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Abstract—Wind energy represents a promising alternative to
replace traditional fossil-based energy sources. For this reason,
increasing the efficiency in the conversion process from wind
to electrical energy is crucial. Unfortunately, the presence of
systematic errors (mostly related to the yaw and pitch angles)
is one of the key factors causing under-performance, and for
this reason, it requires adequate identification. The present work
deals with diagnosing wind turbine static yaw error, occurring
when the wind vane sensor is incorrectly aligned with the
rotor shaft. A thorough investigation methodology is proposed
by considering a unique experimental test-up shared by the
Eolos Wind Research Station. A utility-scale wind turbine has
been imposed to operate subjected to several static yaw errors
and reference meteorological data collected nearby the wind
turbine were available. By analyzing the relation between the
meteorological data and the SCADA data collected by the wind
turbine, a systematic alteration in the measurements of nacelle
wind speed in the presence of the yaw error is explicitly shown.
This phenomenon has been overlooked in the literature and leads
to revisiting the methods mostly employed for the diagnosis
of the error. Furthermore, a correlation between the presence
of static error, increased blade pitch, and heightened levels of
tower vibration is observed. In summary, this work provides
a comprehensive characterization of the experimental evidence
associated with the presence of a wind turbine static yaw error.
This paves the way for more effective diagnostic techniques for
wind turbine yaw errors, potentially revolutionizing data-driven
maintenance strategies.

Index Terms—Wind Energy, Wind Turbines, Systematic Er-
rors, Yaw Error, Renewable Energy Sources, Energy Systems
Efficiency

I. INTRODUCTION

Wind turbines are considered a leading technology for

power generation from renewable sources [1], [2], such that

the European Commission has set a target that half of the elec-

tricity produced in Europe by 2050 should be produced from

wind. Therefore, there is ever-growing attention towards the

formulation of intelligent wind farm Operation & Maintenance

strategies, to diminish energy losses and maximize the lifetime

of the wind turbines. In this context, there is a great interest
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Fig. 1. Representation of a wind turbine operating subject to a static yaw
error γ, adapted from [6].

in optimizing the efficiency of real-world wind turbines in

operation. This objective requires reliable methods for the

individuation and the solution of systematic errors affecting

wind turbine operation, such as blade pitch misalignment [3],

[4] and systematic yaw error [5].

The control system of a wind turbine operates to minimize

the yaw error, which is represented in Fig. 1, meaning that

the plane of the rotor should be perpendicular to the incoming

wind. Therefore, the yaw error is generally a tempo-variable

quantity that should assume a Gaussian distribution with a null

mean. Due to wind vane defects, the yaw error might have

also a non-vanishing static component (as in Fig. 1). In this

circumstance, the control system indicates a correct alignment

of the rotor although it is not perpendicular to the wind flow.

Particularly, for a static yaw error greater than 5◦, the

effect on the energy production starts being non-negligible [6].

Assumed a static yaw error γ, the component of the wind

intensity v which is perpendicular to the rotor is v cos γ. Since

in a first approximation the extracted power P scales with the

cube of the longitudinal wind intensity, a static yaw error γ
affects the extracted power by a factor of cos γ3. Furthermore,

the presence of yaw error can affect the reliability of critical

wind turbine components as the blades [7] and increases the

damage-equivalent loads [8], [9].

The above considerations stimulate research to individuate

the static yaw error of wind turbines [10], [11], facilitated

by the widespread diffusion of Supervisory Control And Data

Acquisition (SCADA) measurements, which makes available

a large set of data.

Unfortunately, despite the large amount of available infor-

mation, the individuation of static yaw error is challenging

since the actual nacelle orientation is masked by the control
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system. In other words, a wind turbine cannot be considered

static yaw error-free despite the data (collected behind the

rotor span) suggesting the correct alignment between nacelle

orientation and wind direction. Furthermore, there are issues

related to the interaction between the rotor rotation and the

flow and a systematic overestimation of the wind direction

deviation can be caused by the rotor misalignment [12]. Thus,

several studies have been based on the use of upwind sensor

systems like LiDAR [13], [14] or Spinner anemometers [15],

[16]. Although the deployment of these sensors addresses the

drawbacks of the SCADA-collected data, their use should be

evaluated carefully due to economic considerations [17], [18].

