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Abstract

Numerical methods for the simulation of shock-induced uiegbt mixing have been
investigated, focussing on Implicit Large Eddy Simulatid@hock-induced turbulent
mixing is of particular importance for many astrophysidaépomena, inertial confine-
ment fusion, and mixing in supersonic combustion. Thesalies are particularly
reliant on numerical simulation, as the extreme nature efflibw in question makes
gathering accurate experimental datéiclult or impossible.

A detailed quantitative study of homogeneous decayingutarite demonstrates that
existing state of the art methods represent the growth biéitent structures and the de-
cay of turbulent kinetic energy to a reasonable degree airacg. However, a key ob-
servation is that the numerical methods are too dissipatitgh wavenumbers (short
wavelengths relative to the grid spacing). A theoreticallgsis of the dissipation of
kinetic energy in low Mach number flows shows that the leadirtter dissipation rate
for Godunov-type schemes is proportional to the speed afcand the velocity jump
across the cell interface squared. This shows that thepdissn of Godunov-type
schemes becomes large for low Mach flow features, hence ingpéte development
of fluid instabilities, and causing overly dissipative tuldnt kinetic energy spectra.

It is shown that this leading order term can be removed byllpcaodifying the re-
construction of the velocity components. As the modificati® local, it allows the
accurate simulation of mixed compressjbleompressible flows without changing the
formulation of the governing equations. In principle, thedification is applicable to
any finite volume compressible method which includes a rsirootion stage. Exten-
sive numerical tests show great improvements in perforemantow Mach compared
to the standard scheme, significantly improving turbulenetic energy spectra, and
giving the correct Mach squared scaling of pressure anditgeveriations down to
Mach 10*. The proposed modification does not significantlgat the shock captur-
ing ability of the numerical scheme.

The modified numerical method is validated through simareti of compressible,
deep, open cavity flow where excellent results are gained minimal modelling
effort. Simulations of single and multimode Richtmyer-Meshkwstability show that
the modification gives equivalent results to the standanémse at twice the grid reso-
lution in each direction. This is equivalent to sixteen t&nakecrease in computational
time for a given quality of results. Finally, simulations @shock-induced turbulent
mixing experiment show excellent qualitative agreemerth\available experimental
data.
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CHAPTER 1

Introduction

1.1 Problem Statement

When considering fluid flow the first question typically askedWhat is the Reynolds
number of the flow? The Reynolds number is a means of deterghapproximately
whether a flow is laminar or turbulent. A laminar flow is chdesised by smooth
motion with large scale, coherent structures. As the Rewnoildnber increases, the
flow transitions from a stable, laminar configuration to ehygchaotic turbulent state.
This occurs as inertial forces overcome the natural dampgeshiie to viscousfeects,
allowing the growth of perturbations in the flow which areuratly unstable. Fully
turbulent flow is characterised by extremely complex flondedith motion at a huge
range of scales, often behaving in a chaotic manner.

This process is illustrated in Figure 1.1, where a roundsjatitially smooth and lam-
inar, becomes unstable and transitions to a fully turbullemt. The fine scales and
sharp gradients present in the turbulent jet are typicaldiuient flows.

Figure 1.1: Transition from laminar to turbulent flow in a round jet at Reynolds number
approximately 30000 shown via shadowgraph [186]

Classical examples of instabilities which trigger turbaleimclude Kelvin-Helmholtz

(KH) and Rayleigh-Taylor (RT) instabilities, examples ofialnare shown in Figure
1.2. The KH instability occurs in shear layers, causing ugllof the shear layer into
discrete vortices. Indeed, the primary instability in Fgd.1 is a three dimensional
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form of this. The RT instability is due to unstable stratifioa (i.e. a heavy gas on top
of a light gas), and causes bubbles of light fluid to rise iheheavy fluid, and spikes
of heavy fluid fall through the light fluid.

Figure 1.2: Kelvin-Helmholtz instability causing wave-like formations in clouds over Mount
Shasta, California (left)[162], and Rayleigh-Taylor billowing in the plum&lolunt Etna
(right)[125]

As these instabilities grow exponentially, they can trigtpe transition from laminar
to turbulent flow if not suppressed by viscous forces. Onceréupbation has been
amplified through growth of a certain instability, it seedstimn at many dierent
length scales due to nonlinear interaction in the govereiggations. The motion is
passed from large to small scales until, finally, the mot®m@t a sticiently small
scale to be damped by viscosity. Through this process themmot the large scales is
typically governed by the instability mechanism (or medbars), whereas the small
scales are usually assumed to be independent of the seadtayility.

Figure 1.3: Transition from linear and nonlinear growth to a turbulent mixing layer for RM
instability of a gas curtain [156]

This thesis is concerned with developing numerical mettiodghe simulation of the
Richtmyer-Meshkov (RM) instability. This is related to the RiBtability, in that it
involves the motion of a heavy and light fluid, driven in thisse by an impulsive
instead of continuous acceleration. The impulsive acagter typically arises due to
a shock wave, which passes from one fluid into another. Omtieeface between the
two fluids, there is usually a small perturbation, which cobé surface roughness,
a slightly non-planar shock, a machined perturbation, oueven fluid interface.



1.1 Problem Statement 3

The interaction between this perturbation and the incidaontk wave seeds the fluid
instability. The development of RM instability of a gas cumtirom seed perturbation
to turbulent mixing layer is shown in the two-dimensionasean Figure 1.3. The

instability initially grows in a laminar, ordered mannett late time, further to the right

of the image, the ordered structures become turbulentpeigagreatly the mixing of

the heavy and light gases.

(a) Cassiopeia A (b) Crab Nebula

Figure 1.4: Remnants of the Cassiopeia A supernova (left) [141] , and the Crabdaebu
(right) [57]

10,000 yrs 30,000 yrs

(a) Crushing of the pulsar nebula (one quarter) (b) Inhomogeneous
supernova

Figure 1.5: Numerical simulation of the development of a spherical, homogeneous pulsar
nebula (first three images from the left), and the same case but with inhasmgginitial
conditions (right). Images are coloured by density on a logarithmic scale [23

This form of impulsive mixing is important in the understamglof many astrophysi-
cal phenomena, from supernovae to the dynamics of intensteédia. In the past few
decades it has been realised that the assumption of sdrsnemetry in the simula-
tions of supernovae are inadequate due to the growth of Ribiiies. Figure 1.4 a)
shows a false colour image of the Cassiopeia A supernova r@s)nehere the uneven
shape of the remnants is due in part to the combined influeiR&a@and RT instabil-
ities acting on perturbations within the star before theesnpva. Figure 1.4b) shows
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the Crab Nebula, whose development is linked to the expamgishock-accelerated
material after RM and RT induced mixing. Visualisations ofisiéy from two dimen-
sional simulations of pulsar nebula and supernova remitgrBtondinet al. [23] are
shown in Figure 1.5. The development of RM and RT instabditian be seen clearly
in the spherical, homogeneous case, however they havetegrgduence in the inho-
mogeneous case where mixed material can extend well befierat¢a expected from
the homogeneous simulations.

Earth-bound phenomena include inertial confinement fysubiere a spherical capsule
containing thermonuclear material is compressed usingv@gol laser until tempera-
tures stificiently high for fusion reactions to occur is achieved [7hisTone of several
proposed methods for generation of power from fusion, anghigxtension of the
methods employed within nuclear bombs.

Early stages Near max. compression After max. compression

Figure 1.6: Simulation results demonstrating the influence of RM and RT instabilities during
the implosion of a spherical capsule [200]

This process is illustrated using via results from thraaatisional numerical simula-
tions in Figure 1.6 [200]. Very high pressures generateti@butside of the capsule
cause it to be compressed. Once a critical level of commessis been reached, igni-
tion is achieved and a burst of energy is released. In this R4 instability occurs at
the interface between the light and heavy materials, triggeurbulent mixing. The
qualitative similarities between these simulations arab¢hof supernovae in Figure
1.5 are striking. In inertial confinement fusion, turbulemiing has the dual féect
of diluting and cooling the fuel, which reduces th&aency of the reaction, hence
it important that this phenomena is well understood. Onth&rapplication of RM
mixing is in the field of supersonic combustion, where weabckk can be employed
to improve the mix ratios and hence give mofiagent combustion.

A key observation regarding all of these applications id #erimental data (es-
pecially quantitative data) is very flicult to measure, most notably in the cases of
astrophysical flows and inertial confinement fusion. Thuseustanding of the under-
lying flow physics relies to an unusual level on insights gdithrough modelling and
numerical simulation.

A numerical method developed for simulating the RM and asgediinstabilities must
be capable of capturing several simultaneous phenomerstlyRihe instability grows
from an initially small perturbation meaning that this gtbwnust be simulated accu-
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rately without unwanted dissipation. Secondly, the inditglrapidly becomes turbu-
lent due to the combined influence of RM and KH growth, meartiag the numerical
scheme must be able to simulate a chaotic turbulent flow feld dissipate turbulent
kinetic energy appropriately. As the RM instability is treggd by a shock wave, the
numerical method must be able to simulate compressibifigces, and capture shock
waves with reasonable accuracy. It is essential that baibksWwaves and low Mach
near-incompressible flow features can be captured actyratehe same time, with
the same numerical method. Finally, the mixing usually estetween two dierent
fluids, hence requiring the physically realistic simulat@f two or more fluid species
that have dierent thermodynamic properties.

The scope of this thesis is to implement, analyse, improdezalidate numerical meth-
ods which satisfy all of the above criteria for compressillebulent, mixing flows
seeded by the RM instability.

1.2 Structure of the Thesis

The thesis commences with an introduction to turbulent fldldiscusses the key el-
ements from growth of an initially small instability, thrghi to the behaviour of a fully
developed turbulent flow field. It describes the key quaetitf interest which will

used later in the thesis to measure the performance of themcahsimulation. Chap-
ter 3 details the numerical methods employed, includingviielation and selection
of the optimum gas mixture model to use for flows with more thaa component. It
also introduces the numerical approach for unsteady tenbdlows, and initialisation
methods for turbulent flow fields.

Chapter 4 discusses in depth the performance of the standarel Yolume methods
when applied to the canonical problem of homogeneous degayrbulence. Several
guantitative metrics are employed to highlight the streagind weaknesses of each
numerical method. Chapter 5 analyses theoretically theceafrdissipation of kinetic
energy in Godunov methods, demonstrating that the dissipaf kinetic energy is
proportional to the speed of sound. Chapter 6 proposes aesimgdlification to the
standard Godunov type method which improves the resolaficurbulent flow fields,
especially at low Mach which maintaining shock capturingatality. The modifica-
tion is local in space, and does not require a change in tineuiation of the governing
equations.

Validation of the modified numerical scheme against expeniial and theoretical re-
sults is conducted in Chapter 7. The numerical methods alesdgp a compressible
cavity flow, single and multiple mode Richtmyer-Meshkov aislity, and simulations
of a multicomponent, compressible turbulent shock tubesgrpent. In addition to
validating the numerical methods, the flow physics are ailscudsed.

Chapter 8 concludes the thesis with a summary of key resuitsetommendations
for future research.
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1.3 Journal and Conference Publications

Whilst writing the thesis several papers have been writtehsatomitted. At the date
of writing, the following papers have been accepted forfalipublication:

Thornber, B.,Mosedale, A., Drikakis, DOn the Implicit Large Eddy Simulation of
Homogeneous Decaying Turbulenc&’ Comput. Phys, 2007

Thornber, B., Drikakis, D. and Youngs, DLarge-eddy simulation of multi-component
compressible turbulent flows using high resolution methddsimput. Fluids, 2007

Thornber, B., Drikakis, D.\Large Eddy Simulation of Shock-Wave-Induced Turbulent
Mixing’, J. Fluids Eng., 2007

Thornber, B., Drikakis, D.!Numerical Dissipation of Godunov Schemes in Low Mach
Flow’, Int. 3. Numer. Meth. Fl., 2007

The following papers have been submitted, and are curranthgr review:

Thornber, B., Drikakis, D., Williams, ROn Entropy Generation and Dissipation of
Kinetic Energy in Godunov-type Schemesibmitted to J.Comput. Phys., 2007

Thornber, B., Mosedale, A., Drikakis, D., Youngs, BBn Improved Reconstruction
Method for Compressible Flows with Low Mach Featuresibmitted to J. Comput.
Phys, 2007

In addition to journal papers, a number of conference papave been written and
presented:

Thornber, B., Mosedale, A., Drikakis, DlL.arge-eddy simulation of Compressible
Turbulent Mixing across Gas Interface&th International Symposium on Turbulence
and Shear Flow Phenomena, Germany, 2007

Thornber, B., Drikakis, D.\Numerical dissipation of Godunov Schemes in low Mach
flows’, Numerical Methods for Fluid Dynamics, UK, 2007

Thornber, B., Drikakis, D. and Youngs, DLarge-eddy simulation of multi-component
compressible turbulent flows using high resolution metho@snference on Turbu-
lence and Interactions, France, 2006

Thornber, B., Drikakis, D. and Youngs, DHigh Resolution Methods for Planar 3D
Richtmyer Meshkov Instabilitie$0th International Workshop on the Physics of Com-
pressible Turbulent Mixing, Paris, 2006

Thornber, B., Drikakis, D.Large-eddy Simulation of Isotropic Homogeneous Decay-
ing Turbulence’ ECCOMAS, Netherlands, 2006

Thornber, B., Drikakis, D.;ILES of shock waves and turbulent mixing using high-
resolution Riemann solvers and TVD metho8 COMAS, Netherlands, 2006

Thornber, B., Drikakis, D.!Approximate Riemann solvers for multi-component flows’
Workshop on Numerical Methods of Multi-material flow proimg, Oxford, 2005



CHAPTER 2

Fundamentals of Turbulent Flow

2.1 Linear Analysis of the Fundamental Instabilities

The understanding of fluid instabilities is critical in thederstanding of transitional
turbulent flows. This is where the flow field has an initiallyahperturbation, which

grows to form a large feature. This large feature can thenbaoemnon-linearly with

the flow field around it to generate a fully turbulent flow. Instlsubsection, fun-
damental theory regarding the early and late time growtrsfiogle and multimode
perturbations in the Kelvin-Helmholtz and Richtmyer-MesWhknstabilities will be

summarised. This gives an insight into the dominant flow raa@ms at early times,
which can potentially persist for a considerable periodimitafter the transition to
turbulent flow.

2.1.1 Kelvin Helmholtz and Rayleigh Taylor

The classical analysis of the Kelvin-Helmholtz (KH) instep considers an incom-

pressible, inviscid shear layer [105]. As the linear analigsthe same, Rayleigh Taylor
instabilities is also considered by including gravitatibforces [50]. Figure 2.1 shows
the schematic for the instability. Essentially, two pallows are given an infinitesi-
mal perturbation which can be decomposed into separatesndtie stability of each

mode is analysed to find out if it grows in amplitude, shrinksytemains stable. The
instabilities are centred around the points at the vorteestvhere the fluid is in com-
pression, as indicated in Figure 2.1.

Consider initial conditions as shown in Figure 2.1, wherevitya is chosen to act in
thezdirection. By treating the fluid as irrotational, the anadysmploys the concept of
a velocity potential wher®® = u such thatv?d, = V20, = 0. The initial pressure is
given asp = pp — p1gzfor z< 0 andp = pg — p2gzfor z> 0. A normal mode analysis
consists of decomposing the perturbation into a seriesneflly independent modes
of the form

S = S* eer(kxx+kyy)+st, (2.1.1)
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Uz (> 0).p2

U1 (< 0),01

Figure 2.1: Schematic of the Kelvin-Helmholtz instability (after Drazin and Reid [50])

whereS is the shape of the initial interfac8; is the magnitude of the initial interface
perturbationk, andk, are wavenumbers of the perturbation in thandy direction,
and total wavenumber ls= k2 + k2. If the mode is unstable (i.e. grows in time) then

swill have a positive real component, if staldevill have a negative real component.
The solution to this instability (see Drazin and Reid for fflalysis [50]) is given by
two modes:

S=

(2.1.2)

—1k p1U1 + poUs 4 (k§PWZ(U1 - U,)? 3 k(o1 —Pz))l/z
* pL+p2 (o1 + p2)? P11+ P2

Thus the interface is stablekfy(o? — p3) > kZp10,(U1 — U,)?, and one mode is stable
and the other unstablekfy(p? — p3) < k2p1p2(U1 — U,)? Consider simple shear where
g=0

p1U1 + poU, N K« \/,01,02(U1 -Uy)

s=-lk + ,
§ P11 P2 (o1 + p2)

(2.1.3)

demonstrating that in KH the flow is unstable at all wavelbegivhere the modes
grow proportional to the wavenumber, i.e. small wavelesagjfow much faster. A
further simplification is gained by setting = p,, U1 # Uy,

s= —%IkX(Ul +Uy) + %kX(Ul - Uy). (2.1.4)

If waves of random orientation are within a mixing layer, thaves orientated to the
direction of flow (wavenumbek,) will grow most rapidly. The Rayleigh-Taylor (RT)
instability is defined at); = U, = 0, giving,

(2.1.5)

B 1/2
. i(kg(m pl)) |
P1+ P2

showing that the interface is unstable only if the acceienag points from the lighter
to the denser fluid. In reality, both the RT and KH instalaktioccur over a range
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of wavenumbers at the same time, each wavenumber growingliffieeent rate ac-
cording to it’s respective stability criterion. In additipthese modes travel at a phase
velocity and hence will interact to produce additional moddich also grow, the flow
becoming rapidly more and more complex.

As each mode reaches an amplitude comparable to it's waythlethe perturbation no
longer grows at an exponential rate, and saturates. It wgsoped by Youngs [194]
that the growth follows three stages. First there is exptalegrowth of the small
wavelengths. As the amplitude reaches the wavelength ahtige, the short waves
saturate, and the growth slows. These then get overtakeimebipnger waves which
are still growing exponentially (bubble competition). &lly, a self-similar mixing
region is formed, where the late time growth can be descryesicaling arguments
which will be discussed further in Section 2.3.

2.1.2 Richtmyer Meshkov

Richtmyer-Meshkov instabilities [155, 134] can be undeydtas the impulsive limit

of the Rayleigh-Taylor instability, where the interface @lecation occurs impulsively
as a result of a shock wave or a very rapid acceleration. Bhaften referred to

as baroclinic deposition of vorticity on the interface. Tdrelysis considers the flow
schematic in Figure 2.2 where the flow is at rest, with anahginusoidal perturbations
between two fluids of densify; andp,.

)

P2
Au

ey e

P1

Figure 2.2: Schematic of the Richtmyer Meshkov instability

Beginning with the expression for the growth rate of the RTahsity in Equation
(2.1.5), it can be noted that the growth or decay of the iatafamplitudeA can be
described by

d2A(D)
de

= kg(t)A(t)% (2.1.6)

If it is assumed that the acceleratig(t) is very large and occurs over a very short
period of time then the increment of velociyy, imparted by this acceleration can
be defined adu = fg(t)dt. As the impulse occurs rapidly, Equation (2.1.6) can be
integrated holding all parameters constant except for ¢helaration, giving
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Figure 2.3: Experimentally measured early time growth rate compared to linear theory [30]

dA P2~ pP1

i kAqupl P (2.1.7)
thus giving the linear growth rate for an instability of wauenberk. It is unstable
for all impulses regardless of direction of the acceleratibhis demonstrates that the
amplitude of the mixing layer grows linearly in time (as oppd to RT and KH which
are both exponential), proportional to the wavenuntband the Atwood numbedt,
defined as

At=F2"F1 (2.1.8)
p1L+p2

This relationship has been tested by Chapman and Jacobsg/[B@®dsuring the growth
of single mode three-dimensional bubblesAdat= 0.15, and results in Figure 2.3
demonstrate good applicability of linear growth upki& ~ 1. Similar results have
been gained for shock-induced two dimensional perturbatiy Collins and Jacobs
[40], and for strong radiative driven shocks (shock Madk > 10) by Holmeset al.
[84]. When modelling the passage of a shock wave the denstti@sge as compres-
sion occurs. Equation (2.1.7) is typically most accuratemine post-shock amplitude
and densities are employed, where the post-shock amplitaiée computed by tak-
ing the initial amplitude and multiplying by the mean congsien rate,

(o1 +p2)”
(o1 + p2)*

Again, the growth of the initial instability is only valid @ihthe amplitude of the wave
reaches the same magnitude as the wavelength, after whioheecomplex non-linear
or dimensional scaling analysis is required. At late time ititerface is composed
of ‘bubbles’, where the lighter fluid penetrates into theweafluid, and ‘spikes’,

where the heavier fluid penetrates into the lighter fluid. Simeisoidal shape usually

(2.1.9)



2.2 Homogeneous Turbulence 11

Light fluid

Bubble

Heavy fluid

N A A Y Y

Figure 2.4: Non-linear RM development and terminology

becomes mushroom shaped due to Kelvin-Helmholtz instigsilalong the interface.
This configuration is illustrated in Figure 2.4.

2.2 Homogeneous Turbulence

Turbulence is an incredibly complex phenomena charaetdiiy extremely chaotic
motion, complex interactions between vastlffelient sized vortices, and intermittent
viscous dissipation of kinetic energy at the small scaléss $ection describes qualita-
tively and quantitatively this phenomenology, summagdiry theoretical and experi-
mental results as regards turbulent length scales, dyrash@viour, and extensions to
anisotropic flows. The full derivations from first princiglef material in this section
can be found in any one of several well known texts and is suiisethfor the sake of
brevity. An interested reader can consult any of [44, 82, 148, 119, 14] for further
details.

2.2.1 Turbulent Length Scales

Figure 2.5 shows a typical distribution of turbulent kiwe¢inergy over the etierent
scales in wave number space. Considering the case of highlentdReynolds num-
bers the energy spectrum can be split up into three main e=girit the large scales
(low wavenumbers) the eddies are typically problem depetdsually formed by an
external generating mechanism (a fundamental instafditying, for example), and
are characterised by the integral length se¢alat the very high end of the wavenum-
ber scale there is the dissipative range. At this scale thalent kinetic energy passed
from the large scales is dissipated by the action of visgodihis occurs at the Kol-
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A Energy containing sub-Inertial range Dissipative scales
scales i E(k) o« k3 5 E(Kk) o« exp fku

Kinetic Energy

1/¢ 1//ltay Ink
Wavenumber (k)
Figure 2.5: A schematic of a typical turbulent kinetic energy spectrum for homogeneou
turbulence plotted with logarithmic scales

mogorov length scale, denoted By [110, 111]. Given a large enough Reynolds
number, there exists a range between the Integral and Kalroedength scale where
the flow is independent of both viscous forces and the meshanihich is injecting
energy at the large scales. This is called the sub-inedaraje, in which the Taylor mi-
croscale [177]1:ay, typically lies. The cascade of energy from the large sdhlesigh

to the small scales was famously described in a short poemfyRichardson,

Big whirls have little whirls,
which feed on their velocity.
Little whirls have lesser whirls,
and so on to viscosity.

The relative sizes of the various length scales are detedriy consideration of the
nature of the flow field. The integral length scale is chosethascale which reflects
the averaged distance over which the turbulent motion isetaied, which is typi-

cally the size of the largest energy containing vorticedirigethe velocity correlation
function and the longitudinal correlation function as

_ ul(xl)ul(xl + r) (2 2 1)
ulgms

Qij = Ui(X)Uj(X + r), f

wherev; is the turbulent velocity in thedirection, () indicates an ensemble average,
anduyms is the root mean square turbulent velocity. The integrajtleiscale is defined
as

5:]0 f(rydr, (2.2.2)
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alternatively with the assumption of isotropy the follogirelations can be employed
in spectral space

Kmax

by b by 2r

fz—f kK 1E(K)dK = —— Eipleeo = E1tleo = Ealico.  (2.2.3)
2ur2ms 0 2ur2ms 1olk=0 ur2ms HHk=0 ur2ms 22k=0

whereE, Eip, E;1, E»y are the three dimensional, one dimensional, longitudindl a
transverse turbulent energy spectra respectively, whiltlvevdefined later in this sec-
tion. The Taylor microscalg,y is the length scale typically used to define the Reynolds
number of a turbulent flow. It is defined from the expansiorheflongitudinal corre-
lation functionf about ther = 0 axis

2

212

tay

f(r)=1-

+ . (2.2.4)
however it is more commonly calculated from one of the follugwelations [44]

w2 15ni 2 1502
By= = T R (2.2.5)
(AU /dx)? € w?

wherew is the vorticity. The Kolmogorov microscale is defined as ldgwgth scale
at which viscous forces become dominant, thus where the Réymoumber of the
vortices is one, and where the form of the flow is dependent onlthe transfer of
energy from the large scales and viscosify. If the smallest eddies are assumed to
haveRe = ung/wis ~ 1, and the velocityu is related to the dissipation ratevia

U oc (wis€)¥4, then

nk = (ves/ €)™, (2.2.6)

With the additional assumption of isotropy, this can be coteg in several dierent
ways depending on the definition of the dissipation eaténich could be any of

€ = 15%is(0U1/0%)” = Wistw? = 2yis f K*E(K)dk (2.2.7)
0

The length scales are connected to each other through theoReymumber, which
provide approximate relations of the form

/ltay _1 nk _
%~ V15Re2, =~ Re¥4, 2.2.8

It is important to note that many of these relations rely oelatively simple dimen-
sional observation that
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Figure 2.6: Scaling of the dissipation rate measured behind a square mesh grid [174]
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whereC is a constant of order 1. This is similar to stating that th@dgl large scale
eddies break down in a single eddy turnover timg/¢. As the turbulence is assumed
to be stationary, then the rate at which energy enters theltmt spectrum equals the
dissipation rate. Figure 2.6 shows a compilation of expenital results by Sreenivasan
[174] demonstrating that this relationship holds well R, > 100.

tay

(2.2.9)

E X

2.2.2 Kolmogorov Scaling

Given thatRe,,, > 100 there exists slicient separation between the large and small
scales that the vortices are independent of the mechanisarageng energy, and the
viscous forces dissipating it. The separation from thedaples is required such that
it can be assumed that the eddies are homogeneous and isofrbp physics of this
range were first investigated in physical space by Kolmog§t@0, 111] employing
the velocity structure function, defined as

AVP = [u(x + AX) — u(x)]®, (2.2.10)

wherepis a positive integer. Assuming that there is a homogenésatsopic turbulent
field then the velocity structure function can only be a fiotof separation distance
and dissipation ratesenergy transfer rate) The only possible relation dimensionally
is [110]

AVP = B,ePPrPl3, (2.2.11)

whereg, is the Kolmogorov constant. Settimp= 2 gives the two-thirds law, and pos-
sibly more importantly setting = 3 gives the four-fifths law which is believed to be
exact even assuming turbulent intermittency, whre —4/5 [111]. Experimentally,
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it has been shown to be valid for Taylor Reynolds numbers gréfaan 1000 and when
the length scale lies within the inertial range [139].

As much analysis of the turbulent flow field is conducted infrnspace, it is useful
to derive the turbulent kinetic energy spectrum. Firsthyg second order correlation
Q;ij is used to give the spectrum tenggi(k)

¢ij(k) = f Qij(r)exp ' dr, (2.2.12)

(2n)
Qm0=~[w@mmem%%m. (2.2.13)

Now if r = 0, Equation (2.2.13) simplifies to

—u.u._ f¢..(k)dk (2.2.14)

This is essentially a volume integral. In isotropic homagmus flows, spherical sym-
metry can be assumed. The integral over the vdctan be replaced by an integral in

spherical co-ordinates using the magnitude of the waveovict . k2 + kZ + k2

f ¢i (K)dk = —f Ark®e;i (K)dk. (2.2.15)
The definition of the three dimensional energy spectrum is
fo E(k)dk = u.u., (2.2.16)
giving,
E(K) = 27k%;i (K). (2.2.17)

Via dimensional analysis similar to that used to gain EqumeR.2.11) the form of the
energy spectrum in the sub-inertial range under the givenmagtions must be

E(K) = Ce?3k ™3, (2.2.18)

whereCy is the Kolmogorov constant in wavenumber space. A furthglication of
Kolmogorov scaling is that the scaled turbulent kineticrggespectrum,

E11(K)
@5

(2.2.19)
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Figure 2.7: Experimental measurementsif; (symbols). Experimental data is from [158],
figure reproduced from [148].

should be universal when plotted agaiksk. E;; is the one-dimensional turbulent
kinetic energy spectrum which is typically measured in expents, defined as the
square of the Fourier transform of the velocity componemhél direction [44, 178],

1 00 2
Ell(kl) = Z 'f Ul(Xl) eXp_lkl)(:L Xm . (2220)

Figure 2.7 summarises experimental data from [158] showngfor various flow
types and at variouBe,, . It lends great encouragement that under-resolved simula-
tions of turbulent flows with models for the unresolved comgats could be applied to
many diferent flow regimes. The one dimensional turbulent kinetergy spectrum
allows experimental measurement of the one dimensionah&gbrov constanty 1,
which is related to Kolmogorov constant via
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Ck11 = 550k. (2.2.21)
This has been measured in several experiments using gretajed turbulence, and
the results were collated by Sreenivasan [175], reproduté&igure 2.8. At present
there is little evidence for a Reynolds number dependené€®,adnd the data gives a
mean value oy 11 = 0.53+ 0.055, orCy ~ 1.6, if data forRe,,, < 50 is discarded
[175, 100, 158, 140, 29].

2.2.3 The Decay of Homogeneous Turbulence

The crucial component of a simulation of turbulence is thaain predict certain fun-
damental properties of the real turbulent flow. There aregsrcipal properties which
will be discussed extensively throughout this work; the rat decay of turbulent ki-
netic energy, and related to this the rate of growth of the idant length scales.
It is through consideration of the dissipation rate of kinenergy that many semi-
empirical formulas define growth rates of turbulent mixiagers.

To examine the decay of homogeneous turbulence it is nagdesiescribe the Karman-
Howarth equation, which governs the evolution of turbulengttic energy. It forms
the basis of the theoretical analysis of isotropic, homeges turbulence. Next, there
is a brief introduction to the Loitsyanskii and Birkfianvariants, which are further as-
sumptions used to close the resultant set of equations.eTdetermine the behaviour
of decaying homogeneous, isotropic turbulence governethbyKarman-Howarth
equation. The work by Oberlack [144] is briefly summarisedoltuses group theory
to determine the growth rate of the integral length scaled,the decay rate of turbu-
lence kinetic energy under the two principle invariantseJénresults are discussed in
relation to recent experimental and numerical simulations

Together this forms a theoretical and experimental guidagexpected behaviour of
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turbulence generated through numerical simulations.

The Karman-Howarth Equation

This brief derivation follows the methodology in [82] andH]. The evolution in time
of (u)a (uj)s, whereA andB are two points separated in space, can be written as

(U)A(UJ)B (Ui)a = (UJ)B+(U)B o (Ua. (2.2.22)

The equation fou; at the pointA reads:

0 — u; 19p 0?
a(ui)+(uk+uk)(,j—xk— S W (2.2.23)

where U, is the mean flow velocity. Multiplying this equation by;fs, and the
corresponding equation fouj)g by (u), yields an evolution equation for the sec-
ond order velocity correlation. In addition, a co-ordinaiestem is chosen where
& = (%)s — (%) as the exact location of A and B does not matter. Taking thenags
tion that the flow is isotropic and incompressible then tlespure-velocity correlations
are zero, this gives

0 0 lig

ot (Qi’j)A,B T 9& [(S*ik’j)A,B * (S*i’kj)A,B] V'sasc 0 (Q' J)AB (2.2.24)
The second term on the left hand side is a second order temisioh) is labelledS ;.
Dropping the A,B notation

0 92

aQi,j -S,j= 2Vvisti,j- (2.2.25)
In the case of incompressible flow, an isotropic tensor oftkine order can be ex-
pressed in terms of one scalar. As the diagonal terms araroépnterest, i.e.S;,
then, after applying a contraction and noting that= 3, andé&é& = r?, Equation
(2.2.25) becomes

Q..(r t)-S,(r.t) = 2vv.312(9 Q..(r t). (2.2.26)

For isentropic, incompressible flows the velocity coriielatfunctions can be simpli-
fied significantly, and the above equation can be written ims$eof the second and
third order correlation functiong andx;

51 ()~ s

10 of
It Urms ms 2 (I'4K3) = 2Vvisur2m5—— (r4—) , (2.2.27)

SESH
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(Ui) A (U)s

(2.2.28)
Ubs

K3 (r, t) =

This is the Karman-Howarth equation for homogeneous ipatrurbulence [101]. In
Fourier space:

) k k k
afo E(k,t)dk:f0 F(k, t)dk — 2uf0 K2E(Kk, t)dk + Hy(k, 1), (2.2.29)
F(k,t) = 27k?F;;(k,t) = }Tfm kr sinkr)S;;(r, t)dr, (2.2.30)
0
E(k t) = }fm kr sin(kr)Q(r, t)dr, (2.2.31)
T Jo

whereS is the third order correlation tensor at locatighandB, H(k, t) is the energy
supplied to the turbulent flow as a function of wavenumib€k, t) is often called the
‘energy transfer spectrum function’, as this gives the gbation from inertial transfer
of energy from diferent wave numbers to the total energy.

Loitsyanskii and Birkho ff Invariants

These two invariants form the heart of twdtdrent descriptions of decay of a ho-
mogeneous isotropic turbulent field, giving additional ditions which constrain the
solution to a certain form. They arise through consideratibthe behaviour of the
system as tends to infinity, or as the wave numbdetends to zero. By taking the sec-
ond moment of the Karman-Howarth equation it can be showmimking continuity
for an incompressible fluid that the rate of decaypf must be at least faster therf!
with n > 1. Taking the fourth moment gives:

P s o ot (1, 1)
a(u,zmsfo r4f)dr— (ufmsr4k)|0 = 202 o (r4 o )

It can be shown that under the assumption of isotropy and gemeity, the second
term on the left hand side, and the term on the right hand gjdaleero. Integrating
with respect to time gives the Loitsyanskii invariant:

[Se]

(2.2.32)

0

u?msf rfdr = 1,. (2.2.33)
0

However, Proudman and Reid [152] showed by assuming a celitgtnbution of the
turbulent field that the assumption regarding the decretfigeahird order velocity
correlations as r tends to infinity does not hold, implyingttthe Loitsyanskii invari-
ant varies during the decay process. This was shown to bdrtradater paper by
Batchelor and Proudman [15]. In the final stage of decay thd tirider correlations
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can be neglected as compared to thieas of the viscous forces, thus the Loitsyanskii
invariant becomes constant.

Birkhoff [21] demonstrated that the energy spectrum need not be piapa tok* as
k tends to zero, but that the leading order term can be of dideHe also pointed
out that there is no reason for an initial energy spectrurend towards &* structure
unless itis initially designed to do so. He also noted thistithplies the divergence of
the Loitsyanskii invariant, but proposed that

f r2Q;;(r,t)dr = urzmsrlim r3f(r,t) = Iy, (2.2.34)
0 —00

Is an invariant, thus called the Birkfianvariant. It is also called the &aan invariant,
after Sé&fman who considered the production of homogeneous turbeleiaca set of
random impulsive forces with convergent integral momeiitsumnulants. Through
this consideration he arrived at the same conclusion as &iiklemonstrating that
the energy spectrum is of the ordérif the force is solenoidal and not bounded with
increase in volume.

Decay Rates

In this section the decay rates present in large Reynolds eutalbulence is exam-
ined, i.e. where the viscous terms in Equation (2.2.27) eamdyglected, and then
the decay rates during the final period of decay when viscéfieste are dominant.
The traditional approach to determining decay rates isradlin [82], where it is as-
sumed that turbulence decays self-similarly. Utilising Tlaylor microscale as defined
in Equation (2.2.4), the behaviour of the Karman-Howarthagipns as tends to zero
can now be examined. A(r?) the equation reduces to:

J] , 1r2 >, 10 ( ,0 1r? 5
Z 1-=— || = 21 ——r*=l1-=— 2.2.35
ot lu”"s( ZAtzay]} VV'Su”“Sr“ or (r or 2/1?ay +o(r) + ( )

Differentiating, and removing the second term in the time dévevas it is second
order inr,

30 (1) - 15myisU2, ¢

Ea rms) — /1t2ay

+O(r%) + ... (2.2.36)

However, this equation cannot be solved analytically withforther assumptions, as
bothu?, and 4.y depend ort. It is clear from this equation that the turbulent kinetic
energy dissipation rateis:

- 30 )_%,

== () = = (2.2.37)
tay
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Now, assume that(r,t) andxs(r,t) are functions ofy = r/L only, whereL is some
length scale which is a function of time only. Substitutifgstinto the Karman-
Howarth equation,and replacir&(urzms) using Equation (2.2.36), gives an ordinary
differential equation fof(y),

AyldL df  Umsday 1 d (s )+Zﬂfay1 d ( ,df
3

wis L dt dlﬂ Vvis T‘Vl@ vx

This can only be solved if the cficients are proportional to each other - or if we
can neglect one of the terms. For exampld&ras— co we can neglect the constraint
A‘Tay = const. It is reasonable to assume that the decay is self-similénganergy
containing eddies, thus the integral length séélgis chosen fol, defined as:

{(t) = f f(r,t)dr. (2.2.39)
0
This, together with the assumptionlRé— oo leads to the following conditions:
Az 2,1
s 7129 _ const, Liay 106 onst (2.2.40)
Wwis Wis € dt

In the case of invariance of Loitsyanskii’s integral thddualing relation can be added:

2

U2 [° = const (2.2.41)

Combining this constraints gives the following decay rates:

Z .
This solution was already recognised by Kolmogorov [110gxt\ for Birkhdt’s in-
variant:

Uins o (At+B) 7, foc (At+B)77, A, o 3

Vs (t ; B) (2.2.42)

2

u2 £ = const (2.2.43)

Leading to:

B
Uins o (At+B)™°, £ oc (At+ B)7°, A%, o Tvyis(t + 2 (2.2.44)

Oberlack [144] approached this solution method in a new waggugroup theory.
Given the following scaling invariants under a certain cleadf scaling group:

(2.2.45)
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ForRe— oo this gives:

lim f(r) ~r™, or ,l('”g E(k) ~ k“. (2.2.46)

—o0

Returning to Equation (2.2.39) and substituting from Eduregi(2.2.45):

2 o+l

o) o« trs, W oc 125, (2.2.47)

Invariance of Loitsyanskii’s integral implies that= 4, and Birkhdt’s integral implies
thato = 2, thus recovering the initial solutions in Equations (22).and (2.2.44). In
addition, Oberlack considers the case where the integrgthescale is constant, i.e. it
is constrained. In this cage= const thuso = o, yielding:

Pas < U2, Ay o tH2, (2.2.48)

urms

This decay rate has already been determined by Taylor [}7&@$suming that the work
done by the large eddies corresponds to the dissipationiratethate = AW, /¢ =
AUz, ./at. In addition, there is one case that is fully consistent wltlof the constraints
given in Equation (2.2.38) without neglecting viscous term

2o U gy~ € oc Y2, (2.2.49)

urms

This is the case of complete self preservation of the cdroeldunctions with decay
in time. Interestingly, Oberlack concludes that only th@smrvation of energy de-
termineso, and demonstrates that Birkffis integral in the limit of infinite Reynolds
number is in agreement with this. In the final stages of deleayrtteractions between
different sized eddies becomes negligible compared to thet @éffects of viscosity.

Note that in this regime the Loitsyanskii integral is an éxagariant with respect to
time. Thus the Karman-Howarth equation is reduced to:

19,
r2or

The general solution after application of the invarianceafsyanskii’'s integral is:

000 (rt) = 2vp s 9029
EQU (r,1) = 2wis ar Qi (r,1). (2.2.50)

r —r?
T , 2.2.51
Q.Y 2( 4vvist)exp(8"vist) ( )
2wt (2.2.52)

After application of Birkhdt’s integral:

W2 ol (2.2.53)
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Table 2.1: Turbulence decay rates - Note that in addition to the listed assumptions, both
models only apply to homogeneous, isotropic incompressible turbulence

Invariant Loitsyanskii Birkhofft
Property Wns | € | day | Wans| € | Atay
DecayRe— o 107 | 2/7 | 12 | -6/5|2/5| 1/2
f, k3 = func(r/£(t)) only
Assumptions E(k=0,t) finite and
and analytic.
Implications iMoo Mkz =0 | limy_o E(K,t) oc K2
limy_o E(k, t) oc k*
DecayRe— 0 52 -] - [-32] - -
Assumption limy_o E(k, t) oc k* | limy_o E(K,t) oc k?
DecayRe— oo, constrained -2 | 0 [ /2 | -2 [ O 12
Assumption ¢ = const
€= ALems/f

More recent analysis using renormalisation group anabysi¥akhot and Orszag [193]
gave kinetic energy decay rates of -1.47. Finally, Yakh&2]lproposed a new time
dependent integral scale and integral invariant, whicly twlds in the upper end of
the inertial range. This gives the same decay rate as with aitsyanskii invariant
but does not have the limitations of this invariant. Table ummarises the decay
exponents, and the assumptions inherent in their derivatio

Finally the decay rate can also be reverse engineered’ &@nen energy spectrum.
Assuming that for small wavenumbers the energy spectruni teeoform E(k) =
AK™ and above this it follows a Kolmogorov scalifidk) = Ce?3k=>/3, this can be
substituted into the simplified dynamical equatitu?,)/dt = —e to gain the decay
rate as a function of time. This method was introduced by CedBeléot and Corrsin
[41].

To date the experimental results are not conclusive, havwtbey appear to be favour-
ing Birkhoff’s invariant. Conclusive results are extremely hard to gaithay should
be at high Reynolds number, in a very large wind tunnel (tocedvall dfects) and for

a very long period of decay so that the exponent can be detedhaiccurately. The po-
sitioning of the virtual origin of the deca(in Equation (2.2.42) and (2.2.44)) remains
a key issue, as thidtects dramatically the decay exponent gained. Examiningxhe
cellent summary papers of Comte-Bellot and Corrsin [41], Mammawoh and LaRue
[138] and Skrbek and Stalp [169] gives mixed results. Damarsarised in [41] shows

a wide range of scatter, decay exponents ranging fdrf to —1.37. More careful
results reported in [41] with the level of isotropy improvegla secondary contraction
gave decay rates 6f1.25 with an error of 4%. Mohammed and LaRue [138] report
results at higheRe,,, of —1.3+ 0.02. To increase the maximum Reynolds number ac-
tive grids have been developed to ’stir’ the flow. This leadsigher anisotropy, where
the mean turbulent velocities in the streamwise directammtze up to 20% greater than
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those in the cross-stream direction. Results from Mydlaaski Warhaft [140] give
decay rates 0f1.21.

Skrbek and Stalp [169] examine the rate of decay assumingdeinspectrum in a
similar manner to [41], however truncating it at a large sdal model the #ects of
an enclosed experiment, and at a small scale to modelffbet® of viscosity. They
show analytically that the rate of decay should increaseglglas the Reynolds number
decreases. By analysing previous data sets and new exp&imeuperfluid Helium
they propose that BirkHBs invariant holds true. The most recent resultRaf, =
720 have been reported by Kaagal. [100] where the exponent wasl.25, however
in this case the integral length scale was approximatelyqoaeter the size of the wind
tunnel.

2.3 Shock-Induced Turbulent Mixing Zones

The assumption that the turbulent flow is isotropic and hognegus allows consid-
erable simplification of the governing equations, as candam sn the derivation of
the Karman-Howarth equation. Without this simplificatidre tanalysis becomes in-
tractable in the majority of cases. Headway is typically emégt assuming that the
flow develops in a self-similar manner, that is that the same field at two diferent
instants can be made to fit the same function by good choiceatihg parameters.

