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Abstract   

 ii 

ABSTRACT 

The removal of natural organic matter (NOM) is one of the main challenges facing 

water utilities in both the UK and the US. As a consequence of changes in land 

management and an increased carbon loss from solids, a greater amount of 

accumulated organics is now being flushed into the aquatic environment during 

increased surface run-off events such as snowmelt or heavy rainfall. Furthermore, 

whilst traditional treatment with trivalent coagulants has proven a successful strategy 

in the past, operational problems are now being reported during periods of elevated 

organic levels in the water. These include the formation of fragile flocs, a greater 

particulate carryover onto downstream processes and increased disinfection by 

product (DBP) formation. 

 

Resin adsorption techniques were employed to fractionate the water samples into their 

hydrophobic and hydrophilic components. This, coupled with raw water monitoring, 

revealed that NOM composition and characteristics can vary, even if the total organic 

concentrations appear stable. In particular, hydrophobic NOM fractions contribute the 

majority of the charge compared to the hydrophilic fractions, and therefore exert a 

greater impact on coagulation conditions. Comparison across different source waters, 

seasons, at varying experimental scales and under varying coagulation conditions, 

revealed that zeta potential monitoring during coagulation takes into account the 

changing electrical property of the water, and in general, maintaining a value between 

-10<ζ<+3 mV will result in low and stable residuals. A similar operational zeta 

potential range exists for clarification processes, although the zeta potential value at 

the positive threshold is influenced by the hydrophobic NOM content, such that the 

range is extended as the specific UV absorbance (SUVA) value of the raw water 

decreases. Whereas the hydrophilic concentration was found to control the achievable 

dissolved organic carbon (DOC) residual, attributed to a negligible charge density and 

poor coagulant-interactions. Consequently, the key finding of this study is that raw 

water characterisation coupled with zeta potential monitoring will provide a 

straightforward guide to the mechanistic understanding of treating NOM rich waters. 
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1 Introduction 

1.1 Project background 

Natural waters throughout the world contain natural organic matter (NOM) as a result 

of the interactions between the hydrological cycle and both the biosphere and 

geosphere. The diversity of subsequent interactions is dependent on the surrounding 

environmental and biogeochemical cycles which result in a highly heterogeneous 

mixture of organic compounds that vary both temporally and spatially with regards to 

acidity, molecular weight and charge density (Collins et al., 1986; Edzwald, 1993; 

Owen et al., 1993; Carlson et al., 1994; Vuorio et al., 1998; Scott et al., 2001; Goslan 

et al., 2002). Changes in land management, such as the disturbance of peat or 

vegetation damage can lead to increased decomposition and the production of loosely 

bound organic material (Niskavaara et al., 1997; Worrall & Burt, 2005). Furthermore, 

recent research has also revealed a significant increase in organic carbon loss from 

solids which has been linked to climate change (Bellamy et al., 2005). The 

accumulated organics are then flushed into the aquatic environment during increased 

surface run-off events such as heavy rainfall or snowmelt (Goslan et al., 2002; Hurst 

et al., 2004).  

 

Traditional treatment with trivalent coagulants has proven a successful strategy for the 

removal of NOM in the past, driven by charge neutralization for colloidal material 

and charge complexation / precipitation for soluble compounds with additional 

removal occurring due to adsorption on to precipitated flocs and metal hydroxides 

(Randtke, 1988). Accordingly, optimisation of the coagulation process occurs under 

acidic conditions between the iso-electric point (IEP) of the coagulant and the NOM; 

pH 4.5-5.5 for iron based system and pH 5-6 for aluminium based coagulants 

(Amirtharajah and O’Melia, 1990). However, in the last decade, rapid changes in 

organic levels have generated significant operational difficulties for both UK and US 

water utilities during certain periods of the year, resulting in inadequate NOM 

removal, the formation of fragile flocs and increased particulate carryover onto 

downstream processes such as filtration. Furthermore, insufficient NOM removal can 

also lead to the production of potentially carcinogenic disinfection by products (DBP), 

formed when residual organics react with chlorine during disinfection (Singer, 1999). 
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DBP concentrations are strictly regulated by organisations such as the World Health 

Organisation (WHO), the Drinking Water Inspectorate (DWI) and the United States 

Environmental Protection Agency (USEPA). 

 

The aim of this work is to investigate the changing nature of the NOM during these 

periods and assess this in terms of the impact on coagulation performance and the 

charge balance of the system. Furthermore, by linking these changes to zeta potential 

measurements it is hoped that a set of guidelines can be devised to aid operations and 

provide a robust level of performance when coagulating elevated organic content 

waters. 

 

1.2 Motivation for work 

The work presented in this thesis forms part of American Water Works Association 

Research Foundation (AwwaRF) tailored collaboration investigating the ‘Treatment 

of elevated organic content waters’.  

 

This study is focussed on three case study sites, all subject to rapidly changing organic 

concentration during certain periods of the year. All three waters are typically 

characterised as low alkalinity, high DOC and low turbidity sources (Table 1.1). The 

main case study source was located at the Albert Reservoir, Halifax, Yorkshire, UK, 

and has also been the subject of a number of characterisation and optimisation studies 

(Goslan, 2003; Fearing, 2004, Jarvis, 2004), whereas the second UK case study source 

was taken from Bamford, Derbyshire. Both UK sites were situated on moorland 

catchments and experience elevated organics following periods of heavy rainfall, of 

particular significance during the autumn months. The third case study source was the 

Poudre river, taken from the Fort Collins Water Treatment Facility (FCWTF), 

Colorado, USA, which experiences changes in organic concentration due to spring 

snow melts between April and June. 

 

 

 

 

 



Chapter 1              Introduction    

Page 3 

Table 1.1: Source water characteristics 
 

Source UV254 

(abs) 

DOC 

(mg.l
-1
) 

Turbidity 

(NTU) 

pH SUVA 

(m
-1
.l.mg

-1
) 

Alkalinity 

(mg.l
-1
 as 

CaCO3) 

Albert 36.9-63.6 4.3-15.0 3.7-10.9 5.5-6.5 3.8-7.4 <20.0 

Bamford 36.7-45.9 4.5-10.2 1.4-4.2 5.5-6.5 3.6-8.7 <20.0 

FCWTF 9.9-22.5 2.0-7.4 0.5-19.6 7.0-7.6 2.1-3.2 16.3-35.0* 

*Maintained within 25-35 mg.l
-1
 range during experiments through the addition of 

lime. 

 

Previous raw water monitoring at Albert reservoir has highlighted the seasonal 

variability in organic levels with reported DOC concentrations of up to 15 mg L
-1
 

(Figure 1.1). Consequently, elevated organics not only pose a problem in terms of the 

variation in coagulation conditions and subsequent removal, but also the increased 

costs associated with the rise in coagulant dose. However, effective monitoring and 

characterisation of the NOM fractional make-up during these periods should enable a 

better understanding of the changes occurring in the system during these periods of 

elevated organics. Furthermore, relating these changes to zeta potential should 

provide an improved insight regarding the interactions between NOM and coagulants, 

and lead to the development of a more mechanistic approach to optimising the 

coagulation process. 
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Figure 1.1: Raw water DOC concentrations for Albert reservoir Jan-01 to May-03. 

 

1.3 Project aims and objectives 

The main aim of this thesis was to investigate the application of zeta potential 

monitoring in order to optimise the coagulation process for natural water sources 

subject to a rapidly changing elevated organic content. In order to achieve this, 

particular emphasis was placed on the following:  

 

(1) Seasonal variations in NOM composition and character. 

(2) Impact of NOM character on NOM-coagulant interactions. 

(3) The relationship between coagulation performance and zeta 

potential. 

(4) Impact on downstream process operating properties.  
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In order to achieve these objectives, the experimental work plan focused on the 

following areas: 

(1) Raw water monitoring of mountain and moorland catchment sources 

involving the bulk water measurements (DOC and UV254) and 

fractionation experiments.  

(2) Charge density determination of raw water and NOM fraction 

samples, followed by iso-electric point determination of a range of 

NOM-coagulant combinations. 

(3) Coagulation performance was investigated at both bench (jar tests) 

and pilot scales, and subsequently compared with full-scale data. 

(4) Floc diagnostic techniques were employed toinvestigate the impact 

on parameters such as floc strength, size and settling.  

 

1.4 Thesis plan 

The thesis is presented in paper format. All papers were written by the first author, 

Emma Sharp, and edited by Dr Bruce Jefferson (supervisor). All experimental work 

was undertaken by the first author, with the exception of the floc photos and 

diagnostic data, featured in figures 3(C).7 and 8 which were generated by Peter Jarvis. 

In addition, jar test experiments, featured in paper 5, were undertaken by Max Mergen 

under the supervision of Emma Sharp. 

 

The main objective of each paper, and how they interconnect within the thesis, is 

detailed in Table 1.2 and Figure 1.2. The initial paper is a literature review which 

discusses the application of zeta potential as a potential process control parameter 

during water treatment. (Chapter 2 – submitted: Sharp, E.L., Henderson, R., Parsons, 

S.A. and Jefferson. B. The role of zeta potential in water treatment processes, Critical 

Reviews in Environmental Science and Technology).  

 

The technical content of the thesis is incorporated into Chapters 3-7. Chapter 3 

investigates the character of the NOM in terms of charge properties and how this 

influences the interactions between coagulants and NOM. The first paper is based on 

samples taken from Albert reservoir and looks at the influence of NOM character on 

the interactions with ferric sulphate. This paper was published in: Sharp, E.L., 
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Parsons, S.A. and Jefferson, B. (IN PRESS) Seasonal variations in natural organic 

matter and its impact on coagulation in water treatment. Science of the Total 

Environment. The second paper is also based on samples obtained from Albert 

reservoir, although the main focus of this paper is the differences in NOM-coagulant 

interactions when coagulating with either iron or aluminium. This was published in: 

Sharp, E.L., Parsons, S.A. and Jefferson, B. (IN PRESS). The impact of seasonal 

variations in DOC arising from a moorland peat catchment on coagulation with iron 

and aluminium salts. Environmental Pollution. The final paper in this chapter is 

concerned with the identification of the main NOM fraction characteristics and their 

proportional impact on the coagulation process. This paper was submitted: Sharp, E.L., 

Jarvis, P., Parsons, S.A. and Jefferson, B. Impact of fractional character on the 

coagulation of NOM, Colloids and Surfaces A: Physicochemical and Engineering 

Aspects. 

 

Chapter 4 looks at bench scale coagulation and investigates the application of zeta 

potential measurements for maintaining a robust operation. The first paper examines 

the impact of varying NOM composition and character on removal when coagulating 

with iron. This work is based on samples collected from the two UK moorland water 

sources, Albert reservoir and Bamford, during the autumn winter period. (submitted: 

Sharp, E.L., Mergen, M.R.D., Parsons, S.A. and Jefferson, B. Evaluation of zeta 

potential for determining optimum coagulation conditions for sources with varying 

NOM. Journal of Water Supply: Research and Technology- AQUA). The second paper 

compares the performance of a traditional coagulant, ferric sulphate, with a highly 

charged novel coagulant. This paper has been published: Sharp, E.L., Parsons, S.A. 

and Jefferson, B. The effects of changing NOM composition and characteristics on 

coagulation performance, optimisation and control. Water Science and Technology: 

Water Supply, 4(4), 95-102.   

 

Chapter 5 looks at both the effect of increasing scale and source water variation on the 

relationship between coagulation performance and zeta potential. The first paper 

discusses the link between coagulation performance and zeta potential at pilot scale, 

comparing a moorland (Albert reservoir) and snowmelt water source when 

coagulating with either iron or aluminium. This paper was published in: Sharp, E.L., 

Banks, J., Billica, J.A., Gertig, K.R., Henderson, R., Parsons, S.A., Wilson, D. and 
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Jefferson, B. The application of zeta potential measurements for coagulation control: 

Pilot plant experiences from UK and US waters with elevated organics. Water 

Science and Technology: Water Supply (IN PRESS). The second paper is also based 

on pilot scale investigations coagulating with iron and alum, although the focus of this 

paper is to investigate further the impact of varying NOM composition and character. 

This paper has been submitted: Sharp, E.L., Banks, J., Billica, J.A., Campbell, A.T., 

Chipps, M., Drage, B., Gertig, K.R., Goslan, E.H., Hillis, P., Irvine, E., Parsons, S.A., 

Wilson, D. and Jefferson, B. Operational zeta potential windows for optimal DOC 

removal. Journal of the American Water Works Association. The third paper presents 

an overview, linking NOM character to coagulation performance. This paper has been 

submitted: Sharp, E.L., Parsons, S.A. and Jefferson, B. Coagulation of NOM: Linking 

character to treatment. Water Science and Technology.  

 

Chapter 6 investigates the use of zeta potential as an optimisation tool, for a number 

of natural and synthetic systems, in terms of both coagulation and clarification 

performance, in order to devise a set of operational guidelines. This paper has been 

submitted: Sharp, E.L., Edwards, M.E., Jarvis, P., Parsons, S.A. and Jefferson, B. 

Linking source water characteristics to treatment using zeta potential measurements: 

A mechanistic approach to coagulation. Water Research.  

 

Chapter 7 examines the impact of zeta potential on floc properties in order to 

determine whether zeta potential or carbon:coagulant ratio is the most dominant factor 

in determining optimal treatment performance. This paper has been submitted: Sharp, 

E.L., Jarvis, P., Parsons, S.A. and Jefferson, B. The impact of zeta potential on the 

physical properties of NOM flocs. Environmental Science and Technology.  

The combined findings of all the papers are then discussed in Chapter 8. In addition, 

although each paper investigates specific impacts on the coagulation process, all the 

source waters featured were characterised in terms of their NOM composition and 

character. Consequently, this represents both a common theme throughout the thesis 

and the opportunity to link any findings back to the initial source water characteristics.  
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Table 1.2: Main objectives of each paper. 
 

Chapter Paper Main Objective 

Chapter 2 Paper 1 Literature review: Zeta potential in water treatment 

processes 

Chapter 3.1 Paper 2 NOM:Fe interactions. 

Chapter 3.2 Paper 3 NOM:Coagulant interactions, Iron and aluminium. 

Chapter 3.3 Paper 4 NOM Fraction:Coagulant interactions and removal. 

Chapter 4.1 Paper 5 Bench scale coagulation: Varying raw water characteristics. 

Chapter 4.2 Paper 6 Bench scale coagulation: Zirconium and iron. 

Chapter 5.1 Paper 7 Pilot scale coagulation: Moorland vs snowmelt, Fe and Al. 

Chapter 5.2 Paper 8 Pilot scale coagulation: Varying raw water characteristics. 

Chapter 5.3 Paper 9 Coagulation overview: Linking character to treatment. 

Chapter 6 Paper 10 Coagulation and clarification: Influence of organics. 

Chapter 7 Paper 11 Floc properties and removal. 

 

Albert (Moorland)
Interactions/

Coagulation

Bench-scale Albert + Bamford
Coagulation/ 

Flocculation

Moorland + Snowmelt
Coagulation/ 

Flocculation
Pilot-scale

Full-scale Various
Coag/ Floc

Clarification

SCALE SOURCE PROCESS

Papers 2, 3 & 4

Paper 10

Papers 7, 8 & 9

Papers 5, 6 & 11

General

Discussion

Micro-scale

 

Figure 1.2: How each paper interconnects within the thesis. 
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2 The role of zeta potential in water treatment processes 
 

EMMA L. SHARP, SIMON A. PARSONS and BRUCE JEFFERSON
 

School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 OAL, 

UK.  

 

Abstract  

Physical water treatment processes involved in the removal of natural contaminants, 

such as algae, natural organic matter (NOM) and particulate matter, operate based on 

differences in size, density and charge. Hence, the role of zeta potential is key, as it 

indicates the surface potential of the colloidal system and is commonly related to the 

stability of the colloidal materials under any given set of water characteristics, with 

natural colloids in water acquiring a zeta potential between -5 mV and -40 mV. 

Traditional approaches to coagulation diagnostics focus on the impact of coagulant 

dose and pH, although this review demonstrates that zeta potential can be used to 

optimise coagulation and downstream separation processes, irrespective of exact pH 

dose combination employed, provided the zeta potential remains within the threshold 

values set for each process. The exact location of these boundaries appears to be 

dependent on the contaminant load. Nevertheless, as the majority of water utilities 

tend to operate coagulation and clarification processes within the zeta potential range 

-15 mV <ζ>-8 mV, this review has highlighted the benefit of zeta potential 

monitoring for a range of treatment options. 

 

Keywords 

Algae, Coagulation, Natural organic matter (NOM), Water treatment, Zeta potential. 

 



Chapter 2: Literature Review  Paper 1

  

 Page 12 

2.1 Introduction 

The nature of contaminants in natural waters varies with both source and season, with 

three of the most common being natural organic matter (NOM), algae and inorganic 

colloids such as clays. In general, these are removed successfully by coagulation and 

flocculation, followed by a particle separation stage during water treatment. All the 

processes involved separate the contaminants based on differences in their size, 

density and charge. The role of charge is key in understanding why two surfaces 

combine, as similar signed charges produce a repulsion which can hinder or prohibit 

aggregation of the two surfaces if the magnitude is sufficient. This can involve two 

like particles (coagulation), a bubble and a particle (dissolved air flotation or DAF) or 

a media grain and a particle (filtration). Consequently, measurement of the charges 

involved can provide significant insight into process optimisation. 

 

The application of charge measurement for the diagnosis and control of water and 

wastewater treatment processes is not new, nor has the basic understanding of how 

charge controls performance changed considerably over the years. Zeta potential 

indicates the surface potential of the colloidal system and is commonly related to the 

stability of the colloidal materials under any given set of water characteristics. Hence, 

any zeta potential near zero indicates the minimal electrical repulsion and so increases 

the likelihood of capture (Hunter, 2001). However, robustness of the instruments and 

changes in the water environment which generate process compliance issues, have led 

to an increased application of charge measurement in the water industry. 

 

The aim of this paper is to review the role of zeta potential within the water treatment 

process, with particular emphasis on the main source water contaminants such as 

NOM, algae and inorganic colloids. Hence, by linking raw water characteristics to 

process optimisation using zeta potential measurements, it is hoped that a set of 

guidelines can be devised to aid operations and provide a robust level of performance 

for a range of treatment options. 
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2.2 Background 

2.2.1 Charged surfaces 

All particles in water carry a surface charge, which is almost invariably negative 

(Dentel, 1991). Furthermore, it is the charge on the surface of a particle that 

influences the ions in the surrounding water, attracting ions of an opposite charge 

(counter-ions) and repelling ions of the same charge (co-ions). The distribution of 

these ions together with the effects of thermal motion produces what is termed a 

“double layer” which maintains overall electro neutrality. An idealised schematic 

reveals the two distinct regions of the electron double layer (Figure 2.1). The first is 

an inner region (The Stern Layer) which includes adsorbed ions and the second is a 

region made up of ions distributed according to the balance of electric and thermal 

forces (The Diffuse Region). The extent or thickness of the double layer (1/k) is 

characterised by the distance required to reduce the potential by 1/e, where k is the 

Debye-Hückel parameter and e is the electon charge (Qu and Li, 2000). This is 

determined by the concentration and valency of the ions in solution, such that 

particles are stabilised when their double layers are expanded and the net particle 

charge is not equal to zero (McCarthy and Zachara, 1989).   
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Figure 2.1: Schematic of the electric double layer.  
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2.2.2 Measurement principles 

Direct measurement of the charge on the surface is currently not possible and, in the 

context of this review, probably not of any significance. A more important 

characteristic of the double layer is the plane of shear. This is the boundary of a 

hypothetical static liquid film around the particle. Any movement of the particle 

causes the particle and its liquid film to move, such that the shear plane represents the 

interface between the portion of the double layer that remains connected to the 

particle and the portion which remains stationary as the particle moved. In fact, the 

relative charge on a particle can be inferred by measuring properties that arise as a 

function of separating the mobile part of the double layer from the particle (Table 2.1). 

In each case either the particle or the water is kept stationary and the other phase 

moved. The movement may be generated by applying a voltage, in which case the 

velocity of motion is measured, or mechanically when the resultant electric field is 

measured. The two most common techniques are zeta potential and streaming current. 

Details of the application and evaluation of streaming current detectors have been 

published elsewhere (Barron et al., 1992; de Haas, 1996; Briley and Knappe, 2002), 

and so this review will concentrate on the application of surface electrical character on 

the treatment process in terms of zeta potential measurements. 

 

Table 2.1: Electrokinetic phenomena techniques. 
 

Technique Description 

Electrophoresis The movement of a charged particle relative to a 

stationary liquid caused by a known applied voltage 

Electro osmosis The movement of water relative to a stationary charge 

particle by an applied voltage 

Streaming potential The electric field created by the movement of water along 

a stationary charged surface 

Sedimentation potential The electric field created when a charged particle moves 

relative to stationary liquid 
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2.3. Zeta potential 

2.3.1 Typical values 

Most natural colloids in water acquire a zeta potential between -5 and -40 mV, as 

shown by the values for a range of particulate materials (Table 2.2). With the majority 

of particles in water this is achieved through one of the following charge mechanisms: 

acceptance or donation of electrons, the reaction of surface groups with solutes or 

imperfections resulting in the substitution of atoms (Letterman et al., 1999; Hunter, 

2001). Consequently, many surfaces exhibit a changing zeta potential with pH (Figure 

2.2). In relation to the principle surfaces of interest to the water industry, three types 

of response are possible: changes over acidic pHs, changes over basic pHs and 

changes over all pHs. In general, the zeta potential of organic contaminants, such as 

NOM or algae, exhibit negative zeta potentials at a pH greater than 4 (Beckett and Le, 

1990; Liu et al., 1999; Zhang and Bai, 2002; Jefferson et al., 2004). Whereas basic 

particulates, such as calcium carbonate, do not exhibit a negative zeta potential until 

the pH has exceeded 8 (Bob and Walker, 2001). The zeta potential of non ionic 

particulates, such as hydrophilic organic material with surface confined acidic groups, 

is likely to exhibit charge reversal as the bulk water shifts from acidic to alkaline at 

approximately 7, depending on the system (Sharp et al., 2005a).  