Therefore, the literature started to develop methodologies

that identify the static yaw error by employing in any case

the SCADA-collected data and by analyzing the indirect

consequences of the error on wind turbine operating, such as

an under-performance (recall the cos3 law). The most relevant

works are summarized in Section I-A, where the contribution

of this work is outlined as well.

A. Related Work and Authors’ Proposal

As above anticipated, most static yaw error diagnosis meth-

ods in the literature are based on the individuation of an

under-performance. This substantially means analyzing the

power curve [19], which is the relation between the incoming

wind speed and the extracted power. In principle, the presence

of the static yaw error should be detected from a slightly

diminished extracted power for a given wind speed, although

in practice the multivariate dependence of the wind turbine

power advocates for non-trivial data analysis methods [20],

[21].

In [22], the power curve is analyzed through the binning

method upon grouping the data per yaw error intervals of 2◦.

In [23]–[25], the employed power curve model is Least-Square

B-spline Approximation upon (similarly to [22]) grouping the

data per yaw error intervals. In [26], a more complex model

is employed which takes input operation variables like rotor

speed and blade pitch, and the yaw error is detected from the

residuals between measurements and model estimates.

Particularly, the work presented in [27] is inspiring for the

present study since it is based on a reference estimate of

the static yaw error provided by LiDAR measurements and

includes the first critical evidence related to the power curve

analysis of yaw-misaligned wind turbines. This work shows

drawbacks since it analyzes the effect on the performance of

the yaw static error correction by considering an experimental

power curve based on the binning method, and this leads to

a large, implausible, overestimation of the impact of the yaw

error on the power output.

The work proposed by [28] constitutes the premise of the

present study, due to the possibility of fully controlling a 2.5

MW Clipper C96 wind turbine, located at the Eolos Wind

Research Station at the University of Minnesota. The authors

have forced the operation of the wind turbine subjected to

several values of static yaw error, thus obtaining labeled data

from which they could investigate phenomena highlighting the

presence of the static yaw error. In particular, the employed

method is a data-driven fit to a cosine cube law-based physical

model of the power curve.

As is argued in [29] through the actuator disk model, a

yaw-misaligned rotor has a different induction with respect to

a well-aligned rotor. This means that the velocity deficit at the

nacelle (and thus the measurement of the nacelle wind speed)

for a certain incoming flow depends on the yaw error. Or, in

other words, it can be argued that the presence of the static

yaw error affects nacelle anemometer measurements because

when a wind turbine is subjected to a static yaw error, its

anemometer (which is placed behind the rotor span) will be

more upwind or more downwind with respect to the case of a

vanishing yaw error. Despite in this regard there is sufficient

evidence in the literature (for example [29]) the state-of-the-

art methods for detecting the static yaw error have notably

overlooked the influence of the error on the nacelle wind speed

measurements. This, for example, might explain the incoherent

results collected in [27]. Only a few recent works have been

taking into consideration the above issue [5], [30], which is

thus notably overlooked in the literature at present.

Hence, based on the observed research gap, this paper aims

to provide a comprehensive and coherent characterization of

the experimental evidence associated with the presence of a

wind turbine static yaw error. A distinctive aspect of this work,

which makes possible to accomplish the objective, is a unique

experimental test bed, which includes i) the full control for

research purposes of the utility-scale wind turbine, leading

to the collection of labeled data for various values of the

static error; ii) the comparisons of the measurements acquired

by the wind turbine through the SCADA system with data

not affected by static yaw error, which are provided by a

meteorological tower placed in the close area.

In particular, in this work, it is made explicit that the static

yaw error influences the wind speed measurements collected

by the wind turbine. This evidence has been matured by

analyzing statistically the relation between the meteorological

mast data and the wind turbine data for the various values of

considered static yaw errors (0◦, +10◦ and −10◦). This result

not only leads to revisiting the diagnosis methods based on the

power curve but also opens new research directions because,

if the static yaw error affects the wind speed measurements,

such a change can be used for the diagnosis of the error.

Further experimental evidences related to the presence of the

static yaw error are collected, which are variations in the blade

pitch control and increased level of tower vibrations. Such

evidences have not been discussed in detail in the literature

before and, thus, might stimulate new research directions in

the field of static yaw error diagnosis.