This concept can be illustrated for a spatially developirmgmgy layer. Take a reference
length L which is some measure of the mean width at a fixed point in $paoe
reference quantitAU then the non-dimensional mean longitudinal velocity peofil
U = U/AU at several points in the development of the mixing layerapses to the
same curve when plotted against="x/L. Furthermore, these assumptions can be
inserted into the mean continuity equation, yielding adinecrease of mixing layer
width with respect to space [148],

dL AU
— =Gr

dx - Umean

(2.3.1)

whereGy is the growth rate, antdeanthe average of the upper and lower velocities.
Considering a temporally developing self similar mixingdayn a similar manner
leads to a growth rate @xAU, where in both spatial and temporal laygis is re-
ported from 006 to Q11.

It is generally assumed that the width of the turbulent ngxone generated by a fully
developed Richtmyer-Meshkov instability grows proportityto t, whered is a pos-
itive number typically less than 1. Several approaches baea developed based on;
the development of an isolated slab of turbulence; selflanty arguments; ‘bubble
competition’; and momentum-drag formulations. It shouddrimted that only multi-
mode initial perturbations are considered. Single modeideations are not represen-
tative of typical initial conditions as their late time bef@ur tends to be dominated
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by the appearance of large, coherent structures, usuatheiform of parallel vortex
pairs in two dimensions [91], or vortex rings in three dinmens [30, 183].

2.3.1 Growth of a Self-similar Turbulent Zone

Barenblatt [12] discussed the case of an isolated sheet efaj@rag turbulence. This
Is equivalent to assuming that the perturbations presetitannitial condition have
gone past the initial linear stage of growth dictated by Rigrdr's formula (Equa-
tion (2.1.7)) and become a fully turbulent mixing layer. Assng that the flow is
not deformed by a mean shear, then the evolution of turbliemtic energygx =
(u?2 +v2 +w?)/2 is governed by a balance of turbulenffdsion and dissipation into
heat,

oo _ g + pwjp)

- 2.3.2
ot 0z © (2.32)

whereq is the turbulent energy fluctuation; is the turbulent fluctuation in the di-
rection of expansion of the mixing layer, aptis the fluctuating pressure. Assuming
a turbulent energy eddyfilision codicient, K, then dimensional analysis gives

ba?
L 2
wherel is a reference length scale, which can be takeh as Ch(t), whereh is a

measure of the width of the mixing zone, dnd a positive cofficient. Inserting these
into Equation (2.3.2) gives

Kq = L vk, €= (2.3.3)

age _ 9(Ch(D vak) boy?
at 9z Ch(t)’

(2.3.4)

In the case where viscosity equals zelbo= 0) then the solution can only depend on
the initial magnitude of the kinetic energip = f_(i;zz Ok(z 0)dz t, zandC. Herezis
the position within the mixing zone in the direction of thgaxsion, and it is assumed
that the initial turbulent kinetic energy profile is givenasunction ofz. The initial
distribution of the mixing zone extend froAv, < z < §;,. Dimensional analysis then
gives

~ 7{‘5/3t—2/3é:g(1 _ 42)2
Ok = 36C ,

h(t) = &%°t%3, (2.3.5)

where the positive constatig = (135C2/4)%3, is determined from energy conserva-
tion and = z/h(t). This gives an upper limit on the growth of the mixing layér.
the dissipation is finitel # 0) then the solution is now not completely self-similar,
additionally dependent dm The asymptotic late time form now beconm#g) o t1+
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whereu > 1/3. Hence the influence of turbulent viscosity is to slow theeflgpment
of the mixing layer. It should be emphasised that this is utfteassumption of partial
self-similarity, and additionally it is assumed that thebtulence is in free decay, i.e.
any influence of the initial perturbations has been forgotte

This argument was further developed by Youngs [196] who eyga the following
model equations,

d(L dw

(Lax) _ —bl?, — =u,where L = cW + dinin, (2.3.6)
dt dt
where the reference lengthis taken as the minimum perturbation length schlg,
andb, c andd are model constants. Taking initial conditionsWf= 0 andu = Au

then

7]
W 9l(1+ CA”t) —11, 2.3.7)
/1min C ed/lmin

wheref = 2/(3 + bc) again recovering = 2/3 for the case of zero viscosity, but now
including some influence of the initial conditions. Ramsha®4] also gained = 2/3
when dissipation is zero via a Lagrangian description ohtineéng layer width.

Gauthier and Bonnet [63] extended the establidhed methodology to model shock
tube experiments. By analysis of the th&ulion term in the turbulent kinetic energy
equation, and assuming self-similar growth, leads to a tiravf the mixing layer
proportional tot¥3, Huang and Leonard [86] proposed a new self-similar decay of
homogeneous turbulence which was shown to give a growthofafé* at late times
where the Reynolds number is low [150]. Mikaelian [136] udeglitnpulsive limit of

the RT instability within a model for developing turbulenhé&tic energy, predicting
that the mixing layer grows asBIAu(Ab)t at late times.

More recently, Zhou [202] has applied theory developedddsulent flows with an ex-
ternal agent to the RM instability. It is assumed that thegn#ux through the inertial
range, and the dissipation rat@re the same, and that the energy flux is proportional
to the typical time scale of the low wavenumber featuresdating to turbulence the-
ories). For homogeneous, isotropic turbulenggr = (KkU(K))™* = (k3E(k))_1/2. From
dimensional analysis the dissipation rate is determined by

e = C2r(KK*E2(K). (2.3.8)

As RM turbulence is anisotropic in tizedirection (the direction of shock propagation)
then the wavenumber is chosenkas  /k2 + k?, i.e. a two-dimensional spectra in the

plane perpendicular to shock propagation. The time scalecaged with the develop-
ment of the large scales is estimated from Richtmyer’s litie@ory, Equation (2.1.7),
giving Trm = (K(At)Au)~t. Substituting this into Equation (2.3.8) gives



2.3 Shock-Induced Turbulent Mixing Zones 27

E(K) = C[(A)Aue@)] Y2 k32, (2.3.9)

A key observation made by Zhou is that whaq, << Typrt then the spectra should
take the form above, else the turbulence will become fullyettgoed and revert to a
Kolmogorov form. Next the growth rate of the mixing layer istermined using a
similar approach to that described by Comte-Bellot and Cof#dihfor homogeneous
isotropic turbulence. Consider the model spectrum

(kM if k <k

E(k.2) :{ G [(ADAUE@D] 2 K32 if K>k, ° (2.3.10)

where the two portions of the spectra are matchekl at k.. The kinetic energy

Ok = fow E(k)dk can be computed from this. As the flow field is assumed to be in-
compressible and freely decaying then, similar to the aggrdy Youngs [196], the
two-equation turbulence model reduces to

Dok
Dt
D&
— = Ce&%/ 0k, 2.3.12
Dt 67/ Ok ( )
whereé& is thez averaged dissipation rate. Taking the derivativggotomputed from
the assumed spectrum, and inserting this into Equationl(P).3then comparing with

Equation (2.3.12) gives

= -, (2.3.11)

2m+3

2m+ 3 L
Ok (t) = ko |1+ ( e 1) Eot/Oko| (2.3.13)
and the mixing layer width is implied from the approximation
3/2 3/2 me3
q q 2m+ 3 amid
W ~ % - SLOO [1+( T 1)80t/qK’o] : (2.3.14)

hence the final growth rate depends crucially on the formegtiergy spectrum at low
wavenumbers, as is the case for homogeneous isotropidéndau Withm = 4 this
gainsg = 7/12, form = 2,0 = 5/8. It is additionally noted that with specially chosen
conditionsm could equal 1, in which case= 2/3. For freely decaying turbulence the
above considerations can be applied to a Kolmogorov spactiging grid turbulence
data to fix the coféicientCg, giving 8 ~ 0.29 — 0.4, as discussed further in Clark and
Zhou [37].

Finally, Llor [123] has examined the behaviour of a freelga@ng slab of turbulence
with respect to the invariance of angular momentum at thgelacales. The results
additionally used the observations by Kolmogorov that gigéow wavenumber range
which scalesk® then there exists an invariant of the foim= kA°1. From this it
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can be shown that for self-similar decay the kinetic enepgyx t™", andA o t3-"2
wheren = (2c + 2)/(c + 3) (i.e. 6 = 1 — n/2). Assuming a S@man impulse field as
initial conditions for the turbulent slab, this game= 4/3 equal to9 = 1/3. Llor also
proposes a maximum decay rate of turbulent kinetic energy=010/7, corresponding
tod =2/7.

It should be noted that these analysis are typically apiplécéo moderate Atwood
numbers where the growth exponent of the bubble and spikdbeassumed to be
close [37]. AsAt — 1 then there is little or no shear force applied to the spile sif
the interaction. This means that the initial linear grovgmot slowed by interaction
with the second fluid, and hence does not form a vortex or tenbumixing layer.
This Atwood number dependence is not considered in the mmquekented within
this section.

2.3.2 ‘Just-Saturated’ Mode Analysis

The previous subsection details the behaviour of a slabligfdeveloped turbulence,
making the essential assumption that either all modes présehe initial problem
have become saturated (i.e. they are past the linear stagyewth characterised by
Richtmyer’s formula) or that the remaining long wavelengtbd®s are at low levels
and do not influence the growth rate of the mixing layer. Thelei® outlined in this
section investigate the growth of a mixing layer where theysbations have not yet
become linearly saturated. This means that the short wagytkle can be nonlinear
(turbulent), but that these can be overtaken by longer weagths growing at a slower
but more persistent rate.

An analysis by Dimontet al. [46] showed that if the mixing layer width is governed
by the width of the ‘just saturated’ bubble, then the totadtivi(envelope described by
the saturated modes) should grow with= 1/2. This was derived by assuming that
the ‘just saturated’ mode has amplituale: Cry/K, i.e. ka ~ Cgry, WhereCgy should
be of order one. Given linear growth of each mode to this aonbdi, the governing
equation ida/dt = (At)kAuay. Substitutingk = Crn/a, W = 2a, andW, = 2a then
d(W?)/dt = 4Cgrm(At)AuW,. The solution of this equation is

W~ \/\/\@ + ACRpAAU(t — to) (2.3.15)

Youngs [198] proposed a modification to the growth rate byuidiog the dfects of
initial conditions. Assuming that the power spectrum of thiial perturbation is
represented byP(k) o« CK™ then the mean amplitude as a function of wavelength is
a(1) «« VKP(K) = CY2k™D/2 The velocity corresponding to the each wavenumber
is thenv(k) = CY2(A)AuK™372 A structure of size Ak appears in timé¢ = 1/kv(K).
Linking the width of the mixing laye¥V with the wavelengtil gives

)2/ (m+5)

W~ 1 ~ (CY2(ApAut : (2.3.16)
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thus givingd = 2/(m+ 5). Youngs argues that growth from mode coupling alone is
approximatelyy = 0.24, hence if the linearised growth rate is faster than this: (3.3)
thend is dependent on initial conditions.

Inogamov [89] proposed another variant based upon the sigraaf the mixing layer
due to linearly saturated modes, considering a power spacdf the initial pertur-
bations which becomes constant at low wavenumbers (longleagths). He then
examines the dierences in velocity fluctuations at a given scale, denoted, lxpn-

cluding that

Unm = (At") V2 + mPAua, m, (2.3.17)
Uy =< Ju(X,t) — u(x — A, t)| >c VN2 + mPupm, (2.3.18)

whereu, is the linear velocity perturbation for each individual tdionensional mode
numbern and m, and At* the post-shock Atwood number. It is argued thatoc
/lﬁﬂuﬂim /A% where,; is the characteristic average perturbation wavelengtsuming
that the rate of increase of mixing layer widfthis proportional to the mean velocity
difference of the just saturated mode d&V/dt « u,|,_\y gives the diferential equation

aw. Uy, A2 /W2, (2.3.19)
dt

with solutionW o t¥/3, It should be noted that this solution is only valid for iaitper-
turbations of a certain type. More specifically, the ampl&wf the Fourier harmonics
of the perturbation should not change significantly in thgiae +n from the mode
numbem. Implicit in this assumption is that the range of the Fouharmonics is suf-
ficiently wide - narrow band solutions would not follow theoportionality argument
in Equation (2.3.18).

2.3.3 Bubble Merger Models

The late time behaviour of the RM instability can be considdgreough the class of
Bubble merger models. These assume a phenomenologicabappmmnsidering the
dominant modes at the limit of linear growth, and the mergififpese dominant modes
to create larger structures.

It is usually assumed that the bubbles grow according tonpiadeflow, following a
method by Layzer [116]. Assuming that the velocity is inwsarrotational O =
—-V®), and incompressibleVf® = 0) a solution is sought which matches the initial
conditions and Bernoulli's equation

O, — %(cbg +®?) — gz = a(t). (2.3.20)
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The resulting asymptotic bubble velocity based on potefibev models is equal to
Cy/s/kt, which implies that a possible solution for the width of thiximg layer could
be logarithmic in time [26]. The subscripty(s indicate the coicient for the (b)ubble
or (s)pike respectively. Recentl,, s has been derived ag2 by Hechtet al. [79],
2/(1 + At) by both Goncharov [66] and Oron [145] and 1 by Sohn[172].

Bubble merger models track the development of individuablesy which are allowed

to grow and interact with neighbouring bubbles, such thatlabke of size1; can
interact with a bubble of siza, over a period of time to generate a final bubble of
size A; + 1,. Two dimensional results published by Alet al. [6] (employing the
multimode potential defined by Hecét al[79]) gaved, ~ 0.4, andds ~ 6, (1 + At),
however later results gained by Orenal. [145] extended the bubble merger model
to three dimensions giving, ~ 0.25, caused by the reduced rate of bubble merger in
three dimensions.

2.3.4 Momentum-Drag Models

Another phenomenological method of analysing RM mixing iadd from the anal-
ysis of Rayleigh-Taylor (RT) instabilities. The late timenagiour of the RT instability
was modelled by Youngs [195] as a balance between buoyantdrag for bubbles
and spikes. This gave two equations for the evolution of therface

du

(Pl + KlpZ) VOIld_tl = Bl(Pl - pz)VOIl - Clsz%Sl, (2321)
du

@b+ngvmraf = By(p2 — p1)VOob — Cop;U2S,, (2.3.22)

wherep, , are the densities of the light and heavy matetihl; is the velocity of the
tip of the light and heavy material, whelh , = dH; ,/dt. The volume of the structure
is denoted by ol and the surface areéa Equation (2.3.21) refers to the evolution
of the upward moving bubble, and Equation (2.3.22) referth&oevolution of the
downward moving spike. This is a balance of mass times a@t&la on the left, and
the forces of buoyancy and drag on the right. This requiresgiecification of three
model constants, the added masbuoyancyB and drag coféicientC. Settingg = 0O,
and dividing the equations by the volume of the structuregjiv

du, u2
L _ ot 232
” ClLl, (2.3.23)
du, U2
= = _CZL_z’ (2.3.24)
) Ci2(1 - (-1)-?AY)
Ci,= (2.3.25)

1+ K12 + (—1)1’2(1 - Kl’z)At’
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Figure 2.9: RM late time growth raté for the bubble and spike as a function of Atwood
numberAt [48]

whereL = Vol/S. As with the previous models, this gives asymptotic growth o
Hi, o« t%22, wheref , is typically derived from experimental and numerical dateeve
Cl,=1/612-1 [47, 48]. Youngs’ model assumes thgt= L, = min(Hy, Hy) = H,.
TakingCy, = C’ = 3.67 from experimental data [48] gives = 0.21 andd, =
1/(1 + C’ +/p2/p1), giving excellent results over a range of Atwood numbet.[4

2.3.5 Experimental Data

Experimental data has a wide scatter, primarily due to wpaears to be a strong
dependence on initial conditions. Dimonte and Schniedd@nf¥easure the growth rate
atAt ~ 0.9, for a Mach> 10 shock. They determined the valuegef 0.5+ 0.1, higher
than previous investigations, suggesting an Atwood nurdbpendence on the growth
rate. The dependence of the growth ratn the Atwood number was investigated in a
linear electric motor experiment [48]. The results are oeprced in Figure 2.9, where
the relationship between the bubble and spike growth rasefetand to be

2

14+ At)O.ZhO.OS , (pZ)O.ZHO.OS
= B _—

1_ At 01 for 0.15< At<0.96, (2.3.26)

s = 95(
however in this case the issue of initial conditions was ngestigated. In an as-
sessment of the potential flow models, three dimensionglesimode experiments at
At = 0.15 conducted by Chapman and Jacobs [30] show the best agreeitiethe
potential models of Goncharov [66] and Oron [145], who skéie = (2/(1 + At))/kt.

Experiments in air and sulphur hexafluoridét (~r 0.67) conducted by Prasaat al.

[150] examined the influence of initial conditions on theeléime growth of the tur-
bulent mixing layer. The initial conditions were taken asaes of large scale sinu-
soidal perturbations, broken by a high wavenumber compananduced via a wire



32 Fundamentals of Turbulent Flow

mesh. There is a dependence of initial conditions, the &ingavelengths producing
the thickest mixing layer, however it is a weak dependencthegrowth exponent
over all experiments is.26 < 6 < 0.33.



CHAPTER 3

Numerical Methods

3.1 Governing Equations

The three dimensional compressible Euler equations fonargésed co-ordinate sys-
tem can be written in conservative variables as

U OE oF 4G _

Eﬁ‘a—é‘:ﬁ'%'f'a—{—o, (311)

where,
U=[p, pu, pv, pw, €', (3.1.2)
E= [pu, pU2 4+ p, puv, puw, (e+ p)u]T, (3.1.3)
F= [pV, puv, pV?+p, pvw, (e+ p)v]T, (3.1.4)
G= [pW, pUW, pVW, pW + p, (e+ p)w]T, (3.1.5)
U =Ju, (3.1.6)
E = J(E& + F&y + G&), (3.1.7)
F = J(Eny + Fn, + Gn), (3.1.8)
G = J(EL + Féy + GL), (3.1.9)
e = pi + 0.50(U? + V* + W), (3.1.10)

and J,o, i, u, v, w are the Jacobian of the cell volume under considerationsityen
internal energy and Cartesian velocity components resgdeti The subscripts$.),
indicate a partial derivative with respectxo The system of equations is completed
with the specification of an equation of state, which for aaidyas is

p=pily-1). (3.1.11)
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3.2 The Finite Volume Godunov Method

The governing equations are solved using the Godunov mdt&jd The problem
of interest is typically split into a number of finite volumésr 'control volumes®)
where the initial values for the conserved variables areipd at the beginning of the
simulation. The conserved variables are then evolved bypotimg the fluxesE,F,
and G above) across the interfaces of each control volume. Thiedicer method
proposed by Godunov can be summarised in one dimensiomalgsr

At
U'J-1+l =Ul+ Ax (Fj—1/2 - Fj+1/2) , (3.2.1)
where the inter-cell numerical fluk;.1/, is computed based on the solution to the

Riemann problem usir(gJ’.‘, U?+1), and similarlyF;_,,, is computed from the Riemann
problem using(U’?, U?_l).

3.3 Time Integration

Several time stepping methods are employed within thisshasd are described in
this subsection in order of increasing accuracy. The firatsecond-order dual time
stepping scheme proposed by Jameson [92]. The governirgdieqsi can be written
as:

n+1
N Ry 0, (3.3.1)
ot
where ()™! indicates a quantity evaluated at the current time steps iBran implicit

method, thus applying a second-order accurate expansion:

(3.3.2)

U™t (3/2umt - 2un + 1/2Um!
ot At ’

An explicit sub time step is utilised until the above flux haserged, using a first-
order integration in the sub time st&p, where the sub iterations are labelled with an
m:

yml _ym . 3/2Um - 2uU" + 1/2Un1
At At
Once the sub iterations have converged to a specified limgitydlue am+ 1 becomes

the value ah + 1 and the sub iterations are completed. Additionally, fallyfexplicit
Runge-Kutta (RK) time stepping methods have been implemeaagdtiese methods

+F(U™) = 0. (3.3.3)
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perform better in simulations with shock waves. The sintplession is the second-
order method defined as:

1 At
1_
ul=uU"+ 55(F(u?), (3.3.4)
At
1 _ 1
urt=U+ B([F(uj)], (3.3.5)

Next a second-order TVD version [164]:

At
1_
ul=uUl+ E(F(U?), (3.3.6)

Ut = g+ 3 T (U7) + F (D) 33.7)

and a third-order Total Variation Diminishing (TVD) Runge#ta method [69]:

At

R ] @22
U= U+ g dF (V) + F(UL 39
urt=Ul+ %%([F(U?) +F(Uf) + 4F (U2)1. (3.3.10)

Finally, a third order extended stability method is empbbyénere the Courant-Friedrichs-
Levy (CFL) number has a limit of 2 [173]:

1At
1_
1At
2 _ 1
U? = Uf+ S [F (UD)). (33.12)
gzl (2u.2 LU+ ﬁ[F(u?) L F (ui)]) (3.3.13)
I e I T AX j N =

3.4 Higher-order Spatial Accuracy

Higher-order spatial accuracy is achieved in this thesisgugan Leer’s ‘Monotone
Upstream-centred Schemes for Conservation Laws’ (MUSCL)nigoe [187], and
‘Weighted Essentially Non-Oscillatory’ (WENO) methods [1IThe base range of
standard extrapolation methods used are

e Second-order: Minmod (MM), van Leer (VL) and van Albada (W84, 53]
and references therein)
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e Third-order (M3) [203]
¢ Fifth-order (M5) [107]
¢ WENO fifth- and ninth-order (W5 and W9)[11]

For MUSCL extrapolation, the left and right states of the eosuative (or primitive)
variables at the cell faces are computed as

U|+1/2 UI 1 (1 - C) ¢Iim (rilim,L) (UI - Ui—l) + (1 + C) ¢Iim [r“m L) (U|+1 i) >

4 |
' (3.4.1)
1] 1
Uy, = Ui — 4 (L-c)¢™(r ( " R) (U2 = Uis) + L+ Q) g™ [rhm R] Uiz = Ui |,
| (3.4.2)
pimt _ Vi = Ui img - Uia = Uy (3.4.3)

I U UI 1 I U|+2 Ui+1’

whereU is the vector of cell averaged conserved (or primitive) alales,c is a free
parameter which is set tg/2 for the third-order limiter, and the cells are labelled by
the integei. It should be noted that the parametastoes not influence the accuracy
of the second-order limiters considered here as they arengjric (See Appendix A
for the definition of this criteria). For multicomponent flsvprimitive variables are
usually extrapolated as this provides better resolutiazoatact surfaces. In this study
the following limiters are considered

g = min(Lr/™), (3.4.4)
! rjim (1 + ri“m)

dva = Iy (2 (3.4.5)
lim 2r™

by = 1o’ (3.4.6)
o= 1- (1 2 )(1 __am )N (3.4.7)

Pus = 1+ (rm)2 1+ (rimy2) - o

M3 includes a 'steepening’ paramefgrto improve the resolution of discontinuities,
in this thesisN = 2. All of the above limiters are constrained in the normahfas
to first-order accuracy at local maxima and minima. The fifiteo MUSCL scheme
(M5) is slightly more complex [107]
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_2/r!im,L + 11+ 24ri|im L 3r||m L. lim,L

P = = 30 = (3.4.8)
_2 r|ImR + 11+ 24rI|mR 3rI|mR !ImR
¢*Il|\/|mSR = / i+2 30I+1 i+1 i ’ (349)

where the ratio of the slopes is defined slightlffetiently:

Ui Ui i Ui — Ui
limL _ i+1 — Yi _Ilm,R — i i-1
r —U U, r —Ui+1 —U (3.4.10)

and monotonicity is maintained by limiting the above extdations using

SusL = max0,min(2, 2r'™, gt ), (3.4.11)
dwer = Max0,min(2, 2r/™F, g o). (3.4.12)

The WENO methodology takes a weighted average of severalbp@mstencils to
choose the ‘smoothest’ option [11, 165, 166, 95]. This isxeresion of the Essen-
tially Non-Oscillatory (ENO) scheme presented by Haieal. [76]. It is not strictly
monotone (hence the ‘essentially’ label), however, clasart isolated discontinuity
the weights for stencils which cross the discontinuity $tidaecome very small. By
combining the stencils in this manner very high order acgui@an be achieved, in
smooth regions of flow the order of accuracy is-21, wherer is the number of points
in each of the candidate stencils. Hence a ninth order metupdres a stencil of five
cells each side of the interface where the fluxes are computed

To demonstrate the concept, the third order WENO recong&rugs outlined, for
whichr = 2. Given celli the two polynomials are defined as,

Ui - Ui
4 _A L(x=x), (3.4.13)

pi(x) = U
U|+1
Pi-1(X) = Ui + ( - X). (3.4.14)
The polynomials are then combined to give the reconstruptedtity for celli,

P, = pi(X) + aiaip.ﬂ( ) (3.4.15)

a0+a1
Co

i C
% = 106+ (15))?

(10710 + (IS)is0)*”

al = (3.4.16)

where the coicientsCy are determined for optimal weighting and the smoothness
indicators (S) are calculated byi§); = (U; — U;_1)? and (S)i;1 = (Ui.1— U;)?. Finally,
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10 is a small number used to prevent divisions by zero in a ptyfemooth flow.
The values folJi_;,,r andUi_;,, are given by inserting = Xi_12 andx = Xi;1,2 into
Equation (3.4.15).

Regarding the time taken to complete the very high order acgusimulations, the
ratio of CPU times to that required to carry out the seconaoven Leer simulations
Is 1.2 for M5 and W5, and 5 for W9. This does not include communication times
for parallel computations as these depend on the hardwadeaunsl the number of par-
allel blocks utilised. This was not significant for the numbg&processors employed
(maximum of 512 processors for the multimode RM simulations)

3.5 Multicomponent flows

3.5.1 Introduction

The complete approach to simulating multi-component flae ihave a dierent set
of governing equations for each component. However, thesighis concerned with
the simulation of miscible, single phase fluids. With thisnmd, several simplifying
assumptions can be made. Firstly it is assumed that two gasesingle cell have
the same velocity. This means that only one set of momentwateus are required.
Secondly, the assumption of instantaneous temperatuibeigm between the gas
species is made, so that only one energy and continuity iequatequired (see [137]).

Thus the remaining task is to add an additional one or two igove equations which
advect a quantity that can be used to compute the parametprsed for the equa-
tion of state. There are several possible model equatiat) based on fferent
assumptions. A key issue with multicomponent models is emagion of pressure
equilibrium. It has been shown that fully conservative medail to preserve pressure
equilibrium across a moving material interface when theperature is dferent on
each side [1, 31, 38, 85, 93, 103, 104, 114]. Note that thesbad®ns do not appear
in the single gas case, and are not related to the order ofaycaf the scheme.

Following on from this apparent failure of fully conservagtischemes, a number of
guasi-conservative or non-conservative schemes weregedp Quirk and Karni [153]
built upon the earlier paper by Karni [102] to develop a scadrmased on the non-
conservative equations corrected at shock waves with gesuts. Jenngt al. [93]
modified the energy equation to render the computation o€timservative variables
a single fluid computation hence reducing the oscillatiaoes@nt in the basic scheme.
Karni [103] added an additional non-conservative goveymiguation for the pressure,
which successfully removed the oscillations present inntioelified Sod shock tube
problem. Abgrall [2] proposed a ‘quasi-conservative’ noethnamed so as it produces
results with extremely small conservation errors. Abgsaaltl Karni [3] proposed a
non-conservative numerical method in which two fluxes aramated at the cell face,
which also removes the pressure oscillations, at a compuogdicost.
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However, Wanget al. [191] derived a new model based on total enthalpy conserva-
tion of the mixture (henceforth labelled as 'ThCM’) within ardrol volume. As the
model is fully conservative it captures strong shock wawesigately, and due to the
method of formulation the resulting numerical scheme slibmaepressure oscillations

in several test cases when using an exact Riemann solver.

Finally, Johnsen and Colonius [97] recently proposed anrgdteve method of solution
of the model equations of Shyue [167] using the HLLC solvérisTemoves pressure
oscillations completely from the resulting solution.

This section validates the multicomponent method useditirout the rest of the pa-
per. It compares the mass fraction model, quasi-conseevaibdels of Abgrall [2]
and Johnsen [97], and the fully conservative model of Waingl. [191]. First the
model equations are described, then (if not presented inrigaal publications) ap-
proximate Riemann solvers are derived. These are validategteorder accuracy in
space on several test cases, and extension to higher otsescisbed. Finally, a higher
order test case is used to illustrate the behaviour of tleeta schemes using realistic
methods.

3.5.2 Model Equations
Mass Fraction

In this model an additional equation is added to the Euleatgns to track the mass
fractionY = p1/ (01 + p2) = p1/p , WhereY = 1indicates a cell containing only species
1, andY = 0 is only species 2. A value between 0 and 1 indicates a mixtlineis the
mass conservation equation for a two species computatiobeasolved by adding a
single equation to the Euler equations:

opY oOpuY OpvY JpwY
=0. 3.5.1
ot o on ol (3.5.1)

It is assumed that within each cell the two fluids have exatidysame temperature,
pressure and velocities, thus from Dalton’s law of partralssures:

_ Cay1Y +Cy2(1-Y)

r( caY+Cp(1-Y)

(3.5.2)

ThCM Model

The multi-component model proposed by Wai@l. [191] is based on the conserva-
tion of total enthalpy within the fluid mixture. The initialedel derived requires two
additional equations:
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) G G ()= @3
%(f/{) ;g(pu) :n(p/v(v) aag(pw) 0, (3.5.4)

whereM is the molecular mass of the mixture, and the varighiedefined as,

X_%+1 (3.5.5)

for a perfect gas,

Yi

1 X = Xi- (3.5.6)
yi—1

i=1,N

Xi =

The mass fractions and volume fractions can be calculabved fr

UM -1M,
Yi= T A (3.5.7)

M 1- M/M,

= = . 3.5.8
M T T MM, (3.58)
If the volume fraction is used to initialise a simulation,
M,y
l1-ofll-—]], 3.5.9
M= Mz ( a/( M, )) ( )
X = a1 (y1—x2) + xz. (3.5.10)

Quasi-conservative Approach

The model equations of Abgrall [2] and Shyue [167] are basethe advection of
a thermodynamic quantity which does not allow pressurellagons at a material
interface. For an ideal gas it requires the addition of oneggn,

I v W —o. (3.5.11)

wherex = 1/(y — 1). It is clear that this equation is not in conservative fpas
when cast in conservative form oscillations in the presfeté will occur. The clear
advantage in this system is that a single equation can mprssveral gas components,
as the advected quantity is the mixtyre This is the ideal gas version of the model
equations employed by Johnsen and Colonius [97].
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Allaire et al. [4] use a diferent approach, removing the continuity equation and re-
placing it with the following,

0 daypu 0 VvV  Oai1p1W
a1p1+ @101 4 a101 + a101W

= 5.12

ot 0¢ on o 0 (35.12)
Oy  OagpoU  JazpV dappoW

=0 3.5.13

ot oe | an | ac ’ (3.5.13)

(9&1 5&1 (9(11 (9(11 _ 0’ (3514)

Eﬁ‘ua—gﬁ'va—nﬁ‘wa—{—

where the final equation is not conservative. The equatibrs $dosed by computing
the mixturey from the volume fractions.

3.6 Riemann Solvers

In this section the Riemann solvers employed for each gas Indescribed. The
derivations are restricted to Cartesian grids for simpliaitithin the code they are
implemented in a fully curvilinear manner. The mass fratcamd ThCM models are
solved in a fully coupled manner, and the derivation of the approximate Riemann
solvers are detailed here. For the quasi-conservative Isyateoutline of the Riemann
solver is given, as the code employs the Roe scheme propo$¢fd and the HLLC
scheme proposed by Johnsen and Colonius [97].

3.6.1 Mass Fraction Model
The Scalar Non-Conservative Invariants

To derive an approximate Riemann solver for each flux dimeagsplitting is applied.
Thus for the fluxe

U 9E

i == 6.1
a o ox (3.6.1)
where thel denotes the reconstructed conservative variable€ahe corresponding
flux. Expanding (3.6.1) for each of the governing equatiamsl reducing to primitive
variables

dp _dp _odu
— — — =0 3.6.2
ot Vax TPax T (3.6.2)
_gU _du _dp
pﬁ +pu6—x +p6_x = 0, (363)
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52_17 +5Ug_z =0, (3.6.4)
5%1;" +5U?)‘(’ _0, (3.6.5)
%? +U§—E +ﬁa2§—z =0, (3.6.6)
5‘2—17 +EU(;—Z =0. (3.6.7)

wherea is the speed of sound. The time derivative of the conseatariables is
replaced to introduce the vector of the conservative viesadvaluated at the next time
step. We develop) in Taylor series expansion around the time lavel

U(t + At) = U(t) + AxXU, + UAt , (3.6.8)

vyjerel] (I = 0,1, 2) are the variables along the characteristicand the the interval
Ax is defined by introducing a wave spe#®f such that:

AX = A°9AL. (3.6.9)

Eq. (3.6.8) can be solved with respectit)

0.0 -
U=~ L 289y, . (3.6.10)

The characteristic derivativé, is substituted into equations (3.6.2) to (3.6.7):

@gtp') + P (T— 2%9) + By = 0, (3.6.11)

5(“&“" + T, (T- Aeig)) +Px=0, (3.6.12)

;5((‘7;") + % (T- aeig)) 0, (3.6.13)

5(("~V;tw') + W (T- aeig)) =0, (3.6.14)

W + P (T- 299) + pa’uy = O, (3.6.15)
Y-,

;5( - ) + Y, (@- 279) = 0, (3.6.16)

As each equation sums to zero, the method suggested by CauHtilbert [43] can
be used. Multiply each equation by a constant and add theetieqg
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o1 (- 1) + 05 (F— )+ {0 @~ ) + 0 (F—w) + Ca (@—w) + £ (V)| +
CiDy (Tj— Aeig) + ﬁ[ux {(cl + csaz) X+C (’J— /leig)} + Vi, C3 (’J— Aeig) +
WyCa (T = 2%9) + Co Yy (T = 2°9)| + P [z + 5 (T— 2°9)| = 0. (3.6.17)

As the codficientsc,_g are arbitrary, then if (3.6.17) equals zero, each of theviddal
components must equal zero, giving:

CL(p—p)+Cs (B— P)+p{co (T— ) + Ca (V- W) + Ca (W—w) + 6 (Y - i)} = O,

(3.6.18)
and,

¢y (U-2%9) =0, (3.6.19)

(c1+csa®) + G (U 2%9) = 0, (3.6.20)

Cs (5% - 179 =0, (3.6.21)

Ca (59 - 2%9) = 0, (3.6.22)

Co + G4 (T— 21%9) = 0, (3.6.23)

G (T - 21°%) = 0. (3.6.24)

As the codficients can be any constant, th&ﬁiP = ufrom (3.6.19). This implies that
¢, = —csa from (3.6.20), andt, = O from (3.6.23). Substituting this into (3.6.18)
yields:

cs[(P-p) - @ - )| - Ples(@—vi) +ca(@—w) + s (Y- Y)} = 0. (3.6.25)

As this equation must be true regardless of the choice officants, they can be
arbitrarily set to zero giving the following set of equatson

(P—po) —a (0 —po) =0, (3.6.26)
(V-vg) =0, (3.6.27)
(W—wp) =0, (3.6.28)

(Y-Yo)=0. (3.6.29)



44 Numerical Methods

However, setting; = 0 and consider equations (3.6.18) to (3.6.24) again:

2
C, = (;‘5—"") (3.6.30)
5% - Acig
Inserting the above into (3.6.23):
(59— a9)” = &2, (3.6.31)

giving the eigenvalues®® = 179 = A5° + aandA;” = A — a. For 7",
(P-pw) +pa(-u) =0, (3.6.32)

for Agig,
(P-p2) —pa(-u) =0, (3.6.33)

where (); and (), indicate values evaluated along Lh%g and/l‘;ig characteristic lines,
respectively. Thus there are now six characteristic eqaoatior the six unknown aver-
aged flow values needed to determine the flux at the cell face.

Converting to Conservative Form

The next step is to convert equations (3.6.26)-(3.6.33)ptwservative variables. Up
until this point the only assumption that is introduced @ttiine characteristic lines are
straight, not curved as they are in reality. Now thfediences can be expressed using
the chain rule of dferentiation (for examplpAu + uAp = A(pu)):

_ A(pu) —uAp _ Apv) —VAp

Au Av (3.6.34)
P P
AW = M, AY = M (3.6.35)

For the pressure extra care must be taken, as in a multi-coamp&ow the ratio of spe-
cific heats can vary across an interface. Adapting a metbggtaltilised in Drikakis
and Tsangaris [54] for an arbitrary equation of state, thessure dference is ex-
pressed as:

Ap = pAi + p,Ap + pyAY. (3.6.36)

From (3.1.10) the dierence in internal energycan be written as:

PAI = Ae — [UA (pu) + VA (pV) + WA (ow)] — iAp. (3.6.37)

Substituting (3.6.37) into (3.6.36):
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Ap = QAp + % [Ae— (UA (pU) + VA (ov) + WA (ow)] + % (A (oY) = YAp), (3.6.38)
Q= pp+qKE—|B Ok = %(u2+v2+wz). (3.6.39)

P
Next these dierences are substituted into equations (3.6.26)-(3.6a88)renaming

ew) =1, (ov) =m, (ow) =n, (oY) =0, (3.6.40)
Thus,

G- oo (Q- - v2)+ B @ e - (ufT= o) + v(m- mo) + w(i- ) +

% G-05) =0, (3.6.41)

— (@ —po) v+ (M-mp) =0, (3.6.42)
—(P—po)W+ (N—no) =0, (3.6.43)
(0-00) = Y (0 —po) =0, (3.6.44)

G- (@i~ ¥+ (=) (a-u2) - - m)v - - mywl

(e- el)—+—(~ 01) =0, (3645)

7= p(Q+aif?- Y- (1) (as u2) - - myv2 - (- myw
G- ez)—+—r 0=t @645

Repeating the technique by Courant and Hilbert [43], multiplyabove equations by
the codficientsc,_g

0p-+ 1+ MM+ AN+86+00 = pgp+lol + Mo NoN-+ 000+ €ne+282 (CsRy + CoRy) . (3.6.47)

Where,

5=c (Q _a- Y%)—czv— CaW+Cs (Q — a1t - Y&)+CG (Q +aldd- Y&)—cw,
p p

(3.6.48)
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| =cs (a— UE) —Cq (a+ UE) - cluﬂ, (3.6.49)
p p p
m= —(cl+c5+c6)vH + Cp, (3.6.50)
P
N=—(Cy+Cs+ Cg) w% + Cz, (3.6.51)
=P 4+, (3.6.52)
P
= _ Py
0=C+ — (C. +C5+Cg), (3.6.53)
0

2a%R, = (po — p1) (mg‘g —Q+ Y&) +(lo—11) (uE - a) + (Mo — my) v+
p p P

(o — ) w2 — (e — ) % — (00— 01) %, (3.6.54)

2a°R, = — (po — p2) (Q +ald? - Y%) +(o—12) (u% + a) + (Mo — my) v%+

o—n)WP —(e—e) P —(0p—0) *. (3.6.55)
P p p

This system of equations must be inverted to solvectoand cs. First combining
(3.6.49) and (3.6.52):

I+ 5%
-

Next add (3.6.48) to (3.6.49) multiplied hy (3.6.50) multiplied by, (3.6.51) multi-
plied byw, and (3.6.53) multiplied by

C5— Cg = (3.6.56)

P+ lu+ mMv+ nw+ eH + oY

Cs + Cg = 2 , (3657)
H=qge+i+t, a=p2ap, (3.6.58)
p P

Now c¢s andcg can be obtained by subtraction and additions of (3.6.56 ) &u@d57).

Cs = [,5 I_(u+a)+mv+ﬁw+é(H +a/lgig)+6Y],

=R

Co = > [,5+T(u—a) +mv— +ﬁw+é(H —axlgig)+6Y].
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Settingp =1, | =M=nN=8=0=0, then:

1
2a2

Inserting this into (3.6.47), an equation for the cell faere ofp is gained:

Cs =Cg =

5: Po + R+ R. (3659)

Likewise, settind =1, p=m=n=8=0= 0, then:

(u+73)
C = 5 (3.6.60)
_(u-9
G5 =5 (3.6.61)
thus,
T=lo+(U+a)R +(U-2a)R,. (3.6.62)

An identical operation fom, n, andeyields:

m=my+V(R + Ry), (3.6.63)
n= n0+W(R1+ Rz), (3664)
=g+ (H+aly?) R+ (H-al’)R.. (3.6.65)
Foro,
Cg = = —,
5 = Ce a2
0= 00+Y(R1+ Rz) (3666)

Compact Form

Now, examining the final equations, they can be rewritten maae compact form
suitable for computation. Starting with (3.6.59):

5:p0 +ﬁ+ r+ro, (3667)

- b |2 P Py Py
=P le e pol0f — P Pro | 3.6.68
P o< [ = po (Q Pi Pi ) pi O] ( )

€ = lou + MV + NgWw, (3.6.69)
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r = % {pl( Y Y%) + Il(a— u%) - %(mlv— W + ey) + 01%},
(3.6.70)

ry= % {pz (Q +ald? - Y%) -~ Iz(a+ u%) -~ %(mzv— MW + &) + 02%}.
(3.6.71)

Similarly, .

l=lo+(U+a)ry+(u—a)r+ uUp, (3.6.72)
Mm=my+V(r{+r+p), (3.6.73)
N=nNg+W(r{+r+p), (3.6.74)
€=+ (H+al%)ry+ (H-a1g?)ro+ Hp, (3.6.75)
0=00+Y(@+r1+r12). (3.6.76)

Equations (3.6.67) to (3.6.76) give the characteristied@enservative variables which
can then be used to calculate the interface flux following @ad’s method.