 

In terms of capture mechanisms operating within water treatment, zeta potential 

values indicate that both bubbles (flotation) and sand (filtration) are also likely to 

generate a negative surface charge at the pH of natural waters. For instance, bubbles 

have a reported iso-electric point (IEP) of 2 (Kubota and Jameson, 1993; Han and et 

al., 2001) with slightly higher values reported for sand and silica at an IEP of 2-3 

(Fairhurst et al., 1995; Stephan and Chase, 2002).Consequently, this indicates that 

pHs should be reduced in order to reduce the electrostatic repulsion between collector 

and particulate and improve removal. 
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Table 2.2: Typical values of Zeta Potential. 
 

Material IEP Standard 

numbers 

Conditions Reference 

  Zeta 

(mV) 

pH   

Natural Organic Matter (NOM) 

Raw water      

NOM   -9.5* George Town NOM Deshiikan et 

al.,1998 

Humic 1.8 c-40 2.2-

12 

Commercial humic acid Zhang and Bai, 

2002 

Humic - c-30 

c-35 

4 

7 

Commercial humic acid, 

deionised water  

Duan et al, 2002 

Fulvic <3 -12 

-27 

4 

7 

Suwannee river fulvic acid Chandrakanth et 

al, 1996 
Hydrophilic 3.5-5 +4, 0 

-8,  

-12 

4 

6 

6 

Albert fractionated water Jefferson et al, 

2004 

Particulates 

 8.1   Calcium carbonate  Bob and Walker, 

2001 

 5 -55  7 Kaolinite Specht et al., 

2000 

 

 

9 c-40 10 Activated alumina Fairhurst et al., 

1995 

 3 c-60 9 Silica Fairhurst et al., 

1995 

 6.5 c-30 10 Titanium dioxide Fairhurst et al., 

1995 

 2.5 c-23 

c-35 

4 

7 

Kaolin Zhang and Bai, 

2002 

 c2 -28 

-40 

4 

7 

Kaolin, lake water 

conditions (0.0001 M) 

Han and Kim, 

2001 

 4.2 -2.4* 

+0.4* 

7 

4 

Oil, ionic strength = 5x10
-4
 

M, n-hexadecane 

 

Microbiological contaminants 

 1.5 -27.5 4 BK algae  Malik et al., 2002 

 3.5 c-40 7 Nocardia cells Sadowski, 2001 

 3   Algal cells Liu et al., 1999 

 <2 -18 

-22.5 

4 

7 

Selenastrum 

capriconutum, NaClO4 = 

10
-1.5

 M 

Huang et al, 1999 

 c2 -20 

-20 

4 

7 

Ionic strength 0.0001M 

(Lake water) 

Han and Kim, 

2001 

 3.5 -7 

-22 

4 

7 

Scenedesmus quadricauda Chen et al, 1998 

 - c-1* 6.7 Cryptosporidium oocysts Dai and 

Hozalski, 2002 
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 - c+4* 6.7 Cryptosporidium oocysts 

coated with natural organic 

matter 

Dai and 

Hozalski, 2002 

 2.18 - - Cryptosporidium oocysts Drozd and 

Schwartzbrod, 

1996 

 3.3 -38 7 Cryptosporidium oocysts, 

conductivity = 400 µS 

(raw water 

Hsu and Hwang, 

2002 

 2 c-28 

c-55 

4 

7 

Measured by modified 

electrophoretic cell 

Okada et al, 1990 

 2.2 -17 7 Giardia cysts, conductivity 

= 400 µS (raw water 

Hsu and Hwang, 

2002 

Rivers and Reservoirs 

Yarra, Au 1 -1.8 

x10
-8
 

7.5  Beckett and Le, 

1990 

Magela 

creek, Au 

 -2.5 

x10
-8
 

6  Beckett and Le, 

1990 

Media 

  -40 8 1mm latex Han and Kim, 

2001 

 2-3 -3.5* 

-2.8* 

7 

4 

Crushed white quartz, 

ionic strength = 5x10
-4
 M,  

Soma and 

Papadopoulos, 

1995 

 <3 -10 

-15 

4 

7 

Sandstone, 1.0 M NaCl Stephan and 

Chase, 2002 

 3 -7 

-21 

4 

7 

Amorphous silica (Syton 

HT50) 0.1 µm 

Fairhuirst et al, 

1995 

 

Bubbles 

 2 -7.8 

-26 

4 

8 

Measured in new system Han and Dockko, 

2003 

 2 c-20 

c-40 

4 

7 

Measured by modified 

electrophoretic cell 

Kubota and 

Jameson, 1993 

 *Electrophoretic mobility rather than zeta potential 

Table 2.2 continued: 
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Figure 2.2: Schematic representation of typical zeta potential profiles as a function of 

pH, for different types of solutions (Adapted from Jefferson et al., 2004). 

 

2.3.2 Influence of source water characteristics 

The major contaminants in natural waters, with reference to the current study, are 

NOM, algae and river particulates. At the pH of most natural waters, both Algae and 

NOM are likely to exhibit a negative surface charge (Chandrakanth et al., 1996; Malik 

et al., 2002). Parasites such as Cryptosporidium oocysts, which are present in most 

surface waters (Betancourt and Rose, 2004), also demonstrate similar surface charge 

properties, with a negative charge above pH 4 (Hsu and Hwang, 2002). Conversely, 

for mineral based particulate material surface charge characteristics are not so uniform 

and vary depending on the nature of the surface groups present and the purity of the 

system. For instance, silica based particles have an acidic IEP of approximately 3, 

attributed to the presence of acidic surface groups, compared to the more basic groups 

found on the alumina surface with a resultant IEP of 9 (Fairhurst et al., 1995). 

 

2.3.2.1 NOM 

NOM, ubiquitous in all surface water sources, is a highly heterogeneous mixture of 

anionic polyelectrolytes that vary with regards to acidity, molecular weight and 

charge density (Collins et al., 1986; Edzwald, 1993; Vuorio et al., 1998; Goslan et al., 

2002). This organic mixture is also known to vary in terms of concentration and 

make-up due to the temporal and spatial variations that exist between sources (Owen 
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et al., 1993; Carlson et al., 1994; Scott et al., 2001). In general, the zeta potential of 

organic systems is negative at ambient pHs, with values ranging from -12 mV to -40 

mV (Chandrakanth et al., 1996; Duan et al., 2002). The negative charge is believed to 

arise from the dissociation of carboxylic functional groups on the surface of the NOM, 

with a pKa typically in the range of 3-6 (Chandrakanth et al., 1996; Duan and 

Gregory, 2003), with charge densities for humic substances having been reported in 

the range of 2-15 meq.g
-1 
DOC (Tiller and O’Melia, 1993; Kam and Gregory, 2001; 

Scott et al., 2001). However, NOM also contains hydrophilic material, which tends to 

be aliphatic, with surface confined acidic groups tending to less acidic, attributed to 

the electrostatic interactions of surface groups of the monolayer and a reduced 

permittivity at the surface (Schweiss et al., 2001). Hence, the charge density for the 

hydrophilic bases and neutrals is reportedly at least an order of magnitude lower than 

the hydrophobic NOM, resulting in a less negative zeta potential in ambient 

conditions. However, overall the hydrophobic NOM is thought to be the dominant 

fraction in terms of the raw water characteristics (Malcolm, 1985), and therefore most 

likely to influence the charge balance and coagulant demand of the water. 

 

2.3.2.2 Particulates 

Inorganic colloids and particulates constitute another mobile phase present in the 

majority of natural water systems, present as oxides or hydroxides of manganese, iron, 

aluminium or silica for example, in addition to clays. With regards to surface charge, 

many oxides are amphoteric such that colloidal clays have zeta potentials which vary 

over both acidic and basic pH ranges (Jefferson, 1997). In the case of kaolin particles 

in water, the surface charge develops as a result of chemisorption of water splitting 

into H
+
 and OH

-
 during adsorption to form a hydroxylated surface. Consequently, as 

the pH increases the OH
-
 ions are adsorbed until they are in excess, resulting in a 

negative zeta potential (Huang et al., 1999). However, previous research has 

suggested that these bare colloidal surfaces are unlikely to exist for long in natural 

waters, due to the presence of organic material such as NOM. This readily adsorbs 

onto particulate material, often masking the physicochemical properties of the 

underlying solid whose behaviour, in terms of electrophoretic mobility, colloidal 

stability and transport, may then be dominated by the NOM (McDay et al., 1994; 

Buffle and Leppard, 1995; Pizarro et al., 1995; Chandrakanth and Amy, 1998). This is 

thought to occur through ligand exchange between carboxylic groups on the NOM 
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and hydroxylated surface sites on the solids (Murphy et al., 1990). In general this 

modifies the particles surface charge, rendering it more negative with an increased 

particle stability (Tiller and O’Melia, 1993; Chandrakanth et al., 1996; Zhang et al., 

1998; Kretzschmar et al., 1998; Wilkinson et al., 1997), as the attraction of cations in 

a complex layer adjacent to the negatively charged humic surface, results in the 

formation of a diffuse double layer (Wall and Chopin, 2003). For instance, Bob and 

Walker (2001), observed an increase in stability by a factor of 50 when the humic acid 

concentration on latex particles was increased from 0.2 mg.l
-1 
to 0.7 mg.l

-1
.
 
In fact, 

NOM has been shown to increase the negative surface charge when adsorbed onto a 

range of surfaces; Cryptosporidium oocysts (Dai and Hozalski, 2002); Amidine latex 

(Deshiikan et al., 1998) and Goethite (Tipping and Cooke, 1982). Furthermore, the 

negative charge associated with NOM is also thought to be important with regard to 

interactions and subsequent transportation of natural metal ions (Tipping, 1993) 

 

The adsorption of humic acid onto inorganic colloids also occurs over a wide pH 

range, suggesting that in most natural aquatic systems a number of different mineral 

surfaces will be coated with humic substances, altering both the zeta potential and IEP 

(Table 2.3). Relatively acidic surfaces such as silica have less of a tendency to form 

complexes with the acidic functional group of humic acid, compared to the more basic 

hydroxyls of the activated alumina and bohemite (Fairhurst et al., 1995). This 

indicates that adsorption is hindered due to electrostatic repulsion when the zeta 

potential of both the mineral and organics was negative. The concentration of NOM is 

also a factor. For instance, Amal et al. (1992), looked at the effects of fulvic acid 

adsorption on zeta potential at a constant pH (3) on haematite. At low fulvic acid 

concentrations, the zeta potential remained essentially unchanged and the particle 

surface was relatively free of fulvic acid molecules. As the organic concentration is 

increased, the zeta potential decreases significantly until it reaches an equilibrium 

value, after which it remains constant. This was explained as both a physical and 

chemical phenomena, as electrostatic forces could not be wholly responsible for the 

adsorption, otherwise the zeta potential would remain at zero for increasing fulvic 

acid concentration. Instead the zeta potential reverses, indicating some specific 

chemical interaction. 
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Table 2.3: Influence of humic acid adsorption on inorganic colloid IEP (Adapted from 

Fairhurst et al., 1995). 
 

Particulate material IEP (No HA) IEP (HA added in mg.l
-1
) 

Boehemite 9.5 4.2(10) 

Goethite 7 2(10) 

Silica 3 3(10) 

Haematite 8 3(10) 

Titanium dioxide 6.5 5(25) 

Alumina 9 2.5(25) 

 

2.3.2.3 Algae 

Algae, like NOM, is also ubiquitous in natural waters, although concentrations tend to 

vary considerably and as such are generally considered a seasonal issue (Henderson et 

al., 2005). Zeta potential values for algal particles demonstrate that the surface charge 

is typically electronegative for pH ranges 4 to 10, with similar values to NOM ranging 

between -10 and -35 mV (Ives, 1959; Liu et al., 1999; Chen et al, 1998; Huang et al., 

1999; Phoochinda and White, 2003). Hence, the resultant suspension is likely to be 

stable at ambient pHs, due to steric effects produced when water is bound to the algal 

cell wall surface (Vlaski et al., 1997). The negative surface charge originates from the 

ionisation of functional groups on the algae cell wall surface, of which protein 

molecules (amino acids linked by peptide bonds) are a major component of the 

membrane CONH group (Huang et al., 1999). pKa values for the carboxyl groups of 

amino acids range from 1.7 to 3.0. Consequently, the IEP for a number of algal 

species have been reported between 1.5 and 3.5 (Table 2.2). 

 

It is also interesting to note that the zeta potential value has been demonstrated to alter 

depending on the algal growth, hence lower coagulant doses are required to neutralise 

the surface charge generated during the stationary growth phase (Edzwald and 

Wingler, 1990).  It has been suggested that this observation is due to an increase or 

decrease of extracellular organic matter (EOM), dependent on when during the 

growth phase the algae are sampled, which in turn generates a negative charge.  For 

instance, the zeta potential of the diatom Nitzschia was -30 mV during the initial 

growth phase, -35 mV in the log growth phase and -28 mV in the stationary phase 

(Konno, 1993).  This indicates that during the log growth phase, the diatom was 

extremely active and as a result produced a larger volume of algogenic substances, 

which then acted to increase the negative surface charge (Konno, 1993).  
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2.4 Application to water treatment processes 

All physical separation processes rely on characteristics such as size, density and 

charge of the particles, for the latter to be removed. Consequently, a number of studies 

have used zeta potential to analyse performance across various stages of the water 

treatment process (Table 2.4). In each instance the removal efficiency increased as the 

magnitude of the zeta potential was reduced; resulting in optimum operational zeta 

potential ranges similar to those shown in Figure 2.3. In all cases, the existence of a 

range as opposed to a single value indicates that complete neutralization of the charge 

is not required, only that the barrier generated by electrostatic repulsion is minimized 

or removed. Nevertheless, previous research has demonstrated that the majority of 

water utilities tend to operate coagulation and clarification processes within the zeta 

potential range -15 mV <ζ>-8 mV, as demonstrated by Bourgeois et al. (2005) who 

carried out a survey of 11 different treatment works in the UK. This work indicates 

that many sites may be operating very close to the negative threshold values, 

depending on the contaminant load (Figure 2.4). Consequently, rapid changes in raw 

water characteristics, arising from snowmelt or heavy rainfall events, could shift the 

charge balance of the system before the coagulant dose has responded sufficiently 

(Sharp et al., 2005b). The impact of which is a shift in the operational zeta potential to 

outside the range, and a rapid deterioration in performance. 
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Figure 2.3: Zeta potential vs removal for (a) coagulation (b) sedimentation (c) 

flotation and (d) filtration processes. 
1
Rebhun and Lurie, 1993; Childress et al., 1999, 

2
 Rebhun and Lurie, 1993; Zhang et 

al., 1998; Henderson et al., 2005,
3
 Edzwald and Winkler, 1990; Han et al., 2001; 

Zouboulis et al., 2003,
4 
Parsons et al., 2005. 
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Figure 2.4: Average zeta potential profile through a water treatment works (Adapted 

from Bourgeois et al., 2005). 
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2.4.1 Coagulation and flocculation 

2.4.1.1 Removal mechanisms 

Coagulation is the process of chemically changing colloids, such that they are able to 

overcome the forces maintaining the stable suspension, promoting aggregation and the 

formation of larger particles. This is achieved through a number of destabilisation and 

precipitation mechanisms including surface charge modification, double layer 

compression, adsorption-charge neutralisation and inter particle bridging (Randtke, 

1988; Crozes et al., 1995; Dennett et al., 1995; Duan and Gregory, 2003). However, 

coagulants can also induce removal in terms of precipitation mechanisms such as 

sweep flocculation, which involves the addition of high coagulant doses, increasing 

collision rates through the enmeshment of suspended particles (Montgomery, 1985). 

As a consequence, sweep flocculation is more tolerant of departures from optimum 

coagulant dose and less influenced by the resultant zeta potential. 

 

Traditional approaches to coagulation diagnostics focus on the impact of coagulant 

dose and pH, as they represent the main operational variables (Duan and Gregory, 

2003). Optimising the process for the removal of organic particles generally occurs 

under acidic conditions, this is typically around pH 4.5-5 for iron and pH 5-6 for 

aluminum based coagulants (Amirtharajah and O’Melia, 1990). The dominant 

mechanism for coagulation depends on the pH, coagulant dose and contaminant 

(Duan and Gregory, 2003). This was illustrated by Henderson (2004) who 

investigated the coagulation of algae and kaolin systems (Figure 2.5). This work 

revealed that the charge neutralisation zones (II) coincided with the lower coagulant 

doses of 4mg.l
-1
 and 6mg.l

-1
 for kaolin and algae respectively, with a narrower band 

observed for kaolin. Whereas at the higher coagulant doses, in excess of 60 mg.l
-1
as 

alum when operating at pH 5, the sweep flocculation mechanism was found to 

dominate (IV). However, at higher pHs, the alum dose required for sweep flocculation 

was reduced, to 15 mg.l
-1
 and of 25 mg.l

-1
 alum at pH 7, for algae and kaolin 

respectively. The reduced coagulant dose was attributed to the fact that the number of 

ligands associated with the aluminium ion increased at higher pHs, ultimately leading 

to increased precipitation (Briley and Knappe, 2002), and is confirmed by standard 

dissociation diagrams for the coagulants (Duan and Gregory, 2003). In terms of algae 

removal, Vlaski et al. (1997) reported an improved performance when particles were 

destabilised at the lower pH of 6 under adsorption and charge neutralisation 
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mechanisms with simultaneous sweep flocculation occurring, compared to the 

performance of sweep flocculation alone at a higher pH of 7.8. Duan and Gregory 

(2003) reported the existence of similar mechanisms in terms of NOM removal. 

Conversely, in terms of the removal of inorganic particles such as kaolin, removal has 

been optimised at a higher pH of 7 (Henderson, et al., 2005), where both charge 

neutralisation and sweep flocculation are thought to operate in combination (Duan and 

Gregory, 2003).  
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Figure 2.5: Coagulation mechanism zones at pH 5 for (a) inorganic (Kaolin) and (b) 

organic (Algae). (Adapted from Henderson, 2004).I= Insufficient coagulant, II= 

Charge neutralisation, III= Restabilisation, IV= Sweep flocculation. 

 

However, a traditional approach based on coagulation pH set points does not always 

allow the process to adequately respond to rapid changes in surface charge, providing 

a route for non-compliance. The incorporation of zeta potential in terms of monitoring 

and diagnostics would take into account the changing charge characteristics of the 

water. Furthermore, in reality, optimised charge conditions for both inorganic and 
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organic systems tend to occur over a range of zeta potential values, rather than 

specifically at the IEP of the system (Ratnaweera et al., 1999; Gregory and Carlson, 

2003; Henderson et al., 2005), which would allow process operators time to respond 

and adapt to fluctuations in the charge load. 

 

2.4.1.2 Charge control 

The most widely used metal salts in water treatment are iron and aluminium salts 

(Fe
3+ 

and Al
3+
)
 
(Rebhun and Lurie, 1993). When a metal salt is added to water it 

hydrolyses, producing a series of cationic dissociation products, whose relative 

abundance varies with pH. The aim being to reduce the negative surface charge of the 

system. The negative charge of the contaminant is reduced or reversed through the 

addition of a cationic coagulant. This is demonstrated with the addition of either ferric 

chloride or alum to well dispersed kaolin in uncontrolled pH environments at an initial 

pH of 5.5 (Figure 2.6). However, the response curves of the two coagulants are very 

different due to the formation of different hydrolysis products.  In the case of alum, 

cationic species predominate whilst ferric chloride produces a hydroxide precipitate 

which coats the particles and progressively controls the overall charge (Jefferson, 

1997). Nevertheless, despite the observed reported improved removal with iron based 

coagulants compared with aluminium (Edzwald and Tobiason, 1999; Bell-Ajy et al., 

2000; Budd et al., 2004), based on a mass ratio basis, influence of charge ratio 

(meq.meq
-1
) revealed a more consistent comparison, with an equivalent impact on the 

charge response for both a humic and a fulvic acid based systems (Figure 2.7). 
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Figure 2.6: Zeta potential vs. coagulant dose for kaolin dispersed in tap water 

(Adapted from Jefferson, 1997). 
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Figure 2.7: Effect of charge ratio on IEP for iron and aluminium (Adapted from 

Sharp et al., 2005a). 

 

Polymer use is another option for altering the surface charge, and also efficient in 

terms of dosage, leading to improved removal at one tenth of the dose compared to 

conventional coagulants (Vlaski et al., 1997). This is attributed to the fact that only 

small amounts of polymer may be required to form positive patches for charge 
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neutralisation which then works in combination with the polymer bridging mechanism 

(Petzold et al., 2003). The polymer can achieve this in a number of ways, depending 

on the characteristics of the polymer. For instance, the addition of the non-charged 

polymer extends the shear plane and hence reduces the zeta potential. The addition of 

a charged polymer affects the surface charge by adsorption, which can result in charge 

neutralisation and reversal, as demonstrated by Jameson (1999), who reduced the 

negative zeta potential of silica particles from -47 mV to the IEP through the addition 

of a cationic polymer. Whereas in the case of the anionic polymer, the magnitude of 

the negative charge is actually increased and so the net effect is less significant than 

that of the non-charged polymer, as demonstrated by Mpofu et al. (2003) who 

increased the negative zeta potential of a kaolin slurry from -32.5 mV to -7 mV and -

30 mV using a non ionic and a anionic polymer respectively.  