The manuscript, which is an extension of the conference

paper [31], is organized as follows: Section II describes

the experimental setup, Section III illustrates the proposed

methodology, Section IV shows the obtained results, whereas

Section V highlights the main conclusions.

II. THE EXPERIMENTAL SETUP

A. The Eolos Wind Research Station

The experimental facility is described in detail in [32] and

we refer to that study for further information. The station
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consists of a 2.5 MW upwind, 3-bladed, horizontal-axis wind

turbine (Clipper Liberty C96) and a 130m meteorological

tower, sited 170 meters south of the wind turbine. A sketch of

the facility is provided in Fig. 2. Four high-resolution sonic

anemometers (Campbell Scientific, CSAT3, with instrumental

uncertainty of 1 mms−1) are sited on the tower at meaningful

heights: rotor top tip (129m), hub height (80m), rotor bottom

tip (30m), and standard 10m. Cup anemometers (Met One,

014-A, with instrumental uncertainty of 0.11m s−1) are in-

stalled 3m below each sonic anemometer. The Eolos turbine is

variable-speed, variable-pitch regulated, with a rotor diameter

R 96m and a hub height of 80m. The cut-in, rated and cut-

out wind speeds are 4, 11, and 25m s−1. The available data

are collected by the Supervisory Control and Data Acquisition

(SCADA) data with a sampling rate of 1Hz. The scheme of the

sensor arrangement is reported in Fig. 3, where it is indicated

at what height the most important quantities employed in the

following are measured.

Fig. 2. The Eolos wind energy research field station including a 2.5 MW

wind turbine and a 130m tall meteorological tower.

Fig. 3. The schematic illustrating the location of sonic anemometers on the
meterological and their positions with respect to the wind turbine.

The employed meteorological mast measurements are the

following:

• vs (ms−1), wind speed measured by a sonic anemometer

at the same height of the wind turbine hub (80 meters);

• vc (ms−1), wind speed measured by a cup anemometer

placed three meters below the sonic one (i.e., 77 meters);

• θup(
◦) is the wind direction measured at the top tip of

the blade (129 meters);

• θ(◦) is wind direction measured at hub height;

• θdown(
◦) is the wind direction measured at the rotor

bottom tip (30 meters);

whereas the employed SCADA-collected measurements are:

• vn (ms−1), which is the estimate of the free stream

wind speed reconstructed through a nacelle transfer func-

tion (propriety of the wind farm manufacturer and thus

unknown for this study) based on the measurement of

the wind speed behind the rotor span from the nacelle

anemometer;

• P (kW), which is the power output;

• β (◦) is the average blade pitch;

• Θ (m/s2) is the resultant of the tower vibrations;

• ρ (kg/m3), air density;

• turbine state.

The data analysis has been performed using Matlab 2023

with a laptop with AMD Ryzen 5 5600U with Radeon

Graphics 2.30 GHz and 40 GB RAM.

B. Data sets and processing

The employed data sets are indicated in Table I. The

sampling time is 1 second and the SCADA-collected data and

the meteorological data are synchronized.

TABLE I
THE ANALYZED DATA SETS.

Data Set Yaw Error Number of samples

D0 0◦ 428127

D10 10◦ 431972

D−10 −10◦ 518328

Particularly, the following pre-processing steps are applied:

• Data have been averaged with 10 seconds of averaging

time (10 records) and their standard deviation has been

computed as well;

• The turbine state must correspond to turbine “ok and

running”;

• The data must be filtered on the wind direction according

to the following constraint to avoid the meteorological

mast being under the wake of the wind turbine: 90◦ ≤
θ ≤ 270◦;

• Wind speed measurements are normalized according

to (1), where ρref = 1.225 kg/m3:

vr = v

(

ρ

ρref

)
1

3

(1)

• Filter on the request in (2):

Γ =
|θ1 − θ3|

R
< 0.2◦/m, (2)
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where R is the rotor radius.

Particularly, (1) is a common practice to renormalize the

wind speed, referring to standard air density conditions. The

rationale of the filtering in (2) is selecting data with a com-

parable amount of wind veer [33], which is requested to be

low enough to neglect the influence of such factor on rotor

rotation and turbine behavior. A sensitivity analysis has been

conducted on the data averaging time.

