are known to provide excessive
dissipation in flows where the growth of an initially small perturbation to fully turbu-
lent flow must be resolved [120, 148]. There are currently very few subgrid models



3.8 Numerical Methods for Unsteady Turbulent Flows 71

capable of capturing a shock wave, most require additional numerical dissipation to
stabilise the numerical scheme in regions of rapid change. It is also noted that results
are often insensitive to the model employed [61], which significantly increases the
complexity of defining the ‘correct’ numerical scheme for a given problem, as there
are a number of empirical coefficients to fix, especially for compressible problems.
Indeed, it was shown in [64] that the optimum choice for the coefficients of a subgrid
model are not only problem dependent, but also grid dependent.

With the large number of uncertainties, some practitionersopt to run simulations with-
out the subgrid model, allowing the numerical method to dissipate turbulent kinetic
energy where necessary. This approach has become known as Implicit Large Eddy
Simulation (ILES).

3.8.3 Implicit Large Eddy Simulation

It has been recognised that some numerical schemes gain goodresults in complex
flows without the explicit addition of a subgrid model [120].This was first observed
by Boriset al. [24] and Youngs [195] who point out that simulating the unfiltered flow
equations instead of the filtered equations gives good results in both decaying homoge-
neous turbulence and mixing flows. Furebyet al. [61] compared and contrasted eight
modelling strategies (including no model) using grid sizesof 163, 323 and 643 in the
simulation of homogeneous decaying turbulence. The turbulent kinetic energy spectra
were compared with the DNS of Jimenezet al. [96], and demonstrated that there were
only small differences in the macroscopic behaviour of the flow for simulations with
and without a subgrid model.

The basis of this approach is that the numerical truncation error associated with dis-
cretising the governing equations results in terms of similar form or action to sub-grid
models, with the filter size being adjusted automatically tothe grid size. As justifi-
cation of the approach, one of two assumptions are made - either the subgrid model
is implicitly designed into the limiting method of the numerical scheme, based on the
observation that an upwind numerical scheme can be rewritten as a central scheme
plus a dissipative term (see [51, 53, 71] and references therein), or that the details of
the dissipation is irrelevant and that the flow has a ‘self adjusting mechanism’ which
yields the correct dissipation of kinetic energy.

Such implicit subgrid models fall into the class of structural models, as there is no
assumed form of the nature of the subgrid flow thus the subgridmodel is entirely
determined by the structure of the resolved flow [159]. An important element of ILES
is the choice of Finite Volume methods. These have an inherent structural model as
the reconstruction phase recovers subgrid velocities up tothe order of accuracy of
the numerical scheme. This is because the Finite Volume method computes the cell
averaged flow quantities (exact quantities filtered by the mesh size) based on exact
fluxes computed at the cell interface. However, it cannot recover modes beyond the
Nyquist frequency, and these are modelled through the numerical dissipation of the
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scheme itself.

Using ILES, excellent results have been gained in simulation of flows as varied as
Rayleigh-Taylor and Richtmyer Meshkov instability [197, 195, 183], Free jets [24, 70],
channel flow [70], open cavity flow [75, 51], geophysical flows[129, 170], delta wings
[67] and decaying turbulence [52, 61, 149, 60, 130, 81, 182].

There has been a large growth in ILES simulations, however, as with LES simulations
there has not been consensus on the appropriate form of the discretisation ‘error’ in
ILES. Thus there is substantial potential for further formalisation and improvement.

The Implicit Subgrid Model

ILES is a so-called ‘no model’ turbulence model. It is assumed that the numerics
provide sufficient modelling of the subgrid terms to allow the ‘correct’ dissipation of
turbulent kinetic energy. As pointed out in the introduction, the subgrid model em-
bedded onto the numerical method used in the discretisationof the convective terms is
determined entirely by the structure of the flow. This has obvious benefits in the sim-
ulation of transitional flows where excess dissipation can damp the growth of critical
modes. A detailed description of the implicit subgrid modelwould be too lengthy to
include (see, for example [53, 128, 24, 127, 71]), however, an outline of the current
analysis of the ILES model will be given in this section.

The finite volume fluxes for the Godunov method can be written in the following for-
mat [184]

Fi+1/2 =
1
2

(FL + FR) − 1
2
|A| (UR − UL ) , (3.8.9)

|A| = K |Λ|K−1, (3.8.10)

whereA is the flux Jacobian,Λ is a diagonal array of eigenvalues,F is the vector
of fluxes and the subscriptsR and L indicate the right and left side of the interface,
respectively. Using this expression it can be seen that the influence of the extrapolation
method on the kinetic energy dissipation rate can be understood as the combination of
two effects.

The first term on the right hand side of (3.8.9) is directly computed from the extrapo-
lated quantities thus it is an approximation of the flux to a certain order of accuracy. In
finite volume methods the filtered quantity is inverted to recover the continuous func-
tion to estimate the extrapolated cell interface values. The numerical grid is assumed
to be equivalent to a top hat filter in physical space, i.e.

Ū =
1
∆Vol

∫ ∆v

0
U∆Vol, (3.8.11)

whereŪ indicates the cell averaged quantity, and∆Vol = ∆x∆y∆z. The inversion is
usually done using a Taylor series expansion of the top hat filter, and shows that the
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leading order difference between the cell averaged quantity and continuous function
measured at the cell centre are at second order, i.e. in one dimension (for more details
see [159, 128, 28])

U = Ū − ∆x2

24
Ūxx + O∆x4, (3.8.12)

where(.)x indicates a derivative with respect tox. In the construction of schemes
with accuracy higher than second-order, this conversion has to be taken into account
in the design of the scheme. This implies that higher order schemes inherently include
some leading order influences of the subgrid variations for the resolved modes (either
turbulent or laminar variations). For example, at third-order accuracy the leading order
kinetic energy dissipation term can be determined from Modified Equation Analysis
(MEA) following the methodology in [126, 128].

To date published results have focused on the incompressible Euler equations, but
extensions to compressible are currently in progress by Rider and Margolin. The first
step in this process is to write the extrapolated quantitiesas a function of the cell
averaged quantity, expanding the interface value in a Taylor series as is done when
deriving truncation terms for the linear advection equation. Next, subtract the exact
Euler equations and gather together the leading order termsin powers of∆x, ∆y and
∆z. These remaining terms form the truncation error. As an example, taking third-
order accurate extrapolated quantities, the leading orderterms can be written as the
divergence of a tensorτ. In two dimensions

τxx = −∆x2

12
u2

x −
∆y2

12
u2

y, (3.8.13)

τxy = τyx = −∆x2

12
uxvx −

∆y2

12
uyvy, (3.8.14)

τyy = −∆x2

12
v2

x −
∆y2

12
v2

y. (3.8.15)

An equivalent results is also achieved through ApproximateDeconvolution, as detailed
in [28, 159]. The dissipation of kinetic energy due to this stress tensor is

dED

dt
= −

∫

D

(
uxτ

xx + uyτ
xy+ vxτ

yx + vyτ
yy
)
DXDY, (3.8.16)

whereED now indicates the kinetic energy in a domain of sizeDXDYwithout external
forces . This gives

dKE
dt
=
∆x2

12

[〈
u3

x

〉
+

〈
uxuyvx

〉]
+
∆y2

12

[〈
v3

y

〉
+

〈
uyvxvy

〉]
(3.8.17)
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The leading order terms are proportional to the skewness of the velocity derivative,
which is negative in turbulent flows thus providing dissipation of resolved kinetic en-
ergy. Naturally, higher order extrapolation methods will approximate the subgrid vari-
ations to a higher order of accuracy for modes which can be resolved on a given grid.

The extrapolation method also influences the second term in (3.8.9) through the dif-
ference of the left and right extrapolated quantities. Ideally this should remove kinetic
energy from the system in a form similar to the action of subgrid vortices on the re-
solved vortices. Kolmogorov proposed the following similarity hypothesis [110, 111]

LǭL =
5
4
∆u3 (3.8.18)

where ¯ǫL is the dissipation rate averaged over the distanceL, and∆u is the velocity
increment. This represents the dissipation due to homogeneous isotropic turbulence
per unit time per unit area.

The only time that kinetic energy is irreversibly changed into heat in the solution of a
Riemann problem is between a shock wave and contact surface. All other flow features
are isentropic. As determined in [19, 98] the entropy change∆S due to the passage of
a shock wave can be written as

∆S = − ∂2p
∂V2

∣∣∣∣∣∣
S

∆V3

12T
, (3.8.19)

whereV is the specific volume,p is the pressure, andT is the temperature. Using the
Hugoniot relations and under the assumption of a perfect gasthis can be written as

T∆S = − (γ + 1) a2

12

(
∆us

u1

)3

, (3.8.20)

whereγ is the ratio of specific heats,a is the sound speed,∆us is the velocity jump
over the shock wave andu1 the pre-shock velocity relative to the shock. This gives a
measure of the irreversible dissipation of kinetic energy in the Riemann solution, an
increase of specific internal energy at the cost of specific kinetic energy. Thus at an
interface where the solution of a Riemann problem lies between the contact surface
and shock wave there will be an effective dissipation of kinetic energy proportional to
∆u3 - analogous to (3.8.18). The choice of extrapolation methoddirectly influences
the magnitude of the velocity jump, thus modifying the dissipative properties of the
numerical scheme.

An important implication of this is that the differences between the extrapolated quan-
tities (i.e.UR−UL) are as important as the formal order of accuracy of the extrapolation
in characterising the dissipative properties of the scheme.

An additional component to consider is the behaviour of the extrapolation methods
as regards monotonicity. MUSCL schemes are strictly monotonic, however WENO
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methods are not. Oscillations in one dimension are manifested as vortex breakdown in
two and three dimensions. This dispersive behaviour of the very high-order methods
can inject energy at the small scales, altering the kinetic energy spectrum.

Given a perfect subgrid model, an LES at several different resolutions should be iden-
tical given that the cutoff wave number lies within the inertial range. However, it is
expected that the model is not perfect, thus increasing the resolution should have the
effect of reducing the effects of the numerical method on a given mode, shifting it to
higher wave numbers. Thus any errors induced via the subgridmodel should decrease
with increased resolution and order of the schemes.

The numerical methods employed here satisfy the second law of thermodynamics on a
global level. This is one of the main advantages of employingshock capturing meth-
ods, as conventional LES typically employs a scheme which isnot shock capturing and
hence generates spurious oscillations in violation of the second law of thermodynam-
ics.

3.9 Flow Field Initialisation

3.9.1 Initialisation of Non-Divergent Homogeneous Turbulence

This section will describe the method utilised to initialise a turbulent flow field with
a prescribed mean square velocity, kinetic energy, and witha kinetic energy spectrum
given by

:
E(k) = Ck4 exp

(
−2

(
k/kp

)2
)
. (3.9.1)

This spectrum is derived considering the case of dominatingviscous effects in a homo-
geneous turbulent velocity field [82]. The peak in the energyspectrum is predefined by
changing the peakkp in the exponential.This field could then be superimposed on top
of a mean flow, or to provide a homogeneous turbulent field for fundamental studies of
turbulent decay. The following derivation and computational method was provided by
D. Youngs of AWE.

To guarantee the generation of a non-divergent (i.e. incompressible) velocity field, the
velocity can be formed from components of a vector potentialΦ, which satisfies the
following relationship:

u = ▽ × Φ. (3.9.2)

As the divergence of a curl is identically equal to zero, thenthis forms a non-divergent
velocity field. By considering the form of the energy spectrumin equation (3.9.1) an
expression for the vector potentialΦ can be formed. Firstly, the total kinetic energy
KE in the flow can be calculated:
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KE =
1
2

∫ ∞

0
[u(k)]2 dk (3.9.3)

=

∫ ∞

0
E(k)dk

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
E(k)/ |k|2 dkxdkydkz.

Using equation (3.9.1):

KE(k) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

[√
Ckexp

(
−

(
k/kp

)2
)]2

dkxdkydkz. (3.9.4)

Comparing equations (3.9.3) and (3.9.4) it is clear that the velocity is of the form√
Ckexp

(
−

(
k/kp

)2
)
.

As the velocity is the first derivative of the vector potential, the components of
−−−→
Φ(k)

are of the form:

Φ(k) =
√

C exp
(
−

(
k/kp

)2
)
. (3.9.5)

Due to the Gaussian form of the vector potential, the higher wave numbers contribute
very little to the overall magnitude in real space. As an example, if kp=4, the contribu-
tion to the overall energy at k=30 is sixteen orders of magnitude lower than the peak.
To economise on computing time and memory resources, the inverse Fourier transform
of equation (3.9.5) can be truncated at a small multiple ofkp. Noting that the vector
potential is a real function:

Φ(x, y, z) =
∞∑

l,m,n=−∞
Real

{
cl,m,n exp

[
Ik0 (lx +my+ nz)

]}
, (3.9.6)

wherek0 = 2π/L. To satisfy the given energy spectrum, equations (3.9.5) and (3.9.6)
must be identical in the limit of infinitel, m and n. For this to occur the complex
coefficientscl,m,n must have the Gaussian distribution of the form shown in equation
(3.9.5). Firstly, equation (3.9.6) can be simplified considerably by expanding using the
Euler formula, and considering only the real part of the equation:

Φ(x, y, z) =
∞∑

l,m,n=−∞
r l,m,n cos

[
k0 (lx +my+ nz) + φl,m,n

]
, (3.9.7)

wherecl,m,n = c1 + Ic2, thusr l,m,n =

√
c2

1 + c2
2 andφ = tan(c2/c1). Next, the cosine

term is expanded using trigonometric relations giving:
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Φ(x, y, z) = 2
∞∑

l,m,n=−∞
r l,m,n cosφ ×

{[cos(k0lx) cos(k0my) − sin(k0lx) sin(k0my)
]
cos(k0nz) −

[
cos(k0lx) sin(k0my) + sin(k0lx) cos(k0my)

]
sin(k0nz)} + (3.9.8)

r l,m,n sinφ ×
{[sin(k0lx) sin(k0my) − cos(k0lx) cos(k0my)

]
sin(k0nz) −

[
cos(k0lx) sin(k0my) + sin(k0lx) cos(k0my)

]
cos(k0nz)}.

This has the advantage that all of the data can be stored in twodimensional arrays of
maximum sizekmax × Nmax. To initialise a random fieldcl,m,n must be chosen from
a distribution randomly such that the mean

〈
cl,m,n

〉
gives the Fourier coefficients in

equation (3.9.5). In this case they are selected from a Gaussian distribution with mean
of zero and standard deviation of one - but with non-unitary area. This is selected
so that the peak of the Gaussian is one. The Gaussian curve of the real partc1 and
imaginary partc2 of cl,m,n is therefore:

G = exp
[
−

(
c2

1 + c2
2

)
/2

]
. (3.9.9)

Assuming thatcl,m,n = c1 + ic2:

c1 = r cosφ, (3.9.10)

c2 = r sinφ. (3.9.11)

G can now be rewritten as:

G = exp
[
−r2/2

]
. (3.9.12)

Given two random numbersR1 andR2 between 0 and 1, a method of sampling a Gaus-
sian distribution is used. First a random direction is chosen in ther − φ plane, then the
magnitude ofr is determined by rearranging equation (3.9.12) after settingG = R2:

φ = 2πR1, (3.9.13)

r =
√
−2 ln(R2), (3.9.14)

The computational expense can be further reduced by utilising eight coefficients and
summing over one of the eight octants, leading to the final expression utilised in the
code.
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Φ(x, y, z) =
∞∑

l,m,n=0

al,m,n cos(k0lx) cos(k0my) cos(k0nz) +

bl,m,n cos(k0lx) cos(k0my) sin(k0nz) +

cl,m,n cos(k0lx) sin(k0my) cos(k0nz) +

dl,m,n cos(k0lx) sin(k0my) sin(k0nz) + (3.9.15)

el,m,n sin(k0lx) cos(k0my) cos(k0nz) +

fl,m,n sin(k0lx) cos(k0my) sin(k0nz) +

gl,m,n sin(k0lx) sin(k0my) cos(k0nz) +

hl,m,n sin(k0lx) sin(k0my) sin(k0nz) .

Now equation (3.9.15) has to be modified to compensate for thedoubling of contri-
butions from the zeroth wave number. If it is assumed thatl,m,n > 0 then the total
kinetic energy can be written following equation (3.9.4):

KE =
∫ ∞

0
|k|2

[
kΦ(k)

]2
dk, (3.9.16)

whereΦ(k) is the mean of the contributions of the Fourier coefficients. As:
√

cos(x)2 = 1/2, (3.9.17)

then:

√
(
al,m,n cos(k0lx) cos(k0my) cos(k0nz)

)2
= a2

l,m,n/8, (3.9.18)

so the root mean square contribution of the coefficientsal,m,n, bl,m,n... at one mode of
l,m,n > 0 to the total kinetic energy is:

KE =
∫ ∞

0
|k|2

[
0.125k2

(
a2

l,m,n + b2
l,m,n + c2

l,m,n+

d2
l,m,n + e2

l,m,n + f 2
l,m,n + g2

l,m,n + h2
l,m,n

)]
dk. (3.9.19)

Now if l = 0, the contributions from the sin(k0lx) can be neglected, thus the total
contribution is:

KE =
∫ ∞

0
|k|2

[
0.25k2

(
a2

l,m,n + b2
l,m,n + c2

l,m,n + d2
l,m,n

)]
dk, (3.9.20)

as the mean of cos(0)= 1. This is not correct, as it counts the contributions from the
zeroth mode twice in the summation in equation (3.9.15). To compensate for this each
coefficient is calculated as follows, usingal,m,n as an example:
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al,m,n = RS(l)S(m)S(n) exp
(
−

(
k/kp

)2
)
, (3.9.21)

where S(p)=1/
√

2 if p = 0, 1 if p > 0 andR is a random number picked from a
Gaussian distribution (e.g.c1). Thus whenl = 0 andm,n > 0 the contribution is now
correct, given by:

KE =
∫ ∞

0
|k|2

[
0.125k2

(
a2

l,m,n + b2
l,m,n + c2

l,m,n + d2
l,m,n

)]
dk. (3.9.22)

As a final step the kinetic energy is rescaled linearly to equal a known constant, and
the mean velocities shifted to equal zero (for the homogeneous turbulence case).

3.9.2 Initialisation of a Multimode Perturbed Interface

The most realistic method of representing a two-dimensional interface between two
materials is as the summation of a number of individual modesin accordance with
a certain spectra. The method of initialisation is similar to that employed to initialise
homogeneous turbulence in Section 3.9.1. The typical inertial confinement capsule has
a surface power spectrum expressed as:

P = sd2 =

∫ ∞

0
[A(k)]2 dk (3.9.23)

=

∫ ∞

0

1
k2

dk

=

∫ ∞

0

∫ ∞

0

1
k2

1
2π |k|dkydkz

∝
∫ ∞

0

∫ ∞

0

1
k3

dkydkz, (3.9.24)

wheresd is the standard deviation of the perturbation, andA(k) the amplitude of the
perturbation. The specified power spectrum gives an equivalent amplitudeA(k) in
wave space:

A(k) ∝ 1
k3/2

. (3.9.25)

To initialise modes within a certain band, the inverse Fourier transform of equation
(3.9.25) can be taken, noting that the amplitude is a real function:

A(y, z) =
∞∑

m,n=−∞
Real

{
cm,n exp

[
Ik0 (my+ nz)

]}
, (3.9.26)
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wherek0 = 2π/L. To satisfy the given power spectrum, equations (3.9.25) and (3.9.26)
must be identical. For this to occur, the complex coefficientscm,n must have the form
shown in equation (3.9.25). Firstly, equation (3.9.26) canbe simplified considerably by
expanding using the Euler formula, and considering only thereal part of the equation:

A(y, z) =
∞∑

m,n=−∞
rm,n cos

[
k0 (my+ nz) + φm,n

]
, (3.9.27)

wherecm,n = c1 + ic2, thusrm,n =

√
c2

1 + c2
2 andφ = tan(c2/c1). Next, the cosine term

is expanded using trigonometric relations giving:

A(y, z) =
∞∑

m,n=−∞
rm,n cosφ × [

cos(k0my) cos(k0nz) − sin(k0my) sin(k0nz)
]−

rm,n sinφ × [
sin(k0my) cos(k0nz) + cos(k0my) sin(k0nz)

]
. (3.9.28)

This has the advantage that all of the data can be stored in twodimensional arrays
of maximum sizekmax× Nmax. The computational expense can be further reduced by
utilising four coefficients and summing over one of the four quadrants, leading tothe
final expression utilised in the code.

A(y, z) =
∞∑

m,n=0

am,n cos(k0my) cos(k0nz) + bm,n cos(k0my) sin(k0nz)+

cm,n sin(k0my) cos(k0nz) + dm,n sin(k0my) sin(k0nz) . (3.9.29)

To initialise a random fieldam,n, bm,n.... must be chosen from a distribution randomly so
that the mean gives the Fourier coefficients in equation (3.9.25). The random variables
are selected from a Gaussian distribution as detailed in Section 3.9.1. Now equation
(3.9.29) must be modified to compensate for the doubling of contributions from the
zeroth wave number as done previously for homogeneous turbulence. Each coefficient
is calculated as follows, usingam,n as an example:

am,n = RS(m)S(n)
1

k3/2
, (3.9.30)

whereS(p) = 1/
√

2 if p = 0, 1 if p > 0 andR is a random number picked from a
Gaussian distribution. Equation (3.9.30) is calculated aspart of the initialisation pro-
cess, and as a final step the standard deviation is rescaled linearly to equal a predefined
value, and the mean amplitude shifted to equal zero.

Once the interface has been defined, it is necessary to set up the initial conditions as
accurately as possible. In most simulations the perturbations are at a sub-grid scale,
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so they must be represented to reasonable accuracy. To achieve this, cells located on
the interface are initialised as a mixture, and not simply asone component or another.
The volume fraction of one gas within a cell is computed as theaverage position of
the interface at each face of the cell. As an example, if the interface defined bySi, j,k is
located in they−zplane, with cell indicesi, j andk for thex, y, andzplane respectively,
the volume fraction is estimated via a linear interpolation:

α =
xi+1/2, j,k −

[
Si, j−1/2,k + Si, j+1/2,k + Si, j,k−1/2 + Si, j,k+1/2

]
/4

xi+1/2, j,k − xi−1/2, j,k
. (3.9.31)
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C H A P T E R 4

Homogeneous Decaying Turbulence

4.1 Introduction

One of the key requirements for a numerical scheme used to investigate shock-induced
turbulent mixing is that it can accurately simulate low Machturbulent features. This
chapter assesses the performance of high-order Godunov-type methods for turbulent
applications via simulations of low Mach number (M = 0.1) homogeneous decaying
turbulence. The study does not intend to prove that ILES is a better approach than
standard LES, based on explicit subgrid scale models, for the flow in question. It is
intended as a starting point for further development by identifying quantitatively the
strengths and weaknesses of high-resolution methods used in ILES by comparing the
ILES results with experimental studies, DNS and previous LES.

It is a complementary extension of the work of Garnieret al. [62], where the ability of
shock-capturing schemes was tested for resolutions up to 1283 and for six extrapolation
methods from second- to fifth-order. The authors concluded that the dissipation rate
of the ILES methods is too high, and that the behaviour of the schemes is more akin
to a low Reynolds DNS than an LES. In the present work, the extrapolation methods
employed are less diffusive and range from MUSCL second-order through to WENO
ninth-order accurate. Each of these extrapolation methodshave been run on grids from
323 to 2563 to examine the behaviour and convergence (if any) of turbulent statistics
and spectra.

The layout of the chapter is as follows. Section 4.2 details the numerical scheme em-
ployed, and the method used to initialise a homogeneous, isotropic turbulent field. The
effect of non-zero velocity divergence in the flow field is discussed. Section 4.3 com-
pares the quantitative behaviour of the seven ILES variantsin terms of fundamental
properties of a turbulent flow field; growth of the integral length scale; decay rate of
turbulent kinetic energy; time variation of enstrophy; skewness and flatness of the ve-
locity derivative; velocity increment and pressure fluctuation probability distribution
functions; kinetic energy spectra; effective numerical filter and spectral numerical vis-
cosity. Section 4.4 concludes this chapter.
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4.2 Simulation Details

4.2.1 Governing Equations

For all simulations in this chapter it is considered that theKolmogorov scale is sig-
nificantly smaller that the mesh size, equivalent to statingthat the viscous effects are
negligible. Therefore, the Reynolds numberRe→ ∞ and the Navier-Stokes equa-
tions reduce to the Euler equations. The system of equationsis completed with the
specification of an equation of state for an ideal gas.

4.2.2 Numerical Scheme

The computations were carried out using a finite volume Godunov-type method. The
flux terms are evaluated by a characteristics-based Riemann solver [55]. TVD time
stepping is required for the WENO schemes to retain numericalstability, thus time ad-
vancement is achieved using a third-order TVD Runge Kutta method [69]. Simulations
using both the TVD time-stepping and third-order extended stability Runge-Kutta [69]
with MUSCL limiters show that the kinetic energy decay exponent and mean velocity
derivative moments up to sixth-order vary by less than 1%. This is expected as the
CFL condition ensures that the time step is significantly smaller than the spatial step.

In this chapter the full range of extrapolation methods detailed in Section 3.4 are tested;
MUSCL second-order methods Minmod (MM), van Leer (VL) and vanAlbada (VA)
([184, 53]; MUSCL third-order method (M3); MUSCL fifth-order,(M5) [107]; and
finally WENO fifth- and ninth-order (W5 and W9)[11]. The details of these limiting
methods are presented in Section 3.4.

4.2.3 Initialisation

The flow field was initialised using the method derived in section 3.9.1, and utilised in
previous simulations of decaying turbulence [195, 197]. The flow field has an initial
kinetic energy spectrum given by the analytical solution inthe case of dominating
viscous effects [82]

E(k) = u2
rms

k4

k4
p

√
8

k2
pπ

exp
(
−2

(
k/kp

)2
)
, (4.2.1)

wherek is the wave number, and the peak in the energy spectrum is defined by changing
the peakkp in the exponential. Unless otherwise stated the peak of the energy spectrum
was chosen atkp = 4 to aid comparison with previous results from Youngs [195, 197].
To ensure the generation of an almost non-divergent (i.e. incompressible) velocity
field, the velocity is formed from components of a vector potential Φ, which satisfies
the following relationship:
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u = ▽ × Φ (4.2.2)

As the divergence of a curl is identically equal to zero this gives a non-divergent veloc-
ity field. The vector potential is initialised with a Gaussian distribution of amplitudes
and random phases which is rescaled linearly to give a velocity field satisfying

KE =
3
2

u2
rms = 0.5, (4.2.3)

M =
urms

a
= 0.1, (4.2.4)

whereurms is the mean turbulent velocity. Further details of the initialisation can be
found in Section 3.9.1. Although this gives zero velocity divergence in the initial
condition, the rate of change of divergence of velocity is not necessarily zero, as has
been reported by several authors [22, 56, 149, 160, 168]. Theeffectiveness of this
method was investigated by decomposing the compressible and incompressible veloc-
ity fields in Fourier space using the Helmholtz decomposition. This splits an arbitrary
vector into solenoidal (i.e. incompressible) and dilational (compressible) components
[22, 56, 149, 160, 168]. The velocity in Fourier space can be written as a sum of the
solenoidal and dilational velocity components:

u (k) = us (k) + ud (k) , (4.2.5)

where,

▽ · us (k) = 0, (4.2.6)

which in Fourier space can be written as,

k · us (k) = 0. (4.2.7)

Now the Fourier transform of the velocity field can be writtenwith respect to the nor-
mal and parallel components of the wave vectork

u (k) = c1 (k) kn︸   ︷︷   ︸
us

+ c2 (k) kp︸   ︷︷   ︸
ud

(4.2.8)

Next take the dot product of (4.2.8) with the wave vectork

k · u (k) = k · c2 (k) kp = c2 |k|2 (4.2.9)

c2 =
k · u (k)

|k|2
, (4.2.10)
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Figure 4.1: The amount of kinetic energy contained in the incompressible and compressible
modes in a 323 simulation using VL extrapolation
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Figure 4.2: The compressible and incompressible kinetic energy spectra for a 2563 using VL
extrapolation

this gives the compressible part of the velocity field. The solenoidal and dilational
components can be calculated given the three dimensional Fourier transform of the
velocity field

us (k) = u (k) − k · u (k)

|k|2
k, (4.2.11)

ud (k) = u (k) − us (k) . (4.2.12)

Figure 4.1 shows the total resolved kinetic energy in the compressible and incom-
pressible modes respectively for a 323 VL simulation. The energy in the compressible
modes is about three orders of magnitude less than the energyin the incompressible
modes and decreases as the simulation continues. It was found that even for Mach
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(a) t = 0 (b) t = 1

Figure 4.3: Iso-vorticity surfaces at
√
ω2 = 5 illustrating the initial condition and fully

developed homogeneous turbulence in a 1283 using M5 extrapolation

= 0.5 the compressible component at initialisation is less than1%. Comparisons with
previous results [22, 56, 149, 160, 168] show that the initial conditions are effectively
reducing the influence of velocity divergence effects. A key observation of the evolu-
tion of the kinetic energy in the compressible component is that it is highly oscillatory.
Kovasnay [112] showed that in the absence of viscosity and atlow Mach number the
vorticity, pressure and entropy are decoupled; viscosity acts to couple the pressure and
entropy, but the vorticity remains decoupled. This decoupling leads to the oscillations
in compressible kinetic energy at late times. The spectra shown in Figure 4.2 illustrate
that the energy in the compressible modes is largely restricted to the lower wave num-
bers. The undesirable aspect of this is that on the short timescales the rate of change of
energy at low wave numbers is oscillatory due to the compressible modes. Hence, the
kinetic energy dissipation rate at a given point in time mustbe computed as an average
of the rate of change centred on the time point of interest.