 

2.4.1.3 Operational window 

The removal of dissolved organic species, such as NOM, following coagulation is 

independent of the solid liquid separation process (Malley, 1990; Malley and Edzwald, 

1991). Nevertheless, zeta potential can still be employed to optimise removal, as 

despite variation between different systems, optimum removal has been shown to 

occur as the surface charge is minimised, regardless of the varying coagulation 

conditions (Figure 2.3a). Results demonstrate the existence of operational windows 

with respect to zeta potential, such that a certain level of removal is achieved. Zeta 

potential values at the boundary of the operational window represent a threshold 

which if exceeded will result in a reduction in removal. The zeta potential of each 

system can be manipulated through either coagulant dose or pH adjustment. In fact, 

research has shown that the exact combination is unimportant, provided the zeta 

potential remains within the threshold values. For instance, Figures 2.8 and 2.9 

demonstrate using high performance size exclusion chromatograms (HPSEC) for both 

snowmelt and moorland water sources, that the residual organics remaining after 

treatment are similar when operating within the zeta potential range -10 mV to +3 mV 

(Sharp et al., 2005b). Refer to appendix for relationship between HPSEC elution time 

and molecular size. 
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Figure 2.8: HPSEC at different zeta potentials 

(Moorland source). 

Figure 2.9: HPSEC at different zeta potentials  

(Snowmelt source). 

 

With regards to organic based systems, one observed difference between algae and 

NOM is the time required to neutralise the surface charge. For instance, inert systems, 

even with organic coatings, demonstrate almost instantaneous changes in charge, 

whereas algae are living systems and respond to changes in environmental conditions. 

Clasen et al. (2000) reported a lag time of up to 7 minutes, when coagulating with 1 

mg.l
-1
 aluminium before the charge stabilises. 

 

However, zeta potential monitoring alone will not provide all the information required 

to operate the coagulation process. For instance, the removal of non or negligibly 

charged components, such as low molecular weight (MW) hydrophilic organic 

material which is less amenable to removal by conventional coagulation methods 

(Edwards, 1997; White et al., 1997; Krasner et al., 1994; Randtke, 1988; Owen et al., 

1993), is unlikely to be optimised by zeta potential monitoring. Research undertaken 

on both moorland and snowmelt systems reported a variation in achievable DOC 

residual whilst operating within the optimum zeta potential range, this was then linked 

to the initial non charged fraction (HPINA) present in the raw water (Figures 2.10 and 

2.11). 
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Figure 2.10: DOC residual vs. zeta potential  

(Sharp et al., 2005b). 

Figure 2.11: Initial HPINA concentration vs. 

DOC residual (Sharp et al., 2005b). 

 

2.4.2 Sedimentation 

The efficiency of the sedimentation process is largely dependent on the characteristics 

of the flocs formed during the coagulation and flocculation process. These are defined 

as highly porous, irregularly shaped and loosely bound aggregates (Kim et al., 2000). 

Furthermore, the role of zeta potential is in determining the extent to which 

electrostatics control the properties of the flocs. Hence, minimising the zeta potential 

reduces repulsive surface electrical charges, allowing the attractive forces between 

particles to dominate, and promoting the build up of a continuous network of particles 

in flocs (Gustafsson et al., 2003).  

 

However, comparison of a number of different systems not only reveals the 

importance for minimising surface charge in order to improve performance, but also 

highlighted differences between the systems (Figure 2.3b). For instance, inorganic 

particles are less sensitive to the magnitude of the zeta potential and subsequent 

deterioration in performance, with optimum kaolin removal still achievable at a zeta 

potential of -20 mV, whereas, for both algae and NOM, removal decreased once the 

negative zeta potential had exceeded -15< ζ <-10 (Table 2.4). The presence of 

organics has also been shown to reduce the positive zeta potential threshold, from +17 

mV to +7 mV with the addition of 5 mg.l
-1
 of commercial humic acid solution 

(Edwards, 2002). The rate of deterioration is also important, as zeta potential can 

change with even a slight pH variation, as demonstrated by Gustafsson et al. (2003) 

who observed a decrease in the negative zeta potential from -25 mV to -30 mV of 

flocculated anatase suspensions, when the pH increased from 4.2 to 4.5. In terms of 

the different systems featured in this review, no clear trend was observed with regards 



Chapter 2: Literature Review  Paper 1 

 Page 33 

to performance deterioration rate, although the most rapid reduction rates in 

performance were reported for organic based systems (Table 2.4). Furthermore, 

Edwards (2002) reported that the reduction rate increased at the negative zeta 

potential threshold from 34 %.mV
-1
 to 52 %.mV

-1
 as the system was spiked with 5 

mg.l
-1
 of humic acid. These differences in clarification performance of the systems 

and the influence of organics can be related in part to the strength of the bonds within 

the floc aggregates, which are dependent on both the magnitude and number of inter-

particle bonds (Parker, 1972; Bache et al., 1997). Traditionally, flocs formed from the 

coagulation of NOM are considered weak and fragile, attributed to a lack of bridging 

bonds (Bache et al., 1997; Jarvis et al., 2005), hence the increased sensitivity of 

organic systems to zeta potential when compared to inorganic contaminants such as 

kaolin. 

 

In terms of the operation of physical treatment processes, floc properties such as 

strength are fundamental. For instance, poor resistance to shear may lead to the 

exposure of newly fragmented surfaces, which may alter the surface charge of the floc 

aggregate and result in partial restabilisaton (McCurdy et al., 2004). Furthermore, the 

occurrence of floc breakage and the formation of smaller particles could also result in 

lower removal efficiencies (Boller and Blaser, 1998). Operational experience has 

suggested that this can impact on downstream processes such as filtration, resulting in 

carryover onto the filters, greater particle loads, turbidity breakthrough and reduced 

filter run times. Nevertheless, although research has investigated the properties of 

flocs formed in different systems (Bache et al., 1997; Jarvis et al., 2005), little 

research has focussed on establishing a link between zeta potential and floc properties. 

 

Although it has been demonstrated that performance can be optmised using zeta 

potential measurements, a number of authors have also indicated that pH not only 

affects the magnitude of the zeta potential but also the distribution of surface charge, 

resulting in improved performances at the higher pHs when the same zeta potential is 

maintained. For instance, Gregory and Carlson (2003) found improved sedimentation 

and filtration performance of NOM when coagulating with alum when the pH was 

increased from 6.1 to 7.4. This corresponded with an increase in alum dose from 26 

mg.l
-1
 to 97 mg.l

-1
 in order to maintain a zeta potential of 1.0-1.2 mV, and resulted in 

a more consistent performance in terms of filter run times and particle counts. Settled 
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turbidities were also lower at the higher pH, 0.4 NTU compared to 1.0 NTU. Gray et 

al. (1997) attributed the improved flotation performance of oil in water emulsions at 

pH 7, compared to pH 5, to a reduction in electrostatic shielding, leading to increased 

floc sizes.  In general, the improved performance has been related to a more even 

distribution of charge resulting in an increased number of successful collisions (Amal 

et al.,1992). Consequently, this would affect the physical separation processes and not 

necessarily the removal of dissolved material. This was demonstrated by Gregory and 

Carlson (2003), who did not observe an increase in total organic carbon (TOC) 

removal, which remained at 68% as the pH was increased from 6.1 to 7.4. These 

results were mirrored by Hundt and O’Melia (1988), who also achieved a constant 

80% DOC fulvic acid removal for the pH range 6-8 when the alum doses were 

increased accordingly. Furthermore, in the majority of cases, a high pH process 

involving a high coagulant dose is not always a practical solution in terms of chemical 

feed costs and solids handling (Gregory and Carlson, 2003). Nevertheless, in general, 

the removal of particulate matter is less sensitive to zeta potential, generating a wider 

range for optimum removal. Consequently, optimising for DOC removal will also 

produce good turbidity removal (Dennett et al., 1995). 

 

2.4.3 Flotation 

Flotation is widely used in treatment of upland and algal waters, and relies on the 

attachment of air bubbles to flocculated particles to give an effective density less than 

water. In this process, the ability of the bubbles to adhere to the particles is a function 

of the combined zeta potentials of the particles and bubbles, Hence, as the product of 

the zeta potentials increases then the process efficiency will reduce due to an increase 

in electrostatic repulsion (Gray et al., 1997). The effect of the combination of particle 

and bubble charges has been confirmed by studies carried out by Han et al.  (2001), 

using clay particles, Okada et al. (1988) using oil droplets and polyelectrolytes (Gray 

et al., 1997; Al-Shamrani et al., 2002). 

 

A number of authors have attempted to utilise the relationship between zeta potential 

and good removal in flotation processes to generate a simple floatability criteria based 

model of hetero-coagulation (Rao, 1974; Okada, 1990). Consequently, maximum 

flotation has been shown to occur when the zeta potential of the particles is minimised 

(Figure 2.12). Once again, differences occur between organic and inorganic systems. 
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In this instance, the inorganic particles (kaolin) were more sensitive to the operational 

zeta potential, with a reduced removal once the negative zeta potential had exceeded   

-4 mV< ζ <+7 mV (Han et al., 2001). Whereas for humic acid, optimum removal was 

achieved over a wider zeta potential range of -15 mV < ζ <+13 mV (Zouboulis et al., 

2003). This can be explained by the fact that the mechanism for flotation is such that 

bubble adhesion or attachment to particles requires a hydrophobic particle surface, 

whereas other particles have polar surface groups that bond with water rendering them 

hydrophilic and less likely to adhere (Edzwald, 1995). Consequently, as the humic 

acid surface is more hydrophobic, this would account for the increased zeta potential 

range for optimal flotation. The extension of zeta potential range to higher negative 

values, with regards to organic particles, has also been attributed to a higher coagulant 

dose, compared to inorganic particles such as kaolin, such that flocs can carry enough 

positive charges even if the overall mobility is negative (Roussy et al., 2005).  
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Figure 2.12: Turbidity removal vs. zeta potential during the flotation of a high 

turbidity water (Jefferson, 1997). 

 

A number of authors have identified the fact that chemical pre-treatment is an 

essential requirement for high efficiency within a dissolved air flotation (DAF) unit 

(Al-Shamrani et al., 2002; Vlaski et al., 1997; Han et al., 2001), and that the demands 

on flocculation ahead of DAF treatment are very different from the traditional 

practices associated with clarification based on sedimentation (Bache and Rasool, 

2001). According to Malley (1990), DAF removes particulate matter better than 

conventional gravity separation when comparing the NOM coagulation using alum. 
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Malley and Edzwald (1991) attributed this to differences in particle size, particle 

density, temperature and settling rate.  Furthermore, the fact that a slight degree of 

hydrophobicity or contamination could influence flotation of some open floc 

structures does confirm that the floc characteristics can have an influence on the 

attachment mechanism (Gochin and Solari, 1983).  

 

While charge neutralisation may indicate that optimum flotation conditions may have 

been approached, a number of other factors have also been shown to influence 

performance. For instance, Gray et al. (1997) found flotation performance of an oil in 

water emulsion improved from 96.5% to 99% when the median floc size increased 

from 13.5 µm to 24.2 µm. This corresponded with an increase in pH from 7 to 9. This 

was attributed in part to the existence of polymer bridging. However, an increased pH 

has also been shown to result in a more even distribution of charge which may 

account for increased removal (Amal et al., 1992).  

 

While this review has demonstrated that optimal flotation performance has been 

linked to zeta potential measurements, no reported links have been found between 

zeta potential and the individual operational flotation parameters such as loading rate 

or solids fraction for example. A number of authors have investigated the impact of 

surface charge modification as a means of improving flotation performance by 

making the electrostatic force between collectors attractive as opposed to a repulsion 

force. For instance Chen et al. (1998) looked at removing the algae Scendesmus 

quadricuada, with an IEP of 3.5 increasing to a zeta potential of -10 mV to -25 mV at 

pH 5. On the addition of 10 mg.l
-1
 chitosan, which is positively charged, the IEP 

shifted to pH 8, and the process was driven by the electrostatic interactions between 

the positively charged cell surfaces and the negatively charged collector. Similar 

results were achieved by Liu et al. (1999). Han and Dockko (2003), attempted to 

change the charge of the receptor, by making positively charged bubbles to improve 

flotation. This demonstrates that efficiency depends on both the particle surface 

charge (receptor) and the charge of the collector (bubble). In addition, it is the sign of 

the zeta potential which is more important than the magnitude. For example, with an 

anionic collector, flotation is possible below the IEP when the particles are positively 

charged and with a cationic collector above the IEP when the particles are negatively 

charged (Somasundaran and Krishnakumar, 1997).  
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2.4.4 Filtration 

Filtration processes function by the attachment of particles onto media grains of 

materials such as anthracite and sand. Filtration media generally exhibit a negative 

charge (Table 2.4), with reported values for sandstone media of -10 mV and -15 mV 

at pH 4 and 7 respectively (Stephan and Chase, 2002). Hence, an electrostatic 

repulsive force component is likely to exist. Consequently, reduction of the zeta 

potential of the pollutant component enhances filtration by reducing the electrostatic 

repulsion between the pollutant and the media. The role of zeta potential here is in 

determining the ability of the particles to be captured. In principle, this is the same as 

flotation except that the media surfaces are fixed and not constantly removed, and as a 

consequence tend to exhibit a more consistent surface property over time. 

 

The relationship between zeta potential, or electrophoretic mobility, and filtration 

performance has been reported using a number of parameters. In general results 

demonstrate optimal performance when the negative zeta potential does not exceed -

10 mV (Figure 2.13). For instance, Tchobanoglous and Eliasson (1970) plotted grade 

efficiency curves, based not on particle size, but on electrophoretic mobility and 

found that particles with a lower mobility were more likely to be removed, and that a 

linear relationship existed between the two factors. Jegatheesan et al. (1997) also 

observed a relationship between filtration efficiency and zeta potential. They 

conducted filtration experiments on latex particles and haematite particles in the 

presence of fulvic acid and found that a larger adhesion force corresponded to an 

improved particle removal due to stronger attachment onto the filter media surface. 

Stephan and Chase (2002) reported the use of zeta potential as a possible measure of 

deep bed filtration performance, in terms of permeability loss in the migration of clay 

particles through sandstone media. They observed that permeability loss also 

increased as the zeta potential was minimised due to the capture of clay particles in 

the filtration media. Similarly, Vane and Zang (1997) looked at packed bed electro-

osmotic permeability and suggested that rapid zeta potential analysis could be used to 

predict osmotic performance for expected site conditions as well as selecting 

electrolyte control strategies to optimise electro-kinetic soil remediation processes. 
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Figure 2.13: Relationship between zeta potential and filtrate turbidity for a high and 

low turbidity water source (Adapted from Parsons et al., 2004). 

 

As with coagulation, the presence of organic contaminants can also adversely affect 

filtration performance through modification of the resultant zeta potential. For 

instance, Dai and Hozalski (2002) investigated the filtration of Cryptosporidium 

oocysts in the presence of NOM. Cryptosporidium oocysts possess a negligible 

surface charge at neutral pH, although when exposed to NOM the magnitude of the 

negative zeta potential is increased, in this case to -35 mV at pH 6.7. This resulted in a 

decrease in oocyst removal from 51± 6% to 14± 1%. Similarly, a 75% reduction in 

attachment efficiency was observed by Deshiikan et al. (1998), when 5 mg.l
-1
 of 

George Town NOM was added to sulphate latex particles, with almost no attachment 

at a concentration of 20 mg.l
-1
. In both cases the addition of NOM increased the 

electrostatic repulsion between particles and the filtration media, causing the 

decreased level of filtration efficiency. However, if the particles possess a positive 

charge, such that the suspension is stable, then stability can be reduced through the 

addition of the negatively charged NOM in by reducing the zeta potential. Jegatheesan 

et al. (1997), reduced the zeta potential of haematite particles (25 mg.l
-1
 Fe) from +35 

mV to -0.5 mV by adding 0.75 mg.l
-1
 of fulvic acid. The corresponding adhesion 

force increased by 93%. Prasanthi et al. (1994) demonstrated that increasing the fulvic 

acid concentration beyond 1 mg.l
-1
 resulted in a charge reversal and at 4 mg.l

-1
 the 

magnitude of the negative zeta potential had increased to -35 mV, with the particles 

regaining stability and a reduction in filtration efficiency.  
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In general, results indicate that the zeta potential window is unaffected by operational 

variables and relates directly to the chemistry of the system. Consequently, optimum 

filtration efficiency tends to occur when the surface charge is minimised, as 

demonstrated for a number of particle types; Kaolin, Calcite and Quartz (Besra et al., 

2000), NOM (Gregory and Carlson, 2003). However, although the zeta potential 

considerably influences filtration efficiency for the adsorptional mechanism of liquid 

purification, it has practically no influence on the efficiency for mechanical 

purification (Leitschkis and Rammensee (1999). For instance, Jegatheesan et al. 

(1997), found that although optimal performance occurred when the surface charge 

was minimised, the change in zeta potential of the latex particles had less of an 

influence on filtration performance than with the haematite particles. This relates to 

the balance of weight and electrical forces. For instance, the larger latex particles, (0.8 

µm) for example, were less affected, with a 25% reduction in adhesion force when the 

negative zeta potential was increased from -3.9 mV to -54.6 mV. Whereas, for the 

haematite particles, the adhesion force was reduced by 40% although the negative zeta 

potential only increased from  -6.1 mV to -16.2 mV. Huang et al. (1999) looked at the 

effect of surface properties of both kaolin and algae on removal by depth filtration. 

They also concluded that larger particles will result in better collector efficiency, as 

for non-Brownian particles (greater than 1µm), such as algae and kaolin, transport is 

controlled by gravity, fluid drag and interception. 

 

A number of authors have investigated the possibility of changing the surface charge 

in order to increase capture and filtration efficiency. Gimbel and Sontheimer (1980) 

changed the zeta potential of quartz particles by adding a polymer and demonstrated 

that the highest filtration efficiency corresponded to the point of zero zeta potential. 

Shaw et al. (2000), coated Ottawa sand with hydrous iron and aluminium oxides in 

order to reverse the zeta potential of the sand grains from negative to positive in order 

to increase removal of the negatively charged Cryptosporidium oocysts. The IEP 

increased from pH 3 to pH 8, and the subsequent oocyst removal increased from 72 to 

95%. Zhang and Bai (2002), state that surface interactions play an important role in 

the removal of colloids and surface modification has potential application in water 

treatment. They coated glass beads to make zeta potential positive over pH range 4-10 

and enhance humic acid adsorption or kaolin deposition, both of which had negative 

zeta potential over pH range 4-10. 
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In general, results imply that poor chemical pre-treatment, generating high zeta 

potentials, cannot be corrected for during filtration whereas poor operation of 

upstream clarification units as seen by increased turbidity onto the filter can, to a 

degree, be successfully managed by good filtration operation. The operational cost of 

poor upstream management is reduced filter run times as the bed becomes laden with 

material more quickly (Logsdon  et al., 2003).  

 

2.5 Conclusions 

This review has highlighted the role of zeta potential as a universal indicator of 

performance for a range of different treatment processes. Previous research has 

suggested that this can be incorporated into operational strategies by following a 

simple flowsheet diagram (Figure 2.14). Furthermore, the fact that, in general, zeta 

potential is an effective indicator, irrespective of the coagulant dose and pH 

combination, offers a degree of flexibility for water utilities when operating during 

periods of rapidly changing raw water characteristics. 

 

The overall picture indicates that organic surface layers dominate coagulation 

processes such that NOM and algae systems have similar responses when compared 

to inorganic contaminants, and will thus control coagulation if present in a turbidity 

based system. Hence, the exact boundaries of the operational window are dependent 

on the balance of forces involved. Furthermore, although zeta potential can be used to 

optimise the treatment processes, it cannot provide a definition of optimum in terms 

of the achievable residuals post treatment, such as DOC or turbidity. This is 

dependent on both the make-up of the water, in terms of non charged components, 

and the operational parameters which are likely to influence collision efficiency.  

 

The future challenge is therefore to understand in more detail how the nature and 

concentration of the contaminant load and the operational parameters influence the 

zeta potential boundaries, and also the robustness and ease with which the system can 

remain within the operational charge boundaries set. 
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Figure 2.14: Flowsheet diagram (Adapted from Sharp et al., 2005b). 
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impact on coagulation in water treatment. 

 

EMMA L. SHARP, SIMON A. PARSONS and BRUCE JEFFERSON
 

School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 OAL, 

UK.  

 

Abstract  

In the past decade, a number of UK and US water utilities have been experiencing 

operational difficulties connected with the increased dissolved organic carbon (DOC) 

levels during the autumn and winter periods. This has been observed as an increase in 

the production of disinfection by products (DBP), and a greater coagulant demand. 

Resin adsorption techniques were used to fractionate raw water and investigate the 

variation in surface charge and coagulant-humic interactions over a 36 month period. 

A change in the natural organic matter (NOM) composition throughout the year was 

observed, with the fulvic acid fraction (FAF) increasing from 36% in September to 

61% in November. However, a reduction in treatment performance is not simply due 

to an increase in DOC concentrations (from 4.3 mg.l
-1
 to 14.5 mg.l

-1
), but also a 

change in the charge density of the NOM.  It was found that hydrophilic NOM 

fractions possess negligible charge density (<0.06 meq.g
-1
DOC), and it is the 

hydrophobic NOM fractions, FAF in particular, that exert the greater dominance on 

coagulation control. The hydrophilic NOM fractions are less amenable to removal 

through conventional coagulation with metal salts, and are therefore likely to indicate 

the DOC residual remaining after treatment. Understanding the seasonal changes in 

NOM composition and character and their reactivity with coagulants should lead to a 

better optimisation of the coagulation process and a more consistent water quality. 

 

Key Words 

Charge density, Coagulation, Natural organic matter, Water treatment, Zeta potential 
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3(A).1 Introduction 

The removal of natural organic matter (NOM) has become increasingly important in 

light of the potential for carcinogenic disinfection-by-products (DBP) to form if 

organic carbon is insufficiently removed. Consequently, recent legislation around the 

world calls for the strict control of DBP’s (Gibbons and Laha, 1999). NOM is 

generally described as a poorly defined mix of organic substances with variable 

properties in terms of acidity, molecular weight (MW) and molecular structure 

(Goslan et al., 2002). Functionally, the organic material is predominantly phenolic 

and carboxylic in nature, but also contains alcohol, purine, amine and ketone groups 

(Dennett et al., 1995) and is often described as a weak anionic polymer.  

