Cranfield

College of Aeronautics Report N0.9116
September 1991

A Linearised Riemann Solver for Godunov-Type Methods

E.F.Toro

Department of Aerospace Science
College of Aeronautics
Cranfield Institute of Technology
Cranfield, Bedford MK43 0AL. England




e _
e~

College of Aeronautics Report No.9116
September 1991

A Linearised Riemann Solver for Godunov-Type Methods

E.F.Toro

Department of Aerospace Science
College of Aeronautics
Cranfield Institute of Technology
Cranfield, Bedford MK43 OAL. England

ISBN 1 871564 352

£8.00

Paper presented at the AGCFM WORKSHOP
University of Surrey, England, September 1991

"The views expressed herein are those of the author alone and do not
necessarily represent those of the Institute"



A LINEARISED RIEMANN SOLVER FOR GODUNOV-TYPE METHODS

E. F. TORO
DEPARTMENT OF AEROSPACE SCIENCE
COLLEGE OF AERONAUTICS
CRANFIELD INSTITUTE OF TECHNOLOGY
CRANFIELD, BEDS. MK43 OAL

ABSTRACT

Very simple linearisations for the solution to the Riemann problem for the
time-dependent and for the steady supersonic Euler equations are presented.
When used locally in conjunction with Godunov-type methods, computing savings

by a factor of about four, relative to the use of exact Riemann solvers, can

be achieved.

For severe flow regimes however, the linearisation looses accuracy and
robustness. We then propose the use of a Riemann-solver adaptation

procedure.

This retains the accuracy and robustness of the exact Riemann solver and the
computational efficiency of the cheap linearised Riemann solver. Also,
reliable and simple switching criteria are presented. Numerical results for
one, two and three-dimensional test problems suggest that the resulting
numerical methods are competitive for practical applications, in terms

of robustness, accuracy and computational efficiency.



1. INTRODUCTION.

Godunov~type methods, or Riemann-problem based shock capturing methods
are a large subset of high resolution methods. They have made a significant
impact in Computational Fluid Dynamics in the last decade. Their initial
success for compressible, time-dependent inviscid flows with shock waves has
been extended to other hyperbolic flows such as steady supersonic flows,
shallow water flows and more recently, to parabolic flows such as the
compressible Navier-Stokes equations. A disadvantage of these methods in
comparison to traditional artificial viscosity methods, say, 1is their
computational expense. The solution of the Riemann problem lies at the center
of the computational expense. For realistic computations the Riemann problem
is solved billions of times. The search for savings in this direction is
therefore Jjustified, especially if multi-dimensional applications and

complicated equations of state are in mind.

In this paper we present an approximate Riemann solver based on a local
linearisation of the Euler equations in primitive-variable form. The solution
is direct and involves few and very simple arithmetic operations. We apply the
linearisation to the time-dependent (Toro, 1991) and to the steady supersonic
equations (Toro and Chou, 1991). The Riemann solver is then used in conjuntion
with the first-order Gonunov method (Godunov, 1959) and the high-order
extension WAF (Toro, 1989). For flows containing shock waves of moderate
strength, that is pressure ratios of about three, the numerical results are
very accurate. For severe flow regimes we advocate the adaptive use of the
present Riemann solver in conjunction with the exact Riemann solver in a
single numerical method. Both the Godunov and the WAF methods offer the
necessary flexibility to do this, as they can use the exact solution of the
Riemann problem or any approximation to it. To this end we also propose a

simple and reliable switching criterion with little empiricism.

The rest of this paper is organised as follws: section 2 deals with the
time-dependent Euler equations. Section 3 deals with the steady supersonic

case. Conclusions are drawn in section 4.



2. THE LINEARISED RIEMANN SOLVER FOR THE TIME-DEPENDENT EULER
EQUATIONS.

The Riemann problem for the time-dependent, one-dimensional Euler
equations is the initial-value problem with piece-wise constant data P> Y
P and P » Uy » Pp The left (L) and right (R) states are separated by a
discontinuity at x=0. The solution contains four constant states separated by
three waves as shown in the x-t picture of Fig. 1. We call the region between
the left and right wave the star region. The pressure p* and velocity u* are
constant throughtout the star region, while the density jumps discontinuously
from its constant value pf to the left of the contact to its constant value
p; to the right of the contact. The main step in solving the Riemann is to

find the values in the star region.