3.6.2 Total Enthalpy Conservation of the Mixture Model

The Scalar Non-Conservative Invariants

To derive an approximate Riemann solver for each flux the naetlogy in Section
3.6.1 can be followed in considering the dimensionallytsplkes in equation (3.6.1).
Expanding for each of the governing equations, and reduoipgimitive variables:

T o
ﬁ + Ua—x +p8_x = O, (3677)
_Jdu __ou _dp
N __N
pa +pu8—x = 0, (3679)
_OW __ 0w
pﬁ +pU& = O, (3680)
0F 0P _,00
50 + uax + pa I 0, (3.6.81)
o
p@t +IDU& = O, (3682)
01 __
,02: +pui.—]; =0. (3.6.83)
AM XM
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wherea is the speed of sound. The time derivative of the conservaiariables is
replaced to introduce the vector of the conservative viesadvaluated at the next time
step, as detailed in Section 3.6.1:

% + P (U= 2%9) + By = 0, (3.6.84)
5((‘2“') + T (T- ae@)) P =0, (3.6.85)
5((‘7;t"') + (T- Aeig)) -0, (3.6.86)
~(("~";tw') W (T- aeig)) -0, (3.6.87)
(p;tp') + P (T— 499) + 5auy = 0, (3.6.88)
5@;") + 7w (T 2%9) = 0, (3.6.89)
5@ + 5(%)X (- 19 = 0. (3.6.90)

Multiply each equation by a constant and add them together:

1[cl(ﬁ—pl)ﬂ:e-,(ﬁ— p) +p{C(U—u)+cs(V—wv)+

At
Cs (W—w) + Cs (x — x1) +c7(%— Mil)}
7 [ (c1 + 058%) X + €2 (T— 2%9)} + vyca (T - 299) +

(- 1%9) + e (T 59) ¢ 0 2] (-9
Mx

+ Cipy (Tj - /le‘g) +

+ 5X [Cz + Cs (ﬁ— /leig)] =0.
(3.6.91)

As the codicients are arbitrary, then if (3.6.91) equals zero, eacthefindividual
components must equal zero, giving:

Ctlo—p)+c(P-p)+p{C2U—u)+c3(V-v)+
1

Ca (W—w) +Ce (¥ —x1) + C7 (% - M)} =0, (3.6.92)

and,
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¢y (T-2%9) =0, (3.6.93)

(c1 + cs8®) + co (T- 2%9) = O, (3.6.94)
Ca (457 - 1°9) = 0, (3.6.95)

Ca (A% - 2%9) = 0, (3.6.96)

Co+ Ca (T—2%9) = 0, (3.6.97)

cs (T 21%9) =0, (3.6.98)

c7 (- 2%9) =0, (3.6.99)

As the codficients can be any constant, the@if’ = U from (3.6.93). This implies that
¢ = —csa from (3.6.94), anct, = 0 from (3.6.97). Substituting this into (3.6.92)
yields:

cs|(P-p)-a@E-p)|-Ples(V-v)+
1

Cs (W —w) +Cs (¥ — x1) + m(é - —)} =0. (3.6.100)
M M

As this equation must be true regardless of the choice officamts, these can be
arbitrarily set to zero giving the following set of equation

(P—po) — & (p—po) =0, (3.6.101)
(V-vo) =0, (3.6.102)
(W-wp) =0, (3.6.103)
(¥ —xo0) =0, (3.6.104)

(i - i) = 0. (3.6.105)
M Mo

However, if settingc; = 0 and considering equations (3.6.92) to (3.6.99) again:

2
Gz —% (3.6.106)

(=)
Inserting the above into (3.6.97):

259 _ gei0)’ — g2 (3.6.107)
( glg elg)
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giving the eigenvalues®® = 159 = 159 + aand 5 = 259 — a. For A5",
(P-pw) +pa(-u) =0, (3.6.108)

for 459,
(P—p2) —pa(i-u) =0, (3.6.109)
where (); and (), indicate values evaluated along thif and A5 characteristic lines,

respectively. There are now six characteristic equationsiie six unknown averaged
flow values needed to determine the flux at the cell face.

Converting to Conservative Form

The next step is to convert equations (3.6.101)-(3.6.k®6phservative variables. The
differences can be expressed using the chain ruldtefentiation:

AU = M’ AV = M, AW = M, (3.6.110)
p p p
A (ox /M) = xAp/ M ( 1 ) A(p/M) = (1/M)Ap
Ay = . Al—=]= ) 3.6.111
X oI M M 0 ( )

Utilising the methodology from Drikakis and Tsangaris [3df] an arbitrary equation
of state, the pressureftBrence is expressed as:

Ap = pAi + p,Ap + pAy. (3.6.112)
From (3.1.10) the diilerence in internal energycan be written as:

PAI = Ae — [UA (pu) + VA (oV) + WA (ow)] — iAp. (3.6.113)

Substituting (3.6.113) into (3.6.112):

Ap = QAp + % [Ae — (UA (pu) + VA (pV) + WA (ow)] + % (A(ox) —xAp), (3.6.114)

Q=p, + qKE P Ok = }(uZ + V2 + W), (3.6.115)
p P 2

Next these dterences are substituted into equations (3.6.101)-(3%.26d renaming

(eu) =1, (ev) =m, (ow) =n, (ox/M) =0, (p/M)=q (3.6.116)

giving,
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®-po) (Q-2%) + [r &) — (u(1=lo) + v (M~ mp) + w (i — no)) | +

EX [(6-00) —x (@~ qo)] = 0. (3.6.117)

(0= po) v+ (M-my) =0, (3.6.118)
— (- po)wW+ (N-no) =0, (3.6.119)
(0-00) —x (0 —po) =0, (3.6.120)

@ -p2)(Q-a1g°) + (I~ )( - ) (M- m) v — (- mws

(e- 61)—+—[(~ 01) —x (@-a)] =0, (3.6.121)

(ﬁ—pz)(Q+a/18i9) (’”_ )(a+u ) (m—rle)V%—(ﬁ—nz)W%+
(é—ez)%+%[(6—oz)—x(a—qz)]=o. (3.6.122)

Next, repeating the technique by Courant and Hilbert [43]ltiply the above equa-
tions by the cofficientsc; 7

(3.6.123)
Where,
_ . . Cs
p=c1(Q-2a%) - cv— Cw+ Gs (Q - alg?) + ¢, (Q+atg?) - o (3.6.124)
| =g (a— uﬂ) —c; (a+ u p-) cluE (3.6.125)
P P P
m= —(cl+06+c7)vE + Cy, (3.6.126)
P
n= —(cl+ce+c7)wE + Cg, (3.6.127)
P
e= P v+, (3.6.128)
o

0= c4+%(cl+c6+c7), (3.6.129)



3.6 Riemann Solvers 53

g==0Cs— )% (Cy + Ce + C7) — Cay,s (3.6.130)

2a Rl—(Po—Pl)( alg? - )+(|o—|1)(u%—a)+(rrb—ml)v%+

(no—n) w2 — (& —e) 2 — B 105 - 0) — y (@0 - )] (3.6.131)
p pq

28R, = ~ (po - p2) (Q + @189 + (Ip - 1) (uE + a) + (o - mp) vy
p p

(No —ny) W; — (&0 - ez) — - [(00 —02) —x(Q—-)]. (3.6.132)

This system of equations must be inverted to solvecioand c;. First combining
(3.6.125) and (3.6.128):

I+ 5%

Cg—C7 = (3.6.133)

Next add (3.6.124) to (3.6.125) multiplied by (3.6.126) multiplied by, (3.6.127)
multiplied byw, (3.6.129) multiplied by /M, and (3.6.130) multiplied by /IM:

P+ lu + Mv+ nw+ 8H + oy /M + g/ M
az ’

=g +i+ g & = pﬂ £ D, (3.6.135)

Cs + C7 = (36134)

Now ¢ andc; can be obtained by subtraction and additions of (3.6.138)2u6.134).

_ 1 eigy , =X q
Ce = = p+|(u+a)+mv+nw+e(H+a/l ) MJFM , (3.6.136)
Cr = 55 |p+ 1 (u—8) + v— +Tw+ B(H - a15) + %+% . (3.6.137)
Settingp=1,l=mM=n=8=0=0q=0, then:
Ce=C7 = 1 (3.6.138)
6 — L7 — 2a2~ .0.

Inserting this into (3.6.123), an equation for the cell faakie ofp is gained:

5: Po + R + Ro. (36139)
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Sl
Il

Likewise, settind =1, p =m= 0=0=0=0, then:

~
c

|
&l

thus,

T=lg+(U+a)R + (U-2a)Re.

An identical operation fom, n, andeyields:

m=my+ V(R +R),

n= n0+W(R1+R2),

=g+ (H+alg®)Ry +(H - a1g?) R..

For®o, P
CG:C7:—2Ma2’
B:OO-I-i(Rl%-Rz).
M
Forq,
P
C6_ 7 2Ma2’

Compact Form

(3.6.140)

(3.6.141)

(3.6.142)

(3.6.143)
(3.6.144)
(3.6.145)

(3.6.146)

(3.6.147)

(3.6.148)

(3.6.149)

Now, examining the final equations, they can be rewritten maae compact form

suitable for computation. Starting with (3.6.139):

pP=po+p+Tri+ry,

= loU + MV + NgW,

Mh=—

2a? P

E(é—eo)Jr &(XQO_OO)_F)OQ ,
P q

(3.6.150)
(3.6.151)

(3.6.152)

- {pl(Q alg?) + Il(a UE') my 2 nM% + el; - wa - 01)}

(3.6.153)
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j-1 i j+1
Gas 1 Gas 2 Gas 2
j—1/2 j+1/2
Figure 3.1: Diagram illustrating the position of the contact surface with respect to pells,
jandj+1
(2= = {Pz(Q+ al3°) - lz(a+ uﬂ) L A 02)}-
2a P p P p q
(3.6.154)
Similarly, N
l=lo+(U+a)ry+(u—a)r+ up, (3.6.155)
Mm=my+V(ri+r+p), (3.6.156)
N=nNg+W(ryi+r+p), (3.6.157)
€=ey+(H+al%)ry+ (H-a1g?)ro+ Hp, (3.6.158)
0=00+ X Gari+r). (3.6.159)
M
— 1
q= qo+A—A(ﬁ+r1+r2). (3.6.160)

Equations (3.6.150) to (3.6.160) give the characteristiseld conservative variables
which can then be used to calculate the inter-cell flux follmyGodunov’s method.

Conservation of Pressure Equilibrium

It has been shown previously that the Mass Fraction moded doemaintain pressure
equilibrium, e.g., see [1, 31, 38, 85, 93, 103, 104, 114]. e\aw, it was reported by
Wanget al. [191] that the ThCM model conserved pressure equilibriumis T$not
the case, as will be demonstrated in this subsection. Inrigaal paper by Wangt
al. the error was introduced as they only examined the case vihedensity is equal
on both sides of the contact surface.

Considering the flow through the three computational celtswhin Figure 3.1, where
the contact surface is locatedjat 1/2, it can be shown that the pressure equilibrium
within the cell is not maintained. The contact surface betwisvo gases is located at
j —1/2 and is moving at a constant velocity Assume (), quantities in the cel] and
j+1,and ()1 in cell j—1 at time leveh. Using the approximate Riemann solver derived
here the characteristics-based variables computed ace &igen a first order in time
and space discretisation, the pressure at the next timénstefl j can be written as
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0 (1= 1) (L v + (2 = 1wl [Ty (L= vt + Tovl]
o T A0 (=D + Tou( = 1) - (8616

where the identities, = R/ (y — 1) andp = pM/R,T have been utilised, wherg
Is the temperatureR the specific gas constarR, the universal gas constant, and-
At/Ax . This result is similar to that gained by Jenelal. [93] for the y model.
Thus for either the Mass Fraction or ThCM two-equation moplessure equilibrium
is maintained if any of the following conditions are satidfie

e The two temperatures are equal,

e vu equals one or zero.

In [191] the authors suggest using the one-equation ThCM bdeever the perfor-
mance is much worse with the one-equation model as presscitabons occur if the
two densities are lierent. This is much more restrictive than temperature adgmce.

3.6.3 Quasi-Conservative Methods
Roe Scheme

The equations of Abgrall [2] are solved using a Roe schemenuifagi nature to that
proposed by Allairest al. [4], except that it has been extended to three dimensions
from their one dimensional description. This is describedehfor multicomponent
flows consisting of two perfect gases. Details of the deiovabf the standard Roe
scheme is given in Toro [184]. The derivation of the Roe schesgaires knowledge

of the flux Jacobian of the system, the eigenvalues and eigémms, and the wave
strengths. Given a direction split system of the form,

ou ou

the flux Jacobiar is given by,
uYo —-uY; Y1 0 0 0 0 |
—uY, uY; \ 0 0 0 0
Bi—W  Br— 12 (2—%)u -y 1 M
A= —uv —uv v u 0 0 0 |, (3.6.163)
—-uw —uw w 0 u 0 0
UBL-H) u@-H) H-L - _w (1.1) yM
0 0 0 0 0 0 u |
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1 dp12l Op12i
Piz2=-(Ok —d12), Ki2= P2 2 = 212 == (3.6.164)
K P12 Op12
1 . 1 :
K = 1K1 + a2K2, M = ; (p151 - plll) - ; (p252 —p2|2) , (36165)
This Jacobian gives five repeated eigenvalues
B9=239=239= =25 = u, (3.6.166)
and two non-repeated
L9%=u-a  1%=u+a (3.6.167)
where the speed of souads defined as
a®=(H-g)«™ (3.6.168)

The eigenvectors are not unique, as there are five repegea/ailues. This means that
any linear combination of the first five eigenvectors of thetem is itself an eigenvec-
tor (replacing one of the original five). With some manipigdatthe eigenvectors can

be cast into the following form

Y1
Yo
u—a
K= Vv , K?=
w
H - ua
0
0]
0
0
Ki=| 0|, K®=
1
w
| 0 |

The Roe flux can be written as

RrZOo0O000O0O

O+ S <c or

K3

K4

0
0
0
11,
0
%
0
3

(3.6.169)

(3.6.170)
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1 1 o
Fiae =5 (FL+Fr) = 5 sk, (3.6.171)

=1

7
i

The Roe scheme uses Roe averages to compute the wave sti@agtbss each lin-
earised wave in the Riemann problem. Defining the Roe averagdituas

a + - a
3= voLa + porar a-= VPLAR + VPR '—. (3.6.172)
VBL+ DR VBL+ DR
The wave strengths are
51 = (Ap-pau)/2a, (3.6.173)
Y:
0y = A(p]_a’]_) - ?Ap’ (36174)
Ya
03 = A(pza’z) - gAp, (36175)
Sa = A(pv) —VAp, (3.6.176)
05 = A(ow) — WAp, (3.6.177)
S = Aa, (3.6.178)
57 = (Ap+ padu)/2a’. (3.6.179)
where the speed of sound of the mixtaris estimated numerically as
2 2
Yikia;
2=y A (3.6.180)
I

from the wave strengths and the eigenvalues the last terrguation (3.6.171) can be
rewritten as

‘7 [ 02 ] [ Y
L \Z B 03 Y
EJZ:; 295K = [0 - al o “\_/a Ty v(gz(‘fé)‘sf& +[0+ a5, ”;a ,
w V_V((52+53)+(55 W
| H-Ta| | B+04V+85W | | H+0a |
(3.6.181)

(3.6.182)
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It should be noted that as the equation for the evolution,af decoupled from the
other equations it is not solved using the Roe scheme. Instaadolved separately
at using a simple upwind scheme following Allaieé al [4]. If the scheme is at first
order this is

1_

Fige = 5(0+[U)Aay, (3.6.183)
1

Fi—1/2 = §(|U|—U)Aa’1 (36184)

If it is second or higher order

1 1 @
Fiio = > (Ura1r + ULy ) — 2 lug + UL | (@1r — @1L) — 71 (Ur+u). (3.6.185)

As the Roe scheme does not prevent unphysical expansionsshbekstandard ‘en-
tropy fix’ proposed by Harten and Hyman [77] is applied to tlgeeevalues to prevent
this occurring.

HLLC Scheme

The HLLC method proposed by Johnsen and Colonius has beearmepted to solve
the single equation version of the quasi-conservativeegystThe single species ver-
sion of the HLLC method is detailed in Toro [184], and the &ddiof the equation for
the transport ok requires only slight modification. Firstly, the directigolistransport
equation for is recast as,

ok Ouk ou

E + 6—§: - Ka_f =0. (36186)

The first two terms of this equation are conservative, andtixdor this can be solved
in an identical manner to the flux of density in the contin@tyation. The third term
is added as a source term. This is reformulated as a finiteneRux by integrating
over a volume giving (in one dimension)

i+1/2
f D (S - WS, (3.6.187)
|

where the integral has been evaluated to second order agénra Finally, the veloc-
ities are computed using

yHLLC — 1+ Sizgr(S*) U+ s -1)+ %(UR +s'(BR-1)), (3.6.188)
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.R LR
+«L,R — SL —u

SR o s =min(0, s), s = max0, §), (3.6.189)

B
where the required wave speeds are estimated using a pem#riable Riemann so-
lution to the pressure and velocity in the intermediateaegif the Riemann problem,
exactly as detailed in [184], pp.303-305.

3.7 Numerical Test cases

In this section four test cases are presented to validatadweRiemann solvers and
highlight the strengths and weaknesses of each multi-caergonodel. The test cases
have been chosen to be representative of the three dimahsmmpressible problems
which are the focus of this thesis. These are shock interagtitypically with a sta-
tionary interface. It is important that spurious oscithais are minimised, and that the
solution is as accurate as possible. Air is the most commemigloyed driver gas,
however shock tube experiments also employ Helium or Swplexafluoride (SE)
as the second gas. This generates a relatively large deasity and hence Atwood
number.

The number of pointsl, = 100 for all simulations, however the ThCM model has been
run with N, = 400 at fifth-order accuracy for each test case as a referehdes. This
reference solution is independent of model employed (exkugpressure oscillations,
where present). The Courant numlger= 0.6 to aid direct comparison to previous
papers. Piecewise constant reconstruction (first ordgranes is employed, along with
third order TVD Runge-Kutta in time (see section 3.3 for fudtails). The coarse grid
and low order scheme has been chosen to highlight the peafarenof the Riemann
solvers.

Throughout this section Mass Fraction is abbreviated to’;MBtal Enthalpy Con-
servation of the Mixture to 'ThCM’, the Allair@t al. quasi-conservative method is
denoted by ‘QCA, and the Johnsen and Colonius quasi-cortservaethod ‘JC'.
The ThCM reference results are denoted by ‘REF'.

3.7.1 Test A: Modified Sod Shock Tube Problem

A modified version of the Sod shock tube problem [171] is ugedoimpare the per-
formance of the schemes with previous work with the sameroilai test case, such
as Abgrall and Karni [3], Charggt al. [31], Karni [103], and Larrouturou [114]. The
Riemann problem is defined initially as:

(0,u,p,y), = (1,0,1,1.4),
(0,u, p,7)g = (0.1250,0.1,1.2).
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Figure 3.2: Results for Test A
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Additionally ¢, = c,g completely defines the problem.

Figure 3.2 compares the performance of the models at time0.2s. As a broad
observation, all models perform well. The MF modeftsts from an undershoot in
density profile (Figure 3.2(a)), and a non-physical jump @fogity over the contact
surface as illustrated in Figure 3.2(c). This jump in vetipeicross the contact surface
is analogous to the behaviour observed in first-order sitions by Karni [103]. Karni
showed that the rate of convergence of this error as meslutiesoincreases is ex-
tremely slow. The ThCM model is superior to the MF model in gample, showing
no density undershoot at the contact surface and a redudadtygump. QCA and
JC perform the bestfiectively reducing this error to zero. The slight overshodtie
velocity at the tail of the expansion wave in the QCA solut®a remnant of the initial
discontinuity and is not considered to be indicative of aagtipular weakness in the
model.

The two quasi-conservative models capture the positiohethock most accurately,
however the ThCM model performs much better at the contatdseirand along with
the MF model appear to be the leadtasive.

3.7.2 Test B: Helium Slab

This problem is a right facing shock wave passing throughah sf stationary He-
lium located at 3 < x < 0.6, producing a series of reflected and transmitted shock
waves inside the slab. This is a more complex problem, howvévs representative

of many scenarios of practical interest such as Richtmyerkt®sinstabilities and
shock-bubble interactions. The problem is defined as faiow

(0. U, P, 7. C), 005 = (1.37650.3948 1.57,1.4, 717.2) ,

(p’ u, p’ Y CV)O.25<X<O‘4 = (1’ O’ 1’ 14’ > 7172) ’
(p, U, p, 'y, CV)O.4<X<0.6 = (0.138 0, 1, 1.67, 31149) N

(p’ u, p’ Y, CV)0.6<X<1.0 = (1’ 0’ 1’ 14’ ’ 7172) .

and has been presented previously in [2, 191]. The reswdtdetailed in Figure 3.3
for timet = 0.3s. At this low resolution there is very little fference between the
different models, indeed, they form a single line. However,llasicins can be seen
in the higher-order, higher resolution ThCM reference satiah. This is due to the
difference in temperature as the shock passes through the ahatteiface, and is
completely inhibited by numerical dissipation in the lowesolution simulation.

A refined simulation was conducted by increasing the numbezls in the x direction

N to 400, and using the van Leer second-order limiter. A clgsefuhe pressure and
velocity profiles in the central region of the problem is shawFigure 3.4. There are
oscillations in the pressure and velocity field for the MF mloaire generated as the
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Figure 3.3: Results for Test B
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Figure 3.4: Pressure and velocity fields for Test B at second-order accurati,a= 400

shock passes through the material interface. In the ThCM htloelge oscillations sig-
nificantly smaller, however, they are still present. These-dimensional oscillations
would translate to the spurious generation of vortices mawd three dimension. Both
guasi-conservative methods conserve pressure equititaicellently at low and high
orders of accuracy.

3.7.3 Test C: Shock - SESlab

This problem is a right facing shock wave passing throughah sf stationary S§
located at 31 < x < 0.6, producing a series of reflected and transmitted shock svave
inside the slab. This test case highlights schemes which Blight deviations from
the actualy, which is very close to one in $FThe initial conditions are,

(0. U, P, ¥ C)e005 = (1.37650.3948 1.57, 1.4, 717.2).

(0, U, P, ¥, C)g25exc0a = (1,0,1,1.4,,717.2),
(0, U, P, ¥, C)ga<xc06 = (5.5,0,1,1.076 6863),
([), U, p, ’y, CV)O6<X<10 = (1, 0, 1, 14, s 717.2) .

and the output time is= 0.4s. Once more, all models perform well, only QCA giving
a discrepancy in the speed of the reflected shock wave. Ashetprevious problem,
the reference solution has an oscillation at the materiakfice. The error in the
physical model is not dissipated by the numerical schemehtriesolution.

The results from the same simulation with a second order et limiter andN, =
400 for all methods is shown in Figure 3.6. This illustrateattthe pressure spike
when using the MF model is significant when computing a realisst problem. With
less dissipative limiters the pressure spikes represeignaisant problem and can
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Figure 3.6: Pressure and velocity fields for Test C at second-order accunaidy,a= 400

cause negative energies. The more closely coupled ThCM nybeks lower oscil-
lations, and the quasi-conservative models are withoull@sen. More importantly,
the quasi-conservative models are significantly bettarlved in the regions between
the reflected and transmitted shocks, whereas the ThCM moesl nbt achieve the
plateau values. This shows a long time and distant influehteecsmall oscillations
generated at the material interface on the overall flow &irec

3.7.4 Test D: Strong Shock Wave

Some important situations involve strong shock waves, i@&ypxample of this would
be the strengthening of a curved shock. This could occuri¥ieadtion of an initially
plane shock wave, or as a result of a converging cylindricapberical shock.

To test the performance of the schemes in this case, Test kleasun again but with
a Mach 10 shock wave. This is defined as follows:

(0. U, P, 7, C)ye005 = (5.7149.762, 1165, 1.4, 717.2) .

where the rest of the domain is initialised as for Test C. Resa¢ shown in Fig-

ure 3.7 for timet = 0.1s. The main purpose of this test case is to demonstrate that
the JC method does not perform well in the presence of strobogks. The non-
conservative formulation, and the method of solution giversy variations iny as the
shock changes form across a material interface, and aldarasally smears to the
grid. There is a variation of greater than 3% for shocks abddeeh=3.5, and this
becomes worse with increasing resolution and order of acguindeed, this problem
could not be run aN, = 400 for the JC model as pressure becomes negative when
drops below 1.

The results for MF, ThCM and QCA are good, however there igtardince in the po-
sition of the reflected shock. The MF and ThCM models perforttebéhan the QCA
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Figure 3.7: Results for Test D
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model as they have closer shock speeds to the convergetaphnd match better to
the pressure profile. However, the QCA model does not haveymesscillations at
the material interface which exist in the MF and ThCM models.

3.7.5 Discussion

Several observations can be made about the multicomporeaélsitested. The MF
model generates significant oscillations at the matertakiace due to imperfections
in the physical model. Closer coupling of the molecular weighdy in regions
dominated by numerical dissipation leads to reduced pressscillations when em-
ploying the ThCM model. The oscillations are eliminated ia @CA and JC quasi-
conservative methods.

The JC quasi-conservative method is generally superidrgamther methods, giving
more sharply resolved features, especially in the shogk&Xft case. However, it per-
forms badly for strong shock waves due to the treatment ohtdmeconservative ad-
ditional equation. This could be prohibitative in simuteis with strongly converging
shock waves.

Based on the test cases in this section, the ThCM model usintetheharacteristics
based Riemann solver appears to be the best compromise farlbere reasonably
strong shocks are present and it is important to get sigeaidgas accurate as possible,
but the JC HLLC Riemann solver is clearly much better in aleottases. The ThCM
model is employed primarily within this thesis as a consireachoice ensuring that
the values ofy remain within the prescribed bounds, preventing problereated ify
drops below one.

3.8 Numerical Methods for Unsteady Turbulent Flows

3.8.1 Direct Numerical Simulation

Direct Numerical Simulation (DNS) involves the use of arrentely fine grid such that
all of the fluid motion from the largest energy containinglesao the smallest flow
features at the Kolmogorov scale are resolved. In this niethere are no approxi-
mations introduced by statistical closure of the NavierkBs equations and thus an
‘exact’ solution is gained. Unfortunately huge computagibresources are required to
perform DNS for typical engineering problems with the preassmputational power.
The approximate size of the smallest eddies is the Kolmagscalenx, computed as
follows, wheref is the integral length scale:

ARG
M = 5(7) = Re¥*%¢
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Assuming that this is the required order of magnitude of tiesimthen the total num-
ber of points must be the volume of the domain divided by tha@rogorov volume’:

L3 L3

Nx . _box ﬂ(Re‘)M
m
Thus:
Re< Ny/°

The maximum typical permissable time step is of the ordeatoE Ax/u, thus the
number of time iterations can be written as:

The total simulation time is thus:

3
Computer Timex NNy o (J—u)(l‘;"x) RE (3.8.1)

This equation demonstrates that the computational timenpfsamulation increases
proportionally with the Reynolds number cubed. Using retahip (3.8.1) it has been
shown that on a Teraflop computer a simulation of box kjgg= 10 atRe= 50,000
would take 24 years to complete [44, 148]. As many large sialalations easily run
into Re~ 1 x 1P the limitations of DNS are clearly illustrated.

As the small scales typically contain little energy complate the larger scales, this
computational expense can be reduced by modelling theibotitn of the smaller
eddies. This approach is called Large Eddy Simulation (LES)

3.8.2 Large Eddy Simulation

Large Eddy Simulations (LES) reduce the computational egp®f simulating turbu-
lent flows by assuming that at high Reynolds numbers the swelks are 'universal’.
This concept assumes that the small scales are the samennfleve whether the
initial large scale eddies are formed from separation frotraasonic airfoil, or in a
tidal channel. Considering the kinetic energy spectrumgufé 2.5, a LES will aim to
resolve all of the energy containing scales (which vary mférom problem to prob-
lem), and some of the inertial range. The rest of the ineréiage and the dissipation
range is modelled in such a way that energy is removed frorindbelved’ vortices in
an identical manner as it would be removed if the 'unresdlvedices were present.
An example LES applied to two dimensional shock-inducedimgixs shown in Fig-
ure 3.8. The fine scale structures present in the experimemtad directly simulated
by the numerical method, but the dissipation of the numentthod is employed to
model their &ects.
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T —

Figure 3.8: Experimental (left) and numerical (right) solutions for development ofoelsbd
gas column RM instability [58]

Mathematically, the Navier Stokes equations are filteredialty (with assumed tem-
poral correspondence), giving:

‘;—’: +v(pl) =0 (3.8.2)
%+V-(ﬁﬁﬁ):?+v-0—v-fses (3.8.3)
§+v-(ﬁ+ﬁ)ﬂ =Q+V-(kyvT+0-0)-V-Fsas (3.8.4)

3
o =208 + 1 v - (3.8.5)
S= [va + (va)T] /2 (v-0)/3 (3.8.6)

where:

Tses = pul— plill (3.8.7)
Fses=(E+ p)U—(E+T))l~J (3.8.8)

and()) indicates spatially averaged afylis the Favre weighted average, ite= oU/p.
These equations are exact for a given equal spaced filteevethey are not in closed
form. The quantities labelled)§gs rely on information from the unresolved scales,
where SGS stands for 'sub-grid scale’. This data is not algglwithin the simulation,
and thus has to be modelled.

In the traditional form of LES, these sub-grid scale termesrandelled explicitly by
addition extra terms to close the system of equations. LE®hd great success when
applied to incompressible flows however compressible flowis eiscontinuities con-
tinue to be a source of immensdfatiulty.

There are several key issues. Firstly, existing models aogvk to provide excessive
dissipation in flows where the growth of an initially smallrpgbation to fully turbu-
lent flow must be resolved [120, 148]. There are currently vew subgrid models
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capable of capturing a shock wave, most require additionalerical dissipation to
stabilise the numerical scheme in regions of rapid chargs.also noted that results
are often insensitive to the model employed [61], which $iggntly increases the
complexity of defining the ‘correct’ numerical scheme forigeg problem, as there
are a number of empirical clieients to fix, especially for compressible problems.
Indeed, it was shown in [64] that the optimum choice for thefitccients of a subgrid
model are not only problem dependent, but also grid depénden

With the large number of uncertainties, some practitionetdo run simulations with-
out the subgrid model, allowing the numerical method toideage turbulent kinetic
energy where necessary. This approach has become knowrpésititnarge Eddy
Simulation (ILES).

3.8.3 Implicit Large Eddy Simulation

It has been recognised that some numerical schemes gainrgsolds in complex
flows without the explicit addition of a subgrid model [120]his was first observed
by Boriset al. [24] and Youngs [195] who point out that simulating the uefiéd flow
equations instead of the filtered equations gives goodteesuboth decaying homoge-
neous turbulence and mixing flows. Furedtyal. [61] compared and contrasted eight
modelling strategies (including no model) using grid siaé46°, 32 and 64 in the
simulation of homogeneous decaying turbulence. The tartildinetic energy spectra
were compared with the DNS of Jimeneizal. [96], and demonstrated that there were
only small diferences in the macroscopic behaviour of the flow for simuatiwith
and without a subgrid model.

The basis of this approach is that the numerical truncaticor @associated with dis-
cretising the governing equations results in terms of sinfdrm or action to sub-grid
models, with the filter size being adjusted automaticallyh® grid size. As justifi-
cation of the approach, one of two assumptions are madeerdltile subgrid model
is implicitly designed into the limiting method of the nurieal scheme, based on the
observation that an upwind numerical scheme can be rewrtsea central scheme
plus a dissipative term (see [51, 53, 71] and referencesitijeror that the details of
the dissipation is irrelevant and that the flow has a ‘seltisiiiijg mechanism’ which
yields the correct dissipation of kinetic energy.

Such implicit subgrid models fall into the class of strualumodels, as there is no
assumed form of the nature of the subgrid flow thus the subgndel is entirely
determined by the structure of the resolved flow [159]. Anam@nt element of ILES
Is the choice of Finite Volume methods. These have an inhatenmctural model as
the reconstruction phase recovers subgrid velocities updoorder of accuracy of
the numerical scheme. This is because the Finite Volumeadetbmputes the cell
averaged flow quantities (exact quantities filtered by thehrsze) based on exact
fluxes computed at the cell interface. However, it cannobvec modes beyond the
Nyquist frequency, and these are modelled through the rioatafissipation of the
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scheme itself.

Using ILES, excellent results have been gained in simulatibflows as varied as
Rayleigh-Taylor and Richtmyer Meshkov instability [197, 1283], Free jets [24, 70],
channel flow [70], open cavity flow [75, 51], geophysical flqd29, 170], delta wings
[67] and decaying turbulence [52, 61, 149, 60, 130, 81, 182].

There has been a large growth in ILES simulations, howesesjith LES simulations
there has not been consensus on the appropriate form ofgbeetisation ‘error’ in
ILES. Thus there is substantial potential for further folisation and improvement.

The Implicit Subgrid Model

ILES is a so-called ‘no model’ turbulence model. It is assdrtigat the numerics
provide stificient modelling of the subgrid terms to allow the ‘correassipation of

turbulent kinetic energy. As pointed out in the introduntiche subgrid model em-
bedded onto the numerical method used in the discretisatithe convective terms is
determined entirely by the structure of the flow. This hasials benefits in the sim-
ulation of transitional flows where excess dissipation campl the growth of critical
modes. A detailed description of the implicit subgrid modeluld be too lengthy to
include (see, for example [53, 128, 24, 127, 71]), howevemuatline of the current
analysis of the ILES model will be given in this section.

The finite volume fluxes for the Godunov method can be writtethe following for-
mat [184]

1 1
Fisy2 = > (FL+Fr) - > IAl(Ur — Up), (3.8.9)
Al = KIAIK™, (3.8.10)

whereA is the flux JacobianA is a diagonal array of eigenvalues,is the vector
of fluxes and the subscrip® andL indicate the right and left side of the interface,
respectively. Using this expression it can be seen thattheence of the extrapolation
method on the kinetic energy dissipation rate can be urassis the combination of
two effects.

The first term on the right hand side of (3.8.9) is directly poed from the extrapo-

lated quantities thus it is an approximation of the flux to dase order of accuracy. In

finite volume methods the filtered quantity is inverted tcoker the continuous func-

tion to estimate the extrapolated cell interface values ftimerical grid is assumed
to be equivalent to a top hat filter in physical space, i.e.

. 1 AV

whereU indicates the cell averaged quantity, aldol = AXAyAz. The inversion is
usually done using a Taylor series expansion of the top hat,fand shows that the
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leading order dterence between the cell averaged quantity and continuacsidn
measured at the cell centre are at second order, i.e. in arendion (for more details
see [159, 128, 28])

— AX? —
U =U - ——Uy+ OAX, (3.8.12)
24

where(.), indicates a derivative with respect 10 In the construction of schemes
with accuracy higher than second-order, this conversianttidoe taken into account
in the design of the scheme. This implies that higher ordeeises inherently include
some leading order influences of the subgrid variationsHerésolved modes (either
turbulent or laminar variations). For example, at thirda@raccuracy the leading order
kinetic energy dissipation term can be determined from KlediEquation Analysis
(MEA) following the methodology in [126, 128].

To date published results have focused on the incompresEibler equations, but
extensions to compressible are currently in progress byrRide Margolin. The first
step in this process is to write the extrapolated quantdaes function of the cell
averaged quantity, expanding the interface value in a Tesgoes as is done when
deriving truncation terms for the linear advection equatidlext, subtract the exact
Euler equations and gather together the leading order termewers ofAx, Ay and
Az. These remaining terms form the truncation error. As an @@ntaking third-
order accurate extrapolated quantities, the leading deters can be written as the
divergence of a tensat. In two dimensions

M AV,

TXX — 12 ux 12 uy’ (3.8.13)
AX? Ay?
Y _1_);UxVx _ 1_3;uyvy, (3.8.14)
AX2 Ay?
At R A (3.8.15)

An equivalent results is also achieved through Approxinbeeonvolution, as detailed
in [28, 159]. The dissipation of kinetic energy due to thigss tensor is

dE
d_tD =— f (uxrxx + U + v + vyTyy) DXDY, (3.8.16)
D

whereEp now indicates the kinetic energy in a domain of d2¢DY without external
forces . This gives

dKE  AX?
-1zl

2
S = o () + (wa)] + S5 [(9) + (wuw)]  3847)
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The leading order terms are proportional to the skewneskeof/¢locity derivative,
which is negative in turbulent flows thus providing dissipatof resolved kinetic en-
ergy. Naturally, higher order extrapolation methods wilpeoximate the subgrid vari-
ations to a higher order of accuracy for modes which can b@ved on a given grid.

The extrapolation method also influences the second ter®.&19) through the dif-
ference of the left and right extrapolated quantities. llgie¢his should remove kinetic
energy from the system in a form similar to the action of siutbgortices on the re-
solved vortices. Kolmogorov proposed the following simtiahypothesis [110, 111]

5
Le. = ZAU3 (3.8.18)
wheree is the dissipation rate averaged over the distdncandAu is the velocity
increment. This represents the dissipation due to homagsnisotropic turbulence
per unit time per unit area.

The only time that kinetic energy is irreversibly changeid ineat in the solution of a
Riemann problem is between a shock wave and contact surfdaehér flow features
are isentropic. As determined in [19, 98] the entropy chakngelue to the passage of
a shock wave can be written as

AVA
121

o°p

AS =- o2

(3.8.19)

whereV is the specific volumep is the pressure, antl is the temperature. Using the
Hugoniot relations and under the assumption of a perfectrgaisan be written as

TAS = — (3.8.20)

12 Uy ’

wherevy is the ratio of specific heats, is the sound speedus is the velocity jump
over the shock wave ang the pre-shock velocity relative to the shock. This gives a
measure of the irreversible dissipation of kinetic energyhie Riemann solution, an
increase of specific internal energy at the cost of specifietic energy. Thus at an
interface where the solution of a Riemann problem lies betwbe contact surface
and shock wave there will be aiffective dissipation of kinetic energy proportional to
AW - analogous to (3.8.18). The choice of extrapolation mettiogctly influences
the magnitude of the velocity jump, thus modifying the dissive properties of the
numerical scheme.

An important implication of this is that the filerences between the extrapolated quan-
tities (i.e.Ug—U, ) are as important as the formal order of accuracy of the patation
in characterising the dissipative properties of the scheme

An additional component to consider is the behaviour of tkieapolation methods
as regards monotonicity. MUSCL schemes are strictly monotdrowever WENO
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methods are not. Oscillations in one dimension are maeifiess vortex breakdown in
two and three dimensions. This dispersive behaviour of &rg kigh-order methods
can inject energy at the small scales, altering the kinetgrgy spectrum.

Given a perfect subgrid model, an LES at severfiedent resolutions should be iden-
tical given that the cutd wave number lies within the inertial range. However, it is
expected that the model is not perfect, thus increasingebeution should have the
effect of reducing thefects of the numerical method on a given mode, shifting it to
higher wave numbers. Thus any errors induced via the subgptel should decrease
with increased resolution and order of the schemes.

The numerical methods employed here satisfy the secondfliveionodynamics on a
global level. This is one of the main advantages of emplogimgck capturing meth-
ods, as conventional LES typically employs a scheme whinbtishock capturing and
hence generates spurious oscillations in violation of #e®sd law of thermodynam-
ics.

3.9 Flow Field Initialisation

3.9.1 Initialisation of Non-Divergent Homogeneous Turbulence

This section will describe the method utilised to initialia turbulent flow field with
a prescribed mean square velocity, kinetic energy, andaviiimetic energy spectrum
given by

E(k) = CK exp(—z (k/kp)z). (3.9.1)

This spectrum is derived considering the case of dominaisgpus &ects in a homo-
geneous turbulent velocity field [82]. The peak in the enaggctrum is predefined by
changing the peak, in the exponential. This field could then be superimposedpn t
of a mean flow, or to provide a homogeneous turbulent fieldfodadmental studies of
turbulent decay. The following derivation and computagiiomethod was provided by
D. Youngs of AWE.

To guarantee the generation of a non-divergent (i.e. incesgible) velocity field, the
velocity can be formed from components of a vector potedsialvhich satisfies the
following relationship:

u=vx®. (3.9.2)

As the divergence of a curl is identically equal to zero, tties forms a non-divergent
velocity field. By considering the form of the energy spectinnequation (3.9.1) an
expression for the vector potentidl can be formed. Firstly, the total kinetic energy
KE in the flow can be calculated:
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1

= - 2
> fo [u(k)]2 dk (3.9.3)

fo“"’ E(K)dk
fo“’ fom j:o E(K)/ |k dkdk,dk,.

KE

Using equation (3.9.1):

KE(K) = j; ) fo ) fo Oo[\/Ekexp(—(k/kp)z)rdkxdkjdkz. (3.9.4)

Comparing equations (3.9.3) and (3.9.4) it is clear that thecity is of the form

\/Ekexp(— (k/kp)z).

As the velocity is the first derivative of the vector potehttae components ocb_(k_j
are of the form:

D(K) = \/Eexp(— (k/kp)z). (3.9.5)

Due to the Gaussian form of the vector potential, the higheresmumbers contribute
very little to the overall magnitude in real space. As an eslamf k,=4, the contribu-
tion to the overall energy at430 is sixteen orders of magnitude lower than the peak.
To economise on computing time and memory resources, tees@wourier transform

of equation (3.9.5) can be truncated at a small multipl&,ofNoting that the vector
potential is a real function:

d(x,Y,2) = i Real{c,mnexp[lko (IX + my+ n2)]}, (3.9.6)

l,mn=—co

wherek, = 2r/L. To satisfy the given energy spectrum, equations (3.9.8)ar9.6)
must be identical in the limit of infinité, m andn. For this to occur the complex
codfticientsc ,, must have the Gaussian distribution of the form shown in gguoa
(3.9.5). Firstly, equation (3.9.6) can be simplified coesaibly by expanding using the
Euler formula, and considering only the real part of the éqna

(o)

O(XY.2)= Y TimnCOS[Ko (IX + MY+ N2 + byl (3.9.7)

|,mn=—0c0

wherecimn = C1 + Icy, thusrmn = /2 + 2 and¢ = tan(c,/c;). Next, the cosine
term is expanded using trigonometric relations giving:
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O(XY,2) = 2 ). NmaCOSHX

l,mn=-co
{[cos(kolx) cos(komy) — sin(kolx) sin(komy)| cos(kon2) —
[cos(kolx) sin(komy) + sin(kolx) cos(komy)] sin(kon2)} + (3.9.8)
M.mnSiNG X
{[sin(kolx) sin(komy) — cos(kylx) cos(komy)] sin(kon2) —
[cos(kolx) sin(komy) + sin(Kolx) cos(komy)] cos(kon2)}.

This has the advantage that all of the data can be stored iditwensional arrays of
maximum Sizekmax X Nmax.  TO initialise a random fiela; ,,, must be chosen from
a distribution randomly such that the meémn,,) gives the Fourier cdicients in
equation (3.9.5). In this case they are selected from a Gaudsstribution with mean
of zero and standard deviation of one - but with non-unitasaa This is selected
so that the peak of the Gaussian is one. The Gaussian curte oéal partc; and
imaginary parc, of ¢, is therefore:

G =exp|- (¢ + ¢3) /2. (3.9.9)

Assuming that ,, = ¢ + iCy:

C1 = I COS¢, (3.9.10)
C, = rsing. (3.9.11)

G can now be rewritten as:
G = exp|-r?/2]. (3.9.12)

Given two random numbei®; andR; between 0 and 1, a method of sampling a Gaus-
sian distribution is used. First a random direction is chasgher — ¢ plane, then the
magnitude of is determined by rearranging equation (3.9.12) afterrsp@i= R,:

¢ = 27Ry, (3.9.13)
r = vV—2In(Ry), (3.9.14)

The computational expense can be further reduced by oglisight coéficients and
summing over one of the eight octants, leading to the finatesgion utilised in the
code.
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d(x,y,2 = i & mn c0S(kolx) cos(komy) cos(konz) +

|,mn=0

b1 mn cos(kolx) cos(komy) sin(kon2) +

Ci.mn COS(KolX) sin(komy) cos(kon2) +

d.mn cos(kolX) sin(komy) sin(kon2) + (3.9.15)

& .mn Sin(kolx) cos(komy) cos(kon2) +

fi.mn Sin(KolXx) cos(komy) sin(kon2) +

01.mn Sin(Kolx) sin(komy) cos(kon2) +

hi.mn SiN(KolXx) sin(komy) sin(kon2) .
Now equation (3.9.15) has to be modified to compensate foddhbling of contri-
butions from the zeroth wave number. If it is assumed thatn > 0 then the total
kinetic energy can be written following equation (3.9.4):

KE = fm kP [kD(®)|” dk, (3.9.16)
0

where®(k) is the mean of the contributions of the Fourier fméents. As:

Veogx)2 = 1/2, (3.9.17)

then:

\/ (8 mn COS(KolX) cOS(komy) cos(kon?))’ = a2, /8, (3.9.18)

so the root mean square contribution of thefioentsa mn, b mn... at one mode of
I, m,n > 0 to the total kinetic energy is:

KE :fo KI2[0.125¢ (&, + B + Gt

l,mn

B+ &mn + fifmn + O + hfmn)] dk. (3.9.19)

Now if | = 0, the contributions from the s{kglx) can be neglected, thus the total
contribution is:

KE = fo kP2 [0.25k2 (aﬁmn o+ + dﬁmn)] dk, (3.9.20)

as the mean of cos(® 1. This is not correct, as it counts the contributions from the
zeroth mode twice in the summation in equation (3.9.15).dramensate for this each
codficient is calculated as follows, usi@gy,, as an example:
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amn = RS()S(M)S(n) exp(— (k/kp)z), (3.9.21)

where S(p¥1/V2if p = 0, 1if p > 0 andR is a random number picked from a
Gaussian distribution (e.@;). Thus wherd = 0 andm, n > 0 the contribution is now
correct, given by:

KE = fo NG [0~125<2(6H2,mn+b|2mn+0|2m d mn)] dk. (3.9.22)

As a final step the kinetic energy is rescaled linearly to eguanown constant, and
the mean velocities shifted to equal zero (for the homogenéabulence case).