 

Current options for dissolved organic carbon (DOC) removal include membrane 

filtration (80-99 % removal) (Amy and Cho, 1999; Pikkarainen et al., 2004), Ion 

exchange/adsorption (60-80 % removal) (Fu and Symons, 1990; Summers and 

Roberts, 1998), Ozonation/biodegradation (25-75 % removal) (Goel et al., 1995; 

Graham, 1999) and coagulation with cationic additives (10-60 % removal) (Croué et 

al., 1993b; Edzwald 1993; Volk et al., 2000). Whilst high removal efficiencies are 

possible with processes such as membranes and activated carbon they remain 

expensive and generally require pretreatment.  Consequently, current preference is to 

coagulate with metal additives such as alum and ferric salts coupled to a downstream 

physical separation process such as sedimentation or dissolved air flotation.  

 

The mechanisms of coagulation with regard to NOM removal are charge 

neutralization for colloidal material and charge complexation/precipitation for soluble 

compounds with additional removal occurring due to adsorption on to precipitated 

flocs and metal hydroxides (Randtke, 1988). Accordingly, optimisation of the 

coagulation process occurs under acidic conditions between the iso-electric point (IEP) 

of the coagulant and the NOM; pH 4.5-5.5 for iron based system and pH 5-6 for 

aluminium based coagulants (Amirtharajah and O’Melia, 1990).  

 

Comparison of reported schemes reveals DOC removals between 10 and 99 % (Figure 

3(A).1) with both a spatial and temporal variability. Whilst in general no clear trend 

exists to demonstrate a link between coagulant type, pH, dose and DOC removal, the 
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majority of the case studies reporting high DOC removals were associated with ferric 

coagulants (Fearing, 2004). Investigation of the observed differences between the 

schemes suggests that both the concentration and character of the organics change, 

especially in terms of MW, solubility, hydrophobicity, charge density and functional 

group composition (Edzwald, 1993; Korshin et al., 1997; Schlautman and Morgan, 

1994; Vuorio et al., 1998). Mechanistic appraisals have demonstrated that coagulants 

preferentially remove hydrophobic material but are relatively poor at removing 

hydrophilic, low molecular weight organics (Fearing et al., 2004b). However, removal 

of each component part is not consistent over time even at a single site suggesting 

changes to the character of the individual fractions. 
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Figure 3(A).1: Comparison of percentage DOC removal by aluminium and iron based 

coagulants (Fearing, 2004). 

 

Given that the coagulation of NOM is predominately charge related for both soluble 

and colloidal material then the electrical character of the NOM is likely to be a key 

parameter in describing the process. Characterisation in this regard relates to either 

surface potential (expressed as zeta potential or electrophoretic mobility) or the total 

surface charge (measured as colloidal charge or charge density) (Ratnaweera et al., 

1999). Zeta potential indicates the surface potential of the colloidal system and is 

commonly related to the stability of the colloidal materials under any given set of 

water characteristics. However, it does not necessarily provide a proportional 

indication of the amount of coagulants required for destabilization. In contrast, the 

total surface charge of the raw water is proportional to the theoretical coagulant 
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demand providing a charge neutralisation mechanism prevails. Previous attempts to 

link the coagulation of NOM to the charge character of the water have found that 

optimum doses occurred at a range of zeta potentials between -8 and +8 mV 

depending on the water source and the pH of coagulation (Ratnaweera et al., 1999). 

Hence indicating that complete neutralization of the charge is not required, only that 

the barrier generated by electrostatic repulsion is minimized or removed. The aim of 

the current paper is to investigate the character of NOM in terms of its charge 

properties and how this influences the interactions between coagulants and NOM. 

 

3(A).2 Materials and Methods 

3(A).2.1 Works overview 

The raw water investigated in the current study was sampled from a moorland water 

works in the north of England and is typically characterized as a low turbidity (3.7-7.0 

NTU), low alkalinity (20 mg.l
-1
 CaCO3), high colour (44-160 Hazens), high DOC 

(4.3-14.5 mg.l
-1
) water. The treatment works contains coagulation with ferric sulphate, 

dissolved air flotation and deep bed filtration prior to chlorination and is mainly 

designed to control DOC and metal ions in the water. Samples were taken at various 

periods from the inlet channel from the reservoir. 

 

3(A).2.2 Apparatus 

The turbidity of the samples was measured using a HACH2100 turbidity meter 

(Camlab, UK). A Shimadzu 5000A TOC analyzer was used for determining the DOC 

content. UV-Abs (m
-1
) at a wavelength of 254nm was measured using a Jenway 6505 

UV/Vis spectrophotometer. All samples were passed through a Fischer Scientific 

MF200 1µm glass microfibre filter paper before both UV and DOC analyses. The zeta 

potential was measured with a zetasizer 2000HSA (Malvern Instruments, UK). The 

coagulation and flocculation experiments were undertaken using a Phipps and Bird 

PB-900 six paddle jar tester. 

 

3(A).2.3 Reagents 

The coagulant used was ferric sulphate (Ferripol xl, EA West). The cationic polymer 

polydiallyldimethylammoniumchloride (polyDADMAC), with a MW of 100,000-

200,000, was obtained from Sigma-Aldrich as a 20 wt% aqueous solution. This was 



Chapter 3(A): NOM-Coagulant Interactions  Paper 2 

Page 59 

then diluted to a 0.1% solution with the charge density calculated to be 6.2 meq.g
-1
 

from the manufacturer’s information. 

 

3(A).2.4 Procedure 

Raw water samples, obtained from between November 2000 and September 2003, 

were fractionated by XAD resin adsorption techniques into hydrophobic (HPO) and 

hydrophilic (HPI) components using a method adapted from Malcolm and MacCarthy 

(1992) and previously used on samples from the same water source (Goslan et al., 

2002). The hydrophobic fractions were then separated further by reducing the pH to 1 

and precipitating the humic acid fraction (HAF) fraction, with fulvic acid fraction 

(FAF) remaining in the supernatant. The non-adsorbed fraction was categorised as 

hydrophilic non adsorbed (HPINA). Detailed descriptions of the methods used can be 

found in Goslan et al. (2002). 

 

Charge density was determined by an adjusted form of the method used by Kam and 

Gregory (2001), which monitored the change in charge as a function of 

polyDADMAC dose and was shown to produce a clearer end point determination than 

traditional ion titration methods. Varying amounts of 0.1% poly DADMAC were 

added to a 100 mL solution of deionised water with 2.5 mg of the appropriate NOM 

fraction adjusted to pH 7 with NaOH. The hydrophilic fractions were analysed at 

lower concentrations and with a more dilute polyDADMAC source due to availability 

issues.  

 

The NOM-coagulant interactions were investigated by adding 20mg of sodium 

hydrogen carbonate to one litre of de-ionised water containing the required amount of 

NOM fraction and a magnetic stirrer bar.  The beaker was then placed on a magnetic 

stirrer and 2mg of required coagulant, as the metal, was added in order to achieve the 

required NOM: coagulant ratio. Portions of the solution were then removed and 

adjusted to varying pHs between 2 and 9 and the resulting zeta potential recorded. The 

increase in ionic strength as a result of a reduction to pH 2 did not influence the zeta 

potential. In addition, the zeta potential of the original solutions were also measured 

over a two hour time period and also remained stable.  
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With regards to the coagulation-flocculation experiments only one jar was used at any 

one time. Raw water samples were stored at 5°C prior to jar testing and subsequent jar 

testing was undertaken at room temperature (20°C). The initial rapid mix was for 2 

minutes at 200 rpm whilst adding the required dose of coagulant. NaOH was then 

added, until reaching the required coagulation pH, whilst stirring for an additional 1.5 

minutes, also at 200 rpm. The jars were then stirred for 15 minutes at 30 rpm and left 

to settle for an additional 20 minutes before taking the samples, which were extracted 

from the centre of the jar. The zeta potential was initially measured at varying stages 

of the jar test procedure from the end of the rapid mix to the final settlement, and was 

found to show no significant variation. The zeta potential was measured with a 

zetasizer at 25°C. The zetasizer yields estimates and standard deviations of the zeta 

potential directly, and all measurements were conducted in triplicate. The general 

accuracy of the zetasizer was determined using standard solutions (Malvern 

Instruments, UK.) 

 

3(A).3 Results and Discussion 

3(A).3.1 Seasonal trends and variations 

The DOC of the raw water decreased across the monitoring period, October 2002 to 

September 2003, with a high of 14.5 mg.l
-1
 in December 2002 to a low of 4.3 mg.l

-1
 in 

September 2003 (Figure 3(A).2). Over this period, the specific UV absorbance 

(SUVA) appeared insensitive to the change in organic levels with an average value of 

6.1 (± 2.3 m
-1
.l.mg

-1
DOC) suggesting the water was predominately hydrophobic in 

character.  
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Figure 3(A).2: Annual DOC and zeta potential, for raw water samples taken between 

October 2002 and September 2003. 

 

Fractionation of the raw water confirmed this with up to 80% of the organic matter 

being associated with the fulvic and humic acid fractions (Figure 3(A).3). Throughout 

the sampling period the DOC concentration of the hydrophilic (combined) and humic 

acid fractions remained relatively stable at 2.5 ± 0.5 mg.l
-1
 and 2.2 ± 0.5 mg.l

-1
 

respectively. In contrast, the FAF demonstrated greater variability, in terms of total 

DOC, with a concentration of 4.4 ± 1.4 mg.l
-1
 throughout the sampling period (Figure 

3(A).4). The variation in fulvic acid concentration was the major component of 

change in the fractional make up of the water. To illustrate, in November 2000, the 

relative contribution of each fraction to the total DOC of the water was 61, 18 and 21 

% for the FAF, HAF and hydrophilic fractions respectively. Whereas, in September 

2003, the relative fractions were 36% for FAF, 32% for HAF and 32% for the 

hydrophilic fractions; demonstrating a much lower contribution from the FAF fraction.   
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Figure 3(A).3: NOM fraction contribution expressed as a percentage of the raw water. 

Humic acid fraction (HAF), Fulvic acid fraction (FAF), Hydrophilic acid (HPIA) and 

Hydrophilic non adsorbed (HPINA).  
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Figure 3(A).4: NOM fraction contribution expressed as mg.l
-1
DOC. 

 

Comparison with published data reveals similar levels and variation in DOC across 

different seasons for river and lake systems from both Europe (Ratnaweera et al., 

1999) and the United States of America (Aiken et al., 2004). For instance, the DOC 

from an intake from the Santa Ana river varied between a low of c2.2 mg.l
-1
 and a 



Chapter 3(A): NOM-Coagulant Interactions  Paper 2 

Page 63 

high of c9 mg.l
-1
 between June 2000 and May 2002 (Aiken et al., 2004). Fractionation 

of waters from different sources and locations reports much greater variability than 

observed in the current study. Analysis from around 100 different surface source 

waters indicated that typically about 56% of the material is hydrophobic in character 

(Leenheer and Huffman, 1976). Similarly Croué et al., (1993a,b), reported that water 

taken from the Apremount reservoir was composed of 51 % hydrophobic and is 

higher than the 38 % reported for the Colorado river in September 2000 (Aiken et al., 

2004). The range of values (68-79%) in the current study are similar to values 

reported for highly coloured waters in Canada, Scandinavia and Russia where the 

hydrophobic content typically varies between 60 and 80 % of the total DOC (Malcolm, 

1985). The observed differences are consistent with the view that as the DOC of a 

water increases the majority of the additional organic matter is likely to be 

hydrophobic in character (Malcolm, 1985) and hence high DOC waters tend to be 

more hydrophobic in character. The observed variations throughout the year are often 

explained in relation to a microbially driven mechanism of DOC release (Scott et al., 

2001). The microbes within the soil matrices are more active during the warmer, 

relatively drier period in the summer/early autumn but the impact of this is not seen at 

the treatment works until sufficient rainfall/snow melt occurs to flush the released 

materials into the intake system. After which time the soil becomes colder and more 

water laden and aerobic microbial activity significantly decreases.  

 

Charge density measurements of the raw water fractions in the current study revealed 

the majority of the total colloidal charge to exist in the hydrophobic fractions. For 

instance, in relation to water fractionated from samples collected in April 2002, the 

charge densities of the individual fractions were 6.8, 4.2 and 0.006 meq.g
-1 
DOC for 

the HAF, FAF and HPIA fractions respectively (Figure 3(A).5). Kam and Gregory 

(2001) reported a value of 5-5.6 meq.g
-1
DOC for commercial humic acid and similar 

values have been reported elsewhere with humic and fulvic waters typically exhibiting 

charge densities between 5-15 meq.g
-1
DOC (Table 3(A).1). The charge density of the 

hydrophilics was very low such that the levels for the HPINA fraction was below the 

level of detection. Edzwald (1993) reported similar findings for both hydrophilic 

bases and neutrals and found that the acid fraction was at least an order of magnitude 

smaller than the hydrophobic fractions; compared to 2-3 orders of magnitude lower in 

the current study. 



Chapter 3(A): NOM-Coagulant Interactions  Paper 2 

Page 64 

0.01

0.1

1

10

HAF FAF HPIA HPINA

C
h
a
rg
e 
d
en
si
ty
 (
m
eq
.g
-1
 D
O
C
)

 

Figure 3(A).5: The impact of NOM fraction on charge density. 

 

Conversion of the charge densities to charge concentration reveals that whilst the 

HAF fraction has the highest charge density the largest proportion of the total load 

comes from the FAF fraction.  To illustrate, in the case of the water collected in April 

2002, the total charge of the individual fractions was 0.013, 0.026 and 0.08 x 10
-3
 

meq.l
-1
 for the HAF, FAF and HPIA samples respectively. To establish how much 

impact variation in the FAF fraction may have on the total charge, the charge density 

of the FAF fraction was monitored throughout the sampling period (Figure 3(A).6). 

The charge density varied between 2.5 meq.g
-1
DOC in September 2003 to 4.2 meq.g

-

1
DOC in October 2002 representing a variation of 60 % compared to the maximum 

recorded value. Combining the change in charge density and DOC concentration for 

the same period reveals that the total charge of the FAF fraction varied between 0.006 

and 0.022 meq.l
-1
 throughout the sampling period. Collins et al., (1986) used 

potentiometric titration to determine the carboxylic acidity of the hydrophobic organic 

matter for a number of raw waters and fulvic acid components. For example, for the 

Grasse River and Floridan aquifer samples, the hydrophobic fraction contributed a 

charge of 0.035 meq.l
-1 
and 0.030 meq.l

-1
 respectively. The differences in carboxylic 

acidity or charge density will therefore influence the coagulant demand and the water 

treatment process as a higher charge is associated with the larger MW fractions 

(Collins et al., 1986; Ratnaweera et al., 1999). 
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Table 3(A).1: Previously determined humic substance charge densities.  
 

Substance Method Charge density  (meq.g
-1
) Reference 

Fulvic acid Potentiometric 

titration 

13.5 ±1.4 

(hydrophobic carboxylic 

acidity)  

 

Collins et al., 1986. 

Grasse river 

water 

Potentiometric 

titration 

8.0 ±1.2 

(hydrophobic carboxylic 

acidity) 

 

Collins et al., 1986. 

Humic and fulvic 

acids 

 

pH titration 5-10 Tipping, 1993 

Fulvic acids 

 

Colloid titration 10-15 Edzwald, 1993 

Humic acids 

 

Colloid titration 5-10 Edzwald, 1993 

Organic carbon Alkametric 

titration 

 

12 (at max charge density) 

6.1 at pH 4 

Tiller and O’Melia, 

1993 

Humic acid Colloid titration 5-5.6 Kam and Gregory, 

2001 

 

Humic acid Colloid titration 1.5 ± 0.04 Mikkelsen, 2003 
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Figure 3(A).6: Variation in FAF charge density. 
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In relation to the specific colloidal charge, the zeta potential of the raw water was -15 

± 4 mV throughout the sampling period. Alteration of the pH of the water revealed a 

stable zeta potential value between pH levels of 4 and 8 and an iso-electric point (IEP) 

of 1.7-2.2. Within the study, both the raw water zeta potential and its pH profile 

remained fairly constant irrespective of changes in DOC or fractional make up. The 

results indicate that the charge of the colloids within the raw water can be 

characterised by an acidic dissociation site model (Hunter, 1981). This is expected as 

the main functional groups identified within the structures of NOM are predominately 

carboxylic and phenolic groups with a pKa in the range of 3-6 and 8-10 respectively 

(Edwards et al., 1996; Gu et al., 1995; Kretzschamr and Sticher, 1997; Tiller and 

O’Melia, 1993). The stable response to pH until a value of around 4 indicates that for 

the current water source the carboxylic groups are likely to dominate the charge 

response of the water.  

 

Comparative studies, varying the pH between 1 and 9 for the individual fractions 

extracted from April 2002 raw water, revealed a clear difference between 

hydrophobic and hydrophilic fractions (Figure 3(A).7). The two hydrophobic fractions 

have similar profiles to the raw water such that the zeta potential values above pH 4 

were -13 ± 3.7 mV, - 17 ± 0.3 mV, and -25 ± 2.2 mV for the FAF, raw water and 

HAF respectively. In contrast, the zeta potential of the hydrophilic fraction decreased 

consistently across all the pH values tested. For instance, the zeta potential of the 

HPIA and HPINA fractions decreased from 2.1 ± 0.2 mV at pH 2 for both fractions to 

-4 ± 3.2 mV and -7 ± 2 mV at pH 9 for the HPIA and HPINA fractions respectively 

(Figure 3(A).7). The corresponding IEP of all the fractions was 1.5, 1.6, 1.7, 4 and 4.7 

for HAF, FAF, raw water, HPIA and HPINA respectively. Previous work on the 

charge of NOM fractions has shown that the pKa of the FAF fraction to be around 2 ± 

0.3 and can be attributed to the carboxyl groups (Leenheer et al., 1995a; 1995b). 

Whereas the hydrophilic fractions are composed of weaker acidic groups with 

correspondingly much higher values for their IEP. Comparing the different fractions 

to the raw waters shows as expected that the hydrophobic materials dominate the 

specific colloidal charge character of the water. 
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Figure 3(A).7: Zeta potential of April 2002 NOM fractions with varying pH. 

 

3(A).3.2 NOM-Coagulant interactions 

The interactions between the NOM samples and coagulant (M
+
) were monitored 

through changes in the IEP of the sample at various DOC to coagulant mass ratios. 

The IEP of the systems decrease as the DOC:M
+
 ratio increases in all cases. To 

illustrate, in relation to the December 2002 water, the IEP of the systems decreased 

from 8 to 2.7 as the DOC:Fe ratio increased from 0 to 2.4 (Figure 3(A).8). The exact 

relationship between DOC:M
+
 ratio and IEP was different for each sampling period 

and ranged between the extremes of December 2002 and September 2003. To 

demonstrate, to achieve an IEP of 4.4 in December 2002 required a DOC: Fe ratio of 

1.2:1, whereas in September 2003 a lower ratio was required (2:1) in order to reach 

the same IEP (Figure 3(A).9). Importantly, the existence of a variation in the 

relationship between IEP and mass ratio between different water samples indicates 

that the changes must be due to character (Tseng et al., 2000) and can be explained in 

terms of the variation in total charge of the water from one period to the next. For 

example, at a dose ratio of 2:1 the IEP of the system was 3 in December 2002 and 4.4 

in September 2003 indicating the samples in September 2003 were less influenced by 

the organic matter at the same mass ratio. The differences coincide with the 
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approximate minimum and maximum in the charge density of the FAF fraction 

described previously.  

 

Calculation of the neutralizing charge provided by adding Ferric, based on speciation 

data (Jiang and Graham, 1998), reveals the coagulant charge density of the added 

ferric to be 35.5, 30.7, 12.6 and 1.7 meq.g
-1
Fe at pH values of 4, 5, 6 and 7 

respectively. The decrease in available charge as pH increases gives a clear indication 

why coagulation must proceed under acidic conditions; the charge neutralizing 

capacity of ferric is 20.8 times greater at pH 4 compared to pH 7. Comparison 

between mass and charge ratios under equivalent conditions reveals that at the IEP 

there is a broad agreement between the two. Importantly, the change of mass ratio at 

any given pH from one water sample to the next indicates that stoichiometric ratios 

are not appropriate for predicting dose requirements. Instead a simple charge density 

measurement appears to provide a more consistent indication of dose requirement.  
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Figure 3(A).8: Effect of coagulation pH on zeta potential for December 2002 raw 

water coagulated with iron to different DOC: coagulant ratios. 
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Figure 3(A).9: pH of zero charge and DOC:coagulant ratios for two raw waters 

coagulated with iron.  

 

The interactions of the individual NOM fractions with iron based coagulants were 

investigated further by increasing the concentrations of organics obtained from the 

April 2002 fractionation, dosed with 2 mg.l
-1
 (as metal) of coagulant (Figure 3(A).10). 

The FAF fraction results in the largest shift in IEP from pH 8 with no NOM present 

(i.e. ferric hydroxide) to pH 3 for a 2:1 FAF:Fe ratio. This was followed by the HAF 

and HPIA fractions at pH 3.8 and 4.8 respectively at the same mass ratio. The HPINA 

did shift the IEP although increasing the DOC concentration further did not have an 

additive effect. Therefore implying only a certain concentration of the HPINA 

combined with the iron which once exceeded did not affect the IEP of the system. 

Importantly, the FAF fraction appears to be critical in determining the resultant charge 

properties of the NOM-coagulant system and hence the dose requirements. 

Interestingly, complimentary work on floc structural properties has indicated that 

variation in the FAF component generates the greatest degree of change in the size 

and strength of the resultant flocs (Jefferson et al., 2004).   
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Figure 3(A).10: pH of zero charge for the for the different NOM fractions coagulated 

with varying doses of iron. 