Figure 4.3 shows isosurfaces of equal vorticity magnitude taken att = 0 andt = 1
for the 1283 case with M5 extrapolation. This shows the initial flow field composed
of low wave number modes, and the fine scale worm like vorticalstructures present in
the fully developed turbulent flow field. The form of the structures present in the flow
field does not change at later times. Figure 4.4 shows the development of the skewness
at each of the mesh resolutions for M5 demonstrating that a steady state is achieved
after a relatively short period of time allowing for good statistical averages, especially
at the higher resolutions. The simulations were run to a non-dimensional time oft = 5
for all mesh resolutions, corresponding to approximately 8eddy turnover times.
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Figure 4.4: Velocity derivative skewness as a function of time at several resolutionsusing M5
extrapolation

4.3 Results and Discussion

4.3.1 Turbulent Isotropy

It is important to quantify turbulent isotropy, as turbulent theory relies on this assump-
tion to derive analytical expressions for kinetic energy decay rates and growth of the
length scales. The integral length was calculated from the longitudinal and transverse
energy spectra using [44, 178]

ℓ =
π

u2
rms

E11(k = 0), (4.3.1)

ℓ =
2π

u2
rms

E22(k = 0), (4.3.2)

where,

E11(k1) =
1
π

〈
u2

1

〉 ∫ ∞

0
dx1 f (x1) cosk1x1, (4.3.3)

E22(k1) =
1
π

〈
u2

1

〉 ∫ ∞

0
dx1g(x1) cosk1x1, (4.3.4)

and f andg are the second-order longitudinal and lateral correlationfunctions relative
to the 1-direction. These are then averaged in all three directions. Both definitions of
the integral length agree to within ten percent throughout the period of the simulations,
however, it is observed that the simulations become increasingly more anisotropic at
late times. There is a considerable anisotropy evident in the mean velocities for the 323,
as it is extremely under-resolved. At this resolution thereare only 8 cells per wave-
length even at the peak of the energy spectrum. Above 323 the maximum mean square
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Figure 4.5: Resolved kinetic energy in simulations using the MUSCL 5th order limiter at
different resolutions

turbulent velocities in each direction match the mean turbulent velocity to within 6%
throughout the simulation.

4.3.2 Kinetic Energy Decay Rate and Growth of the Length Scales

It is widely accepted that the evolution of kinetic energy inhomogeneous isotropic
turbulence can be written as follows [82]:

3
2

u2
rms = A(t − t0)

−P, (4.3.5)

whereA is a constant,t0 is the virtual origin in time, andP is a positive constant.
If the exponent is not in a physically realistic range then the simulations will rapidly
decorrelate with reality. In addition to this, the growth ofthe energy containing scales,
i.e. the integral length scale, must be represented accurately, as these eddies typically
represent the dominating structures in the flow. The growth of the integral length scale
is

ℓ = B (t − t0)
q , (4.3.6)

andq is a positive constant [144]. To facilitate comparison withconventional LES
studies, the virtual origin in timet0 = 0 when computing the mean kinetic energy
decay exponent and growth of the integral length scales.

Figure 4.5 shows the total resolved kinetic energy using theMUSCL fifth-order extrap-
olation method. Only resolutions of above 323 are shown for clarity. There is very little
decay in kinetic energy in the first instant as the energy is being transferred from the
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Table 4.1: Mean kinetic energy decay exponentP
Resolution MM VA VL M3 M5 W5 W9

323 0.96 1.19 1.33 1.17 1.32 1.48 1.56
643 1.32 1.45 1.39 1.36 1.58 1.44 1.47
1283 1.27 1.52 1.49 1.47 1.41 1.44 1.28
2563 1.28 1.43 1.36 1.32 1.25 1.30 1.16

low to high wave numbers. Once the high wave numbers are populated, the numerical
dissipation increases until an approximately constant power law decay is seen.

Wind tunnel experiments using grid generated turbulence have measured kinetic en-
ergy decay ratesP ≈ 1.2− 1.3 [41, 138, 140, 169, 100]. Theoretical analysis does not
give a clear solution, however, it is expected that the decayshould lie betweenP ≈ 1.2
[21, 144] andP ≈ 1.4 [119, 193, 192]. Recent DNS atReλtay < 250 by Ishidaet al. [90]
with an initial spectrum proportional tok4 gaveP = 10/7. The mean decay exponent
P from t=1 to 5 for each extrapolation method is detailed in Table 4.1.

At 323 all second and third-order methods exhibit a decay rate which is significantly
less than physically expected. As will be discussed in the following section, the veloc-
ity derivative moments for these schemes at this resolutionreturns rapidly to Gaussian,
thus no turbulent field exists. Excessive numerical dissipation acts on the resolved
modes, as even at the peak of the kinetic energy spectrum there are only 8 cells per
wavelength. It should be noted that the decay rate alone cannot characterise a numeri-
cal method as the decay rate depends on the resolved features. For example, a method
may have a low mean decay rate simply because all short wave perturbations have been
dissipated from the system at an early time - this is the case with the Minmod limiter
at 323.

The decay exponent for the Minmod limiter at 643 is in excellent agreement with the
quoted value ofP = 1.3 for 643 in Garnieret al. [62], thus confirming the consistency
of the comparison. However, the other schemes exhibit a lessdiffusive behaviour. At
higher resolutions, and at higher orders of accuracy, the decay exponent lies between
1.16 and 1.58 for all methods employed, whereas [62] reportP > 2. The results
here are in good agreement with the previous study by Youngs [195] which reported
P = 1.41 using a Lagrangian based ILES code with the same initialisation method.

Compared to the experimentally determined decay exponents these results are higher,
however, there is uncertainty in the choice of the virtual origin t0 in both simulation and
experiment. The ILES methods compare favourably with conventional LES, where the
decay exponentP = 1.17− 2 [135, 27, 190, 9, 87, 179, 78, 35].

In comparing the limiters, the two fifth-order methods and W9 give the most physically
realistic kinetic energy decay rates at low resolution. At all other resolutions the decay
rate remains within a physically realistic range for all limiters, given the uncertainties
in determiningt0.

Two additional simulations of 2563 resolution were carried out with the Minmod lim-
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Figure 4.6: Normalised integral lengthℓt−2/7 plotted against time for different resolutions

iter, where the peak of the initial energy spectrum were chosenkp = 1 and 12, respec-
tively. The two simulations differ quite significantly in flow structure and behaviour.
The lower the initial peak of the spectrum, the longer the period of redistribution of en-
ergy before a power-law decay of kinetic energy begins. The average decay exponent
P is 2.12 for kp = 1 and 1.29 for kp = 12. The theoretical decay rate of constrained
turbulence (i.e. when the energy containing scales are close to the size of the box) is
P = 2, which is in good agreement with the decay rate for the case wherekp = 1. This
behaviour is nearly identical to that seen in the symmetry breaking turbulent decay of
the Taylor Green vortex, where initially large coherent structures develop instabilities
and break down [52, 25].

Given an initial spectrum ofk4 at low wave numbers it is expected that the integral
length should grow proportional tot2/7 [82, 144], potentially moving tot2/5 if the low
wave numbers take on ak2 form at late time. Figure 4.6 shows the normalised integral
length scaleℓt−2/7 for all grid resolutions for three extrapolation methods. These plots
are representative of the behaviour of all of the extrapolation methods employed in this
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Table 4.2: Velocity structure functions computed from DNS

Quantity [146] [106] [147] [188] [135] [32] [96] [190] [160] [68]
Reλtay 45 83 64 150 < 51 202 168 195 175 460
S3 0.47 0.51 0.4 0.5 0.58 0.44 0.52 0.54 0.45 0.55
S4 - - 4.05 5.9 4.31 - 6.1 6.7 - 7.91

Table 4.3: Velocity structure functions computed from LES

Quantity [27] [61] [9] [87] [100] Gaussian
Reλtay ∞ 248 < 71 ∞ 720 -
S3 0.4 - 0.4 0.22 0.42 0.00
S4 2.73 3.6 - - - 3.00

study. The lines do not lie on top of each other as each numerical scheme has a different
time origin for the decay of kinetic energy and the growth of the integral length scale.
It can be seen that the integral length grows proportional tot2/7 as expected, and that
this relationship becomes more accurate as the resolution and order of the method
increases.

4.3.3 Structure Functions and Enstrophy

The velocity structure functions are typically used to quantify if the flow is turbulent,
and its characteristics. These are computed as [148]

Sn = (−1)n

〈
(∂u/∂x)n〉

〈
(∂u/∂x)2

〉n/2
, (4.3.7)

wheren is a positive integer, and the derivatives are computed using second-order
accurate centred differences and then averaged over all three directions. The third-
order velocity structure function (n = 3), or skewness, is directly related to enstrophy
in isotropic homogenous turbulence, and the fourth-order structure function (n = 4),
or flatness, gives a measure of the probability of occurrenceof extreme or mild events.
Typically, the lower the absolute value, the higher the numerical dissipation.

The flatness increases consistently with Reynolds number, ata rate approximatelyS4 ∝
3+1/2Re0.25. The most recent experimental results measuredS3 = 0.34, andS4 = 3.75
for Reλtay = 720 [100], both lower than previous experiments. Computational results
from previous DNS and LES simulations are summarised in Tables 4.2 and 4.3.

Table 4.4 details the average skewness functions in the present study, listed in ap-
proximate order of decreasing dissipative behaviour of thenumerical scheme. It is
expected that increasing the resolution should increase the skewness until it reaches
the state expected for fully developed homogeneous decaying turbulence. Sreenivasan
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Table 4.4: Third order velocity structure functions

Resolution MM VA VL M3 M5 W5 W9
323 0.08 0.11 0.19 0.14 0.31 0.30 0.26
643 0.22 0.32 0.30 0.31 0.31 0.33 0.31
1283 0.31 0.35 0.33 0.34 0.36 0.36 0.32
2563 0.34 0.37 0.36 0.36 0.38 0.40 0.35

Table 4.5: Fourth order velocity structure functions

Resolution MM VA VL M3 M5 W5 W9
323 4.09 3.78 3.62 5.17 4.17 3.58 3.33
643 4.07 4.25 3.94 5.49 4.37 3.95 3.47
1283 4.34 4.38 4.09 5.80 4.55 4.32 3.55
2563 4.56 4.61 4.27 4.74 4.96 4.81 3.98

and Antonia [176] have compiled many experimental velocitystructure function mea-
surements. The skewness appears constant at approximately0.5 between Reynolds 10
and 1000, but increases above this threshold. In the currentstudy, as the mesh resolu-
tion increases, the skewness increases converging towardsa value of around 0.37. This
is in good agreement with the most recent experimental results of 0.34 forReλtay = 720
[100] and previous ILES results [62], but lower than DNS results. The close agree-
ment with the results of Kanget al. [100] is interesting as the integral length scale in
the experiments is approximately 1/4 the size of the wind tunnel - and in the current
simulations it is approximately 1/4 of the box size.

At the lowest resolution the skewness factor for all second and third-order limiting
methods is much lower than the experimental values and tendsrapidly back to a Gaus-
sian distribution. The numerical dissipation of the schemedoes not allow an adequate
number of undamped modes to represent a turbulent flow field. However, at fifth-order
and higher the numerical schemes capture the non-Gaussian behaviour well. As the
majority of simulations around complex geometries are not well resolved this is an
important point to note. As is generally accepted, Minmod isvery dissipative, and not
a good extrapolation method to use for turbulent flow. This isillustrated in the skew-
ness values, which remain much lower than expected until resolutions of 1283. At 643

the van Albada, van Leer and MUSCL third-order have physically realistic skewness
values, close to experimental results. Surprisingly, the skewness decreases when using
W9 methods, indicating that the M5 and W5 perform best at all resolutions.

The mean flatness is detailed in Table 4.5. Comparing the results to experimental re-
sults reported in [176] the flatness should increase consistently with Reynolds number,
at a rate approximatelyS4 ∝ 3 + 1/2Re0.25. This implies that the ILES simulations
are achieving average Taylor Reynolds numbers of approximately one hundred over
the course of the simulation, during which the mean turbulent velocities decrease by
one fifth. However, the experiments of Kanget al. measured lower flatness of 3.75 at
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Figure 4.7: Variation of the enstrophy with time; a) Van Leer limiter at 323→ 2563 b) with
extrapolation method

Reλtay = 720, which would give the simulations a much higher effectiveReλtay within
the simulations. The flatness does not change significantly with increasing resolution,
or increasing order of the numerical scheme. M3 has the highest mean value at low
resolution, however at higher resolutions there is little difference between the schemes.
This indicates that the probability of extreme events is notincreasing with increasing
resolution, contradictory to expected behaviour.

Figure 4.7a) shows the time variation of the enstrophy (< ω2 >, whereω is the vortic-
ity) for each mesh resolution for the van Leer limiter. Figure 4.7b) shows the variation
with method at a 643 resolution. Above 1283 resolution for the second and third-order
methods, and 643 for the higher-order methods there are two clear stages as reported
in previous studies [119, 80]. In the first stage the entrophyincreases due to vortex
stretching which transfers energy to the smaller, faster moving vortices. Once the
energy spectrum is fully developed, the enstrophy reduces with time as numerical dis-
sipation decreases the resolved kinetic energy. In comparing the different methods, the
higher the order of the method, the higher the enstrophy peak, reflecting the decreas-
ing dissipation. W9 is the least dissipative via this measure, followed by W5 and M5.
W9 is equivalent to van Leer at double the mesh resolution, whereas W5 and M5 are
slightly less than double. At late times M5 has higher enstrophy than W5, indicat-
ing that setting local minima and maxima to first-order accuracy does not significantly
influence the accuracy of the scheme.

4.3.4 Probability Distribution Functions

The velocity increment probability distribution functions (PDFs) have been computed
for each grid resolution and method, where the velocity increment is defined as∆ui =

ui(x+∆x)−u(x). Figures 4.8 and 4.9 show the PDFs normalised by∆urms plotted with
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Figure 4.8: Velocity increment PDFs compared to experimental results by Kanget al. [100],
and DNS by Vincent and Meneguzzi [188] and Gotohet al. [68] at t = 2

experimental results by Kanget al. [100] taken atReλtay = 626, and DNS by Vincent
and Meneguzzi [188] (Reλtay ≈ 150) and Gotohet al. [68] (Reλtay ≈ 381). Note that the
van Albada, Minmod and van Leer give very similar results hence the first two are not
shown. All methods capture the non-Gaussian behaviour of the velocity increments,
the fifth-order MUSCL limiter giving best agreement with the experimental results.
Indeed, at 2563 resolution the M3 and M5 limiters lie almost directly on top of the
experimental results for negative increments, and follow the positive increments up to
∆u/∆urms = 5. Surprisingly, the ninth-order WENO has the least activityin the wings
compared to the other very high order schemes. The van Leer, Minmod and van Albada
limiters give exponential wings, but less intermittent than both experimental and DNS
results.

The results shown here demonstrate that the shock capturingschemes give velocity
increment PDFs in very good agreement with experimental results at Reλtay ≈ 626.
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Figure 4.9: Velocity increment PDFs compared to experimental results by Kanget al. [100],
and DNS by Vincent and Meneguzzi [188] and Gotohet al. [68] at t = 2

This appears contradictory to the results in Garnieret al. who show that the velocity
increment PDFs are close to DNS results atReλtay ≈ 20. Comparing DNS of Vincent
and Meneguzzi [188] and Gotohet al. [68], and the experimental results of Kanget
al. [100] it is clear that there is a large discrepancy in the behaviour of the PDFs.
The DNS results have a PDF which differs by more than an order of magnitude at the
exponential wings from the experimental results, and appears to be increasing with
Reλtay. Thus, from comparison with DNS results, a low numerical Reynolds number
of ≈ 20 appears reasonable as in [62], however comparison with experiment gives the
numerical Reynolds number significantly higher at approximately 626.

The pressure PDFs are shown in Figure 4.10 for the VL, M5 and W9 schemes at
2563, where they follow a Gaussian distribution, demonstratingthat the pressure is
decorrelated from the vorticity. This Gaussian distribution of pressure is found for
all schemes at all resolutions. The source of this decorrelation is believed to be the
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Figure 4.10: Pressure fluctuation PDF from the 2563 simulation att = 2

decoupling of pressure and vorticity as described in Section 4.2.3.

4.3.5 Turbulent Kinetic Energy Spectra

The three dimensional energy spectrumE(k) is defined as [44]

E(k) = 2πk2φii (k), (4.3.8)

wherek =
√

k2
x + k2

y + k2
z and the spectrum tensorφ is

φi j (k) =
1

(2π)3

∫ ∞

−∞
Qi j (r ) exp−Ikr dr , (4.3.9)

whereQi j is the second-order velocity correlation tensor. The threedimensional re-
solved kinetic energy spectrum for all resolutions and methods att = 5 are shown in
Figure 4.11 for the second and third-order methods, and in Figure 4.12 for the fifth and
ninth-order methods. Ideally, the high wave number part of the spectrum should form
a straight line in log-log axis with a power law ofk−5/3 as predicted by Kolmogorov
[110]. At 323 all limiters except W9 are too dissipative at high wave numbers, leading
to lower kinetic energy than ideal. The W9 simulation has a reasonable inertial range
to the cutoff. Given that the degrees of freedom within the system are low,this is an
excellent result. However, increasing the resolution to 643 does not give a correspond-
ing increase in thek−5/3 range, although at this resolution there also is a short inertial
range in simulations using the fifth-order methods. Interestingly, the M5 method is
less dissipative than W5 at high wave numbers, leading to a slightly ‘fuller’ spectrum.

The trend towards increasing size of the range with approximate Kolmogorov scaling
continues for 1283 and 2563 for the higher order schemes, with very little or no inertial
range for the second and third order limiters until the highest resolution. Table 4.6
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Figure 4.11: Three-dimensional kinetic energy spectrumE3D at t=5 for the second- and
third-order methods at different resolutions

details the ratio of the wave number at which the energy spectrum deviates more than
10% from an assumedk−5/3 to the maximum wave numberkmax for the given grid. At
the grid resolutions considered, this appears to be reaching a value independent of grid
resolution, indicating that the simulations are of a large-eddy nature, and not following
a constant dissipation Kolmogorov range scaling, wherek/kmax would decrease with
increasing effective Reynolds number [82].

In comparing the schemes, Minmod shows effectively no inertial range, and the data in
Table 4.6 is representative of this. It gives consistently worse resolution of high wave
number modes when compared to the other second-order limiters. As stated in Section
3.8.3 the leading order difference between the limited quantities for MM is second
order, however for VA, VL and M3 the difference is third order. As the dissipation
in a Godunov scheme is proportional to the difference of extrapolated quantities, the
lower the leading order of the difference, the higher the dissipation. Examining the
spectra in Figure 4.11 it is clear that the MM limiter is more dissipative, and that the
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Figure 4.12: Three-dimensional kinetic energy spectrumE3D at t=5 for the fifth- and
ninth-order methods at different resolutions

formally second-order accurate VL and VA methods have behaviour closer to that of
the third order accurate M3. These resolve a short inertial range up tokmax/10, defined
as the highest normalised wave number (k/kmax) at which the resolved kinetic energy
spectrum deviates more than 10% from an assumedk−5/3 law.

Significant improvements are seen at fifth-order where the dissipative ranges begin at
kmax/6 and at ninth order atkmax/3. From this it can be seen that using fifth and higher
order methods are comparable to increasing the resolution by a factor of two in each
direction when compared to the second and third order limiters, thus easily justifying
the increase in computational time. As turbulent velocities scale ask−1/3 then if it is
assumed that ak−5/3 range exists to the cutoff then even at the maximum grid resolution
the smallest eddies still have a mean turbulent velocity onefifth of that at the peak.
This is an extremely noisy signal and very difficult to capture accurately using any
numerical method in physical space. Results gained here for the higher-order schemes
indicate that the simulations capture modes of wavelength of 10 cells with reasonable
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Table 4.6: Highest normalised wave number (k/kmax) at which the resolved kinetic energy
spectrum deviates more than 10% from an assumedk−5/3 law

Resolution MM VA VL M3 M5 W5 W9
323 0.19 0.19 0.19 0.19 0.25 0.31 1.0
643 0.09 0.13 0.16 0.13 0.22 0.25 0.34
1283 0.05 0.10 0.13 0.11 0.19 0.19 0.31
2563 0.05 0.10 0.10 0.10 0.16 0.16 0.31

statistical accuracy, which is considered to be a good result.

The Kolmogorov constant has been computed and it is found that Ck ≈ 1.9 for the
three dimensional spectrum. This is in good agreement with the ‘bump’ at the begin-
ning of the sub-inertial range whereCk ≈ 2, as reported in recent DNS [99, 68], and
experimental results [175, 100, 158, 140, 29], but higher than the theoretical value of
Ck ≈ 1.6 expected. It should be noted that these are single time spectra from decaying
turbulence not averaged from statistically stationary forced turbulence.

A further measurement of the presence of a sub-inertial range is by computing Kol-
mogorov’s four-fifth’s law. As the problem is not stationary(i.e. it is decaying) the
results were calculated from the Karman-Howarth equation for an inviscid fluid, hence
including a contribution from the time variation of the second order structure function
[148],

−
[

3
r4

∫ r

0
s4 ∂

∂t
DLL(s, t)ds+ DLLL(r, t)

]
/ǫr =

4
5
= B, (4.3.10)

whereDLL =
[
u(x1 + e1

4
5 = r, t) − u(x1, t)

]2
,DLLL = [u(x1 + e1r, t) − u(x1, t)]

3 and s is
a dummy integration variable. In forced turbulence this relationship holds atReλtay >

1170 [139], and Antonia and Burattini [10] suggest that for decaying isotropic turbu-
lence the asymptotic value of four-fifths is not reached until Reλtay > 106.

B is plotted in Figure 4.13 at a grid resolution of 2563 results for the van Leer, M3,
M5, and WENO methods. The four-fifths law is not satisfied for any of the methods.
Comparing the results with experiment suggestReλtay < 100.

The short extent of the sub-inertial range (if present at all) indicates that the ILES
approach using standard compressible finite volume methodswould not be appropriate
for accurate resolution of flow where the features of interest are less than several mesh
cells in size.

4.3.6 Spectral Distribution of Numerical Viscosity

From the previous subsections it appears that the M3, M5 and W9limiters are the op-
timum choices compared to schemes of similar order of accuracy. To further quantify
the performance of these schemes the spectral behaviour of the numerical viscosity is
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Figure 4.13:B plotted for the 2563 grid resolution att = 5

examined. Garnieret al. [62] computed the amplification factor for upwind fluxes,
showing that a unique filter length cannot be defined for the Euler equations. This
will be examined here. Secondly, the numerical viscosity iscomputed in the form
of a numerical spectral eddy viscosity as proposed by Domaradzki et al. [49]. This
is compared to the theoretical ‘ideal’ eddy viscosity for homogeneous decaying turbu-
lence computed by Chollet [33] via the test field model and eddydamped quasi-normal
Markovian approximation. This method of comparison has been employed by Hickel
et al. [81] to optimise incompressible implicit LES.

Following Garnieret al. [62] the amplification of the Fourier modes due to discretisa-
tion errors can be computed as the ratio of the Fourier transform of the finite volume
fluxes over the spectral fluxes,

A =

∑
k−1/2<|k|<k+1/2 FFT|(∂E/∂x+ ∂F/∂y+ ∂G/∂z)|2

∑
k−1/2<|k|<k+1/2 |Ik1FFT(E) + Ik2FFT(F) + Ik3FFT(G)|2

, (4.3.11)

which can be rewritten using Equation (3.1.1) as,

A =

∑
k−1/2<|k|<k+1/2 FFT|−∂U/∂t|2

∑
k−1/2<|k|<k+1/2 |Ik1FFT(E) + Ik2FFT(F) + Ik3FFT(G)|2

. (4.3.12)

The numerator is computed as a central difference approximation for the derivative of
the conserved variables with respect to time, i.e. (Un+1 − Un−1)/∆t, and the spectral
divergence as a function of the conserved variables at time leveln. Figure 4.14 shows
the ratio of the fluxes computed for the M3, M5 and W9 schemes for643 to 2563 for the
continuity andρu momentum equation. The results for the energy equation are very
similar to those of the continuity equation, and theρv andρw momentum equations
match theρu equation.

As shown in [62] the effective filter length is different for the continuity and momen-
tum equations. Increasing the resolution of the numerical scheme does not significantly
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Figure 4.14: The ratio of the fluxes computed using the FV schemes to spectral fluxes att = 5
for the continuity equation (left) and u-momentum equation (right)
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Table 4.7: Highest normalised wave number (k/kmax) at whichA > 0.9

643 1283 2563

Scheme A1 A2 A1 A2 A1 A2

M3 0.16 0.25 0.17 0.20 0.18 0.20
M5 0.19 0.31 0.19 0.31 0.22 0.33
W9 0.28 0.46 0.28 0.46 0.23 0.48

improve the resolution of the continuity and energy equations, and at the highest reso-
lution there is only a 20% difference in cut-off wave number forA1 over all methods.

Table 4.7 details the cut-off filter length, which is defined as the highest wave number
for whichA > 0.9, normalised bykmax. Comparing these to the results in Table 4.6 it
can be seen that for M3 and M5 the cut-off point for thek−5/3 range is at a lower wave
number than the effective cut-off wave number for the continuity and energy equation
(A1 andA5). However, the WENO ninth-order inertial range cut-off lies between the
effective filter length for the continuity and momentum equations. The normalised ef-
fective filter length appears to be converging to a constant value independent of grid
size, being approximatelykmax/5 for M3, kmax/3 for M5 andkmax/2 for W9. All three
schemes are dissipative, the maximum amplification of a given wave number is 6% for
M3, 2.5% for M5 and 0.1% for W9 at 643, becoming negligible at higher grid resolu-
tions. This is likely to be due to the accuracy of the central difference approximation of
the change in conserved quantities over the time, hence explaining why the maximum
amplification decreases as grid size increases.

Next, the effective numerical viscosity is assessed for it’s suitability as a turbulent eddy
viscosity. The momentum equations can be written in spectral form as

(
∂

∂t
+ νk2

)
un(k, t) = −

I
2

Pnlm(k)
∫

ul(p, t)um(k − p, t)d3p, (4.3.13)

where the projection tensor is defined as,

Pnlm(k) = km(δnl − knkl/k
2) + kl(δnm− knkm/k

2). (4.3.14)

The evolution equation for kinetic energy as a function of wave number is derived by
multiplying Equation (4.3.13) byu∗n(k, t), where∗ indicates the complex conjugate,
giving

∂1
2 |u(k, t)|2

∂t
= −2νk21

2
|u(k, t)|2 + T(k, t), (4.3.15)

T(k, t) =
1
2

Im

[
u∗n(k, t)Pnlm(k)

∫
ul(p, t)um(k − p, t)d3p

]
. (4.3.16)
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The spectra can be integrated in spherical shells to give theTransfer functionT(k) and
Energy spectrumE(k) as a function of wave vector magnitudek,

E(k) = 4πk21
2
< |u(k, t)|2 >, (4.3.17)

T(k) = 4πk2 < T(k, t) > . (4.3.18)

Equation (4.3.15) can be rewritten as

∂

∂t
E(k, t) = −2νk2E(k, t) + T(k, t). (4.3.19)

By assuming that the numerical viscosity behaves in a manner analogous to physical
viscosity, an effective numerical viscosity for inviscid simulations can becomputed
using

νn =
T(k, t) − ∂

∂t E(k, t)

2k2E(k, t)
, (4.3.20)

computed numerically as [49]

νn =
T(k, tn) − (E(k, tn+1) − E(k, tn−1))/2∆t

2k2E(k, tn)
, (4.3.21)

where modes are included in the computation only if the magnitude of the wave vector
is smaller than a cut-off wave numberkc. It is normalised using the energy at the cutoff
wave numberE(kc) andkc

ν+n(k|kc) =
νn√

E(kc)/kc

. (4.3.22)

This is compared to the theoretical result fitted by the expression of Chollet [33]

ν+n(k|kc) = C−3/2
K

(
0.441+ 15.2 exp−3.03kc/k

)
. (4.3.23)

The computation of the effective numerical viscosity is quite sensitive to the choiceof
the cut-off wave numberkc. Plotted in Figure 4.15 are the effective numerical viscosi-
ties forkc = kmax/2. Also plotted are the effective numerical viscosities wherekc is the
average of the filter cut-offs measured fromA(k).

At k/kc > 0.3 in all simulations there is a very good qualitative agreement in terms
of the shape of the numerical spectral viscosity in comparison to the theoretical curve.
Both numerical and theoretical lines have a region of approximately constant viscosity
at intermediate wave numbers, and increasing viscosity ask/kc → 1. The effective
dissipation is consistent with the previous results, showing the W9 scheme as the least
dissipative, and M3 as the most dissipative. At the cut-off wave numbers chosen here
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Figure 4.15: The effective normalised numerical viscosity att = 5 compared to the ideal
normalised eddy viscosity from Chollet [33]. Cut-off wave numberkc = kmax/2 (left), kc

determined from filter cutoff (right)

the effective viscosity of the W9 scheme is lower than the ideal spectral eddy viscosity,
which implies that the scheme could benefit from the additionof a sub-grid model.
However, if a higher wave number cut-off is chosen, the effective numerical viscosity
increases above the theoretical line.

The agreement with the theoretical results of Chollet is reasonable, however, when
employing the effective cut-off fromA(k), the number of modes between the energy
containing modes (approximately 1< k < 5) and the cut-off is very low, even for ninth-
order methods at 1283. This can be seen in Figure 4.15, where each symbol represents
a mode. At 643 each method has less than 10 wave numbers in this range, at 1283 less
than 20.

These results imply that given a high enough grid resolutionit is possible to select a
cut-off wave number for each method which gives a spectral viscosityin agreement
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with Chollet’s theory. The key issue at present is that the required grid resolution is
prohibitively large for many practical situations of industrial interest.

At low wave numbers the effective numerical viscosity becomes negative for some
wave numbers, positive for others, and increases in magnitude. This increase in ef-
fective viscosity can also be seen in Ciardiet al. [36]. It is interesting that for some
modes the effective viscosity becomes negative. This occurs for modes where the net
transfer of kinetic energy (T(k)) is negative, yet the turbulent kinetic energy at that
mode increases. As all schemes have been shown to be dissipative at all modes on
average (Figure 4.14), it is possible that this is due to compressibility effects as dis-
cussed in Section 4.2.3. There can be an increase in kinetic energy at some points
in the flow due to a local exchange of energy from pressure to kinetic energy in the
acoustic modes. When there are statistically few modes (i.e.at low wave numbers)
this local exchange could cause an increase in total turbulent kinetic energy at a given
wave number. This is not taken into account in Equation (4.3.15) as this expression is
valid only for incompressible flows.