2.1 THE LINEARISED RIEMANN SOLVER.

In primitive-variable form the time-dependent Euler equations are

0
+ 1/p = (1)
P paz u P 0
t X
or
W + AW =20 (2)
t X

with the obvious notation for the vector of unknowns W and the coefficient
matrix A. The components of W are density (p), pressure (p) and velocity (u);
a = V(yp/p) is the speed of sound and y is the ratio of specific heats. The
matrix A depends on W which makes system (2) non-linear. For sufficiently
close nearby states WL and WR we assume the coefficient matrix A is constant
and can be expressed in terms of an average state W. This state is to be
defined in terms of the data states WLand WR. Having chosen the average values
equations (2) become a linear system. As average values we select (other

choices are also possible)
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and standard techniques for linear hyperbolic systems give the direct solution

" (p, - p)
U=z +u)- — L (4)
L R - -
2p a
P =il +p)- £ w -u) (5)
- P
pt-—pL+(uL-—u)T (6)
a
p;=pR+ —g- (u*—uR) (7

Note that for the case of an isolated contact discontinuity travelling with
speed u* = u o= ou the solution (4)-(7) is exact. For numerical purposes this
is a welcome property of the present approximate Riemann solver; capturing

contacts is more difficult than capturing shock waves

2.2. RIEMANN-SOLVER ADAPTATION.

We wish to use this Riemann solver only in regions of slowly varying data.

First we set

3
pmin = min {pL ? pR}
P_. = max {pL , pR} > (8)
Q = pmax/ pmin

J

and restrict the use of the linearised Riemann solver (4)-(7) to cases in

which

p =p =p (9)

min max



Some manipulations then produce

-p_. (Q-1) = pa (W -uw)=p_ (Q1 (10)

Thus restrictions (9) on the pressure produce restrictions (i0) on the
velocity difference. Some empiricism is still present when selecting Q in (8)
and (10). A cautious and yet successful choice is Q = 2. Multidimensional
extensions are carried out via space splitting and are straightforward. Only
the split Riemann problem need be considered. The basic structure of the
solution is identical to that of the one-dimensional case shown in Fig. 1. The

extra velocity components have very simple solutions.

2.3. TEST PROBLEMS.

As a one-dimensional test problem with exact solution we use Sod’'s
shock-tube test problem. It consists of a shock tube of unit lenght with
diaphragm placed at x = 172 and left (L) and right (R) data given as
P, = 1.0 u = 0.0 P, = 1.0
P 0.125 u, = 0.0 P, = 0.1
7 =14

R

Fig. 2 shows a comparison bewteen the computed (symbol) and exact (line)
solutions at time 0.25 units. The adaptive Riemann solver with the WAF method
is used. The quality of the solution is the same as that in which the exact

Riemann solver is used throughout, shown in Fig. 3.

As a two-dimensional test we choose a shock reflection problem over a 30
degree wedge. The initial conditions consists of a single plane shock at Mach
5.5 travelling from left to right. The resulting shock reflection pattern is
known as double Mach reflection. Results for the Riemann-solver adaptation
procedure and the WAF method are shown in Fig. 4. To plotting accuracy this
result is identical to that obtained when using the exact Riemann solver
throughout, which is shown in Fig. 5.

Another two-dimensional test problem is shock diffraction round a 90 degree
corner as illustrated in 6. Figs. 7 and 8 show computed results for pressure
and density at a fixed time. Our computed solution resembles very closely that

obtained experimentally (see Fig. 243 in Van Dyke, 1982).



3. THE STEADY SUPERSONIC EULER EQUATIONS.

The solution of the Riemann problem for the two-dimensional steady supersonic

Euler equations is depicted in the y-x plane of Fig. 9. It is analogous to the
time-dependent one-dimensional case; here x is the marching direction. There
is some freedom in selecting the appropriate variables to carry out the local
linearisation. Here we select the density p the velocity components u,v and
the pressure p. Instead of u and v one could take the flow angle 8 and the
Mach number. Both the pressure and the flow angle are constant in the star
region, the region between the left and right wave (we choose as right R the

side of positive y).

3.1 THE LINEARISED RIEMANN SOLVER.

Our linearisation (Toro and Chou, 1991) gives the explicit solution

* (V= Vit TyPe + Ty 1 = Tlup-u - Tp, - Tpl
p =
T +T +T(T +T)
3 4 51 2
Y= ( / a?
PL= P, 7 P T P/ A
* ( )/ a?
Pp=Pg = Pp = P )2
Y= T ( )
Y =u v LLWp op
* *
uR=uR—T1(pR—p) (15)
Y= T ( ")
AT T T o (16)
- T ") (17)
Ve T VL T AP TP

where T1 to T5 are constants involving data values.