 

Reports in the literature suggest competitive interaction between coagulants and NOM 

are favoured towards larger MW, more hydrophobic, more highly charged 

components (Gu et al., 1995; Huang and Shiu, 1996) due to the combination of charge 

neutralization, complexation/precipitation and ligand exchange mechanisms which are 

thought to dominate NOM removal (McKnight et al., 1992). The current work agrees 

with that as the hydrophobic, rather than hydrophilic material, dominates the 

interactions between NOM and the metal coagulant. This is confirmed by studies that 

have examined DOC removal across different fractions where only hydrophobic 

fractions are significantly removed and hydrophilic non acids are almost completely 

not removed during coagulation (Fearing et al., 2004a). Further, recent comparisons 

between the coagulation of different source waters has revealed that the differences 

observed in the residual DOC correlate well with the difference in the initial level of 

hydrophilic fractions (Sharp et al., 2004). Consequently, the hydrophilic concentration 

in a water acts as a good indicator of the likely residual concentration achievable by 

coagulation.  

 

The comparison between humic and fulvic acids is less clear as they are both 

hydrophobic and have MW distributions that overlap considerably. To illustrate, in 

the case of the water reported in the current study, high performance size exclusion 

chromatograms (HPSEC) of the HAF and FAF had a distribution between 5.27 and 
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11.2 minutes and 6.50 and 11.2 minutes respectively, showing an overlap across the 

0.5-5kDa range (Goslan, 2003). Reports in the literature discuss the issue in relation 

to the principle removal pathways for the two components. HAF is thought to be 

removed through a combination of charge neutralization (for colloids), 

complexation/precipitation and ligand exchange adsorption (Huang and Shiu, 1996). 

Whereas FAF is thought to be principally removed through an adsorption pathway 

(McKnight et al., 1992). Evidence for this has been shown by recording pH changes 

due to the exchange of OH
-
 groups as the adsorption process proceeds (Gu et al., 

1995). The situation is further complicated as evidence suggests adsorption follows a 

two stage sequence of fast followed by slow adsorption during which competitive 

displacement occurs where high absorption affinity compounds replace low affinity 

ones (Avnea and Koopal, 1999). Replacement is thought to be aided as residual 

charge on the adsorbed molecules repel each other and reduce the affinity of large 

MW compounds thus enabling smaller MW material to adsorb shifting the balance of 

molecules bound to the floc. 

 

However, it should be noted that most of the reported work has involved synthetic 

solutions of known chemistry or preformed adsorption sites. Consequently 

interpretation to the current situation of polydispersed NOM solutions and their 

interaction to added coagulants is unclear and ultimately the exact hierarchy is 

unknown. Whilst the exact explanation of the observed interactions is unclear it does 

however provide a useful guide to understand differences in observed removal 

patterns and the properties of the resultant flocs. Given that optimum removal occurs 

over a range of zeta potentials around the zero value (Parsons et al., 2004) the 

concentration and character of the FAF fraction is likely to control the dose 

requirements to maintain the system within the appropriate range. Also the balance of 

hydrophobic to hydrophilic compounds will control the optimised residual 

concentration. This is demonstrated by a case study reported by Sharp et al., (2004), 

which showed that the residual DOC was minimised between zeta potential values of 

+5 mV and -10 mV for a mountain water source affected by elevated organic levels 

during the spring snowmelt run-off. Comparison with other source waters showed 

similar zeta potential ranges but different residual levels. The difference in residual 

concentration correlated well with the difference in initial hydrophilic content of the 

source waters. Therefore, optimising the coagulation process based on charge is likely 
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to result in improved hydrophobic NOM removal, although the same level of success 

may not be observed with the hydrophilic fractions. 

 

3(A).4 Conclusions 

Results from this investigation show that it is not simply the increased organic 

concentration, but also the change in composition and character which creates a 

greater coagulant demand. The hydrophobic NOM fractions (HAF and FAF) have a 

significantly higher charge density than the hydrophilic NOM fractions. Hence, the 

negligible charge density of HPINA fraction may explain the reduced interaction with 

iron and the poor removal of this fraction with conventional coagulation methods. The 

largest proportion of the total charge comes from the FAF fraction, which also exerts 

the greatest influence on coagulation conditions. The charge density of the FAF 

fraction has also shown some variation throughout the sampling period. However, due 

to the heterogeneous mix of compounds it is still difficult to make conclusive 

statements with regards to the differences between HAF and FAF. In general, without 

some form of charge monitoring many of the hidden changes discussed in this paper 

could go unnoticed, especially if the process is simply controlled on UV254 levels and 

pH, thus operating far from optimum. 
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Abstract  

The removal of natural organic matter (NOM) is one of the main challenges facing 

water utilities in both the UK and the US. Whilst traditional treatment with trivalent 

coagulants has proven a successful strategy in the past, operational problems are now 

being reported during periods of elevated organic levels in the water. Characterisation 

of the pollutants in terms of polarity, molecular weight and charge, provides a method 

to understand the impact of the observed temporal and spatial variations in terms of a 

mechanistic parameter relevant to the treatment processes. Results from this study 

demonstrate that it is not simply the increased organic concentration, but also the 

change in NOM composition and character, which influences the impact on the 

treatment processes. Consequently, monitoring of these parameters provides an 

insight into how to manage the impact caused by environmental changes to the 

catchments.  
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3(B).1 Introduction 

The removal of natural organic matter (NOM) is one of the main challenges facing 

water utilities in both the UK and the US, especially for low alkalinity, low turbidity 

source waters delivered from moorland or mountain catchments. Changes in land 

management, such as the disturbance of peat or vegetation damage, can lead to 

increased decomposition and the production of loosely bound NOM (Worrall and Burt, 

2005). The accumulated organics are then flushed into the aquatic environment as a 

result of increased surface run-off, such as a rainfall event or snowmelt run-off (Hurst 

et al., 2004).  

 

Whilst traditional treatment with trivalent coagulants has proven a successful strategy 

in the past, operational problems are now being reported during these periods of 

elevated organics, the impact of which has been observed as an increase in the 

production of potentially carcinogenic disinfection by products (DBP), formed when 

residual organics react with chlorine during water treatment.  

 

NOM is defined as a highly heterogeneous mixture of organic compounds which are 

known to vary both spatially and temporally in terms of molecular weight (MW), 

solubility, hydrophobicity, charge density and functional group composition (Edzwald, 

1993; Owen et al., 1993; Korshin et al., 1997; Scott et al., 2001). However, whilst 

broad spatial variations in the nature of organics are reasonably well understood, the 

variations in temporal change at a particular site are more uncertain. For example, 

reported variations in the removal of organics of between 10 and 99% (Fearing, 2004), 

which are not consistent over time, even for a single site, are most likely to be 

associated with changes in NOM character.  

 

NOM contains compounds over a board spectrum of MW, although it is the larger 

MW humic substances, absorbing visible light and giving the water its characteristic 

brown colouration, which contribute significantly to the overall charge load of the 

water. Charge densities for the hydrophobic NOM fractions are in the region of 5-15 

meq.g
-1
of dissolved organic carbon (DOC), compared to the hydrophilic NOM 

fractions for which the contribution is an order of magnitude less (Edzwald, 1993; 
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Tipping, 1993; Collins et al., 1986). Consequently, the impact of varying NOM 

fraction make-up is to alter the coagulant demand of the system.  

 

Coagulation is believed to involve a combination of charge neutralization, 

complexation/precipitation and ligand exchange mechanisms (McKnight et al., 1992; 

Randtke, 1988). Furthermore, optimisation of the coagulation process occurs under 

acidic conditions between the iso-electric point (IEP) of the coagulant and the NOM, 

corresponding to pH 4.5-5.5 for an iron based system and pH 5-6 for aluminium based 

coagulants (Amirtharajah and O’Melia, 1990). Previous attempts to link the 

coagulation of NOM to the electrical character of the water have looked at defining a 

range of zeta potentials, varying between -8 and +8 mV depending on the system 

involved, within which residual concentrations are both low and stable (Gregory and 

Carlson, 2003; Ratnaweera et al., 1999). Furthermore, the definition of a range also 

suggests that complete neutralization of the charge is not required, only that the 

barrier generated by electrostatic repulsion is minimized or removed.  

 

Aluminium and iron salts are widely used for coagulation in drinking water treatment. 

They act to destabilize and remove both colloidal and dissolved impurities, such as 

DOC, through the production of cationic hydrolysis products. However, despite their 

similarities, the affinity of each coagulant for different impurities is known to vary. 

For example, with regards to DOC removal, a number of authors have reported 

improved performance with iron salts compared with alum (Edzwald and Tobiason, 

1999; Bell-Ajy et al., 2000). It has been suggested that this is due to the fact that alum 

based coagulants are more selective and iron can remove more DOC at higher doses, 

especially when treating elevated levels of organics (Budd et al., 2004; Kastl et al., 

2004). Coagulation with iron salts has also been shown to produce flocs that are both 

larger and more numerous than those formed with alum, therefore increasing the 

likelihood of collisions and subsequent removal (Ratnaweera et al., 1999; Jarvis et al., 

2005).  

 

The aim of the current work is to understand the impact of observed temporal and 

spatial variations in NOM composition and character, and to investigate the impact of 

this in relation to observed differences when coagulating NOM with either iron or 

aluminium. 
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3(B).2 Materials and Methods 

3(B).2.1 Works overview 

The raw water investigated in the current study is taken from Albert Water Treatment 

Works (WTW), a moorland water works in the north of England. Albert WTW treats 

water which has drained down through the peat catchment system before reaching 

Albert reservoir, ultimately producing a highly coloured organic rich water for the 

majority of the year (44-160 Hazens). Other raw water characteristics include low 

turbidity (3.7-7.0 NTU), low alkalinity (20 mg.l
-1
 CaCO3), and high DOC (4.3-14.5 

mg.l
-1
). Samples were taken at various periods from the inlet channel to the reservoir. 

 

3(B).2.2 Apparatus 

The turbidity of the samples was measured using a HACH2100 turbidity meter 

(Camlab, UK). A Shimadzu 5000A TOC analyzer was used for determining the DOC 

content. UV-Abs (l.m
-1
) at a wavelength of 254nm was measured using a Jenway 

6505 UV/Vis spectrophotometer. All samples were passed through a Fischer 

Scientific MF200 1µm glass microfibre filter paper before both UV and DOC 

analyses. The zeta potential was measured with a zetasizer 2000HSA (Malvern 

Instruments, UK). The coagulation and flocculation experiments were undertaken 

using a Phipps and Bird PB-900 six paddle jar tester. 

 

3(B).2.3 Reagents 

The coagulants under investigation were: Ferric Sulphate (Ferripol xl, EA West) and 

Aluminium Sulphate (Kemwater, UK). Charge density measurements were 

determined using the cationic polymer polydiallyldimethylammoniumchloride 

(polyDADMAC), with a MW of 100,000-200,000, obtained from Sigma-Aldrich as a 

20 wt% aqueous solution.  

 

3(B).2.4 Procedure 

Raw water samples were fractionated by XAD resin adsorption techniques into 

hydrophobic (HPO) and hydrophilic (HPI) components using a method adapted from 

Malcolm and MacCarthy (1992). Detailed descriptions of the methods used can be 

found in Goslan et al., (2002), where the procedure has also been undertaken using 

Albert raw water. 
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Charge density was determined by an adjusted form of the method used by Kam and 

Gregory (2001), which monitored the change in charge as a function of 

polyDADMAC dose and was shown to produce a clearer end point determination than 

traditional ion titration methods. This method has been used previously with Albert 

water samples (Sharp et al., 2004). 

 

Raw water samples were stored at 5°C prior to jar testing, which was undertaken at 

room temperature (20°C) using a previously published standard method (Sharp et al., 

2004), involving a 3.5 minute rapid mix at 200 RPM, a 15 minute 30RPM 

flocculation stage and 20 minute settlement period.  

 

The NOM-coagulant interactions were investigated by adding 20mg of sodium 

hydrogen carbonate to one litre of de-ionised water containing the required amount of 

NOM fraction and a magnetic stirrer bar.  The beaker was then placed on a magnetic 

stirrer and 2mg of required coagulant, as the metal, was added in order to achieve the 

required NOM: Coagulant ratio. Portions of the solution were then removed and 

adjusted to varying pHs between 2 and 9, with NaOH and HCl, and the resulting zeta 

potential recorded. The increase in ionic strength as a result of a reduction to pH 2 did 

not influence the zeta potential. In addition, the zeta potential of the original solutions 

were also measured over a two hour time period and also remained stable.  

 

3(B).3 Results and Discussion 

3(B).3.1 Seasonal trends and variations 

The DOC of the raw water samples varied across the period of investigation from a 

low of 6.6 mg.l
-1
 in September 2003 to a high of 13.3 mg.l

-1
 in August 2004. (Figure 

3(B).1). Over the temporal period of the investigation, the specific UV absorbance 

(SUVA) appeared insensitive to the change in organic levels with an average value of 

5.1 (± 1.1 m
-1
.l.mg

-1
DOC) with the value suggesting the water was predominately 

hydrophobic in character (Edzwald and Tobiason, 1999). Fractionation of the raw 

water confirmed this, with between 59% and 75% of the organic matter being 

associated with the fulvic and humic acid fractions (Figure 3(B).1). Previous research 

at Albert has shown the fulvic acid fraction (FAF) concentration to be the most 

variable, whereas the humic acid fraction (HAF) and hydrophilic fractions remained 
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relatively stable (Sharp et al., 2005a), and this was the case for the majority of the 

sampling period during this investigation. For instance, the hydrophilic concentration 

(hydrophilic acid (HPIA) and hydrophilic non adsorbed (HPINA) combined) was 2.4 

± 0.4 mg.l
-1
 and the HAF fraction concentration was 2.0 ± 0.6 mg.l

-1
. In contrast, the 

FAF fraction demonstrated greater variability, in terms of absolute values, at 3.9 ± 1.3 

mg.l
-1
. However, the sample taken in August 2004 followed a heavy rain incident and 

the concentrations were 4.9 mg.l
-1
, 2.9 mg.l

-1
 and 5.4 mg.l

-1
, for HAF, FAF and the 

combined hydrophilic fractions respectively. The impact of this was to significantly 

increase the hydrophilic content of the water from 25-33% to 41%.  
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Figure 3(B).1: NOM fraction contribution expressed as mg.l
-1
DOC. Humic acid 

fraction (HAF), Fulvic acid fraction (FAF), Hydrophilic acid (HPIA) and Hydrophilic 

non adsorbed (HPINA). 

 

Variations in organic composition and character within this study are similar to those 

published elsewhere (Owen et al., 1993; Ratnaweera et al., 1999), which have 

concluded that the observed differences are often consistent with the view that as the 

DOC of a water increases the majority of the additional organic matter is likely to be 

hydrophobic in character (Malcolm, 1985). However, results obtained during this 

investigation highlight that during certain periods, particularly following initial 

periods of heavy rainfall, there is not only an increase in hydrophobic material but 

also an additional increase in the hydrophilic content of the water. Similar findings 
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have been reported by Scott et al., (1998), who also looked at the seasonal variations 

in NOM obtained from a UK upland peat catchment system. During a four year study, 

they observed variations in the hydrophilic content of the water ranging between 20 

and 80%, with the dissolved organic matter increasing in hydrophilicity during the 

summer months.  The observed variations throughout the year are often explained in 

relation to a microbially driven mechanism of DOC release (Scott et al., 2001). The 

microbes within the soil matrices are more active during warmer, relatively drier 

periods in the summer/early autumn, but the impact of this is not seen at the treatment 

works until the organic matter enters the aquatic environment during the first rainfall 

(Hurst et al., 2004). In terms of NOM composition during this period, Scott et al., 

(1998) concluded that the initial increases in hydrophilic content were attributed to its 

relative ease of dissolution, whereas the hydrophobic material is leached more slowly 

resulting in a more gradual increase and increased variation. 

 

In relation to the electrical character of the individual fractions, charge density 

measurements of the raw water fractions in the current study revealed the majority of 

the total colloidal charge to exist in the hydrophobic material. For instance, the charge 

densities of the individual fractions were 5.1 ± 1.3, 3.6 ± 0.7 and 1.0 ± 0.6 meq.g
-1 

DOC for the HAF, FAF and HPIA fractions respectively (Figure 3(B).2). In 

comparison, Kam and Gregory (2001) reported a value of 5-5.6 meq.g
-1
DOC for 

commercial humic acid, and similar values have been reported elsewhere, with humic 

and fulvic waters typically exhibiting charge densities between 5-15 meq.g
-1
DOC 

(Collins et al., 1986; Edzwald, 1993; Tipping, 1993;). The charge density of the 

Hydrophilics was very low, such that the levels for the non adsorbed fraction (HPINA) 

was below the level of detection. Edzwald (1993) also reported similar findings for 

both hydrophilic bases and neutrals and found that the charge density of the 

hydrophilic acid fraction was at least an order of magnitude less than the hydrophobic 

fractions, as seen in the present investigation. 

 

Conversion of the charge densities to charge concentration revealed that the majority 

of the charge load comes from the hydrophobic fractions. For instance, the charge 

load from the hydrophobic fractions for April 2002, January 2004 and August 2004 

was calculated to be 0.0266 meq.l
-1
, 0.0263 meq l

-1
, and 0.0280 meq.l

-1
 respectively. 

Collins et al., (1986) obtained similar values for a number of raw waters and fulvic 
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acid components using potentiometric titration to determine the carboxylic acidity of 

the hydrophobic organic matter. With regards to the hydrophilic charge load, 

determined for the current investigation, the value was significantly less with 0.054 x 

10
-3
 meq.l

-1
, 0.0043 meq.l

-1 
and 0.0035 meq.l

-1 
for the same samples (April 2002, 

January 2004 and August 2004). Consequently, the differences in carboxylic acidity 

or charge density between the fractions are likely to influence the coagulant demand 

during the water treatment process, as a higher charge is associated with the larger 

MW fractions (Collins et al., 1986). However, the charge load from the hydrophilic 

fractions did vary significantly and therefore cannot always be discounted, as shown 

by the August 2004 sample in which it contributed 11% to the total fraction charge 

load.  
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Figure 3(B).2: The impact of NOM fraction on charge density (mean of all samples). 

 

High performance size exclusion chromatography (HPSEC) analysis provides a useful 

indication of the molecular size of the organic material, with the larger molecules 

eluted from the column first. In this case, HPSEC traces of the HPIA fraction clearly 

demonstrate its variability, with respect to both molecular size and UV254 absorbance 

(Figure 3(B).3). January and August 2004 samples show the existence of a primary 

peak, eluted at approximately 7 minutes and corresponding to a molecular size of 

approximately 5 kilo Daltons (Goslan, 2003), which was not present in the April 2002 

sample. The area under the graph also increased by 278% in August 2004 compared 
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to the April 2002 sample when the corresponding HPIA charge load increased by 

approximately 2 orders of magnitude. Consequently, the fact that the charge load 

originating from each fraction has also been shown to vary demonstrates that 

coagulant demand cannot be calculated for a particular water based solely on bulk 

parameters, such as DOC concentration, or NOM fraction make-up.  
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Figure 3(B).3: HPSEC traces of the HPIA fraction isolated from April 2002, January 

2004 and August 2004 raw water samples. 

 

Over the pH range of natural waters, pH 5-9, the zeta potential of the raw water was -

15 ±4 mV throughout the sampling period, with a corresponding IEP of 1.7-2.2 

(Figure 3(B).4). These results indicate that the specific colloidal charge of the raw 

water can be characterised by an acidic dissociation site model (Hunter, 1981). This is 

expected, as the main functional groups identified within the structures of NOM are 

predominately carboxylic and phenolic groups with pKas in the range of 3-6 and 8-10 

respectively (Gu et al., 1995; Edwards et al., 1996). The stable response of the raw 

water to a pH shift between 4 and 8 indicates that in this case the carboxylic groups 

are likely to dominate the charge response of the water.  

 

Similar experiments undertaken with the individual NOM fractions, isolated from 

April 2002 raw water samples and varying the pH between 1 and 9, revealed a clear 

difference between hydrophobic and hydrophilic fractions (Figure 3(B).4). The two 

hydrophobic fractions have similar profiles to the raw water, such that the zeta 

potential values at a pH greater than 4 were -13 ± 3.7 mV, - 17 ± 0.3 mV, and -25 ± 

2.2 mV for the FAF, raw water and HAF respectively. In contrast, the zeta potential of 
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the hydrophilic fractions decreased consistently across all the pH values tested. For 

instance, the zeta potential of the HPIA and HPINA fractions decreased from 2.1± 0.2 

mV at pH 2 for both fractions to -4 ±3.2 mV and -7 ±2 mV at pH 9 for the HPIA and 

HPINA fractions respectively (Figure 3(B).4). The corresponding IEP of all the 

fractions was 1.5, 1.6, 1.7, 4 and 4.7 for HAF, FAF, raw water, HPIA and HPINA 

respectively. Previous work on the charge of NOM fractions has shown that the pKa 

of the FAF fraction to be around 2 ± 0.3 and can be attributed to the carboxyl groups 

(Leenheer et al., 1995a; 1995b), whereas the hydrophilic fractions are composed of 

weaker acidic groups with correspondingly much higher values for their IEP. 

Comparing the different fractions to the raw waters shows, as expected, that the 

hydrophobic materials dominate the specific colloidal charge character of the water. 
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Figure 3(B).4: Zeta potential of April 2002 NOM fractions with varying pH. 

 

3(B).3.2 NOM-Coagulant interactions 

The interactions between the NOM samples and coagulant (M
+
) were monitored 

through changes in the IEP of the sample at various DOC to coagulant mass ratios. 