4.4 Conclusions

The ability of high-order finite volume Godunov-type ILES schemes to simulate ho-
mogeneous decaying turbulence at low Mach number has been investigated quantita-
tively using a number of different parameters. The homogeneous isotropic flow field
is initialised using the divergence of a vector potential tominimise the compressible
component of the kinetic energy spectrum.

It has been demonstrated that the behaviour of the large scales is captured well at res-
olutions greater than 323, or when using numerical methods of higher than third-order
accuracy. With this constraint satisfied the turbulent kinetic energy decay exponent
lies close to the theoretical and experimental results, andis as accurate as results re-
ported for conventional large-eddy simulation. The integral length scale is expected
to grow ast2/7 for the initialised energy spectrum, and this is shown to hold for all
methods. Additionally, velocity increment PDFs are found to have exponential wings,
but pressure PDFs are essentially Gaussian.

Examining the spectra indicate that all methods are too dissipative at high wave num-
bers, giving a slope steeper than the expectedk−5/3, and there is no agreement with the
Kolmogorov four-fifths law. All methods have effective filters at less thankmax/2 for
the momentum equations andkmax/4 for the continuity and energy equation, indicating
that a single filter length cannot be defined for all equations. When the numerical vis-
cosity is assessed as a spectral eddy viscosity it is in good qualitative agreement with
the theoretical solution, having a plateau at intermediatewave numbers and a peak at
the cut off. However, unless the cut-off wave number is chosen belowkmax/2 then all
methods are too dissipative.

It is difficult to define a single effective Reynolds number for the simulations. Com-
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paring the PDF’s to experimental results gives an estimatedReλtay ≈ 600, however,
compared to DNS it is an order of magnitude lower. Examining the four-fifths law
showsReλtay ≈ 30− 100 for all methods except WENO ninth-order which is approxi-
mately 200.

In comparing the numerical methods, the fifth and ninth-order methods have a clear ad-
vantage in that they are capable of resolving non-Gaussian turbulent behaviour at lower
resolutions than the second and third-order methods. Of thesecond and third-order
methods the third-order limiter M3 performs the best - giving a velocity derivative
skewness close to experimental for all resolutions greaterthan 323 whilst maintain-
ing a reasonable kinetic energy decay rate. Additionally, the third-order limiter has
marginally higher kinetic energy at the high wave numbers, and gives a better match
to experimental velocity increment PDFs. Considering computational time, however,
the complexity of this limiter would make it undesirable as it is more expensive than
the fifth-order methods.

Of the very high-order methods, plots of enstrophy show thatusing a ninth-order
scheme gives a similar solution to the second and third-order methods at double the
resolution. The two fifth-order schemes give a solution equivalent to slightly less than
twice the effective grid size. This is confirmed by calculating the effective numerical
filter length, where the WENO ninth-order method resolves double the wave numbers
of the M3 method. Interestingly, there is only a marginal improvement in resolution of
the energy and continuity equation at the higher grid sizes.The M5 limiter gives ex-
cellent agreement with experimental results in predictingthe intermittency in the tails
of the velocity increment PDFs, whereas the WENO methods dropoff steeply at the
tails. Examining the kinetic energy spectra shows that the ninth-order method resolves
an approximatek−5/3 to kmax/3, the fifth-order method up tokmax/6, and lower-order
methods up tokmax/10. This means that fifth and higher-order methods at 1283 per-
form better than the second-order methods at 2563. The increase in accuracy via this
measure is greater than the increase in computational time.

In summary, the numerical methods ranked in order of decreasing performance with
respect to accuracy for a given computational time are WENO ninth-order, followed
by MUSCL fifth-order, WENO fifth-order, MUSCL third-order, van Leer, van Albada
and Minmod. For a given simulation it is expected that an optimum choice would
be either WENO ninth-order or MUSCL fifth-order depending on the monotonicity
constraints of a given problem. Finally, it is clear that allof the numerical methods
are too dissipative at the high wavenumbers. The following chapter investigates in
depth the mechanism for this overly-dissipative behaviourof Godunov-type schemes,
demonstrating the leading order source of dissipation of turbulent kinetic energy.
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C H A P T E R 5

Theoretical Analysis of Kinetic Energy
Dissipation in Godunov Schemes

5.1 Introduction

The Finite Volume (FV) Godunov method has proven extremely successful in the simu-
lation of high Mach number flows, and is an essential tool in many applications involv-
ing high speed flows and shock waves. The Euler equations can form steep discontinu-
ities in compressible flows, and in order to provide a stable and non-oscillatory solution
a certain level of artificial dissipation is added to the solution. In a Godunov method
this dissipation is added through the upwind behaviour of the numerical scheme. Un-
fortunately, the dissipation required to stabilise the solution also dissipates kinetic en-
ergy, and it is the rate of dissipation which is the subject ofthis chapter. It is especially
important in describing the poor performance of Godunov methods in simulations of
low Mach flows, determining the implicit subgrid model for Implicit Large Eddy Sim-
ulations (ILES), and in errors associated with strong shockinteractions. Issues such as
convergence problems and difficulties due to round off errors are not dealt within this
chapter, for further information see, for example, [72, 108, 161, 185] and references
within.

Several previous papers have discussed the influence of the introduction of artificial
viscosity on the simulation of inviscid flows. Noh [143] detailed the behaviour of
finite difference schemes, highlighting the sometimes undesirable effects of the von
Neumann and Richtmyer type viscosity when simulating strongshock waves, due to
the overly dissipative nature of certain formulations, especially in the absence of heat
conduction. Christensen [34] draws parallels between the dissipation inherent in a
Godunov method, and that due to artificial viscosity method.The different forms of
artificial viscosity are further discussed in Benson [18] with respect to their perfor-
mance in capturing shocks. Volpe [189] demonstrated using several numerical exam-
ples that FV methods provide inaccurate results at low Mach due to excess numerical
dissipation. Later, Menikoff [131] noted that artificial viscosity is responsible for the
entropy errors associated with a diffused shock, and that this error does not disappear
with mesh refinement. Several papers by Guillard [74, 73, 72]examine the low Mach
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problem, demonstrating that at low Mach numbers the artificial viscosity present in
Godunov schemes leads to an undesirable scaling of the pressure with respect to the
Mach number, and proposing a form of preconditioning of the governing equations to
correct this. However, to the authors knowledge, an analytical form of the dissipation
of kinetic energy in Godunov schemes has not been yet been derived.

Two factors have increased the importance of the dissipation of kinetic energy by Go-
dunov schemes. Firstly, as computational power and grid size increases, simulations
which were typically high Mach now resolve relatively low Mach perturbations. An
example of this is in the simulation of compressible turbulent flows. The large scales
are at a relatively high Mach number, whereas small instabilities can occur at low
Mach. These can grow in size and affect the development of the larger scales (espe-
cially in fundamental instabilities such as Rayleigh Taylor, Richtmyer-Meshkov and
Kelvin-Helmholtz). It is important to understand the mechanism of dissipation of tur-
bulent kinetic energy within compressible schemes, to better represent the growth of
these small instabilities, and hence reliably model the actual flow physics.

Secondly, there has been a rapid increase in the use of Implicit Large Eddy Simulation
in a variety of applications [24, 51, 61, 67, 70, 75, 129, 149,170, 195, 197] where
the dissipation inherent within the numerical method is employed ‘in lieu’ of an ex-
plicit subgrid model. To design future implicit models, an analytical description of the
leading order dissipative terms is required so that this canbe matched to the expected
dissipation rate (such as that due to Kolmogorov’s refined similarity hypothesis [111]).

It is expected that a useful description of kinetic energy dissipation rate should describe
both the increase in dissipation at low Mach number as well asthe behaviour of implicit
subgrid models at more moderate Mach numbers. It is typically assumed that the
dissipation in the Godunov scheme arises from the presence of shock waves in the
solution of the Riemann problem at the cell interface. Section 5.2 derives an equation
to link the increase of entropy with dissipation of kinetic energy. Using this, Section
5.3 shows that the dissipation due to a shock of fixed strengthis constant with Mach
at leading order, thus this cannot be the leading source of dissipation of kinetic energy.
Next, the possibility that there are more shocks in the discrete Riemann problem at
low Mach is investigated in Section 5.4. It is shown that although the structure of
the problem does change at low Mach, this is not the direct source of increase of
dissipation as it does not change significantly below Mach≈ 0.2. Finally, Section
5.5 demonstrates via an asymptotic analysis of the discreteproblem that the leading
order dissipation is due primarily to the reaveraging process, and that the irreversible
dissipation of kinetic energy is proportional to∆u2 and the speed of sounda. This is
validated numerically using several different Riemann solvers, exact and approximate.
Additionally, the applicability of these results to higherorder methods is discussed.

An important point to note is that this chapter analyses the entropy change and dis-
sipation of kinetic energy specifically for a Godunov method, however the approach
is relatively universal and, in principal, the results are applicable to all standard com-
pressible methods.
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5.2 The Relationship Between Kinetic Energy and En-
tropy

Before commencing the analysis, it is important to clarify the governing equations, and
essential to discuss the relationship between kinetic energy and entropy. This chapter
is concerned solely with the analysis of the Euler equationsof gas flow, where viscosity
is assumed negligible (Re→ ∞). The homogeneity property of the Euler equations
means that the properties can be analysed using the following governing equations in
each principal direction,

∂U
∂t
+
∂E
∂x
= 0, (5.2.1)

where,

U =
[
ρ, ρu, ρv, ρw, e

]T
, (5.2.2)

E =
[
ρu, ρu2 + p, ρuv, ρuw, (e+ p)u

]T
, (5.2.3)

e= ρi +
1
2
ρ
(
u2 + v2 + w2

)
, (5.2.4)

andρ, i, u, v, w are the density, specific internal energy per unit volume andCartesian
velocity components, respectively. Throughout this chapter it is assumed that the fluid
satisfies the ideal gas equation of state

p = ρi (γ − 1) , (5.2.5)

whereγ is the ratio of specific heats. In a Godunov method the governing equations
are solved in integral form where the cell averaged conserved variables at the new time

step,U
n+1

are computed according to

U
n+1
= U

n − ∆t
∆x

(
E j+1/2 − E j−1/2

)
= 0, (5.2.6)

where∆t and∆x are the time step and width of the cell. The time averaged numerical
fluxesE j±1/2 are computed from the Riemann problem at the cell interface. This is
typically seen as the solution of the Riemann problem along the line x = 0, wherex
is centred at the interface. The structure of a typical solution is illustrated in Figure
5.1. At any interface where the velocity or pressure differs from one side to the next,
the solution will normally split into three waves, a contactsurface sandwiched by two
waves which are either a shock or rarefaction. Only the shockwave adds irreversible
dissipation, as the rarefaction and contact surface are isentropic phenomena. Thus
irreversible dissipation occurs only when the solution to the Riemann problem atx = 0
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ExpansionContactShock 

x

t

Figure 5.1: An example of the solution to a Riemann problem

(the star quantities) lies between the contact surface and the shock wave, as is the case
in Figure 5.1.

Understanding the role of entropy in the context of dissipation of specific kinetic en-
ergy is key to understanding the dissipative properties of Godunov schemes. Entropy
is a quantity which is usually defined by a difference, expressed as

∆S =
R

γ − 1
ln


(

p
ργ

)n+1 (
ργ

p

)n , (5.2.7)

whereR is the specific gas constant,n the time step level and∆S the change in entropy
per unit mass.

The numerical solution to the Euler equations is constructed in a such a form that
mass, momentum and total energy are conserved, but, kineticenergy is not conserved,
due to numerical dissipation. The behaviour of the change ofkinetic energy within a
compressible fluid is similar to that of a damped spring. There are changes of kinetic
energy which are accompanied by an isentropic change in pressure, as is the case
for an ideal inviscid flow without shocks. In this case, although the kinetic energy
has changed, there has been no actual dissipation of kineticenergy, and thus the flow
behaves like an undamped spring. However, if the entropy increases then there has
been an irreversible dissipation of specific kinetic energywhich acts as a dampener to
the isentropic motion.

A direct relationship between kinetic energy and entropy will now be derived. Begin-
ning with the conservation equation for mechanical energy in vector notation without
external forces [142]:

ρ
D
Dt

(qK) = −[∇ · (pu) − p∇ · u] + [∇ · (τν · u) − τν : ∇u], (5.2.8)

whereρ is the density,qK = 1/2
√

u2 + v2 + w2, τν is the shear stress tensor, p the pres-
sure,u is the vector of velocities, andD/Dt represents the material or total derivative.
The first group of terms on the right hand side relate to flow work due to the pressure on
the control volume minus that work which does not increase kinetic energy, the third
term is the total work which the surroundings do on the fluid through the viscous stress
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and the fourth term is the portion of the work due to viscous stresses which dissipates
kinetic energy. This is a sink of kinetic energy, and is also written as

τν : ∇u = τνi j
∂ui

∂xj
. (5.2.9)

This relationship is originally developed for physical viscosity but can be applied to
numerical viscosity, as it was shown by Margolinet al. [128] that the truncation error
terms can also be written as the divergence of a stress tensor. By subtracting the kinetic
energy equation from the energy equation, a conservation equation for internal energy
i without external sources can be written

ρ
Di
Dt
= −∇ · q − p∇ · u + τν : ∇u. (5.2.10)

Note that the viscous sink term present in the kinetic energyequations appears iden-
tically in the internal energy equation as a source term. There is an additional source
term due to the heat diffusion fluxq, and due to pressure work compressing the ele-
ment.

Entropy is a scalar quantity which is transported with the heat flow rateq. The transport
equation for entropy is [142]

ρ
DS
Dt
= −∇ ·

(q
T

)
+ Ṗs, (5.2.11)

where the first term on the right hand side represents flux of entropy via heat conduc-
tion, Ṗs is the production rate of entropy, andT the temperature. Next, using the Gibbs
equation

ρ
Ds
Dt
=
ρ

T
Di
Dt
− p
ρT

Dρ
Dt
. (5.2.12)

and combining this with the continuity equation and equation for the evolution of in-
ternal energy gives [17]

Ṗs =
κθ

T2
(∇T · ∇T) +

τν : ∇u
T

, (5.2.13)

where Fourier’s Law of heat conduction has be used to expressq in terms of temper-
ature. The second term on the right hand side refers to a production of entropy via
viscous stresses, and is identical to the sink term in the kinetic energy equation divided
by temperature. Consider a typical low Mach number flow, whereit is assumed that
production of entropy due to thermal conduction is small in comparison to production
via viscous stresses. For this case, temperature multiplied by production of entropy is
equal to the irreversible viscous dissipation in Equation (5.2.8), or
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Figure 5.2: Actual change of kinetic energy plotted with the predicted change using the
initial kinetic energy minusT∆S for a shock tube problem

TṖs = τ
ν : ∇u = −1

2
ρ

(
D(q2)
DT

)

irreversible

. (5.2.14)

The result directly relates the increase of entropy with thedissipation of kinetic energy
pointwise within a system due to a stress tensorτν, under the assumption that the cell
is not located on an inlet or outlet boundary where there is a net flux of shear stress
into or out of the system.

A useful feature of the directional split Godunov methods isthat many of the properties
of the scheme can be illustrated through simple one dimensional test cases, such as
the combination of isentropic and non-isentropic behaviour. Consider the shock tube
problem

x < 0.5, pL = pR = p0

(
1+ γ−1

2 M2
) γ

(γ−1)
, u = Ma/2, (5.2.15)

x > 0.5, ρL = ρR = ρ0

(
1+ γ−1

2 M2
) 1

(γ−1)
, u = −Ma/2, (5.2.16)

wherea is the speed of sound,M the Mach number. The computational domain is
200 cells in a region of dimension 1, and the boundary conditions are periodic. First
order time stepping and first order piecewise constant in space reconstruction is used.
This problem is formulated so that the left and right hand quantities are isentropic
realisations of the same flow, and that the mean momentum is zero. Figure 5.2 a)
shows the variation of specific kinetic energy with time compared to the variation of
T∆S where the values ofp0 and ρ0 are chosen such that the Mach number of the
flow is 0.1. The kinetic energy behaves as a damped spring as describedpreviously,
where the isentropic variations in kinetic energy are much more rapid than the non-
isentropic variations. However, it is clear that the irreversible decrease in kinetic energy
is mirrored exactly by an increase inT∆S. Figure 5.2 b) shows the same test case for
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Figure 5.3: Actual change of kinetic energy plotted with the predicted change using the
initial kinetic energy minusT∆S for homogeneous decaying turbulence in a cube

a Mach of 0.01. The same relationship can be seen however the rate of decrease of
kinetic energy is much more rapid, illustrating the severe Mach number dependence of
dissipation of kinetic energy.

As a more complex case, consider homogeneous decaying turbulence in a periodic
cube at resolution 323 using the 5th order MUSCL reconstruction in space and 3rd
order TVD Runge-Kutta. Specify the initial condition following [195, 197] as a sum-
mation of Fourier modes of random phase corresponding to thekinetic energy spectra

E(k) = u2 k4

k4
p

√
8

k2
pπ

exp
(
−2

(
k/kp

)2
)
, (5.2.17)

wherek is the wavenumber, and the peak of the energy spectrum was chosen atkp = 4.
Additionally, the initial kinetic energy magnitude and Mach number are chosen as

KE =
3
2

u2
rms = 0.5, (5.2.18)

M =
urms

a
= 0.1, (5.2.19)

whereu is the mean turbulent velocity. Figure 5.3 shows the time variation of kinetic
energy compared to the initial kinetic energy minusT∆S. The agreement is exact.
From these two examples it is clear that if the behaviour of entropy is understood, then
an understanding of the dissipation of kinetic energy by Godunov schemes follows
naturally.
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5.3 The Dissipation of Kinetic Energy Across a Shock

The passage of a shock wave causes an increase in entropy, thus leads to irreversible
dissipation of kinetic energy. Consider a stationary shock wave with pre-shock velocity
u, specific volumeV, TemperatureT and pressurep. Bethe [19] (Reproduced in [98])
utilised the Hugoniot relations to derive the leading orderentropy increase as

∆S = − ∂2p
∂V2

∣∣∣∣∣∣
S

∆V3

12T
. (5.3.1)

This relationship is accurate to within 15% where∆u/u and∆ρ/ρ are less than 10%,
and shock Mach numberMs < 1.05. From thermodynamic principles the second
derivative of the pressure with respect to the specific volume can be expressed as [132]

∂2p
∂V2

∣∣∣∣∣∣
S

=
2Gγp

V2
, (5.3.2)

whereG is the curvature of the isentrope. Using Equation (5.3.2) in(5.3.1) gives

∆S = −Ga2

6T

(
∆V
V

)3

. (5.3.3)

Considering conservation of momentum across a stationary shock

u1

V
=

u2

V2
, (5.3.4)

whereu1 andu2 are the pre- and post-shock flow velocities,V andV2 the pre- and
post-shock specific volumes, the difference in specific volume∆V can be related to the
difference in velocity

∆V
V
=
∆us

u1
, (5.3.5)

where∆us is the velocity jump at the shock. The change of entropy can now be written
as

∆S = −Ga2

6T

(
∆us

u1

)3

. (5.3.6)

Finally, as noted in [132] the curvature of the isentrope foran ideal gas is

G = 1
2

(γ + 1) , (5.3.7)
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Inserting this into Equation (5.3.6), the irreversible increase of specific internal energy
T∆S is

T∆S = − (γ + 1) a2

12

(
∆us

u1

)3

. (5.3.8)

As this is relative to a stationary shock, then as the Mach number tends to zero,u1→ a,
showing that the dissipation of a shock of fixed Mach number decreases proportionally
to 1/a. However, the shock wave travels at a speed proportional toa thus the dissipa-
tion rate due to the passage of a shock of fixed Mach number is constant intime and
independent of flow Mach number. This demonstrates that the increase in dissipation
at low Mach number cannot be explained as dissipation inherent within the governing
equations, and is a property of the discrete system.

5.4 The Form of the Solution to the Discrete Riemann
Problem

As the dissipation due to a shock wave is not dependent on the flow Mach number, then
a second possibility is that the number of interfaces where the solution of the Riemann
problem lies between the shock and contact surface increases as the Mach number
decreases. To compute the solution to the Riemann problem exactly an iterative process
must be employed to determine the velocityv∗, densityρ∗ and pressurep∗ between the
waves. However, at low Mach number or where the jumps are not extreme, the solution
to the Riemann problem can be attained with reasonable accuracy using the primitive
variable linearised solution [184] forp∗

p∗ =
1
2

(pL + pR) +
1
2

(uL − uR) ρ̄ā, (5.4.1)

which can be rearranged as,

p∗ = pR+
∆p
2︸︷︷︸
O(M2)

+
∆u
2
ρ̄ā

︸︷︷︸
O(M)

. (5.4.2)

Scaling arguments can be used to deduce the behaviour of the flow field at low Mach
number. It is commonly accepted that in an incompressible flow field the pressure
differences scale withM2, and velocity difference scales withM [108]. The second
term on the left hand side of Equation (5.4.2) isO

(
M2

)
whereas the final term scales

asO (M). This means that in low Mach flows it is expected that the majority of Rie-
mann problems will result in a two-shock or two-rarefactionconfiguration, as pointed
out in [73]. These are generated whenp∗ < max(pL, pR) or p∗ < min(pL, pR) respec-
tively. Indeed, examining each cell interface for the homogeneous decaying turbulence
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problem shows that at Mach 0.2 the structure of the field is 46%two-shock, 46 % two-
rarefaction and 7 % single shock single rarefaction solutions. Reducing the Mach
number to 0.02 gives 48 % two-rarefaction and 52 % two-shock.This does not change
as Mach decreases. As expected, as the Mach decreases the occurrence of single shock,
single rarefaction solutions becomes increasingly rare. The typical structure of the so-
lution to the Riemann problem changes as the Mach number decreases, however, once
M < 0.1 the structure does not change significantly and so is not likely to be the direct
cause of increased dissipation.

5.5 Irreversible Dissipation due to Solution Reaverag-
ing

5.5.1 Linear Advection Equation

The linear advection equation is particularly useful to demonstrate the irreversible dis-
sipation of kinetic energy in the FV framework. Consider

ut + aux = 0, (5.5.1)

whereu can be taken as a velocity, anda the signal speed, assumed positive. In this
case there are no dissipative terms thus the exact solution conserves kinetic energy.
The problem can be discretised at first order accuracy in timeand upwind in space as
follows

un+1
j = un

j − νa
(
un

j − un
j−1

)
, (5.5.2)

whereν = ∆t/∆x. Taking the initial conditions asun
j−1 = −∆u/2 andun

j = un
j+1 = ∆u/2,

consider the solution in cellj at timen+ 1

un+1
j =

∆u
2

(1− 2νa) . (5.5.3)

The theoretical change in kinetic energy is zero, but computationally it is

(
un+1

j

)2

exact
−

(
un+1

j

)2

numerical
=

1
2
∆u2νa (1− νa) , (5.5.4)

giving a dissipation rate increasing proportional to∆u2 and the speed of sounda. Note
that this result can also be gained via standard modified equation analysis [184]. It was
shown by Merriam [133] that the production of entropy (defined by the entropy pair
S = −u2 andF = −au2) for the wave equation in this first order scheme is proportional
to∆u2 anda, mirroring the decrease in kinetic energy shown here. As theflux is exact,

the dissipation is due solely to the reaveraging process where u2
, (u+ u′)2. This
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j − 1/2 j + 1/2
Figure 5.4: Schematic of the flow under consideration

implies that a similar dissipation due to the reaveraging process should occur in the
FV representation of the Euler equations. The following section investigates this by
examining the variation of the entropy over a single time step.

5.5.2 The Euler Equations

To derive the actual change of entropy in the discrete system, the entropy change in
a single computational cell in a single time step is considered. The derivation of the
leading order entropy change for the case of an isolated jumpin velocity is detailed
in full in Appendix B.1 to allow the reader to repeat the analysis. This solution was
first gained by hand, and was subsequently used to validate solutions gained using the
symbolic manipulation software Mathematica for the more complex but common case
of a jump in all primitive variables.

Isolated Velocity Discontinuity

In this section the change of entropy is derived for an interface where there is a veloc-
ity jump ∆u, butρ andp remain constant. Consider flow through three computational
cells, where the discontinuity is located atj + 1/2 as shown in Figure 5.4. The flow
variables are evolved over one time step for a first order in space and time upwind
Godunov scheme. It is assumed that the solution of the Riemannproblem can be
approximated using the linearised solution ([184], p.279), an assumption which is val-
idated in subsequent numerical test cases. Assuming quantitiesρ, ∆u, andp in the cell
j − 1 and j, andρ, 0, andp in cell j + 1 at time leveln, the solution of the Riemann
problem at the cell interfacej + 1/2 can be written as

p∗ = p+
∆uρa

2
, (5.5.5)

u∗ =
∆u
2
, (5.5.6)

ρ∗ = ρ +
∆uρ
2a

. (5.5.7)
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Table 5.1: Rate of increase ofT∆S for an isolated velocity jump per unit time

∆u/a Eqn. (5.5.10) Exact PVRS HLLC
0.5 0.00024 0.00026 0.00025 0.00026
0.1 0.0011 0.0011 0.0011 0.0011
0.01 0.01 0.01 0.01 0.01
0.001 0.104 0.104 0.104 0.104

The leading order entropy increase over a single time step given by an asymptotic
expansion in∆u anda is (See Appendix B.1 for full details)

∆S =
R

γ − 1
γν∆u2

8a
[
2γ − 2+ 2νa (1− γ)

]
+ O

(
∆u3

)
. (5.5.8)

As the irreversible increase of specific internal energy isT∆S =
(
a2/Rγ

)
∆S then

T∆S =
∆u2νa

4
(1− νa) + O

(
∆u3

)
. (5.5.9)

It can be seen that the increase of entropy is only positive aslong as 1− νa > 0, which
is low Mach limit of the familiar CFL condition. Equation (5.5.9) can be converted
to time rate of dissipation, given thatν = ∆t/∆x ≈ C/a, whereC is the Courant-
Friedrichs-Levy number,

ǫ∆u = T∆S/∆t =
∆u2a
4∆x

(1− νa) + O
(
∆u3

)
. (5.5.10)

whereǫ is the irreversible change of kinetic energy per unit time. This is consistent
with analysis of the increase of entropy by Barth [13], which also points to an increase
of entropy proportional to the jump size squared. The asymptotic analysis has been
validated using a one dimensional test case for a first order in time and space Godunov
method solving the Riemann problem with an exact Riemann solver, the HLLC solver,
and the Primitive Variable Riemann Solver (for details aboutthese Riemann solvers
consult [184]). Table 5.1 shows the rate of entropy increasein the first time step for a
shock tube case where the left and right states are defined as

pL = pR = ρa2, ρL = ρR = ρ, uL = ∆u, uR = 0. (5.5.11)

The results show excellent agreement with all numerical schemes even where the Mach
number of the velocity jump is as high as 0.5. This agreement is to be expected as
Equation (5.5.10) is a leading order approximation in termsof Mach number of the
velocity jump and in terms of order of the velocity jump itself, thus it is applicable
beyond the strictly incompressible regime.
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The dependence of the dissipation rate on the speed of sound and ∆u2 is clearly dif-
ferent from the dissipation inherent in the solution of the Euler equations (Equation
(3.8.20)). Equation (3.8.20) was derived assuming the validity of the Hugoniot re-
lations [88], which only hold true when all gradients of the flow exiting the control
volume are zero, and the rate of change of these gradients is zero in a given frame of
reference. Clearly, this is not the general case for an arbitrary interface where there is
a difference in all primitive variables. Thus, the Hugoniot relations hold in a global
sense, but the above expansion applies in the case of unsteady flow for an interface
with a local variation in velocity from the left to right state.

Taking the initialisation of a shock wave on a grid as an example, the validity of the
result becomes clear. In the first time step a dissipation proportional to∆u2

s acts on the
initialised velocity jump. This is larger than the dissipation rate for an ideal shock wave
derived by Bethe and thus the shock is diffused. After several time steps a steady state
solution is gained where the sum of several smaller∆u2 equals the entropy gain of a
single global increase proportional to∆u3. In this process the excess entropy produced
in the first time step at a rate of∆u2

s manifests itself as an entropy ‘anomaly’. A similar
process occurs when shock waves interact, and causes excessheating in the Noh test
case which can be viewed as a shock interaction problem [143].

The dependence on∆u2 is due to an interaction of both the governing equations and
the reaveraging process. If the increase of entropy was solely due to the reaveraging of
the continuous function to a fixed mesh, then the leading order error terms would be of
order∆u. However, the governing equations are constructed in such amanner that the
leading order fluctuations (i.e.∆p and∆ρ) are isentropic in nature and so cancel in the
asymptotic expansion.

Menikoff [131] examined the variation of entropy when initialising ashock wave, or
when shock waves interact and demonstrated that an entropy anomaly occurs due to the
finite width of a viscous shock profile, which is a special caseof the general asymptotic
expansion presented here.

As also observed numerically in [131], under refinement of the mesh the spatial extent
of the anomaly reduces, but the magnitude does not. In employing a Godunov method
to simulate a turbulent flow field, there is no steady frame of reference, and these
entropy ‘anomalies’ occur throughout the field providing a dissipation rate proportional
to∆u2 anda. It is then expected that ILES simulations using a Godunov scheme would
have a subgrid model more akin to a physical viscosity than proportional to∆u3 as
ideally desired. As the numerical viscosity increases above that required to mimic
the behaviour of the subgrid scales then a greater separation is required between the
highest wave number captured on the grid and the beginning ofthe sub-inertial range.
When simulating low Mach turbulence with Godunov methods this effect means that
a large number of finite volumes must be employed to give the required separation.
This explains why the kinetic energy spectra gained using shock capturing methods
are typically overly dissipative in the high wavenumber range (See, for example, [62,
182]).
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Isolated Velocity and Pressure Discontinuity

The analytical methodology followed in Appendix B.1 to give the leading order dis-
sipation rate for an isolated velocity discontinuity has been implemented into Mathe-
matica, a symbolic manipulation software package. The use of symbolic manipulation
software enabled the derivation of leading order dissipation rates for more complex
cases including jumps in all primitive variables. This was validated using the analyti-
cal solution for the isolated velocity jump and numerical test cases. The Mathematica
script used to compute the leading order terms in the dissipation rate for the case of a
jump in all primitive variables is reproduced in Appendix B.2.