III. PROPOSED METHODOLOGY

The proposed methodology provides a comprehensive char-

acterization of the detectable effects of the static yaw error

considering several steps of analysis. In Section III-A, the

relation between the wind speed measured by the meteoro-

logical mast and that measured at the wind turbine nacelle

is characterized by the presence or not of the static yaw

error. Consequently, the power curve analysis is revisited,

as described in Section III-B. Finally, in Section III-C, data

analysis methods aimed at detecting operative changes in

the wind turbine (e.g. blade pitch and tower vibrations) are

introduced.

A. Wind Speed Analysis

1) Binning Curve Method: The wind speed analysis method

is based at first on visualizing the relation between the wind

speed measured at the wind turbine nacelle vn (target) and

the wind speed measured at the meteorological mast vs and

vc (references) and inquiring how this relation changes with

the presence or not of the static yaw error. A qualitative

assessment is achieved by employing the method of bins. It

proceeds as follows:

• Group the data per intervals of the reference vs or vc
(0.25m s−1 of bin amplitude are selected, being at least

twice the highest instrumental uncertainty);

• Compute the average nacelle wind speed measurements

vn,i as in (3) for each i-th bin of meteorological mast

wind speed, which will contain Ni measurements:

vn,i =
1

Ni

Ni
∑

j=1

vn,ij (3)

where vn,ij is the j-th measurement of nacelle wind speed

measurement comprised in the i-th bin of the reference

wind speed.

• Obtain the average curves in the (vs, vn) or (vc, vn)
planes, which represent the nacelle anemometer mea-

surement vn as a function of the met-mast measurement

(sonic vs or cup vc).

2) Relation Coefficients: The relation between vn and vc
/ vs is quantitatively assessed by considering a Monte Carlo-

based approach, where the relation between the wind speed

measurements is supposed to be linear ((4) and (5)). kns and

knc change over different cases if an effect on wind speed

measurements caused by the yaw static error is present.

vn = knsvs (4)

vn = kncvc (5)

For the estimation of kns and knc the Deming regression has

been considered. The advantage respect with to the traditional

least square models is that Deming regression considers the

uncertainty of both variables.

Particularly, the coefficients kns and knc are estimated

through a Montecarlo simulation as follows:

• Consider a general linear model with vanishing intercept

as in (6):

y = ax (6)

• Suppose that the vectors of measured xobs and yobs have

an associated uncertainty vector σx and σy .

• Simulate the data at each Montecarlo run with (7) and (8):

xsim = xobs + ϵxxobs (7)

ysim = yobs + ϵyyobs (8)

where ϵx and ϵy are vectors of random numbers dis-

tributed according to standard normal distribution.

• Generate a set of N synthetic data sets. N is selected to

be 500 in this study.

• Apply the Deming formulation of the least squares re-

gression and end up with an estimate ai for each i-th set,

with i = 1, . . . , N ;

• Compute the Montecarlo threshold as in (9):

ϵa =
2√
π

∫ N

0

e−t2dt (9)

• Sort the vector of ai estimates, with i = 1, . . . , N , in

ascending order;

• Individuate the lower jlow and upper jhigh index as

in (10) and (11):

jlow = ⌊Nϵa⌋ (10)

jhigh = ⌈N (1− ϵa)⌉ (11)

• Return the Montecarlo estimates aest with its uncertainty

σa as in (12) and (13):

aest =
1

2

(

a1+jlow + ajhigh

)

(12)

σa =
1

2

(

−a1+jlow + ajhigh

)

(13)

Particularly, the linear regressions in (4) and (5) are per-

formed using the Deming formulation [34] which accounts for

error in the independent and dependent variables observations.

To each observation, the associated uncertainty is given by

the root sum square of the instrumental uncertainty and the

statistical uncertainty on the averaging time.
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B. Power Curve Analysis

The conventional approach to assess wind turbine perfor-

mance involves utilizing the bin method for power curve

analysis [35]. This method operates under the assumption that,

in theory, a wind turbine power curve should manifest as a

line on a plane, where the x-axis represents wind speed, and

the y-axis denotes the generated power. However, in practice,

the power curve is more accurately represented as a scattered

distribution of points. This deviation occurs due to various

environmental factors, including turbulence, wind veer, and

external temperature. Thus, the procedure goes as follows:

• Renormalize the wind speed measurements using (1);

• Group the data per wind speed intervals (the typical

choices are 0.5 or 1m s−1 of bin amplitude);

• Compute the average power Pi as in (14) for each i-th
bin of wind speed, which will contain Ni measurements:

Pi =
1

Ni

Ni
∑

j=1

Pi,j (14)

where Pi,j is the j-th measurement of power comprised

in the i-th wind speed bin.