3.9.2 Initialisation of a Multimode Perturbed Interface

The most realistic method of representing a two-dimensionarface between two
materials is as the summation of a number of individual madesccordance with
a certain spectra. The method of initialisation is simitathat employed to initialise
homogeneous turbulence in Section 3.9.1. The typicalialednfinement capsule has
a surface power spectrum expressed as:

P=sd = fow[A(k)]zdk (3.9.23)
. f“’k_lzdk
) f f k22n|k| Al
o fo fo dkdie, (3.9.24)

wheresdis the standard deviation of the perturbation, @(kl) the amplitude of the
perturbation. The specified power spectrum gives an eanvamplitudeA(k) in
wave space:

A(K) o€ 5. (3.9.25)

To initialise modes within a certain band, the inverse Fauniansform of equation
(3.9.25) can be taken, noting that the amplitude is a reaitiom:

Ay, 2) = i Real{cmn exp[lko (Mmy+ n2)]}, (3.9.26)

mn=-co
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wherek, = 2r/L. To satisfy the given power spectrum, equations (3.9.28)ar9.26)

must be identical. For this to occur, the complexféoentsc,, must have the form
shown in equation (3.9.25). Firstly, equation (3.9.26)lbasimplified considerably by
expanding using the Euler formula, and considering only¢aé part of the equation:

Aly,2) = i F'mn COS[Ko (MY+ N2) + dmn] (3.9.27)

mn=—co

wherecy, = €1 + iCp, thusrpy, = ,/cf + cg and¢ = tan(c,/c;). Next, the cosine term
Is expanded using trigonometric relations giving:

AlY,2) = i F'mn COS¢ X [c0S(komy) cos(kon2) — sin(komy) sin(kon2)] —

m,n=—co

I'mn SiNg X [sin(komy) cos(kon2) + cos(komy) sin(kon2)]. (3.9.28)

This has the advantage that all of the data can be stored irditwensional arrays

of maximum sizekmax X Nmax The computational expense can be further reduced by
utilising four cosficients and summing over one of the four quadrants, leaditigeto
final expression utilised in the code.

Aly,2) = i amn cos(komy) cos(kon2) + by cos(komy) sin(kon2) +

m,n=0

Cmn SiN(Komy) cos(kon2) + dmpy Sin(komy) sin(kon2) . (3.9.29)

To initialise a random fiel@dy,, bmn.... Must be chosen from a distribution randomly so
that the mean gives the Fourier édaents in equation (3.9.25). The random variables
are selected from a Gaussian distribution as detailed itide8.9.1. Now equation
(3.9.29) must be modified to compensate for the doubling afrdmutions from the
zeroth wave number as done previously for homogeneouslémter Each cdécient

is calculated as follows, usirgy,, as an example:

amn = RS(m)S(n)%, (3.9.30)

whereS(p) = 1/V2if p= 0, 1if p > 0 andRis a random number picked from a
Gaussian distribution. Equation (3.9.30) is calculategas of the initialisation pro-
cess, and as a final step the standard deviation is resaa¢zdll}i to equal a predefined
value, and the mean amplitude shifted to equal zero.

Once the interface has been defined, it is necessary to sheupitial conditions as
accurately as possible. In most simulations the pertwbatare at a sub-grid scale,
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so they must be represented to reasonable accuracy. To@cthis, cells located on
the interface are initialised as a mixture, and not simplgras component or another.
The volume fraction of one gas within a cell is computed asaterage position of
the interface at each face of the cell. As an example, if ttexfimce defined by, ;i is
located in they—z plane, with cell indiceg j andk for thex, y, andz plane respectively,
the volume fraction is estimated via a linear interpolation

- Xi+1/2,j,k — [Si,j—l/Z,k + Si,j+1/2,k + Si,j,k—l/2 + Si,j,k+l/2] /4 (3931)

Xi+1/2,jk — Xi-1/2,j.k
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CHAPTER 4

Homogeneous Decaying Turbulence

4.1 Introduction

One of the key requirements for a numerical scheme usedéstigate shock-induced
turbulent mixing is that it can accurately simulate low Mdalbulent features. This
chapter assesses the performance of high-order Godupewtgthods for turbulent
applications via simulations of low Mach numbéf (= 0.1) homogeneous decaying
turbulence. The study does not intend to prove that ILES isteebapproach than
standard LES, based on explicit subgrid scale models, ®flthv in question. It is
intended as a starting point for further development by tiflgng quantitatively the
strengths and weaknesses of high-resolution methods nde&$ by comparing the
ILES results with experimental studies, DNS and previouSLE

It is a complementary extension of the work of Garrgeal. [62], where the ability of
shock-capturing schemes was tested for resolutions uBfatl for six extrapolation
methods from second- to fifth-order. The authors conclutatithe dissipation rate
of the ILES methods is too high, and that the behaviour of themies is more akin
to a low Reynolds DNS than an LES. In the present work, the patasion methods
employed are less filusive and range from MUSCL second-order through to WENO
ninth-order accurate. Each of these extrapolation methads been run on grids from
328 to 256 to examine the behaviour and convergence (if any) of turtideatistics
and spectra.

The layout of the chapter is as follows. Section 4.2 deta#srtumerical scheme em-
ployed, and the method used to initialise a homogeneouspso turbulent field. The
effect of non-zero velocity divergence in the flow field is disats Section 4.3 com-
pares the quantitative behaviour of the seven ILES varigntsrms of fundamental
properties of a turbulent flow field; growth of the integratdgh scale; decay rate of
turbulent kinetic energy; time variation of enstrophy;wkess and flatness of the ve-
locity derivative; velocity increment and pressure flutima probability distribution
functions; kinetic energy spectrafective numerical filter and spectral numerical vis-
cosity. Section 4.4 concludes this chapter.
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4.2 Simulation Details

4.2.1 Governing Equations

For all simulations in this chapter it is considered that Keémogorov scale is sig-
nificantly smaller that the mesh size, equivalent to stattiag the viscousféects are
negligible. Therefore, the Reynolds numbiRe — «o and the Navier-Stokes equa-
tions reduce to the Euler equations. The system of equasoosmpleted with the
specification of an equation of state for an ideal gas.

4.2.2 Numerical Scheme

The computations were carried out using a finite volume Goduype method. The
flux terms are evaluated by a characteristics-based Rienwwer $55]. TVD time
stepping is required for the WENO schemes to retain numesiaaility, thus time ad-
vancement is achieved using a third-order TVD Runge Kuttdnowef69]. Simulations
using both the TVD time-stepping and third-order extendatibty Runge-Kutta [69]
with MUSCL limiters show that the kinetic energy decay expurend mean velocity
derivative moments up to sixth-order vary by less than 1%is Thexpected as the
CFL condition ensures that the time step is significantly ten#han the spatial step.

In this chapter the full range of extrapolation methodsitktlan Section 3.4 are tested;
MUSCL second-order methods Minmod (MM), van Leer (VL) and ydbada (VA)
([184, 53]; MUSCL third-order method (M3); MUSCL fifth-ordé@¥)5) [107]; and
finally WENO fifth- and ninth-order (W5 and W9)[11]. The detailstbese limiting
methods are presented in Section 3.4.

4.2.3 Initialisation

The flow field was initialised using the method derived in mec8.9.1, and utilised in
previous simulations of decaying turbulence [195, 197]e Tlbw field has an initial
Kinetic energy spectrum given by the analytical solutiortha case of dominating
viscous &ects [82]

k* | 8
E(K) = ”fzmSk_g N @ exp(—Z(k/kp)z), 4.2.1)

wherek is the wave number, and the peak in the energy spectrum iddfinchanging
the peakk, in the exponential. Unless otherwise stated the peak ofrteg spectrum
was chosen &, = 4 to aid comparison with previous results from Youngs [1%]1

To ensure the generation of an almost non-divergent (i.eonipressible) velocity
field, the velocity is formed from components of a vector ptitd ®, which satisfies
the following relationship:
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Uu=vxo (4.2.2)

As the divergence of a curl is identically equal to zero tlngg a non-divergent veloc-
ity field. The vector potential is initialised with a Gaussidistribution of amplitudes
and random phases which is rescaled linearly to give a \glbeld satisfying

KE = gufms =05, (4.2.3)
M = “;“S ~ 0.1, (4.2.4)

whereuns is the mean turbulent velocity. Further details of the @lisiation can be
found in Section 3.9.1. Although this gives zero velocityedgence in the initial
condition, the rate of change of divergence of velocity is mecessarily zero, as has
been reported by several authors [22, 56, 149, 160, 168]. elfketiveness of this
method was investigated by decomposing the compressitlaaompressible veloc-
ity fields in Fourier space using the Helmholtz decompositibhis splits an arbitrary
vector into solenoidal (i.e. incompressible) and dilasibftompressible) components
[22, 56, 149, 160, 168]. The velocity in Fourier space can bidem as a sum of the
solenoidal and dilational velocity components:

u(k) = us(k) + ug (k) , (4.2.5)

where,

v - us(K) = 0, (4.2.6)

which in Fourier space can be written as,

k-us(k) =0. (4.2.7)

Now the Fourier transform of the velocity field can be writteith respect to the nor-
mal and parallel components of the wave vetor

u(k) = cy (k) kn + 2 (K) kp (4.2.8)
— —

Next take the dot product of (4.2.8) with the wave vedtor

k-u(k) =k ca(k)kp = Ca K[ (4.2.9)

k-u(k)
C =
Ik[?

, (4.2.10)
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Figure 4.1: The amount of kinetic energy contained in the incompressible and compeessib
modes in a 32simulation using VL extrapolation
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Figure 4.2: The compressible and incompressible kinetic energy spectra forfauabg) VL
extrapolation

this gives the compressible part of the velocity field. Thkeisoidal and dilational
components can be calculated given the three dimensionalefdransform of the
velocity field

us(k) = u(k) - K '|:|§k)k, (4.2.11)
Ug (K) = u(k) — us(k). (4.2.12)

Figure 4.1 shows the total resolved kinetic energy in the pr@ssible and incom-
pressible modes respectively for @324 simulation. The energy in the compressible
modes is about three orders of magnitude less than the emetlgg incompressible
modes and decreases as the simulation continues. It wad tbaheven for Mach



4.2 Simulation Details 87

Figure 4.3: Iso-vorticity surfaces aiVw? = 5 illustrating the initial condition and fully
developed homogeneous turbulence in a>1&8ng M5 extrapolation

= 0.5 the compressible component at initialisation is less tttdan Comparisons with
previous results [22, 56, 149, 160, 168] show that the inctaditions are fectively
reducing the influence of velocity divergendéeets. A key observation of the evolu-
tion of the kinetic energy in the compressible componertas it is highly oscillatory.
Kovasnay [112] showed that in the absence of viscosity ataaMach number the
vorticity, pressure and entropy are decoupled; viscosity 8 couple the pressure and
entropy, but the vorticity remains decoupled. This decimgpleads to the oscillations
in compressible kinetic energy at late times. The specwashn Figure 4.2 illustrate
that the energy in the compressible modes is largely réstrito the lower wave num-
bers. The undesirable aspect of this is that on the shortdoales the rate of change of
energy at low wave numbers is oscillatory due to the comgessiodes. Hence, the
kinetic energy dissipation rate at a given point in time nlngstcomputed as an average
of the rate of change centred on the time point of interest.

Figure 4.3 shows isosurfaces of equal vorticity magnitueden att = 0 andt = 1
for the 128 case with M5 extrapolation. This shows the initial flow fielmhaposed
of low wave number modes, and the fine scale worm like vorsitraictures present in
the fully developed turbulent flow field. The form of the stiwes present in the flow
field does not change at later times. Figure 4.4 shows thdajewent of the skewness
at each of the mesh resolutions for M5 demonstrating thag¢adgtstate is achieved
after a relatively short period of time allowing for goodtstacal averages, especially
at the higher resolutions. The simulations were run to adiorensional time of = 5
for all mesh resolutions, corresponding to approximatedyg®y turnover times.
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Skewness

Time

Figure 4.4: Velocity derivative skewness as a function of time at several resolutising M5
extrapolation

4.3 Results and Discussion

4.3.1 Turbulent Isotropy

It is important to quantify turbulent isotropy, as turbulémeory relies on this assump-
tion to derive analytical expressions for kinetic energgajerates and growth of the
length scales. The integral length was calculated fromdhgitudinal and transverse
energy spectra using [44, 178]

T

¢ = ——Eu(k=0), (4.3.1)
rms
(= 22” Exs(k = 0), (4.3.2)
rms
where,
1, (™
Ex(ky) = = (uf) | dxf(x)coskix, (4.3.3)
T 0
1 (o]
Eza(ky) = = (Uf) f dx.g(x:) cosky X4, (4.3.4)
Tt 0

andf andg are the second-order longitudinal and lateral correldtimictions relative
to the 1-direction. These are then averaged in all threetitires. Both definitions of
the integral length agree to within ten percent throughloeipieriod of the simulations,
however, it is observed that the simulations become ingrggsmore anisotropic at
late times. There is a considerable anisotropy evideneimtean velocities for the 32
as it is extremely under-resolved. At this resolution theme only 8 cells per wave-
length even at the peak of the energy spectrum. Abovél&2maximum mean square
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Figure 4.5: Resolved kinetic energy in simulations using the MUSCL 5th order limiter at
different resolutions

turbulent velocities in each direction match the mean tierivelocity to within 6%
throughout the simulation.

4.3.2 Kinetic Energy Decay Rate and Growth of the Length Scales

It is widely accepted that the evolution of kinetic energyhimmogeneous isotropic
turbulence can be written as follows [82]:

gufms = At —to)”, (4.3.5)
whereA is a constantty is the virtual origin in time, and is a positive constant.
If the exponent is not in a physically realistic range them simulations will rapidly
decorrelate with reality. In addition to this, the growthtloé energy containing scales,
I.e. the integral length scale, must be represented aetyras these eddies typically
represent the dominating structures in the flow. The growtheintegral length scale
is

£=B(t-to)", (4.3.6)

andq is a positive constant [144]. To facilitate comparison wéthnventional LES
studies, the virtual origin in timé& = 0 when computing the mean kinetic energy
decay exponent and growth of the integral length scales.

Figure 4.5 shows the total resolved kinetic energy usingtb&CL fifth-order extrap-
olation method. Only resolutions of above®ae shown for clarity. There is very little
decay in kinetic energy in the first instant as the energy isgogansferred from the
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Table 4.1: Mean kinetic energy decay exponéht
Resoluton MM VA VL M3 M5 W5 W9
32 096 119 133 117 132 148 156
64° 132 145 139 136 158 144 147
128 127 152 149 147 141 144 128
256° 128 143 136 132 125 130 116

low to high wave numbers. Once the high wave numbers are atguljlthe numerical
dissipation increases until an approximately constantgodaw decay is seen.

Wind tunnel experiments using grid generated turbulenee haeasured kinetic en-
ergy decay rate® ~ 1.2 — 1.3 [41, 138, 140, 169, 100]. Theoretical analysis does not
give a clear solution, however, it is expected that the dsbayld lie betwee® ~ 1.2

[21, 144] andP ~ 1.4[119, 193, 192]. Recent DNSRBE,,, < 250 by Ishideet al. [90]
with an initial spectrum proportional & gave® = 10/7. The mean decay exponent
% from t=1 to 5 for each extrapolation method is detailed in Table 4.1.

At 322 all second and third-order methods exhibit a decay rate wisisignificantly
less than physically expected. As will be discussed in tHeviing section, the veloc-
ity derivative moments for these schemes at this resoluéturns rapidly to Gaussian,
thus no turbulent field exists. Excessive numerical disgpaacts on the resolved
modes, as even at the peak of the kinetic energy spectrum #neronly 8 cells per
wavelength. It should be noted that the decay rate aloneot@haracterise a numeri-
cal method as the decay rate depends on the resolved fedtoresxample, a method
may have a low mean decay rate simply because all short waltglpetions have been
dissipated from the system at an early time - this is the catetine Minmod limiter
at 32,

The decay exponent for the Minmod limiter at*Gd in excellent agreement with the
quoted value of? = 1.3 for 64° in Garnieret al. [62], thus confirming the consistency
of the comparison. However, the other schemes exhibit adi@ssive behaviour. At
higher resolutions, and at higher orders of accuracy, tkaydexponent lies between
1.16 and 158 for all methods employed, whereas [62] repBrt> 2. The results
here are in good agreement with the previous study by Youl®@fs] which reported
? = 1.41 using a Lagrangian based ILES code with the same indiadis method.

Compared to the experimentally determined decay exponleesde results are higher,
however, there is uncertainty in the choice of the virtuaiart, in both simulation and
experiment. The ILES methods compare favourably with cotiweal LES, where the
decay exponer® = 1.17- 2 [135, 27, 190, 9, 87, 179, 78, 35].

In comparing the limiters, the two fifth-order methods and W ¢ghe most physically
realistic kinetic energy decay rates at low resolution. [IAd#er resolutions the decay
rate remains within a physically realistic range for alliens, given the uncertainties
in determiningto.

Two additional simulations of 256esolution were carried out with the Minmod lim-
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Figure 4.6: Normalised integral lengtft=%7 plotted against time for éfierent resolutions

iter, where the peak of the initial energy spectrum were eh&s = 1 and 12, respec-
tively. The two simulations dier quite significantly in flow structure and behaviour.
The lower the initial peak of the spectrum, the longer thégakeof redistribution of en-
ergy before a power-law decay of kinetic energy begins. Meeage decay exponent
Pis 212 fork, = 1 and 129 fork, = 12. The theoretical decay rate of constrained
turbulence (i.e. when the energy containing scales are ¢tothe size of the box) is
P = 2, which is in good agreement with the decay rate for the cdmeai, = 1. This
behaviour is nearly identical to that seen in the symmetegaking turbulent decay of
the Taylor Green vortex, where initially large coherentistures develop instabilities
and break down [52, 25].

Given an initial spectrum ok* at low wave numbers it is expected that the integral
length should grow proportional t&/7 [82, 144], potentially moving t¢?/ if the low
wave numbers take onkd form at late time. Figure 4.6 shows the normalised integral
length scale/t=%" for all grid resolutions for three extrapolation methodbe3e plots
are representative of the behaviour of all of the extrapmanethods employed in this
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Table 4.2: Velocity structure functions computed from DNS

Quantity [146] [106] [147] [188] [135] [32] [96] [190] [160] [68]
Re,, 45 83 64 150 <51 202 168 195 175 460
S; 047 051 04 05 058 044 052 054 045 055
S, - - 405 59 431 - 61 67 - 791

Table 4.3: Velocity structure functions computed from LES
Quantity [27] [61] [9] [87] [100] Gaussian
Rey,, o 248 <71 o 720 -
S3 04 - 04 022 042 000
Sy 273 36 - - - 3.00

study. The lines do not lie on top of each other as each nuaisgbeme has aftierent
time origin for the decay of kinetic energy and the growthha integral length scale.
It can be seen that the integral length grows proportion& tas expected, and that
this relationship becomes more accurate as the resolutidroeder of the method
increases.

4.3.3 Structure Functions and Enstrophy

The velocity structure functions are typically used to gifgnf the flow is turbulent,
and its characteristics. These are computed as [148]

5. (L L@ua"

—_ (4.3.7)
<(é‘u/élx)2>n/2

wheren is a positive integer, and the derivatives are computedgusatond-order
accurate centred flerences and then averaged over all three directions. Treb thi
order velocity structure functiom(= 3), or skewness, is directly related to enstrophy
in isotropic homogenous turbulence, and the fourth-ortteictire functionf = 4),

or flatness, gives a measure of the probability of occurreheatreme or mild events.
Typically, the lower the absolute value, the higher the nucaédissipation.

The flatness increases consistently with Reynolds numberas approximatelg, «

3+1/2R&?°, The most recent experimental results measBged 0.34, andS, = 3.75

for Rey,, = 720 [100], both lower than previous experiments. Computalioesults
from previous DNS and LES simulations are summarised inéka#l2 and 4.3.

Table 4.4 details the average skewness functions in themresudy, listed in ap-
proximate order of decreasing dissipative behaviour ofrthimerical scheme. 1t is
expected that increasing the resolution should increasakBwness until it reaches
the state expected for fully developed homogeneous deg#yibulence. Sreenivasan
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Table 4.4: Third order velocity structure functions

Resoluton MM VA VL M3 M5 W5 W9
32 008 011 019 014 031 030 026
64 022 032 030 031 031 033 031
128 031 035 033 034 036 036 032
256 034 037 036 036 038 040 035

Table 4.5: Fourth order velocity structure functions
Resoluton MM VA VL M3 M5 W5 W9
32 409 378 362 517 417 358 333
64° 407 425 394 549 437 395 347
128 434 438 409 580 455 432 355
256° 456 461 427 474 496 481 398

and Antonia [176] have compiled many experimental velositycture function mea-
surements. The skewness appears constant at approxifdddigtween Reynolds 10
and 1000, but increases above this threshold. In the cwstedy, as the mesh resolu-
tion increases, the skewness increases converging toaaedse of around.@7. This

is in good agreement with the most recent experimentaltsesti0. 34 forRe,,, = 720
[100] and previous ILES results [62], but lower than DNS fesuThe close agree-
ment with the results of Kangt al. [100] is interesting as the integral length scale in
the experiments is approximately4lthe size of the wind tunnel - and in the current
simulations it is approximately/2 of the box size.

At the lowest resolution the skewness factor for all secomdl third-order limiting
methods is much lower than the experimental values and tapaily back to a Gaus-
sian distribution. The numerical dissipation of the schelmes not allow an adequate
number of undamped modes to represent a turbulent flow fiedieder, at fifth-order
and higher the numerical schemes capture the non-Gaussievibur well. As the
majority of simulations around complex geometries are nell vesolved this is an
important point to note. As is generally accepted, Minmodeis dissipative, and not
a good extrapolation method to use for turbulent flow. Thidlustrated in the skew-
ness values, which remain much lower than expected untilutsns of 128. At 64°
the van Albada, van Leer and MUSCL third-order have physiaalalistic skewness
values, close to experimental results. Surprisingly, Kesveess decreases when using
W9 methods, indicating that the M5 and W5 perform best at adlliti®ns.

The mean flatness is detailed in Table 4.5. Comparing thetsasuéxperimental re-
sults reported in [176] the flatness should increase camlgtwith Reynolds number,
at a rate approximatel$, o« 3 + 1/2R&€?°. This implies that the ILES simulations
are achieving average Taylor Reynolds numbers of approgignane hundred over
the course of the simulation, during which the mean turldiwelocities decrease by
one fifth. However, the experiments of Kaagal. measured lower flatness of75 at
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Figure 4.7: Variation of the enstrophy with time; a) Van Leer limiter af32 256 b) with
extrapolation method

Re,,, = 720, which would give the simulations a much high&eetive Re,,, within
the simulations. The flatness does not change significarittyimcreasing resolution,
or increasing order of the numerical scheme. M3 has the bighean value at low
resolution, however at higher resolutions there is littfeedlence between the schemes.
This indicates that the probability of extreme events isinoteasing with increasing
resolution, contradictory to expected behaviour.

Figure 4.7a) shows the time variation of the enstrophw{ >, wherew is the vortic-
ity) for each mesh resolution for the van Leer limiter. Figdr7b) shows the variation
with method at a 6%resolution. Above 128resolution for the second and third-order
methods, and 64for the higher-order methods there are two clear stagespasteel
in previous studies [119, 80]. In the first stage the entroplyeases due to vortex
stretching which transfers energy to the smaller, fastevingovortices. Once the
energy spectrum is fully developed, the enstrophy redudstime as numerical dis-
sipation decreases the resolved kinetic energy. In compéne diferent methods, the
higher the order of the method, the higher the enstrophy,peélkecting the decreas-
ing dissipation. W9 is the least dissipative via this meadatowed by W5 and M5.
W9 is equivalent to van Leer at double the mesh resolutionyedaseW5 and M5 are
slightly less than double. At late times M5 has higher emtyothan W5, indicat-
ing that setting local minima and maxima to first-order aacyrdoes not significantly
influence the accuracy of the scheme.

4.3.4 Probability Distribution Functions

The velocity increment probability distribution funct®@PDFs) have been computed
for each grid resolution and method, where the velocityanwnt is defined asu; =
ui(X+ AX) — u(x). Figures 4.8 and 4.9 show the PDFs normalisedyy,s plotted with
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Figure 4.8: Velocity increment PDFs compared to experimental results by kaag [100],
and DNS by Vincent and Meneguzzi [188] and Gotdtal. [68] att = 2

experimental results by Kargf al. [100] taken aRe,,, = 626, and DNS by Vincent
and Meneguzzi [188]Re,,, ~ 150) and Gotolet al. [68] (Re,ay ~ 381). Note that the
van Albada, Minmod and van Leer give very similar resultsdeetie first two are not
shown. All methods capture the non-Gaussian behavioureo¥éfocity increments,
the fifth-order MUSCL limiter giving best agreement with thegerimental results.
Indeed, at 256resolution the M3 and M5 limiters lie almost directly on toptbe
experimental results for negative increments, and follogvgositive increments up to
Au/Aums = 5. Surprisingly, the ninth-order WENO has the least actiwitthe wings
compared to the other very high order schemes. The van Leemddl and van Albada
limiters give exponential wings, but less intermittentrtheth experimental and DNS
results.

The results shown here demonstrate that the shock captscimgmes give velocity
increment PDFs in very good agreement with experimentallteatRe,, ~ 626.



96

Homogeneous Decaying Turbulence

M3
VL
................. - Vincent
—mmme— Gotoh

ol
10 0

Au/Au,

10° F
10" E

10°E

10755 ................. - Vincent
N —+—n—n—w= Gotoh

-6 L L L TR | L L L TR | L L L TR n L I
10 5 0
Au/Au,

................. - Vincent

oy sl - Vincent
——rm—.—=  Gotoh o 106%

Gotoh

(b) 256

Figure 4.9: Velocity increment PDFs compared to experimental results by kaag [100],
and DNS by Vincent and Meneguzzi [188] and Gotdtal. [68] att = 2

This appears contradictory to the results in Gareieall. who show that the velocity
increment PDFs are close to DNS resultRat,, ~ 20. Comparing DNS of Vincent
and Meneguzzi [188] and Gotadt al. [68], and the experimental results of Kaag

al. [100] it is clear that there is a large discrepancy in the bigha of the PDFs.
The DNS results have a PDF whiclfigrs by more than an order of magnitude at the
exponential wings from the experimental results, and agp&abe increasing with
Re,,,. Thus, from comparison with DNS results, a low numerical Rég® number

of ~ 20 appears reasonable as in [62], however comparison wiriement gives the
numerical Reynolds number significantly higher at approxalys626.

The pressure PDFs are shown in Figure 4.10 for the VL, M5 and @@rmes at
256°, where they follow a Gaussian distribution, demonstratimat the pressure is
decorrelated from the vorticity. This Gaussian distribntof pressure is found for
all schemes at all resolutions. The source of this decdivelas believed to be the
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Figure 4.10: Pressure fluctuation PDF from the 258mulation at = 2

decoupling of pressure and vorticity as described in Seetid.3.

4.3.5 Turbulent Kinetic Energy Spectra

The three dimensional energy spectrik) is defined as [44]

E(k) = 27k%¢ii (K), (4.3.8)
wherek = k2 + kZ + k2 and the spectrum tenspris
1 (o0
A(K) = —— i (r)exp '  dr, 4.3.9
0= 5o | Qe (4.3.9

whereQ;; is the second-order velocity correlation tensor. The tliiegensional re-
solved kinetic energy spectrum for all resolutions and me@shatt = 5 are shown in
Figure 4.11 for the second and third-order methods, andyarEi4.12 for the fifth and
ninth-order methods. Ideally, the high wave number parhefdpectrum should form
a straight line in log-log axis with a power law kf*? as predicted by Kolmogorov
[110]. At 32 all limiters except W9 are too dissipative at high wave nurapleading
to lower kinetic energy than ideal. The W9 simulation has aagaable inertial range
to the cutdf. Given that the degrees of freedom within the system aretluw,is an
excellent result. However, increasing the resolution todies not give a correspond-
ing increase in th& >’ range, although at this resolution there also is a shortiater
range in simulations using the fifth-order methods. Intamgl/, the M5 method is
less dissipative than W5 at high wave numbers, leading tahtsti‘fuller’ spectrum.

The trend towards increasing size of the range with appratériolmogorov scaling
continues for 128and 258 for the higher order schemes, with very little or no inertial
range for the second and third order limiters until the hgjlresolution. Table 4.6
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Figure 4.11: Three-dimensional kinetic energy spectréap at =5 for the second- and
third-order methods at fierent resolutions

details the ratio of the wave number at which the energy spectieviates more than
10% from an assumed™® to the maximum wave numbég,., for the given grid. At
the grid resolutions considered, this appears to be regehvalue independent of grid
resolution, indicating that the simulations are of a laeglely nature, and not following
a constant dissipation Kolmogorov range scaling, whekg .x would decrease with
increasing #ective Reynolds number [82].

In comparing the schemes, Minmod shouigetively no inertial range, and the data in
Table 4.6 is representative of this. It gives consistentys®& resolution of high wave
number modes when compared to the other second-orderrém#e stated in Section
3.8.3 the leading order fierence between the limited quantities for MM is second
order, however for VA, VL and M3 the fference is third order. As the dissipation
in a Godunov scheme is proportional to thé&elience of extrapolated quantities, the
lower the leading order of the fiierence, the higher the dissipation. Examining the
spectra in Figure 4.11 it is clear that the MM limiter is moissipative, and that the
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Figure 4.12: Three-dimensional kinetic energy spectréap at =5 for the fifth- and
ninth-order methods atfllerent resolutions

formally second-order accurate VL and VA methods have bebavloser to that of
the third order accurate M3. These resolve a short ineerae up tkmax/10, defined

as the highest normalised wave numbeikga,) at which the resolved kinetic energy
spectrum deviates more than 10% from an assukn&eilaw.

Significant improvements are seen at fifth-order where tegightive ranges begin at
kmax/6 and at ninth order &,,,/3. From this it can be seen that using fifth and higher
order methods are comparable to increasing the resoluyi@factor of two in each
direction when compared to the second and third order Imjithus easily justifying
the increase in computational time. As turbulent velosieale ag Y3 then if it is
assumed thatle®® range exists to the cuffthen even at the maximum grid resolution
the smallest eddies still have a mean turbulent velocity fdtieof that at the peak.
This is an extremely noisy signal and venyffdiult to capture accurately using any
numerical method in physical space. Results gained herbaddrigher-order schemes
indicate that the simulations capture modes of wavelenfyli® @ells with reasonable
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Table 4.6: Highest normalised wave numbéw/knax) at which the resolved kinetic energy
spectrum deviates more than 10% from an assukned law
Resoluton MM VA VL M3 M5 W5 W9
32 019 019 019 019 025 031 10
64° 0.09 013 016 013 022 025 034
128 0.05 010 013 011 019 019 031
256° 0.05 010 010 010 016 016 031

statistical accuracy, which is considered to be a goodtesul

The Kolmogorov constant has been computed and it is fountdGpa- 1.9 for the
three dimensional spectrum. This is in good agreement Wwehidump’ at the begin-
ning of the sub-inertial range whe€ ~ 2, as reported in recent DNS [99, 68], and
experimental results [175, 100, 158, 140, 29], but highanttne theoretical value of
Ck ~ 1.6 expected. It should be noted that these are single timeéradeam decaying
turbulence not averaged from statistically stationargédrturbulence.

A further measurement of the presence of a sub-inertialeasdpy computing Kol-
mogorov’s four-fifth’s law. As the problem is not stationgne. it is decaying) the
results were calculated from the Karman-Howarth equatoaf inviscid fluid, hence
including a contribution from the time variation of the sedamrder structure function
[148],

3

I a 4
- [ﬁf S4EDLL(S, tds+ DLLL(r,t)] Jer=¢ =8, (4.3.10)
0

whereD,| = [u(xl + elg =r,t)— u(xl,t)]Z,DLLL = [u(x, + exr,t) — u(x, 1)]° andsis
a dummy integration variable. In forced turbulence thistiehship holds aRe,,, >
1170 [139], and Antonia and Burattini [10] suggest that focadeng isotropic turbu-
lence the asymptotic value of four-fifths is not reached!uRgj_ > 1CF.

tay
B is plotted in Figure 4.13 at a grid resolution of 25@sults for the van Leer, M3,
M5, and WENO methods. The four-fifths law is not satisfied foy ahthe methods.
Comparing the results with experiment sugdest, < 100.

The short extent of the sub-inertial range (if present gtiatlicates that the ILES
approach using standard compressible finite volume methodkl not be appropriate
for accurate resolution of flow where the features of inteaies less than several mesh
cells in size.

4.3.6 Spectral Distribution of Numerical Viscosity

From the previous subsections it appears that the M3, M5 antiriiit@rs are the op-
timum choices compared to schemes of similar order of acgufi further quantify
the performance of these schemes the spectral behavidoe atimerical viscosity is
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examined. Garnieet al. [62] computed the amplification factor for upwind fluxes,
showing that a unique filter length cannot be defined for thieleequations. This
will be examined here. Secondly, the numerical viscositgamputed in the form
of a numerical spectral eddy viscosity as proposed by Dodz&rat al. [49]. This

is compared to the theoretical ‘ideal’ eddy viscosity fontfageneous decaying turbu-
lence computed by Chollet [33] via the test field model and et#dyped quasi-normal
Markovian approximation. This method of comparison hasraployed by Hickel
et al. [81] to optimise incompressible implicit LES.

Following Garnieret al. [62] the amplification of the Fourier modes due to discretisa
tion errors can be computed as the ratio of the Fourier toamsbdf the finite volume
fluxes over the spectral fluxes,

Sk1/2<ki<ke1/2 FFTI(OE/0X + OF |3y + 0G [ 52)

A = 55 (4.3.11)
2k-1/2<ki<k+1/2 [IKIFFT(E) + IK:FFT(F) + IksFFT(G))
which can be rewritten using Equation (3.1.1) as,
Uoekiekssn FFT|—0U/0t?
A Zk 1/2<|k|<k+1/2 | / | (4312)

 Yktjoakickers2 IKiFFTE) + IkoFFT(F) + IksFFTG)?

The numerator is computed as a centréllesience approximation for the derivative of
the conserved variables with respect to time, ild™{ — U™1)/At, and the spectral
divergence as a function of the conserved variables at g#wedth. Figure 4.14 shows
the ratio of the fluxes computed for the M3, M5 and W9 scheme&4bio 256 for the
continuity andou momentum equation. The results for the energy equationeme v
similar to those of the continuity equation, and gheandpw momentum equations
match thepu equation.

As shown in [62] the ffective filter length is dferent for the continuity and momen-
tum equations. Increasing the resolution of the numerata e does not significantly
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for the continuity equation (left) and u-momentum equation (right)
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Table 4.7: Highest normalised wave numbéy/kmax) at whichA > 0.9
64° 128 256°
Scheme A, A A, A Ay Ao
M3 0.16 025 017 020 018 020
M5 019 031 019 031 022 033
W9 028 046 028 046 023 048

improve the resolution of the continuity and energy equetj@nd at the highest reso-
lution there is only a 20% ¢lierence in cut-fi wave number forA; over all methods.

Table 4.7 details the cutftfilter length, which is defined as the highest wave number
for which A > 0.9, normalised bk Comparing these to the results in Table 4.6 it
can be seen that for M3 and M5 the cuf-point for thek=>3 range is at a lower wave
number than thefective cut-¢f wave number for the continuity and energy equation
(A; andAs). However, the WENO ninth-order inertial range ctifdges between the
effective filter length for the continuity and momentum equadioThe normalised ef-
fective filter length appears to be converging to a constahtevindependent of grid
size, being approximatek,,,/5 for M3, knax/3 for M5 andkmax/2 for W9. All three
schemes are dissipative, the maximum amplification of axgivave number is 6% for
M3, 2.5% for M5 and 0.1% for W9 at 64becoming negligible at higher grid resolu-
tions. This is likely to be due to the accuracy of the centrfiedence approximation of
the change in conserved quantities over the time, hencaiekpy why the maximum
amplification decreases as grid size increases.

Next, the éective numerical viscosity is assessed for it's suitapds a turbulent eddy
viscosity. The momentum equations can be written in spifcina as

(% + sz) Un(K, t) = _Iipnlm(k) f u(p, )um(k — p,)d°p, (4.3.13)

where the projection tensor is defined as,

Prim(K) = Kn(Gni = kaki /K?) + ki (6nm — Kokin/K?). (4.3.14)

The evolution equation for kinetic energy as a function of@vaumber is derived by
multiplying Equation (4.3.13) by (k,t), where* indicates the complex conjugate,

giving

d3lu(k, )2

1
— _2yk3= 2 43.1
e 2vk 2|u(k,t)| + T(k, 1), (4.3.15)

T(k,t) = %Im [u;(k,t)Pmm(k) fu|(p,t)um(k - p,t)dp|. (4.3.16)
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The spectra can be integrated in spherical shells to givérdnesfer functionT (k) and
Energy spectrunik(k) as a function of wave vector magnitukie

1
E(k) = 47r|<2E < Ju(k, t)* >, (4.3.17)
T(K) = 47k < T(k,t) > . (4.3.18)
Equation (4.3.15) can be rewritten as
9 2
ﬁE(k’ t) = —2vk°E(k, t) + T(k, t). (4.3.19)
By assuming that the numerical viscosity behaves in a mamedogous to physical
viscosity, an &ective numerical viscosity for inviscid simulations can cemputed

using

Tk t) - 2E(k.1)

VI"I - 2k2E(k, t) ) (4320)
computed numerically as [49]
ny _ n+1y _ n-1
o T(k,t") — (E(k, t™) — E(k, "))/ 2At (4.3.21)

" 2k2E (K, t") ’

where modes are included in the computation only if the ntageiof the wave vector
is smaller than a cutfbwave numbek.. It is normalised using the energy at the dtito
wave numbeE(k;) andk;

Vn

vi(Kke) = ——. 4.3.22
n (Klke) A ( )

This is compared to the theoretical result fitted by the esgiom of Chollet [33]

va(klke) = C ¥ (0.441+ 152 exp29%/k) (4.3.23)

The computation of theffective numerical viscosity is quite sensitive to the chaite
the cut-df wave numbek.. Plotted in Figure 4.15 are théfective numerical viscosi-
ties fork. = kmax/2. Also plotted are thefiective numerical viscosities whekgis the
average of the filter cutfis measured fronA(k).

At k/k. > 0.3 in all simulations there is a very good qualitative agresime terms
of the shape of the numerical spectral viscosity in comparis the theoretical curve.
Both numerical and theoretical lines have a region of appnaiely constant viscosity
at intermediate wave numbers, and increasing viscosity/las— 1. The dfective
dissipation is consistent with the previous results, shgwihe W9 scheme as the least
dissipative, and M3 as the most dissipative. At the dtita@ve numbers chosen here
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Figure 4.15: The dfective normalised numerical viscositytat 5 compared to the ideal
normalised eddy viscosity from Chollet [33]. Cuffavave numbek: = kmax/2 (left), ke
determined from filter cut® (right)

the dfective viscosity of the W9 scheme is lower than the ideal spketidy viscosity,
which implies that the scheme could benefit from the additba sub-grid model.
However, if a higher wave number cuffés chosen, theféective numerical viscosity
increases above the theoretical line.

The agreement with the theoretical results of Chollet isaeable, however, when
employing the &ective cut-d¢f from A(k), the number of modes between the energy
containing modes (approximately<lk < 5) and the cut-fi is very low, even for ninth-
order methods at 138This can be seen in Figure 4.15, where each symbol repsesent
a mode. At 64 each method has less than 10 wave numbers in this range, de$28
than 20.

These results imply that given a high enough grid resolutios possible to select a
cut-of wave number for each method which gives a spectral viscaosigreement



106 Homogeneous Decaying Turbulence

with Chollet’s theory. The key issue at present is that thelireq grid resolution is
prohibitively large for many practical situations of indital interest.

At low wave numbers thefiective numerical viscosity becomes negative for some
wave numbers, positive for others, and increases in magmitd his increase in ef-
fective viscosity can also be seen in Ciaedlial. [36]. It is interesting that for some
modes the fective viscosity becomes negative. This occurs for modesrevtne net
transfer of kinetic energyT((k)) is negative, yet the turbulent kinetic energy at that
mode increases. As all schemes have been shown to be dissigaall modes on
average (Figure 4.14), it is possible that this is due to geswbility efects as dis-
cussed in Section 4.2.3. There can be an increase in kinadigy at some points
in the flow due to a local exchange of energy from pressurertetki energy in the
acoustic modes. When there are statistically few modes &t éow wave numbers)
this local exchange could cause an increase in total tunbkieetic energy at a given
wave number. This is not taken into account in Equation {&4.)3as this expression is
valid only for incompressible flows.

4.4 Conclusions

The ability of high-order finite volume Godunov-type ILEShstnes to simulate ho-
mogeneous decaying turbulence at low Mach number has beestigated quantita-
tively using a number of dierent parameters. The homogeneous isotropic flow field
is initialised using the divergence of a vector potentiairimimise the compressible
component of the kinetic energy spectrum.

It has been demonstrated that the behaviour of the largessisataptured well at res-
olutions greater than 32or when using numerical methods of higher than third-order
accuracy. With this constraint satisfied the turbulent kinenergy decay exponent
lies close to the theoretical and experimental results,isiad accurate as results re-
ported for conventional large-eddy simulation. The inédength scale is expected
to grow ast?” for the initialised energy spectrum, and this is shown taiHor all
methods. Additionally, velocity increment PDFs are foundh&ve exponential wings,
but pressure PDFs are essentially Gaussian.

Examining the spectra indicate that all methods are toopdisge at high wave num-
bers, giving a slope steeper than the expektéd, and there is no agreement with the
Kolmogorov four-fifths law. All methods havetective filters at less thaky,qyx/2 for
the momentum equations akg,,/4 for the continuity and energy equation, indicating
that a single filter length cannot be defined for all equatidben the numerical vis-
cosity is assessed as a spectral eddy viscosity it is in goalitative agreement with
the theoretical solution, having a plateau at intermedigtee numbers and a peak at
the cut df. However, unless the cutfovave number is chosen beldw.,/2 then all
methods are too dissipative.

It is difficult to define a singleftective Reynolds number for the simulations. Com-
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paring the PDF’s to experimental results gives an estimRigg, ~ 600, however,
compared to DNS it is an order of magnitude lower. Examinimg four-fifths law
showsRe,,, ~ 30— 100 for all methods except WENO ninth-order which is approxi-
mately 200.