Extending the previous test case but now including a jump in pressure, such that

pL = p+ ∆p/2 pR = p− ∆p/2, ρL = ρR = ρ, uL = ∆u, uR = 0.,
(5.5.12)

the leading order dissipation rate in the presence of a jump∆p and∆u, ǫ∆p,∆u, can be
written as

ǫ∆u,∆p =
(1− νa)
∆x

(∆p− ρa∆u)2

4aρ2
+ ... (5.5.13)

The time rate of irreversible dissipation of specific kinetic energy in the case of an
isolated pressure jump decreases with Mach number (assuming a fixed pressure jump).
Table 5.2 details the rate of entropy increase in the first time step for a first order in
time and space shock tube test case where the initial conditions are

pL = p+ ∆p/2 pR = p− ∆p/2, ρL = ρR = ρ, uL = uR = 0, (5.5.14)

and∆p is constant in magnitude, the ratio∆p/p is adjusted by increasing the pressure
p. The highest change tested is a jump of half the magnitude of the mean pressure
of the left and right side. In all cases the error between the leading order entropy
increase in Equation (5.5.13) and the exact solution is lessthan 1%. The rate of entropy
production scales with the inverse of the speed of sound as expected. Comparing this
with the results in Table 5.1 it is clear that the terms due to the velocity jump dominate
in low Mach flows. Interestingly, the leading order approximation in Equation (5.5.13)
is valid for such a large pressure jump even though the PVRS Riemann solver produces
negative entropy due to the higher order terms.

In this case, the variations in density do not affect the rate of entropy production - they
only modify the magnitude of production in the presence of a velocity or pressure jump
due to the influence of the termρ = (ρL + ρR)/2 in the linearised solution.

It is interesting to note that the dissipation is proportional to the square of the departure
from the characteristic relation along theλeig = u+ a eigenvalue,∆p− ρa∆u = 0.
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Table 5.2: Rate of increase ofT∆S for an isolated pressure jump per unit time

∆p/p Eqn. (5.5.13) Exact PVRS HLLC
0.5 0.00048 0.00048 −0.0001 0.00048
0.1 0.00021 0.00021 0.00016 0.00021
0.01 6.6× 10−5 6.6× 10−5 6.5× 10−5 6.6× 10−5

0.001 2.1× 10−5 2.1× 10−5 2.1× 10−5 2.1× 10−5

The analysis within this subsection has assumed thatu∗ is positive, i.e. that the solution
at x = 0 lies to the left of the contact surface and thus can be described by Equation
(5.5.7), but there is no assumption in the direction of the jumps as long as this criteria
remains valid. If it is assumed that the velocity jump is sufficiently negative, or that the
pressure increases from left to right such thatu∗ < 0 then the solution forρ∗ changes
to ([184], p. 297)

ρ∗ = ρR+ (u ∗ −uR) ρ/a. (5.5.15)

Utilising the script in Appendix B.1, the leading order rate of dissipation in this case is

ǫu∗<0 = ǫ∆u,∆p +
∆p

(
∆p− a2∆ρ

)

2∆xρ2a (γ − 1)
+ ... (5.5.16)

For a constant pressure and density jump there is an additional component of dissipa-
tion which increases as the Mach number decreases, proportional to∆p∆ρ. However,
this would scale asM−4 in incompressible flows or at leastM−2 for un-preconditioned
compressible FV schemes so would not dominate over the termsin ∆u2. The char-
acteristic invariant along theλeig = u eigenvalue also appears in this expression, so it
appears that dissipation is minimised only when all jumps are zero, or when the jumps
correspond exactly to the characteristic equations for thewaves which pass into the
cell.

Shear Waves

For a three dimensional direction split method the shear waves are typically advected
passively. This means that the accuracy of the projected value of the velocities parallel
to the interface, in this case thev velocity, will also affect dissipation. In the case of a
single isolated jump inv velocity dissipation will only occur if the contact wave enters
the cell under consideration. This is because the components parallel to the interface
only change across the contact surface. For example, if the jump in v velocity takes
place at the right hand interface, dissipation occurs only if u∗ is negative.

Following the methodology detailed in Appendix B.1, the leading order irreversible
dissipation rate has been derived given the initial conditions in Equation (5.5.12) and
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additionallyvL = ∆v/2, vR = −∆v/2. The leading order term associated with the shear
wave is constant with respect to the speed of sound,

ǫ∆v =
∆v2 (∆ρ − 2ρ) u

4ρ∆x
+ ... (5.5.17)

thus it does not influence the asymptotic behaviour of the system. In a simple shock
tube case with constantu, p, ρ and a step discontinuity in thev velocity component
Equation (5.5.17) is accurate to within 1% in validation cases where∆v/a < 0.5.

5.5.3 Higher Order Methods

The previous subsections discuss only the first order in timeand space Godunov scheme.
The majority of practical simulations are conducted with second or even higher order
methods, and so it is useful to discuss the applicability of the above analysis to more
general Godunov schemes.

In smooth regions, a higher order interpolation in space would act to reduce the mag-
nitude of the jumps between the left and right quantities. The irreversible dissipation
will still depend on∆u2 and increase as 1/M, however∆u2 would now be estimated
via a Taylor series expansion of the interpolation function. This confirms that a key
parameter in the design of numerical schemes is to minimise the difference between
the left and right quantities, not necessarily the formal order of accuracy. As an exam-
ple of this, the Minmod and van Leer limiters have the same formal order of accuracy
when used in a MUSCL formulation. Despite this the van Leer limiter will normally
resolve interfaces much more sharply. The underlying reason for this difference is that
although both limiters have second order accurate interpolation, the jump from the left
to right side interpolated values is second order for Minmod, but third order for van
Leer. This gives the observed improvement in performance.

An additional property of the various extrapolation methods is that they increase the
kinetic energy within a given cell via the process of interpolation itself. This will also
affect the entropy, however in a more complex manner, the analysis of which is beyond
the scope of this chapter. It is expected that methods which give overall dissipative
truncation errors represent interpolation methods which do not increase the kinetic
energy with respect to the continuous function in the interpolation stage.

The analysis in section 5.5 is not valid for higher order timestepping methods, and
would have to be repeated for each different time stepping method. As all higher order
methods are multi-step then it is expected that the resulting expressions would be quite
complex. However, the asymptotic behaviour can be easily examined numerically. Ta-
ble 5.3 shows the velocity jump test case in Section 5.5.2 repeated using second order
Total Variation Diminishing (TVD) Runge-Kutta method [164], implict-explicit dual
time-stepping (DT) method [92], third order TVD Runge Kutta method [69], and third
order extended stability (ES) Runge-Kutta [173] with first order spatial reconstruc-
tion using the exact Riemann solver. These results demonstrate that the dissipation
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Table 5.3: Rate of increase ofT∆S for a fixed magnitude velocity jump (varying the speed of
sound) for several different time stepping methods

∆u/a 2nd TVD RK 2nd DT 3rd TVD RK 3rd ES RK
0.5 0.00028 0.00023 0.00029 0.0003
0.1 0.0012 0.0010 0.0012 0.0014
0.01 0.011 0.010 0.013 0.013
0.001 0.118 0.103 0.130 0.130

Table 5.4: Rate of increase ofT∆S for a variable velocity jump (fixed speed of sound) for
several different time stepping methods

∆u/a 2nd TVD RK 2nd DT 3rd TVD RK 3rd ES RK
0.1 0.0012 0.0010 0.0012 0.0014
0.2 0.0052 0.0043 0.0055 0.0056
0.4 0.023 0.019 0.023 0.023

increases linearly with speed of sound with all time stepping methods as was the case
for the first order in time computations. Additional tests varying the magnitude of iso-
lated velocity discontinuities whilst holding the speed ofsound constant are detailed
in Table 5.4. It confirms that the dissipation rate is proportional to∆u2 for all higher
order time stepping methods examined. This confirms that thesame trends detailed for
the first order schemes apply to higher order in time computations.

5.6 Conclusions

The analytical results derived within this chapter demonstrate that the rate of dissipa-
tion of a Godunov scheme for a typical unsteady flow is not of the same form as the
irreversible dissipation in the governing Euler equations. In shock tube cases the global
dissipation of the solution for a shock wave can be computed using the Hugoniot rela-
tions, and has been shown previously to be proportional to the velocity jump across the
shock wave cubed. However, in the case of an unsteady flow feature, the local increase
in entropy is dependent on the numerical viscosity which in the FV Godunov method
is proportional to the velocity jump,∆u, squared and the speed of sounda. Under the
assumption of low production of entropy due to thermal gradients, this corresponds
to a kinetic energy dissipation rate proportional toa∆u2, explaining directly the poor
performance of Godunov methods at low Mach.

This has important ramifications in the simulation of low Mach number flows, where
excess damping of flow structures leads to extremely inaccurate solutions. The analysis
is presented for Godunov-type methods, however it is likelythat a similar mechanism
is present in all compressible finite volume methods which include a reconstruction
phase. It is also of importance for Implicit Large Eddy Simulation. The expressions
within this chapter can be used to derive new variable extrapolation methods, tailored
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to mimic classic sub grid models through the size of the jumpsin primitive variables.



C H A P T E R 6

Low Dissipation Numerical Method

6.1 Introduction

Increasing computational power and improvements in numerical methods has meant
that simulations of compressible flow configurations are nowat such high resolu-
tion that it is increasingly important to capture relatively low Mach number features
with the same compressible scheme. An example of such combined flows could in-
clude a super-critical airfoil with a turbulent wake, shock-induced shear instabilities,
or Rayleigh-Taylor instabilities.

In the previous chapter, it was demonstrated that the leading order kinetic energy dis-
sipation rate in a Finite Volume Godunov scheme can be expressed as

ǫ =
(1− C)
∆x

(∆p− ρa∆u)2

4aρ2
+ ... (6.1.1)

where p, ρ, u and a are the pressure, density, velocity normal to the cell interface
and speed of sound respectively.∆x is the length of the computational cell,C the
Courant-Friedrich-Levy (CFL) number and∆ indicates a difference between the left
and right quantities at the cell interface. The key observations regarding this result is
that the dissipation is proportional to the speed of sound and the velocity jump squared
at leading order. Thus any low Mach features are heavily dampened by the numerical
scheme.

The modification proposed in this chapter is intended for usein flows with both com-
pressible and low Mach features, such that the time step sizeis not constrained by
the low Mach features. It includes a simple local modification to the reconstruction
process which effectively removes the Mach number dependence of the leading order
dissipation rate of kinetic energy, hence significantly improving the resolution of low
Mach portions of a compressible flow. It is applied in this chapter to a Godunov-type
method however, in principal, there is no reason why it cannot be extended to any
compressible method which employs a reconstruction phase.The main feature of the
modified numerical method proposed here is that itlocally adapts the reconstruction
method to allow good resolution of low Mach features and shocks at the same time
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without modifying the formulation of the governing equations. It is thus more read-
ily applicable to flows including complex physical processes than methods based on
low Mach number expansions of the Euler equations (such as the pressure projection
methods of [109, 5]), or preconditioned schemes (such as [72, 117]) which typically
require significant modification to add the effects of multiple fluid components, re-
actions, strongly compressible features or other additional physics. The modification
requires negligible additional computational expense.

The layout of this chapter is as follows. Section 6.2 proposes a simple modification
of the reconstruction method applied only to the velocity jumps across the cell inter-
face. It is shown analytically that the leading order dissipation rate is constant as Mach
number tends to zero, instead of tending to infinity as with the original scheme. This
method has been implemented in a fifth-order in space, third-order in time MUSCL
based Finite Volume Godunov method, which is also detailed in section 6.2. The
original fifth-order method and the modified scheme are applied to one dimensional
test cases in Section 6.3.1, which demonstrate that the modified scheme can capture
weak acoustic waves, moderate and strong shock waves, and advect density layers
with a reasonably low level of diffusion. Section 6.3.2 presents a single mode Kelvin-
Helmholtz instability showing that the modified scheme extends the ability of the Go-
dunov method to Mach numbers as low as 10−4 and recovers the expected M2 scaling
of pressure and density fluctuations. Two complex three dimensional test cases are
detailed in Section 6.3.3. The modified scheme is shown to significantly reduce dissi-
pation at the high wavenumber modes in homogeneous decayingturbulence. It is then
applied to a high resolution simulation of the Richtmyer-Meshkov instability where
the turbulent kinetic energy spectra are in excellent agreement with theoretical predic-
tions, especially considering the lack of an explicit subgrid model. Finally, Section 6.4
gives conclusions and discusses the possible directions offuture work.

It should be noted that an additional numerical method basedon a modified Roe
scheme has been proposed which has gained good results at lowMach flow. However,
as the approach proposed in this chapter is more general (i.e. applicable to a range of
different schemes), the modified Roe scheme is not described here.For further details
on it see Appendix C or [181].

6.2 Numerical Method

This chapter is concerned with the simulation of the Euler equations, where viscosity
is assumed negligible (Re→ ∞). The three-dimensional compressible Euler equations
are solved using the direction split method. This involves solving in each principal
direction the following governing equations,

∂U
∂t
+
∂E
∂x
= 0, (6.2.1)

where,
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U =
[
ρ, ρu, ρv, ρw, e

]T
, (6.2.2)

E =
[
ρu, ρu2 + p, ρuv, ρuw, (e+ p)u

]T
, (6.2.3)

e= ρi + 0.5ρ
(
u2 + v2 + w2

)
, (6.2.4)

andρ, i, u, v, w are the density, specific internal energy per unit volume andCartesian
velocity components, respectively. It is assumed that the fluid satisfies the ideal gas
equation of state

p = ρi (γ − 1) , (6.2.5)

whereγ is the ratio of specific heats. The Kelvin-Helmholtz and Richtmyer-Meshkov
simulations also advect a passive scalar to track the two fluid components, assumed
to be miscible. The fluxes are obtained by solving the Riemann problem at the cell
interface using left and right limited quantities. The HLLCapproximate Riemann
solver is employed as detailed in Toro [184]. Higher order accuracy is achieved using
MUSCL extrapolation [187],

PL
i+1/2 = Pi+

1
2
φlim

(
r lim,L

i

)
(Pi − Pi−1) , (6.2.6)

PR
i+1/2 = Pi+1−

1
2
φlim

(
r lim,R

i

)
(Pi+2 − Pi+1) , (6.2.7)

whereP is the vector of cell averaged primitive variables, and the cells are labelled by
the integeri. Also,

r lim,L
i =

Pi+1 − Pi

Pi − Pi−1
, r lim,R

i =
Pi − Pi−1

Pi+1 − Pi
. (6.2.8)

The fifth-order limiter proposed by Kim and Kim [107] is employed

φ∗limM5,L =
−2/r lim,L

i−1 + 11+ 24r lim,L
i − 3r lim,L

i r lim,L
i+1

30
, (6.2.9)

φ∗limM5,R =
−2/r lim,R

i+2 + 11+ 24r lim,R
i+1 − 3r lim,R

i+1 r lim,R
i

30
, (6.2.10)

where monotonicity is maintained by limiting the above extrapolations using

φlim
M5,L = max(0,min(2,2r lim,L

i , φ∗limM5,L)), (6.2.11)

φlim
M5,R = max(0,min(2,2r lim,R

i , φ∗limM5,R)). (6.2.12)
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This completes the description of the standard fifth-order method which will be de-
noted ‘M5’ throughout this chapter. The fifth-order method gives significantly better
resolution that typical second-order schemes, for example, in the Sod shock tube case
the extent of diffusion of the contact surface is typically reduced by one third compared
to MUSCL with the second-order van Leer limiter.

As shown by Guillardet al. [73] the scaling of the pressure differences is incorrect
at low Mach for the standard Godunov scheme. This can be shownby examining the
solution to the Riemann problem for the interface pressure, where

p = p+
M
2
√
γpρ∆u (6.2.13)

at the cell interface once the Riemann problem is solved. The theoretical analysis in
the previous chapter demonstrated that this is caused by thespecification of an artifi-
cially large velocity jump at the cell interface when using piecewise constant variable
extrapolation.

The solution to this problem can be approached in two different ways. One method
would be to modify the Riemann solver itself in an attempt to compensate for the
strength of the acoustic waves. This approach would lead to apreconditioned method
such as that proposed by Guillardet al. [73]. However, a second approach is to con-
sider that the Riemann solver is acting upon artificially large jumps in the primitive
variables. These jump sizes have been determined through purely mathematical rea-
soning (i.e. via extrapolation at a specified order of accuracy of cell centred quantities)
without regard for the physical nature of the flow being simulated. In this chapter it
is proposed to modify the extrapolated, or ’limited’ quantities in order to take into
account the flow physics at low Mach.

As has been demonstrated analytically in Chapter 5, the kinetic energy dissipation rate
can be gained by analysis of the generation of entropy over a single time step, using the
Taylor series expansion of the extrapolated variables. This is based on the observation
that in the absence of strong thermal conduction, the generation of entropy change by
temperature is equal to the dissipation of kinetic energy.

The Taylor series expansion of MUSCL reconstruction using the M5 interpolation
method on the vector of cell averaged primitive variablesP gives

P̃(x) = Pi +
∆x
2

Pi
x +
∆x2

12
Pi

xx −
∆x4

720
Pi

xxxx+
∆x5

60
Pi

xxxx+ ..., (6.2.14)

wherePi indicates functions evaluated at the cell centre. The exactexpansion from the
cell averaged quantity to the continuous function gives

P(x) = Pi +
∆x
2

Pi
x +
∆x2

12
Pi

xx +
∆x2

12
Pi

xx −
∆x4

720
Pi

xxxx+ O(∆x6), (6.2.15)

confirming that the extrapolation method is fifth order accurate. From this point on the
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superscripts (.)i will be omitted for clarity. It was shown in Chapter 5 that the leading
order dissipation rate arises due to the velocity jump normal to the cell interface. Thus,
for simplicity, a flow field consisting of constant density, pressure and shear velocities
but continuously varying normal velocity componentu is considered. The following
derivation is complex even for first order in time and space methods, hence following
verification of the methodology (detailed in the previous chapter), a Mathematica script
was used for the analysis.

The fluxes at thei + 1/2 andi − 1/2 interfaces are computed from the Taylor series
expansion of the M5 extrapolation. These are then evolved atfirst order in time, and
the change of entropy over the time step computed. Next, thisprocess was repeated
using the exact solution at the cell interfaces (i.e. the same process but with the exact
Taylor series expansion). The leading order change in entropy in the discrete solution
with van Leer limiting is then subtracted from the exact solution, giving the kinetic
energy dissipation rate due to the errors in the spatial discretisation. Remarkably this
consists of only a single term

ǫM5 =
∆x5

60
auxuxxxxx+ H.O.T. (6.2.16)

This term is proportional to∆x5 as expected from the leading order of the difference
between the left and right quantities in the expansion of thelimiting function. Addi-
tionally, the dissipation rate increases with speed of sound a, as was previously demon-
strated for the first order limiter in Chapter 5.

A simple solution to the problem of the excessive numerical dissipation is sought by
modifying the velocity jump at the cell interface by a function z, where the recon-
structed velocitiesu are now defined by

uL,M5+LM =
uL + uR

2
+ z

uL − uR

2
,

uR,M5+LM =
uL + uR

2
+ z

uR− uL

2
, (6.2.17)

Repeating the above analysis but for the new modified velocityextrapolation given by
Equation (6.2.17) gives,

ǫM5+LM =
∆x5

60
zauxuxxxxx+ H.O.T., (6.2.18)

whereH.O.T. are higher order in terms of spatial derivative, but lower order in terms
of speed of sound. It can be seen that by choosingz = min(Mlocal,1)), Mlocal =

max(ML,MR) the leading order dissipation rate becomes

ǫM5+LM =
∆x5

60
|u| uxuxxxxx+ H.O.T. (6.2.19)
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This ensures that the dissipation does not exceed that of theoriginal scheme and reverts
to the standard upwind form in supersonic flows. The new treatment of the velocity
jumps can be considered more ‘realistic’, in that the standard Godunov method sets
up artificially large jumps which would not be present in a lowMach flow field. It
can also been seen as a progressive central differencing of the velocity components as
Mach number tends to zero. The left and right densities or pressures are not modified,
as this will cause excessive diffusion in stationary contact surfaces, which is not desir-
able. Importantly, as the sign of the fifth derivative is the same as the sign of the first
derivative, the leading order term is still absolutely dissipative locally. A key obser-
vation is that the reconstruction is modified based on the local properties of the flow
field, hence the same governing equations are solved throughout the domain.

By assuming that the flow field consists of a single sinusoidal perturbation, where
u(x) = ũsin(kx) andk = 1/n∆x, the dissipation rate can be written as

ǫM5+LM ≈ 1
60n6

|ũ|3
∆x

, (6.2.20)

which shows a similar functional form to Kolmogorov’s four-fifths law (which gives
ǫ ∝ |u|3/l), whereas the standard method gives a dissipation rate of the form ǫ ∝
u2a/∆x. This chapter includes some fully turbulent test cases to investigate if this
functional change in the dissipation rate improves performance in the framework of
Implicit Large Eddy Simulation. From this relation it is clear that the dissipation rate
decreases steeply asn increases, i.e. as the wavelength of the mode under consideration
increases, as is expected of a higher order method.

The leading order dissipation rate gives increasing entropy as long as the standard
CFL criteria is held, thus the numerical method does not suffer the severe instability
of preconditioned methods when used in conjunction with explicit time stepping [20].
Additionally, substituting the modified velocity jump according to Equation (6.2.17)
into Equation (6.2.13) recovers the expectedM2 scaling of the pressure and density
variations. This numerical method is denoted ‘M5+LM’ throughout this chapter.

It should be noted that not all interpolation methods can be modified in this way. A
similar modification applied to the van Leer limiter gives a leading order truncation
error

ǫVL+LM =
∆x2

12
uuxuxx +

∆x3

12
Cauxuxxx, (6.2.21)

demonstrating that one of the leading order terms still increases with speed of sound.

Finally, third-order accurate Runge-Kutta time-stepping method is employed [173]

U1
i = Un

i +
1
2
∆t
∆x

f
(
Un

i

)
, (6.2.22)

U2
i = Un

i +
1
2
∆t
∆x

[ f
(
U1

i

)
], (6.2.23)
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Un+1
i =

1
3

(
2U2

i + Un
i +
∆t
∆x

[ f
(
U2

i

)
+ f

(
U1

i

)
]

)
. (6.2.24)

where f
(
Un

i

)
indicates the net flux into the cell evaluated using the arrayof conserved

variables at timen in cell position i (see also [53]). This has an extended stability
region to a theoretical limit ofCFL = 2.

6.3 Test cases

6.3.1 One-Dimensional Test Cases

Modified Sod Shock Tube

To demonstrate that the proposed modification does not affect the ability of the scheme
to capture shock waves and contact surfaces the original andmodified method have
been applied to the Sod shock tube test case modified to include stationary flow within
the rarefaction fan. This modification is used to test the scheme for unphysical rarefac-
tion shocks when the leading order dissipation is decreasedsignificantly within the fan.
The initial conditions are

(ρ,u, p)L = (1,−0.5,1), (ρ,u, p)R = (0.125,0,0.1), γ = 1.4 (6.3.1)

where the initial discontinuity is placed atx = 0.5. The domain is of length 1 and was
discretised using 100 cells. The CFL number was chosen as 1.4, and the results were
taken att = 0.17. Figure 6.1 shows the pressure, density and velocity profiles using
both the modified and original limiting methods. The pressure and density profiles are
almost indistinguishable from the original fifth-order scheme. There is only a slight
change in position of the first point in the shock wave, and themodified scheme gives
sharper profiles at the head and tail of the rarefaction.

Density Layer

The second test case is taken from Klein [109] and is used to validate that the scheme
can advect large density variations at Mach=0.02 at very low dissipation, whilst re-
solving a low wavelength acoustic wave which passes throughthe density layer. The
initial conditions are defined by

ρ(x,0) = 1+ Φ sin(40πx/L) + M(1+ cos(πx/L)) (6.3.2)

p(x,0) = 1+ γM(1+ cos(πx/L)) (6.3.3)

u(x,0) =
√
γM(1+ cos(πx/L)) (6.3.4)
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Figure 6.1: Results from the modified Sod shock tube test case

and the domain size is−L ≤ x ≤ L = 1/M whereM = 1/51. Finally, the domain is
discretised with 1020 points,CFL = 1.4, andγ = 1.4. Figure 6.2 shows the pressure,
velocity and density distributions at timet = 5.071 for both the original fifth-order
scheme and the modified scheme, corresponding to about two and a half passages of
the long wave acoustic perturbation. Again, both modified and unmodified schemes
perform extremely well, the total density variation has been reduced by only 7% com-
pared the initial amplitude. This is far better than the Superbee results reported in
[109], and as good as the low dissipation implicit scheme presented there. The total
density variation between the standard and modified scheme is only 10−3%. This was
the only test case examined here where the modified scheme wasless stable than the
original scheme, which would run up toCFL = 1.6.

Noh

The third test case is taken from Noh [143] and consists of twoinfinite strength shocks
moving out from the centre. This is employed to test the performance of the scheme
for very strong shocks. The initial conditions are
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Figure 6.2: Results from the density layer test case, left column M5, right column modified
scheme M5+LM. The initial conditions are shown as dashed lines
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Figure 6.3: Results from the Noh test case

(ρ,u, p)L = (1,1,10−6), (ρ,u, p)R = (1,−1,10−6), γ = 5./3. (6.3.5)

where the initial discontinuity is placed atx = 0.5. The domain is of length 1 and was
discretised using 100 cells. The CFL number was chosen as 1.5, and the results were
taken att = 1. Figure 6.3 shows the density profiles using both the modified and origi-
nal limiting methods. Both original and modified schemes demonstrate excellent shock
capturing, however both schemes break symmetry (as do many high order schemes in
this test case (see Liska and Wendroff [122]), and are oscillatory behind the strong
shock. Performance in this test case can be improved by employing TVD time step-
ping method. This is demonstrated in Figure 6.4, which showsthe results gained with
the same reconstruction method but employing the third order TVD Runge-Kutta time
stepping of Gottlieb and Shu [69] at CFL 0.5. The spread of the oscillations away from
the centre is significantly reduced for both reconstructionmethods, with the modified
scheme giving the best results in the uniform region behind the shock.

6.3.2 Two-Dimensional Test Cases

Single Mode Kelvin-Helmholtz

The effective resolution of a numerical scheme can be determined byexamining the
ability to resolve the a single mode instability. In this case, an initially small perturba-
tion velocity of one tenth the free stream Mach number triggers the development of a
Kelvin-Helmholtz vortex. It is initialised following [199]
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Figure 6.4: Results from the Noh test case using 3rd order TVD Runge-Kutta

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Figure 6.5: Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 showing
the development of the Kelvin-Helmholtz instability at Mach=0.2 using scheme M5

u =
∂Az

∂y
, v = −∂Az

∂x
, Az =

U0

k
cos(ky)exp−k|x|, U0 = 0.1∆U, (6.3.6)

where∆U is the difference in mean flow velocity U across the mixing layer. In this
example∆U = 1, hencev = −∆U/2 for −0.5 < x < 0 andv = ∆U/2 for 0 < x < 0.5.
The Mach number, defined by∆U/a, is adjusted by changing the pressure. Density is
fixed atρ = 1, andγ = 5/3. The size of the domain is 1× 1 and is discretised with
16 cells in each direction. The coarse resolution is deliberately chosen to highlight the
scheme’s ability to capture what would be a high wavenumber perturbation on a larger
grid. It also allows easy demonstration of the low Mach behaviour of the dissipation
of kinetic energy.

Figure 6.5 shows the development of the single mode vortex using the original fifth-
order method atM = 0.2. The characteristic rolled up vortex is clearly visible, high-
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(a) M = 0.02 (b) M = 0.002

Figure 6.6: Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 at t=3 for
Mach numbers 0.02 and 0.002 using scheme M5

(a) M = 0.2 (b) M = 0.02 (c) M = 0.002 (d) M = 0.0002

Figure 6.7: Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 using
M5+LM at t = 3

lighted by the transport of a passive scalar into the spirals. It should be noted that this
is already a reasonable result - using a second order limitersuch as van Leer at this
grid resolution would give no visible roll up.

If the Mach number is reduced by increasing the background pressure, then excessive
dissipation prevents growth of the initial instability. Figure 6.6 shows the development
of the mixing layer at Mach= 0.02 and 0.002. At flow Mach numbers of less than 0.2
the perturbation is dissipated, preventing the growth of the instability.

Applying the low Mach correction to the velocity jumps improves the resolution of the
perturbation, as shown in Figure 6.7. AtM = 0.2 the vortex roll-up is greater, however
the 0.5 contour line has merged in the central cells thus creating the ’kink’ in vortex
centre. As Mach→ 0 the spiral structure of the vortex is perfectly intact and appears to
be reaching a relatively Mach-independent structure. At the lowest Mach number there
is a very slight asymmetry in the results, which is due to the use of a small number to
prevent a divide by zero in the limiting stage of the calculation.

As pointed out in Guillardet al. [74, 73] it is important that the pressure and den-
sity fluctuations follow the correct scaling. They demonstrate clearly that the standard
finite volume scheme contains pressure fluctuations of orderM, contrary to the in-
compressible limit which should only support perturbations of order M2. The relative
pressure and density difference are defined as
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Figure 6.8: Scaling of the maximum pressure and density variations with Mach number at
t = 3 for scheme M5+LM

∆p =
pmax− pmin

p
, ∆ρ = ρmax− ρmin, (6.3.7)

and are plotted in Figure 6.8 for Mach 0.2 to Mach 0.0002 att = 3 for scheme M5+LM.
Below Mach 0.2 the maximum pressure variation follows aM2 scaling as required
from incompressible theory, as does the scaling of density variation.

6.3.3 Three-Dimensional Test Cases

Homogeneous Decaying Turbulence

In this section the schemes are tested for the ability to resolve a turbulent flow where all
flow properties vary continuously throughout the flow field. The canonical numerical
test case for which theoretical results are available for comparison is that of homoge-
neous decaying turbulence in a periodic cube. From the results in section 6.3.2 it is
expected that the modified scheme will be significantly less dissipative. This would be
a great advantage as it is well known that Godunov schemes dissipate heavily at high
wavenumbers [62, 182].