• Obtain the average power curve in the (v, P ) plane, given

by the points (vi, Pi).

Given two general data sets D1 and D2 at disposal, it is

possible to compute two average power curves, given by the

sets (v1, P1) and (v2, P2) with associated frequencies f1,i and

f2,i for the various wind speed bins. Therefore, the percentage

performance change between the data set D2 and the data set

D1 can be computed as given in (15):

∆2,1 =

∑

i f2,i (P2,i − P1,i)
∑

i f1,iP1,i

(15)

In (15), the f2,i’s are the frequencies for each i-th wind

speed bin in the data set D2 and (vi, P1,i) and (vi, P2,i) are the

observed power curves during D1 and D2 respectively. Given

that the objective of this work is to compare the behavior of

the wind turbine when it is subjected to a static yaw error vs.

when it is not, D2 and D1 are selected as the D±10 and D0

data set, respectively.

For the sake of clarity, it is crucial to remark that two

different wind speed measurements for the x-axis of the power

curves have been considered for both D2 and D1, which

are the nacelle wind speed vn and the meteorological mast

wind speed vs. The comparison between the power curves

built by considering these two different wind speeds on the

one hand reveals the effect of the yaw static error on wind

turbine performance, because the meteorological mast wind

speed is unaffected by the presence of the yaw error, and on the

other hand makes manifest how the power curves constructed

with the nacelle wind speed vn are incoherent, because vn is

affected by the presence of the yaw error.

C. Operation Analysis

Considering the critical insights presented in this work

regarding nacelle wind speed measurements, the subsequent

proposals aim to identify responses of the wind turbine to

the static yaw error without relying on nacelle wind speed

measurements.

In particular, the binning method applied in Section III-B

for the power curve analysis can be generalized for whatever

couple of variables and subsequently elaborated. For example,

this work considers the power-average blade pitch and the

power-tower vibrations curves. The former curve is considered

because a static yaw error causes non-optimal wind turbine

performance. Hence, the power-blade pitch curve is adequate

for individuating efficiency losses without employing wind

speed measurements because the higher the blade pitch re-

quested for extracting a certain power the higher the wind

power which is thrown away and, thus, the lower the efficiency.

On the other hand, the tower vibration curve has been

considered to explore the possibility that the presence of the

static yaw error is associated with increased vibrations.

For both types of curves, the procedure is the same as

outlined in Section III-B. With the data sets at disposal, in this

work, the measurements are arranged per power bins of 100

kW from 200 to 1600 kW. For the curves related to the tower

vibrations, it should be kept in mind that such measurements

are expected to have a vanishing mean. Thus, their absolute

value and their standard deviation over the ten-second time

interval are analyzed in place of the raw measurements.

Particularly, vibration level parameters ηabs.vibr and

ηstd.vibr are elaborated from the (P, |Θ|) and (P, σΘ) curves

(where the standard deviation of the tower vibrations is indi-

cated with σΘ) by simply computing the weighted average of

the response |Θ| or σΘ, where the weights are the frequencies

for the power bins.

IV. EXPERIMENTAL RESULTS

A. Wind Speed Analysis

Fig. 4 and 5 show the results of the wind speed analysis.

Particularly, when the yaw error is +10◦, the wind speed mea-

sured by the nacelle anemometer is systematically higher than

that measured by the meteorological mast sonic anemometer.

In the −10◦ case, the difference with respect to the 0◦ case is

less pronounced. The different behavior between the +10◦ and

−10◦ indicates that the results likely depend on the relation

between the yaw error and the rotor sense of rotation.