As for the unsteady case we use the above linearisation locally in
Riemann-problem based methods. We use Godunov’s method and the WAF method in a

space marching fashion.

(11)

(12)

(13)

(14)



3.2. TEST PROBLEMS.

As a test problem in two dimensions we consider the analogue of a shock-tube
problem. Problems of this kind have exact solutions. Fig. 10 shows a
comparison between the exact solution (line) and the computed solution
(symbol) using the Godunov’s method together with the linearisation (11)-(17)
alone. This problem involves a shock wave, a slip line and a Prandtl-Meyer
expansion. As expected from the Godunov’s method, poor resolution of the main
features of the solution can be observed. Fig. 11 shows the corresponding
result using the WAF method. The quality of the solution is improved all

round.

As a three dimensional test problem we choose initial conditions as shown in
Fig. 12. This problem does not have exact solution but the solution is
expected to be symmetric. Fig. 13 shows solution at x = 0.45 downstream,
obtained by the Godunov method. Fig. 14 shows the corresponding solution
obtained by the WAF method. For this problem we use the linearised Riemann

solver together with the exact Riemann solver adaptively.

4. CONCLUSIONS.

A linearised Riemann solver applied to the time-dependent and the steady
supersonic Euler equations has been presented. This has been applied together
with the exact Riemann solver in an adaptive fashion with two Godunov-type
methods to solve test problems in one, two and three dimensions. The resulting
computing savings are significant. For the unsteady case the linearised
Riemann solver used in an adaptive fashion gives savings of a factor of two
for the WAF method and of about three for Godunov’s method (in comparison to
using the exact Riemann solver throughout). For the steady supersonic case
these factor are three and four respectively. It is foud that the linearised
Riemann solver is used to solve 99 7% of all Riemann solvers in a typical
computation. This depends on the mesh used of course. The finer the mesh is,
the more the cheap Riemann solver is used. The inclusion of the exact Riemann
solver, which gets used only at isolated points, contributes the robustness
and the linearised Riemann solver contributes the efficiency. We believe the
resulting algorithms are comptetitive in solving scientific and engineering

problems.
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FIG. 1. WAVE STRUCTURE OF THE EXACT SOLUTION OF THE RIEMANN PROBLEM FOR
TIME-DEPENDENT EULER EQUATIONS.
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FIG. 2. NUMERICAL (SYMBOL) AND EXACT (LINE) SOLUTIONS TO SOD’S SHOCK-TUBE
PROBLEM. THE WAF METHOD WITH RIEMANN-SOLVER ADAPTATION IS USED.
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FIG. 3. NUMERICAL (SYMBOL) AND EXACT (LINE) SOLUTIONS TO SOD’S SHOCK-TUBE
PROBLEM. THE WAF METHOD WITH THE EXACT RIEMANN SOLVER IS USED.



FIG. 4. NUMERICAL SOLUTIONTO AMACH 5.5 SHOCK REFLECTED OVER A 30 DEGREE
WEDGE. THE WAF METHOD WITH RIEMANN SOLVER ADAPTATION IS USED.

FIG. 5. NUMERICAL SOLUTIONTO AMACH 5.5 SHOCK REFLECTED OVER A 30 DEGREE
WEDGE. THE WAF METHOD WITH THE EXACT RIEMANN SOLVER IS USED.
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FIG. 6. INITIAL CONDITIONS FOR SHOCK DIFFRACTION OVER A SO DEGREE CORNER.
PLANE INCIDENT SHOCK TRAVELS FROM LEFT TO RIGHT AT MACH 2.4.




FIG. 7. COMPUTED PRESSURE CONTOURS.

FIG. 8. COMPUTED DENSITY CONTOURS.
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FIG. 9. WAVE STRUCTURE OF THE SOLUTION TO THE RIEMANN PROBLEM FOR THE
TWO-DIMENSIONAL STEADY SUPERSONIC EULER EQUATIONS.
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FIG. 10. GODUNOV (SYMBOL) AND EXACT (LINE) SOLUTIONS TO TWO-DIMENSIONAL
TEST FOR THE STEADY SUPERSONIC EULER EQUATIONS.
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FIG. 11. WAF (SYMBOL) AND EXACT (LINE) SOLUTIONS TO TWO-DIMENSIONAL

TEST FOR THE STEADY SUPERSONIC EULER EQUATIONS.
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FIG. 12. INITIAL CONDITIONS FOR TEST FOR THE THREE-DIMENSIONAL
STEADY SUPERSONIC EULER EQUATIONS.