In comparing the numerical methods, the fifth and ninth-ondethods have a clear ad-
vantage in that they are capable of resolving non-Gaussihalent behaviour at lower
resolutions than the second and third-order methods. O$élsend and third-order
methods the third-order limiter M3 performs the best - given velocity derivative
skewness close to experimental for all resolutions gretagan 32 whilst maintain-
ing a reasonable kinetic energy decay rate. Additionadtlg, third-order limiter has
marginally higher kinetic energy at the high wave numbens, gives a better match
to experimental velocity increment PDFs. Considering caempenal time, however,
the complexity of this limiter would make it undesirable agsimore expensive than
the fifth-order methods.

Of the very high-order methods, plots of enstrophy show tisig a ninth-order
scheme gives a similar solution to the second and thirdrarathods at double the
resolution. The two fifth-order schemes give a solution eajant to slightly less than
twice the dfective grid size. This is confirmed by calculating tHeetive numerical
filter length, where the WENO ninth-order method resolvestimthe wave numbers
of the M3 method. Interestingly, there is only a marginal ioy@ment in resolution of
the energy and continuity equation at the higher grid sizé&e M5 limiter gives ex-
cellent agreement with experimental results in predictirgintermittency in the tails
of the velocity increment PDFs, whereas the WENO methods dffogteeply at the
tails. Examining the kinetic energy spectra shows that th#nrorder method resolves
an approximaté '3 to Knax/3, the fifth-order method up tkyna,/6, and lower-order
methods up tkna,/10. This means that fifth and higher-order methods af 18-
form better than the second-order methods af23&e increase in accuracy via this
measure is greater than the increase in computational time.

In summary, the numerical methods ranked in order of detrggmerformance with
respect to accuracy for a given computational time are WENtthrorder, followed
by MUSCL fifth-order, WENO fifth-order, MUSCL third-order, varekr, van Albada
and Minmod. For a given simulation it is expected that anrptnh choice would
be either WENO ninth-order or MUSCL fifth-order depending oa thonotonicity
constraints of a given problem. Finally, it is clear thatallthe numerical methods
are too dissipative at the high wavenumbers. The followihgpter investigates in
depth the mechanism for this overly-dissipative behavaiueodunov-type schemes,
demonstrating the leading order source of dissipationrbilent kinetic energy.
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CHAPTER 5

Theoretical Analysis of Kinetic Energy
Dissipation in Godunov Schemes

5.1 Introduction

The Finite Volume (FV) Godunov method has proven extremeatgsssful in the simu-
lation of high Mach number flows, and is an essential tool imyregpplications involv-
ing high speed flows and shock waves. The Euler equation®carsteep discontinu-
ities in compressible flows, and in order to provide a stabtereon-oscillatory solution
a certain level of artificial dissipation is added to the solu In a Godunov method
this dissipation is added through the upwind behaviour efrthmerical scheme. Un-
fortunately, the dissipation required to stabilise thaigoh also dissipates kinetic en-
ergy, and it is the rate of dissipation which is the subje¢haf chapter. It is especially
important in describing the poor performance of Godunovhioés in simulations of
low Mach flows, determining the implicit subgrid model forpiitit Large Eddy Sim-
ulations (ILES), and in errors associated with strong shiotekactions. Issues such as
convergence problems andtttiulties due to roundfderrors are not dealt within this
chapter, for further information see, for example, [72, 1081, 185] and references
within.

Several previous papers have discussed the influence oftriegluction of artificial
viscosity on the simulation of inviscid flows. Noh [143] détd the behaviour of
finite difference schemes, highlighting the sometimes undesirdlfdet® of the von
Neumann and Richtmyer type viscosity when simulating strsimack waves, due to
the overly dissipative nature of certain formulations,ezsally in the absence of heat
conduction. Christensen [34] draws parallels between thsightion inherent in a
Godunov method, and that due to artificial viscosity methode diferent forms of
artificial viscosity are further discussed in Benson [18]hwigéspect to their perfor-
mance in capturing shocks. Volpe [189] demonstrated usagral numerical exam-
ples that FV methods provide inaccurate results at low Maghtd excess numerical
dissipation. Later, Menikid [131] noted that artificial viscosity is responsible for the
entropy errors associated with gdsed shock, and that this error does not disappear
with mesh refinement. Several papers by Guillard [74, 73gXamine the low Mach
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problem, demonstrating that at low Mach numbers the asilfigiscosity present in
Godunov schemes leads to an undesirable scaling of theupees#th respect to the
Mach number, and proposing a form of preconditioning of tbeegning equations to
correct this. However, to the authors knowledge, an arg@ltorm of the dissipation
of kinetic energy in Godunov schemes has not been yet bearder

Two factors have increased the importance of the dissipati&inetic energy by Go-
dunov schemes. Firstly, as computational power and grelisizreases, simulations
which were typically high Mach now resolve relatively low btaperturbations. An
example of this is in the simulation of compressible turbtifows. The large scales
are at a relatively high Mach number, whereas small instedsilcan occur at low
Mach. These can grow in size anfiexct the development of the larger scales (espe-
cially in fundamental instabilities such as Rayleigh TayRichtmyer-Meshkov and
Kelvin-Helmholtz). It is important to understand the meeisan of dissipation of tur-
bulent kinetic energy within compressible schemes, toebe#present the growth of
these small instabilities, and hence reliably model theadtow physics.

Secondly, there has been a rapid increase in the use of Ity@dige Eddy Simulation
in a variety of applications [24, 51, 61, 67, 70, 75, 129, 1¥B), 195, 197] where
the dissipation inherent within the numerical method is leygd ‘in lieu’ of an ex-
plicit subgrid model. To design future implicit models, aradytical description of the
leading order dissipative terms is required so that thisbeamatched to the expected
dissipation rate (such as that due to Kolmogorov’s refineularity hypothesis [111]).

Itis expected that a useful description of kinetic energgigiation rate should describe
both the increase in dissipation at low Mach number as wél@behaviour of implicit
subgrid models at more moderate Mach numbers. It is typiadbumed that the
dissipation in the Godunov scheme arises from the preseinsbogk waves in the
solution of the Riemann problem at the cell interface. Sechi@ derives an equation
to link the increase of entropy with dissipation of kinetizeegy. Using this, Section
5.3 shows that the dissipation due to a shock of fixed streisgtbnstant with Mach
at leading order, thus this cannot be the leading sourcessipdition of kinetic energy.
Next, the possibility that there are more shocks in the discRiemann problem at
low Mach is investigated in Section 5.4. It is shown that @lph the structure of
the problem does change at low Mach, this is not the directceoaf increase of
dissipation as it does not change significantly below Mach.2. Finally, Section
5.5 demonstrates via an asymptotic analysis of the dispret@lem that the leading
order dissipation is due primarily to the reaveraging pssc@nd that the irreversible
dissipation of kinetic energy is proportional Aa? and the speed of sourad This is
validated numerically using severali@rent Riemann solvers, exact and approximate.
Additionally, the applicability of these results to higleder methods is discussed.

An important point to note is that this chapter analyses titeopy change and dis-
sipation of kinetic energy specifically for a Godunov methbowever the approach
is relatively universal and, in principal, the results applacable to all standard com-
pressible methods.
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5.2 The Relationship Between Kinetic Energy and En-
tropy

Before commencing the analysis, it is important to clarify gfoverning equations, and
essential to discuss the relationship between kinetioggreand entropy. This chapter
is concerned solely with the analysis of the Euler equatidigas flow, where viscosity

Is assumed negligibleRe — ). The homogeneity property of the Euler equations
means that the properties can be analysed using the fotioggmerning equations in
each principal direction,

ouU OE
E + & = O, (521)
where,
U=[p, pu, pv, pw, €, (5.2.2)
E= [pu, pU2 +p, puv, puw, (e+ p)u]T, (5.2.3)
e=pi+ %p(uz+v2+wz), (5.2.4)

andp, i, u, v, w are the density, specific internal energy per unit volume@adesian
velocity components, respectively. Throughout this caajptis assumed that the fluid
satisfies the ideal gas equation of state

p=pi(y-1), (5.2.5)

wherey is the ratio of specific heats. In a Godunov method the gomgraguations
are solved in integral form where the cell averaged conseragables at the new time

—n+1 .
step,Un+ are computed according to

—n+1 —n At
U =u-- (Eje2— Ej12) = O, (5.2.6)

whereAt andAx are the time step and width of the cell. The time averaged noaie
fluxesEj.1/, are computed from the Riemann problem at the cell interfadgs iB
typically seen as the solution of the Riemann problem aloeditie x = 0, wherex
is centred at the interface. The structure of a typical smtuis illustrated in Figure
5.1. At any interface where the velocity or pressuréeds from one side to the next,
the solution will normally split into three waves, a contaatface sandwiched by two
waves which are either a shock or rarefaction. Only the sknale adds irreversible
dissipation, as the rarefaction and contact surface argregg@c phenomena. Thus
irreversible dissipation occurs only when the solutiorh®Riemann problem at= 0
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t

Shock Contact Expansion

X

Figure 5.1: An example of the solution to a Riemann problem

(the star quantities) lies between the contact surfacetandhock wave, as is the case
in Figure 5.1.

Understanding the role of entropy in the context of dissgabf specific kinetic en-
ergy is key to understanding the dissipative propertiesad®ov schemes. Entropy
Is a quantity which is usually defined by dfdrence, expressed as

1| S

whereR s the specific gas constantthe time step level andS the change in entropy
per unit mass.

The numerical solution to the Euler equations is constduatea such a form that
mass, momentum and total energy are conserved, but, keretigy is not conserved,
due to numerical dissipation. The behaviour of the chandenatic energy within a
compressible fluid is similar to that of a damped spring. &hae changes of kinetic
energy which are accompanied by an isentropic change irsymesas is the case
for an ideal inviscid flow without shocks. In this case, altfb the kinetic energy
has changed, there has been no actual dissipation of kemetigy, and thus the flow
behaves like an undamped spring. However, if the entropseases then there has
been an irreversible dissipation of specific kinetic enavhych acts as a dampener to
the isentropic motion.

A direct relationship between kinetic energy and entropwaw be derived. Begin-
ning with the conservation equation for mechanical enemgyeictor notation without
external forces [142]:

pDRt (k) = =[V- (pu) = pV - u] +[V - (v -u) — 7" : Vu], (5.2.8)

wherep is the densitygx = 1/2 VU? + V2 + W2, 77 is the shear stress tensor, p the pres-
sure,u is the vector of velocities, anid/Dt represents the material or total derivative.
The first group of terms on the right hand side relate to flonkvaare to the pressure on
the control volume minus that work which does not increasetic energy, the third
term is the total work which the surroundings do on the flurdtigh the viscous stress
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and the fourth term is the portion of the work due to viscovssstes which dissipates
Kinetic energy. This is a sink of kinetic energy, and is alsidten as

v , Ou
VU= Tija—xj. (5.2.9)
This relationship is originally developed for physicalaesity but can be applied to
numerical viscosity, as it was shown by Margadinal. [128] that the truncation error
terms can also be written as the divergence of a stress td\ssubtracting the kinetic
energy equation from the energy equation, a conservatioatie for internal energy
I without external sources can be written

Di

Dt

Note that the viscous sink term present in the kinetic energyations appears iden-
tically in the internal energy equation as a source term.rd ieean additional source

term due to the heat fliusion fluxg, and due to pressure work compressing the ele-
ment.

=-V-gq-pV-u+7":Vvu (5.2.10)

Entropy is a scalar quantity which is transported with thet flew rateq. The transport
equation for entropy is [142]

DS q -
= (?) + P, (5.2.11)
where the first term on the right hand side represents flux wbey via heat conduc-
tion, P is the production rate of entropy, afmdhe temperature. Next, using the Gibbs
equation

Ds_pDi_ pDp (5.2.12)

and combining this with the continuity equation and equafar the evolution of in-
ternal energy gives [17]

(5.2.13)

where Fourier's Law of heat conduction has be used to exprasserms of temper-
ature. The second term on the right hand side refers to a gtioduof entropy via
viscous stresses, and is identical to the sink term in thetikirnergy equation divided
by temperature. Consider a typical low Mach number flow, whieiseassumed that
production of entropy due to thermal conduction is smallamparison to production
via viscous stresses. For this case, temperature mudtipligoroduction of entropy is
equal to the irreversible viscous dissipation in Equat®i.8), or
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Figure 5.2: Actual change of kinetic energy plotted with the predicted change using the
initial kinetic energy minug AS for a shock tube problem

_ 2
TPe=7":Vu= _Ep(D(Q)

| o7 (5.2.14)

)irreversible

The result directly relates the increase of entropy withdissipation of kinetic energy
pointwise within a system due to a stress tenspunder the assumption that the cell
is not located on an inlet or outlet boundary where there istdlax of shear stress
into or out of the system.

A useful feature of the directional split Godunov methodbt& many of the properties
of the scheme can be illustrated through simple one dimeakiest cases, such as
the combination of isentropic and non-isentropic behavi@onsider the shock tube
problem

X < 0.5, P =pr = po(1+ 5 M3)77 u=Ma/2, (5.2.15)
1
x> 0.5, pL=pr=po(l+ 5 M3 u=-Ma/2, (5.2.16)

wherea is the speed of soundyl the Mach number. The computational domain is
200 cells in a region of dimension 1, and the boundary camitiare periodic. First
order time stepping and first order piecewise constant inespaconstruction is used.
This problem is formulated so that the left and right handngtias are isentropic
realisations of the same flow, and that the mean momentunras Zégure 5.2 a)
shows the variation of specific kinetic energy with time camgal to the variation of
TAS where the values opy andpg are chosen such that the Mach number of the
flow is 0.1. The kinetic energy behaves as a damped spring as despridadusly,
where the isentropic variations in kinetic energy are mudnrenrapid than the non-
iIsentropic variations. However, it is clear that the irmraiele decrease in kinetic energy
is mirrored exactly by an increase T\S. Figure 5.2 b) shows the same test case for
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Figure 5.3: Actual change of kinetic energy plotted with the predicted change using the
initial kinetic energy minu§ AS for homogeneous decaying turbulence in a cube

a Mach of 001. The same relationship can be seen however the rate afadecof

kinetic energy is much more rapid, illustrating the seveacNnumber dependence of
dissipation of kinetic energy.

As a more complex case, consider homogeneous decayindemcdeuin a periodic
cube at resolution 32using the 5th order MUSCL reconstruction in space and 3rd
order TVD Runge-Kutta. Specify the initial condition follavg [195, 197] as a sum-
mation of Fourier modes of random phase corresponding tkitietic energy spectra

E(k) = uzk% ‘ /% exp(—Z(k/kp)z), (5.2.17)

wherek is the wavenumber, and the peak of the energy spectrum wasclad, = 4.
Additionally, the initial kinetic energy magnitude and Macumber are chosen as

KE = gufms =05, (5.2.18)
M = ”;”S ~ 0.1, (5.2.19)

whereu is the mean turbulent velocity. Figure 5.3 shows the timéatian of kinetic
energy compared to the initial kinetic energy minusS. The agreement is exact.
From these two examples it is clear that if the behaviour ofogy is understood, then

an understanding of the dissipation of kinetic energy by ot schemes follows
naturally.
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5.3 The Dissipation of Kinetic Energy Across a Shock

The passage of a shock wave causes an increase in entropyedas to irreversible
dissipation of kinetic energy. Consider a stationary shoakemvith pre-shock velocity
u, specific volumeV, Temperaturd and pressur@. Bethe [19] (Reproduced in [98])
utilised the Hugoniot relations to derive the leading orelgiropy increase as

AV3
12T

o’p

AS =- =02

(5.3.1)

This relationship is accurate to within 15% wheye/u andAp/p are less than 10%,
and shock Mach numbédvls < 1.05. From thermodynamic principles the second
derivative of the pressure with respect to the specific velgan be expressed as [132]

o0’p
oV?

_ 2Gyp

o (5.3.2)

S

whereg is the curvature of the isentrope. Using Equation (5.3.2Zpi8.1) gives

_ ga? (AVY’
AS = st \v ] (5.3.3)
Considering conservation of momentum across a stationaigksh
Uy Uo
— = — 5.3.4
VARRVA ( )

whereu; andu, are the pre- and post-shock flow velociti®&sandV, the pre- and
post-shock specific volumes, thefdrence in specific volum&V can be related to the
difference in velocity

AV  Aug
—=—, 535
VAR (5.3.5)
whereAus is the velocity jump at the shock. The change of entropy canbmwritten
as

AS =

3
g (A—US) . (5.3.6)

6T Uy

Finally, as noted in [132] the curvature of the isentropedioideal gas is

G = % (y+1), (5.3.7)
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Inserting this into Equation (5.3.6), the irreversiblergmse of specific internal energy
TAS is

2 3
Tas = YD (A_“S) .

o \w (5.3.8)

As this is relative to a stationary shock, then as the Machieurrends to zeray; — a,
showing that the dissipation of a shock of fixed Mach numbereaheses proportionally
to 1/a. However, the shock wave travels at a speed proportiorathas the dissipa-
tion rate due to the passage of a shock of fixed Mach number is constéinterand
independent of flow Mach number. This demonstrates thatitrease in dissipation
at low Mach number cannot be explained as dissipation imbe&vithin the governing
equations, and is a property of the discrete system.

5.4 The Form of the Solution to the Discrete Riemann
Problem

As the dissipation due to a shock wave is not dependent orothhdfach number, then
a second possibility is that the number of interfaces whegesblution of the Riemann
problem lies between the shock and contact surface ingesms¢he Mach number
decreases. To compute the solution to the Riemann problectlyaa iterative process
must be employed to determine the velocitydensityp* and pressur@* between the
waves. However, at low Mach number or where the jumps arexti@rae, the solution
to the Riemann problem can be attained with reasonable acusiang the primitive
variable linearised solution [184] fqr*

1 1 _
p* = > (pL + pr) + > (UL — ug) pa, (5.4.1)
which can be rearranged as,

A AU __
P = pr+ 7'0 +—pa. (5.4.2)

——  ——
oM2)  O(M)

Scaling arguments can be used to deduce the behaviour obthédld at low Mach
number. It is commonly accepted that in an incompressibig field the pressure
differences scale witM?, and velocity diference scales witM [108]. The second
term on the left hand side of Equation (5.4.2)?]§M2) whereas the final term scales
asO(M). This means that in low Mach flows it is expected that the nigjaf Rie-
mann problems will result in a two-shock or two-rarefactcamfiguration, as pointed
out in [73]. These are generated whgh< max(p., pr) or p* < min(p., pr) respec-
tively. Indeed, examining each cell interface for the hosrogpus decaying turbulence
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problem shows that at Mach 0.2 the structure of the field is #886shock, 46 % two-
rarefaction and 7 % single shock single rarefaction sahstioReducing the Mach
number to 0.02 gives 48 % two-rarefaction and 52 % two-shdbks does not change
as Mach decreases. As expected, as the Mach decreasestitrence of single shock,
single rarefaction solutions becomes increasingly rahe. typical structure of the so-
lution to the Riemann problem changes as the Mach numberas=sehowever, once
M < 0.1 the structure does not change significantly and so is nalyliio be the direct
cause of increased dissipation.

5.5 Irreversible Dissipation due to Solution Reaverag-
ing

5.5.1 Linear Advection Equation

The linear advection equation is particularly useful to destrate the irreversible dis-
sipation of kinetic energy in the FV framework. Consider

U +auy, = 0, (5.5.1)

whereu can be taken as a velocity, aadhe signal speed, assumed positive. In this
case there are no dissipative terms thus the exact solutiosecves kinetic energy.
The problem can be discretised at first order accuracy in @énteupwind in space as
follows

utt =l - va(u'j‘ - u’j‘_l), (5.5.2)

wherev = At/Ax. Taking the initial conditions asfj‘_l = -Au/2 anduj-1 = u'j‘+1 = Au/2,
consider the solution in cejlat timen + 1

A
Ut = 7“ (1-2va). (5.5.3)

The theoretical change in kinetic energy is zero, but coatprtally it is

2 2
(u?+1)exact_ (u?+1)numerical - %Auzva (1-va), (5.5.4)
giving a dissipation rate increasing proportional\i’ and the speed of sourad Note
that this result can also be gained via standard modifiedtiequanalysis [184]. It was
shown by Merriam [133] that the production of entropy (ddfify the entropy pair
S = —u? andF = —au?) for the wave equation in this first order scheme is propoatio
to Au? anda, mirroring the decrease in kinetic energy shown here. Afltixds exact,

the dissipation is due solely to the reaveraging processenlife (U + w)?. This
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j-1 i j+1

p, Au, p p, Au, p p,0,p

j—1/2 j+1/2
Figure 5.4: Schematic of the flow under consideration

implies that a similar dissipation due to the reaveragingcess should occur in the
FV representation of the Euler equations. The followingisadnvestigates this by
examining the variation of the entropy over a single tim@ ste

5.5.2 The Euler Equations

To derive the actual change of entropy in the discrete systieenentropy change in
a single computational cell in a single time step is congdefThe derivation of the
leading order entropy change for the case of an isolated jamplocity is detailed

in full in Appendix B.1 to allow the reader to repeat the analyd his solution was

first gained by hand, and was subsequently used to validateoss gained using the
symbolic manipulation software Mathematica for the momaplex but common case
of a jump in all primitive variables.

Isolated Velocity Discontinuity

In this section the change of entropy is derived for an iat=fwhere there is a veloc-
ity jump Au, butp andp remain constant. Consider flow through three computational
cells, where the discontinuity is located jat 1/2 as shown in Figure 5.4. The flow
variables are evolved over one time step for a first order acs@nd time upwind
Godunov scheme. It is assumed that the solution of the Rierpesiviem can be
approximated using the linearised solution ([184], p.2@8a)assumption which is val-
idated in subsequent numerical test cases. Assuming tjgaptiAu, andp in the cell

] —1andj, andp, 0, andpin cell j + 1 at time leveln, the solution of the Riemann
problem at the cell interfacg+ 1/2 can be written as

A

Po= p+ uzpa, (5.5.5)

AU

u = ?, (556)
A

o = p+ X (5.5.7)

2a
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Table 5.1: Rate of increase df AS for an isolated velocity jump per unit time

Au/a Eqn. (5.5.10) Exact PVRS HLLC
05 000024 000026 000025 000026

0.1 0.0011 00011 00011 00011
0.01 001 001 001 001
0.001 Q104 Q104 Q104 Q104

The leading order entropy increase over a single time stegngbdy an asymptotic
expansion imMu andais (See Appendix B.1 for full details)

R yvAU?
AS = —
vy—-1 8a

[2y -2+ 2va(1-y)] + O (A). (5.5.8)

As the irreversible increase of specific internal energyAS = (aZ/Ry) AS then

Au?va

TAS =
4

(1-va) + O (Au?). (5.5.9)

It can be seen that the increase of entropy is only positiveresas 1- va > 0, which
is low Mach limit of the familiar CFL condition. Equation (5% can be converted
to time rate of dissipation, given that= At/AXx ~ C/a, whereC is the Courant-
Friedrichs-Levy number,

_ _ Adv”a 3

en = TAS/At = == (1 - va) + O (A). (5.5.10)
wheree is the irreversible change of kinetic energy per unit timéisTis consistent
with analysis of the increase of entropy by Barth [13], whitdogoints to an increase
of entropy proportional to the jump size squared. The asgtigpanalysis has been
validated using a one dimensional test case for a first ondémie and space Godunov
method solving the Riemann problem with an exact Riemann saheeHLLC solver,
and the Primitive Variable Riemann Solver (for details alibese Riemann solvers
consult [184]). Table 5.1 shows the rate of entropy incréasee first time step for a
shock tube case where the left and right states are defined as

pL=pr=pa% pL=pr=p, U =AU Ug=0. (5.5.11)

The results show excellent agreement with all numerica s even where the Mach
number of the velocity jump is as high a0 This agreement is to be expected as
Equation (5.5.10) is a leading order approximation in teahMach number of the
velocity jump and in terms of order of the velocity jump ifsehus it is applicable
beyond the strictly incompressible regime.
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The dependence of the dissipation rate on the speed of smahalla is clearly dif-
ferent from the dissipation inherent in the solution of thdeff equations (Equation
(3.8.20)). Equation (3.8.20) was derived assuming theliglof the Hugoniot re-
lations [88], which only hold true when all gradients of thewfl exiting the control
volume are zero, and the rate of change of these gradientsadsrza given frame of
reference. Clearly, this is not the general case for an aritnterface where there is
a difference in all primitive variables. Thus, the Hugoniot rielas hold in a global
sense, but the above expansion applies in the case of updteadfor an interface
with a local variation in velocity from the left to right seat

Taking the initialisation of a shock wave on a grid as an eXairpe validity of the
result becomes clear. In the first time step a dissipatiopgtmnal toAuZ acts on the
initialised velocity jump. This is larger than the dissipatrate for an ideal shock wave
derived by Bethe and thus the shock ifased. After several time steps a steady state
solution is gained where the sum of several smaligt equals the entropy gain of a
single global increase proportionalAe?. In this process the excess entropy produced
in the first time step at a rate a2 manifests itself as an entropy ‘anomaly’. A similar
process occurs when shock waves interact, and causes &ezds®y in the Noh test
case which can be viewed as a shock interaction problem [143]

The dependence ofu? is due to an interaction of both the governing equations and
the reaveraging process. If the increase of entropy waly/shie to the reaveraging of
the continuous function to a fixed mesh, then the leadingrader terms would be of
orderAu. However, the governing equations are constructed in sucaraer that the
leading order fluctuations (i.& p andAp) are isentropic in nature and so cancel in the
asymptotic expansion.

Menikoft [131] examined the variation of entropy when initialisingteock wave, or
when shock waves interact and demonstrated that an entnopyady occurs due to the
finite width of a viscous shock profile, which is a special aaidbe general asymptotic
expansion presented here.

As also observed numerically in [131], under refinement efrtiesh the spatial extent
of the anomaly reduces, but the magnitude does not. In ermgi@éyGodunov method
to simulate a turbulent flow field, there is no steady frameedénence, and these
entropy ‘anomalies’ occur throughout the field providingssgation rate proportional
to Au? anda. Itis then expected that ILES simulations using a Godunbeste would
have a subgrid model more akin to a physical viscosity thapgutional toAu® as
ideally desired. As the numerical viscosity increases abibnat required to mimic
the behaviour of the subgrid scales then a greater sepafatiequired between the
highest wave number captured on the grid and the beginnitigecgub-inertial range.
When simulating low Mach turbulence with Godunov methods #fect means that
a large number of finite volumes must be employed to give theaired separation.
This explains why the kinetic energy spectra gained usimglsitapturing methods
are typically overly dissipative in the high wavenumbergaiiSee, for example, [62,
182]).
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Isolated Velocity and Pressure Discontinuity

The analytical methodology followed in Appendix B.1 to giveetleading order dis-
sipation rate for an isolated velocity discontinuity hasménplemented into Mathe-
matica, a symbolic manipulation software package. The tisgrobolic manipulation
software enabled the derivation of leading order disspmatates for more complex
cases including jumps in all primitive variables. This wasidated using the analyti-
cal solution for the isolated velocity jump and numericakteases. The Mathematica
script used to compute the leading order terms in the digsipaate for the case of a
jump in all primitive variables is reproduced in Appendix B.2

Extending the previous test case but now including a jumpéssure, such that

pL=p+Ap/2 pr=p-Ap/2 PL = PR =P, u=Au, u=0,
(5.5.12)

the leading order dissipation rate in the presence of a jJAmANdAU, expau, Can be
written as

(1-va) (Ap - paAu)® L

- T (5.5.13)

€AuAp =

The time rate of irreversible dissipation of specific kinethergy in the case of an
isolated pressure jump decreases with Mach number (asganfiked pressure jump).
Table 5.2 details the rate of entropy increase in the firse tatep for a first order in
time and space shock tube test case where the initial conditire

pL=pP+Ap/2 Ppr=p-Ap/2, pL=pr=p, U =Ur=0, (5.5.14)

andAp is constant in magnitude, the rathp/ p is adjusted by increasing the pressure
p. The highest change tested is a jump of half the magnitudbeofrtean pressure
of the left and right side. In all cases the error between daglihg order entropy
increase in Equation (5.5.13) and the exact solution igless1%. The rate of entropy
production scales with the inverse of the speed of sound@ecexd. Comparing this
with the results in Table 5.1 it is clear that the terms dué&éovielocity jump dominate
in low Mach flows. Interestingly, the leading order approatman in Equation (5.5.13)
is valid for such a large pressure jump even though the PVRSd&iarsolver produces
negative entropy due to the higher order terms.

In this case, the variations in density do nfitat the rate of entropy production - they
only modify the magnitude of production in the presence dlacity or pressure jump
due to the influence of the term= (o + pr)/2 in the linearised solution.

Itis interesting to note that the dissipation is propordltio the square of the departure
from the characteristic relation along thgy = u + a eigenvalueAp — paAu = 0.
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Table 5.2: Rate of increase of AS for an isolated pressure jump per unit time

Ap/p Eqgn. (5.5.13) Exact PVRS HLLC
0.5 0.00048 000048 -0.0001 Q00048
0.1 0.00021 000021 000016 000021
0.01 66x10° 6.6x10° 65x10° 6.6x10°

0.001 21x10° 21x10° 21x10° 21x10°

The analysis within this subsection has assumedithatpositive, i.e. that the solution
at x = 0 lies to the left of the contact surface and thus can be destiy Equation
(5.5.7), but there is no assumption in the direction of threge as long as this criteria
remains valid. If itis assumed that the velocity jump iffisiently negative, or that the
pressure increases from left to right such thrak O then the solution fop+ changes
to ([184], p. 297)

px = pr+ (Ux —UR) p/a. (5.5.15)

Utilising the script in Appendix B.1, the leading order rafessipation in this case is

Ap(Ap - a®Ap)
+ + ..
2Axp*a(y — 1)

€us<0 = EAuAp (5.5.16)

For a constant pressure and density jump there is an adalitomponent of dissipa-
tion which increases as the Mach number decreases, prapalrto ApAp. However,
this would scale ad = in incompressible flows or at leabt=2 for un-preconditioned
compressible FV schemes so would not dominate over the terma?. The char-
acteristic invariant along th&;y = u eigenvalue also appears in this expression, so it
appears that dissipation is minimised only when all jumgszaro, or when the jumps
correspond exactly to the characteristic equations fomtarees which pass into the
cell.

Shear Waves

For a three dimensional direction split method the sheaewave typically advected
passively. This means that the accuracy of the projecteat\aflthe velocities parallel
to the interface, in this case therelocity, will also dfect dissipation. In the case of a
single isolated jump inr velocity dissipation will only occur if the contact wave erg
the cell under consideration. This is because the compsmpamallel to the interface
only change across the contact surface. For example, ituthe jnv velocity takes
place at the right hand interface, dissipation occurs dnly is negative.

Following the methodology detailed in Appendix B.1, the iegdorder irreversible
dissipation rate has been derived given the initial coodg#iin Equation (5.5.12) and
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additionallyv, = Av/2,vg = —Av/2. The leading order term associated with the shear
wave is constant with respect to the speed of sound,

_ AVZ(Ap—Zp)u+

5.5.17
4pAX ( )

EAv

thus it does not influence the asymptotic behaviour of théegysIn a simple shock
tube case with constant p, p and a step discontinuity in thevelocity component
Equation (5.5.17) is accurate to within 1% in validationesa@/hereAv/a < 0.5.

5.5.3 Higher Order Methods

The previous subsections discuss only the first order ingingespace Godunov scheme.
The majority of practical simulations are conducted witbas®l or even higher order
methods, and so it is useful to discuss the applicabilithefdbove analysis to more
general Godunov schemes.

In smooth regions, a higher order interpolation in spacelgvaat to reduce the mag-
nitude of the jumps between the left and right quantitiese Freversible dissipation
will still depend onAu? and increase as/M, howeverAu? would now be estimated
via a Taylor series expansion of the interpolation functidimis confirms that a key
parameter in the design of numerical schemes is to minirhisaliference between
the left and right quantities, not necessarily the formdeorof accuracy. As an exam-
ple of this, the Minmod and van Leer limiters have the samm&iorder of accuracy
when used in a MUSCL formulation. Despite this the van Leert&nmwill normally
resolve interfaces much more sharply. The underlying reémahis diference is that
although both limiters have second order accurate intatjpol, the jump from the left
to right side interpolated values is second order for Minmag third order for van
Leer. This gives the observed improvement in performance.

An additional property of the various extrapolation methaglthat they increase the
kinetic energy within a given cell via the process of intdgpion itself. This will also
affect the entropy, however in a more complex manner, the asafa/hich is beyond
the scope of this chapter. It is expected that methods whiah ayerall dissipative
truncation errors represent interpolation methods whiehndt increase the kinetic
energy with respect to the continuous function in the irg&ton stage.

The analysis in section 5.5 is not valid for higher order tistepping methods, and
would have to be repeated for eacktelient time stepping method. As all higher order
methods are multi-step then it is expected that the regudtipressions would be quite
complex. However, the asymptotic behaviour can be easdynaxed numerically. Ta-
ble 5.3 shows the velocity jump test case in Section 5.5.@atul using second order
Total Variation Diminishing (TVD) Runge-Kutta method [164inplict-explicit dual
time-stepping (DT) method [92], third order TVD Runge Kuttathod [69], and third
order extended stability (ES) Runge-Kutta [173] with firstl@r spatial reconstruc-
tion using the exact Riemann solver. These results deméagirat the dissipation
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Table 5.3: Rate of increase df AS for a fixed magnitude velocity jump (varying the speed of
sound) for several flierent time stepping methods

Au/a 2nd TVDRK 2nd DT 3rd TVD RK 3rd ES RK

0.5 0.00028 000023 000029 00003

0.1 0.0012 00010 00012 00014
0.01 0011 Q010 Q013 Q013
0.001 0118 Q103 Q130 Q130

Table 5.4: Rate of increase of AS for a variable velocity jump (fixed speed of sound) for
several diferent time stepping methods

Au/a 2nd TVDRK 2nd DT 3rd TVD RK 3rd ES RK

0.1 0.0012 00010 00012 00014
0.2 0.0052 00043 00055 00056
0.4 0.023 Q019 Q023 Q023

increases linearly with speed of sound with all time stegpirethods as was the case
for the first order in time computations. Additional testsywag the magnitude of iso-
lated velocity discontinuities whilst holding the speedsofind constant are detailed
in Table 5.4. It confirms that the dissipation rate is projpogl! to Au? for all higher
order time stepping methods examined. This confirms thatdhee trends detailed for
the first order schemes apply to higher order in time comjmurtst

5.6 Conclusions

The analytical results derived within this chapter dem@tstthat the rate of dissipa-
tion of a Godunov scheme for a typical unsteady flow is not efsame form as the
irreversible dissipation in the governing Euler equatidnshock tube cases the global
dissipation of the solution for a shock wave can be compusatguhe Hugoniot rela-
tions, and has been shown previously to be proportionakte¢tocity jump across the
shock wave cubed. However, in the case of an unsteady flowréedhe local increase
in entropy is dependent on the numerical viscosity whicthamEV Godunov method
is proportional to the velocity jumpu, squared and the speed of soundJnder the
assumption of low production of entropy due to thermal grati, this corresponds
to a kinetic energy dissipation rate proportionabttu?, explaining directly the poor
performance of Godunov methods at low Mach.

This has important ramifications in the simulation of low Mawmber flows, where
excess damping of flow structures leads to extremely inategolutions. The analysis
is presented for Godunov-type methods, however it is likiet a similar mechanism
is present in all compressible finite volume methods whidaiuitle a reconstruction
phase. It is also of importance for Implicit Large Eddy Siatidn. The expressions
within this chapter can be used to derive new variable egtedion methods, tailored



126 Theoretical Analysis of Kinetic Energy Dissipation in Godinov Schemes

to mimic classic sub grid models through the size of the jumgsimitive variables.



CHAPTER 6

Low Dissipation Numerical Method

6.1 Introduction

Increasing computational power and improvements in nwsakmethods has meant
that simulations of compressible flow configurations are ratvsuch high resolu-
tion that it is increasingly important to capture relatwé&w Mach number features
with the same compressible scheme. An example of such ceahlfiows could in-
clude a super-critical airfoil with a turbulent wake, shaokuced shear instabilities,
or Rayleigh-Taylor instabilities.

In the previous chapter, it was demonstrated that the lgaatider kinetic energy dis-
sipation rate in a Finite Volume Godunov scheme can be espdess

.- (1=C)(Ap—paAy)® |
- AX 4ap?

(6.1.1)

wherep, p, u anda are the pressure, density, velocity normal to the cell fater
and speed of sound respectivelix is the length of the computational cefl, the
Courant-Friedrich-Levy (CFL) number andindicates a dterence between the left
and right quantities at the cell interface. The key obs@matregarding this result is
that the dissipation is proportional to the speed of sounidlaa velocity jump squared
at leading order. Thus any low Mach features are heavily @égreg by the numerical
scheme.

The modification proposed in this chapter is intended foringlws with both com-

pressible and low Mach features, such that the time stepisimet constrained by
the low Mach features. It includes a simple local modificatio the reconstruction
process which féectively removes the Mach number dependence of the leaddey o
dissipation rate of kinetic energy, hence significantly iaying the resolution of low

Mach portions of a compressible flow. It is applied in thisiea to a Godunov-type
method however, in principal, there is no reason why it cafm@extended to any
compressible method which employs a reconstruction phese main feature of the
modified numerical method proposed here is th&wgally adapts the reconstruction
method to allow good resolution of low Mach features and kba@t the same time
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without modifying the formulation of the governing equaiso It is thus more read-
ily applicable to flows including complex physical procesgiean methods based on
low Mach number expansions of the Euler equations (sucheapréfssure projection
methods of [109, 5]), or preconditioned schemes (such aslf¥2Z]) which typically
require significant modification to add th&exts of multiple fluid components, re-
actions, strongly compressible features or other additiphysics. The modification
requires negligible additional computational expense.

The layout of this chapter is as follows. Section 6.2 propassimple modification
of the reconstruction method applied only to the velocityps across the cell inter-
face. Itis shown analytically that the leading order diatign rate is constant as Mach
number tends to zero, instead of tending to infinity as withdhginal scheme. This
method has been implemented in a fifth-order in space, thridr in time MUSCL
based Finite Volume Godunov method, which is also detaitedeiction 6.2. The
original fifth-order method and the modified scheme are adpio one dimensional
test cases in Section 6.3.1, which demonstrate that thefieddicheme can capture
weak acoustic waves, moderate and strong shock waves, aedtatknsity layers
with a reasonably low level of ffusion. Section 6.3.2 presents a single mode Kelvin-
Helmholtz instability showing that the modified scheme egtethe ability of the Go-
dunov method to Mach numbers as low as“@nd recovers the expected lgcaling
of pressure and density fluctuations. Two complex three dgio@al test cases are
detailed in Section 6.3.3. The modified scheme is shown tafgigntly reduce dissi-
pation at the high wavenumber modes in homogeneous decaylmgence. Itis then
applied to a high resolution simulation of the Richtmyer-Kles/ instability where
the turbulent kinetic energy spectra are in excellent agese with theoretical predic-
tions, especially considering the lack of an explicit suthgnodel. Finally, Section 6.4
gives conclusions and discusses the possible directioiusure work.

It should be noted that an additional numerical method based modified Roe

scheme has been proposed which has gained good resultsitalcwflow. However,

as the approach proposed in this chapter is more generahfipicable to a range of
different schemes), the modified Roe scheme is not describedRuerieirther details

on it see Appendix C or [181].

6.2 Numerical Method

This chapter is concerned with the simulation of the Euleragigns, where viscosity

is assumed negligibldle — ~). The three-dimensional compressible Euler equations
are solved using the direction split method. This involvelyiag in each principal
direction the following governing equations,

oU  OE

E + & =V, (621)

where,
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U=[p, pu, pv, pw, €], (6.2.2)
E= [pu, pU? +p, puv, puw, (e+ p)u]T, (6.2.3)
e = pi +05p (W +V + W), (6.2.4)

andp, i, u, v, w are the density, specific internal energy per unit volume@adesian
velocity components, respectively. It is assumed that td 8atisfies the ideal gas
equation of state

p=pi(y-1), (6.2.5)

wherey is the ratio of specific heats. The Kelvin-Helmholtz and Rigyr-Meshkov
simulations also advect a passive scalar to track the twd domponents, assumed
to be miscible. The fluxes are obtained by solving the Riemanhlem at the cell
interface using left and right limited quantities. The HLIpproximate Riemann
solver is employed as detailed in Toro [184]. Higher ordexuaacy is achieved using
MUSCL extrapolation [187],

1

PiL+1/2 =P+ éf/’"m (ri"m’L) (P —Pi_1), (6.2.6)
1.
Pl =P éfﬁ"m (rf™) (Pisz = Piaa). (6.2.7)

whereP is the vector of cell averaged primitive variables, and thiésare labelled by
the integetii. Also,

. P _ P . P — P._
limL _ "i+l i IimR _ Ti i-1
= Pi—Pi.y’ = Pi1—P (6:2.8)
The fifth-order limiter proposed by Kim and Kim [107] is empéal
lim,L lim,L lim,L .lim,L
gl =2/rM+ 11+ 2:‘}43'm = 3™ ’ (6.2.9)
lim,R lim,R lim,R.limR
PR = e e kW (6.2.10)
’ 30
where monotonicity is maintained by limiting the above agtlations using
oy, = max(@min(2 2™, g ), (6.2.11)

Pusr = max(@min(2 2r™F, gy o). (6212)
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This completes the description of the standard fifth-ordethmd which will be de-
noted ‘M5’ throughout this chapter. The fifth-order methadeg significantly better
resolution that typical second-order schemes, for examplée Sod shock tube case
the extent of difusion of the contact surface is typically reduced by onetbimpared
to MUSCL with the second-order van Leer limiter.

As shown by Guillarcet al. [73] the scaling of the pressurefiirences is incorrect
at low Mach for the standard Godunov scheme. This can be shgvwemxamining the
solution to the Riemann problem for the interface pressuhere/

M
=p+ > VY PpeAu (6.2.13)

at the cell interface once the Riemann problem is solved. Méeretical analysis in

the previous chapter demonstrated that this is caused kgptwfication of an artifi-

cially large velocity jump at the cell interface when usiriggewise constant variable
extrapolation.

The solution to this problem can be approached in twtedgnt ways. One method
would be to modify the Riemann solver itself in an attempt tonpensate for the
strength of the acoustic waves. This approach would leadgte@onditioned method
such as that proposed by Guillagtlal. [73]. However, a second approach is to con-
sider that the Riemann solver is acting upon artificially éajgmps in the primitive
variables. These jump sizes have been determined througlypuathematical rea-
soning (i.e. via extrapolation at a specified order of acoud cell centred quantities)
without regard for the physical nature of the flow being siaedl. In this chapter it
is proposed to modify the extrapolated, or ’limited’ quéies in order to take into
account the flow physics at low Mach.

As has been demonstrated analytically in Chapter 5, theikiarérgy dissipation rate
can be gained by analysis of the generation of entropy oviegéegime step, using the
Taylor series expansion of the extrapolated variabless iBhbased on the observation
that in the absence of strong thermal conduction, the ggaeraf entropy change by
temperature is equal to the dissipation of kinetic energy.