Upon this analysis, the least squares estimates of the co-

efficients kns and knc from the linear models in Equation 4

and 5 are computed and reported in Table II and III. These

coefficients describe the linear relation between the meteoro-

logical mast wind speed and the nacelle wind speed. Then,

a noticeable change in them when the yaw error varies is

the symptom that the nacelle wind speed measurements are

affected by the yaw error itself. From Table II and III, it is

argued that the coefficients largely increase in the +10◦ case

with respect to the 0◦, while they decrease slightly in the

opposite case −10◦. Although basic aerodynamic principles

suggest that symmetrical static yaw errors (±10◦) should have

an equal effect on wind turbine performance, in reality, this is

not the case. The rotation of the rotor exacerbates (or reduces)

the impact of flow acceleration in the vicinity of the nacelle

anemometer, resulting in asymmetrical effects.
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Fig. 4. The average nacelle anemometer wind speed (vn) per meteorological
tower sonic anemometer wind speed (vs) intervals of 0.25m s−1. Bins with
more than 50 measurements are kept.
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Fig. 5. The average nacelle anemometer wind speed (vn) per meteorological
tower cup anemometer wind speed (vc) intervals of 0.25m s−1. Bins with
more than 50 measurements are kept.

It is important to remark that the uncertainty analysis

conducted with the Deming regression and the Montecarlo

simulation shows that the coefficients in the presence of the

static yaw error change at least in the order of 6 estimated

standard deviations (Table II and III). This gives robustness

to the conclusion that the static yaw error alters the relation

between meteorological wind speed measurements and nacelle

wind speed measurements.

B. Power Curve Analysis

The power curves obtained using the nacelle anemometer

are reported in Fig. 6. Particularly, in the case with 10◦

of static yaw error, the power curve appears largely under-

performing, while in the case −10◦ the power curve appears to

be comparable with the 0◦ case (or even better performing for

some wind speed bins) and this is not consistent. This means

that the results of [27] about the power curve analysis, as well

as those here collected for the 10◦ case, might be explained

TABLE II
THE LEAST SQUARES ESTIMATES OF kns , DESCRIBING THE LINEAR

RELATION BETWEEN THE SONIC ANEMOMETER METEOROLOGICAL MAST

WIND SPEED vs AND THE NACELLE WIND SPEED vn , FOR THE VARIOUS

VALUES OF THE YAW ERROR.

Data Set kns σkns

D0 1.0691 0.0004

D10 1.1637 0.0005

D−10 1.0460 0.0010

TABLE III
THE LEAST SQUARES ESTIMATES OF knc , DESCRIBING THE LINEAR

RELATION BETWEEN THE CUP ANEMOMETER METEOROLOGICAL MAST

WIND SPEED vc AND THE NACELLE WIND SPEED vn , FOR THE VARIOUS

VALUES OF THE YAW ERROR.

Data Set knc σknc

D0 1.0812 0.0005

D10 1.1653 0.0006

D−10 1.0480 0.0010

by the hypothesis that the nacelle wind speed measurement is

biased (overestimated) in the presence of the static yaw error.

Such effect thus leads to exaggerating the apparent effect of

the yaw error on the power curve. This is consistent with the

results reported in Table II and III because in the 10◦ case,

the coefficients increase. This means that in the 10◦ case the

measured nacelle wind speed increases for a given average

meteorological mast wind speed.

One of the main outcomes of this work is that, when

comparing the performance of a wind turbine in two periods

in the presence or absence of static yaw error, it is mandatory

to employ a reference for environmental conditions that is not

affected by the yaw static error. For example, meteorological

mast measurements can provide an unbiased reference of the

environmental conditions, enabling a more accurate compar-

ison of wind turbine performance. Nevertheless, the power

curves reported in Fig. 7 show that it is any case complicated

to use as a reference for wind turbine performance analysis

a wind speed which is measured around two rotor diameters

far from the rotor. Indeed, the shape of the average curves

reported in Fig. 7 is qualitatively less regular with respect to

the nominal power curve. Anyway, despite this critical point

which is comprehensible, the curves in Fig. 7 are coherent,

differently with respect to what happens when employing the

nacelle wind speed (Fig. 6).

Also the results in Table IV for the performance change

between the presence or absence of the yaw error (according

to (15)) indicate that the assumption that vn is unbiased by the

presence of static yaw error is implausible. For example, when

using the nacelle wind speed measurements to compute the

power curves, a static yaw error of −10◦ is estimated to cause

an average performance improvement of +1.7% compared to

the 0◦ case, which is an absurd conclusion. Similarly, the

estimated average performance decrease of -20.2% for the

−10◦ degree case is also unrealistic.