The flow field was initialised using a method derived by Youngsand utilised in previ-
ous simulations of decaying turbulence [195, 197]. The flow field has an initial kinetic
energy spectrum given by [82]

E(k) = u′2
k4

k4
p

√
8

k2
pπ

exp
(
−2

(
k/kp

)2
)
, (6.3.8)

wherek is the wavenumber, and the peak in the energy spectrum is defined by changing
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the peakkp in the exponential. The peak of the energy spectrum was chosen atkp = 4.
To ensure the generation of an almost non-divergent (i.e. incompressible) velocity
field, the velocity is formed from components of a vector potential Φ, which satisfies
the following relationship:

u = ▽ × Φ. (6.3.9)

As the divergence of a curl is identically equal to zero this gives a non-divergent veloc-
ity field. The vector potential is initialised with a Gaussian distribution of amplitudes
and random phases which is rescaled linearly to give a velocity field satisfying

KE =
3
2

u2
rms = 0.5, (6.3.10)

M =
urms

a
= 0.1. (6.3.11)

The chosen Mach number is low for a Godunov method, and thus ithighlights more
clearly the advantages of the modified MUSCL reconstruction proposed. The simula-
tions were run at 323, 643 and 1283 using both M5 and M5+LM, and the viscous terms
were neglected (Re→ ∞). Figure 6.9 plots the mean kinetic energy per unit volume
versus time for each grid resolution up tot = 5 which corresponds to about eight eddy
turnover times. At lower grid resolutions the M5+LM scheme resolves more kinetic
energy, and begins decay at a later time, which is a typical feature of increased reso-
lution of the scheme. Figure 6.9d) compares the kinetic energy decay rate of the 323

modified scheme with the performance of the 643 scheme showing that the modified
scheme behaves very close to the unmodified scheme at double the resolution.

Three dimensional kinetic energy spectra have been calculated following [44]

E(k) = 2πk2φii (k), (6.3.12)

wherek =
√

k2
x + k2

y + k2
z and the spectrum tensorφ is

φi j (k) =
1

(2π)3

∫ ∞

−∞
Qi j (r ) exp−Ikr dr , (6.3.13)

whereQi j is the second-order velocity correlation tensor. The instantaneous three di-
mensional energy spectra are shown in Figure 6.10 for several time instants using both
methods at each resolution. The original method shows the dissipative nature of the
unaltered Godunov method for high wavenumber modes. There is a significant im-
provement in the turbulent spectra at all grid resolutions indicating much higher en-
ergy in the high wavenumbers when modifying the velocity increments at low Mach.
The original numerical dissipation was clearly too high (due to the speed of sound
dependence) and thus generated a much larger dissipation range than desirable when
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Figure 6.9: Kinetic energy versus time for the modified (M5+LM) and original (M5) scheme

simulating turbulent flow. There is a good match to a k−5/3 spectrum when using the
modified scheme despite there being no subgrid model employed - indicating that the
modified scheme is potentially a good candidate for ImplicitLarge Eddy Simulation.

To assess this, the effective spectral accuracy and spectral eddy viscosity detailed in
Section 4.3.6 have been computed for the standard scheme andthe modified scheme.
The results are shown in Figure 6.11 and 6.12. Surprisingly,the effective spectral ac-
curacy for the continuity equations (A1) is actually reduced for the modified scheme,
however for the momentum equations (A2) the spectral accuracy is significantly in-
creased - and is better than the standard ninth-order WENO methods. It appears that
the improved spectra and numerical results at low Mach are primarily due to improved
resolution in the momentum equations. It was already noted in Chapter 4 that the
resolution of the continuity equation is generally worse than that of the momentum
equations, but the ramifications of this are the subject of ongoing work. Figure 6.12
shows that the modified limiting method provides dissipation closer in both form and
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Figure 6.10: Instantaneous three dimensional energy spectra taken att = 1 to 3 in increments
of 0.5, where the highest solid line is the earliest time. Results for M5 are in the left column,

M5+LM in the right column
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Figure 6.12: Effective spectral eddy viscosity computed from Equation (4.3.21) at the 643

simulation

value to that predicted by Chollet. Additionally, at low wavenumber the effective eddy
viscosity is low, implying that the rapid acoustic fluctuations at a large scale are not
present in the simulation.

Richtmyer-Meshkov Mixing

Finally the numerical scheme is applied to a three dimensional mixing problem where
the sharp and accurate treatment of shock waves and contact surfaces is of paramount
importance. Richtmyer-Meshkov mixing is generated when a perturbed interface be-
tween two gases is impulsively accelerated, typically by a shock wave [155, 134].
These instabilities first grow linearly, and then transition to turbulence, and are of
importance in the study of supernovae explosions, wakes of jet engines, combustion
chambers and inertial confinement fusion. This type of interaction is typically at very
high Reynolds numbers thus the viscous terms are neglected. This subsection focusses
on the high wavenumber performance of the numerical method,the flow physics is
discussed in more detail in Section 7.3.
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Figure 6.13: Iso-surface of mass fractionY1 = 0.5 illustrating the initial condition for the
Richtmyer-Meshkov test case

The test case uses the initial conditions derived by Youngs [198] to examine the influ-
ence of initial conditions on the growth of the resultant mixing layer. The flow field
consists a heavy and light gas separated by a perturbed interface where the perturbation
satisfies a given power spectrum and mean amplitude. The incident shock wave is of
Mach= 1.84, equivalent to a four-fold pressure increase across the shock wave. The
domain chosen is of size [0,0,0] × [2.4π,2π,2π] where additional length is given in
the x direction to allow for growth of the mixing layer. The initial conditions are

x < 2.3 (ρ,u, p) = (6.375,−61.4875,4× 105) (6.3.14)

2.3 < x < 3.35+ S (ρ,u, p) = (3.0,−291.575,105) (6.3.15)

3.35+ S < x (ρ,u, p) = (1.0,−291.575,105) (6.3.16)

where an initial velocity is given to the material interfacesuch that the mean velocity of
the interface is stationary after passage of the shock wave.The ratio of specific heats,
γ, is set to 5/3. The initial interface perturbationS is given as the sum of modes of
random phase conforming to an initial power spectrumP ∝ c/k2. The modes excited
are restricted betweenλmin = 16∆x andλmax = 2π/3 and the standard deviation of the
perturbation amplitude is 0.1λmin. Figure 6.13 shows the isosurface of mass fraction
Y1 = 0.5 at t = 0, illustrating the nature of the perturbation. The grid size employed
is 360× 300× 300 and simulations were run with both the original M5 limiter and
modified M5+LM scheme atCFL = 0.75.

Once the shock wave has passed, the maximum Mach number within the mixing layer
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is approximately 0.25 and decreases with time, thus the standard boundary conditions
utilised in a compressible code cannot be applied in thex direction. To prevent exces-
sive reflection of the incident and reflected shock wave, an extended one dimensional
domain is employed as inlet and outlet conditions in thex direction. This does not com-
pletely eliminate completely the reflected wave as this is impossible where the mesh
size changes (see Menikoff [131]), but reduces the magnitude of the reflected wave to
0.03% of the initial velocity, which is then transmitted without reflection through the
inlet boundary condition. In they andzdirection periodic boundaries are applied. Note
that in the following discussion all length scales are non-dimensionalised byλmin, time
scales byλmin and∆u = 291.575 (the initial velocity impulse applied to the interface
by the shock wave).

Figure 6.14 shows three time instances in the development ofthe mixing layer for each
scheme. The large scale structures are in similar locationsin both of the schemes,
however it is clear that there is significantly improved resolution of fine scale features,
as expected from the previous test cases. Figure 6.15 shows aplane slice of the domain
showing contours of mass fraction att = 240 for both numerical schemes, further
highlighting the increased resolution of the modified scheme.

Next the growth of the mixing layer is examined. It is expected that the mixing layer
integral widthW, defined as

W =
∫

x
< α1 >< α2 > dx, (6.3.17)

where< α1 > is they − z plane averaged volume fraction of species one, and it is
expected thatW should grow astθ. Theoretical analysis suggests that at late times
θ ≈ 1/3 − 2/3 [37, 202, 196]. Figure 6.16 shows the non-dimensional mixing layer
width. The lines of best fit showθ ≈ 0.35 for the original scheme, and≈ 0.38 for
the modified scheme, in reasonable agreement. The increasedresolution of fine scale
structure does not significantly affect the integral mixing layer width, which is to be
expected as simulations with single mode perturbations demonstrate that the mixing
layer width can usually be captured on a very coarse grid [183].

Finally, the two-dimensional turbulent kinetic energy spectra have been calculated in
they−zplane (parallel to the initial interface) and averaged over10 slices in thex direc-
tion (direction of shock propagation). Each spectra is computed for a slice 256 by 256,
and the 10 slices are symmetric across the centre of the mixing layer. Figure 6.17 com-
pares the spectra obtained using the two numerical methods at several time instances
during the decay of turbulent kinetic energy. Ak−3/2 line has been plotted on the charts
which is the theoretical form of the turbulent kinetic energy spectra determined by ex-
tending the Kolmogorov-Kraichnan phenomenology to take into account the ‘driven’
nature of the turbulent mixing zone [202]. There is an excellent match between the
theoretical result and the M5+LM scheme between 8< k < 100, indicating that ex-
cess dissipation at low Mach effectively removed small perturbations from the original
fifth-order scheme thus preventing development of a fully turbulent flow regime. This
is an excellent result, especially considering the lack of an explicit subgrid model, and
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(a) t = 80

(b) t = 160

(c) t = 240

Figure 6.14: Iso-surface of mass fractionY1 = 0.05, 0.5 and 0.95 showing the time
development of the turbulent mixing layer. Results for M5 are in the left column, M5+LM in

the right column
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(a) M5 (b) M5+LM

Figure 6.15: Contour flood of mass fraction att = 240 illustrating the fine scale structures
present
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Figure 6.16: Variation of the integral mixing widthW with time for the two numerical
schemes
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Figure 6.17: Two-dimensional turbulent kinetic energy spectra taken att = 114, 154, 195,
and 236 plotted with ak−3/2 line

a huge improvement on the original scheme. To the author’s knowledge, such a large
inertial range has not been seen in simulations less than 10243 [39] with other high
resolution schemes. It could be suggested that there is a short inertial range present
for 8 < k < 20 for the original scheme however at such low wavenumbers there is
only a small statistical sample thus any power law dependence is masked by statistical
fluctuations.

Such a large influence of the low Mach correction on the high wavenumbers is sur-
prising. If it is assumed that the turbulent kinetic energy spectra conforms to ak−3/2

form, then the characteristic velocity for a given wavenumber falls ask−1/4. Assum-
ing the peak of the spectrum is atk = 4, for k = 100 the mean velocity would be
≈ 0.4 of the peak velocity, which is not an excessively low Mach number in this test
case (Mach≈ 0.1). Thus the simulations have demonstrated that the seed instabilities
resulting in such a spectrum are at a Mach number much less than the characteristic
Mach number of the modes resolved on the grid assuming an inertial range form to the
grid cut-off. These instabilities are damped at a very early stage in their growth by the
original fifth-order method.

6.4 Conclusions

This chapter has presented a simple modification of the Finite Volume Godunov method
to significantly improve performance at low Mach and in turbulent flows. It is shown
analytically and through numerical test cases that the dissipation of the numerical
scheme becomes constant in the limit of zero Mach, as opposedto tending to infin-
ity as is the case for the traditional scheme. In addition, this modification recovers the
correct scaling of the pressure and density fluctuations as Mach decreases. The key
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feature of the numerical scheme is that the reconstruction is modifiedlocally, hence
the scheme can capture both shock waves and low Mach featuresin the same compu-
tational domain using the same formulation of the governingequations. The numerical
modification adds negligible computational cost.

The modified method has been implemented in a fifth-order finite volume code using
the HLLC Riemann solver, and several numerical testcases validate the performance
compared to the original fifth-order method. The ability to capture shock waves in
a non-oscillatory manner was demonstrated using the Sod shock tube test case, and
the scheme can advect low Mach density variations without excessive dissipation. A
two dimensional Kelvin-Helmholtz test case showed that thedissipation is reason-
ably Mach independent, and that the pressure and density fluctuations scale withM2

as expected. Finally, two complex three dimensional turbulent simulations demon-
strate significant improvement in the resolution of flow features, especially in the rep-
resentation of high wavenumber modes. Results presented forthe three-dimensional
Richtmyer-Meshkov instability show instantaneous two dimensional turbulent kinetic
energy spectra in excellent agreement with the predictedk−3/2 form for three quarters
of the wavenumber range. Previous published results with high resolution methods
gain an inertial range of this length typically only with three times the number of grid
points in each direction. It has also demonstrated that the accurate simulation of turbu-
lent flows of Mach≈ 0.1 relies on the numerical scheme capturing the growth of very
low Mach instabilities.

This paper has presented the results from applying such a modification to a standard
Godunov-type method, however, in principal there is no reason why equivalent results
would not be gained in a wider class of fully compressible schemes which rely on
reconstruction of the conserved or primitive variables at the cell interface.
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C H A P T E R 7

Compressible, Turbulent Flows

7.1 Open Cavity Flow

7.1.1 Introduction

Although the primary aim of this thesis is to analyse and develop numerical methods
for shock induced turbulent mixing, there is a severe lack ofdetailed quantitative ex-
perimental data in this area against which the methods can bevalidated. The aim of this
section is to validate the new fifth-order low Mach numericalscheme for simulations
of compressible turbulent flow by comparison with experimental data and conventional
LES with an advanced subgrid scale model.

It was decided to use the detailed experimental results of Forestieret al. [59] for
compressible flow over a deep open cavity. This type of flow is of interest in many
applications from vehicle sunroofs to simulations of aircraft undercarriage, weapons
bays and scramjet combustion. A key feature of cavity flow is the feedback mechanism
between strong acoustic waves, and the shear layer shed fromthe upstream edge of the
cavity. In deep cavities, strong acoustic waves are generated as the coherent vortices
strike the downstream corner of the cavity. These then propagate upstream to influence
the developing shear layer.

A schematic of the experimental setup is shown in Figure 7.1.The flow enters the
test section with a freestream velocityU of 258 m/s, equivalent to Mach 0.8. The
stagnation pressure and temperature were 0.98× 105Pa and 293K respectively. The
cavity length L is 0.05m, depth is 0.12m, and width is 0.12m. The Reynolds number
based on cavity lengthRec = UL/νvis = 860,000. Boundary layer transition was
triggered well before the cavity and the incompressible shape factor and momentum
thickness were measured as approximately 1.3 and 0.65mm respectively.

The experiment measured velocity components using a two-dimensional laser-Doppler
velocimeter, which were then post-processed to separate mean flow and Reynolds
stresses. In addition, pressure data was taken from a sensormounted 0.035m below the
lip of the cavity on the upstream face. This measured a strongfundamental mode at a
frequency of 1990± 6Hz of magnitude 155dB, and several subsequent harmonics. A
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2.4L

2L U=258m/s
M=0.8

L L 4L
Figure 7.1: Schematic of the cavity flow experimental setup. The width of the channel is

2.4L. .

semi-empirical formula proposed by Rossiter [157] is commonly used to estimate the
frequency of the fundamental mode,

fn =
Uc

L
n− α

M + 1/κ
(7.1.1)

wheren is the mode,M is the Mach number andU is the freestream velocity. Finally,
κ andα are parameters which are recommended to be 0.57 and 0.25 respectively for
this geometry [157]. However, using the standard coefficients for this geometry gives
a predicted fundamental mode at 1515Hz, an error of almost 30%. This highlights the
case for numerical simulation, as for this geometry the standard empirical formulae
are very inaccurate. Following their experimental results, Forestieret al. [59] suggest
usingα = 0 for this specific geometry, giving the fundamental mode at 2020Hz.

As the cavity flow is at high Reynolds number it is not computationally viable to em-
ploy Direct Numerical Simulation. It is pointed out by Larchevequeet al. [113] that
Reynolds Averaged Navier Stokes (RANS) methods can predict successfully the loca-
tion of the first mode, but not the magnitude. This is due to theexcess dissipation of
the RANS method in the developing mixing layer, which is inherently unsteady on a
short timescale. Although LES is more expensive, it is capable of resolving the time
dependent behaviour of the flow, simulating the acoustic field directly. This method is
sometimes denoted as Computational Aeroacoustics, as the full Navier-Stokes equa-
tions are solved to gain the acoustic field. Previous LES by Larchevequeet al. [113] of
this flow configuration gained excellent results using both LES with a selective mixed
scale model and ILES. However, the underlying compressibleschemes employed were
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Figure 7.2: Schematic illustrating the different clustering regions employed in the cavity grid
.

not shock capturing, hence generate oscillatory behaviourin regions of discontinuities.

7.1.2 Numerical Methods

For this test case the governing equations are the Navier-Stokes equations. The air
used in the experiment is modelled as an ideal gas with ratio of specific heatsγ = 1.4.

The numerical method chosen is the fifth order MUSCL method with low Mach cor-
rection. No explicit subgrid modelling was employed, hencethese simulation fall into
the class of ILES. The grid size follows that of Larchevequeet al. [113], and takes the
dimensions shown in Figure 7.1. The origin of the chosen co-ordinate system is on the
upstream bottom corner of the cavity, where positivex is in the direction of the mean
flow, positivez is vertical in the wind-tunnel, andy is the width of the domain, chosen
as 0.05m.

Three different grid sizes have been employed, the grid consists of 0.8× 106, 1.4× 106

and 3×106 cells for the coarse, medium and fine simulations respectively. The domain
was split into two blocks, and several different regions, the upper domain is the first
block, and the cavity the second block. A schematic of the different regions in the grid
is shown in Figure 7.2. The upper block is split into six regions, defined by being either
before the cavity, above the cavity, or after the cavity, andthen split in thezdirection if
they are located above the boundary and shear layer, or within the boundary and shear
layer - defined asz/L < 0.2. Next the cavity block was split into two regions, region
5 contains the shear layer and associated recirculations close to the top of the cavity,
extending toz/L = −0.8. Region 6 is the bottom of the cavity where the grid was
relatively coarse.
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Table 7.1: Details of the grid clustering exponents in thex direction, wherexR andxL

indicate clustering becoming finer in the downstream or upstream direction respectively

Regions 1,2 3,4,5,6 7,8
Direction xR xL,R xL

Coarse 0.2 0.3 0.7
Medium 0.4 0.3 0.75

Fine 0.35 0.35 0.77

Table 7.2: Details of the grid clustering exponents in thezdirection, wherezR andzL indicate
clustering becoming finer in the positivez or negativez directions

Regions 1,3,7 2,4,8 5 6
Direction zL zL zR zR

Coarse 0.6 0.2 0.2 0.5
Medium 0.6 0.2 0.15 0.4

Fine 0.6 0.3 0.2 0.5

An exponential clustering function was employed in the following form, taking thex
direction as an example:

x(i) = xinitial + (xmax− xinitial )
exp(0.1R(i − 1))− 1

exp(0.1R(imax− 1))− 1
(7.1.2)

where i is the grid co-ordinate,R is the clustering exponent,imax is the maximum
number of points in thei direction in that region, andxinitial , xmax are the start and
end points of the region in thex direction. Tables 7.1 and 7.2 list the grid clustering
exponents in thex andz direction for each region, for each of the three grid levels
employed, where several regions have the same clustering exponent. Table 7.3 details
the number of points in total in the upper and lower blocks, and then number of points
in thez direction in the boundary layer region above the cavity (Regions 2, 4, 8), and
the mixing and recirculation zone within the cavity (region5).

It is not considered that the development of the shear layer over the cavity is sensitive
to the exact nature of the turbulent boundary layer. Hence, although the simulation is
greatly under-resolved (even at the finest grid levely+ ≈ 20, the medium and coarse
grids havey+ of 42 and 55 respectively), no turbulent wall model was employed, and

Table 7.3: Number of grid points in each block for the different grid sizes

Upper Block Cavity Block Upper b/layer Cavity layer
Direction x y z x y z z z
Coarse 170 40 70 60 40 100 30 70

Medium 220 50 80 100 50 150 40 110
Fine 260 60 100 120 60 160 55 120
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the walls of the wind tunnel were modelled as non-slip. Inletboundary conditions
were fixed assuming isentropic expansion from the experimental reservoir conditions
(p0 = 98000Pa,T0 = 293K) to Mach 0.8. This gives a pressure of 64304Pa, density
of 0.8623kg/m3, and a velocity equal to 258m/s. The experiment measured turbu-
lent noise levels of 1.5% of the freestream velocity, however numerical test with im-
posed white noise on the inlet boundary condition up to 15% ofthe freestream velocity
showed no significant influence on the flow physics of the separated mixing layer.

The boundary layer at the inlet is defined using the experimentally measured incom-
pressible shape factor and momentum thickness to define the power-law profile. Hence,
for y/δ < 1

< U >= U
(y
δ

)1/n

, (7.1.3)

wheren = 2/(H − 1) is determined from the incompressible shape factorH = 1.3, and
δ is determined using the momentum thicknessθ = 0.65mm,

δ =
θ(n+ 1)(n+ 2)

n
. (7.1.4)

The exit boundary condition is extrapolated from the internal flow. As the flow is sub-
sonic this condition is not rigorous as there are waves propagating upstream, however
strong grid stretching the in x-direction damps acoustic perturbations far downstream
of the cavity. The constant velocity flow field is maintained by a pressure drop which
is imposed on the initial condition, aimed to compensate formomentum losses due to
viscous drag at the wall, and losses due to the cavity. Assuming that the losses in the
boundary layer are similar to that over a flat plate the shear stress can be estimated
from the empirical relation [8]

τw =
1
2
ρU2C f , C f = 0.074/Re0.2, (7.1.5)

and the required pressure drop is given by

∆p = 2τwAxy/Ayz. (7.1.6)

whereAxy is the area of the top and bottom walls,Ayz is the cross-sectional area of the
domain. The mean flow is 258m/s, ratio of areas is 3, givingτw = 32Pa and an imposed
pressure drop of∆p = 198Pa. This pressure drop is imposed linearly throughout the
domain at initialisation.
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Figure 7.3: Comparison of experimental Schlieren images (left) and computational schlieren
|∇ρ| (right) at approximately the same time within the vortex shedding cycle
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7.1.3 Results and Discussion

Flow Phenomenology

High speed schlieren images taken during the experiment demonstrated that the mix-
ing layer undergoes a clear periodic cycle. This cycle is illustrated in Figure 7.3 which
compares experimental schlieren images and computationalschlieren results on the
finest grid level (|∇ρ|). The first vortex (labelled S1 on the experimental images) forms
where the boundary layer separates from the upstream edge ofthe cavity. It then
growth rapidly in size, an propagates downstream. As the same time the second struc-
ture (labelled S2) begins to form at the separation point. At the third image inthe se-
quence there is strong shock-vortex interaction resultingin deformation of the acoustic
wave as it passes through the leading vortical structure. This releases a cylindrical
sound wave as the vortex core is compressed into an elliptical shape during the pas-
sage of the wave, releasing acoustic waves as it returns to circular shape (these can be
seen in the fifth and sixth images).

The third vortex is visible in the sixth frame, at which time the first vortex is approach-
ing the downstream wall, and is deflected downwards. As the first vortex is strong,
as it is shifted down the wall it induces an upward velocity onthe developing second
and third vortical structures, lifting them. In the final fewimages the second vortical
structure strikes the downstream corner of the cavity, whereas the third vortex is lifted
over the edge and continues downstream. The sequence of vortex shedding is broken
by a strong pressure wave which reflects from the bottom of thecavity, cutting the
shedding process close to the upstream corner of the cavity.This pressure wave can be
seen passing the upstream corner in the final five images of Figure 7.3.

Acoustic waves are generated as the vortices impact on the downstream corner, and
they propagate upstream and downstream, and in an additional complexity they are re-
flected off the top of the wind tunnel. These waves are seen clearly in theexperimental
and numerical images, however in the numerical images the reflected acoustic waves
(leaning towards the upstream direction) are not as sharp due to grid stretching at the
upper boundary. The prediction of the location of the acoustic waves is excellent when
compared to experimental images. The network of emitted andreflected waves can be
seen clearly in Figure 7.4 which shows the full computational domain.

Figure 7.5 and Figure 7.6 show a three dimensional view of thevortices, visualised as
isosurfaces ‘Q’ criteria [94],

Q = −1
2
∂ui

∂xj

∂uj

∂xi
, (7.1.7)

demonstrating the complexity of the flow close to the shear layer. It also illustrates the
dampening effect of grid stretching both at the bottom of the cavity, and inthe boundary
layer downstream of the cavity. Figure 7.6 shows the isosurfaces ofQ = 0.5×106, half
the value taken for Figure 7.5 to illustrate the complex, three dimensional turbulent
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Figure 7.4: Computational schlieren|∇ρ| showing the full computational domain at the finest
grid resolution

Figure 7.5: Three dimensional visualisation of isosurfaces ofQ = 106 at the same time as
Figure 7.4. Contour flood shows pseudo-schlieren field (|∇ρ|)
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Figure 7.6: Close up of the cavity, showing visualisation of isosurfaces ofQ = 0.5× 106 at
the same time as Figure 7.5, but with an isosurface at half the value. Contour flood shows

pseudo-schlieren field (|∇ρ|)

nature of the flow. The mixing layer is dominated by the three quasi-two dimensional
vortices, however between these vortices are smaller streamwise vortices. There is also
evidence that finer scale vortices, resulting from turbulent motion within the cavity, are
subsequently entrained into the mixing layer.

Mean Flow

The Reynolds averaged mean flow data has been computed from data outputted for
approximately 30 shedding cycles for the coarse and fine data, and 60 shedding cycles
for the medium resolution simulation. The results are presented in Figure 7.7 and
Figure 7.8, compared to experimental data measured using Laser Doppler Velocimetry
along the developing mixing layer for several thousand shedding cycles, and the fine
grid results from the LES study by Larchevequeet al.[113].

The overall agreement with experiment is excellent, especially considering the minimal
approach to modelling the incoming boundary layers, and strong grid stretching at the
upper wall. Comparing the results atx/l = 0.05, it appears that the initialised boundary
layer at the inlet of the numerical domain is slightly thicker than required. There is a u-
momentum loss betweenz/L = 2.4 andz/L = 2.5 when compared to the experimental
results, which in turn will causes the centre of the mixing layer to be slightly higher.

The agreement at subsequent points is excellent, the only slight discrepancy is a con-
sistent under-estimation of theu velocity above the cavity, which is due to the initial
thickness of the upstream boundary layer. There are discrepancies close to the down-



160 Compressible, Turbulent Flows

X

X

X

X

X

X

X X X X X X X X
X

X

X

X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6
Exp
Coarse
Medium
Fine
Larch.X

(a) x/L = 0.05

X

X

X

X

X
X

X
X

X
X

X

X

X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6
Exp
Coarse
Medium
Fine
Larch.X

(b) x/L = 0.2

X

X

X

X
X

X
X

X
X

X
X

X
X

X
X

X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6
Exp
Coarse
Medium
Fine
Larch.
Larch. PL

X

(c) x/L = 0.4

X

X

X
X

X

X

X

X
X

X

X

X

X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6 Exp
Coarse
Medium
Fine
Larch.X

(d) x/L = 0.6

X
X

X
X

X

X

X

X

X

X
X

X
X

X
X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6
Exp
Coarse
Medium
Fine
Larch.X

(e) x/L = 0.8

X

X

X
X

X

X

X
X

X
X

X
X

X
X

X

X

X

u/U

z/
L

0 0.2 0.4 0.6 0.8 12.2

2.3

2.4

2.5

2.6 Exp
Coarse
Medium
Fine
Larch.X

(f) x/L = 0.95

Figure 7.7: Comparison of mean longitudinal velocityu/U with experiment and previous
LES [113]. Forx/L = 0.4 the results from [113] gained using a power law boundary layer

profile are plotted with solid circles
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Figure 7.8: Comparison of mean longitudinal velocityw/U with experiment and previous
LES [113]
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stream edge of the cavity wall, however in this region there is a complex, fine scale
interaction between the developing vortices and the downstream wall which is not well
resolved.

The vertical velocities presented in Figure 7.8 are approximately one order of magni-
tude smaller than the freestream velocity. At the first measurement station,x/L = 0.05
the mean velocities are extremely well predicted on the fine grid, however the peak ve-
locities in the centre of the layer are not predicted as accurately as in the other locations.
At the other locations both the qualitative and quantitative behaviour are captured well,
indicating the mixing layer is growing in a physically realistic manner.

At the majority of measurement planes there is a clear trend in improvement of the
numerical results are resolution increases, converging towards the experimental mea-
surements.

Comparison with the previous LES of Larchevequeet al. [113] show that on equivalent
grids (medium grid in the current study with fine in the Larchevequeet al. case) the
agreement with experiment is not as good for the longitudinal velocities, but as good
for the vertical velocities. It is believed that the reason for the improved agreement
with LES is that the inlet boundary layer was specified more accurately by rescaling
the boundary layer profile measured from experiment. The rescaling was calibrated
such that the mean boundary layer profile at the cavity was an excellent match for
experimental measurements.

To support this conclusion, the solid circles in Figure 7.7c) show the results gained
by Larchevequeet al. using ILES on a grid equivalent to the coarse grid employed
here, but with a power law inlet boundary condition for the turbulent boundary layer.
This is the same type of inlet boundary condition employed inthe current simulations,
but the results are substantially worse. This indicates that to some extent the ILES
results presented here are less sensitive to the initial modelling assumptions, and that
the proposed numerical method gives a better representation of the the expected flow
physics.

Reynolds stresses

The time and space (in the periodic direction) averaged longitudinal Reynolds stresses
are plotted against experiment in Figure 7.9. As with the mean flow velocities, there
is good agreement with experimental results at all stations. The centre of the mixing
layer in the numerical simulations is slightly higher than that in the experiment (See
Figures 7.9 a) and b)), which is consistent with a thicker boundary layer upstream of
the cavity.

The vertical Reynolds stressw′2/U plotted in Figure 7.10 shows similar results to
the longitudinal stresses. The peak of the vertical Reynoldsstress indicates that the
centre of the developing mixing layer is too high by about 1mmin comparison to
experimental results. The cross-stressu′w′/U presented in Figure 7.11 also confirms
this observation.
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Figure 7.9: Comparison ofu′2/U with experiment and previous LES [113]

Finally, Figure 7.12 shows the two dimensional fluctuating kinetic energy close the
upstream and downstream wall respectively. There is a slight overestimation of the tur-
bulent kinetic energy at all grid resolutions - which is opposite to the results presented
by [113], where conventional LES underestimated the fluctuating kinetic energy. This
demonstrates that the numerical scheme is suitable for LES,as it does not excessively
damp turbulent motions.