The Taylor series expansion of MUSCL reconstruction usireg M5 interpolation
method on the vector of cell averaged primitive variatiagves

. - OAX_, AX? AXH AX®
P(x) =P + ?P'X EPI = 0P'XXXX 50 — Pt (6.2.14)
whereP' indicates functions evaluated at the cell centre. The exqunsion from the

cell averaged quantity to the continuous function gives

OAX . AXP AX? Ax4
PO) = P+ P+ =5 Ploct 75 P = 735 o

confirming that the extrapolation method is fifth order aateirr From this point on the

+ O(AX®), (6.2.15)



6.2 Numerical Method 131

superscripts.J will be omitted for clarity. It was shown in Chapter 5 that tieading
order dissipation rate arises due to the velocity jump notaithe cell interface. Thus,
for simplicity, a flow field consisting of constant densityepsure and shear velocities
but continuously varying normal velocity componenis considered. The following
derivation is complex even for first order in time and spacéds, hence following
verification of the methodology (detailed in the previouapter), a Mathematica script
was used for the analysis.

The fluxes at the + 1/2 andi — 1/2 interfaces are computed from the Taylor series
expansion of the M5 extrapolation. These are then evolvéidsarder in time, and
the change of entropy over the time step computed. Nextptioisess was repeated
using the exact solution at the cell interfaces (i.e. theesprocess but with the exact
Taylor series expansion). The leading order change in pyirothe discrete solution
with van Leer limiting is then subtracted from the exact ol giving the kinetic
energy dissipation rate due to the errors in the spatiatetisation. Remarkably this
consists of only a single term

s AX°
€ = Eauxuxxxxﬁ H.O.T. (6.2.16)
This term is proportional tax® as expected from the leading order of th&etience
between the left and right quantities in the expansion oflithging function. Addi-
tionally, the dissipation rate increases with speed of daas was previously demon-
strated for the first order limiter in Chapter 5.

A simple solution to the problem of the excessive numericsgigation is sought by
modifying the velocity jump at the cell interface by a fumctiz, where the recon-
structed velocities are now defined by

u. +Ugr U — Ur
+2Z

UL mMs+LM = > 5>
u u Ur—U
URMs+LM = : ; R 422 > 3 (6.2.17)

Repeating the above analysis but for the new modified velesityapolation given by
Equation (6.2.17) gives,

msiim _ AX

= EZaU(UXxxxx'i' H.O.T., (6218)
whereH.O.T. are higher order in terms of spatial derivative, but loweteorin terms
of speed of sound. It can be seen that by chooging min(Mica, 1)), Migcar =
max(M_, M) the leading order dissipation rate becomes

€

5

A
MM 6—)(() 1] UUgooo+ H.O.T. (6.2.19)
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This ensures that the dissipation does not exceed that ofitfieal scheme and reverts
to the standard upwind form in supersonic flows. The newnmeat of the velocity
jumps can be considered more ‘realistic’, in that the stesh@odunov method sets
up artificially large jumps which would not be present in a IMach flow field. It
can also been seen as a progressive centfareincing of the velocity components as
Mach number tends to zero. The left and right densities asumes are not modified,
as this will cause excessivefilision in stationary contact surfaces, which is not desir-
able. Importantly, as the sign of the fifth derivative is teng as the sign of the first
derivative, the leading order term is still absolutely ghasive locally. A key obser-
vation is that the reconstruction is modified based on thal lpmperties of the flow
field, hence the same governing equations are solved thootigjire domain.

By assuming that the flow field consists of a single sinusoi@atypbation, where
u(x) = Gisinkx) andk = 1/nAx, the dissipation rate can be written as

M5+LM _ 1 |G|3
€ ~ 50 Ax’ (6.2.20)
which shows a similar functional form to Kolmogorov’s foiiiths law (which gives
e o |u®/l), whereas the standard method gives a dissipation rateeofotim e o
u’a/Ax. This chapter includes some fully turbulent test cases vesitigate if this
functional change in the dissipation rate improves peréoree in the framework of
Implicit Large Eddy Simulation. From this relation it is alethat the dissipation rate
decreases steeplyagcreases, i.e. as the wavelength of the mode under coatimter
increases, as is expected of a higher order method.

The leading order dissipation rate gives increasing egtasplong as the standard
CFL criteria is held, thus the numerical method does néiiesuhe severe instability
of preconditioned methods when used in conjunction witHiexpime stepping [20].
Additionally, substituting the modified velocity jump acding to Equation (6.2.17)
into Equation (6.2.13) recovers the expecidd scaling of the pressure and density
variations. This numerical method is denoted ‘M3’ throughout this chapter.

It should be noted that not all interpolation methods can beified in this way. A
similar modification applied to the van Leer limiter giveseading order truncation
error

AX? AX®
€/5M = Tl UlUyy + —Caly Uy, (6.2.21)

12 12
demonstrating that one of the leading order terms stilleases with speed of sound.
Finally, third-order accurate Runge-Kutta time-steppirgtimd is employed [173]

1At

1_yyn, = n
Ul = U+ 5 (D). (6.2.22)
1 At
2 _ 1
U =Ul+ S I f (UM (6.2.23)
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1 At
uMt = 3 (2ui2 +U+ (U?)+f (uil)]). (6.2.24)
wheref (Ui” indicates the net flux into the cell evaluated using the aofaypnserved
variables at timen in cell positioni (see also [53]). This has an extended stability
region to a theoretical limit €FL = 2.

6.3 Test cases

6.3.1 One-Dimensional Test Cases
Modified Sod Shock Tube

To demonstrate that the proposed modification doesfittahe ability of the scheme
to capture shock waves and contact surfaces the originahrendified method have
been applied to the Sod shock tube test case modified to mskationary flow within
the rarefaction fan. This modification is used to test theswfor unphysical rarefac-
tion shocks when the leading order dissipation is decresigedicantly within the fan.
The initial conditions are

(o,u, p). = (1, -0.5,1), (o,u Pk = (0.1250,01), y=14 (6.3.1)

where the initial discontinuity is placed at= 0.5. The domain is of length 1 and was
discretised using 100 cells. The CFL number was chosemasid the results were
taken att = 0.17. Figure 6.1 shows the pressure, density and velocityl@sadfising
both the modified and original limiting methods. The pressamd density profiles are
almost indistinguishable from the original fifth-order safe. There is only a slight
change in position of the first point in the shock wave, andioelified scheme gives
sharper profiles at the head and tail of the rarefaction.

Density Layer

The second test case is taken from Klein [109] and is usedliata that the scheme
can advect large density variations at Ma6bl02 at very low dissipation, whilst re-
solving a low wavelength acoustic wave which passes throligliensity layer. The
initial conditions are defined by

p(x,0) = 1+ dsin(40rx/L) + M(1 + cosrx/L)) (6.3.2)
p(x,0) = 1+ yM(1+ cos@x/L)) (6.3.3)
u(x,0) = +/yM(1+ cosx/L)) (6.3.4)
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0.8f

(b) Velocity

(c) Pressure

Figure 6.1: Results from the modified Sod shock tube test case

and the domain size isL < x < L = 1/M whereM = 1/51. Finally, the domain is
discretised with 1020 point§FL = 1.4, andy = 1.4. Figure 6.2 shows the pressure,
velocity and density distributions at timte= 5.071 for both the original fifth-order
scheme and the modified scheme, corresponding to about tiva balf passages of
the long wave acoustic perturbation. Again, both modified anmodified schemes
perform extremely well, the total density variation hasrbesduced by only 7% com-
pared the initial amplitude. This is far better than the Sbpe results reported in
[109], and as good as the low dissipation implicit schemeqmied there. The total
density variation between the standard and modified schemmealy 103%. This was
the only test case examined here where the modified schemkesgastable than the
original scheme, which would run up @FL = 1.6.

Noh

The third test case is taken from Noh [143] and consists ofitfinite strength shocks
moving out from the centre. This is employed to test the parémce of the scheme
for very strong shocks. The initial conditions are
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scheme M5LM. The initial conditions are shown as dashed lines
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Figure 6.3: Results from the Noh test case

(o,u, p)L = (1,1,10°°), (p,u, P)r = (1, -1,10°°), y=5/3. (6.3.5)

where the initial discontinuity is placed at= 0.5. The domain is of length 1 and was
discretised using 100 cells. The CFL number was choserbasid the results were
taken at = 1. Figure 6.3 shows the density profiles using both the mabi#red origi-
nal limiting methods. Both original and modified schemes desirate excellent shock
capturing, however both schemes break symmetry (as do mghylder schemes in
this test case (see Liska and Werftl{d22]), and are oscillatory behind the strong
shock. Performance in this test case can be improved by gmgld’VD time step-
ping method. This is demonstrated in Figure 6.4, which shitwsesults gained with
the same reconstruction method but employing the thirdrofe#® Runge-Kutta time
stepping of Gottlieb and Shu [69] at CFL50 The spread of the oscillations away from
the centre is significantly reduced for both reconstructisthods, with the modified
scheme giving the best results in the uniform region behiedshock.

6.3.2 Two-Dimensional Test Cases

Single Mode Kelvin-Helmholtz

The dfective resolution of a numerical scheme can be determineskagnining the
ability to resolve the a single mode instability. In thiseaan initially small perturba-

tion velocity of one tenth the free stream Mach number tnigdlee development of a
Kelvin-Helmholtz vortex. It is initialised following [199
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Figure 6.4: Results from the Noh test case using 3rd order TVD Runge-Kutta

(a) =0 (b) t=1 (c) =2 (d) t=3
Figure 6.5: Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 showing

the development of the Kelvin-Helmholtz instability at Ma€h2 using scheme M5

_0A
ox’

Uo

k

0A
u= Z

= — A, =
ay9 Z

= cogky)exp*@, Uy =0.1AU, (6.3.6)
whereAU is the diference in mean flow velocity U across the mixing layer. In this
exampleAU = 1, hencer = —AU/2 for -0.5 < x < 0 andv = AU/2 for 0 < x < 0.5.
The Mach number, defined WJ/a, is adjusted by changing the pressure. Density is
fixed atp = 1, andy = 5/3. The size of the domain isx 1 and is discretised with
16 cells in each direction. The coarse resolution is deditedy chosen to highlight the
scheme’s ability to capture what would be a high wavenumbgugbation on a larger
grid. It also allows easy demonstration of the low Mach b&havof the dissipation

of kinetic energy.

Figure 6.5 shows the development of the single mode vorteguke original fifth-
order method aM = 0.2. The characteristic rolled up vortex is clearly visiblegh
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(a) M = 0.02 (b) M = 0.002

Figure 6.6: Contour lines at mass fraction 0.1 through to 0.9 with increments of 023dbt
Mach numbers @2 and 0002 using scheme M5

Q00O

(@) M =02 (b) M = 0.02 (c) M = 0.002 (d) M = 0.0002

Figure 6.7: Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 using
M5+LM att =3

lighted by the transport of a passive scalar into the spitaihould be noted that this
is already a reasonable result - using a second order lisuteln as van Leer at this
grid resolution would give no visible roll up.

If the Mach number is reduced by increasing the backgrouadsorre, then excessive
dissipation prevents growth of the initial instabilitygeire 6.6 shows the development
of the mixing layer at Mach 0.02 and 0002. At flow Mach numbers of less than 0.2
the perturbation is dissipated, preventing the growth efitistability.

Applying the low Mach correction to the velocity jumps impes the resolution of the
perturbation, as shown in Figure 6.7. Wt= 0.2 the vortex roll-up is greater, however
the Q5 contour line has merged in the central cells thus creatiagkink’ in vortex
centre. As Mach- 0 the spiral structure of the vortex is perfectly intact apdesars to
be reaching a relatively Mach-independent structure. &tdlwvest Mach number there
is a very slight asymmetry in the results, which is due to the af a small number to
prevent a divide by zero in the limiting stage of the caldolat

As pointed out in Guillarcet al. [74, 73] it is important that the pressure and den-
sity fluctuations follow the correct scaling. They demoatgrclearly that the standard
finite volume scheme contains pressure fluctuations of dwjecontrary to the in-
compressible limit which should only support perturbasiari order M. The relative
pressure and densityftérence are defined as
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Figure 6.8: Scaling of the maximum pressure and density variations with Mach number at
t = 3 for scheme M5LM

pmax_ pmin
Ap= —
P P

and are plotted in Figure 6.8 for Mact?@o Mach 00002 at = 3 for scheme M5LM.
Below Mach 02 the maximum pressure variation followsM¢ scaling as required
from incompressible theory, as does the scaling of denaityation.

, AP = Pmax — Pmin, (6-3-7)

6.3.3 Three-Dimensional Test Cases
Homogeneous Decaying Turbulence

In this section the schemes are tested for the ability tdvesoturbulent flow where all
flow properties vary continuously throughout the flow fielcdheTcanonical numerical
test case for which theoretical results are available fongarison is that of homoge-
neous decaying turbulence in a periodic cube. From thetseegukection 6.3.2 it is
expected that the modified scheme will be significantly lessiplative. This would be
a great advantage as it is well known that Godunov schemsipdis heavily at high
wavenumbers [62, 182].

The flow field was initialised using a method derived by Youagd utilised in previ-
ous simulations of decaying turbulence [195, 197]. The fleifhas an initial kinetic
energy spectrum given by [82]

k* | 8
E(k) = “’zk_g N er exp(—Z(k/kp)z), (6.3.8)

wherek is the wavenumber, and the peak in the energy spectrum iddfynchanging
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the peakk, in the exponential. The peak of the energy spectrum was olaigg = 4.
To ensure the generation of an almost non-divergent (i.eonipressible) velocity
field, the velocity is formed from components of a vector ptitd ®, which satisfies
the following relationship:

U= v x . (6.3.9)

As the divergence of a curl is identically equal to zero tlneg a non-divergent veloc-
ity field. The vector potential is initialised with a Gaussw@istribution of amplitudes
and random phases which is rescaled linearly to give a \glbeld satisfying

3 >

KE = 2u,.=05, (6.3.10)
M:LE“:QL (6.3.11)

The chosen Mach number is low for a Godunov method, and thHughtights more
clearly the advantages of the modified MUSCL reconstructrep@sed. The simula-
tions were run at 32 64° and 128 using both M5 and M5LM, and the viscous terms
were neglectedRe — ). Figure 6.9 plots the mean kinetic energy per unit volume
versus time for each grid resolution uptte 5 which corresponds to about eight eddy
turnover times. At lower grid resolutions the MBM scheme resolves more kinetic
energy, and begins decay at a later time, which is a typiedufe of increased reso-
lution of the scheme. Figure 6.9d) compares the kineticggnéecay rate of the 32
modified scheme with the performance of theé 66heme showing that the modified
scheme behaves very close to the unmodified scheme at dbebiesblution.

Three dimensional kinetic energy spectra have been cédcldallowing [44]

E(K) = 27k%;i (K), (6.3.12)
wherek = [k2 + k? + k2 and the spectrum tenspris
1 (o]
(k) = —— () exp ¥ dr, 6.3.13
w0 =50 | Qe (6.3.13)

whereQ;; is the second-order velocity correlation tensor. The imstaeous three di-
mensional energy spectra are shown in Figure 6.10 for deumeainstants using both
methods at each resolution. The original method shows sspditive nature of the
unaltered Godunov method for high wavenumber modes. Tlsesesignificant im-

provement in the turbulent spectra at all grid resolutioridating much higher en-
ergy in the high wavenumbers when modifying the velocity@meents at low Mach.
The original numerical dissipation was clearly too high€da the speed of sound
dependence) and thus generated a much larger dissipatige tiaan desirable when
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Figure 6.9: Kinetic energy versus time for the modified (MBM) and original (M5) scheme

simulating turbulent flow. There is a good match to&kspectrum when using the
modified scheme despite there being no subgrid model engbloyelicating that the
modified scheme is potentially a good candidate for Implieiige Eddy Simulation.

To assess this, thdfective spectral accuracy and spectral eddy viscosity lddtai
Section 4.3.6 have been computed for the standard schenmbentbdified scheme.
The results are shown in Figure 6.11 and 6.12. Surprisinigéygfective spectral ac-
curacy for the continuity equationsig) is actually reduced for the modified scheme,
however for the momentum equationd,) the spectral accuracy is significantly in-
creased - and is better than the standard ninth-order WENGot&t It appears that
the improved spectra and numerical results at low Mach anegoily due to improved
resolution in the momentum equations. It was already nate@hapter 4 that the
resolution of the continuity equation is generally worsarthhat of the momentum
equations, but the ramifications of this are the subject gborg work. Figure 6.12
shows that the modified limiting method provides dissipatitoser in both form and
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Figure 6.10: Instantaneous three dimensional energy spectra taken atto 3 in increments
of 0.5, where the highest solid line is the earliest time. Results for M5 are in theolefina,
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Figure 6.11: Effective spectral accuracy computed from Equation (4.3.12) for the caiytin
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Figure 6.12: Effective spectral eddy viscosity computed from Equation (4.3.21) at the 64
simulation

value to that predicted by Chollet. Additionally, at low wauenber the ective eddy
viscosity is low, implying that the rapid acoustic fluctwets at a large scale are not
present in the simulation.

Richtmyer-Meshkov Mixing

Finally the numerical scheme is applied to a three dimemsimnxing problem where
the sharp and accurate treatment of shock waves and countéates is of paramount
importance. Richtmyer-Meshkov mixing is generated whenrtudeed interface be-
tween two gases is impulsively accelerated, typically bynack wave [155, 134].
These instabilities first grow linearly, and then transitio turbulence, and are of
importance in the study of supernovae explosions, wakestarjgines, combustion
chambers and inertial confinement fusion. This type of adton is typically at very
high Reynolds numbers thus the viscous terms are neglediesislibsection focusses
on the high wavenumber performance of the numerical mettr@dflow physics is
discussed in more detail in Section 7.3.
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Figure 6.13: Iso-surface of mass fractiory = 0.5 illustrating the initial condition for the
Richtmyer-Meshkov test case

The test case uses the initial conditions derived by Youh88][to examine the influ-
ence of initial conditions on the growth of the resultant mixlayer. The flow field
consists a heavy and light gas separated by a perturbethregevhere the perturbation
satisfies a given power spectrum and mean amplitude. Thaenicshock wave is of
Mach= 1.84, equivalent to a four-fold pressure increase acrosshibekswvave. The
domain chosen is of size [0, 0] x [2.4r, 2r, 2] where additional length is given in
the x direction to allow for growth of the mixing layer. Thatial conditions are

X <23 (o,u, p) = (6.375-6148754 x 10°) (6.3.14)
23<x <335+8 (o,u, p) = (3.0,-291575 10°) (6.3.15)
3.35+S < X (o, u, p) = (1.0, -291575 10°) (6.3.16)

where an initial velocity is given to the material interfazech that the mean velocity of
the interface is stationary after passage of the shock witve ratio of specific heats,
v, Is set to 33. The initial interface perturbatiof is given as the sum of modes of
random phase conforming to an initial power spect®m c/k?. The modes excited
are restricted betweeh,i, = 16AXx andAhax = 27/3 and the standard deviation of the
perturbation amplitude is.D1,j,. Figure 6.13 shows the isosurface of mass fraction
Y, = 0.5 att = 0, illustrating the nature of the perturbation. The gricesenployed

Is 360x 300x 300 and simulations were run with both the original M5 limigand
modified M5+LM scheme aCFL = 0.75.

Once the shock wave has passed, the maximum Mach numben Wighmixing layer
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is approximately @5 and decreases with time, thus the standard boundarytwsrsdi
utilised in a compressible code cannot be applied inktHeection. To prevent exces-
sive reflection of the incident and reflected shock wave, aenebed one dimensional
domain is employed as inlet and outlet conditions intlkd@ection. This does not com-
pletely eliminate completely the reflected wave as this igassible where the mesh
size changes (see Menik$131]), but reduces the magnitude of the reflected wave to
0.03% of the initial velocity, which is then transmitted witltareflection through the
inlet boundary condition. In thygandzdirection periodic boundaries are applied. Note
that in the following discussion all length scales are nonahsionalised by, time
scales bylmin andAu = 291575 (the initial velocity impulse applied to the interface
by the shock wave).

Figure 6.14 shows three time instances in the developmeheaghixing layer for each
scheme. The large scale structures are in similar locatioh®th of the schemes,
however it is clear that there is significantly improved fason of fine scale features,
as expected from the previous test cases. Figure 6.15 sholaseaslice of the domain
showing contours of mass fraction tat= 240 for both numerical schemes, further
highlighting the increased resolution of the modified sceem

Next the growth of the mixing layer is examined. It is expeddteat the mixing layer
integral widthW, defined as

W = f< ay >< ap > dx (6.3.17)
X

where< «a; > is they — z plane averaged volume fraction of species one, and it is
expected thaW should grow ag?. Theoretical analysis suggests that at late times
0 ~ 1/3-2/3[37, 202, 196]. Figure 6.16 shows the non-dimensional mgixayer
width. The lines of best fit show ~ 0.35 for the original scheme, and 0.38 for

the modified scheme, in reasonable agreement. The increasadtion of fine scale
structure does not significantlyffact the integral mixing layer width, which is to be
expected as simulations with single mode perturbationsodstrate that the mixing
layer width can usually be captured on a very coarse grid][183

Finally, the two-dimensional turbulent kinetic energy cijpe have been calculated in
they—zplane (parallel to the initial interface) and averaged d¥eslices in thexdirec-
tion (direction of shock propagation). Each spectra is aategbfor a slice 256 by 256,
and the 10 slices are symmetric across the centre of the griyer. Figure 6.17 com-
pares the spectra obtained using the two numerical metticyearal time instances
during the decay of turbulent kinetic energyk?/? line has been plotted on the charts
which is the theoretical form of the turbulent kinetic enespectra determined by ex-
tending the Kolmogorov-Kraichnan phenomenology to takte account the ‘driven’
nature of the turbulent mixing zone [202]. There is an excelmatch between the
theoretical result and the M&M scheme between & k < 100, indicating that ex-
cess dissipation at low Maclitectively removed small perturbations from the original
fifth-order scheme thus preventing development of a fuliputent flow regime. This
is an excellent result, especially considering the lacknoéxplicit subgrid model, and
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(a)t=80

(b) t = 160

(c) t=240

Figure 6.14: Iso-surface of mass fractiory = 0.05, 0.5 and 095 showing the time
development of the turbulent mixing layer. Results for M5 are in the left coJu&LM in
the right column
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(a) M5 (b) M5+LM

Figure 6.15: Contour flood of mass fraction &= 240 illustrating the fine scale structures
present
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Figure 6.16: Variation of the integral mixing widthW with time for the two numerical
schemes
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Figure 6.17: Two-dimensional turbulent kinetic energy spectra taken=af 14, 154, 195,
and 236 plotted with &%/? line

a huge improvement on the original scheme. To the authoogvladge, such a large
inertial range has not been seen in simulations less tha#® 189] with other high
resolution schemes. It could be suggested that there israiskdial range present
for 8 < k < 20 for the original scheme however at such low wavenumbenetls
only a small statistical sample thus any power law deperelenmasked by statistical
fluctuations.

Such a large influence of the low Mach correction on the highiemambers is sur-
prising. If it is assumed that the turbulent kinetic energgaira conforms to &3/2
form, then the characteristic velocity for a given wavenemfalls ask-*/4. Assum-
ing the peak of the spectrum is lat= 4, for k = 100 the mean velocity would be
~ 0.4 of the peak velocity, which is not an excessively low Macmber in this test
case (Mack 0.1). Thus the simulations have demonstrated that the setbilitses
resulting in such a spectrum are at a Mach number much lesstieacharacteristic
Mach number of the modes resolved on the grid assuming atal@nge form to the
grid cut-df. These instabilities are damped at a very early stage inghewth by the
original fifth-order method.

6.4 Conclusions

This chapter has presented a simple modification of theeFifmtlume Godunov method
to significantly improve performance at low Mach and in tueloa flows. It is shown
analytically and through numerical test cases that thepdiien of the numerical
scheme becomes constant in the limit of zero Mach, as opgdosteshding to infin-
ity as is the case for the traditional scheme. In additiois, tiodification recovers the
correct scaling of the pressure and density fluctuations ashMlecreases. The key
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feature of the numerical scheme is that the reconstructionddifiedlocally, hence
the scheme can capture both shock waves and low Mach featutessame compu-
tational domain using the same formulation of the goveregations. The numerical
modification adds negligible computational cost.

The modified method has been implemented in a fifth-ordeefwotume code using
the HLLC Riemann solver, and several numerical testcasesgat@lthe performance
compared to the original fifth-order method. The ability tpture shock waves in
a non-oscillatory manner was demonstrated using the Satkdhbe test case, and
the scheme can advect low Mach density variations withoc¢gsive dissipation. A
two dimensional Kelvin-Helmholtz test case showed thatdissipation is reason-
ably Mach independent, and that the pressure and densitydlinns scale witiM?
as expected. Finally, two complex three dimensional teiusimulations demon-
strate significant improvement in the resolution of flow teas, especially in the rep-
resentation of high wavenumber modes. Results presenteédddhree-dimensional
Richtmyer-Meshkov instability show instantaneous two disienal turbulent kinetic
energy spectra in excellent agreement with the predictéd form for three quarters
of the wavenumber range. Previous published results wigh heésolution methods
gain an inertial range of this length typically only with ¢ertimes the number of grid
points in each direction. It has also demonstrated thatdberate simulation of turbu-
lent flows of Mach~ 0.1 relies on the numerical scheme capturing the growth of very
low Mach instabilities.

This paper has presented the results from applying such #ioatin to a standard
Godunov-type method, however, in principal there is nooraghy equivalent results
would not be gained in a wider class of fully compressibleessts which rely on
reconstruction of the conserved or primitive variablesatdell interface.
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CHAPTER 7

Compressible, Turbulent Flows

7.1 Open Cavity Flow

7.1.1 Introduction

Although the primary aim of this thesis is to analyse and bigvaumerical methods
for shock induced turbulent mixing, there is a severe lactathiled quantitative ex-
perimental data in this area against which the methods cealiokated. The aim of this
section is to validate the new fifth-order low Mach numergeieme for simulations
of compressible turbulent flow by comparison with experitaédata and conventional
LES with an advanced subgrid scale model.

It was decided to use the detailed experimental results cédtieret al. [59] for
compressible flow over a deep open cavity. This type of flowfim@rest in many
applications from vehicle sunroofs to simulations of aftundercarriage, weapons
bays and scramjet combustion. A key feature of cavity flowmésfeedback mechanism
between strong acoustic waves, and the shear layer shedHeompstream edge of the
cavity. In deep cavities, strong acoustic waves are geseiad the coherent vortices
strike the downstream corner of the cavity. These then gajegaupstream to influence
the developing shear layer.

A schematic of the experimental setup is shown in Figure The flow enters the

test section with a freestream velocity of 258 nys, equivalent to Mach 0.8. The
stagnation pressure and temperature wed8 2 10°Pa and 293K respectively. The
cavity length L is 0.05m, depth is 0.12m, and width is 0.12rhe Reynolds number
based on cavity lengtRe. = UL/w;s = 860,000. Boundary layer transition was
triggered well before the cavity and the incompressiblgpshHactor and momentum
thickness were measured as approximately 1.3 and 0.65npmatasly.

The experiment measured velocity components using a tme+sional laser-Doppler
velocimeter, which were then post-processed to separasm ril@ev and Reynolds
stresses. In addition, pressure data was taken from a seonsmted 0.035m below the
lip of the cavity on the upstream face. This measured a stiamgamental mode at a
frequency of 199@ 6Hz of magnitude 158B, and several subsequent harmonics. A
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Figure 7.1: Schematic of the cavity flow experimental setup. The width of the channel is
2.4L..

semi-empirical formula proposed by Rossiter [157] is comiposed to estimate the
frequency of the fundamental mode,

_UC n_a'
"T L M+1/k

(7.1.1)

wheren is the modeM is the Mach number and is the freestream velocity. Finally,
k anda are parameters which are recommended to.6& &nd 025 respectively for

this geometry [157]. However, using the standardficoents for this geometry gives
a predicted fundamental mode at 1515Hz, an error of almdgt 3his highlights the

case for numerical simulation, as for this geometry thedstesh empirical formulae
are very inaccurate. Following their experimental resttgestieret al. [59] suggest

usinga = 0 for this specific geometry, giving the fundamental mode020Hz.

As the cavity flow is at high Reynolds number it is not compuotadily viable to em-
ploy Direct Numerical Simulation. It is pointed out by Laeskequeet al. [113] that
Reynolds Averaged Navier Stokes (RANS) methods can predicessfully the loca-
tion of the first mode, but not the magnitude. This is due toetkeess dissipation of
the RANS method in the developing mixing layer, which is irdrgly unsteady on a
short timescale. Although LES is more expensive, it is cipabresolving the time
dependent behaviour of the flow, simulating the acoustid figlectly. This method is
sometimes denoted as Computational Aeroacoustics, aslthéaftier-Stokes equa-
tions are solved to gain the acoustic field. Previous LES bghevequest al. [113] of
this flow configuration gained excellent results using bd@slwith a selective mixed
scale model and ILES. However, the underlying compressithemes employed were
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Figure 7.2: Schematic illustrating the fierent clustering regions employed in the cavity grid

not shock capturing, hence generate oscillatory behauaegions of discontinuities.

7.1.2 Numerical Methods

For this test case the governing equations are the NavakeStequations. The air
used in the experiment is modelled as an ideal gas with raspexific heaty = 1.4.

The numerical method chosen is the fifth order MUSCL methot eiv Mach cor-
rection. No explicit subgrid modelling was employed, hetiwse simulation fall into
the class of ILES. The grid size follows that of Larchevequal. [113], and takes the
dimensions shown in Figure 7.1. The origin of the chosenrdmate system is on the
upstream bottom corner of the cavity, where positus in the direction of the mean
flow, positivezis vertical in the wind-tunnel, angis the width of the domain, chosen
as 0.05m.

Three diterent grid sizes have been employed, the grid consist8of D0°, 1.4 x 10°
and 3x 1P cells for the coarse, medium and fine simulations respegtiVee domain
was split into two blocks, and severali@irent regions, the upper domain is the first
block, and the cavity the second block. A schematic of tifieint regions in the grid
is shown in Figure 7.2. The upper block is split into six regiodefined by being either
before the cavity, above the cavity, or after the cavity, g split in thez direction if
they are located above the boundary and shear layer, omvtithiboundary and shear
layer - defined ag/L < 0.2. Next the cavity block was split into two regions, region
5 contains the shear layer and associated recirculatiosg ¢b the top of the cavity,
extending toz/L = —0.8. Region 6 is the bottom of the cavity where the grid was
relatively coarse.
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Table 7.1: Details of the grid clustering exponents in thdirection, where andx_
indicate clustering becoming finer in the downstream or upstream direcgpactvely
Regions 12 3456 7.8

Direction  Xg XLR XL
Coarse 0.2 0.3 0.7
Medium 0.4 0.3 0.75
Fine 0.35 0.35 0.77

Table 7.2: Details of the grid clustering exponents in thdirection, whereg andz_ indicate
clustering becoming finer in the positizer negativez directions
Regions 13,7 248 5 6
Direction z Z R Ir
Coarse 0.6 0.2 0.2 0.5
Medium 0.6 0.2 015 04
Fine 0.6 0.3 0.2 0.5

An exponential clustering function was employed in thedaihg form, taking thex
direction as an example:

exp(Q1R(i - 1)) -1
exp(OJ-R(imax_ 1)) -1

X(i) = Xinitial + (Xmax— Xinitial) (7.1.2)
wherei is the grid co-ordinateR is the clustering exponentyay IS the maximum
number of points in the direction in that region, andi,iia;, Xmax are the start and
end points of the region in thedirection. Tables 7.1 and 7.2 list the grid clustering
exponents in the andz direction for each region, for each of the three grid levels
employed, where several regions have the same clusterpanert. Table 7.3 details
the number of points in total in the upper and lower blocksl, thwen number of points
in the z direction in the boundary layer region above the cavity (Begi2, 4, 8), and
the mixing and recirculation zone within the cavity (regn

It is not considered that the development of the shear layerthe cavity is sensitive
to the exact nature of the turbulent boundary layer. Herltteowgh the simulation is

greatly under-resolved (even at the finest grid lgfek 20, the medium and coarse
grids havey" of 42 and 55 respectively), no turbulent wall model was erygdip and

Table 7.3: Number of grid points in each block for thefidirent grid sizes
Upper Block  Cavity Block  Uppertayer Cavity layer

Direction x vy z X y z z z
Coarse 170 40 70 60 40 100 30 70
Medium 220 50 80 100 50 150 40 110

Fine 260 60 100 120 60 160 55 120
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the walls of the wind tunnel were modelled as non-slip. Ifletindary conditions
were fixed assuming isentropic expansion from the expeiahegservoir conditions
(po = 98000PaT, = 293K) to Mach 0.8. This gives a pressure of 64304Pa, density
of 0.8623kgm?3, and a velocity equal to 258 The experiment measured turbu-
lent noise levels of 5% of the freestream velocity, however numerical test with i
posed white noise on the inlet boundary condition up to 15%efreestream velocity
showed no significant influence on the flow physics of the sgpdmixing layer.

The boundary layer at the inlet is defined using the experiatigmmeasured incom-
pressible shape factor and momentum thickness to definetirergaw profile. Hence,
fory/o <1

y 1/n
<Us>=U ((—S) , (7.1.3)

wheren = 2/(H — 1) is determined from the incompressible shape fadter 1.3, and
¢ is determined using the momentum thickn@ss0.65mm

_6n+1)n+2)
= f

) (7.1.4)
The exit boundary condition is extrapolated from the indéflow. As the flow is sub-
sonic this condition is not rigorous as there are waves afnag upstream, however
strong grid stretching the in x-direction damps acoustitysbations far downstream
of the cavity. The constant velocity flow field is maintaingdebpressure drop which
is imposed on the initial condition, aimed to compensatarfomentum losses due to
viscous drag at the wall, and losses due to the cavity. Assyithiat the losses in the
boundary layer are similar to that over a flat plate the sh#ass can be estimated
from the empirical relation [8]

1
Tw = zpuch, Ct = 0.074/Ré”?, (7.1.5)

and the required pressure drop is given by

AP = 21wAy /Ay (7.1.6)

whereA,y is the area of the top and bottom walls, is the cross-sectional area of the
domain. The mean flow is 258g) ratio of areas is 3, giving, = 32Pa and an imposed
pressure drop oAp = 198Pa. This pressure drop is imposed linearly throughaut th
domain at initialisation.



156 Compressible, Turbulent Flows

Figure 7.3: Comparison of experimental Schlieren images (left) and computational sehlier
|Vp| (right) at approximately the same time within the vortex shedding cycle
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7.1.3 Results and Discussion
Flow Phenomenology

High speed schlieren images taken during the experimenbdstmrated that the mix-
ing layer undergoes a clear periodic cycle. This cycle isthated in Figure 7.3 which
compares experimental schlieren images and computatsmhdieren results on the
finest grid level (Vp|). The first vortex (labelled Son the experimental images) forms
where the boundary layer separates from the upstream edtie afavity. It then
growth rapidly in size, an propagates downstream. As theegame the second struc-
ture (labelled § begins to form at the separation point. At the third imagémse-
guence there is strong shock-vortex interaction resuitirgformation of the acoustic
wave as it passes through the leading vortical structuras fheases a cylindrical
sound wave as the vortex core is compressed into an elligiegpe during the pas-
sage of the wave, releasing acoustic waves as it returnscidai shape (these can be
seen in the fifth and sixth images).

The third vortex is visible in the sixth frame, at which tinetfirst vortex is approach-
ing the downstream wall, and is deflected downwards. As tlsévortex is strong,
as it is shifted down the wall it induces an upward velocitytioe developing second
and third vortical structures, lifting them. In the final fémages the second vortical
structure strikes the downstream corner of the cavity, edethe third vortex is lifted
over the edge and continues downstream. The sequence exahredding is broken
by a strong pressure wave which reflects from the bottom ot#wty, cutting the
shedding process close to the upstream corner of the cabitypressure wave can be
seen passing the upstream corner in the final five images ofd=iQy3.

Acoustic waves are generated as the vortices impact on tastieam corner, and
they propagate upstream and downstream, and in an additmmglexity they are re-
flected dt the top of the wind tunnel. These waves are seen clearly iexperimental
and numerical images, however in the numerical images flected acoustic waves
(leaning towards the upstream direction) are not as shagdalgrid stretching at the
upper boundary. The prediction of the location of the adowgtves is excellent when
compared to experimental images. The network of emitted-eiftetted waves can be
seen clearly in Figure 7.4 which shows the full computaticimenain.

Figure 7.5 and Figure 7.6 show a three dimensional view o¥tineéces, visualised as
isosurfaces ‘Q’ criteria [94],

demonstrating the complexity of the flow close to the shegerldt also illustrates the
dampening fect of grid stretching both at the bottom of the cavity, antthaboundary
layer downstream of the cavity. Figure 7.6 shows the isased 0fQ = 0.5x 10°, half
the value taken for Figure 7.5 to illustrate the complexe¢hdimensional turbulent
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Figure 7.4: Computational schlieref¥p| showing the full computational domain at the finest
grid resolution

Figure 7.5: Three dimensional visualisation of isosurface€of 10° at the same time as
Figure 7.4. Contour flood shows pseudo-schlieren fi@d|)
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Figure 7.6: Close up of the cavity, showing visualisation of isosurface® ef 0.5 x 10° at
the same time as Figure 7.5, but with an isosurface at half the value. Comtodistiows
pseudo-schlieren fieldWol|)

nature of the flow. The mixing layer is dominated by the threasirtwo dimensional
vortices, however between these vortices are smallemsivese vortices. There is also
evidence that finer scale vortices, resulting from turbuteotion within the cavity, are
subsequently entrained into the mixing layer.

Mean Flow

The Reynolds averaged mean flow data has been computed franoutputted for
approximately 30 shedding cycles for the coarse and fine dath60 shedding cycles
for the medium resolution simulation. The results are preskin Figure 7.7 and
Figure 7.8, compared to experimental data measured ussgy Dooppler Velocimetry
along the developing mixing layer for several thousand dmggdcycles, and the fine
grid results from the LES study by Larcheveial[113].

The overall agreement with experiment is excellent, egiga@onsidering the minimal
approach to modelling the incoming boundary layers, arahgtgrid stretching at the
upper wall. Comparing the resultsxa = 0.05, it appears that the initialised boundary
layer at the inlet of the numerical domain is slightly thickean required. There is a u-
momentum loss betweeriL = 2.4 andz/L = 2.5 when compared to the experimental
results, which in turn will causes the centre of the mixingglato be slightly higher.

The agreement at subsequent points is excellent, the aght sliscrepancy is a con-
sistent under-estimation of thevelocity above the cavity, which is due to the initial
thickness of the upstream boundary layer. There are disnoéps close to the down-
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Figure 7.7: Comparison of mean longitudinal velociiyU with experiment and previous
LES [113]. Forx/L = 0.4 the results from [113] gained using a power law boundary layer
profile are plotted with solid circles
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stream edge of the cavity wall, however in this region thera tcomplex, fine scale
interaction between the developing vortices and the dowast wall which is not well
resolved.

The vertical velocities presented in Figure 7.8 are appnakely one order of magni-
tude smaller than the freestream velocity. At the first mesment stationx/L = 0.05
the mean velocities are extremely well predicted on the fifrtg gowever the peak ve-
locities in the centre of the layer are not predicted as atelyras in the other locations.
At the other locations both the qualitative and quantieabiehaviour are captured well,
indicating the mixing layer is growing in a physically resiic manner.

At the majority of measurement planes there is a clear tranchprovement of the
numerical results are resolution increases, convergwgriis the experimental mea-
surements.

Comparison with the previous LES of Larchevegual. [113] show that on equivalent
grids (medium grid in the current study with fine in the Lanodgueet al. case) the

agreement with experiment is not as good for the longitudiakocities, but as good
for the vertical velocities. It is believed that the reasonthe improved agreement
with LES is that the inlet boundary layer was specified morieately by rescaling

the boundary layer profile measured from experiment. Theateg) was calibrated
such that the mean boundary layer profile at the cavity wasxaellent match for

experimental measurements.

To support this conclusion, the solid circles in Figure Y Sltow the results gained
by Larchevequest al. using ILES on a grid equivalent to the coarse grid employed
here, but with a power law inlet boundary condition for thebtuent boundary layer.
This is the same type of inlet boundary condition employeithécurrent simulations,
but the results are substantially worse. This indicatestthgaome extent the ILES
results presented here are less sensitive to the initiaktiiogl assumptions, and that
the proposed numerical method gives a better represemtititne the expected flow
physics.

Reynolds stresses

The time and space (in the periodic direction) averageditodimal Reynolds stresses
are plotted against experiment in Figure 7.9. As with thenmrféav velocities, there
is good agreement with experimental results at all statidie centre of the mixing
layer in the numerical simulations is slightly higher thaattin the experiment (See
Figures 7.9 a) and b)), which is consistent with a thickernatauy layer upstream of
the cavity.

The vertical Reynolds stresg?/U plotted in Figure 7.10 shows similar results to
the longitudinal stresses. The peak of the vertical Reynsiidsss indicates that the
centre of the developing mixing layer is too high by about linntomparison to
experimental results. The cross-strass’ /U presented in Figure 7.11 also confirms
this observation.
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Figure 7.9: Comparison otﬁ/u with experiment and previous LES [113]

Finally, Figure 7.12 shows the two dimensional fluctuatimgekic energy close the
upstream and downstream wall respectively. There is atgiggrestimation of the tur-
bulent kinetic energy at all grid resolutions - which is oppe to the results presented
by [113], where conventional LES underestimated the fluctg&inetic energy. This
demonstrates that the numerical scheme is suitable for a& 8 does not excessively
damp turbulent motions.

At this point it worth discussing the relative modellinfjaat in the classical and ILES
simulations, and the properties of the numerical schemies k&y diference between
the two simulations is visible in Figure 7.7 a). The inlet bdary layer profile used in
[113] was not that reported in Forestadral., but a least squares fit to their experimental
data. This was then rescaled to allow for growth up to the sfathe cavity to give
the best match to experimental dataxat = 0.4, in conjunction with turbulent wall
modelling. The simulations detailed here initialised thiet boundary layer profile
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Figure 7.10: Comparison OW/U at with experiment and previous LES [113]

directly from experimental measurements without such camption, which meant
that the initial boundary layer thickness is greater tha ithhthe computation. This is
a point which should be improved in future simulations.

The subgrid model employed by Larcheveaieal. is a selective mixed scale model,
described in detail in [118]. This uses a nonlinear comippmadf a Smagorinsky
and mixing length model. It requires the choice of two comtstathe Smagorinsky
codficient and the nonlinear combination parameter. In additiba Smagorinsky
codficient is modified for use in the mixing length model close tdisvaia the van
Driest dampening function. To improve intermittency, aditidnal selective function
is employed which premultiplies the eddy viscosity comduiea the subgrid mod-
els. A further correction is employed for the filter lengthio compensate for the fact
that the mesh is highly stretched. Finally, the subgrid netleemselves are evalu-
ated numerically to second order accuracy. The Smagorsiiicient, the nonlinear
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Figure 7.12: Comparison of@ + W)/U2 with experiment and previous LES [113]

combination parameter, and the selective function areadib@ated through compari-
son of numerical results with experiment [118]. The undagyhumerical method is

a combination of a second order centrafelience scheme with dissipation added to
stabilise the numerical scheme by upwinding where osi@hatoccur. The numerical
scheme is not shock capturing due to this oscillitory nature

In contrast, the ILES approach appears very stark. No ekglibgrid models were

employed, correction functions are not applied, and themsehis shock capturing as
demonstrated in the previous chapter. However, it is cleard turbulent wall model

(or improved inlet conditions) should be implemented irufetsimulations, as the
results in this section have demonstrated that there is semsitivity to the details

incoming boundary layer profile on the location of the cewofréhe mixing layer and

the exact match with experiment.