The initial IEP of the coagulants were 8 and 8.5 for iron and aluminium respectively, 

and were in general agreement with previously reported values (Van Benschoten and 

Edzwald, 1990). The IEP of the system subsequently decreased in all cases as the 

DOC:M
+
 (mg.mg

-1
) ratio increased. To illustrate, in relation to the September 2003 

raw water samples, the IEP of the systems decreased from 8 to 4.4 as the DOC:Fe 
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ratio increased from 0 to 2 (Figure 3(B).5). The influence, in terms of mass ratio, was 

slightly less for aluminium, shifting the IEP from 8.5 to 6 for the same DOC:Al ratio 

increase.  
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Figure 3(B).5: pH of zero charge and DOC:coagulant ratios for September 2002 raw 

water. 

 

Calculation of the neutralizing charge of the coagulants, based on speciation data 

(Jiang and Graham, 1998), reveals the coagulant charge density of the added iron to 

be 35.5, 30.7 and 12.6 meq.g
-1
Fe at pH values of 4, 5 and 6 respectively, compared to 

104.5, 45.8 and 12.5 meq.g
-1
Al at the same pH’s. Hence the charge neutralizing 

capacity for both coagulants was greater at pH 4 compared to pH 6, by a factor of 8 

and 3 for alum and iron respectively although at pH 6, the neutralizing capacity for 

both aluminium and iron was almost identical.  

 

The interactions between the individual NOM fractions and coagulant (M
+
) were also 

monitored through changes in the IEP of the sample, at various DOC to coagulant 

mass ratios (Figure 3(B).6). Results for both coagulants revealed the FAF fraction 

produced the largest shift in IEP, although the influence was greater when coagulating 

with iron compared to aluminium. For instance, with iron the IEP changed from pH 8 

with no NOM present (i.e. ferric hydroxide) to pH 3 for a 2:1 FAF:Fe ratio and for 

aluminium the IEP shifted from pH 8.5 to pH 5.3 for the same change in ratio. Similar 

results were observed for the HAF fraction as the IEP changed to pH 3.8 and 5.8 for 
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iron and aluminium respectively, at a 2:1 DOC:M
+
 ratio. The effect of the HPIA 

fraction on the IEP was less pronounced, as demonstrated with iron, with a reduction 

in IEP from pH 8.0 to pH 4.8 for the 2:1 DOC:Fe ratio. The HPINA did shift the IEP 

in both cases, although increasing the DOC concentration further did not have an 

additive effect. This implies that only a certain concentration of the HPINA combined 

with the coagulant, which once exceeded did not affect the IEP of the system. Hence 

this reduced NOM-coagulant interaction may be due to the fact that at the coagulation 

pH of normal operation (5-7), the hydrophilic fractions (HPIA and HPINA) possess a 

negligible or slightly positive charge. Consequently, leading to the associated poor 

removal, with reported values as low as 16% (Fearing et al., 2004).  
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Figure 3(B).6: pH of zero charge for the different NOM fractions coagulated with 

varying doses of (a) iron or b) aluminium. 

 

Despite the observed differences in IEP between iron and aluminium, based on a mass 

ratio basis, subsequent examination of the influence of charge ratio (meq.meq
-1
), 

revealed a more consistent comparison (Figure 3(B).7). For instance, combining the 

results for both aluminium and iron with FAF produced a regression line (R
2
 = 0.98), 

such that an increase in charge ratio of approximately 0.04 meq.meq
-1
 would result in 

a reduction in the IEP of one pH unit. The influence of the HAF fraction was slightly 

less but of a similar magnitude to FAF, with an increase in charge ratio of 0.07 

meq.meq
-1
 required to reduce the IEP by one (R

2
 = 0.89). For the HPIA fraction, the 
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influence on the IEP was significantly reduced, with an increase in charge ratio of 

1.35 meq.meq
-1
 required to reduce the IEP by 1. Consequently, it is the hydrophobic 

fractions which appear to be critical in determining the resultant charge properties of 

the NOM-coagulant system and hence the subsequent coagulant dose requirements. 

This is in agreement with previous research, which suggests that competitive 

interaction between coagulants and NOM are favoured towards larger MW, more 

hydrophobic, more highly charged components (Gu et al., 1995; Huang and Shiu, 

1996) due to the combination of charge neutralization, complexation/precipitation and 

ligand exchange mechanisms which are thought to dominate NOM removal 

(McKnight et al., 1992). This would also explain the fact that differences observed in 

the residual DOC correlate well with the difference in the initial level of hydrophilic 

material (Sharp et al., 2005b).  
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Figure 3(B).7: Effect of charge ratio on IEP for iron and aluminium. 

 

Differences in NOM-coagulant interactions, for both aluminium and iron, appear to be 

minimal in terms of the IEP when based on a charge ratio. Previous research, 

investigating the coagulation of a mountain source water, has clearly demonstrated the 

possibility of optimising the process based on zeta potential measurements, revealing 

a similar profile for both aluminium and iron based coagulants (Sharp et al., 2005b), 

with optimum DOC residuals achieved when the zeta potential was minimised (Figure 

3(B).8). However, the main observed difference was that approximately 0.5 mg.l
-1
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more DOC removal was possible with iron, which is in broad agreement with other 

authors (Edzwald and Tobiason, 1999; Bell-Ajy et al., 2000; Budd et al., 2004).  
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Figure 3(B).8: Zeta vs. removal for iron and aluminium salts (Sharp et al. 2005b). 

 

The exact understanding of the way both aluminium and iron coagulants operate in 

relation to NOM removal is far from complete. However, if the differences do not 

originate from electrical interactions such as charge, then they may be controlled by 

the affinity of each coagulant to a particular surface, or to a particular functional 

group. In this respect, ferric ions, for example, have a higher affinity for carboxylic 

groups (Leja, 1982), which may result in increased DOC removal when coagulating 

with iron.  

The results from this study demonstrate that the impact of variations in NOM 

composition on the downstream coagulation process, caused by changes in the 

catchment, can be both understood and controlled. Hence, with current trends 

forecasting an increase in DOC concentrations for peat catchment systems in 

particular (Scott et al., 1998), an increased understanding of both the system and the 

mechanisms involved is vital, especially as the potential consequences are likely to 

impact dramatically on the water industry with regards to water quality parameters 

such as DBP formation. However, characterization methods highlighted here, such as 

fractionation and charge density, coupled with surface charge measurements during 

the coagulation process, could provide that vital link. In fact, comparisons across 

0.5 mg DOC 
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different source waters, seasons and chemical solutions reveal the potential of this 

proactive strategy in achieving a more robust operation during these problem periods 

(Parsons et al., 2005). 

 

3(B).4 Conclusions 

Results from this investigation show that it is not simply the increased organic 

concentration, but also the change in composition and character which creates a 

greater coagulant demand. The hydrophobic NOM fractions have a significantly 

higher charge density than the hydrophilic NOM fractions, whereas the negligible 

charge density of the HPINA fraction may explain the reduced interaction with iron 

and the poor removal of this fraction with conventional coagulation methods. 

Comparison of iron and aluminium based NOM systems demonstrate that the 

observed differences in terms of DOC removal may not be associated with the 

electrical character of the system, but with the affinity of each coagulant for a 

particular surface or system. Consequently, monitoring of parameters, such as NOM 

fraction make-up and associated surface charge, could provide valuable insight into 

how to manage the impact caused by environmental changes to catchments.
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Abstract  

The current work investigates how the natural organic matter (NOM) fraction make-

up of the raw water influences coagulation performance. Four characteristic organic 

fractions were separated based on their hydrophobicity.  Results revealed that the 

hydrophilic non adsorbed fraction (HPINA) was least amenable to removal by 

conventional coagulation, attributed to a negligible charge density. Whereas the fulvic 

acid fraction (FAF) most readily resembled the bulk raw water operational 

characteristics in relation to coagulation, such as floc size, strength, settling velocity, 

iso-electric point (IEP), generating small compact flocs and exerting the most 

influence on the charge balance of the system. The most notable exception is in 

relation to removal. A lower FAF removal was observed compared to the raw water, 

attributed in part to co-operation effects, as although studying isolated NOM fractions 

does provide some benefits, some of the synergistic effects may be lost. However, 

results demonstrate that simple fractionation, in terms of the hydrophobic/hydrophilic 

balance of the water, could provide a fast and effective method for improved 

understanding of coagulation performance. 
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Charge density, Coagulation, Flocs, Fractionation, Natural organic matter. 
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3(C).1 Introduction 

Natural organic matter (NOM), is ubiquitous in natural waters and represents one of 

the major pollutants in low alkalinity, low turbidity source waters typically associated 

with moorland and mountain catchments. NOM is a highly heterogeneous, poorly 

defined mix of organic substances that vary both spatially and temporally in terms of 

acidity, molecular weight (MW), molecular structure and charge density (Edzwald, 

1993; Scott et al., 2001; Goslan et al., 2002; Sharp et al., 2005). Functionally, the 

organic material is predominantly phenolic and carboxylic in nature, but also contains 

alcohol, purine, amine and ketone groups and is often described as a weak anionic 

polymer (Dennett et al., 1995). Traditional approaches in the literature to characterize 

NOM into its components have used a wide range of analytical techniques. For 

instance, resin and mineral adsorption separate the organics on the basis of polarity 

(Malcolm and MaCarthy, 1992; Meier et al., 1999), whereas membrane separation 

gives an idea of the molecular size of the material (Wershaw and Aiken, 1985). 

Goslan et al. (2002) employed XAD resin techniques to investigate the reactivity of 

the individual NOM with chlorine. This is important as although NOM itself is 

relatively harmless, if not removed sufficiently it can lead to the formation of 

potentially carcinogenic disinfection by products (DBP), such as trihalomethanes 

(THM), formed during the disinfection process (Singer et al., 1999). The humic 

fraction in particular, is generally regarded as the main THM precursor (Croué et al., 

1993; Krasner et al., 1996; Goslan et al., 2002)   

 

In the past decade, a number of UK and US water utilities have been experiencing 

operational difficulties coinciding with elevated organic levels often associated with 

increased surface run-off events such as snowmelt or heavy rainfall (Parsons et al., 

2005). The increased surface run-off promotes the transport of any accumulated 

organics into the aquatic environment, rapidly influencing the NOM fraction make-up 

of the source water. This flush is likely to contain a high proportion of higher MW, 

hydrophobic material, with an increased colloidal charge density, therefore resulting 

in a significant increase in the charge density of the raw water and associated 

coagulant demand (Edzwald, 1993; Carlson et al., 1994; Green, 1997). However, 

previous studies have also highlighted the increased hydrophilic content, of moorland 

waters in particular, associated with heavy rainfall events and the subsequent first 
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flush (Scott et al., 2001). This is significant, as removal of hydrophilic, low molecular 

weight organics, through conventional coagulation methods, is known to be poor 

(Randtke, 1988; Edwards, 1997; Chow et al., 2000; Fearing et al., 2004). The 

presence of NOM has also been reported to produce fragile flocs (Bache et al., 1997; 

Jarvis et al., 2005). Operational experience has suggested that pronounced floc 

breakage during solid liquid separation phases can also impact on downstream 

processes such as filtration, resulting in carryover onto the filters, greater particle 

loads, turbidity breakthrough and reduced filter run times. 

 

As the coagulation of NOM is related to charge, previous research has reported a link 

between optimal performance and zeta potential, a measurement employed to measure 

the charge character of colloids and particles, with optimum doses having occurred at 

a range of zeta potentials between -8 and +8 mV depending on the water source and 

the pH of coagulation (Ratnaweera et al., 1999; Gregory and Carlson, 2003; Sharp et 

al., 2005).  However, although the coagulation of NOM has been researched 

extensively, little research has focused on the role of the individual NOM fractions 

and their operational impact on the coagulation process, in terms of both floc 

properties and removal. Consequently, the aim of this research was to identify the 

main characteristics of the different NOM fractions. Furthermore, linking the findings 

back to the raw water characteristics will therefore ultimately determine the value of 

such characterisation and analytical techniques. In addition, by understanding the 

impact of varying NOM composition and character on the coagulation process, this 

should promote the development of source management and treatment strategies to 

ensure a more robust level of treatment during periods of elevated organics.   

 

3(C).2 Materials and Methods 

3(C).2.1 Sampling 

The raw water investigated in the current study was sampled from Albert Water 

Treatment Works (WTW), a moorland water works in the north of England, situated 

in Halifax. Sampling took place during a 36 month period from April 2002 until 

October 2004, with the water source typically characterised as a low turbidity (3.7-7.0 

NTU), low alkalinity (20 mg.l
-1
 CaCO3), high colour (44-160 Hazens) and high DOC 

(6.6-13.3 mg.l
-1
) source.  
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3(C).2.2 Apparatus 

The turbidity of the samples was measured using a HACH2100 turbidity meter 

(Camlab, UK). A Shimadzu 5000A TOC analyzer was used for determining the DOC 

content. High performance size exclusion chromatography (HPSEC) analysis was 

undertaken using a high performance liquid chromatography (HPLC) device 

(Shimadzu VP series, Shimadzu, Milton Keynes, UK). All samples were passed 

through a Fisher Scientific MF200 1µm glass microfibre filter paper before both DOC 

and HPSEC analyses. The surface charge was measured with a zetasizer (Malvern 

Instruments, UK) at 25°C. The coagulation and flocculation experiments were 

undertaken using a Phipps and Bird PB-900 six paddle jar tester. Dynamic floc size 

was measured during growth and breakage of flocs using a laser diffraction 

instrument (Malvern mastersizer 2000, Malvern Instruments, UK). Floc images were 

captured using a CV M90 colour close-coupled device (CCD) camera (JAI UK Ltd, 

UK). Image analysis software (Image Pro Plus, Media Cybernetics, Maryland, USA) 

was used to determine the floc settling velocity. 

 

3(C).2.3 Characterisation 

Raw water samples were fractionated by XAD resin adsorption techniques into 

hydrophobic (HPOA) and hydrophilic (HPIA) components using a method adapted 

from Malcolm and MacCarthy (1992). Detailed descriptions of the methods used can 

be found in Goslan et al. (2002). 

 

Charge densities were determined through an adjusted form of the method used by 

Kam and Gregory (2001), which monitored the change in charge as a function of 

polyDADMAC dose. Detailed descriptions of the methods used can be found in Sharp 

et al. (2005). 

 

3(C).2.4 NOM-Coagulant interactions 

The NOM coagulant interactions were investigated by adding varying concentrations 

of coagulant to the NOM fraction or raw water sample in order to achieve the required 

NOM:coagulant mass ratio. Portions of the solution were then removed and adjusted 
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to varying pHs between 2 and 9 and the resulting zeta potential recorded in order to 

determine the IEP for each system as detailed in Sharp et al. (2005).   

 

Raw water and NOM samples were stored at 5°C prior to coagulation jar testing, 

which was subsequently undertaken at room temperature (20°C) and involved a 1.5 

minute rapid mix at 200 RPM, a 15 minute 30RPM flocculation stage and 20 minute 

settlement period. The rapid mix period was shorter than the 3.5 minutes stated in 

previous papers (2 and 3). However, a reduction in the rapid mix period to 1.5 

minutes was not found to impact on either the coagulation zeta potential or subsequent 

removal values. 

 

3(C).2.5 Floc diagnostics 

Floc size, breakage and floc settling experiments were performed using the same 

experimental set-up as Jarvis et al. (2003). Coagulation tests were undertaken using a 

jar tester as before, however, following the slow stir phase, the effect of increased 

shear was investigated by increasing the rpm on the jar tester for a further 15 minutes. 

Separate experiments were undertaken in triplicate for an rpm of 30, 40, 50, 75, 100 

and 200.  

 

The settling column apparatus consisted of a central settling column enclosed by a 

water bath to avoid thermal currents disrupting floc settlement. Floc aggregates were 

introduced into the settling column via a tapered entry port and images were captured 

to determine the floc settling velocity. 

 

3(C).3 Results and Discussion 

3(C).3.1 Characterisation 

The DOC concentration of the raw water varied across the period of investigation, 

with a low of 6.6 mg.l
-1
 in September 2003 to a high of 13.3 mg.l

-1
 in August 2004 

following a period of intense rainfall (Figure 3(C).1). This is in agreement with 

previous work, revealing a link between periods of high precipitation and increased 

DOC levels (Riise, 1999). Characterisation data revealed that the raw water was 

predominantly hydrophobic in nature (53-76%). These values are in agreement with 

previously published work undertaken by Owen et al. (1993), which states that the 
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hydrophobic acids constitute the largest proportion of NOM at approximately 50% of 

the DOC concentration. Whereas Malcolm (1985), reported a slightly higher range of 

60-80%. 

 

Fractionation data at Albert, however, demonstrated that the contribution from the 

four NOM fractions was not observed to change proportionally with the variation in 

DOC over the whole sampling period. For instance, the fulvic acid fraction (FAF), in 

general, constituted the greatest proportion of DOC and also exhibited the most 

variation (39 ± 12%), closely followed by the humic acid fraction (HAF) (27 ± 8%). 

Whereas the hydrophilic fractions contributed to a lesser degree and also exhibited 

much less variation at 15 ± 6% and 18 ± 6% for the hydrophilic acid (HPIA) and 

hydrophilic non adsorbed (HPINA) fractions respectively. Comparison with results 

obtained from mountain surface water, during the snowmelt run-off period when the 

DOC increased from 4.4 to 7.4 mg.l
-1
, revealed a similar variation. The hydrophobic 

fractions contributed 58 ± 8% and 11 ± 16% (3.3  ± 0.7 mg.l
-1
 and 0.8 ± 1.2 mg.l

-1
) for 

FAF and HAF respectively, whereas the hydrophilic fraction concentrations remained 

relatively constant at 0.6 ± 0.08 mg.l
-1 
and 1.1 ± 0.16 mg.l

-1 
for HPIA and HPINA 

respectively (Parsons et al., 2005). Comparison with previously published data 

employing a similar fractionation method to analyse river, lake and swamp water 

sources, also demonstrated the majority of the DOC was present as FAF (54-68%), 

with the HAF contributing to a lesser extent (14-29%) (Ma et al., 2001). 
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Figure 3(C).1: NOM fraction make-up at Albert during the sampling period. 

 

Given that the coagulation of NOM is predominately charge derived for both soluble 

and colloidal material, then the electrical character of the NOM is likely to be a key 

parameter in describing the process (Edzwald, 1993; Sharp et al., 2005). Comparative 

studies, varying the pH between 1 and 9 for the individual fractions extracted from 

April 2002 raw water, revealed a clear difference between the colloidal components of 

the hydrophobic and hydrophilic fractions (Figure 3(C).2). Comparison with the 

profile of the raw water suggests that the zeta potential of the water is controlled by 

the hydrophobic fractions, FAF in particular, under all but very acidic conditions. For 

instance, the two hydrophobic fractions have similar profiles to the raw water such 

that the zeta potential values post pH 4 were -13 ±3.7 mV, - 17 ±0.3 mV, and -25 ±2.2 

mV for the FAF, raw water and HAF respectively. In contrast, the zeta potential of the 

hydrophilic fraction decreased consistently across all the pH values tested. For 

instance, the zeta potential of the HPIA and HPINA fractions decreased from 2.1 ±0.2 

mV at pH 2 for both fractions to -4 ±3.2 mV and -7 ±2 mV at pH 9 for the HPIA and 

HPINA fractions respectively (Figure 3(C).2). The corresponding IEP of all the 

fractions was 1.5, 1.6, 1.7, 4 and 4.7 for HAF, FAF, raw water, HPIA and HPINA 

respectively. Previous work on the charge of NOM fractions has shown the pKa of the 

FAF fraction to be around 2 ± 0.3 and can be attributed to the carboxyl groups 
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(Leenheer et al., 1995a; 1995b). Whereas the hydrophilic fractions are composed of 

weaker acidic groups with correspondingly much higher values for their IEP.   
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Figure 3(C).2: Zeta potential of NOM fractions and raw water with varying pH. 

 

Charge density measurements of the raw water fractions in the current study revealed 

the majority of the total colloidal charge to exist in the hydrophobic fractions. For 

instance, the charge densities of the individual fractions were 3.6 ± 0.6, 5.1 ± 1.3 and 

1.0 ±0.6 meq.g
-1 
DOC for the HAF, FAF and HPIA fractions respectively, whereas 

the charge density of the HPINA fraction was below the level of detection. An 

identical method was used to determine charge densities of NOM fractions derived 

from both mountainous and moorland water sources, with comparable values 

observed (Sharp et al., 2005b). Similar values have also been reported elsewhere with 

humic and fulvic waters typically exhibiting charge densities between 5-15        

meq.g
-1
DOC, whereas the hydrophilic acids are often an order of magnitude lower 

(Kam and Gregory, 2001; Edzwald, 1993; Tipping, 1993; Collins et al., 1986). 

 

Conversion of the charge densities to charge load, and ultimately coagulant demand, 

reveals that the hydrophilic fractions contribute a maximum of 11 % of the total 

charge load, therefore the majority of the coagulant demand is likely to be generated 

form the hydrophobic fractions. This is in agreement with the raw water data.  For 

instance, the raw water charge density in January 2004 was 2.7 meq.g
-1
 DOC, 

increasing to 3.7 meq.g
-1
DOC in August as the DOC increased from 8.3 to 13.3  mg.l

-1
. 

This corresponds to an increase in hydrophobic fraction content from 5.9 to 7.8 mg.l
-1
. 
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Similar results have been observed for other water sources. For example, the 

hydrophobic content of the Poudre river, Fort Collins, increased from 2.8 to 5.5 mg.l
-1
 

and the charge density increased from 2.0 to 3.9 meq.g
-1
DOC (Sharp et al.,2005). The 

implication of this is that the charge character of raw water, and hence the coagulant 

demand, is controlled by the changes in the hydrophobic fraction content and 

characteristics.  