Despite the critical points in our analysis due to the dis-
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Fig. 6. The average power curve for D0, D10 and D−10. The nacelle
wind speed vn is used as a reference in the x-axis. Bins with more than
50 measurements are kept.
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Fig. 7. The average power curve for D0, D10 and D−10. The meteorological
mast sonic anemometer wind speed vs is used as a reference in the x-axis.
Bins with more than 50 measurements are kept.

tance between the meteorological tower and the turbine, the

results obtained with vs are more consistent. Specifically, both

positive and negative static yaw errors result in a significant

decrease in turbine performance. However, additional data sets

are needed to obtain more accurate performance analyses using

vs. It is in any case interesting that the estimates for the +10◦

and −10◦ are remarkably different. This means that the effect

of the static yaw error on wind turbine performance depends

on the relation between the verse of such error and the rotor

rotation. Indeed, the cos3 law, which is symmetric, is a naive

expectation based merely on the fact that, in the presence of

a yaw error γ, the component of the wind intensity, which is

really perpendicular to the rotor, is v cos γ.

C. Operation Analysis

In Fig. 8, the average power-blade pitch curve is reported for

the three data sets. It arises that in both yawed cases (±10◦)

there are higher average blade pitches requested to extract a

TABLE IV
THE RESULTS FOR ∆ ((15)).

Wind Speed ∆10 ∆
−10

vn -20.2% +1.7%

vs -13.4% -7.2%

certain power, with respect to what happens in the 0◦ of yaw

error case. This phenomenon has to be interpreted with atten-

tion. Given a particular model of a wind turbine, the power-

blade pitch curve should be unique and should correspond

to the operation under the highest possible efficiency, given

the rotor design. If two different power-blade pitch curves are

observed for a wind turbine (under different conditions, for

example in the presence of the static yaw error), if the blade

pitch for a certain extracted power is higher, it means that

more incoming wind power has been thrown away and thus

more incoming wind power was needed for extracting that

power. Thus, the ratio between the extracted power and the

incoming power is lower, meaning lower efficiency and thus

an under-performance. This means that the under-performance

associated with the operation under static yaw error can be

detected also without using nacelle wind speed measurements.

It is noticeable that higher blade pitches are observed for

the +10◦ case with respect to the −10◦ case, which means

a more severe average under-performance. This is a further

confirmation that the ± behavior is not symmetric and that the

results collected in Table IV when using the meteorological

mast wind speed reference are plausible. Another interesting

observation is that the variability of the blade pitch is also

higher for the +10◦ case.
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Fig. 8. The average power - blade pitch curve for D0, D10 and D−10 cases.

In Table V, the vibration level parameters formulated in

Section III-C are reported for the various cases. An increase

is visible for the yawed cases, which is more evident in the 10◦

with respect to the −10◦ case. From this analysis, it can be

argued that the presence of a static yaw error can be detected

also by analyzing the mechanical response of the wind turbine

tower.
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TABLE V
THE RESULTS FOR VIBRATION LEVEL PARAMETERS η (ms−2).

η D0 D10 D
−10

ηabs.vibr 0.017 0.021 0.019

ηstd.vibr 0.067 0.078 0.071

D. Discussion

Several considerations can be drawn from the above results.

The pros and cons of each proposed method and a state-of-

the-art method (power curve analysis without critical revision

of the nacelle anemometer measurements) are summarized

in Table VI. Particularly, it emerges that the analysis of

the change in the nacelle wind speed measurements has the

fundamental pro of being directly related to the presence of

the static yaw error, differently with respect to all the other

methods. Indeed, there can be other root causes of a change

in the power curve, of an increase in the tower vibrations,

and of a change in the power-blade pitch curve, as a blade

pitch unbalanced (which instead is not expected to affect the

nacelle wind speed measurements). Nevertheless, the method

based on the wind speed analysis is more demanding from the

point of view of requested data, in that it needs a reference for

meteorological conditions that is unaffected by the presence of

the static yaw error (meteorological mast data, in the case of

this work). Such a drawback can be circumvented if the wind

turbine is equipped with two identical nacelle anemometers.