Pressure Spectra

In the experiment the average pressure power spectrum wasuneel at the upstream
wall over approximately 5000 to 8000 shedding periods. Assttime simulated is
limited by computational power, the results presentediwithis section correspond
to 30 shedding periods. To examine the influence of sampimeg the medium grid
level was run for 60 shedding periods. All pressure spece@eesented as frequency
vs. Sound Pressure Level (SPL) in units of decibels (dB), aliee conversion to
decibel is

(7.1.8)

SPL@B) = 10 Ioglo( Power )

4% 10710

There are severalfiierent methods for computing the pressure power spectréyrie
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Figure 7.13: Pressure spectrum for the medium grid computed with thri@erdint methods

main being via a simple FFT process (as done for the turbkieetic energy spec-
trum). This is computed as the square of the Fourier tranmstidithe pressure fluctua-
tions, rescaled to satisfy Parseval’s theorem. Parsahaisem states that the integral
of the power in the pressure power spectrum should be eqtla¢ timtal power in the
real signal. A problem with this method is that the power aisareite part of the pres-
sure spectrum can 'leak’ to adjacent parts, a leakage whicbtinecessarily restricted
to a narrow locality - indeed for a general function the leggkaxtends significantly.

The second method reduces this problem by explicitly 'wimithy' the data such

that this leakage is significantly reduced. This involvelgtspg the data into several
chunks, and multiplying it by a specified window function txef the Fourier trans-
form. The disadvantage of this method is that it reducesaivest frequency sampled,
hence &ectively reducing the number of periods over which the dignaveraged.

Finally, the third common method is Burg’s method, which doesemploy an ex-
plicit Fourier transform. This employs linear predictidrebry, which was initially
developed for predicting the value of a function at one inistesing a combination of
all previous instants. The cfigients of the linear prediction can be directly related
to the power spectrum of the function, and provide an exceheethod of extracting
sharp peaks from short data samples - and does not rely oa aetathich is a power
of 2 in length. A key component of employing this method ies&hg the number of
'poles’ (codficients in the expansion). If too many poles are selected #tbaod can
split a single peak into two peaks, or make several peaksaniepeak exists. Further
details on the three methods can be found in the Chapter 15bf.[1

In light of these observations, all three methods were impleted, and the results
compared in Figure 7.13 for the medium grid resolution satiah. The circles show
the experimental results up to the second harmonic. Sevesalvations can be made.
Firstly the standard FFT transform is extremely noisy, haavet appears to resolve
peaks well. The Periodogram method reduces the noise, leowestfters from low
resolution due to the windowing process. Finally, Burg’s moef with 15000 poles
captures the peaks accurately, and agrees well with the B&3i transform. On this
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Figure 7.14: Pressure power spectrum up to 10kHz for simulations and experiment

basis the Burg method is employed throughout this section.

Figure 7.14 shows the pressure power spectrum for each tiitbe grid resolutions,
and that of the experiment for the full range. A close up offitst two peaks is shown
in Figure 7.15, comparing the feierent methods. It should be noted that the peak
in the experimental results at about 90kHz is believed toumetd resonance of the
sensor itself. Experimental measurements recorded tltafmental mode at 1975Hz
(no error bars are given in [59]) at approximately 155dB sbpressure level. The
coarse, medium and fine grid predict this peak at 1940Hz, H248d 1954Hz, with
a sound pressure level of 160dB, 153dB and 157dB respectilbiy is equivalent to
errors compared to experiment of less than 5dB at all gridigevihese are excellent
results considering that the boundary layers were not nexjehnd that extremely
coarse grids were used in the upper half of the wind tunnel battom of the cavity.

As can be seen in Figure 7.15, the frequency of the second isaaleo predicted
to within 2%, but the sound pressure level is overestimate®dB at the highest
grid level. Additionally, the small peak between the firsbtmodes is overestimated
significantly, however as the scale is logarithmic, this ldowot atfect total sound
pressure significantly. The source of the smaller peak isgitiedinal wave which is
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Figure 7.15: Pressure power spectrum highlighting the dominant acoustic modes for the
ILES simulations (left) and comparison of the fine grid results with conventida& results
from [113]

reflected continuously within the cavity. This wave is sggenin the simulation than

in experiment. A possible explanation is that in the expentrthe acoustic wave is
scattered by a series of interactions with turbulent vegicThe coarse resolution in
the numerical simulation means that the vortices are naente hence the acoustic
waves are not scattered gkeetively.

Figure 7.15 also shows a comparison of the medium grid stmoulavith the fine grid
results of [113]. The prediction from the medium grid sinida of the current study
Is a better match to experimental data for the location andgnmade two strongest
modes, however the conventional LES simulation capturesiignitude of the small
peak better. It is possible that the combination of a two-tanele-dimensional grid in
the conventional LES simulation allowed better resolutibthe flow within the cavity
where the acoustic waves producing the small peak occarekpected that the shock
capturing capability of the current method allows betteiotetion of strong acoustic
waves (weak shocks), which appears to be confirmed here.

Comparing the full range, the fine grid level predicts the fiemacy of the harmonics
up to approximately 20kHz (the first 11 modes), however thgnitade of the higher
frequency peaks are overestimated compared to experinidr.medium grid per-
forms better in terms of magnitude of the harmonics, howessolves up to about
15kHz (first 8 modes). The coarse mesh capture modes up toz]l 2idwever there
are several spurious peaks at high frequency which do n@&aapp the experimental
results. In all, the agreement with experimental soundspresspectra is excellent
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7.1.4 Conclusions

This section has detailed the simulation of a deep, openyc#uiv to validate the
modified numerical method against quantitative experiadeddta. It has been shown
that the mean flow and Reynolds stresses are in very good agmnéenth experiment,
and convergence towards the experimental results witle@sing resolution is appar-
ent. The discrepancies with experimental data are largedyta an over-estimation of
the boundary layer thickness at the inlet of the numericad@la. This meant that the
initial thickness of the mixing layer was slightly too largand the centre of the mixing
layer is shifted by 1mm vertically compared to the experitayp measured position.

Pressure power spectra measured by Forestial. [59] have been compared to nu-
merical data, where the frequency of the two dominant modegp@dicted to within
2%, and the sound pressure level within 6dB for all grid nesohs. The finest grid
level captures the frequency of harmonics up to 20kHz, hewthe magnitude of these
peaks is overestimated. Results presented with the modifegkdaah without subgrid
model compare excellently with conventional LES by Laraweet al. [113].

In summary, this section has validated the modified numlesidaeme through sim-
ulations of a complex, wall bounded, compressible turtiulenv. The comparison
shows excellent results for minimum modellinfjogt, and demonstrates that the key
flow physics of the problem are captured accurately withloeitiecessity of an explicit
subgrid model.
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Figure 7.16: Schematic of the single mode Richtmyer-Meshkov initialisation .

7.2 Single Mode Richtmyer-Meshkov Instability

7.2.1 Introduction

This section investigates the influence of numerical metatigrid resolution on the

growth of a three dimensional single mode planar RM instgbilihe test case adopted
is that of Li and Zhang [121]. Using these initial conditidhg solution in the linear

and non-linear regime is compared to numerical and theadetolutions developed in

Zhang and Sohn [201] and Richtmyer [155], and results empipgisemi-Lagrangian

finite difference code presented in [183].

Numerical codes for the simulation of such complex flows gmactlly calibrated
against theoretical, experimental, or previous humestadies. The solution gained
when simulating flow instabilities depends greatly on thenatical schemes used, thus
it is important to establish the independence of certarresice results from the choice
of numerical scheme. In addition, by examining the grid @wgence of the solution a
single mode test case is a good measure of the resolutionvadagumerical scheme.

7.2.2 Numerical Methods

Two numerical methods are employed in this section, the liestg the well es-
tablished second-order van Leer limiter, the second is #we low Mach limiting
methodology with fifth-order accuracy, both employed inMgSCL framework. The
characteristics-based Riemann solver is used, along with¢inder extended stability
Runge-Kutta time stepping.

The initialisation for the single mode problem is identitwathat used in Li and Zhang
[121], andisillustrated in Figure 7.16. The size of the catagional domainis §1x1
and the boundary conditions are periodic in thand z directions with an extended
one dimensional domain in thredirection to reduce thefkects of reflected waves.
The incident shock Mach number isbland travels in the positive direction. The
initial interface perturbation is defined As= Aq(cogky) + cogk2) wherek = 2r and
kA, = 0.238. The fluids have a density rajig/p, = 1/5, andy; = y, = 1.4. The
computation takes advantage of the Galilean invarianceeofbverning equations in
that an initial velocity ofuy = 1511mnys is given to the interface such that the mean
position of the interface is stationary after the passagheshock.

Several grid resolutions have been employeck 305, 60x10x 10, 120<20x 20, 240
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40x 40 and 48& 80x80. In presenting the results, all lengths are non-dimeadised
by the wavelength of the initial perturbation, and times g wavelength and post-
shock interface velocity. All theoretical results are catga using the post-shock
Atwood numberAt" = 0.65, and the post-shock amplitudg = 0.43. The spike
height is the distance from the furthest point where the m@udractiona = 0.5 to
the centre of the mixing layer (defined by the position where@perturbed interface
would lie at). Similarly, the bubble position is the furthesint towards the heavy gas
that a volume fraction of the.B is found. The mixing layer width is the sum of the
spike and bubble height.

Figure 7.17 shows the time development of the instabilithatmaximum grid resolu-
tion using van Leer and M&_M limiting methods, through the linear and non-linear
growth of the instability. It can be seen that the growth @ ithstability is dominated
by the ring vortex structure as also seen in experimentdiet30]. There are ad-
ditional fine scale features on the MBM simulation which are not present with van
Leer due to the dissipative nature of the standard Godundkode

Y W
- & &

(@t=0 (b) t = 3.0 ) t=63 d)t=129

Figure 7.17: Isosurfaces of constant volume fractio@® and 095 illustrating the
development of the single mode RM instability using van Leer (top) comparedid.M
(bottom) at the highest grid resolution

7.2.3 Results and Discussion

Figure 7.18 a) shows the grid converged mixing layer widtmpared to nonlinear
theory by Zhang and Sohn [201], linear by Richtmyer [155] amdutations using

a semi-Lagrangian finite flerence code called ‘TURMOIL [183]. Figure 7.18 b)
shows the converged bubble and spike size as a function ef finis clear that there
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Figure 7.18: Grid converged mixing layer widths

is excellent agreement between the Godunov and finfterdnce numerical methods
at both early and late times. The results of Li and Zhang [BEijear to grow more

slowly, however, comparing their images it appears thantimaerical scheme is sig-
nificantly more dissipative, thus removing kinetic enengyni the system and slowing
the growth of the mixing layer.

The mixing layer width grows more rapidly than predicted ipgar theory, however it
is an excellent match for the non-linear theory of Zhang aoiihg201] up to a non-
dimensional time of about.2. After this time the growth is dominated by the strong
vortex ring which self-advects at a constant velocity. Thenthance of this coherent
structure causes the departure from non-linear theorygiwtiépends on/t? at late
time. The behaviour over the time-scales considered withisistudy match a power
law of ~ 7%°°, wherer is the non-dimensional time, but late time growth is linear.
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Figure 7.19: Development of the mixing layer widths as a function of grid resolution and
numerical method

The bubble and spike widths are also in excellent agreen@@mnén these initial con-
ditions the spike exhibits continued growth due to the voriag, however bubble
growth stagnates very rapidly. At very late time the bubl@gibs to grow again due
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to the expansion of the developing turbulent mixing layer. atldition to the plots

shown, identical runs with severalffirent limiting methods (van Albada, Minmod,
and M3 limiter) have resulted in the same growth rates, as Banulations using a
Roe scheme.
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Figure 7.20: Development of the bubble and spike as a function of grid resolution and
numerical method, low resolution (top) and high resolution (bottom)

Figures 7.19a) and b) show the development of the mixinghnadta function of mesh
resolution for both numerical methods. The total width @& thixing layer reaches an
approximately converged solution for 2020 cells for both methods. TheftBrence
in bubble heights is small compared to the overall mixingtayidths. At lower grid
resolution (5 and 10 cross-section) the M3/ method performs significantly better
compared to the grid converged solution. At a cross-sectidi®x 10 the new method
over predicts growth by about 6%. At the same resolution #relheer limiter under
predicts growth by 25%, and 10% at 20 cross-section.

The growth of the bubble and spike at the lower resolutiorsh@vn in Figure 7.20
a) and b) for both numerical methods. The initial bubble dglois captured very well
with the M5+LM method at all resolutions through the linear and early-hoear
stage, which is not true of the van Leer limiter. Both methadscanverged at 20 20
cross-section.

The growth of the spike shown in Figure 7.20 b) shows the laegelution improve-
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ment when switching to the MA.M method. The M%LM limiter converges at a
cross-section of 1@ 10 cells, however the van Leer limiter does not convergd anti
grid resolution four times greater in each direction.

An important point which has not been investigated is theuerfte of the order of
accuracy of the representation of the initial perturbatidnpresent the initialisation is
only second order accurate, meaning that at low grid reisoluthe perturbation could
be very inaccurate. It is expected that the higher order oustlivould perform much
better given a higher-order accurate initial condition.

7.2.4 Conclusions

The converged growth rates of the single mode Richtmyer-ktmsimstability have
been shown to be in good agreement with the theory of Zhandsahd [201] until
the growth is dominated by the coherent ring vortex. Bubbtawtjn stagnates very
rapidly after the early non-linear stage, whereas the smkénues to grow due to self
advection of the vortex ring.

It is demonstrated that the van Leer limiter removes kinetiergy more rapidly, lead-
ing to a weaker vortex at a given grid resolution. As the meacttnumber after
passage of the shock wave id 0and decreases with time, the Godunov scheme suf-
fers heavily from excess dissipation as predicted in Chdptdihis is only alleviated

at higher grid resolution where the velocity jumps at thd reerface are reduced.
This is not the case for the new scheme which converges abdpmately half the grid
resolution for the total mixing layer width, and a quartee tjrid resolution for the
spike height when compared to the van Leer limiter. Thissiaes to a 16 or 64 times
decrease in computational time.
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7.3 Multimode Richtmyer-Meshkov

7.3.1 Introduction

This section investigates ILES of shock wave induced inktials (Richtmyer-Meshkov)
and turbulent mixing. Richtmyer Meshkov (RM) [155, 134] irstdéy occurs when
an incident shock wave passes through a perturbed intevitegeen two gases, trig-
gering growth of the interface width. These instabilitigstfigrow linearly, and then
transition to turbulence.

In the Section 2.3 the various approaches to the analysis offRidbility were dis-
cussed. It was shown that there are two main analytical agpes to the determi-
nation of the growth exponent of the mixing layer. The firsthis growth of a fully
turbulent slab (Section 2.3.1), where the initial perttidregs have already saturated
and there is no further significant growth of the long wavgtes. This is equivalent
to the growth of a narrowband high wavenumber initial pdration. The second is
the assumption that the long wavelengths are still growimggkly during the time of
interest to the observer (Section 2.3.2). Thus there is &éirewus linear growth of
largely irrotational long wavelengths, which overtake tloalinearly saturated shorter
wavelengths. It is a complex interaction involving the taldf process of nonlinear
saturation followed by turbulent break down and dissipatbsmaller modes, which
are then supplied with energy from larger modes which sub=aty saturate, break
down, and begin to dissipate. This is equivalent to the gnayfta perturbation from
a broadband initial condition where the power in the inipatturbation spectrum is
distributed over a wide range of wave numbers.

This section investigates the growth of a Richtmyer-Meshkaxing layer using two
different perturbations. The firstis a narrowband combinatitigh frequency modes,
which represents growth of a turbulent mixing layer puraly mode coupling of the
high wave numbers. The second initial condition consist lfoadband linear com-
bination of modes from one third the domain size to the higlydgiencies. If the initial
conditions are forgotten then the asymptotic growth ratel, @ssociated statistics of
the mixing layer should be the same in both cases. Howeveniated out in Section
2.3.2, it is possible that the linear growth of the long wawejths is faster than the
growth of a turbulent slab, hence dictating the overall dhowf the mixing zone.

7.3.2 Numerical Methods

This section is concerned with the simulation of the Eularatigpns, where viscosity

is assumed negligibldRe — ). The three-dimensional compressible Euler equations
are solved using the direction split method. It is assumed tte fluid satisfies the
ideal gas equation of state, where= 5/3 is the ratio of specific heats. In addition, a
passive scalar is advected to track the two gas componeastanad to be miscible.

The numerical method is a standard finite volume solver eyimpythe HLLC approx-
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Figure 7.21: Schematic of the multi-mode Richtmyer-Meshkov initialisation .

imate Riemann solver [184], and using the ThCM multicomponeadel to track the
passive scalar. This section employs thre®edent variable reconstruction methods:
second-order van Leer limiting; ninth-order WENO [11]; ahd tnodified low Mach
corrected fifth-order method. For the details of these nuglonsult Chapter 3.

Initialisation

The test case uses the initial conditions derived by [198¢(Section 3.9.2) to examine
the influence of initial conditions on the growth of the reaot mixing layer. The
initial conditions are shown schematically in Figure 7.Zhe flow field consists of a
heavy and light gas separated by a perturbed interface ihegerturbation satisfies
a given power spectrum and mean amplitude. The incidentksivage is of Mack:
1.84, equivalent to a four-fold pressure increase acrossttbekswave. The initial
conditions are

0.0<x<35 (p,u,p) = (6.38,-615,4 x 10°) (7.3.1)
35<x<40+S (p,u,p) = (3.0,-29158, 10°) (7.3.2)
40+8S <x<Lp (o,u,p) =(10,-29158 10°) (7.3.3)

where an initial velocity is given to the gas interface suedt the centre of the interface
is stationary after passage of the shock wave. The ratioexdfip heatsy, is set to
5/3. The post-shock Atwood numbat" = 0.48.

For the broadband initialisation, the interface pertudrasS is given as the sum of
modes of random phase conforming to an initial power spetRu< c/k? (See section
3.9.2). The modes excited are restricted betwggnh= 327/256 andi.x = 27/3 and
the standard deviation of the perturbation amplitude.is,Q),. The grid sizes used
were 360x 256x 256, 180x 128x 128 and 9 64x 64, and the domain size is fixed at
247 x 2n x 2r. This is essentially a convergence study with the samalmitindition
on all grids, only more poorly resolved on the coarsest dgrlds problem was solved
with the modified fifth-order limiter for all grids, and the WENninth-order and van
Leer for the coarse and medium grids.

The narrowband perturbation has an initial power specttumc, and excited modes
lie betweeniy,in = 16AX andAynax = 32Ax. The initial amplitude is AAy,,. In this

case the initial perturbation has been chosen to lie at afrégjuency, but where the
numerical scheme resolves perturbations without dampgeriihis problem employs
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Figure 7.22: Evolution of mass fraction isosurfaces for the fine grid narrowband
perturbations atAu/Amin = 0, 7 and 250 using the modified fifth order scheme

grids of size 360< 300x 300, 360x 150x 150 and 360< 75 x 75. As the initial
perturbation and amplitude is linked to the grid scale, thysbations on the smaller
grid grow faster, proportional tani,. To compensate for this the grid size in the x-
direction is increased proportionally such that the celisain square at all resolutions.
In order of decreasing mesh size, the domain sizes atexX2r x 2, 4.81 X 21 X 21
and 96r x 2 x 2r. This problem was solved using the modified fifth-order lemit

Non-Dimensionalisations

Before discussing the results, it is important to set out #tevant scaling laws and
non-dimensionalisations. Following Youngs [196] all lémgcales are normalised by
the minimum wavelengthi,i,, and wave numbers B, = 1/Amin. The time is scaled
via Amin and Au, which is the velocity impulse given to the interface. Fipatotal
kinetic energy, and the kinetic energy spectra are non4uinealised byl,nAu?p,
wherep = 1. All subsequent results are non-dimensional.

Note that in all subsequent figures the standard numeribainse is the modified fifth
order method.

7.3.3 Results and Discussion
Flow Phenomenology

Figure 7.22 shows mass fraction isosurfaces illustratiegriitial condition and evolu-
tion of the turbulent interface with time. It can be seen tbatarly time {Au/Amin =

7) the flow field consists of a series of mushroom like striestugenerated by the
deposition of vorticity at the gas interface. Kelvin-Heltzo(KH) instabilities grow
exponentially hence breaking the large coherent strustukelate time the flow field

is turbulent, consisting of motion on manyffdirent scales. There are some 'coher-
ent’ structures remaining (mushrooms shedding KH vorjie¢she gas front, but in
between there is a well mixed zone.



7.3 Multimode Richtmyer-Meshkov 179

Figure 7.23: Comparison of the three numerical methods using broadband perturbaitions
tAu/Amin = 250 at 128 grid cross-section

Figure 7.23 shows the isosurfaces of mass fraction for eétheothree numerical
methods at late time for the 128 cross-section grid (broadbatial conditions). It is
clear that the van Leer limiter is too dissipative to allowligtic growth of perturba-
tions, hence, to economise on computational time, furthgults were not computed.
Of WENO ninth order (W9) and the modified fifth order (MBM) the fifth-order has
more fine scale structure, indicating less numerical diggip. Comparing the flow
structure in the broadband and narrowband simulationsan@wband simulation is
much more regular, showing no large scale perturbations.bfbadband initialisation
shows a clear long wavelength perturbation, demonstratiaigfor the period of time
under consideration, the initial conditions have a strarilyénce.

Growth Rates and Mixing Measures

In this section the following parameters are examinedgiraiemixing layer widthW;
Molecular mixing fractior®; and the mixing paramet& defined as

f < a1y > dx
W= | <y ><ap>dx 0= f <o oo dx (7.3.4)
a1 (0%
< min(ay, @) > dX
== f N1, a2) (7.3.5)

B [min(< a; >, < a2 >)dx’

where< a7, > indicates the/— zplane averaged volume fraction of species 1, 2 where
species 1 is the heavy gas. It is generally accepted thattigral mixing layer width
(considered less sensitive to fluctuations) grows at late tst’. ® gives a guide to
the total reaction rate for a slow reaction, a@ads an equivalent measure for a fast
reaction rate where one reactant is fully depleted. Figu2d ghows these quantities
plotted for both sets of initial conditions, for all grid @ations.

The mixing layer width exhibits good grid convergence, anglotted on logarithmic
axes to highlight the power-law behaviour of the amplitulesuming that amplitude
is proportional toC(t — to)?, and utilising a non-linear regression to gain the best fit
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Figure 7.24: Integral mixing width, Molecular mixing fraction and mixing parameter for the
narrowband perturbations (left) and broadband (right)

curve,d = 0.24 + 0.015 for the narrowband simulation. Comparison with previous
simulations by Youngs [198] using a finitefiéirence semi-Lagrangian method shows
an almost exact match, lending weight to the fidelity of thenatical results. It is

in is in good agreement with the experiments of Dimagitel. [48] (see also Section
2.3.5) where the RM instability acts on a turbulent slab gateerby RT instability (the
initial turbulent slab can be interpreted as a form of narbamd initial perturbation).
Compared to analytical theory detailed in Section 2.3 thaslltas consistent with the
general consensus that 2/3 — i [12], where the viscous correctignx 5/12 in this
case. However, it is considerably lower than the lowest gnoate proposed by Zhou
[202].

The broadband initial conditions give= 0.35+ 0.02. This demonstrates that, for the
duration of the simulation, the mixing layer width dependscally on the form of
the initial conditions. This is in good agreement with thedty of Inogamov [89],
however it is likely that this theory is not valid with the pemspectrum chosen, as it
Is narrow and the power spectrum is a relatively strong fonodf the wavenumber.
However, it is lower than the predictions of Dimonte [46] avioungs [198] based
on the ‘just saturated’ mode (Section 2.3.2). The explanator the low value of
6 is that in the current simulations the ratio of maximum to imim wavelength
Amax/Amin = 16/3 ~ 5.3. This would mean that there is not afstiently wide range
of modes which are simultaneously passing through linedrraom-linear stages to
determine the asymptotic value @for an infinite I/k? power spectrum.

The molecular mixing fractio® and mixing parametet both approach a constant
state. This is achieved more rapidly with narrowband pbetions than with the
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Figure 7.25: Plane averaged volume fraction for narrowband (left) and broadfayid)
perturbations.

broadband initialisation. At the lower resolutions with M5M the level of molec-
ular mixing is higher than with the WENO method, however asl gize increases
both® and= decrease. The asymptotic value of approximateBya@rees well with
previous mixing simulations of the related Rayleigh-Tayhstability by Youngs [197]
and Cook and Zhou [42]. The slower convergence of the mixiagssics at high grid
resolution indicates that a self-similar state has not gettachieved for the broadband
simulations.

For self-similarity the profiles of average volume fracteomd mixing fractions should
scale with a single characteristic length scale at all tinieghis case the integral
mixing layer widthW. Figure 7.25 shows the plane averaged volume fraction. The
scaled volume fraction profiles collapse excellently foresolutions at all times for
the narrowband and broadband perturbations, being alaestical at all times.

The narrowband perturbations lead to a smoother mean vdhacteon profile, whereas
the broad band perturbations give a smooth central regi@rb (< x/W < 1.5) with
outer regions on the bubble and spike side where the pexgistige scale structures
cause a break in the smooth profile. This change to the meéitepsanost likely the
late time growth of large scale perturbations which are mes@nt in the narrowband
simulation, and are at the head and tail of the mixing layéatattimes.

Figure 7.26 the plane averaged mixing fractior;a, >. The plane averaged mixing
fractions are not as well converged. Interestingly, thell®f mixing appears to be
decreasing at higher resolution in both cases, indicahagthe lower dissipation at
higher resolution leads to less transport. The WENO limitentes greater mixing,
having a profile which peaks at @;a, >= 0.21 as opposed to.06 for the M5-LM
limiter at the same resolution. As time progresses the péakama, > increases, as
expected.
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Figure 7.26: Plane averaged mixing fraction for narrowband (left) and broadbégiat)
perturbations.

Turbulent Kinetic Energy

Figure 7.27 shows the total fluctuating kinetic energy, cotag@ from the fluctuating
velocities. The fluctuating velocities are computed as flffer@nce of the actual ve-
locities minus the plane averaged velocity, summed oveetitiee mixing layer, i.e.

yzpudV

0= :
YyzpdV

TKX = Z %p(u —0)2dV, TKY = Z %pVZdV (7.3.6)

Xyz Xyz

where()) is the Favre mass-weighted averadj€,indicates the volume of the celly,

is the summation in the plane= const and}.,,, is the summation over the whole
volume. Note that the direction turbulent kinetic energy is almost identical he y
direction, hence is omitted from the plots.

Both simulations demonstrate excellent grid convergertoe xtdirection turbulent
kinetic energy decreasing throughout the simulations iovagp law form. They and
z direction kinetic energy first increases as KH instabilignisfers energy from the
direction to they andz

In the narrowband simulation the turbulent kinetic energthie x direction decreases
at a rate proportional to12°, in they and z proportional tot~*23 in good agree-
ment with experimental results from grid generated homegas decaying turbulence
[100]. The assumed power law line of best fit is shown in Figug&, compared to the
highest resolution simulation.

Assuming self-similar development of the mixing layer, thgo of thex andy direc-
tion kinetic energies should be constant, ideshould be the same for all directions.
Given the dificulties in determining the virtual origin for the decay oftiulent ki-
netic energy (as discussed in Section 4.3.2), titerince i between the dierent
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Figure 7.27: Resolved fluctuating kinetic energy and comparison with line of best fit #or th
narrowband (top) and broadband case (bottom)

Kinetic energy components is not significant. The ratio oiekic energies is plotted
in Figure 7.28 for the narrowband initialisation, demoasiig that it asymptotes to
approximately 15 at the finest grid resolution.

Given that the width of the mixing layer scales with then the empirical relation
€ oc U3/W (Equation 2.2.9) can be used to check the dissipation ratmefic energy.

Hencedg/dt o ¢?/t%, with a solution of the formgy o t*-2. This is the decay
rate of mean kinetic energy across the mixing layer. Theye€dotal fluctuating

kinetic energy computed in this section is proportionah®width of the mixing layer
multiplied by the mean kinetic energy, i.&/ ok o« tt?-2 « t3-2, This result can also
be gained by assuming that the mean velocity in the mixingrlay proportional to
the growth of the mixing layer itself, giving/gx o dW/dt o« t*-*. Computing this

for the narrowband initial condition gives a decay of totactuating kinetic energy
proportional ta=128, in very good agreement with the directly measured values.

The decay rate in the broadband case is proportionaft for the x direction tur-
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Figure 7.28: The ratio of thex andy direction fluctuating kinetic energy for the narrowband
case (left) and the broadband case (right)

bulent kinetic energy, antd®® for they andz directions (see Figure 7.27). As a large
portion of the fluctuating kinetic energy is in the longer wi@ngths, this leads to a
lower kinetic energy dissipation rate than in the narrowtbease. For the majority of
the simulation the long wavelengths are irrotational (gamthe linear stage of de-
velopment), thus the transfer of fluctuating kinetic endrgyn the longitudinal to the
lateral components is slower than in the narrowband sinemafThis means that the
dissipation of kinetic energy is not affieient, giving a lower value of. Although

it is not expected that the broadband simulation has leadftitlyadeveloped turbu-
lent mixing layer within the time scales simulated, compgtithe decay rate of total
fluctuating kinetic energy (assuming it is proportionat¥o?) givesd(KE)/dt oc 9%,
again a very good estimate of the measured value. Examinegtio of the turbulent
kinetic energies in the longitudinal and lateral direction Figure 7.28 implies that
they are tending to a self-similar state wh@r&X/TKY ~ 1.5 as in the narrowband
case. Again, this is consistent with the idea that the longagelengths are saturating,
and that the flow physics is transitioning from growth duehi®‘just-saturated’ mode,
to a fully developed anisotropic turbulent slab.

The instantaneous two dimensional kinetic energy specer&@mpared to the theo-
retical results of Kolmogorovk(®3) and the proposed solution for RM instability of
k=3/2 by Zhou [202] in Figure 7.29. This is computed in the midplarfighe mix-
ing layer, in they — z plane. Examining the narrowband results indicates exuelle
scaling of the kinetic energy spectra for théfelient grid resolutions under the non-
dimensionalisations detailed in Section 7.3.2. The sncales are nearly identical, and
the spectra appear to follow more closely &€& spectrum. The dierences at large
scales (low wavenumbers) reflect the limitations posed Iy gjze, which prevents
further mode coupling in the low resolution simulations.

The broadband spectra also collapse well &edént grid resolutions, and methods.
Comparison between theffiirent grids and methods show that the-Ni% method
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Figure 7.29: Fluctuating kinetic energy spectra for the narrowband (left) and brevratibase
(right)

IS not suficiently dissipative at low resolutions, and that the WENO hodtis too
dissipative. This is consistent with the plane averagedngixesults presented in
Figure 7.26, which demonstrate more mixing at the lowerltggms than at the higher
resolutions. At the highest resolutions there is excelegreement for the first 48
modes when comparing the 128 and 256 cross-section gridghvetM5+LM method,
and up to mode 28 with WENO. At moderate wavenumber the spappear to scale
ask>73, and atk-%2 at high wavenumber.

7.3.4 Conclusions

Simulations of shock induced turbulent mixing with twdfdrent initial conditions
have been conducted. Twofidirent high order methods have been used, and three
different grid sizes. Excellent grid convergence is observeaithout.

The typical behaviour of a multimode Richtmyer-Meshkov detion is seen, begin-

ning with the growth of coherent ‘mushroom’ shaped struegwvhich transition to

a fully turbulent mixing zone. It is shown that the growtheaf the mixing zone

depends on the initial perturbations, as the long wavekepgtturbations promote a
faster growth rate than short wavelength perturbationss iBhmost likely to be due

to the slow but persistent growth of large scale perturbatishich dominate over the
short wavelengths at long times.

The growth rate for narrowband perturbations is in good egent with experiments
by Dimonteet al. [48], and within the bounds laid down by dimensional consatiens
of the expansion of a uniform slab of turbulence. The broadlerturbation leads to
values of6 ~ 0.34, which is lower than expected from the ‘just saturateddmanal-
ysis of Dimonte [46] and Youngs [198]. It is believed thattis due to the relatively
small wavenumber range simulated, in that the longest waggh is approximately
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five times larger than the shortest. It is not believed that itha sdficiently wide
range, and that at late time the longest modes are closeurmtah or have already
saturated. This leads to a slower than theoretical groviéh ra

Examining the mean volume fraction profiles and developneémivo mixing indi-
cators implies that the development of the mixing zone haslved an approximate
self-similar state. The asymptotic state is not reachedpslly for the broadband
perturbations as for the narrowband.

The turbulent kinetic energy decays most rapidly in the ovaband simulation of
t~12%), close to that expected from homogeneous decaying turbeleThe ratio of
longitudinal to lateral turbulent kinetic energy is approately constant at late times
(= 1.5), indicating that there is a self-similar mixing layer. Wever, the broadband
simulation demonstrates slower decay 1), as a larger proportion of the total
fluctuating kinetic energy is in the irrotational (lingzeirly non-linear) flow field than
in the narrowband initialisation.

Interestingly, predictions of the decay exponent of totadtiliating kinetic energy using
the measured value @f from the integral mixing width and the relatiaioy /dt o
q'f;/ 2/W are close to those directly measured for both the narrowbaddbroadband
perturbations. Turbulent kinetic energy spectra show aetl@agreement to la>/2
range at the high wavenumbers, with sckn&? at intermediate scales.
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7.4 Half-height Experiment

7.4.1 Introduction

Recent experimental results by Holder and Barton [83] peralitiation of numeri-
cal methods for multi-component compressible turbulentimgi of two miscible gas
species. The shock tube experiment consists of an incilenksvave of Mach 26 in
air passing through a square block of Sulphur Hexafluorié)(2\s it passes through
the block, initially small perturbations on the gas intedacreate both Richtmyer-
Meshkov instabilities (vorticity deposition as the shoesges) [134, 155] and Kelvin-
Helmholtz roll ups. These perturbations grow rapidly iredeading to turbulent tran-
sition of the flow, and inviscid mixing of the two gas compotsen

It is a great challenge to accurately simulate such a rictsighl problem, and it is
necessary to employ numerical methods which hatiécsent dissipation to maintain
monotonicity across shock waves, yet allow the growth ofriteally small perturba-
tions and capture contact surfaces with good accuracy. TyedRis number based for
this experiment is on the order of51(P, thus given current computations power the
simulations cannot be fully resolved. Due to this constraigS is employed with the
new characteristics based Riemann solver for the ThCM model@ll in Chapter 3),
and the new limiting methodology proposed in Chapter 6. Thesealidated against
experimental data, and compared to existing numerical dlsth

The layout of this section is as follows. Firstly the expegithis described in Section
7.4.2. The choice of governing equations is detailed iniSGect.4.3, along with the

details of the initialisation, grid and boundary condisorNext, the results obtained
for second-, fifth-order and modified fifth-order are compaeexperiment, and with

each other.

7.4.2 Experimental Setup and Diagnostics

Figure 7.30 shows a schematic of the half-height experirti&ee [83] for the full de-
tails). The shock tube contains air at atmospheric presswutdemperature. When the
diaphragm is burst a shock M = 1.26 propagates from left to right. At= 0 there

is a ‘block’ of Sk which is 55 times denser than air, and has= 1.076, which is
initially held in place by microfilm membrane. The speed afirst is approximately
three times slower in Sfhan in air, thus inducing a strong Kelvin-Helmholtz inskab

ity on the upper surface of the block and rapid transitiorutbulence. In addition to
this, there is growth of Richtmyer-Meshkov type instal@lition the vertical interfaces.
The shock wave reflectdtathe wall at the right side of the domain and passes back
through the mixing region, injecting further energy inte tarbulent mixing zone.

The output from the experiment was a series of images takspeatfic times using
a pulsed laser sheet. Thed#ock was initially seeded with olive oil droplets, hence
the intensity of the image represents the density of theaBk specific location.
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Figure 7.30: Schematic of the half-height experiment, note that the shock tube is 2700mm
deep .

7.4.3 Computational Approach

Given the presence of shock waves and compressible mixiisgyecessary to employ
a compressible method. With a Reynolds number on the orded®oftie Kolmogorov
length scale is significantly below the grid scale, and tFeceof viscosity on the scales
resolved by the grid is considered negligible. Thus the guxg equations chosen are
the Euler equations plus two additional equations for théirnamponent model. At
the pressures and temperatures considered, bgthr®Fair are approximated well by
the ideal gas equation of state, and are miscible.

Grid and Initialisation

The co-ordinate system chosen hasxitirection aligned with the initial direction of
shock propagatiorzin the vertical direction, angdin the homogeneous direction. The
point (0,0, 0) is located at the bottom left hand interface between thelfck and

air. The numerical domain chosen extends fre@45m to 035m in x, and takes the
shock tube dimensions in the other two directions. Thisngé than the test section
shown in Figure 7.30 as it is necessary to capture the shook ffeflected & the left
face of the block of SE The boundary conditions are taken as reflective (inviscid
wall boundary condition) on the upper, lower and right-havadls, and an extended
one dimensional domain on the left hand interface in thergetion. The y-direction
boundary conditions are periodic.

There is special treatment required for the drain hole, wisenodelled as an extended
one dimensional domain. The incident shock wave can th&radi down the drain
hole, entraining material in a similar manner to that seethéexperiment. At late
times this holes acts as a nozzle where high spe¢8Rimixture exits the shock
tube. The addition of the drain hole was demonstrated agybeoessary in earlier
studies [180, 16]. The extended one dimensional domaintialised as pure air at
atmospheric pressure and density.The drain hole is lodagédeen A53mk X <
0.16m and M5nk y < 0.95m.

The block of Sk is initially held in place with a microfilm membrane, whichde-
stroyed by the incident shock wave. However, this membraypaits a perturbation
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onto the interface between the two gases which must be neaelk this perturba-
tion is the seed which triggers growth of the instabilitiddumerically, this pertur-

bation is modelled as a summation of random modes with RMSiardplof 0.1mm

at wavelengths between 5mm to 50mm satisfying a power sppobdportional to the
wavenumber of the mode. The upper interface is not held ioepkyy a membrane
and so in the experiment it is likely that this would be fiue interface, however it is
modelled as a sharp interface numerically.

To facilitate comparison of the three numerical methodsusations were run at two
different grid resolutions for each method. The coarse grid @¥8s 80x 160, and the
fine grid 600x 160x 320. An additional grid of 75& 200x 400 (double the number
of mesh points in the fine grid) was run with fifth order limgito test convergence of
plane averaged statistics.

Finally, the density of Sfand air were 84kgm?® and 1153kgm?, and the ratios of
specific heatsy, 1.076 and 14, respectively.

7.4.4 Results and Discussion
Comparison with Experiment

Figure 7.31 and 7.32 compare the experimental images vatre@lices of SiFdensity
taken from computational results. The vertical refereiue dn the experimental and
computational images is at= 0.15m. The white circle on the computational results
indicates the position of the centre of the primary vorteihia experiment. This was
determined approximately from the location of the darkestlgn the experimental
images in the region of the vortex core. For the first two tineps there is very little
difference between the experimental and numerical imagese ©arghtly more roll-
up of the primary vortex (developing at the upper left comfethe block) in the fifth-
order methods as compared to the second-order method. An8.8he shock wave is
about a third of the way through the §block and has formed a Mach intersection.
This links the plane shock transmitted through the BlBck with the shock which is
propagating more rapidly through the air over the top of tloeh

At 1ms the intersecting shock waves have converged at therloght hand side of
the block of Sk, and reflect & the lower wall creating a region of very high pressure
and density. The strong reflected shock induces a rapidghastk velocity generating
the bulge in the right interface of the block. Som#&etiences between the numeri-
cal methods and the experiment can be seen. Initial ingtabiin the primary vortex
can be seen in both the experiment and the fifth-order methloidh takes on an oval
shape. This is not seen in the second-order method as tke petturbations have
been damped more heavily. However, there are signs of snetirkHelmholtz in-
stabilities on the upper interface of theg3#ock in the fifth-order simulations which
are not seen in the experiments. This is because in the exgets the upper interface
was initially diffuse, which tends to inhibit the growth of such instabilitié® exam-
ple of this behaviour can be seen by comparing simulatiomsgét resolution with a
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(a) 0.20ms

(b) 0.37ms

Figure 7.31: Comparison of experimental images (l&fiBritish Crown Copyright
2006MOD) and Sk density (kgmq) for fifth-order (centre) and second-order (right) using
the grid of cross-section of 600160x 320. The white circle on the computational results

indicates the location of the centre of the vortex in the experimental resultigeittieal line is
atx=0.25



7.4 Half-height Experiment 191

(a) 0.20ms

(b) 0.37ms

(d) 2ms

(e) 3ms

(f) 4ms

Figure 7.32: Comparison of experimental images (l&fiBritish Crown Copyright
2006MOD) and Sk density (kgm?®) for fifth-order with low Mach correction (right) using
the grid of cross-section of 660160x 320. The white circle on the computational results

indicate the location of the centre of the vortex in the experimental resultsettieal line is
atx=0.25
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sharp interfaces by Skt al [163] which show Kelvin-Helmholtz instabilities along
the interface compared with simulations by Latial. [115] with a diffuse initial in-
terface which suppresses these features. The innféatsidity within the second-order
method also acts to suppress these features.

The shock reflectsfbthe end of the shock wave, and passes through the developing
mixing layer. By 2ms the shock wave has passed through thgebulsible on the
right-hand interface at 1ms producing a single mode ‘mushiashaped vortex. At
the same time the primary vortex has become unstable andlani&d region is
developing in the vortex core. The size and location of thanrflaw features are very
similar in comparing experiments and simulation, howehere is clearly more fine
scale detail in the M5LM simulation. The location of the vortex core is similar in
all simulations. At 3ms the mixing continues to evolve, watiditional mixing in the
thin strip of material linking the ‘mushroom’ shaped feauwvith the primary vortex.
This mixing is at a small scale relative to the grid resolutsm it is not resolved at
second-order accuracy, however at fifth-order some ingtaban be seen, and this
is significantly improved in the low Mach corrected schemde Primary vortex is
slightly behind the location of the experimental vortexdas captured much better
with the fifth order methods.

The final images again agree very well, however there is anegfimixed fluid travel-
ling along the top of the shock tube in the simulation whichegrs not to be presentin
the experiment. It is believed that this is due to the poaultg®n of the experimental
images as the laser sheet approaches the wall. An imporbartttp note is that the
final position of the Skis slightly different in experiment and simulation. Referring
to the position of the SFrelative to the reference line in Figures 7.31f) and 7.32f),
can be seen that the second- and fifth-order standard mgthedist that the remains
of the Sk block do not travel as far in the x-direction as in the expenm The low
Mach corrected scheme does a much better job at reproduusddtail, as it allows
better resolution of the main flow features that influencentiean position of the SF

An additional point to note is that the experimental imagegear more diuse as
they do not represent a plane slice through the flow field. At the laser sheet
is extremely thin, the reflected light is subsequently scatt through additional in-
teractions with oil droplets before reaching the imagingicke Figure 7.33 shows
line-averaged SfFdensity which appears morefilise as in the experimental images.
It is clear that the fifth-order methods capture the smallesgaxing at the thin strip
much better than the second-order method, and predict tla¢idm of the vortex core
closer to the actual location.