 

3(C).3.2 NOM-Coagulant interactions 

The interactions between the NOM samples and coagulant (M
+
) were monitored 

through changes in the IEP of the precipitated sample at various DOC to coagulant 

mass ratios (Figure 3(C).3). The FAF fraction results in the largest shift in IEP from 

pH 8 with no NOM present (i.e. ferric hydroxide) to pH 3 for a 2:1 FAF:Fe ratio. This 

was followed by the HAF and HPIA fractions at pH 3.8 and 4.8 respectively at the 

same mass ratio. The HPINA did shift the IEP although increasing the DOC 

concentration further did not have an additive effect. Therefore implying only a 

certain concentration of the HPINA combined with the iron which once exceeded did 

not affect the IEP of the system. Importantly, the FAF fraction appears to be critical in 

determining the resultant charge properties of the NOM-coagulant system and hence 

the dose requirements and coagulation conditions for the raw water.  
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Figure 3(C).3: pH of zero charge for the for raw water and NOM fractions 

coagulated with varying doses of iron. 
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3(C).3.3 Removal 

Analysis of the performance, when coagulating the raw water, revealed a clear 

relationship between zeta potential and residual organic concentration, in terms of 

DOC and UV254 absorbance (Figure 3(C).4).  Furthermore, inspection of HPSEC 

traces of post coagulation residual organics, revealed that the main residual was in the 

sub 3000 Dalton (Da) size range indicating that the coagulation process is far more 

effective at removing the larger MW compounds. Previous comparisons, across 

different source waters, and seasons, have lead to the identification of an operational 

zeta potential window (-10 and +3 mV), within which the residual DOC is optimised 

and stable (Sharp et al., 2005). Comparison of the coagulation of NOM fraction 

components, present at concentrations in existence in the raw water, revealed that 

removal of the hydrophobic fractions is most influenced by the magnitude of the zeta 

potential. The UV and DOC residual increased gradually, in a similar fashion to the 

raw water profile, as the magnitude of the negative zeta potential increased. However, 

with regards to magnitude of the positive zeta potential, the range was extended for 

the HAF fraction with a removal of 70% possible at a zeta potential of 12.5 mV, 

whereas only 35% was possible for the FAF fraction. This compares well with the 

work of Zouboulis et al. (2003), who were also able to achieve a significant humic 

acid removal of 92% at a zeta value of 12.6 mV, therefore suggesting a lower energy 

barrier is present with regards to coagulation of this fraction. 

 

Removal data for the individual NOM fractions confirmed the effectiveness of 

conventional coagulation for the hydrophobic fractions, with 84% and 64% removal 

for HAF and FAF respectively. Whereas the maximum achievable removals for the 

hydrophilic fractions were 14% and 17%, for the HPIA and HPINA fractions 

respectively. Initial NOM fraction concentrations mirrored that of the raw water in the 

January 2004 samples, which contained 14%, 57%, 12% and 14% of HAF, FAF, 

HPIA and HPINA respectively. The principle observation is therefore reduction in 

FAF removal, when compared to the raw water sample. Previously reported work at 

Albert WTW, involving the fractionation of treated water, revealed high removals of 

DOC for HAF and FAF, of 98% and 89% respectively (Fearing, 2004). These results 

are also comparable to those published by Croué et al. (1993), where 87% removal 

was achieved for the HAF fraction. Reported removals for the low MW DOC is 

significantly lower, with values between 8 and 30% (Fearing, 2004; Krasner et al. 
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1994). However, when Fearing (2004) coagulated fractions isolated from Albert 

WTW, a reduced removal was reported, of 66% and 70% for HAF and FAF 

respectively, therefore indicating the likelihood of co-operative mechanisms when 

coagulating the raw water. 

 

With regard to the hydrophilic fractions, although up to 97% UV removal was 

possible, no significant change in DOC removal was observed across the whole zeta 

potential range.  Although limited removal of 14 to 17% was achieved as the total 

DOC removal was greater than the hydrophobic content of the water (White et 

al.,1997). Previous investigations into the differences in the achievable residual DOC 

have demonstrated a clear relationship between the raw water HPINA concentration 

and the total residual DOC, indicating the majority of the residual is contained within 

the HPINA fraction (Sharp et al., 2005). Consequently, the impact is such that the 

concentration and character of the FAF fraction is likely to control the coagulation 

conditions and the operational zeta potential envelope, whereas the hydrophilic 

fractions are likely to influence the achievable residual following treatment. 
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Figure 3(C).4: Impact of zeta potential for NOM fractions and raw water (Jan-04) in 

terms of (a) DOC residual and (b) UV absorbance. 

 

3(C).3.4 Floc properties 

Floc growth follows a classical pattern composed of a short induction period followed 

by a rapid growth phase until the steady state floc size is reached within 5-10 minutes 

(Figure 3(C).5). Comparison of the steady state floc size revealed that the raw water 

FAF fraction produced flocs of a significantly smaller size compared to the other 

fractions. This is illustrated by the median volumetric diameter (d50) of each fraction 

at 723 ±33 µm, 532 ±5 µm, 759 ±25 µm, 668 ±31 µm, 448 ±12 µm for HAF, FAF, 

HPIA, HPINA and the raw water respectively. Results also revealed that whilst the 

ultimate size changed depending on the NOM fraction, the growth rate remained 

within the range 103-131 µm.min
-1
.Once the flocs had reached a steady state size, 

they were then exposed to levels of increased shear. Analysis of the profile revealed a 

classical response such that the steady state floc size was reduced with increasing 
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shear. Consequently, the gradient of the slope can be used as an indication of floc 

strength. For instance, the gradient of the slope was -0.64, -0.75, -0.74 and -0.82 for 

the FAF, HAF, HPIA and HPINA fractions respectively (Figure 3(C).6). Whereas the 

raw water profile was most similar to the FAF fraction, with a slope of -0.52, 

therefore highlighting the dominance of this fraction with respect to raw water 

coagulation. 
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Figure 3(C).5: Floc breakage results for the HPINA fraction  
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Figure 3(C).6: Floc breakage rates for NOM fractions and raw water  

 

The settling rates also revealed significant differences between the fractions (Figure 

3(C).7). For example, the settling rate of a 1000 µm floc was 1497 µm.s
-1
, 710 µm.s

-1
, 

1152 µm.s
-1
 and 1385 µm.s

-1
 for the HAF, FAF, HPIA and HPINA fractions 

respectively. This compares to previously reported values of 867 µm.s
-1
 for the raw 

water at a similar dose ratio (Jarvis et al., 2005). The gradient of the straight line 

relationship, obtained when plotting the equivalent floc diameter (µm) against settling 

rate (µm.s
-1
) on a log-log scale, can be used as an indication of changes in floc 

structure between the fractions. This is most commonly defined through calculation of 

the fractal dimension (Df), which is related to floc diameter (d) and the terminal 

settling velocity (vt) by: 

 

vt ∞ d 
Df-1     

(1)
 

 

A log-log plot of settling velocity against floc diameter yields a straight line with a 

slope of Df – 1. Model two reduced axis regression was used to calculate the slopes of 

the line through the data, as both variables were random and not controlled. This 

revealed a reasonable linear correlation for all the data (Figure 3(C).7), with 

corresponding Df values of 1.78, 2.24, 1.90, 1.88 and 2.10 for HAF, FAF, HPIA, 

HPINA and the raw water respectively. This demonstrated that the FAF fraction 
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produced the most compact flocs and is in agreement with the fact that fulvic acids 

have the largest apparent surface area and the narrowest microporosity (Alvarez-

Puebla et al., 2005) with removal largely achieved through adsorption (McKnight et 

al., 1992). The most open flocs were generated from the HAF fraction, which is 

thought to adsorb both electrostatically and chemically through ligand exchange 

mechanisms and may give rise to the larger and more open structure (Au et al., 1999). 

Interestingly, the two ends of the spectrum are generated from the two hydrophobic 

fractions, indicating that the different mechanisms have a potentially significant 

impact on floc structure. 
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(c) HPIA                                                                (d) HPINA  

Figure 3(C).7: Settling rate profiles for the individual fractions generated from the 

April 2002 water and coagulated with iron at the optimum dose. 

 

Environmental Scanning Electron Microscope (ESEM) images of the flocs generated 

from the individual fractions also revealed a difference in structural composition 

between the hydrophobic and hydrophilic fractions (Figure 3(C).8). The hydrophobic 

fractions were characterised by solid internal structures with a relatively smooth edge 
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structure. This compared to the hydrophilic fractions which were characterised by 

more open internal structures with extensive edge morphology. 

  
(a) HAF (b) FAF 

  
(c) HPIA (d) HPINA 

Figure 3(C).8: Environmental Scanning Electron Microscope (ESEM) images from the 

individual fractions generated from the April 2002 water coagulated with iron at the 

optimum dose. 

 

3(C).4 Discussion 

Results from this investigation reveal that with regard to the majority of parameters, 

the FAF fraction most readily resembles the raw water (Table 3(C).1). The most 

notable exception is in relation to removal. Investigations that fractionate raw water 

before and after treatment, as a monitoring tool for consistent coagulation, 

demonstrate similar levels of removal between HAF and FAF fractions. When 

evaluating the removal of the different NOM fractions it is easy to make distinctions 

with regards to hydrophobicity, whereas the comparison between humic and fulvic 

acids is less clear as they are both hydrophobic and have MW distributions that 

overlap considerably. The differences shown in the present study indicate co-

operation effects may be important, and in agreement with previous studies, have 

shown the HAF fraction to be more amenable to removal by coagulation than the FAF 

fraction (Fearing, 2004). This has been attributed in part to the fact that humic acids 

  20 µm   20 µm 
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are more aromatic than fulvic acids, therefore rendering them more hydrophobic 

(Scott et al., 2001). In addition, fulvic acids have been shown to exhibit a greater 

dependence on pH compared to humic acid, in terms of adsorption onto metal oxide 

surfaces, which may explain the reduced operational range for FAF in terms of zeta 

potential (Davis and Gloor, 1981). 

 

Significant removal of both the HAF and FAF fractions dictates that the majority of 

the organic material contained in the floc structures is likely to be hydrophobic. Floc 

diagnostics have also revealed significant differences with regards to the two 

hydrophobic fractions. Hence, offering some explanation as to why the resultant floc 

properties during coagulation, and subsequent removal, of the raw water organics are 

comparatively similar to those of the FAF fraction. Coagulating FAF resulted in the 

production of small more compact flocs, whereas the flocs produced by HAF were 

larger. Such differences, with regards to floc properties and subsequent removal, can 

both be related to the removal pathway. HAF is thought to be removed through a 

combination of charge neutralization (for colloids), whereas the removal of FAF, 

further influenced by the positive zeta potential values, is thought to be mainly 

through an adsorption pathway (McKnight et al., 1992). Evidence for this has been 

shown by recording pH changes due to the exchange of OH
-
 groups as the adsorption 

process proceeds (Gu et al., 1995). The situation is further complicated as evidence 

suggests adsorption follows a two stage sequence of fast followed by slow adsorption 

during which competitive displacement occurs where high absorption affinity 

compounds replace low affinity ones (Avnea and Koopal, 1999). Replacement is 

thought to be aided as residual charge on the adsorbed molecules repel each other and 

reduce the affinity of large MW compounds thus enabling smaller MW material to 

adsorb shifting the balance of molecules bound to the floc. 

 

In general, although studying the isolated NOM fractions can provide operationally 

defined samples for examination of NOM behaviour, the synergistic effects are often 

lost (Hwang et al., 2001). Hence, as a direct result of the isolation process, many 

interactions are disrupted and changes in the chemical structure of the compounds 

themselves may result (Aiken, 1988), and the relative reactivity may be different from 

the raw water (Peuravuori and Pihlaja, 1997). The advantage of using bulk raw water 
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samples is that the NOM present is in an unaltered state, with the disadvantage being 

that the effect of specific NOM fractions cannot be identified or understood.  

 

The work presented in this paper suggests that in relation to understanding the 

treatment of NOM, a sensible level of separation is between the hydrophobic and the 

hydrophilic material. The hydrophobic material dominates the relationship between 

NOM and the metal coagulant, whereas the hydrophilic content relates to the residual 

remaining after treatment and the potential need for additional treatment. 

 

Table 3(C).1: Fraction ranking. 
 

Parameter Ranking Closest match to 

raw water 

Concentration FAF>HAF-HPIA>HPINA FAF 

Charge density HAF>FAF>HPIA>HPINA FAF 

Removal HAF>FAF>HPIA>HPINA HAF 

Floc size HPIA>HAF>HPINA>FAF FAF 

Growth rate No significant difference - 

Breakage coefficient FAF>HAF>HPIA>HPINA FAF 

Settling rate HAF>HPINA>HPIA>FAF FAF 

Fractal dimension FAF>HPINA>HPIA>HAF  

Zeta potential at pH 6 

(IEP) 

HAF>FAF>HPIA>HPINA FAF 

THMFP* FAF>HPIA>HAF>HPINA FAF 

* THMFP of Albert raw water with a raw water DOC concentration of 10.2 mg.l
-1
 

(Goslan et al., 2002). 

 

3(C).5 Conclusions 

Using a range of techniques to investigate the role of the different fractions through 

varying stages of the coagulation process it has been possible to establish how the 

organic make up of raw water influences the physical properties of the flocculated 

suspension. The FAF fraction, although readily removed during conventional 

coagulation, also most readily resembles the raw water for the majority of operational 

parameters, generating smaller more compact flocs than the other fractions and 

dominating the charge response of the system. The lower MW material, such as the 

HPINA fraction is likely to influence the achievable residual post treatment, due to its 

poor removal during conventional coagulation. The combination of these two factors 

appears to be crucial in understanding how changes in the make up of the raw water 
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influence treatability and should be included in any mechanistic approach to potable 

water treatment.  
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Abstract 

Rapidly changing organic levels, following periods of rain during the autumn and 

winter months, are causing problems for UK water companies when trying to 

effectively optimise the coagulation process. A link between zeta potential and 

optimum coagulation performance has previously been identified. This work 

investigates this issue further by comparing two moorland UK water sources in the 

UK, Albert water treatment works (WTW) Halifax, Yorkshire and Bamford WTW, 

Derbyshire. Results indicate that optimising the coagulation process through zeta 

potential measurements is possible, despite the changing organic concentrations, 

providing the surface charge of the natural organic matter (NOM)-coagulant 

complexes is minimised. It has also been concluded that once the optimum zeta 

potential has been established and maintained, increasing the coagulant dose further 

does not result in an increased removal of organic material.  

 

Keywords 

Coagulation, Natural organic matter, Zeta potential, Water treatment.  
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4(A).1 Introduction 

Natural waters throughout the world contain natural organic matter (NOM) as a result 

of the interactions between the hydrological cycle and both the biosphere and 

geosphere. The diversity of subsequent interactions is dependent on the surrounding 

environmental and biogeochemical cycles which result in a highly heterogeneous 

mixture of organic compounds that vary with regards to acidity, molecular weight and 

charge density (Collins et al., 1986; Edzwald, 1993; Vuorio et al., 1998; Goslan et al., 

2002). Furthermore, the resulting heterogeneous organic mixture is also known to 

vary in terms of concentration and make-up due to the temporal and spatial variations 

that exist between sources (Owen et al., 1993; Carlson et al., 1994; Scott et al., 2001). 

 

NOM is traditionally removed by coagulation with trivalent metal ions. The 

coagulation mechanisms, that are thought to prevail with regards to NOM removal, 

are charge neutralisation for colloidal material and charge complexation/precipitation 

for soluble compounds with additional removal occurring due to adsorption onto 

precipitated flocs and metal hydroxides (Randtke, 1988). Accordingly, optimisation of 

the coagulation is more favourable under acidic conditions which occur between the 

iso-electric point (IEP), the pH at which the particle is not charged, of the coagulant 

and the NOM; pH 4.5-5.5 for iron based coagulants and pH 5-6 for aluminium based 

coagulants (Amirtharajah and O’Melia, 1990). However, previous work has shown 

that the IEP, and hence coagulation conditions, are also influenced by both the nature 

and the concentration of the organics present (Sharp et al., 2004). 

 

Changes in land management, such as the disturbance of peat or vegetation damage in 

moorland catchment areas, can lead to increased decomposition and the production of 

loosely bound organic material (Niskavaara et al., 1997; Worrall and Burt, 2005). The 

accumulated organics are then flushed into the aquatic environment during the first 

rainfall following a dry period (Goslan et al., 2002; Hurst et al., 2004). The flush 

contains a high proportion of hydrophobic material, giving an increased colloidal 

charge density, therefore resulting in a significant increase in the charge density of the 

raw water. The impact of this is to alter the charge response of the system at set 

coagulant dose rates such that the IEP may vary significantly. Green (1997) used a 

fluorescence polarisation colloid titration method and found that the colloid charge 



Chapter 4(A): Bench Scale Coagulation  Paper 5 

Page 125 

capacity (CCC) increased from 2.0 to 2.5 meq.g
-1
DOC during the 1993 spring 

snowmelt run-off at Fort Collins, Colorado. This was attributed to an increase in the 

hydrophobic content of the water, the charge density of which is at least an order of 

magnitude greater than the hydrophilic NOM fractions (Edzwald, 1993; Sharp et al., 

2004). 

 

The application of charge measurement for diagnosis and control is one option for 

achieving a more robust coagulation performance.  Zeta potential indicates the 

effective surface charge of the colloidal system and is commonly related to the 

stability of the colloidal materials under any given set of water characteristics 

(Gregory and Carlson, 2003). However, although it is still unclear which NOM 

components contribute to the actual zeta potential value, measurements still provide a 

reproducible relationship which can be used to understand and optimize the 

coagulation process (Table 4(A).1). For instance, Ratnaweera et al. (1999), found that 

zeta potentials at optimum coagulation doses of different sources of aquatic NOM 

varied from +8 to -10 mV depending on the water source and pH of coagulation. 

Hence indicating that complete neutralization of the charge is not required, only that 

the barrier generated by electrostatic repulsion is minimized or removed. This paper is 

concerned with investigating this concept further, using two UK moorland waters 

over a period of rapidly increasing organic levels, in order to assess the importance of 

zeta potential in maintaining a more robust operation despite varying: 

• NOM fractional make-up and characteristics 

• Coagulant dose, or DOC:coagulant ratio 

• Water source 
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Table 4(A).1: Optimum zeta potential values identified by other authors. 
 

Constituent Coagulant Zeta potential Reference 

Algae Alum or PAC ~0 mV Edzwald and 

Wingler, 1990 

 

Cryptosporidium 

Oocysts 

Alum ~0mV Dai and Hozalski, 

2002 

 

NOM Alum  -4 <ζ< +3 (pH 7.4) 

+1 <ζ< +3 (pH 6-6.7) 

Gregory and 

Carlson, 2003 

 

River water spiked 

with humic acid 

 

Ferric chloride -5mV  Edwards, 2002 

Titanium dioxide 

colloid 

Aluminium 

Nitrate  

 

-14< ζ <+14  James et al., 1977 

 

4(A).2 Materials and Methods 

4(A).2.1 Sampling 

The raw waters investigated in the current study were sampled from two moorland 

water works in the north of England, Albert Water Treatment Works (WTW), situated 

in Halifax, UK and Bamford WTW situated in Derbyshire, UK. Sampling took place 

during the period of September to December 2003. Both water sources are typically 

characterised as low turbidity (1.4-10.9 NTU), low alkalinity (20 mg.l
-1
 CaCO3), low 

conductivity (60µs.cm
-1
) and high DOC (4.5-10.2 mg.l

-1
) waters (Table 4(A).2). 

 

Table 4(A).2: Source water characteristics. 
 

Parameter Units Albert WTW Bamford WTW 

DOC mg.l
-1 

6.6 - 9.7 4.5 - 10.2 

Hydrophobic content % 63-67 58-76 

UV-Abs m
-1 

45.0 - 63.6 36.7 - 45.9 

SUVA l.mg.m
-1
 4.6-7.4 3.6-8.7 

pH - 5.5 - 6.5 5.5 - 6.5 

Turbidity NTU 5.9 - 10.9 1.4 - 4.2 

 

4(A).2.2 Apparatus 

The turbidity of the samples was measured using a HACH2100 turbidity meter 

(Camlab, UK). A Shimadzu 5000A TOC analyzer was used for determining the DOC 

content. High performance size exclusion chromatography (HPSEC) analysis was 
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undertaken using a high performance liquid chromatography (HPLC) device 

(Shimadzu VP series, Shimadzu, Milton Keynes, UK). The method used was a TSK 

gel, GW3000SW column, 7.5mm internal diameter, 30cm in length. The guard 

column was also TSK, 7.5mm internal diameter and 7.5cm in length (Tsoh Biosep 

GmbH, Stuttgart, Germany). All samples were passed through a Fisher Scientific 

MF200 1µm glass microfibre filter paper before both DOC and HPSEC analyses. The 

zeta potential was measured with a zetasizer (Malvern Instruments, UK) at 20°C. The 

coagulation and flocculation experiments were undertaken using a Phipps and Bird 

PB-900 six paddle jar tester. 

 

4(A).2.3 Reagents 

The raw waters were coagulated with ferric sulphate (Ferripol XL, EA West) at a dose 

of either 5, 10 or 15 mg.l
-1
 as Fe (0.1-0.27 mMol Fe). 

 

4(A).2.4 Procedure 

Four raw water samples from both Albert and Bamford WTW, collected from 

September to December 2003, were fractionated using XAD resin adsorption 

techniques into their hydrophobic (HPO) and hydrophilic (HPI) components using a 

method adapted from Malcolm and MacCarthy (1992). An Amberlite XAD-7HP and 

Amberlite XAD-4 resin pair were used (Rohm and Haas, PA, USA). This method has 

been previously used on raw water collected from Albert WTW reservoir (Goslan et 

al., 2002; Fearing et al., 2004). The hydrophobic fractions were then separated further 

by reducing the pH to 1 and precipitating the humic acid fraction (HAF), with the 

fulvic acid fraction (FAF) remaining in the supernatant. The non-adsorbed fraction 

was categorised as hydrophilic non acid (HPINA), or non adsorbed fraction.  