At this point it worth discussing the relative modelling effort in the classical and ILES
simulations, and the properties of the numerical schemes. The key difference between
the two simulations is visible in Figure 7.7 a). The inlet boundary layer profile used in
[113] was not that reported in Forestieret al., but a least squares fit to their experimental
data. This was then rescaled to allow for growth up to the start of the cavity to give
the best match to experimental data atx/L = 0.4, in conjunction with turbulent wall
modelling. The simulations detailed here initialised the inlet boundary layer profile
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Figure 7.10: Comparison ofw′2/U at with experiment and previous LES [113]

directly from experimental measurements without such compensation, which meant
that the initial boundary layer thickness is greater than that in the computation. This is
a point which should be improved in future simulations.

The subgrid model employed by Larchevequeet al. is a selective mixed scale model,
described in detail in [118]. This uses a nonlinear combination of a Smagorinsky
and mixing length model. It requires the choice of two constants, the Smagorinsky
coefficient and the nonlinear combination parameter. In addition, the Smagorinsky
coefficient is modified for use in the mixing length model close to walls via the van
Driest dampening function. To improve intermittency, an additional selective function
is employed which premultiplies the eddy viscosity computed via the subgrid mod-
els. A further correction is employed for the filter length∆ to compensate for the fact
that the mesh is highly stretched. Finally, the subgrid models themselves are evalu-
ated numerically to second order accuracy. The Smagorinskycoefficient, the nonlinear
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Figure 7.11: Comparison ofu′w′/U with experiment and previous LES [113]
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Figure 7.12: Comparison of (u′2 + w′2)/U2 with experiment and previous LES [113]

combination parameter, and the selective function are all calibrated through compari-
son of numerical results with experiment [118]. The underlying numerical method is
a combination of a second order central difference scheme with dissipation added to
stabilise the numerical scheme by upwinding where oscillations occur. The numerical
scheme is not shock capturing due to this oscillitory nature.

In contrast, the ILES approach appears very stark. No explicit subgrid models were
employed, correction functions are not applied, and the scheme is shock capturing as
demonstrated in the previous chapter. However, it is clear that a turbulent wall model
(or improved inlet conditions) should be implemented in future simulations, as the
results in this section have demonstrated that there is somesensitivity to the details
incoming boundary layer profile on the location of the centreof the mixing layer and
the exact match with experiment.

Pressure Spectra

In the experiment the average pressure power spectrum was measured at the upstream
wall over approximately 5000 to 8000 shedding periods. As the time simulated is
limited by computational power, the results presented within this section correspond
to 30 shedding periods. To examine the influence of sampling time the medium grid
level was run for 60 shedding periods. All pressure spectra are presented as frequency
vs. Sound Pressure Level (SPL) in units of decibels (dB), where the conversion to
decibel is

SPL(dB) = 10 log10

(
Power

4× 10−10

)
. (7.1.8)

There are several different methods for computing the pressure power spectra, thethree
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Figure 7.13: Pressure spectrum for the medium grid computed with three different methods

main being via a simple FFT process (as done for the turbulentkinetic energy spec-
trum). This is computed as the square of the Fourier transform of the pressure fluctua-
tions, rescaled to satisfy Parseval’s theorem. Parseval’stheorem states that the integral
of the power in the pressure power spectrum should be equal tothe total power in the
real signal. A problem with this method is that the power at a discrete part of the pres-
sure spectrum can ’leak’ to adjacent parts, a leakage which is not necessarily restricted
to a narrow locality - indeed for a general function the leakage extends significantly.

The second method reduces this problem by explicitly ’windowing’ the data such
that this leakage is significantly reduced. This involves splitting the data into several
chunks, and multiplying it by a specified window function before the Fourier trans-
form. The disadvantage of this method is that it reduces the lowest frequency sampled,
hence effectively reducing the number of periods over which the signal is averaged.

Finally, the third common method is Burg’s method, which doesnot employ an ex-
plicit Fourier transform. This employs linear prediction theory, which was initially
developed for predicting the value of a function at one instant using a combination of
all previous instants. The coefficients of the linear prediction can be directly related
to the power spectrum of the function, and provide an excellent method of extracting
sharp peaks from short data samples - and does not rely on a data set which is a power
of 2 in length. A key component of employing this method is selecting the number of
’poles’ (coefficients in the expansion). If too many poles are selected the method can
split a single peak into two peaks, or make several peaks where no peak exists. Further
details on the three methods can be found in the Chapter 13 of [151].

In light of these observations, all three methods were implemented, and the results
compared in Figure 7.13 for the medium grid resolution simulation. The circles show
the experimental results up to the second harmonic. Severalobservations can be made.
Firstly the standard FFT transform is extremely noisy, however it appears to resolve
peaks well. The Periodogram method reduces the noise, however it suffers from low
resolution due to the windowing process. Finally, Burg’s method with 15,000 poles
captures the peaks accurately, and agrees well with the basic FFT transform. On this
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Figure 7.14: Pressure power spectrum up to 10kHz for simulations and experiment

basis the Burg method is employed throughout this section.

Figure 7.14 shows the pressure power spectrum for each of thethree grid resolutions,
and that of the experiment for the full range. A close up of thefirst two peaks is shown
in Figure 7.15, comparing the different methods. It should be noted that the peak
in the experimental results at about 90kHz is believed to be due to resonance of the
sensor itself. Experimental measurements recorded the fundamental mode at 1975Hz
(no error bars are given in [59]) at approximately 155dB sound pressure level. The
coarse, medium and fine grid predict this peak at 1940Hz, 1948Hz and 1954Hz, with
a sound pressure level of 160dB, 153dB and 157dB respectively. This is equivalent to
errors compared to experiment of less than 5dB at all grid levels. These are excellent
results considering that the boundary layers were not modelled, and that extremely
coarse grids were used in the upper half of the wind tunnel, and bottom of the cavity.

As can be seen in Figure 7.15, the frequency of the second modeis also predicted
to within 2%, but the sound pressure level is overestimated by 6dB at the highest
grid level. Additionally, the small peak between the first two modes is overestimated
significantly, however as the scale is logarithmic, this would not affect total sound
pressure significantly. The source of the smaller peak is a longitudinal wave which is
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Figure 7.15: Pressure power spectrum highlighting the dominant acoustic modes for the
ILES simulations (left) and comparison of the fine grid results with conventional LES results

from [113]

reflected continuously within the cavity. This wave is stronger in the simulation than
in experiment. A possible explanation is that in the experiment the acoustic wave is
scattered by a series of interactions with turbulent vortices. The coarse resolution in
the numerical simulation means that the vortices are not present, hence the acoustic
waves are not scattered as effectively.

Figure 7.15 also shows a comparison of the medium grid simulation with the fine grid
results of [113]. The prediction from the medium grid simulation of the current study
is a better match to experimental data for the location and magnitude two strongest
modes, however the conventional LES simulation captures the magnitude of the small
peak better. It is possible that the combination of a two- andthree-dimensional grid in
the conventional LES simulation allowed better resolutionof the flow within the cavity
where the acoustic waves producing the small peak occur. It is expected that the shock
capturing capability of the current method allows better resolution of strong acoustic
waves (weak shocks), which appears to be confirmed here.

Comparing the full range, the fine grid level predicts the frequency of the harmonics
up to approximately 20kHz (the first 11 modes), however the magnitude of the higher
frequency peaks are overestimated compared to experiment.The medium grid per-
forms better in terms of magnitude of the harmonics, howeverresolves up to about
15kHz (first 8 modes). The coarse mesh capture modes up to 12kHz, however there
are several spurious peaks at high frequency which do not appear in the experimental
results. In all, the agreement with experimental sound pressure spectra is excellent
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7.1.4 Conclusions

This section has detailed the simulation of a deep, open cavity flow to validate the
modified numerical method against quantitative experimental data. It has been shown
that the mean flow and Reynolds stresses are in very good agreement with experiment,
and convergence towards the experimental results with increasing resolution is appar-
ent. The discrepancies with experimental data are largely due to an over-estimation of
the boundary layer thickness at the inlet of the numerical domain. This meant that the
initial thickness of the mixing layer was slightly too large, and the centre of the mixing
layer is shifted by 1mm vertically compared to the experimentally measured position.

Pressure power spectra measured by Forestieret al. [59] have been compared to nu-
merical data, where the frequency of the two dominant modes are predicted to within
2%, and the sound pressure level within 6dB for all grid resolutions. The finest grid
level captures the frequency of harmonics up to 20kHz, however the magnitude of these
peaks is overestimated. Results presented with the modified method without subgrid
model compare excellently with conventional LES by Larchevequeet al. [113].

In summary, this section has validated the modified numerical scheme through sim-
ulations of a complex, wall bounded, compressible turbulent flow. The comparison
shows excellent results for minimum modelling effort, and demonstrates that the key
flow physics of the problem are captured accurately without the necessity of an explicit
subgrid model.
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7.2 Single Mode Richtmyer-Meshkov Instability

7.2.1 Introduction

This section investigates the influence of numerical methodand grid resolution on the
growth of a three dimensional single mode planar RM instability. The test case adopted
is that of Li and Zhang [121]. Using these initial conditionsthe solution in the linear
and non-linear regime is compared to numerical and theoretical solutions developed in
Zhang and Sohn [201] and Richtmyer [155], and results employing a semi-Lagrangian
finite difference code presented in [183].

Numerical codes for the simulation of such complex flows are typically calibrated
against theoretical, experimental, or previous numericalstudies. The solution gained
when simulating flow instabilities depends greatly on the numerical schemes used, thus
it is important to establish the independence of certain reference results from the choice
of numerical scheme. In addition, by examining the grid convergence of the solution a
single mode test case is a good measure of the resolution of a given numerical scheme.

7.2.2 Numerical Methods

Two numerical methods are employed in this section, the firstbeing the well es-
tablished second-order van Leer limiter, the second is the new low Mach limiting
methodology with fifth-order accuracy, both employed in theMUSCL framework. The
characteristics-based Riemann solver is used, along with third-order extended stability
Runge-Kutta time stepping.

The initialisation for the single mode problem is identicalto that used in Li and Zhang
[121], and is illustrated in Figure 7.16. The size of the computational domain is 6×1×1
and the boundary conditions are periodic in they andz directions with an extended
one dimensional domain in thex direction to reduce the effects of reflected waves.
The incident shock Mach number is 1.5 and travels in the positivex direction. The
initial interface perturbation is defined asA = A0(cos(ky) + cos(kz)) wherek = 2π and
kA0 = 0.238. The fluids have a density ratioρ1/ρ2 = 1/5, andγ1 = γ2 = 1.4. The
computation takes advantage of the Galilean invariance of the governing equations in
that an initial velocity ofu0 = 151.1m/s is given to the interface such that the mean
position of the interface is stationary after the passage ofthe shock.

Several grid resolutions have been employed, 30×5×5, 60×10×10, 120×20×20, 240×
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40×40 and 480×80×80. In presenting the results, all lengths are non-dimensionalised
by the wavelength of the initial perturbation, and times by the wavelength and post-
shock interface velocity. All theoretical results are computed using the post-shock
Atwood numberAt+ = 0.65, and the post-shock amplitudeA+0 = 0.43. The spike
height is the distance from the furthest point where the volume fractionα = 0.5 to
the centre of the mixing layer (defined by the position where an unperturbed interface
would lie at). Similarly, the bubble position is the furthest point towards the heavy gas
that a volume fraction of the 0.5 is found. The mixing layer width is the sum of the
spike and bubble height.

Figure 7.17 shows the time development of the instability atthe maximum grid resolu-
tion using van Leer and M5+LM limiting methods, through the linear and non-linear
growth of the instability. It can be seen that the growth of the instability is dominated
by the ring vortex structure as also seen in experimental studies [30]. There are ad-
ditional fine scale features on the M5+LM simulation which are not present with van
Leer due to the dissipative nature of the standard Godunov method.

(a) t = 0 (b) t = 3.0 (c) t = 6.3 (d) t = 12.9

Figure 7.17: Isosurfaces of constant volume fraction 0.05 and 0.95 illustrating the
development of the single mode RM instability using van Leer (top) compared to M5+LM

(bottom) at the highest grid resolution

7.2.3 Results and Discussion

Figure 7.18 a) shows the grid converged mixing layer width compared to nonlinear
theory by Zhang and Sohn [201], linear by Richtmyer [155] and simulations using
a semi-Lagrangian finite difference code called ‘TURMOIL’ [183]. Figure 7.18 b)
shows the converged bubble and spike size as a function of time. It is clear that there
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Figure 7.18: Grid converged mixing layer widths

is excellent agreement between the Godunov and finite difference numerical methods
at both early and late times. The results of Li and Zhang [121]appear to grow more
slowly, however, comparing their images it appears that thenumerical scheme is sig-
nificantly more dissipative, thus removing kinetic energy from the system and slowing
the growth of the mixing layer.

The mixing layer width grows more rapidly than predicted by linear theory, however it
is an excellent match for the non-linear theory of Zhang and Sohn [201] up to a non-
dimensional time of about 2.5. After this time the growth is dominated by the strong
vortex ring which self-advects at a constant velocity. The dominance of this coherent
structure causes the departure from non-linear theory, which depends on 1/t2 at late
time. The behaviour over the time-scales considered withinthis study match a power
law of ≈ τ0.55, whereτ is the non-dimensional time, but late time growth is linear.
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Figure 7.19: Development of the mixing layer widths as a function of grid resolution and
numerical method

The bubble and spike widths are also in excellent agreement.Given these initial con-
ditions the spike exhibits continued growth due to the vortex ring, however bubble
growth stagnates very rapidly. At very late time the bubble begins to grow again due
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to the expansion of the developing turbulent mixing layer. In addition to the plots
shown, identical runs with several different limiting methods (van Albada, Minmod,
and M3 limiter) have resulted in the same growth rates, as have simulations using a
Roe scheme.
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Figure 7.20: Development of the bubble and spike as a function of grid resolution and
numerical method, low resolution (top) and high resolution (bottom)

Figures 7.19a) and b) show the development of the mixing width as a function of mesh
resolution for both numerical methods. The total width of the mixing layer reaches an
approximately converged solution for 20× 20 cells for both methods. The difference
in bubble heights is small compared to the overall mixing layer widths. At lower grid
resolution (5 and 10 cross-section) the M5+LM method performs significantly better
compared to the grid converged solution. At a cross-sectionof 10×10 the new method
over predicts growth by about 6%. At the same resolution the van Leer limiter under
predicts growth by 25%, and 10% at 20× 20 cross-section.

The growth of the bubble and spike at the lower resolutions isshown in Figure 7.20
a) and b) for both numerical methods. The initial bubble growth is captured very well
with the M5+LM method at all resolutions through the linear and early non-linear
stage, which is not true of the van Leer limiter. Both methods are converged at 20× 20
cross-section.

The growth of the spike shown in Figure 7.20 b) shows the largeresolution improve-
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ment when switching to the M5+LM method. The M5+LM limiter converges at a
cross-section of 10× 10 cells, however the van Leer limiter does not converge until a
grid resolution four times greater in each direction.

An important point which has not been investigated is the influence of the order of
accuracy of the representation of the initial perturbation. At present the initialisation is
only second order accurate, meaning that at low grid resolution, the perturbation could
be very inaccurate. It is expected that the higher order methods would perform much
better given a higher-order accurate initial condition.

7.2.4 Conclusions

The converged growth rates of the single mode Richtmyer-Meshkov instability have
been shown to be in good agreement with the theory of Zhang andSohn [201] until
the growth is dominated by the coherent ring vortex. Bubble growth stagnates very
rapidly after the early non-linear stage, whereas the spikecontinues to grow due to self
advection of the vortex ring.

It is demonstrated that the van Leer limiter removes kineticenergy more rapidly, lead-
ing to a weaker vortex at a given grid resolution. As the mean Mach number after
passage of the shock wave is 0.1, and decreases with time, the Godunov scheme suf-
fers heavily from excess dissipation as predicted in Chapter5. This is only alleviated
at higher grid resolution where the velocity jumps at the cell interface are reduced.
This is not the case for the new scheme which converges at approximately half the grid
resolution for the total mixing layer width, and a quarter the grid resolution for the
spike height when compared to the van Leer limiter. This translates to a 16 or 64 times
decrease in computational time.
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7.3 Multimode Richtmyer-Meshkov

7.3.1 Introduction

This section investigates ILES of shock wave induced instabilities (Richtmyer-Meshkov)
and turbulent mixing. Richtmyer Meshkov (RM) [155, 134] instability occurs when
an incident shock wave passes through a perturbed interfacebetween two gases, trig-
gering growth of the interface width. These instabilities first grow linearly, and then
transition to turbulence.

In the Section 2.3 the various approaches to the analysis of RMinstability were dis-
cussed. It was shown that there are two main analytical approaches to the determi-
nation of the growth exponent of the mixing layer. The first isthe growth of a fully
turbulent slab (Section 2.3.1), where the initial perturbations have already saturated
and there is no further significant growth of the long wavelengths. This is equivalent
to the growth of a narrowband high wavenumber initial perturbation. The second is
the assumption that the long wavelengths are still growing linearly during the time of
interest to the observer (Section 2.3.2). Thus there is a continuous linear growth of
largely irrotational long wavelengths, which overtake thenonlinearly saturated shorter
wavelengths. It is a complex interaction involving the twofold process of nonlinear
saturation followed by turbulent break down and dissipation of smaller modes, which
are then supplied with energy from larger modes which subsequently saturate, break
down, and begin to dissipate. This is equivalent to the growth of a perturbation from
a broadband initial condition where the power in the initialperturbation spectrum is
distributed over a wide range of wave numbers.

This section investigates the growth of a Richtmyer-Meshkovmixing layer using two
different perturbations. The first is a narrowband combination of high frequency modes,
which represents growth of a turbulent mixing layer purely via mode coupling of the
high wave numbers. The second initial condition consists ofa broadband linear com-
bination of modes from one third the domain size to the high frequencies. If the initial
conditions are forgotten then the asymptotic growth rate, and associated statistics of
the mixing layer should be the same in both cases. However, aspointed out in Section
2.3.2, it is possible that the linear growth of the long wavelengths is faster than the
growth of a turbulent slab, hence dictating the overall growth of the mixing zone.

7.3.2 Numerical Methods

This section is concerned with the simulation of the Euler equations, where viscosity
is assumed negligible (Re→ ∞). The three-dimensional compressible Euler equations
are solved using the direction split method. It is assumed that the fluid satisfies the
ideal gas equation of state, whereγ = 5/3 is the ratio of specific heats. In addition, a
passive scalar is advected to track the two gas components, assumed to be miscible.

The numerical method is a standard finite volume solver employing the HLLC approx-
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Figure 7.21: Schematic of the multi-mode Richtmyer-Meshkov initialisation .

imate Riemann solver [184], and using the ThCM multicomponentmodel to track the
passive scalar. This section employs three different variable reconstruction methods:
second-order van Leer limiting; ninth-order WENO [11]; and the modified low Mach
corrected fifth-order method. For the details of these methods consult Chapter 3.

Initialisation

The test case uses the initial conditions derived by [198] (See Section 3.9.2) to examine
the influence of initial conditions on the growth of the resultant mixing layer. The
initial conditions are shown schematically in Figure 7.21.The flow field consists of a
heavy and light gas separated by a perturbed interface wherethe perturbation satisfies
a given power spectrum and mean amplitude. The incident shock wave is of Mach=
1.84, equivalent to a four-fold pressure increase across the shock wave. The initial
conditions are

0.0 < x < 3.5 (ρ,u, p) = (6.38,−61.5,4× 105) (7.3.1)

3.5 < x < 4.0+ S (ρ,u, p) = (3.0,−291.58,105) (7.3.2)

4.0+ S < x < LD (ρ,u, p) = (1.0,−291.58,105) (7.3.3)

where an initial velocity is given to the gas interface such that the centre of the interface
is stationary after passage of the shock wave. The ratio of specific heats,γ, is set to
5/3. The post-shock Atwood numberAt+ = 0.48.

For the broadband initialisation, the interface perturbation S is given as the sum of
modes of random phase conforming to an initial power spectrum P ∝ c/k2 (See section
3.9.2). The modes excited are restricted betweenλmin = 32π/256 andλmax= 2π/3 and
the standard deviation of the perturbation amplitude is 0.1λmin. The grid sizes used
were 360×256×256, 180×128×128 and 90×64×64, and the domain size is fixed at
2.4π × 2π × 2π. This is essentially a convergence study with the same initial condition
on all grids, only more poorly resolved on the coarsest grid.This problem was solved
with the modified fifth-order limiter for all grids, and the WENO ninth-order and van
Leer for the coarse and medium grids.

The narrowband perturbation has an initial power spectrumP ∝ c, and excited modes
lie betweenλmin = 16∆x andλmax = 32∆x. The initial amplitude is 0.1λmin. In this
case the initial perturbation has been chosen to lie at a highfrequency, but where the
numerical scheme resolves perturbations without dampening. This problem employs
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Figure 7.22: Evolution of mass fraction isosurfaces for the fine grid narrowband
perturbations att∆u/λmin = 0, 7 and 250 using the modified fifth order scheme

grids of size 360× 300× 300, 360× 150× 150 and 360× 75× 75. As the initial
perturbation and amplitude is linked to the grid scale, the perturbations on the smaller
grid grow faster, proportional toλmin. To compensate for this the grid size in the x-
direction is increased proportionally such that the cells remain square at all resolutions.
In order of decreasing mesh size, the domain sizes are; 2.4π × 2π × 2π, 4.8π × 2π × 2π
and 9.6π × 2π × 2π. This problem was solved using the modified fifth-order limiter.

Non-Dimensionalisations

Before discussing the results, it is important to set out the relevant scaling laws and
non-dimensionalisations. Following Youngs [196] all length scales are normalised by
the minimum wavelengthλmin, and wave numbers bykmin = 1/λmin. The time is scaled
via λmin and∆u, which is the velocity impulse given to the interface. Finally, total
kinetic energy, and the kinetic energy spectra are non-dimensionalised byλmin∆u2ρ,
whereρ = 1. All subsequent results are non-dimensional.

Note that in all subsequent figures the standard numerical scheme is the modified fifth
order method.

7.3.3 Results and Discussion

Flow Phenomenology

Figure 7.22 shows mass fraction isosurfaces illustrating the initial condition and evolu-
tion of the turbulent interface with time. It can be seen thatfor early time (t∆u/λmin =

7) the flow field consists of a series of mushroom like structures generated by the
deposition of vorticity at the gas interface. Kelvin-Helmoltz (KH) instabilities grow
exponentially hence breaking the large coherent structures. At late time the flow field
is turbulent, consisting of motion on many different scales. There are some ’coher-
ent’ structures remaining (mushrooms shedding KH vortices) at the gas front, but in
between there is a well mixed zone.
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Figure 7.23: Comparison of the three numerical methods using broadband perturbationsat
t∆u/λmin = 250 at 128 grid cross-section

Figure 7.23 shows the isosurfaces of mass fraction for each of the three numerical
methods at late time for the 128 cross-section grid (broadband initial conditions). It is
clear that the van Leer limiter is too dissipative to allow realistic growth of perturba-
tions, hence, to economise on computational time, further results were not computed.
Of WENO ninth order (W9) and the modified fifth order (M5+LM) the fifth-order has
more fine scale structure, indicating less numerical dissipation. Comparing the flow
structure in the broadband and narrowband simulations the narrowband simulation is
much more regular, showing no large scale perturbations. The broadband initialisation
shows a clear long wavelength perturbation, demonstratingthat for the period of time
under consideration, the initial conditions have a strong influence.

Growth Rates and Mixing Measures

In this section the following parameters are examined; Integral mixing layer widthW;
Molecular mixing fractionΘ; and the mixing parameterΞ defined as

W =
∫

< α1 >< α2 > dx, Θ =

∫
< α1α2 > dx

∫
< α1 >< α2 > dx

, (7.3.4)

Ξ =

∫
< min(α1, α2) > dx

∫
min(< α1 >, < α2 >)dx

. (7.3.5)

where< α1,2 > indicates they−zplane averaged volume fraction of species 1, 2 where
species 1 is the heavy gas. It is generally accepted that the integral mixing layer width
(considered less sensitive to fluctuations) grows at late time astθ. Θ gives a guide to
the total reaction rate for a slow reaction, andΞ is an equivalent measure for a fast
reaction rate where one reactant is fully depleted. Figure 7.24 shows these quantities
plotted for both sets of initial conditions, for all grid resolutions.

The mixing layer width exhibits good grid convergence, and is plotted on logarithmic
axes to highlight the power-law behaviour of the amplitude.Assuming that amplitude
is proportional toC(t − t0)θ, and utilising a non-linear regression to gain the best fit
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Figure 7.24: Integral mixing width, Molecular mixing fraction and mixing parameter for the
narrowband perturbations (left) and broadband (right)

curve,θ = 0.24± 0.015 for the narrowband simulation. Comparison with previous
simulations by Youngs [198] using a finite difference semi-Lagrangian method shows
an almost exact match, lending weight to the fidelity of the numerical results. It is
in is in good agreement with the experiments of Dimonteet al. [48] (see also Section
2.3.5) where the RM instability acts on a turbulent slab generated by RT instability (the
initial turbulent slab can be interpreted as a form of narrowband initial perturbation).
Compared to analytical theory detailed in Section 2.3 this result is consistent with the
general consensus thatθ = 2/3− µ [12], where the viscous correctionµ ≈ 5/12 in this
case. However, it is considerably lower than the lowest growth rate proposed by Zhou
[202].

The broadband initial conditions giveθ = 0.35± 0.02. This demonstrates that, for the
duration of the simulation, the mixing layer width depends crucially on the form of
the initial conditions. This is in good agreement with the theory of Inogamov [89],
however it is likely that this theory is not valid with the power spectrum chosen, as it
is narrow and the power spectrum is a relatively strong function of the wavenumber.
However, it is lower than the predictions of Dimonte [46] andYoungs [198] based
on the ‘just saturated’ mode (Section 2.3.2). The explanation for the low value of
θ is that in the current simulations the ratio of maximum to minimum wavelength
λmax/λmin = 16/3 ≈ 5.3. This would mean that there is not a sufficiently wide range
of modes which are simultaneously passing through linear and non-linear stages to
determine the asymptotic value ofθ for an infinite 1/k2 power spectrum.

The molecular mixing fractionΘ and mixing parameterΞ both approach a constant
state. This is achieved more rapidly with narrowband perturbations than with the
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Figure 7.25: Plane averaged volume fraction for narrowband (left) and broadband(right)
perturbations.

broadband initialisation. At the lower resolutions with M5+LM the level of molec-
ular mixing is higher than with the WENO method, however as grid size increases
bothΘ andΞ decrease. The asymptotic value of approximately 0.8 agrees well with
previous mixing simulations of the related Rayleigh-Taylorinstability by Youngs [197]
and Cook and Zhou [42]. The slower convergence of the mixing statistics at high grid
resolution indicates that a self-similar state has not yet been achieved for the broadband
simulations.

For self-similarity the profiles of average volume fractionand mixing fractions should
scale with a single characteristic length scale at all times, in this case the integral
mixing layer widthW. Figure 7.25 shows the plane averaged volume fraction. The
scaled volume fraction profiles collapse excellently for all resolutions at all times for
the narrowband and broadband perturbations, being almost identical at all times.

The narrowband perturbations lead to a smoother mean volumefraction profile, whereas
the broad band perturbations give a smooth central region (−1.5 < x/W < 1.5) with
outer regions on the bubble and spike side where the persisting large scale structures
cause a break in the smooth profile. This change to the mean profile is most likely the
late time growth of large scale perturbations which are not present in the narrowband
simulation, and are at the head and tail of the mixing layer atlate times.

Figure 7.26 the plane averaged mixing fraction< α1α2 >. The plane averaged mixing
fractions are not as well converged. Interestingly, the level of mixing appears to be
decreasing at higher resolution in both cases, indicating that the lower dissipation at
higher resolution leads to less transport. The WENO limiter promotes greater mixing,
having a profile which peaks at< α1α2 >= 0.21 as opposed to 0.16 for the M5+LM
limiter at the same resolution. As time progresses the peak of < α1α2 > increases, as
expected.
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Figure 7.26: Plane averaged mixing fraction for narrowband (left) and broadband (right)
perturbations.

Turbulent Kinetic Energy

Figure 7.27 shows the total fluctuating kinetic energy, computed from the fluctuating
velocities. The fluctuating velocities are computed as the difference of the actual ve-
locities minus the plane averaged velocity, summed over theentire mixing layer, i.e.

ũ =

∑
yzρudV

∑
yzρdV

, T KX =
∑

xyz

1
2
ρ(u− ũ)2dV, T KY=

∑

xyz

1
2
ρv2dV (7.3.6)

where ˜(.) is the Favre mass-weighted average,dV indicates the volume of the cell,
∑

yz

is the summation in the planex = const, and
∑

xyz is the summation over the whole
volume. Note that thez direction turbulent kinetic energy is almost identical to they
direction, hence is omitted from the plots.

Both simulations demonstrate excellent grid convergence, the x direction turbulent
kinetic energy decreasing throughout the simulations in a power law form. They and
z direction kinetic energy first increases as KH instability transfers energy from thex
direction to they andz.

In the narrowband simulation the turbulent kinetic energy in thex direction decreases
at a rate proportional tot−1.25, in the y and z proportional tot−1.23, in good agree-
ment with experimental results from grid generated homogeneous decaying turbulence
[100]. The assumed power law line of best fit is shown in Figure7.27, compared to the
highest resolution simulation.

Assuming self-similar development of the mixing layer, theratio of thex andy direc-
tion kinetic energies should be constant, i.e.θ should be the same for all directions.
Given the difficulties in determining the virtual origin for the decay of turbulent ki-
netic energy (as discussed in Section 4.3.2), the difference inθ between the different
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Figure 7.27: Resolved fluctuating kinetic energy and comparison with line of best fit for the
narrowband (top) and broadband case (bottom)

kinetic energy components is not significant. The ratio of kinetic energies is plotted
in Figure 7.28 for the narrowband initialisation, demonstrating that it asymptotes to
approximately 1.5 at the finest grid resolution.