A future direction of this work which is currently under

investigation regards an appropriate modification of the flow

equilibrium analysis conducted in [30], which is possible

when two nacelle anemometers are present. It should be

noted that the availability of two nacelle anemometers is the

standard for multi-MW wind turbines, then this request is

not so demanding. In particular, such measurements could

be employed also for estimating the amount of static yaw

error. Furthermore, the results of this work could stimulate

developments in high-fidelity simulations of the flow across

yawed rotors and of the dynamic response (operational and

mechanical) of the wind turbines in yawed conditions [36].

Another relevant aspect is the challenge in quantifying

the amplitude of the static yaw error, which is a common

limitation of the state-of-the-art methods shown in Table VI.

However, this does not constitute a severe limitation for the

scientific and practical purposes of this work. Actually, from

a scientific point of view, the objective of this work was to

highlight phenomena relatable to the presence of the static

yaw error, which is overlooked in the literature, and this has

been possible also with one nacelle anemometer available.

From a practical point of view, the type of results collected

with the wind speed analysis of this work identifies a wind

turbine suspected of being affected by a static yaw error.

This kind of information can support the decision maker in

investing in upwind sensors like LiDARs. Future work on two

nacelle anemometers will likely provide methods based solely

on SCADA data which can be used for the correction of the

static yaw error without installing additional costly sensors,

like LiDARs.

TABLE VI
SUMMARY OF THE PROS AND CONS OF THE VARIOUS METHODS FOR

STATIC YAW ERROR DIAGNOSIS.

Method Pro Con

Wind speed
analysis

It can be put in direct
relation with the yaw er-
ror.

It requires a met-mast or
two nacelle anemome-
ters.

Blade pitch
analysis

It requires a minimal
amount of SCADA-
collected measurements
(power and blade pitch)

It is difficult to establish
a causal relation with the
presence of the yaw er-
ror.

Vibration analysis It requires a minimal
amount of SCADA-
collected measurements
(power and tower
vibrations)

It is difficult to establish
a causal relation with the
presence of the yaw er-
ror.

Naive power curve
analysis

It requires a minimal
amount of SCADA-
collected measurements
(power and nacelle wind
speed)

Lack of coherence and it
is difficult to establish a
causal relation with the
presence of the yaw er-
ror.

Finally, it is worth noticing that for completeness the

analysis of this work was conducted by employing the mea-

surements from the sonic and cup anemometers of the meteo-

rological mast. Yet, the conclusions are similar and it can be

argued that, from this point of view, wind turbine practitioners

can be guided merely by cost considerations because there is

no loss in employing solely a sonic or solely a cup anemometer

at the meteorological mast.

V. CONCLUSION

Wind energy represents a promising alternative to traditional

fossil-based energy sources. Hence, it is crucial to increase the

efficiency of the conversion process from wind to electrical

energy. Unfortunately, static errors as the yaw alignment error,

significantly contribute to under-performance, necessitating

thorough identification. Despite its crucial importance, the

literature has generally overlooked static errors and lacked

a comprehensive and coherent characterization of their ob-

servable effects on wind turbine operation. Addressing this

research gap, this manuscript presented an investigation based

on controlled experiments, utilizing a unique experimental test

setup at the Eolos Wind Research Station which allowed to

deliberately set a utility-scale wind turbine to operate subjected

to several values of static yaw error. Key findings include

a pipeline for detecting the systematic alteration in nacelle

wind speed measurements in the presence of a static yaw

error, which is an aspect overlooked in the literature that

invalidates most of the state-of-the-art methods, like the power

curve analysis. Thus, the results of this work should stimulate

a critical revision of the methods currently employed for

the diagnosis of the static yaw error based on SCADA data

analysis. Finally, the study highlights that, in the presence

of the static yaw error, an increased blade pitch, along with

heightened levels of tower vibration, can be detected. Further

research on the subject should thus take into account that

the most straightforward way to ascertain the presence of a

wind turbine static yaw error is by individuating a change in
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the nacelle wind speed measurements. Such measurements are

affected by the presence of the error but are not regulated by

the control, differently with respect to what happens with, for

example, the power or the rotational speed.

The methodology developed in this study thus, by making

explicit experimental evidences associated to the presence

of the static yaw error, paves the way for more effective

and easier diagnostic techniques for wind turbine yaw errors,

potentially revolutionizing data-driven condition monitoring

and maintenance strategies.
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