Measurements of the position of the (Sblock and shock wave at early times have
been taken. A comparison of experiment and the three nuateniethods can be seen
in Figure 7.34. The position of the block and the shock wave dantified using
contours of 0.5 and 1.5 times the initial density ofsSFhere is a slight discrepancy
in position of the difracted shock in all numerical simulations. This is due to the
initial diffuse interface in the experiment, which would lead to a lavgetical distance
between the shock travelling in pure air and the shock tliageh pure Sk.
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(a) Experiment (b) VL

(c) M5 (d) M5+LM

Figure 7.33: Line average Sgdensity at 4ms compared to the experimental images
(©British Crown Copyright 200810D), The white circle indicate the location of the
experimental vortex centre

Examining the angle of the ‘thin strip’ which wraps around firimary vortex at late

time (Figure 7.33), this is at a steeper angle than in therexpat. A possible ex-

planation of this discrepancy is that the steeper shockeandghe simulations induces
velocity which has a stronger vertical component than ferakperimental shock.

Comparing the numerical methods, the material interfacaptuced significantly more
sharply in the fifth-order methods than in the second-ordehod. Also, this validates
the choice of governing equations as the shock wave is apiuithout oscillation,
and the position of the material interfaces is captured iwelbmparison to the exper-
iment.

Figure 7.35 shows volume fraction isosurfaces at 4mstititing the highly turbulent
nature of the flow, and the presence of fine scale featureififth-order simulation
which are not present at second-order.

Turbulent Mixing and Kinetic Energy

As a means to compare and contrast the numerical methodsurthdent kinetic
energies and plane averaged mixing quantities have beeputechfor two difer-
ent grid resolutions for each method. Figure 7.36 preseatsepaveraged mixing
< a1 >< ap >, and Figure 7.37 the quantity a;a, >, which is a measure of the
amount of molecular mixing in the primary vortex; is the volume fraction of Air
anda, that of Sk.

The mixed region does not start until= 0.125m with the low Mach scheme as op-
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(a) 0.20ms

(b) 0.37ms

(c) Ims

Figure 7.34: Comparison of experimental shock ands®iesitions (dashed line) and
numerical results (solid line) for second-order (left), fifth-ordenfoe) and modified
fifth-order (right) using the grid of cross-section of 26320

posed tox = 0.115 for the other two methods. As discussed in the previocisose
the low Mach scheme is the better result in comparison wigeamental images.

Apart from this diterence, there is excellent agreement at all grid resolsiéon be-
tween the numerical methods for the location and magnitdidbeopeaks of plane
averaged mixing and molecular mixing. Slighffdrences appear at arouxe 0.16m

in the plot of plane averaged mixing which is due to enhance¢hgnat the right hand
side of the thin strip of dense material. This is visible igutie 7.33, and also appears
in the level of molecular mixing in Figure 7.37, where moliecumixing is at a lo-
cal minimum in the second-order method. There is a slighmjpuat x = 0.29m in
the coarse resolution fifth-order simulations caused bytheection of a small region
of dense fluid over the top of the primary vortex which does axtur in the finer
resolution simulations, and isftlised in the coarse grid simulation at second-order.

The turbulent kinetic energy per metre is defined as

KE

%prdydz (7.4.1)
K = (u-0)2%+VvV+(Ww-W)?, (7.4.2)
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(c) M5+LM 600 (d) M5 750

Figure 7.35: Isosurfaces of 0.01, 0.5 and 0.99 volume fraction of air
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Figure 7.37: Comparison ok ajay > at 4ms

where the tilde quantities are Favre mass-weighted meatities in the homoge-
neous direction

. W=, (7.4.3)

[t}
1
> g

S

and(.) indicates a line averaged quantity in the periogdirection. This is plotted in
Figure 7.38 fot=4ms. There are two peaks in the line averaged kinetic enengg-c
sponding to the location of the mushroom-shaped pertunbatind the large primary
vortex. There is a fairly large fierence in resolved kinetic energy primarily due to
the diference in grid scale. However, the fifth-order methods gigbdr peak plane
averaged turbulent kinetic energy at a mesh resolution 6380 x 160 than the
second-order method at 660160 x 320. This indicates that the fifth-order methods
are far superior in terms of resolution, especially cormsndgthat the fifth-order meth-
ods are only 18% slower in terms of total run time. The logatd maximum kinetic
energy is ak = 0.26m, and matches to within 5mm for all grid resolutions.
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Figure 7.38: Comparison of turbulent kinetic energy per metre at 4ms

In comparing the two fifth-order methods it appears that @ @solution M5-LM
agrees better with the highest resolution M5 simulatiort tha 600 resolution M5
method. The M5 method appears to slightly over-estimateuading kinetic energy
at this resolution, which the modified method corrects. Atid gesolution of 300
the fifth-order methods are fairly similar in plane averagtdistics, but the modified
method resolves approximately 20% more kinetic energy.

Finally, the evolution of total resolved turbulent kinegaergy (TKE) as a function
of time is shown in Figure 7.39. The initially small pertutibas on the gas inter-
faces grow with time due to the combined action of Richtmyeskkov and Kelvin-
Helmholtz instabilities. This means that the kinetic eydrgrease begins earlier in
the schemes which resolve the smaller perturbations, #issgrated in Figure 7.39.
As the turbulent perturbations become larger, then kirstiergy is resolved on the
coarser grids. However, the injection of energy is in therfaf an impulse as the
incident shock and reshock pass through the mixing zone.e @re shock has left
the domain, the TKE in the smallest scales resolved on thetfgred at fifth-order
accuracy begin to dissipate. This does not occur using tier otethods or grid sizes
as they do not resolve these small vortices. Indeed, at thiesest resolution with the
second-order method, the TKE continues to grow up to the étftessimulation. An
important point to note is that the variation and magnitutiéhe resolved TKE us-
ing the fifth-order limiter at the coarse resolution agreexywell with that captured
by the second-order method on a grid twice the size in eadctthn. It should be
noted that these results are also in excellent agreememtegtlts presented using a
semi-Lagrangian code in [180].

7.45 Conclusions

This section has validated the new multi-component scheppéea to a compress-
ible, turbulent mixing experiment. In addition, comparniseith standard numerical
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Figure 7.39: Comparison of total resolved turbulent kinetic energy variation with time, &her
time is measured from the passage of the shock through the first interface

schemes demonstrates the improved performance of the eudiifiniting method
compared to the van Leer limiter, and the standard fifth+olidater. This includes
the mean position of the $bBlock at late time, where the standard limiters at all reso-
lutions give the left hand position of the block 1cm behindewndhit is in experimental
images. There is a slight improvement in the prediction efititation of the centre of
the primary vortex, and clear increase in fine scale stractia given resolution.

Contrasting the three limiting methods, the mixing paramsetee very similar at all
grid resolutions (apart from the 1cm shift), however thesls\of turbulent kinetic en-
ergy for both fifth-order methods are similar to the van Leetutation at double the
grid resolution in each direction. Furthermore, the betvavof total turbulent kinetic
energy with respect to time shows that the new modified fifteomethod gives re-
sults in very good agreement with the standard fifth-ordethogk with double the
number of grid points. This clearly demonstrates the acgbf accurately simulat-
ing low Mach features, even in an experiment where the pgirfiew features are well
into the compressible regime (Magl®.5).



CHAPTER 8

Conclusions

8.1 Conclusions

The aim of this thesis was to implement, analyse and furtbeeldp numerical meth-
ods for the simulation of compressible, turbulent mixingpeTinvestigation was moti-
vated by the need for accurate simulation of the RichtmyestM¥ev instability, which
is of importance in the understanding the flow physics of phena such as super-
novae to inertial confinement fusion.

The initial requirement was to implement a multi-componeratdel capable of fé-
ciently tracking two miscible gases. Given that thetient fluids within a mixed cell
can be assumed to have the same velocity and temperature,aifgeseveral possi-
ble models. Four modern gas mixture models were implemented compressible
code, two quasi-conservative methods [4, 97], the mastdramethod and the Total
Enthalpy Conservation of the Mixture (ThCM) [191] model. Sev@ne-dimensional
test cases were used to elucidate thiféedences between the mixture models. From
numerical test cases it was clear that the mass fraction Im@dethe worst, producing
significant pressure oscillations in regions when a shoskgmthrough a contact sur-
face. It was shown theoretically that the ThCM model also dm¢snaintain pressure
equilibrium in mixed cells where the temperature variepssthe cell, however these
are not as severe as in those with the mass fraction model.

Both the Allaireet al. [4] quasi-conservative model and the Johnsen and Colonfjs [9
eliminate the problem of pressure oscillations, howevén@presence of strong shock
waves the Johnsen and Colonius approach breaks down, aatomsiin the ratio of
specific heats occurs in the pure gas. The conclusion isahairhulations with strong
(or convergent) shock waves the best model is the ThCM modefobthe majority

of cases one of the quasi-conservative models should beogetpl

Next, simulations of homogeneous decaying turbulence (HD& periodic cube were
used to examine in a detailed and quantitative manner thaviir of state of the art
high-resolution and high-order methods in implicit Largedl Simulation. Compu-
tations have been conducted at grid resolutions fromt8256 for seven diferent

high-resolution methods ranging from second-order tohaorter spatial accuracy.
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The growth of the large scales, and dissipation of kinetergy is captured well at
resolutions greater than 32or when using numerical methods of higher than third
order accuracy. Velocity increment probability distriloat functions (PDFs) match
experimental results very well for MUSCL methods, whereas \WENethods have
lower intermittency. All pressure PDFs are essentially €3&an, indicating a partial
decoupling of pressure and vorticity fields. The kineticrggespectra andféective nu-
merical filter show that all schemes are too dissipativegtt iave number. Evaluating
the numerical viscosity as a spectral eddy viscosity shavesl gjualitative agreement
with theory, however if theféective cut-df wave number is chosen abokg,,/2 then
dissipation is higher than the theoretical solution. Thita @nd higher order methods
give results approximately equivalent to the lower ordethods at double the grid
resolution, making them computationally moi@aent.

As a key conclusion of the study on homogeneous decayingliembe was that the
high wave number performance of the standard numericahsetés rather poor, the
source of this excess dissipation of turbulent kinetic gpevas investigated. Firstly
it is shown that the production of entropy exactly matchesitreversible change in
kinetic energy of a compressible flow. Next, explicit formelwere derived for the
rate of increase of entropy given arbitrary jumps in privaétvariables at a cell inter-
face. It was demonstrated that the inherent dissipatioheof2odunov schemes is not
proportional to the velocity jump cubed as is commonly assdinThe leading order
dissipation rate of a Godunov method is proportional to #leaity jump squared mul-
tiplied by the speed of sound. The leading order dissipaatmassociated with jumps
in pressure, density and shear waves is detailed, howelaswy dach numbers it is the
dissipation due to the velocity jumps which dominates. Allgtical results have been
validated with simple numerical experiments and it is sholat the analysis applies
to high order accurate methods in space and time. This mbanhdissipation of tur-
bulent kinetic energy increases proportional fd11 which is a significant restriction
on accuracy of Godunov-type methods for shock-inducediterth mixing.

As the leading order source of dissipation of kinetic enaesgyow identified, a simple
modification of the extrapolation process was proposedaavalignificantly improved
resolution of low Mach perturbations for use in mixed consgikel¢incompressible
flows. By scaling the velocity jump by Mach number, the dissgrarate is constant

as the Mach number tends to zero, as opposed to the standdush@oscheme where

it becomes infinite. In addition, incompressible scalingled pressure and density
variations are recovered. The key feature of the numera@ e is that the recon-
struction is modifiedocally, hence the scheme can capture both shock waves and low
Mach features in the same computational domain using the $armulation of the
governing equations. The numerical modification adds gex& computational cost.

The modified limiting process was implemented in a fifth-ondespace [107], third-
order in time [173] finite volume Godunov method. Numeriests demonstrate that
the new scheme captures shocks well and significantly rechiga wave number dis-
sipation in the case of homogeneous decaying turbulenceRaidmyer-Meshkov
mixing. In the latter case the turbulent spectra match #texal predictions excel-
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lently.

As there is a lack of quantitative experimental data for casgible, shock-induced
turbulent mixing, the method has been validated againsinapoessible cavity flow
at Reynolds 86M00 [59]. A comparison of the mean flow and Reynolds stresses at
three diterent mesh resolutions demonstrates excellent convergdrine numerical
results. There is a slight discrepancy in the location ofcietre of the mixing layer
over the cavity due to the simple initialisation method emypl, and lack of a turbulent
wall model. Comparing the results with conventional LES gsin advanced selective
mixed scale subgrid model [113] show that for mean flow progethe ILES results
are slightly worse, however the LES results employ a turduleall model, and have
adjusted the inlet boundary condition such that the meaocitgl profile at the cav-
ity matches the experimentally measured profile. LES regdined using the same
inlet boundary conditions employed here are significantys&. In comparing the
sound pressure levels, the numerical simulations prelagcfundamental frequencies
to within 2% and amplitude to within 6dB at all grid levels. i$hs better than the
agreement gained using LES with a selective mixed scalersuivgdel.

The next test case involves the planar Richtmyer-Meshkadalilgy. Firstly, a single
mode problem is investigated, using the new numerical nteéimal the standard van
Leer second-order method [187]. The converged resultscampared to results using
a semi-Lagrangian method [183], interface tracking [2@h}] two analytical theories
[155, 201]. The converged growth rate for the Finite Volunmel demi-Lagrangian
methods are identical, and there is excellent agreemearigttenes with the analyt-
ical theory. At late times the analytical theory is not valdige to it's derivation based
on a perturbation analysis. In addition, it is believed tihat results gained using in-
terface tracking were not fully converged at the given gesialution. It is shown that
the modified numerical method gives a converged mixing layidth at half the grid
points in each direction over the van Leer scheme, and ongegube grid points in
each direction to capture the growth of the spike. This isvéngain computational
time of sixteen and one hundred and twenty-eight times wspdy. It is observed
that the van Leer method Sars heavily from the increase of dissipation at low Mach
as predicted from previous theoretical analysis in Chapteéwever, it should be
noted that at low grid resolutions (ten cells for a single e)othe modified numerical
scheme predicts a growth more rapid than the converged lgromdicating that the
new extrapolation method does not havéisient dissipation at high wave numbers.

An important conclusion of the single mode study is that thre-hinear theory of Zhang
and Sohn [201] performs much better compared to the nuniegsalts, indicating

that this may be a better choice to use when developing acellyelationships for

multimode simulations. Nearly all models based on the ‘padtirated’ mode, bubble
growth and merger detailed in Section 2.3 use linear theoring the derivation.

Multimode Richtmyer-Meshkov instability has been simutiatssing two initial con-
ditions. The first is a narrowband perturbation consistinty @f high wavenumber
modes. The purpose of this is to compute the growth rate ofxangiayer which
expands only through mode coupling. The second initial g&mmis a broadband
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frequency spectrum from long to short wavelengths. This tedest the growth rate
of the resultant mixing layer when there is the combinatibmode coupling, and
linearnon-linear growth of large scale perturbations occurringutaneously. To test
grid convergence, each case was run at thréerdnt grid levels, each subsequent
grid having twice the number of points in each direction. éhnumerical methods
were employed, the van Leer second-order extrapolationgwed Essentially Non-
Oscillatory (WENO) ninth-order, and the new modified fifttder method. The van
Leer method was tested at moderate resolution, but thetsegete poor due to exces-
sive numerical dissipation.

The results gained for the fifth order modified method confartiet the growth ex-
ponent of the RM mixing layer is dependent on the initial ctiods, being equal to
0.24 + 0.015 for the mode coupling case, an@®+ 0.01 for the broadband initial
conditions. The narrowband perturbations are in good ageeé with experimental
results by Dimonteet al [48], and the general consensus for expansion of a turbulent
slab @ ~ 2/3—u). This is almost identical to the previous results of Youfigs8] using
a completely dierent numerical approach. However, the broadband reseliewer
than expected according to analytical models by Dimonté g6 Youngs [198], the
difference attributed to the relatively low ratio of maximum tommmum wavelength
of the initial perturbation. The molecular mix fraction tertowards @B at late time in
good agreement with previous results [197, 42], and a goaal & self-similarity of
the volume fraction profiles is demonstrated throughoutitiration of the simulation.

The total fluctuating turbulent kinetic energy in the narband case decays at a rate
proportional tot~12° for the longitudinal direction, in close agreement withttha-
pected from homogeneous turbulence, but lower than thaestgd by Llor [123] for

a slab of decaying turbulence. The ratio of the longitudamal lateral turbulent kinetic
energies approaches a constant.5 at late times, again reinforcing that the layer is
developing in an approximately self-similar manner. Disienal estimates predict
that the decay rate of total fluctuating kinetic energy igpprtional tot¥-?, leading to
an estimate af 128 using thed determined from the integral mixing width, in excellent
agreement with direct measurements.

The decay of turbulent kinetic energy is significantly loi@rthe broadband initial-
isation, proportional ta=*% in the longitudinal direction, which is to be expected as
a large portion of the initial kinetic energy is in the low veamumber region of the
spectrum. The flow at the long wavelengths is largely irrotetl, and thus does not
dissipate asféectively as the fully developed turbulent slab in the natrand simula-
tion. Interestingly, although it is not expected that the&ing layer is fully developed,
the empirical relatioml gk /dt « qi/Z/W also gives a good estimate of the decay rate of
turbulent kinetic energy based on the growth exponent ofrttegral mixing width.

In addition, two dimensional spectra have been computeldarcéntre of the mixing
layer at several dierent times. Excellent grid convergences is seen, howévbea
lowest grid resolution (9& 64 x 64) the modified numerical method is not dissipative
enough. This is in agreement with results from the singleemsithulations. There is
an extensive power-law region in the spectra which is closéne k=32 spectra pro-
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posed by Zhou [202], than the Kolmogorov spectrum, althdbgldiference between
the two power laws is not large enough to make a definitiveestaht. The WENO
results match excellently at low wave numbers, however treytoo dissipative at
high wavenumber, as although they have a much higher forrdat of accuracy, they
sufer from the same increase of dissipation at low Mach discliss€Ehapter 5.

Finally, the modified fifth-order method was compared to tiaadard fifth-order and
second-order van Leer method in the simulation of the haidtt shock tube experi-
ment [83]. The half-height experiment is a rich physicalipem with strong Kelvin-
Helmholtz and Richtmyer-Meshkov instabilities, and mixioigtwo gases with dif-
ferent ratios of specific heats. The three methods were cad@gainst qualitative
experimental data, and it was shown that the new modifiednsehgave improved
agreement in terms of position of the SBlock, and position of the main flow fea-
tures. In addition, there is a significant increase in findestemtures when using the
modified scheme. There are slight discrepancies with therarpntal results, the
main being that there is aftierence in the angle of the refracted shock wave which
passes through the block of §FThe source of this error is in the modelling of the
problem where it was assumed that the upper surface of tlo& Basharp, whereas
in reality there would be a ffuse layer between the air andSHn comparing the
numerical schemes, the two fifth-order methods give turliuténetic energy levels
comparable to the van Leer method at half the grid size in daelstion. The time
dependent behaviour of turbulent kinetic energy for the ifrextl fifth-order method
agrees very well with the standard method with double thebmirof grid points. This
is a significant saving in computational time for equivalessults.

8.2 Summary of Contributions
This thesis has

e Proposed, implemented and validated comprehensively pleiraconstruction
procedure which significantly improves the ability of Godurmethods to cap-
ture simultaneously both low Mach features and shock wavi®ut modifying
the formulation of the governing equations, at negligienputational expense

¢ Detailed a numerically validated theoretical analysishefdissipation of kinetic
energy in low Mach flows when using a Godunov-type numericaéme.

¢ Investigated in a comprehensive and quantitative manmealbility of state of
the art Finite Volume methods to represent homogeneouyectrbulence

¢ Validation of the new extrapolation method against experital results for a
deep, open cavity at high Reynolds number (88D), additionally showing
that an explicit subgrid model is not necessary when usiisghiethod
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¢ Investigated the flow physics of RM single and multimode péstions for per-
fect gases, confirming earlier results by Youngs [198] that growth rate is
strongly dependent on initial conditions. Demonstratece#&nt grid conver-
gence of the new method, allowing detailed discussion oftdileulent flow
physics

¢ Gained excellent qualitative agreement with the shock tabxéng experiments
of Holder and Barton [83] using the new methodology, and destrated that
the new approach allows a significant saving in terms of cdatfanal time

e Assessed the ability of modern, state of the art multicorepbrgas mixture
models compared to classical approaches, demonstragirgéhative strengths
and weaknesses

e Demonstrated analytically the link between increase afogrytand dissipation
of kinetic energy, and showing how this can be used to anahesperformance
of numerical schemes at low Mach

e Showed analytically that the leading order increase inogytin Godunov-type
schemes is not due to the identification of shock waves in dhgisn of the
Riemann problem at the cell interface

¢ Derived several new multicomponent approximate Riemanresobased on the
characteristics approach, and on the Roe method

e Showed theoretically that the Total Enthalpy Conservatidh@® Mixture model
does not maintain pressure equilibrium at a contact diswaity, contrary to the
analysis presented by Waegal. [191]

8.3 Future Research

8.3.1 Numerics

The research detailed in this thesis has opened up seveed for future work. The
theoretical analysis of Godunov-type schemes can be extiiodhigher order schemes
relatively easily, as the first order analysis will still @&ppt the cell interface. Itis only
necessary to take into consideration the variation of tinetic energy and entropy
within the cell itself due to the higher order reconstruatior his analysis could be
coupled with formulating criteria for shicient dissipation with regard to consistent
convergence of the numerical scheme, as it has been demteasthat the current
implementation is not gticiently dissipative at low grid resolutions. This is mastf
through a relatively flat spectrum at high wavenumber.

A key difficulty is the extension of the theoretical analysis to lookatilean invari-
ance. This has been attempted using the linearised Riemdver spproximation
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employed in Chapter 3, however, for regimes where the dissipaate is not domi-

nated by the dissipation proportional to the speed of soti&dlinearised solver is a
poor approximation of the exact solution (or more accuraf@@imate solvers, e.g.
HLLC).

Experiments with dferent forms of the low Mach modification to the base extrapola
tion scheme yield surprisingly similar result. This imgli#hat the dissipation due to
velocity jumps is no longer the prime source of dissipataswvas the aim of the mod-
ification. However, this means that dissipation due to presand density jumps now
contribute significantly to the total dissipation. This dow®t fit with Kolmogorov’'s
analysis of the dissipation rate of turbulence which onlgedels on the velocity dif-
ferences.

A key addition to the current work would be to conduct a stgb#énalysis of the
modified numerical scheme. Numerical tests have shown distamvelope similar
to that of the original numerical scheme, however the matiifirethod is slightly less
stable. A formal stability analysis should bring out thifelience.

A major restriction to theficient simulation of near-incompressible flows is the CFL
condition. One method used by semi-Lagrangian schemesgitdhe time step into
two components, one related to the signals travelling aspleed of sound, the other to
the convective quantities. By splitting the flux computaiiothis manner a significant
time saving can be made, as several relatively fast compogsaof flux due to thei+a
andu—acharacteristics can be made for eaaharacteristic. A potentially worthwhile
direction for research would be an equivalent form of thisGedunov-type methods,
potentially employing a flux splitting approach to sepatatefluxes along the + a
andu — a characteristics from those along theharacteristic.

Finally, in most of the simulations the interface perturyatwas initialised at only
second-order accuracy in space. It is possible that thissexiaus issue at low grid
resolution (i.e. 10-20 cells per wavelength) when usingghéi order method. This
should be investigated for single mode, and then multimaddgurations.

8.3.2 Flow Physics

The current numerical method is extremely well suited tosineulation of flows with
both compressible and incompressible features. It is dadrthat the simulation of
multimode RM instability should be used to verify currentahgeon the growth of the
mixing layer, and in particular validate the assumptioreenent in each of the models
for the growth rate of the RM layer. This has been highlightethe literature survey
where it was shown that several of the models are only agpédar a specific set of
initial perturbations.

In the determination of growth of a turbulent slab, it woulel interesting to investi-
gate in more depth the model parameters The most importaateder would be the
determination of the constant of proportionality in theatgn dogk /dt o« qi/z/w for
narrowband initial conditions, which plays a key part inetatining6.
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In the case of broadband initial perturbations, the logdiegction for future work

is to increase the ratio of maximum to minimum wavelengthm@ations with both

constant and /k? power spectra could be used to examine the ‘just saturatedem
analysis of Inogamov [89], Dimonte [46] and Youngs [198]pedtively. On the the-
oretical side, it is possible that these theories could b@raved by substituting the
Zhang and Sohn non-linear single mode growth rate [201]Herlinear Richtmyer

equation in all derivations. This is based on the obsematioSection 7.2 that the
non-linear theory is a much better match to single mode droate than Richtmyer’s
analysis.

Finally, obvious further parameters to investigate ardrifieence of Atwood number,
and the &ect of incident shock strength on the growth exponent.

The test cases employed in this thesis have evolved coabigeirom the first iter-
ations, however there are several improvements which candmke. Firstly, future
simulations of cavity flows should include a turbulent watiakel to verify the conjec-
ture that the remaining discrepancy is due to poor repratentof the boundary layer
at the upstream corner of the cavity. For the simulation efftalf-height shock tube
experiment it is necessary to include #ase upper surface to gain the correct angle
of the ditracted shock wave.

A key issue which spans both numerics and flow physics is tkerméation of the
stability of structures within the developing flow. The @nt implementation allows
rapid growth of secondary instabilities (i.e. Kelvin-Hédoitz instabilities along the
RM bubble and spike, or at nonstlise contact surfaces), however it is not clear
whether the seed for these perturbations is physical. Toeptiwity of numerical
schemes to roundfoerror perturbations is an important area to clarify.
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APPENDIX A

Symmetric Limiters

The MUSCL (Monotone Upstream-Centred Schemes for Consemnviaiiws) method
is used to determine the cell interface variables by exteding the cell averaged vari-
ables. Examining Equation (3.4.2) it is clear that if

¢(r”m"-) (U, - Ui—l) = ¢(I’“%) (Ui+1 - U,) ’ (AOl)
#(F™R) (U~ U,) = ¢(r%ﬂ)(ui+1 _u), (A0.2)

then the resultant interpolated quantity is independent ®his is the case for the van
Albada, van Leer and Minmod limiters which are always of setorder accuracy in
the standard MUSCL format. As an example this can be shown toubeof the van
Leer limiter. Setting the dierencegU; — U;_1) = Ai_1,2 and(Ui,1 — U;) = Aj;1/2, then
the left hand interpolated values are independetasf

Zrlim,L
1+ r"m’L (UI - Ui—l) )

2Ai412A0i21)2
Aic12 (L + Ais1j2/Aicay2)’
2Ai 1200212

= — A.0.3
Aic12 + Ajs1p2 ( )

$(r"™) (Ui - Ui) =

also,

1 Z/rlim,L
¢(r|im,L)(Ui+1_ U) = W(Unl— Ui),
2Ai_1)2Ai1)2

Aiv12 (1 + Ai1ja/Aisay2)’

_ 2Aip2Aip2 (A.0.4)
Aiiajz + A o
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thus demonstrating that this limiter satisfies the criteri&quation (A.0.2) meaning
that it is at most second-order accurate. Equivalent resalt be shown for the Min-
mod, van Albada and other second order limiters.



APPENDIX B

Entropy Analysis

B.1 Entropy Increase for an Isolated Velocity Disconti-
nuity

Beginning with the one-dimensional Euler equations

% + % =0, (B.1.1)
where,
U=[p, pue, (B.1.2)
E= [pu, ou?+p, (e+ p)u]T, (B.1.3)
e = pi +0.5p (1), (B.1.4)
p=pi(y-1), (B.1.5)

andp, i, u are the density, specific internal energy per unit volume »xaddection
velocity component, respectively. Throughout this appeftdis assumed that the
fluid satisfies the ideal gas equation of state. The Eulertemsaare discretised using
a first order accurate method in time and space

UTt = U7 — v (ELy, — By ) (B.1.6)
At

= B.1.7

V= (B.1.7)

Given initial conditions

PL=Pr=P.  PL=PR=P; u=Au, u=0, (B.1.8)
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where the cellg and j — 1 are in the left state, ce|l+ 1 is the right state. The inter-
face fluxEf, , is computed directly from the left hand quantities. The ealof the
primitive variables required to computg, , , are determined by solving the Riemann
problem at the interface with the left and right quantiti€his can be estimated with
reasonable accuracy using a linearised approximatiod][p3279)

Aupa
p° = p+% (B.1.9)
Au
U= = (B.1.10)
AUp
- —_—. B.1.11
p p+— ( )
Thus, the conserved variables at the next time step are
. u-(pr32)¥
Ut=|  pAu |4y PO +p p+2—ff)AT—p Aua ,
P LA A,
1t >PAU (WTAU + szUS ( +2(y 1;/ . %) Al—‘g
(B.1.12)
simplifying,
Au Au
o pl1e 02 22 B.1.13
P p( + ) all’ ( )
1+ XY (g—2u_ 4
u™l = A 8 Eu aAu ) (B.1.14)
(1+:5(2- %)
Au) 1 vAu Au 8ya
SIS S R el DY P e /B ) Ao | D= WL
y—l( )2 (% 7 mp-op) G

Next the pressure can be computed fridn- l/2,ou2)n+l (y- 1)

1 _ | P vyAu) 1 ., vAu _Au_ B
P _[7—1(1+ 2 )+2pA“[1 16(14 a  Au(y-1)

1 ey -8

a

(y-1). (B.1.16)
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At this point the pressure at time levek 1 is simplified by expanding the last term in
the above equation in a binomial series;H(%)™* ~ 1 - x + x2 — ..., where terms up to
orderAu? are kept. Starting with the denominator

1 VAU VAW VPAU? Au\®
—1+M_Mz - + ia + 2 +0(€) ~ 1, (B.1.17)
2 4a
multiplying out the numerator
vAu Au  4a\]? v2a?
1+ —|6-—-—]|| ~r1l-va+—, B.1.18
[ T8 ( a Au) Ty ( )
the pressure can now be written as
Au AU2
Pt~ p[l+v72 7” 2y —4-va(y - 1))] (B.1.19)
Foru™?! andp™?:
AU VAU?
o pl1+ o : B.1.20
p ( U (8.1.20)
a
U~ Au(l - %) (B.1.21)

Settingy = C/aandM = 0 clearly givedimy_,0AS = 0. In practise this limit is not
reached for flows of typical interest (i.e. moving flows). Tdiange in entropy is

n+1 n
AS = iIn E) - iIn (B)
y-1 \p y-1 \p
R In p[l + WAU + WAU (2y-4-va(y- 1))]] R ( p)
~ — V. V. Y - — oY
y-1 (o (1 + e k) y-1
R . [1+28 22 0y _4_va(y-1
< —in ’ ZUY — b=\ (B.1.22)
Y- (1 2 AE)
Expanding the denominator in a series where
1 m(m+ 1) m(m+ 1) (m+ 2)
m =1-mz+ o1 Z2 — 3] 23 (8123)
1 yvAu  yvAU? V2AU? 3
=1- + +y(y+1) +O(A0®).  (B.1.24)

(1420 wary 2 4



B-6 Entropy Analysis

Multiplying this by the numerator gives

14280 28 o0 _A4_va(y-1 Au Au®
2 g (2 or=1) (1+7V + & (27—4—1/3(7—1)))

(1 -y > e
yvAU  yvAU? V2AU?
(1 >+ 2 +y(y+1) 3

YVAU?
a

Q

1+ [2y =2+ 2va(l-1v)].(B.1.25)

Additionally, for '%‘;Z [2y —2+2va(l- y)]‘ < 1 the series expansion of the natural
logarithm can be employed:

X2 X3
In(1 =X——=+ —. B.1.26
N1+ Xx) =X > + 3 ( )

to give Equation (5.5.8).

B.2 Mathematica Script to Derive Leading Order Dis-
Sipation Terms

The leading order dissipation rate at an interface whenm@tisea jump in all primitive
variables can be computed using the following script in th@lsolic manipulation
software Mathematica.

(*Initial Conditions*)
pr = p - dp/2;

pl = p + dp/2;
ur = u - du/2;
ul = u + du/2;
rr = r - dr/2;
rl = r + dr/2;

(*Star Quantities®)

ps = (pr + pl)/2 + (ul - ur)r a/2;

us = (ur + ul)/2 + (pl - pr)/(2 r a);
rs =rl + (ul - us) r/a;

(*Compute conservative variables at the next time step*)
ul = rl + v (rl ul - rs us)
u2 =rlul + v (rl ul”2 + pl - rs us™2 - ps)
u3 = pl/(g - 1) + rl ul"2/2 +
v ((pl g/(g - 1) + r1 ul"2/2) ul - (ps g/(g - 1) + rs us"2/2)us)

{*Calculate primitive variables at the next times step*)

rl = Simplify[Expand[ul]]
ul = Simplify[Expand[u2/ull]
el = Simplify[Expand[u3]]

pl = (g - (el - 1/2 r1 ul"2)
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(*Calculate the entropy change and multiply by temperature®)
In = pl/r1”g ((r1)"g/(P1));

ds = C/(g - D{An - 1);

Tds = ds a"2/(g Q;

(*Expand each variable in terms of the jump size to gain the leading order terms¥*)
TdsExp = Expand[Normal[Series[Normal[Series[Normal[Series[Tds, {dp, ®, 2}11,
{du, 0, 2}11, {dr, 0, 2}]1]1]

(*Substitute speed of sound instead of pressure p*)
TdsExp2 = TdsExpl /. p -> r a"2/g

All that remains is to simplify the resulting expression trgseveral leading order
terms.
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Entropy Analysis




APPENDIX C

Modified Roe Scheme for Low Mach Flows

C.1 Introduction

It is quite common to use Godunov type upwind methods for Etran of flows with
both compressible and incompressible nature, or where theotanicity of certain
properties are required. An example of this is the Richtnieshkov instability,
where a shock wave passes through a perturbed interfacerageg a turbulent mix-
ing layer. Once the shock wave has passed, the mixing lay&iajes in a largely
incompressible manner. It is well known that upwind schearesexcessively dissipa-
tive at low Mach number, however the mechanism for this iswidely understood.
The analysis detailed in Chapter 5 shows that the increasgrnopy is approximately
equal to the irreversible dissipation of kinetic energyost Mach. It also shows that
the leading order increase of entropy in Godunov type meth®diue to numerical
dissipation within the momentum equations, which can bé&evrias

(1-0)
4AX

whereT, uanda are the temperature, velocity normal to the cell interfawkspeed of
sound respectivelyAx is the length of the computational cell the Courant-Friedrich-
Levy (CFL) numberAS the change in entropy,,m is the numerical dissipation rate
of kinetic energy. It can be seen that the dissipation ratetes infinite asM — 0
(equivalently as — ). This appendix derives a new Roe scheme for the multicom-
ponent equation set of Wargg al. [191] and proposes a modification of the numerical
dissipation in the momentum equations which corrects thelMeumber dependence
of the numerical dissipation. The performance of this sahenilustrated via a simple
single mode Kelvin-Helmholtz test case.

aAu? + ... (C.1.1)

C.2 Governing Equations and Numerical Scheme

This section concerns the low Mach performance of comgskessinulti-component
schemes. The governing equations chosen are the Euleia@wuplus two additional
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equations for the multi-component model. The three dinmaradicompressible Euler
equations for a Cartesian co-ordinate system can be writteorniservative variables
as:

o o oF 090G

ou oE OF 9G _ 2.1
ot "ox oy ez (€.2.1)

where,

U=[p, pu, pv, pw, €', E= [pu, pU? +p, puv, puw, (e+ p)u]T,
F=[pv. puv, p+p, pvw, (e+ IO)V]T, G =|ow, puw, pvw, pw’+p, (e+ IO)W]T,
e = pi + 0.5007,

andp, i, u, v, w are the density, internal energy and Cartesian velocity com@pts
respectively. The system of equations is completed witrsgieification of an ideal
gas equation of stat@y = pi (y — 1). The multi-component model employed is that
proposed by Wanet al. [191], which is based on the conservation of total enthalpy
within the fluid mixture and consists of tracking two addit#& equations

AR A B a ea
HE) 2 o) Ao can

where M is the molecular mass of the mixture, and the variabte y/(y — 1) for a
perfect gas. A new Roe scheme has been derived for this sevefrgong equations,
solved in a direction-split form. The flux for the Roe scheme lsa written as

1 1 e
Firgz =5 (FL + Fr) - 5 Z & |79 K (C.2.4)

i=1,7

where the eigenvalues are

B9=259=250=5"=2"=u, %=u-a A%=u+a (C.2.5)

and the speed of sourad = (H — g) / (v — 1). With some algebraic manipulation the
eigenvectors can be cast into the following form
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[ O | 0 1 0
0 0 u 0
0 0 Y 1
Kl=| 0|, K2= 0 K=l w |, K*=] 0|, (C.2.6)
0 —a?(y - ) M/y q v
X -1 0 0
[ 1] 0 0 0
[ 0 | 1 1
0 u-—a u+a
0 v v
KS=]1], K= w , KT = w (C.2.7)
w (-1 -au+q a2 -1 +au+q
0 XIM XIM
| O | M M

The wave strengths;, required for the Roe scheme are given by

0> ZXA_U7, 03 = —MA_U7 + Au; — 2@,
85 = AUy —WAU;, 6 = MAU7/2 — (AU — UALL)/2a + AA,
07 = 8 + (AU — UAUL)/a,

51 = AUg/y — 2AA/ M,

04 = AUz — VAU,

AUs — UAU, — VAUz — WAU, + QAU
222 (y — 1) ’

AA = (C.2.8)

_ 1
AU; = AUy — —AUg.
X

Following the analysis by Guillard and Viozat [74] the asyotjt behaviour of the
dissipation in the Roe flux can be determined. This is achibyexubstituting

U= aes(0+ Mug +...)
W = aref (0+ Mwy + ...)

= Pref (,00 + M?%0, + )
Adef (0 + Mv; + )

Prei@eg (Po+ M?p + ...),

< D
I

(C.2.9)

into Equation (C.2.4), wher® is the reference Mach number. Next all terms (for all
equations) in the computation of the Roe flux are expandedhttirig order in Mach.
There is only one leading order term at low Mach, giving

1 1
(oW + P)isaj2 > ((PU2 + P+ (ou? + p)R) + ZMprefarzefaO (A (poUz) — U1 A (00)) -
(C.2.10)

This single term is the only term of order Mach, and arisesabseds = —57 and,
KS = —KJ, where (), indicates the second row of the eigenvector. As expectésl, th
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result is identical to that given in the analysis of the Ewquations under Godunov
form [73] (noting thatA (ogus) — U1 A (0g) = poA (U1)). The next terms in the expansion
are constant with Mach, hence these are not the source afased dissipation in
incompressible flows and are neglected here. Computing Ssgpdtion of kinetic
energy due to this term gives the leading order term shownquaion C.1.1. As
M — 0 (aef — o) then the Roe scheme gives infinite dissipation. To rectify, thne
can modify the second row of the eigenvectifsandK by a factor of Mach in low
Mach regions. In this appendix the sixth and seventh eiggoxeare modified as

KS=u-a— u-pa, Kl=u+a—u+pa (C.2.11)

Here,s = min(10M, 1), such that the original Roe scheme is recovered for irdesfa
whereM > 0.1. This makes the leading order dissipation tend to a constdne as
Mach number tends to zero. If the new flux Jacobian is compudetd) the new set of
eigenvectors it is seen that this modification changes dr@ytmomentum flux from
pU2 + pto pu? + Bp. The modification could be viewed as a change in the governing
equations which are being solved, which is not desirablevéver, the standard fluxes
are dominated by unphysical viscous dissipation at low Maakl are hence also not
solving the Euler equations - but the Euler equations plugelviscous term. The
contribution from the Roe scheme can be understood as ariaadditerm required
only to stabilise the central fierence flux. Hence the form of this stabilisation does
not necessarily require a physical basis, but it must notidat@ the flow physics (as
happens with the standard flux at low Mach). This modificasitso allows good sta-
bility according to the standard CFL condition, as opposestdadard preconditioned
methods where stability in explicit time-stepping is piative [20], thus can be used
where the time stepping is not constrained by the low Machigroof the flow. In
addition, it preserves exactly a stationary material fats.

C.3 Numerical Test Case

The dtective resolution of the modified Roe scheme is now testeckisithulation of a
single mode Kelvin-Helmholtz (KH) instability. The abovesthod is implemented in
conjuction with third-order accurate Runge-Kutta timepgiag [173], and with fifth-
order (in one dimension) MUSCL reconstruction [107]. The patational domain
is square and spans().5, -0.5] to [0.5,0.5] and is discretised with 16 cells in each
direction. The initial conditions consist of a perturbe@ahlayer, where the flow is
initially parallel, but for a small perturbation velocityhich triggers the development
of a KH vortex. The initial perturbation is written in the farof the divergence of a
vector potentiak; so that the flow field is approximately solenoidal [199]. Insuary,
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' 06

(@ t0,M=02 () t1,M=02 (C)t=2,M=02  (d)t=3,M =02

Figure C.1: Time development of the single mode KH instability using the standard Roe
scheme. Nine contours of volume fraction from @ 0.9

(8 £3,M =002  (b) t=3, M = 0.002

Figure C.2: Simulations of the KH instability at M0.02 and M-0.002 using the standard

Roe scheme
OA
v=-AU/2- 2 u:a—yz, forx <0
A
v=AU/2+ 22 u= ‘;yz, for x> 0 (C.3.1)
A, = 2 cosky) exp X Up = 0.1AU, AU =1

whereAU is the diference in mean flow velocity U across the mixing layer. ThelMac
number, defined byU/a, is adjusted by changing the pressure. Density is fixed at
p = 1, andy = 5/3. The coarse resolution is deliberately chosen to highligé
scheme’s ability to capture what would be a high wavenumbgugbation on a larger
grid. It also allows easy demonstration of the low Mach b&havof the dissipation

of kinetic energy.

The development of the instability when using the standard saheme aM = 0.2

is illustrated in Figure C.1. The initially small perturlatiis absolutely unstable and
forms the characteristic KH vortex. Contours of volume fiactare also shown in
Figure C.2 forM = 0.02 andM = 0.002, where excessive dissipation prevents growth
of the instability. Figure C.3 shows volume fraction con®far the modified scheme
at the final time step, where the modified dissipation alldvesdevelopment of a near
Mach independent structure.

An additional issue with low Mach Godunov type simulatioaghat the numerical
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0009

(a) M =02 (b) M = 0.02 (c) M = 0.002 (d) M = 0.0002

Figure C.3: Nine contours of volume fraction fromDto 09 att = 3 for the modified scheme

Table C.1: Scaling of the maximum pressure and density fluctuations with Matk &t

Mach APmax/(PM?)  Apmax/ (0M?)

M=02 0.683 0525
M = 0.02 0633 Q575
M = 0.002 0650 Q35

M = 0.0002 0633 125

dissipation causes anomalous scaling of the pressure watthNumber [74]. Ta-
ble C.1 shows the variation of pressure and densitinces with respect to Mach.
The pressure variations follow the corr@df scaling, however the density variations
follow that scaling only tovl ~ 0.002, below which there is a departure from the ex-
pected behaviour. It is believed that this is due to the gnobdf ‘cancellation’ errors.
Sesterhenet al[161] demonstrated that this is a potential issue evevi at0.02.

C.4 Conclusions

This appendix has presented a new Roe scheme to solve theamyibnent equations
of Wanget al. [191] and proposed a modification to this scheme for low Maowsl
This removes the leading order Mach dependent dissipatidnisademonstrated to
provide consistent result at Mach numbers as low a$.1@ also shows corredi?
scaling of pressure fluctuations, however, the density datains deviate from this
belowM =~ 0.002. This is believed to be due to cancellation errors.