Given that the width of the mixing layer scales withtθ, then the empirical relation
ǫ ∝ u3/W (Equation 2.2.9) can be used to check the dissipation rate ofkinetic energy.
HencedqK/dt ∝ q3/2

K /tθ, with a solution of the formqK ∝ t2θ−2. This is the decay
rate of mean kinetic energy across the mixing layer. The decay of total fluctuating
kinetic energy computed in this section is proportional to the width of the mixing layer
multiplied by the mean kinetic energy, i.e.WqK ∝ tθt2θ−2 ∝ t3θ−2. This result can also
be gained by assuming that the mean velocity in the mixing layer is proportional to
the growth of the mixing layer itself, giving

√
qk ∝ dW/dt ∝ tθ−1. Computing this

for the narrowband initial condition gives a decay of total fluctuating kinetic energy
proportional tot−1.28, in very good agreement with the directly measured values.

The decay rate in the broadband case is proportional tot−1.05 for the x direction tur-



184 Compressible, Turbulent Flows

t ∆u/λmin

T
K

X
/T

K
Y

0 50 100 150 200 250
0

1

2

3

4

5

75
150
300

t ∆u/λmin

T
K

X
/T

K
Y

0 100 200 300 400 500
0

1

2

3

4

5 64
128
256
W9 128

Figure 7.28: The ratio of thex andy direction fluctuating kinetic energy for the narrowband
case (left) and the broadband case (right)

bulent kinetic energy, andt−0.9 for they andz directions (see Figure 7.27). As a large
portion of the fluctuating kinetic energy is in the longer wavelengths, this leads to a
lower kinetic energy dissipation rate than in the narrowband case. For the majority of
the simulation the long wavelengths are irrotational (being in the linear stage of de-
velopment), thus the transfer of fluctuating kinetic energyfrom the longitudinal to the
lateral components is slower than in the narrowband simulation. This means that the
dissipation of kinetic energy is not as efficient, giving a lower value ofθ. Although
it is not expected that the broadband simulation has lead to afully developed turbu-
lent mixing layer within the time scales simulated, computing the decay rate of total
fluctuating kinetic energy (assuming it is proportional tot3θ−2) givesd(KE)/dt ∝ t0.98,
again a very good estimate of the measured value. Examining the ratio of the turbulent
kinetic energies in the longitudinal and lateral directions in Figure 7.28 implies that
they are tending to a self-similar state whereT KX/T KY ≈ 1.5 as in the narrowband
case. Again, this is consistent with the idea that the longest wavelengths are saturating,
and that the flow physics is transitioning from growth due to the ’just-saturated’ mode,
to a fully developed anisotropic turbulent slab.

The instantaneous two dimensional kinetic energy spectra are compared to the theo-
retical results of Kolmogorov (k−5/3) and the proposed solution for RM instability of
k−3/2 by Zhou [202] in Figure 7.29. This is computed in the midplaneof the mix-
ing layer, in they − z plane. Examining the narrowband results indicates excellent
scaling of the kinetic energy spectra for the different grid resolutions under the non-
dimensionalisations detailed in Section 7.3.2. The small scales are nearly identical, and
the spectra appear to follow more closely thek3/2 spectrum. The differences at large
scales (low wavenumbers) reflect the limitations posed by grid size, which prevents
further mode coupling in the low resolution simulations.

The broadband spectra also collapse well at different grid resolutions, and methods.
Comparison between the different grids and methods show that the M5+LM method
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Figure 7.29: Fluctuating kinetic energy spectra for the narrowband (left) and broadband case
(right)

is not sufficiently dissipative at low resolutions, and that the WENO method is too
dissipative. This is consistent with the plane averaged mixing results presented in
Figure 7.26, which demonstrate more mixing at the lower resolutions than at the higher
resolutions. At the highest resolutions there is excellentagreement for the first 48
modes when comparing the 128 and 256 cross-section grids with the M5+LM method,
and up to mode 28 with WENO. At moderate wavenumber the spectraappear to scale
ask−5/3, and atk−3/2 at high wavenumber.

7.3.4 Conclusions

Simulations of shock induced turbulent mixing with two different initial conditions
have been conducted. Two different high order methods have been used, and three
different grid sizes. Excellent grid convergence is observed throughout.

The typical behaviour of a multimode Richtmyer-Meshkov simulation is seen, begin-
ning with the growth of coherent ‘mushroom’ shaped structures which transition to
a fully turbulent mixing zone. It is shown that the growth rate of the mixing zone
depends on the initial perturbations, as the long wavelength perturbations promote a
faster growth rate than short wavelength perturbations. This is most likely to be due
to the slow but persistent growth of large scale perturbations which dominate over the
short wavelengths at long times.

The growth rate for narrowband perturbations is in good agreement with experiments
by Dimonteet al. [48], and within the bounds laid down by dimensional considerations
of the expansion of a uniform slab of turbulence. The broadband perturbation leads to
values ofθ ≈ 0.34, which is lower than expected from the ‘just saturated’ mode anal-
ysis of Dimonte [46] and Youngs [198]. It is believed that this is due to the relatively
small wavenumber range simulated, in that the longest wavelength is approximately
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five times larger than the shortest. It is not believed that this is a sufficiently wide
range, and that at late time the longest modes are close to saturation or have already
saturated. This leads to a slower than theoretical growth rate.

Examining the mean volume fraction profiles and developmentof two mixing indi-
cators implies that the development of the mixing zone has reached an approximate
self-similar state. The asymptotic state is not reached as rapidly for the broadband
perturbations as for the narrowband.

The turbulent kinetic energy decays most rapidly in the narrowband simulation (∝
t−1.25), close to that expected from homogeneous decaying turbulence. The ratio of
longitudinal to lateral turbulent kinetic energy is approximately constant at late times
(≈ 1.5), indicating that there is a self-similar mixing layer. However, the broadband
simulation demonstrates slower decay (∝ t−1.05), as a larger proportion of the total
fluctuating kinetic energy is in the irrotational (linear/early non-linear) flow field than
in the narrowband initialisation.

Interestingly, predictions of the decay exponent of total fluctuating kinetic energy using
the measured value ofθ from the integral mixing width and the relationdqK/dt ∝
q3/2

K /W are close to those directly measured for both the narrowbandand broadband
perturbations. Turbulent kinetic energy spectra show a closer agreement to ak−3/2

range at the high wavenumbers, with somek−5/3 at intermediate scales.
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7.4 Half-height Experiment

7.4.1 Introduction

Recent experimental results by Holder and Barton [83] permit validation of numeri-
cal methods for multi-component compressible turbulent mixing of two miscible gas
species. The shock tube experiment consists of an incident shock wave of Mach 1.26 in
air passing through a square block of Sulphur Hexafluoride (SF6). As it passes through
the block, initially small perturbations on the gas interface create both Richtmyer-
Meshkov instabilities (vorticity deposition as the shock passes) [134, 155] and Kelvin-
Helmholtz roll ups. These perturbations grow rapidly in size leading to turbulent tran-
sition of the flow, and inviscid mixing of the two gas components.

It is a great challenge to accurately simulate such a rich physical problem, and it is
necessary to employ numerical methods which have sufficient dissipation to maintain
monotonicity across shock waves, yet allow the growth of theinitially small perturba-
tions and capture contact surfaces with good accuracy. The Reynolds number based for
this experiment is on the order of 5× 106, thus given current computations power the
simulations cannot be fully resolved. Due to this constraint ILES is employed with the
new characteristics based Riemann solver for the ThCM model (derived in Chapter 3),
and the new limiting methodology proposed in Chapter 6. Theseare validated against
experimental data, and compared to existing numerical methods.

The layout of this section is as follows. Firstly the experiment is described in Section
7.4.2. The choice of governing equations is detailed in Section 7.4.3, along with the
details of the initialisation, grid and boundary conditions. Next, the results obtained
for second-, fifth-order and modified fifth-order are compared to experiment, and with
each other.

7.4.2 Experimental Setup and Diagnostics

Figure 7.30 shows a schematic of the half-height experiment(See [83] for the full de-
tails). The shock tube contains air at atmospheric pressureand temperature. When the
diaphragm is burst a shock ofM = 1.26 propagates from left to right. Atx = 0 there
is a ‘block’ of SF6 which is 5.5 times denser than air, and hasγ = 1.076, which is
initially held in place by microfilm membrane. The speed of sound is approximately
three times slower in SF6 than in air, thus inducing a strong Kelvin-Helmholtz instabil-
ity on the upper surface of the block and rapid transition to turbulence. In addition to
this, there is growth of Richtmyer-Meshkov type instabilities on the vertical interfaces.
The shock wave reflects off the wall at the right side of the domain and passes back
through the mixing region, injecting further energy into the turbulent mixing zone.

The output from the experiment was a series of images taken atspecific times using
a pulsed laser sheet. The SF6 block was initially seeded with olive oil droplets, hence
the intensity of the image represents the density of the SF6 at a specific location.
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Figure 7.30: Schematic of the half-height experiment, note that the shock tube is 100mm
deep .

7.4.3 Computational Approach

Given the presence of shock waves and compressible mixing, it is necessary to employ
a compressible method. With a Reynolds number on the order of 106, the Kolmogorov
length scale is significantly below the grid scale, and the effect of viscosity on the scales
resolved by the grid is considered negligible. Thus the governing equations chosen are
the Euler equations plus two additional equations for the multi-component model. At
the pressures and temperatures considered, both SF6 and air are approximated well by
the ideal gas equation of state, and are miscible.

Grid and Initialisation

The co-ordinate system chosen has thex direction aligned with the initial direction of
shock propagation,z in the vertical direction, andy in the homogeneous direction. The
point (0,0,0) is located at the bottom left hand interface between the SF6 block and
air. The numerical domain chosen extends from−0.45m to 0.35m in x, and takes the
shock tube dimensions in the other two directions. This is longer than the test section
shown in Figure 7.30 as it is necessary to capture the shock front reflected off the left
face of the block of SF6. The boundary conditions are taken as reflective (inviscid
wall boundary condition) on the upper, lower and right-handwalls, and an extended
one dimensional domain on the left hand interface in the x-direction. The y-direction
boundary conditions are periodic.

There is special treatment required for the drain hole, which is modelled as an extended
one dimensional domain. The incident shock wave can then diffract down the drain
hole, entraining material in a similar manner to that seen inthe experiment. At late
times this holes acts as a nozzle where high speed air/SF6 mixture exits the shock
tube. The addition of the drain hole was demonstrated as being necessary in earlier
studies [180, 16]. The extended one dimensional domain is initialised as pure air at
atmospheric pressure and density.The drain hole is locatedbetween 0.153m< x <

0.16m and 0.05m< y < 0.95m.

The block of SF6 is initially held in place with a microfilm membrane, which isde-
stroyed by the incident shock wave. However, this membrane imparts a perturbation
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onto the interface between the two gases which must be modelled, as this perturba-
tion is the seed which triggers growth of the instabilities.Numerically, this pertur-
bation is modelled as a summation of random modes with RMS amplitude of 0.1mm
at wavelengths between 5mm to 50mm satisfying a power spectra proportional to the
wavenumber of the mode. The upper interface is not held in place by a membrane
and so in the experiment it is likely that this would be a diffuse interface, however it is
modelled as a sharp interface numerically.

To facilitate comparison of the three numerical methods, simulations were run at two
different grid resolutions for each method. The coarse grid was 300×80×160, and the
fine grid 600× 160× 320. An additional grid of 750× 200× 400 (double the number
of mesh points in the fine grid) was run with fifth order limiting to test convergence of
plane averaged statistics.

Finally, the density of SF6 and air were 6.34kg/m3 and 1.153kg/m3, and the ratios of
specific heats,γ, 1.076 and 1.4, respectively.

7.4.4 Results and Discussion

Comparison with Experiment

Figure 7.31 and 7.32 compare the experimental images with plane slices of SF6 density
taken from computational results. The vertical reference line on the experimental and
computational images is atx = 0.15m. The white circle on the computational results
indicates the position of the centre of the primary vortex inthe experiment. This was
determined approximately from the location of the darkest pixel in the experimental
images in the region of the vortex core. For the first two time steps there is very little
difference between the experimental and numerical images. There is slightly more roll-
up of the primary vortex (developing at the upper left cornerof the block) in the fifth-
order methods as compared to the second-order method. At 0.37ms the shock wave is
about a third of the way through the SF6 block and has formed a Mach intersection.
This links the plane shock transmitted through the SF6 block with the shock which is
propagating more rapidly through the air over the top of the block.

At 1ms the intersecting shock waves have converged at the lower right hand side of
the block of SF6, and reflect off the lower wall creating a region of very high pressure
and density. The strong reflected shock induces a rapid post-shock velocity generating
the bulge in the right interface of the block. Some differences between the numeri-
cal methods and the experiment can be seen. Initial instabilities in the primary vortex
can be seen in both the experiment and the fifth-order method,which takes on an oval
shape. This is not seen in the second-order method as the initial perturbations have
been damped more heavily. However, there are signs of small Kelvin-Helmholtz in-
stabilities on the upper interface of the SF6 block in the fifth-order simulations which
are not seen in the experiments. This is because in the experiments the upper interface
was initially diffuse, which tends to inhibit the growth of such instabilities. An exam-
ple of this behaviour can be seen by comparing simulations athigh resolution with a
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(a) 0.20ms

(b) 0.37ms

(c) 1ms

(d) 2ms

(e) 3ms

(f) 4ms

Figure 7.31: Comparison of experimental images (left,c©British Crown Copyright
2006/MOD) and SF6 density (kg/m3) for fifth-order (centre) and second-order (right) using
the grid of cross-section of 600× 160× 320. The white circle on the computational results

indicates the location of the centre of the vortex in the experimental results, thevertical line is
at x = 0.25
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(a) 0.20ms

(b) 0.37ms

(c) 1ms

(d) 2ms

(e) 3ms

(f) 4ms

Figure 7.32: Comparison of experimental images (left,c©British Crown Copyright
2006/MOD) and SF6 density (kg/m3) for fifth-order with low Mach correction (right) using
the grid of cross-section of 600× 160× 320. The white circle on the computational results

indicate the location of the centre of the vortex in the experimental results, the vertical line is
at x = 0.25
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sharp interfaces by Shiet al [163] which show Kelvin-Helmholtz instabilities along
the interface compared with simulations by Latiniet al. [115] with a diffuse initial in-
terface which suppresses these features. The innate diffusivity within the second-order
method also acts to suppress these features.

The shock reflects off the end of the shock wave, and passes through the developing
mixing layer. By 2ms the shock wave has passed through the ‘bulge’ visible on the
right-hand interface at 1ms producing a single mode ‘mushroom’ shaped vortex. At
the same time the primary vortex has become unstable and a well mixed region is
developing in the vortex core. The size and location of the main flow features are very
similar in comparing experiments and simulation, however there is clearly more fine
scale detail in the M5+LM simulation. The location of the vortex core is similar in
all simulations. At 3ms the mixing continues to evolve, withadditional mixing in the
thin strip of material linking the ‘mushroom’ shaped feature with the primary vortex.
This mixing is at a small scale relative to the grid resolution so it is not resolved at
second-order accuracy, however at fifth-order some instability can be seen, and this
is significantly improved in the low Mach corrected scheme. The primary vortex is
slightly behind the location of the experimental vortex, and is captured much better
with the fifth order methods.

The final images again agree very well, however there is a region of mixed fluid travel-
ling along the top of the shock tube in the simulation which appears not to be present in
the experiment. It is believed that this is due to the poor resolution of the experimental
images as the laser sheet approaches the wall. An important point to note is that the
final position of the SF6 is slightly different in experiment and simulation. Referring
to the position of the SF6 relative to the reference line in Figures 7.31f) and 7.32f),it
can be seen that the second- and fifth-order standard methodspredict that the remains
of the SF6 block do not travel as far in the x-direction as in the experiment. The low
Mach corrected scheme does a much better job at reproducing this detail, as it allows
better resolution of the main flow features that influence themean position of the SF6.

An additional point to note is that the experimental images appear more diffuse as
they do not represent a plane slice through the flow field. Although the laser sheet
is extremely thin, the reflected light is subsequently scattered through additional in-
teractions with oil droplets before reaching the imaging device. Figure 7.33 shows
line-averaged SF6 density which appears more diffuse as in the experimental images.
It is clear that the fifth-order methods capture the small scale mixing at the thin strip
much better than the second-order method, and predict the location of the vortex core
closer to the actual location.

Measurements of the position of the SF6 block and shock wave at early times have
been taken. A comparison of experiment and the three numerical methods can be seen
in Figure 7.34. The position of the block and the shock wave was identified using
contours of 0.5 and 1.5 times the initial density of SF6. There is a slight discrepancy
in position of the diffracted shock in all numerical simulations. This is due to the
initial diffuse interface in the experiment, which would lead to a largervertical distance
between the shock travelling in pure air and the shock travelling in pure SF6.
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(a) Experiment (b) VL

(c) M5 (d) M5+LM

Figure 7.33: Line average SF6 density at 4ms compared to the experimental images
( c©British Crown Copyright 2006/MOD), The white circle indicate the location of the

experimental vortex centre

Examining the angle of the ‘thin strip’ which wraps around the primary vortex at late
time (Figure 7.33), this is at a steeper angle than in the experiment. A possible ex-
planation of this discrepancy is that the steeper shock angle in the simulations induces
velocity which has a stronger vertical component than for the experimental shock.

Comparing the numerical methods, the material interface is captured significantly more
sharply in the fifth-order methods than in the second-order method. Also, this validates
the choice of governing equations as the shock wave is captured without oscillation,
and the position of the material interfaces is captured wellin comparison to the exper-
iment.

Figure 7.35 shows volume fraction isosurfaces at 4ms, illustrating the highly turbulent
nature of the flow, and the presence of fine scale features in the fifth-order simulation
which are not present at second-order.

Turbulent Mixing and Kinetic Energy

As a means to compare and contrast the numerical methods, theturbulent kinetic
energies and plane averaged mixing quantities have been computed for two differ-
ent grid resolutions for each method. Figure 7.36 presents plane averaged mixing
< α1 >< α2 >, and Figure 7.37 the quantity< α1α2 >, which is a measure of the
amount of molecular mixing in the primary vortex.α1 is the volume fraction of Air
andα2 that of SF6.

The mixed region does not start untilx = 0.125m with the low Mach scheme as op-
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(a) 0.20ms

(b) 0.37ms

(c) 1ms

Figure 7.34: Comparison of experimental shock and SF6 positions (dashed line) and
numerical results (solid line) for second-order (left), fifth-order (centre) and modified

fifth-order (right) using the grid of cross-section of 160× 320

posed tox = 0.115 for the other two methods. As discussed in the previous section,
the low Mach scheme is the better result in comparison with experimental images.

Apart from this difference, there is excellent agreement at all grid resolutions and be-
tween the numerical methods for the location and magnitude of the peaks of plane
averaged mixing and molecular mixing. Slight differences appear at aroundx = 0.16m
in the plot of plane averaged mixing which is due to enhanced mixing at the right hand
side of the thin strip of dense material. This is visible in Figure 7.33, and also appears
in the level of molecular mixing in Figure 7.37, where molecular mixing is at a lo-
cal minimum in the second-order method. There is a slight ‘bump’ at x = 0.29m in
the coarse resolution fifth-order simulations caused by theadvection of a small region
of dense fluid over the top of the primary vortex which does notoccur in the finer
resolution simulations, and is diffused in the coarse grid simulation at second-order.

The turbulent kinetic energy per metre is defined as

KE =
1
2

∫
ρKdydz, (7.4.1)

K = (u− ũ)2
+ v2 + (w− w̃)2 , (7.4.2)
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(a) VL 600 (b) M5 600

(c) M5+LM 600 (d) M5 750

Figure 7.35: Isosurfaces of 0.01, 0.5 and 0.99 volume fraction of air
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Figure 7.36: Comparison of< α1 >< α2 > at 4ms

Figure 7.37: Comparison of< α1α2 > at 4ms

where the tilde quantities are Favre mass-weighted mean velocities in the homoge-
neous direction

ũ =
ρu
ρ̄
, w̃ =

ρw
ρ̄
, (7.4.3)

and(.̄) indicates a line averaged quantity in the periodicy direction. This is plotted in
Figure 7.38 fort=4ms. There are two peaks in the line averaged kinetic energy corre-
sponding to the location of the mushroom-shaped perturbation and the large primary
vortex. There is a fairly large difference in resolved kinetic energy primarily due to
the difference in grid scale. However, the fifth-order methods give higher peak plane
averaged turbulent kinetic energy at a mesh resolution of 300 × 80 × 160 than the
second-order method at 600× 160× 320. This indicates that the fifth-order methods
are far superior in terms of resolution, especially considering that the fifth-order meth-
ods are only 18% slower in terms of total run time. The location of maximum kinetic
energy is atx = 0.26m, and matches to within 5mm for all grid resolutions.
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Figure 7.38: Comparison of turbulent kinetic energy per metre at 4ms

In comparing the two fifth-order methods it appears that the 600 resolution M5+LM
agrees better with the highest resolution M5 simulation that the 600 resolution M5
method. The M5 method appears to slightly over-estimate fluctuating kinetic energy
at this resolution, which the modified method corrects. At a grid resolution of 300
the fifth-order methods are fairly similar in plane averagedstatistics, but the modified
method resolves approximately 20% more kinetic energy.

Finally, the evolution of total resolved turbulent kineticenergy (TKE) as a function
of time is shown in Figure 7.39. The initially small perturbations on the gas inter-
faces grow with time due to the combined action of Richtmyer-Meshkov and Kelvin-
Helmholtz instabilities. This means that the kinetic energy increase begins earlier in
the schemes which resolve the smaller perturbations, as is illustrated in Figure 7.39.
As the turbulent perturbations become larger, then kineticenergy is resolved on the
coarser grids. However, the injection of energy is in the form of an impulse as the
incident shock and reshock pass through the mixing zone. Once the shock has left
the domain, the TKE in the smallest scales resolved on the finest grid at fifth-order
accuracy begin to dissipate. This does not occur using the other methods or grid sizes
as they do not resolve these small vortices. Indeed, at the coarsest resolution with the
second-order method, the TKE continues to grow up to the end of the simulation. An
important point to note is that the variation and magnitude of the resolved TKE us-
ing the fifth-order limiter at the coarse resolution agrees very well with that captured
by the second-order method on a grid twice the size in each direction. It should be
noted that these results are also in excellent agreement with results presented using a
semi-Lagrangian code in [180].

7.4.5 Conclusions

This section has validated the new multi-component scheme applied to a compress-
ible, turbulent mixing experiment. In addition, comparison with standard numerical
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Figure 7.39: Comparison of total resolved turbulent kinetic energy variation with time, where
time is measured from the passage of the shock through the first interface

schemes demonstrates the improved performance of the modified limiting method
compared to the van Leer limiter, and the standard fifth-order limiter. This includes
the mean position of the SF6 block at late time, where the standard limiters at all reso-
lutions give the left hand position of the block 1cm behind where it is in experimental
images. There is a slight improvement in the prediction of the location of the centre of
the primary vortex, and clear increase in fine scale structure at a given resolution.

Contrasting the three limiting methods, the mixing parameters are very similar at all
grid resolutions (apart from the 1cm shift), however the levels of turbulent kinetic en-
ergy for both fifth-order methods are similar to the van Leer simulation at double the
grid resolution in each direction. Furthermore, the behaviour of total turbulent kinetic
energy with respect to time shows that the new modified fifth-order method gives re-
sults in very good agreement with the standard fifth-order method with double the
number of grid points. This clearly demonstrates the advantage of accurately simulat-
ing low Mach features, even in an experiment where the primary flow features are well
into the compressible regime (Mach> 0.5).



C H A P T E R 8

Conclusions

8.1 Conclusions

The aim of this thesis was to implement, analyse and further develop numerical meth-
ods for the simulation of compressible, turbulent mixing. The investigation was moti-
vated by the need for accurate simulation of the Richtmyer-Meshkov instability, which
is of importance in the understanding the flow physics of phenomena such as super-
novae to inertial confinement fusion.

The initial requirement was to implement a multi-componentmodel capable of effi-
ciently tracking two miscible gases. Given that the different fluids within a mixed cell
can be assumed to have the same velocity and temperature, there are several possi-
ble models. Four modern gas mixture models were implementedinto a compressible
code, two quasi-conservative methods [4, 97], the mass fraction method and the Total
Enthalpy Conservation of the Mixture (ThCM) [191] model. Several one-dimensional
test cases were used to elucidate the differences between the mixture models. From
numerical test cases it was clear that the mass fraction model was the worst, producing
significant pressure oscillations in regions when a shock passes through a contact sur-
face. It was shown theoretically that the ThCM model also doesnot maintain pressure
equilibrium in mixed cells where the temperature varies across the cell, however these
are not as severe as in those with the mass fraction model.

Both the Allaireet al. [4] quasi-conservative model and the Johnsen and Colonius [97]
eliminate the problem of pressure oscillations, however inthe presence of strong shock
waves the Johnsen and Colonius approach breaks down, and variations in the ratio of
specific heats occurs in the pure gas. The conclusion is that for simulations with strong
(or convergent) shock waves the best model is the ThCM model, but for the majority
of cases one of the quasi-conservative models should be employed.

Next, simulations of homogeneous decaying turbulence (HDT) in a periodic cube were
used to examine in a detailed and quantitative manner the behaviour of state of the art
high-resolution and high-order methods in implicit Large Eddy Simulation. Compu-
tations have been conducted at grid resolutions from 323 to 2563 for seven different
high-resolution methods ranging from second-order to ninth-order spatial accuracy.
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The growth of the large scales, and dissipation of kinetic energy is captured well at
resolutions greater than 323, or when using numerical methods of higher than third
order accuracy. Velocity increment probability distribution functions (PDFs) match
experimental results very well for MUSCL methods, whereas WENO methods have
lower intermittency. All pressure PDFs are essentially Gaussian, indicating a partial
decoupling of pressure and vorticity fields. The kinetic energy spectra and effective nu-
merical filter show that all schemes are too dissipative at high wave number. Evaluating
the numerical viscosity as a spectral eddy viscosity shows good qualitative agreement
with theory, however if the effective cut-off wave number is chosen abovekmax/2 then
dissipation is higher than the theoretical solution. The fifth and higher order methods
give results approximately equivalent to the lower order methods at double the grid
resolution, making them computationally more efficient.

As a key conclusion of the study on homogeneous decaying turbulence was that the
high wave number performance of the standard numerical schemes is rather poor, the
source of this excess dissipation of turbulent kinetic energy was investigated. Firstly
it is shown that the production of entropy exactly matches the irreversible change in
kinetic energy of a compressible flow. Next, explicit formulae were derived for the
rate of increase of entropy given arbitrary jumps in primitive variables at a cell inter-
face. It was demonstrated that the inherent dissipation of the Godunov schemes is not
proportional to the velocity jump cubed as is commonly assumed. The leading order
dissipation rate of a Godunov method is proportional to the velocity jump squared mul-
tiplied by the speed of sound. The leading order dissipationrate associated with jumps
in pressure, density and shear waves is detailed, however atlow Mach numbers it is the
dissipation due to the velocity jumps which dominates. All analytical results have been
validated with simple numerical experiments and it is shownthat the analysis applies
to high order accurate methods in space and time. This means that dissipation of tur-
bulent kinetic energy increases proportional to 1/M, which is a significant restriction
on accuracy of Godunov-type methods for shock-induced turbulent mixing.

As the leading order source of dissipation of kinetic energyis now identified, a simple
modification of the extrapolation process was proposed to allow significantly improved
resolution of low Mach perturbations for use in mixed compressible/incompressible
flows. By scaling the velocity jump by Mach number, the dissipation rate is constant
as the Mach number tends to zero, as opposed to the standard Godunov scheme where
it becomes infinite. In addition, incompressible scaling ofthe pressure and density
variations are recovered. The key feature of the numerical scheme is that the recon-
struction is modifiedlocally, hence the scheme can capture both shock waves and low
Mach features in the same computational domain using the same formulation of the
governing equations. The numerical modification adds negligible computational cost.

The modified limiting process was implemented in a fifth-order in space [107], third-
order in time [173] finite volume Godunov method. Numerical tests demonstrate that
the new scheme captures shocks well and significantly reduces high wave number dis-
sipation in the case of homogeneous decaying turbulence andRichtmyer-Meshkov
mixing. In the latter case the turbulent spectra match theoretical predictions excel-
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lently.

As there is a lack of quantitative experimental data for compressible, shock-induced
turbulent mixing, the method has been validated against a compressible cavity flow
at Reynolds 860,000 [59]. A comparison of the mean flow and Reynolds stresses at
three different mesh resolutions demonstrates excellent convergence of the numerical
results. There is a slight discrepancy in the location of thecentre of the mixing layer
over the cavity due to the simple initialisation method employed, and lack of a turbulent
wall model. Comparing the results with conventional LES using an advanced selective
mixed scale subgrid model [113] show that for mean flow properties the ILES results
are slightly worse, however the LES results employ a turbulent wall model, and have
adjusted the inlet boundary condition such that the mean velocity profile at the cav-
ity matches the experimentally measured profile. LES results gained using the same
inlet boundary conditions employed here are significantly worse. In comparing the
sound pressure levels, the numerical simulations predict the fundamental frequencies
to within 2% and amplitude to within 6dB at all grid levels. This is better than the
agreement gained using LES with a selective mixed scale subgrid model.

The next test case involves the planar Richtmyer-Meshkov instability. Firstly, a single
mode problem is investigated, using the new numerical method and the standard van
Leer second-order method [187]. The converged results are compared to results using
a semi-Lagrangian method [183], interface tracking [201],and two analytical theories
[155, 201]. The converged growth rate for the Finite Volume and semi-Lagrangian
methods are identical, and there is excellent agreement at early times with the analyt-
ical theory. At late times the analytical theory is not validdue to it’s derivation based
on a perturbation analysis. In addition, it is believed thatthe results gained using in-
terface tracking were not fully converged at the given grid resolution. It is shown that
the modified numerical method gives a converged mixing layerwidth at half the grid
points in each direction over the van Leer scheme, and one quarter the grid points in
each direction to capture the growth of the spike. This is a saving in computational
time of sixteen and one hundred and twenty-eight times respectively. It is observed
that the van Leer method suffers heavily from the increase of dissipation at low Mach
as predicted from previous theoretical analysis in Chapter 5. However, it should be
noted that at low grid resolutions (ten cells for a single mode), the modified numerical
scheme predicts a growth more rapid than the converged growth, indicating that the
new extrapolation method does not have sufficient dissipation at high wave numbers.

An important conclusion of the single mode study is that the non-linear theory of Zhang
and Sohn [201] performs much better compared to the numerical results, indicating
that this may be a better choice to use when developing analytical relationships for
multimode simulations. Nearly all models based on the ‘justsaturated’ mode, bubble
growth and merger detailed in Section 2.3 use linear theory during the derivation.

Multimode Richtmyer-Meshkov instability has been simulated using two initial con-
ditions. The first is a narrowband perturbation consisting only of high wavenumber
modes. The purpose of this is to compute the growth rate of a mixing layer which
expands only through mode coupling. The second initial condition is a broadband
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frequency spectrum from long to short wavelengths. This wasto test the growth rate
of the resultant mixing layer when there is the combination of mode coupling, and
linear/non-linear growth of large scale perturbations occurring simultaneously. To test
grid convergence, each case was run at three different grid levels, each subsequent
grid having twice the number of points in each direction. Three numerical methods
were employed, the van Leer second-order extrapolation, Weighted Essentially Non-
Oscillatory (WENO) ninth-order, and the new modified fifth-order method. The van
Leer method was tested at moderate resolution, but the results were poor due to exces-
sive numerical dissipation.

The results gained for the fifth order modified method confirmed that the growth ex-
ponent of the RM mixing layer is dependent on the initial conditions, being equal to
0.24± 0.015 for the mode coupling case, and 0.35± 0.01 for the broadband initial
conditions. The narrowband perturbations are in good agreement with experimental
results by Dimonteet al [48], and the general consensus for expansion of a turbulent
slab (θ ≈ 2/3−µ). This is almost identical to the previous results of Youngs[198] using
a completely different numerical approach. However, the broadband results are lower
than expected according to analytical models by Dimonte [46] and Youngs [198], the
difference attributed to the relatively low ratio of maximum to minimum wavelength
of the initial perturbation. The molecular mix fraction tends towards 0.8 at late time in
good agreement with previous results [197, 42], and a good level of self-similarity of
the volume fraction profiles is demonstrated throughout theduration of the simulation.

The total fluctuating turbulent kinetic energy in the narrowband case decays at a rate
proportional tot−1.25 for the longitudinal direction, in close agreement with that ex-
pected from homogeneous turbulence, but lower than that suggested by Llor [123] for
a slab of decaying turbulence. The ratio of the longitudinaland lateral turbulent kinetic
energies approaches a constant≈ 1.5 at late times, again reinforcing that the layer is
developing in an approximately self-similar manner. Dimensional estimates predict
that the decay rate of total fluctuating kinetic energy is proportional tot3θ−2, leading to
an estimate oft−1.28 using theθ determined from the integral mixing width, in excellent
agreement with direct measurements.

The decay of turbulent kinetic energy is significantly lowerfor the broadband initial-
isation, proportional tot−1.05 in the longitudinal direction, which is to be expected as
a large portion of the initial kinetic energy is in the low wavenumber region of the
spectrum. The flow at the long wavelengths is largely irrotational, and thus does not
dissipate as effectively as the fully developed turbulent slab in the narrowband simula-
tion. Interestingly, although it is not expected that the mixing layer is fully developed,
the empirical relationdqK/dt ∝ q3/2

k /W also gives a good estimate of the decay rate of
turbulent kinetic energy based on the growth exponent of theintegral mixing width.

In addition, two dimensional spectra have been computed in the centre of the mixing
layer at several different times. Excellent grid convergences is seen, however at the
lowest grid resolution (90× 64× 64) the modified numerical method is not dissipative
enough. This is in agreement with results from the single mode simulations. There is
an extensive power-law region in the spectra which is closerto thek−3/2 spectra pro-
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posed by Zhou [202], than the Kolmogorov spectrum, althoughthe difference between
the two power laws is not large enough to make a definitive statement. The WENO
results match excellently at low wave numbers, however theyare too dissipative at
high wavenumber, as although they have a much higher formal order of accuracy, they
suffer from the same increase of dissipation at low Mach discussed in Chapter 5.

Finally, the modified fifth-order method was compared to the standard fifth-order and
second-order van Leer method in the simulation of the half-height shock tube experi-
ment [83]. The half-height experiment is a rich physical problem with strong Kelvin-
Helmholtz and Richtmyer-Meshkov instabilities, and mixingof two gases with dif-
ferent ratios of specific heats. The three methods were compared against qualitative
experimental data, and it was shown that the new modified scheme gave improved
agreement in terms of position of the SF6 block, and position of the main flow fea-
tures. In addition, there is a significant increase in fine scale features when using the
modified scheme. There are slight discrepancies with the experimental results, the
main being that there is a difference in the angle of the refracted shock wave which
passes through the block of SF6. The source of this error is in the modelling of the
problem where it was assumed that the upper surface of the block is sharp, whereas
in reality there would be a diffuse layer between the air and SF6. In comparing the
numerical schemes, the two fifth-order methods give turbulent kinetic energy levels
comparable to the van Leer method at half the grid size in eachdirection. The time
dependent behaviour of turbulent kinetic energy for the modified fifth-order method
agrees very well with the standard method with double the number of grid points. This
is a significant saving in computational time for equivalentresults.

8.2 Summary of Contributions

This thesis has

• Proposed, implemented and validated comprehensively a simple reconstruction
procedure which significantly improves the ability of Godunov methods to cap-
ture simultaneously both low Mach features and shock waves without modifying
the formulation of the governing equations, at negligible computational expense

• Detailed a numerically validated theoretical analysis of the dissipation of kinetic
energy in low Mach flows when using a Godunov-type numerical scheme.

• Investigated in a comprehensive and quantitative manner the ability of state of
the art Finite Volume methods to represent homogeneous decaying turbulence

• Validation of the new extrapolation method against experimental results for a
deep, open cavity at high Reynolds number (860,000), additionally showing
that an explicit subgrid model is not necessary when using this method
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• Investigated the flow physics of RM single and multimode perturbations for per-
fect gases, confirming earlier results by Youngs [198] that the growth rate is
strongly dependent on initial conditions. Demonstrated excellent grid conver-
gence of the new method, allowing detailed discussion of theturbulent flow
physics

• Gained excellent qualitative agreement with the shock tubemixing experiments
of Holder and Barton [83] using the new methodology, and demonstrated that
the new approach allows a significant saving in terms of computational time

• Assessed the ability of modern, state of the art multicomponent gas mixture
models compared to classical approaches, demonstrating their relative strengths
and weaknesses

• Demonstrated analytically the link between increase of entropy and dissipation
of kinetic energy, and showing how this can be used to analysethe performance
of numerical schemes at low Mach

• Showed analytically that the leading order increase in entropy in Godunov-type
schemes is not due to the identification of shock waves in the solution of the
Riemann problem at the cell interface

• Derived several new multicomponent approximate Riemann solvers based on the
characteristics approach, and on the Roe method

• Showed theoretically that the Total Enthalpy Conservation of the Mixture model
does not maintain pressure equilibrium at a contact discontinuity, contrary to the
analysis presented by Wanget al. [191]

8.3 Future Research

8.3.1 Numerics

The research detailed in this thesis has opened up several areas for future work. The
theoretical analysis of Godunov-type schemes can be extended to higher order schemes
relatively easily, as the first order analysis will still apply at the cell interface. It is only
necessary to take into consideration the variation of the kinetic energy and entropy
within the cell itself due to the higher order reconstruction. This analysis could be
coupled with formulating criteria for sufficient dissipation with regard to consistent
convergence of the numerical scheme, as it has been demonstrated that the current
implementation is not sufficiently dissipative at low grid resolutions. This is manifested
through a relatively flat spectrum at high wavenumber.

A key difficulty is the extension of the theoretical analysis to look atGalilean invari-
ance. This has been attempted using the linearised Riemann solver approximation
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employed in Chapter 3, however, for regimes where the dissipation rate is not domi-
nated by the dissipation proportional to the speed of sound,the linearised solver is a
poor approximation of the exact solution (or more accurate approximate solvers, e.g.
HLLC).

Experiments with different forms of the low Mach modification to the base extrapola-
tion scheme yield surprisingly similar result. This implies that the dissipation due to
velocity jumps is no longer the prime source of dissipation,as was the aim of the mod-
ification. However, this means that dissipation due to pressure and density jumps now
contribute significantly to the total dissipation. This does not fit with Kolmogorov’s
analysis of the dissipation rate of turbulence which only depends on the velocity dif-
ferences.

A key addition to the current work would be to conduct a stability analysis of the
modified numerical scheme. Numerical tests have shown a stability envelope similar
to that of the original numerical scheme, however the modified method is slightly less
stable. A formal stability analysis should bring out this difference.

A major restriction to the efficient simulation of near-incompressible flows is the CFL
condition. One method used by semi-Lagrangian schemes is tosplit the time step into
two components, one related to the signals travelling at thespeed of sound, the other to
the convective quantities. By splitting the flux computationin this manner a significant
time saving can be made, as several relatively fast computations of flux due to theu+a
andu−acharacteristics can be made for eachucharacteristic. A potentially worthwhile
direction for research would be an equivalent form of this for Godunov-type methods,
potentially employing a flux splitting approach to separatethe fluxes along theu + a
andu− a characteristics from those along theu characteristic.

Finally, in most of the simulations the interface perturbation was initialised at only
second-order accuracy in space. It is possible that this is aserious issue at low grid
resolution (i.e. 10-20 cells per wavelength) when using a higher order method. This
should be investigated for single mode, and then multimode configurations.

8.3.2 Flow Physics

The current numerical method is extremely well suited to thesimulation of flows with
both compressible and incompressible features. It is intended that the simulation of
multimode RM instability should be used to verify current theory on the growth of the
mixing layer, and in particular validate the assumptions inherent in each of the models
for the growth rate of the RM layer. This has been highlighted in the literature survey
where it was shown that several of the models are only applicable for a specific set of
initial perturbations.

In the determination of growth of a turbulent slab, it would be interesting to investi-
gate in more depth the model parameters The most important parameter would be the
determination of the constant of proportionality in the relation dqK/dt ∝ q3/2

k /W for
narrowband initial conditions, which plays a key part in determiningθ.
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In the case of broadband initial perturbations, the logicaldirection for future work
is to increase the ratio of maximum to minimum wavelength. Simulations with both
constant and 1/k2 power spectra could be used to examine the ‘just saturated’ mode
analysis of Inogamov [89], Dimonte [46] and Youngs [198] respectively. On the the-
oretical side, it is possible that these theories could be improved by substituting the
Zhang and Sohn non-linear single mode growth rate [201] for the linear Richtmyer
equation in all derivations. This is based on the observation in Section 7.2 that the
non-linear theory is a much better match to single mode growth rate than Richtmyer’s
analysis.

Finally, obvious further parameters to investigate are theinfluence of Atwood number,
and the effect of incident shock strength on the growth exponent.

The test cases employed in this thesis have evolved considerably from the first iter-
ations, however there are several improvements which can bemade. Firstly, future
simulations of cavity flows should include a turbulent wall model to verify the conjec-
ture that the remaining discrepancy is due to poor representation of the boundary layer
at the upstream corner of the cavity. For the simulation of the half-height shock tube
experiment it is necessary to include a diffuse upper surface to gain the correct angle
of the diffracted shock wave.

A key issue which spans both numerics and flow physics is the determination of the
stability of structures within the developing flow. The current implementation allows
rapid growth of secondary instabilities (i.e. Kelvin-Helmholtz instabilities along the
RM bubble and spike, or at non-diffuse contact surfaces), however it is not clear
whether the seed for these perturbations is physical. The receptivity of numerical
schemes to round-off error perturbations is an important area to clarify.
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A P P E N D I X A

Symmetric Limiters

The MUSCL (Monotone Upstream-Centred Schemes for Conservation Laws) method
is used to determine the cell interface variables by extrapolating the cell averaged vari-
ables. Examining Equation (3.4.2) it is clear that if

φ
(
r lim,L

)
(Ui − Ui−1) = φ

(
1

r lim,L

)
(Ui+1 − Ui) , (A.0.1)

φ
(
r lim,R

)
(Ui − Ui−1) = φ

(
1

r lim,R

)
(Ui+1 − Ui) , (A.0.2)

then the resultant interpolated quantity is independent ofc. This is the case for the van
Albada, van Leer and Minmod limiters which are always of second-order accuracy in
the standard MUSCL format. As an example this can be shown to betrue of the van
Leer limiter. Setting the differences(Ui − Ui−1) = ∆i−1/2 and(Ui+1 − Ui) = ∆i+1/2, then
the left hand interpolated values are independent ofc as

φ
(
r lim,L

)
(Ui − Ui−1) =

2r lim,L

1+ r lim,L
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=
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, (A.0.3)

also,
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1+ 1/r lim,L
(Ui+1 − Ui) ,

=
2∆i−1/2∆i+1/2

∆i+1/2
(
1+ ∆i−1/2/∆i+1/2

) ,

=
2∆i+1/2∆i−1/2

∆i−1/2 + ∆i+1/2
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thus demonstrating that this limiter satisfies the criteriain Equation (A.0.2) meaning
that it is at most second-order accurate. Equivalent results can be shown for the Min-
mod, van Albada and other second order limiters.



A P P E N D I X B

Entropy Analysis

B.1 Entropy Increase for an Isolated Velocity Disconti-
nuity

Beginning with the one-dimensional Euler equations

∂U
∂t
+
∂E
∂x
= 0, (B.1.1)

where,

U =
[
ρ, ρu,e

]T
, (B.1.2)

E =
[
ρu, ρu2 + p, (e+ p)u

]T
, (B.1.3)

e= ρi + 0.5ρ
(
u2

)
, (B.1.4)

p = ρi (γ − 1) , (B.1.5)

andρ, i, u are the density, specific internal energy per unit volume andx-direction
velocity component, respectively. Throughout this appendix it is assumed that the
fluid satisfies the ideal gas equation of state. The Euler equations are discretised using
a first order accurate method in time and space

Un+1
j = Un

j − ν
(
En

i+1/2 − En
i−1/2

)
(B.1.6)

ν =
∆t
∆x

, (B.1.7)

Given initial conditions

pL = pR = p, ρL = ρR = ρ, uL = ∆u, uR = 0, (B.1.8)
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where the cellsj and j − 1 are in the left state, cellj + 1 is the right state. The inter-
face fluxEn

i−1/2 is computed directly from the left hand quantities. The values of the
primitive variables required to computeEn

i+1/2 are determined by solving the Riemann
problem at the interface with the left and right quantities.This can be estimated with
reasonable accuracy using a linearised approximation ([184], p.279)

p∗ = p+
∆uρa

2
(B.1.9)

u∗ =
∆u
2

(B.1.10)

ρ∗ = ρ +
∆uρ
2a

. (B.1.11)

Thus, the conserved variables at the next time step are
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simplifying,
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un+1 = ∆u
1+ ν∆u

8

(
6− ∆u

a −
4a
∆u

)

(
1+ ν∆u

4

(
2− ∆u

a

)) , (B.1.14)

En+1 =
p

γ − 1

(
1+

νγ∆u
2

)
+

1
2
ρ∆u2

[
1+

ν∆u
16

(
14− ∆u

a
− 8γa
∆u (γ − 1)

)]
. (B.1.15)

Next the pressure can be computed from
(
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At this point the pressure at time leveln+ 1 is simplified by expanding the last term in
the above equation in a binomial series, (1+ x)−1 ≈ 1− x+ x2 − ..., where terms up to
order∆u2 are kept. Starting with the denominator

1

1+ ν∆u
2 −

ν∆u2

4a

≈ 1− ν∆u
2
+
ν∆u2

4a
+
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4
+ O

(
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a

)3

≈ 1, (B.1.17)

multiplying out the numerator

[
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ν∆u
8
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− 4a
∆u

)]2

≈ 1− νa+ ν
2a2

4
, (B.1.18)

the pressure can now be written as

pn+1 ≈ p

[
1+

νγ∆u
2
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γν∆u2
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(2γ − 4− νa (γ − 1))
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. (B.1.19)

Forun+1 andρn+1:

ρn+1 = ρ

(
1+
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2
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, (B.1.20)

un+1 ≈ ∆u
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1− νa

2

)
. (B.1.21)

Settingν = C/a andM = 0 clearly giveslimM→0∆S = 0. In practise this limit is not
reached for flows of typical interest (i.e. moving flows). Thechange in entropy is
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− R
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Expanding the denominator in a series where

1
(1+ z)m = 1−mz+

m(m+ 1)
2!
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Multiplying this by the numerator gives

1+ γν∆u
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Additionally, for
∣∣∣∣γν∆u2

8a

[
2γ − 2+ 2νa (1− γ)

]∣∣∣∣ < 1 the series expansion of the natural
logarithm can be employed:

ln (1+ x) = x− x2

2
+

x3

3
. (B.1.26)

to give Equation (5.5.8).

B.2 Mathematica Script to Derive Leading Order Dis-
sipation Terms

The leading order dissipation rate at an interface where there is a jump in all primitive
variables can be computed using the following script in the symbolic manipulation
software Mathematica.

(*Initial Conditions*)

pr = p - dp/2;

pl = p + dp/2;

ur = u - du/2;

ul = u + du/2;

rr = r - dr/2;

rl = r + dr/2;

(*Star Quantities*)

ps = (pr + pl)/2 + (ul - ur)r a/2;

us = (ur + ul)/2 + (pl - pr)/(2 r a);

rs = rl + (ul - us) r/a;

(*Compute conservative variables at the next time step*)

u1 = rl + v (rl ul - rs us)

u2 = rl ul + v (rl ulˆ2 + pl - rs usˆ2 - ps)

u3 = pl/(g - 1) + rl ulˆ2/2 +

v ((pl g/(g - 1) + rl ulˆ2/2) ul - (ps g/(g - 1) + rs usˆ2/2)us)

{*Calculate primitive variables at the next times step*)

r1 = Simplify[Expand[u1]]

u1 = Simplify[Expand[u2/u1]]

e1 = Simplify[Expand[u3]]

p1 = (g - 1)(e1 - 1/2 r1 u1ˆ2)
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(*Calculate the entropy change and multiply by temperature*)

ln = p1/r1ˆg ((rl)ˆg/(pl));

ds = C/(g - 1)(ln - 1);

Tds = ds aˆ2/(g C);

(*Expand each variable in terms of the jump size to gain the leading order terms*)

TdsExp = Expand[Normal[Series[Normal[Series[Normal[Series[Tds, {dp, 0, 2}]],

{du, 0, 2}]], {dr, 0, 2}]]]

(*Substitute speed of sound instead of pressure p*)

TdsExp2 = TdsExp1 /. p -> r aˆ2/g

All that remains is to simplify the resulting expression to gain several leading order
terms.



B-8 Entropy Analysis



A P P E N D I X C

Modified Roe Scheme for Low Mach Flows

C.1 Introduction

It is quite common to use Godunov type upwind methods for simulation of flows with
both compressible and incompressible nature, or where the monotonicity of certain
properties are required. An example of this is the Richtmyer-Meshkov instability,
where a shock wave passes through a perturbed interface, generating a turbulent mix-
ing layer. Once the shock wave has passed, the mixing layer develops in a largely
incompressible manner. It is well known that upwind schemesare excessively dissipa-
tive at low Mach number, however the mechanism for this is notwidely understood.
The analysis detailed in Chapter 5 shows that the increase in entropy is approximately
equal to the irreversible dissipation of kinetic energy at low Mach. It also shows that
the leading order increase of entropy in Godunov type methods is due to numerical
dissipation within the momentum equations, which can be written as

T∆S = ǫnum=
(1− C)

4∆x
a∆u2 + ... (C.1.1)

whereT, u anda are the temperature, velocity normal to the cell interface and speed of
sound respectively.∆x is the length of the computational cell,C the Courant-Friedrich-
Levy (CFL) number,∆S the change in entropy.ǫnum is the numerical dissipation rate
of kinetic energy. It can be seen that the dissipation rate becomes infinite asM → 0
(equivalently asa→ ∞). This appendix derives a new Roe scheme for the multicom-
ponent equation set of Wanget al. [191] and proposes a modification of the numerical
dissipation in the momentum equations which corrects the Mach number dependence
of the numerical dissipation. The performance of this scheme is illustrated via a simple
single mode Kelvin-Helmholtz test case.

C.2 Governing Equations and Numerical Scheme

This section concerns the low Mach performance of compressible, multi-component
schemes. The governing equations chosen are the Euler equations plus two additional
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equations for the multi-component model. The three dimensional compressible Euler
equations for a Cartesian co-ordinate system can be written in conservative variables
as:

∂U
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
= 0, (C.2.1)

where,

U =
[
ρ, ρu, ρv, ρw, e

]T
, E =

[
ρu, ρu2 + p, ρuv, ρuw, (e+ p)u

]T
,

F =
[
ρv, ρuv, ρv2 + p, ρvw, (e+ p)v

]T
, G =

[
ρw, ρuw, ρvw, ρw2 + p, (e+ p)w

]T
,

e= ρi + 0.5ρq2,

andρ, i, u, v, w are the density, internal energy and Cartesian velocity components
respectively. The system of equations is completed with thespecification of an ideal
gas equation of state,p = ρi (γ − 1). The multi-component model employed is that
proposed by Wanget al. [191], which is based on the conservation of total enthalpy
within the fluid mixture and consists of tracking two additional equations

∂

∂t

(
ρχ

M

)
+
∂

∂x

(
ρuχ
M

)
+
∂

∂y

(
ρvχ
M

)
+
∂

∂z

(
ρwχ
M

)
= 0, (C.2.2)

∂

∂t

(
ρ

M

)
+
∂

∂x

(
ρu
M

)
+
∂

∂y

(
ρv
M

)
+
∂

∂z

(
ρw
M

)
= 0, (C.2.3)

whereM is the molecular mass of the mixture, and the variableχ = γ/(γ − 1) for a
perfect gas. A new Roe scheme has been derived for this set of governing equations,
solved in a direction-split form. The flux for the Roe scheme can be written as

Fi+1/2 =
1
2

(FL + FR) − 1
2

∑

i=1,7

δi

∣∣∣λeig
i

∣∣∣ K i , (C.2.4)

where the eigenvalues are

λ
eig
1 = λ

eig
2 = λ

eig
3 = λ

eig
4 = λ

eig
5 = u, λ

eig
6 = u− a, λ

eig
7 = u+ a (C.2.5)

and the speed of sounda2 = (H − q) / (χ − 1). With some algebraic manipulation the
eigenvectors can be cast into the following form
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K1 =



0
0
0
0
0
χ

1



, K2 =



0
0
0
0

−a2 (χ − 1)M/χ

−1
0



, K3 =



1
u
v
w
q
0
0



, K4 =



0
0
1
0
v
0
0



, (C.2.6)

K5 =



0
0
0
1
w
0
0



, K6 =



1
u− a

v
w

a2 (χ − 1) − au+ q
χ/M
1/M



, K7 =



1
u+ a

v
w

a2 (χ − 1) + au+ q
χ/M
1/M



. (C.2.7)

The wave strengths,δi, required for the Roe scheme are given by

δ1 = ∆u6/χ − 2∆A/M, δ2 = χ∆u7, δ3 = −M∆u7 + ∆u1 − 2∆A,

δ4 = ∆u3 − v∆u1, δ5 = ∆u4 − w∆u1, δ6 =M∆u7/2− (∆u2 − u∆u1)/2a+ ∆A,

δ7 = δ6 + (∆u2 − u∆u1)/a,

∆A =
∆u5 − u∆u2 − v∆u3 − w∆u4 + q∆u1

2a2 (χ − 1)
, ∆u7 = ∆u7 −

1
χ
∆u6. (C.2.8)

Following the analysis by Guillard and Viozat [74] the asymptotic behaviour of the
dissipation in the Roe flux can be determined. This is achievedby substituting

ρ = ρre f

(
ρ0 + M2ρ2 + ...

)
u = are f (0+ Mu1 + ...)

v = are f (0+ Mv1 + ...) w = are f (0+ Mw1 + ...) (C.2.9)

p = ρre fa
2
re f

(
p0 + M2p2 + ...

)
,

into Equation (C.2.4), whereM is the reference Mach number. Next all terms (for all
equations) in the computation of the Roe flux are expanded to leading order in Mach.
There is only one leading order term at low Mach, giving

(ρu2 + p)i+1/2 ≈
1
2

(
(ρu2 + p)L + (ρu2 + p)R

)
+

1
4

Mρre fa
2
re fa0 (∆ (ρ0u1) − u1∆ (ρ0)) .

(C.2.10)

This single term is the only term of order Mach, and arises becauseδ6 = −δ7 and,
K6

2 = −K7
2, where (.)2 indicates the second row of the eigenvector. As expected, this
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result is identical to that given in the analysis of the Eulerequations under Godunov
form [73] (noting that∆ (ρ0u1)−u1∆ (ρ0) = ρ0∆ (u1)). The next terms in the expansion
are constant with Mach, hence these are not the source of increased dissipation in
incompressible flows and are neglected here. Computing the dissipation of kinetic
energy due to this term gives the leading order term shown in Equation C.1.1. As
M → 0 (are f → ∞) then the Roe scheme gives infinite dissipation. To rectify this, one
can modify the second row of the eigenvectorsK6

2 andK7
2 by a factor of Mach in low

Mach regions. In this appendix the sixth and seventh eigenvectors are modified as

K6
2 = u− a→ u− βa, K7

2 = u+ a→ u+ βa (C.2.11)

Here,β = min(10M,1), such that the original Roe scheme is recovered for interfaces
whereM > 0.1. This makes the leading order dissipation tend to a constant value as
Mach number tends to zero. If the new flux Jacobian is computedusing the new set of
eigenvectors it is seen that this modification changes only the u-momentum flux from
ρu2 + p to ρu2 + βp. The modification could be viewed as a change in the governing
equations which are being solved, which is not desirable. However, the standard fluxes
are dominated by unphysical viscous dissipation at low Mach, and are hence also not
solving the Euler equations - but the Euler equations plus a large viscous term. The
contribution from the Roe scheme can be understood as an additional term required
only to stabilise the central difference flux. Hence the form of this stabilisation does
not necessarily require a physical basis, but it must not dominate the flow physics (as
happens with the standard flux at low Mach). This modificationalso allows good sta-
bility according to the standard CFL condition, as opposed tostandard preconditioned
methods where stability in explicit time-stepping is prohibitive [20], thus can be used
where the time stepping is not constrained by the low Mach portion of the flow. In
addition, it preserves exactly a stationary material interface.

C.3 Numerical Test Case

The effective resolution of the modified Roe scheme is now tested in the simulation of a
single mode Kelvin-Helmholtz (KH) instability. The above method is implemented in
conjuction with third-order accurate Runge-Kutta time-stepping [173], and with fifth-
order (in one dimension) MUSCL reconstruction [107]. The computational domain
is square and spans [−0.5,−0.5] to [0.5,0.5] and is discretised with 16 cells in each
direction. The initial conditions consist of a perturbed shear layer, where the flow is
initially parallel, but for a small perturbation velocity which triggers the development
of a KH vortex. The initial perturbation is written in the form of the divergence of a
vector potentialAz so that the flow field is approximately solenoidal [199]. In summary,
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(a) t=0, M = 0.2 (b) t=1, M = 0.2 (c) t=2, M = 0.2 (d) t=3, M = 0.2

Figure C.1: Time development of the single mode KH instability using the standard Roe
scheme. Nine contours of volume fraction from 0.1 to 0.9

(a) t=3, M = 0.02 (b) t=3, M = 0.002

Figure C.2: Simulations of the KH instability at M=0.02 and M=0.002 using the standard
Roe scheme

v = −∆U/2− ∂Az

∂x u =
∂Az

∂y
, for x < 0

v = ∆U/2+ ∂Az

∂x u =
∂Az

∂y
, for x > 0 (C.3.1)

Az =
U0
k cos(ky) exp−k|x| U0 = 0.1∆U, ∆U = 1

where∆U is the difference in mean flow velocity U across the mixing layer. The Mach
number, defined by∆U/a, is adjusted by changing the pressure. Density is fixed at
ρ = 1, andγ = 5/3. The coarse resolution is deliberately chosen to highlight the
scheme’s ability to capture what would be a high wavenumber perturbation on a larger
grid. It also allows easy demonstration of the low Mach behaviour of the dissipation
of kinetic energy.

The development of the instability when using the standard Roe scheme atM = 0.2
is illustrated in Figure C.1. The initially small perturbation is absolutely unstable and
forms the characteristic KH vortex. Contours of volume fraction are also shown in
Figure C.2 forM = 0.02 andM = 0.002, where excessive dissipation prevents growth
of the instability. Figure C.3 shows volume fraction contours for the modified scheme
at the final time step, where the modified dissipation allows the development of a near
Mach independent structure.

An additional issue with low Mach Godunov type simulations is that the numerical
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(a) M = 0.2 (b) M = 0.02 (c) M = 0.002 (d) M = 0.0002

Figure C.3: Nine contours of volume fraction from 0.1 to 0.9 att = 3 for the modified scheme

Table C.1: Scaling of the maximum pressure and density fluctuations with Mach att = 3

Mach ∆pmax/(pM2) ∆ρmax/(ρM2)
M = 0.2 0.683 0.525
M = 0.02 0.633 0.575
M = 0.002 0.650 0.35
M = 0.0002 0.633 12.5

dissipation causes anomalous scaling of the pressure with Mach number [74]. Ta-
ble C.1 shows the variation of pressure and density differences with respect to Mach.
The pressure variations follow the correctM2 scaling, however the density variations
follow that scaling only toM ≈ 0.002, below which there is a departure from the ex-
pected behaviour. It is believed that this is due to the problem of ‘cancellation’ errors.
Sesterhennet al [161] demonstrated that this is a potential issue even atM ≈ 0.02.

C.4 Conclusions

This appendix has presented a new Roe scheme to solve the multicomponent equations
of Wanget al. [191] and proposed a modification to this scheme for low Mach flows.
This removes the leading order Mach dependent dissipation and is demonstrated to
provide consistent result at Mach numbers as low as 10−4. It also shows correctM2

scaling of pressure fluctuations, however, the density fluctuations deviate from this
belowM ≈ 0.002. This is believed to be due to cancellation errors.