 

With regards to the coagulation-flocculation experiments only one jar was used at any 

one time. Raw water samples were stored at 5°C prior to jar testing and subsequent jar 

testing was undertaken at room temperature (20°C). The initial rapid mix was for 2 

minutes at 200 RPM whilst adding the required dose of coagulant. NaOH was then 

added, until reaching the required coagulation pH, whilst stirring for an additional 1.5 

minutes, also at 200 RPM. This order of chemical addition was chosen, as from 

experience this both produces the best results and matches full-scale operation at 
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Albert WTW. The jars were then stirred for 15 minutes at 30 RPM and left to settle 

for an additional 20 minutes before taking the samples, which were extracted from the 

centre of the jar. The zeta potential was measured with a zetasizer at 25°C. The 

zetasizer yields estimates and standard deviations of the zeta potential directly, and all 

measurements were conducted in triplicate. The general accuracy of the zetasizer was 

determined using standard solutions (Malvern Instruments, UK.) The zeta potential 

was initially measured at varying stages of the jar test procedure from the end of the 

rapid mix to the final settlement, and was found to show no significant variation. 

 

4(A).3 Results and Discussion 

4(A).3.1 Characterisation 

The DOC concentrations of both raw waters increased across the period of 

investigation with a low of 6.6 mg.l
-1
 and 4.5 mg.l

-1
 in September 2003 to a high of 

9.7 mg.l
-1
 and 10.2 mg.l

-1
 in December 2003, for Albert WTW and Bamford WTW 

respectively (Figure 4(A).1). The most significant increase in DOC for both sources 

was observed between September and October following the first period of heavy 

rainfall, at 40% and 53% for Albert WTW and Bamford WTW respectively. However, 

closer examination of results revealed that at Albert WTW the initial rise in DOC 

(2.6mg.l
-1
) was followed by a stable period when the DOC increase was only 0.1-0.4 

mg.l
-1
 between October and December. At Bamford WTW, however, the DOC 

concentration continued to rise throughout the whole sampling period between 0.9 

and 2.4 mg.l
-1 
each month.  
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Figure 4(A).1: (a) Albert and (b) Bamford NOM fraction make-up September-

December. Humic acid fraction (HAF), Fulvic acid fraction (FAF), Hydrophilic acid 

(HPIA), Hydrophilic non adsorbed (HPINA). 

 

HPSEC traces for both sites revealed a broad band of molecular sized material, 

characterised by two main peaks at c5.8 and c7.7 minutes with similar profiles for 

both Albert and Bamford raw water sources (Figure 4(A).2). Results from both sites 

revealed that the September rainfall event caused no shift in the position of the 

primary peak (c5.8 minutes), corresponding to an approximate molecular size greater 

than 5 kilo Daltons (kDa) (Pikkarainen et al., 2004). However, an increased 

absorbance of 23% was observed at Albert, as measured by the area under the curve, 



Chapter 4(A): Bench Scale Coagulation  Paper 5 

Page 130 

compared to a 0.2% increase at Bamford. The total UV absorbance of both graphs did 

not change significantly, increasing by 7% and 2% for Albert and Bamford 

respectively. Although both values were 10-14% higher for Albert, attributed to the 

difference in UV measurements, 38.5-38.8 m
-1
 and 48.7-63.6 m

-1 
for Bamford and 

Albert respectively. In fact, the main difference for both sites, following the first flush, 

was the change in position of the secondary peak from an elution time of c7.7 minutes 

to c8.5 minutes, corresponding to an approximate decrease in molecular size from 4-5 

kDa to 3-4 kDa. Subsequent HPSEC profiles for the months of November and 

December were also similar to the October sample. 
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Figure 4(A).2: HPSEC plots of Albert and Bamford raw water, for both September 

and October 2003. 

 

HPSEC traces indicated a shift in NOM make-up following the first flush in 

September, whereas fractionating the NOM over the whole period demonstrated that 

the increase in DOC concentration was not observed to occur proportionally in all the 

fractions. Results revealed both an increase in hydrophilic and hydrophobic material 

at both Albert and Bamford during the period of September to October (Figure 

4(A).1). Although the relative increases for both components were similar (1.1-1.3 

mg.l
-1
 for hydrophobic NOM and 1.1-1. mg.l

-1
 for hydrophilic NOM), this reduced the 

overall proportion of hydrophobic material from 69% to 59% and from 67% to 62%, 

of the total DOC, for Albert and Bamford respectively. In the following period, 

October to December, the hydrophilic content was subsequently stabilised, whereas 
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the hydrophobic content continued to increase, the impact of which was to re-establish 

the hydrophobic:hydrophilic balance of the water prior to the flush phenomenon. 

Although both sources were affected by the changes in NOM fraction concentrations, 

Bamford appeared more stable with the overall hydrophobic content varying between 

62 and 67%, compared to the variation at Albert of between 59% and 76%. 

 

Previously reported fractionation data across different seasons for river and lake 

systems from both Europe (Ratnaweera et al., 1999) and the United States of America 

(Aiken et al., 2004), have concluded that the observed differences are often consistent 

with the view that as the DOC of a water increases the majority of the additional 

organic matter is likely to be hydrophobic in character (Malcolm, 1985). However, 

results obtained during this investigation highlight not only an increase in 

hydrophobic material but also an additional increase in the hydrophilic content of the 

water following initial periods of heavy rainfall. Similar findings, to the previous 

study, have been reported by Scott et al. (1998), who also looked at the seasonal 

variations in NOM obtained from a UK upland peat catchment system. During a four 

year study, they observed variations in the hydrophilic content of the water ranging 

between 20 and 80%, with the dissolved organic matter increasing in hydrophilicity 

during the summer months.   

 

In relation to characterisation based on surface charge, the zeta potential of the raw 

water was -14.2 ± 1.7 mV and -16.1 ± 1.6 mV for Bamford and Albert respectively. In 

both cases, alteration of the pH of the raw water revealed a stable zeta potential value 

between pH 4 and 9 and an IEP of 2 (Figure 4(A).3). Results indicate that the charge 

of the colloids within the raw water can be characterised by an acidic dissociation 

model (Hunter, 1981). This is expected as the main functional groups identified 

within the structure of NOM are predominantly carboxylic and phenolic groups with a 

pKa in the range 3-6 and 8-10 respectively (Tiller and O’Melia, 1993; Gu et al., 1995; 

Edwards et al., 1996; Kretzschmar and Sticher, 1997). 
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Figure 4(A).3: Coagulation pH vs. zeta potential for September 2003 raw water 

samples from Bamford, coagulated with 5 and 15 mg.l
-1
 as Fe, and from Albert, 

coagulated with 5 mg.l
-1
 as Fe. 

 

The interactions between NOM and ferric sulphate were monitored through changes 

in zeta potential with varying pH in order to establish the effect on the IEP of the 

system. For example, the IEP for a sample of Bamford water, coagulated with 5 mg.l
-1
 

ferric sulphate (as Fe),
 
was reached at pH 4.5. However, when the dose was increased 

to 15 mg.l
-1
 ferric sulphate (as Fe), this required an increase in pH to 5.5 in order to 

maintain the IEP. Hence the charge of the NOM-coagulant precipitate is dependent on 

both the mass ratio of NOM to metal ion, and the pH of the system (Jiang and Graham, 

1998; Kam and Gregory, 2001; Duan and Gregory, 2003). When related to coagulant 

demand, the influence of pH corresponds to a mass ratio of Fe dose of 1.1 mg per mg 

DOC at pH 4.5, increasing to 3.3 mg per mg DOC at pH 5.5. The charge neutralising 

capacity of aluminium salts are also influenced by pH. For instance, Van Benschoten 

and Edzwald (1990) calculated an aluminium dose of 0.5 mg per mg of aquatic fulvic 

acid (FA) at pH 5.5, which then increased to 1 mg as Al per mg Aquatic FA at pH 7. 

Similarly, Tseng et al. (2000), looked at treating snowmelt run-off water and 

concluded that 2.1 ± 0.1 mg.l
-1
 more alum was required for each additional mg of 

DOC. However, the relationship is not always one of simple stoichiometry and the 

relationship is also dependent on the character of the organics. For instance, 

coagulating both September water samples with 5 mg.l
-1
 ferric sulphate (as Fe) 
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required a pH of 5 and 4.5 for Albert and Bamford respectively, in order to reach the 

IEP. Albert raw water contained 2.1 mg.l
-1
 more DOC than Bamford, hence if the 

relationship were one of simple stoichiometry, determined solely by the NOM 

concentration, then the IEP of the Albert sample would have been lower. In fact, it is 

more likely to be the NOM composition and character, rather that the total DOC 

concentration, which will determine the coagulant demand. Hydrophobic fractions, 

for instance, contribute the largest proportion of colloidal charge, at least one order of 

magnitude greater than the hydrophilic components (Edzwald, 1993; Sharp et al., 

2004). Hence their increased presence will exert a greater coagulant demand required 

to minimise the surface charge and promote particle agglomeration. One added 

complication is that both character and composition of the individual NOM fractions 

have also been shown to vary both temporally and spatially (Owen et al., 1993; Sharp 

et al., 2004). Hence the differences in required coagulation conditions for Bamford 

and Albert in this case cannot be explained stoichiometically in terms of NOM 

fraction make-up.  

 

4(A).3.2 Treatment 

Analysis of the performance of the coagulation process revealed a clear relationship 

between the zeta potential and residual concentration of either DOC or turbidity. 

Results demonstrate the existence of operational windows with respect to zeta 

potential, such that the residual following treatment is minimised. The threshold 

values were determined by calculating the rate of change of the residual. The 

operational window for DOC removal, within which the DOC residual remained at 

1.0 ± 0.2 mg.l
-1
, was between zeta potential values of -10 mV and +3.5 mV (Figure 

4(A).4). Whereas for turbidity removal, the operational window was wider on the 

negative side of the scale, with residual turbidities of less than 1 NTU still achievable 

at a zeta potential of -20 mV. Both ranges are of a similar magnitude to previously 

published work, with Gregory and Carlson (2003), having considered optimum alum 

doses for Total Organic Carbon (TOC) removal to be in the zeta potential range -4.0 ± 

3 mV. Whereas Edwards (2002), also observed a more extended range for optimal 

turbidity removal following ferric coagulation of a river water, with a 1 NTU residual 

possible when operating at a zeta potential between -12.4 and +18 mV. The definition 

of a range, as opposed to a single value, suggests that in general, colloidal 

destabilisation occurs before complete neutralisation of surface charge (Ratnaweera et 
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al., 1999). With regards to the magnitude of the operational zeta potential windows, 

results suggest that it is the organic concentration which influences the coagulation 

conditions. Edwards (2002) recorded a narrower operational zeta potential window     

(-12.9 to +3.2 mV) when the raw water was spiked with 3.4 m.L
-1
 of commercial 

humic acid. Although in general, if the process is optimised for DOC removal, the 

residual turbidity will naturally also be at a minimum (Edzwald, 1993; Dennett et al., 

1995).  
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Figure 4(A).4: Zeta potential vs. removal performance in terms of DOC residuals for 

Albert and Bamford September raw water samples coagulated with 5-15 mg.l
-1
 as Fe.  

 

Profiles for both Bamford and Albert also lack symmetry. For instance, with 

increasing negative zeta potential values a gradual decline in performance was 

observed, corresponding to a negative gradient of 0.06, whereas for positive zeta 

potential values there was a much steeper reduction in performance at operational 

boundary. These observations suggest the importance of patchwork agglomeration 

where only partial neutralisation of the charge is required (Ratnaweera et al, 1999), 

whereas the large negative values that still provide optimal treatment suggest the 

potential importance of polymer bridging from the large MW material. Observed 

differences may also depend on the particular system involved. To illustrate, when 

coagulating Albert raw water at a zeta potential of -7.8 mV this resulted in a DOC 

removal of 85%. This then dropped to 68% when the magnitude of the negative zeta 
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potential was increased to -18.9 mV, corresponding to an approximate reduction in 

performance of 1.5% per mV. Zouboulis et al. (2003) reported a similar reduction in 

humic acid removal, using a commercial humic acid solution, for a similar increase in 

the magnitude of the negative zeta potential (-7.8 to -19.8 mV). In this case removal 

decreased from 94.7 % to 66.6% and corresponded to a 2.3% reduction per mV. 

However, when examining the profile with respect to a positive zeta potential, at a 

zeta value of 12.6 mV, Zouboulis et al. (2003), were still able to achieve 92% humic 

acid removal, whereas no significant or reliable removal was observed at either Albert 

or Bamford for a zeta potential greater than 5 mV. 

 

Once operating the coagulation process within the operational window, with respect 

to zeta potential, the optimal residual concentrations are unaffected by an increase in 

coagulant dose providing the surface charge is maintained through pH adjustment. For 

instance, in the case of raw water samples from Albert in September 2003, coagulated 

with either 5 or 10 mg.l
-1
 ferric sulphate as Fe, and the pH increased from 5.2 to 5.8 in 

order to maintain a constant zeta potential within the previously determined 

operational window (-10 mV and +3.5 mV). HPSEC chromatograms for both treated 

water samples were almost identical, thus demonstrating no additional removal or 

benefit with the increased coagulant dose (Figure 4(A).5). This has also been 

described by Krasner et al. (1994), who carried out jar tests on California State 

Project Water at incremented alum doses from 22 to 111 mg.l
-1
. They also found that 

after a certain dose of 47 mg.l
-1
, there was a plateauing of DOC removal. These 

results support the hypothesis that achieving the required zeta potential is more 

important than achieving a certain coagulant dose or pH.  
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Figure 4(A).5: HPSEC chromatograms of Albert raw water from September, 

coagulated with 5 and 10 mg.l
-1
 ferric sulphate as Fe and a resulting zeta potential of 

zero. 

 

The relationship between zeta potential and residual DOC was unaffected by either 

the seasonal variations, source or changes in NOM composition over the period 

September to December 2003 (Figure 4(A).6). At Albert WTW for example, the DOC 

concentration rose from 6.6 to 9.7 mg.l
-1
 during the period of investigation. However, 

despite the increasing organic concentration in the raw water and increasing the 

coagulant dose from 15 to 24 mg.l
-1
 (as Fe) in order to maintain a 0.4:1 mgDOC:mg

-

1
Fe ratio, the shape of the DOC residual profile with respect to zeta potential remained 

unaffected. In order to test the statistical significance of the operational zeta potential 

window identified from the experimental data, all results were divided into one of six 

operational bands with regards to zeta potential. The bands were as follows; <-15 mV, 

-5 to -10 mV, 0 to -5 mV, +3 to 0 mV and >+3 mV (Figure 4(A).7). Statistical 

analysis of the data was performed by first undertaking an F test, in order to determine 

if there were any significant difference in variance between the groups, followed by a 

series of T tests in order to determine whether the data sets were from the same 

distribution or significantly different.  Statistical analyses confirmed the visual 

observations, such that in general, DOC residuals obtained within the operational zeta 

potential window (-10 to +3 mV) were not significantly different at a 95% confidence 

interval, whereas there was a significant difference when comparing these results with 
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those obtained when coagulating outside the operational window (Table 4(A).3). 

Additional t test analyses also revealed no significant difference, at the 95% 

confidence interval, with regards to seasonal variations, source or coagulant dose, 

when operating within the operational envelope (-10 to +3 mV).  
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Figure 4(A).6: Zeta potential vs. removal performance in terms of DOC residual for 

Albert raw water coagulated with ferric sulphate to a 0.4:1 DOC:Fe (mg:mg) ratio at 

pH’s between 3 and 7. 
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Figure 4(A).7: Average DOC residuals according to zeta potential range, for all 

treated water samples. 
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Table 4(A).3: Statistical t test significance matrix. 
 

Zeta Potential 

Band 

<-15 

(mV) 

-10 to -15 

(mV) 

-5 to -10 

(mV) 

0 to -5 

(mV) 

0 to +3 

(mV) 

<-15 (mV) 
- 

- - - - 

-10 to -15 (mV) SD - - - - 

-5 to -10 (mV) SD
 

ND - - - 

0 to -5 (mV) SD ND ND - - 

+3 to 0 (mV) SD ND ND SD - 

>+3 (mV) ND SD SD SD SD 

SD- Significantly different at 95% Confidence interval 

ND- No significant difference at 95% Confidence interval 

 

As previously discussed, the NOM content of the water controls the critical coagulant 

concentration due to the high charge content, with the hydrophobic material 

contributing a greater proportion of the colloidal charge (Letterman et al., 1999; Sharp 

et al., 2004). However, the hydrophobic fraction is also the most amenable to removal 

by conventional coagulation with metal salts, whereas for NOM fractions with more 

hydrophilic tendencies, reported removals are poor (Randtke, 1988; Owen et al., 1993; 

Krasner et al., 1994; Edwards, 1997; White et al., 1997). Previous work at Albert, 

involving coagulation of the isolated HPINA fraction, has revealed limited removal of 

just 16% (Fearing et al., 2004). However, this phenomenon is not solely related to 

upland moorland UK waters, as Krasner et al. (1994), obtained similar results when 

blending two US waters, both with low MW DOC concentrations of 1.3- 1.4 mg.l
-1
, 

and found the residual after alum coagulation was 1.0-1.3 mg.l
-1
 DOC, regardless of 

the blend. This corresponded to a removal of between 8 and 30% for the low MW 

DOC. One proposed explanation for the poor removal is attributed to the fact that at 

the coagulation pH of normal operation (5-7), the hydrophilic fractions (HPIA and 

HPINA) possess a negligible or slightly positive charge (Edzwald, 1993; Sharp et al., 

2005). Consequently, increasing the coagulant dose further is less likely to promote 

any additional removal of this fraction. In fact, determination of the hydrophilic 

content can be used to provide a useful indicator for the achievable DOC residual 

once the coagulation process has been optimised.  
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Figure 4(A).8: Final DOC residual vs. initial non adsorbed fraction concentration 

(Sharp et al., 2005; Krasner et al., 1994) 

 

Although few studies have been undertaken on fractionated organic matter, a number 

have reported removal in relation to specific UV absorbance (SUVA, m
-1
.L mg

-1
), 

which gives a relative indication of the hydrophobic content in water. It has been 

reported that a SUVA value of less than 2.5 indicates a more hydrophilic nature and 

subsequently leads to a poor removal performance, with values reported in the region 

of 11-30% (Fearing, 2004). However, with reference to this investigation, SUVA 

values varied between 3.6 and 7.4, therefore indicating the general hydrophobic 

nature of both water sources. In fact DOC removals were greater than 70% in all cases 

and SUVA values showed no correlation with the residual DOC values. Analysis of 

optimum achievable DOC residuals with respect to initial HPINA fraction 

concentrations did produce a more significant relationship which could be used to 

indicate coagulation performance.  For instance, the HPINA fraction increased from 

1.4 to 2.7 at Albert WTW, over the period September to December, and despite 

operating at optimum conditions the average DOC residual at optimum zeta potential 

increased from 0.9 to 1.9 mg.l
-1
. However, when considering the DOC residual in 

terms of HPINA removal, the values were relatively similar with 27-35% removal. 

Similar results were observed at Bamford WTW, such that as the HPINA fraction 

increased from 1.1 to 1.8 mg.l
-1
 in the raw water, the DOC residual increased by the 
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same amount from 0.9 to 1.6 mg.l
-1
. In both cases, operating within the operational 

zeta potential window revealed that the DOC residual was lower than the initial 

HPINA concentration, indicating that a certain degree of removal of this fraction is 

possible through conventional coagulation methods. This is also in agreement with 

White et al. (1997) who found that the total DOC removal was greater than the 

hydrophobic content of the water, indicating there is still a certain degree of 

hydrophilic NOM removal. Analysis of other waters reveals a similar relationship 

between the low MW non adsorbed fraction and achievable DOC residual, with the 

gradient of the regression line (R
2
 = 0.88) indicating the majority of the residual is 

contained within the HPINA fraction (Figure 4(A).8). Whilst the residual organics are 

likely to contain other material the results suggest the initial HPINA can serve as a 

useful guide to the likely achievable residual DOC by coagulation. This is, however, 

also dependent on both the source water characteristics at each location and the 

coagulant used, with ferric resulting in a lower residual compared to alum based 

coagulants (Edzwald and Tobiason, 1999; Bell-Ajy et al., 2000).  

 

4(A).4 Conclusions 

Results presented here have shown the relationship between zeta potential and 

residual concentration appears to be insensitive to seasonal variations, source and 

coagulation conditions. Consequently, optimising the coagulation process using zeta 

potential measurements should produce both a more robust performance, provided the 

following are considered: 

• The coagulation zeta potential is maintained within -10 mV and +3 mV. 

• Performance is more sensitive to changes at the positive zeta potential 

boundary. 

• Optimising for DOC removal should also result in good turbidity removal. 

• Coagulant demand may not always be identified through simple monitoring of 

bulk water parameters such as DOC or UV254. 

The future challenge is therefore to understand robustness and the ease with which the 

system can remain within the operational charge boundaries set. 
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characteristics on coagulation performance, optimisation 

and control. 
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Abstract 

A number of water utilities have been experiencing operational difficulties during 

specific times of the year, associated with elevated levels of organics due to heavy 

rainfall or snow melt. Water samples were collected from Albert treatment works 

(Halifax, UK) and the natural organic matter (NOM) was characterised using XAD 

resin adsorption techniques. The addition of a cationic polyelectrolyte was employed 

to determine the charge density of the fractions. Results show that NOM fraction 

make-up changes throughout the year, with the fulvic acid fraction (FAF) showing the 

greatest increase during the autumn and winter period. The charge density of the FAF 

fraction also increases. The coagulation conditions for traditional coagulants, such as 

iron, are more affected by increased levels of organics than the highly charged novel 

coagulant also investigated, and the zeta potential range for optimum removal is 

narrower. Therefore, the conditions required for zero charge during coagulation varies 

with both raw water source and the coagulant type. 

 

Keywords 

Coagulation, Natural organic matter (NOM), Zeta potential, Water treatment.  
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4(B).1 Introduction 

Process options for the treatment of water to remove organic matter are well 

established and understood and for the most part produce stable high quality product 

waters. However, a number of UK water utilities situated in northern England and 

Scotland, in addition to a number of US water companies with mountain catchments, 

are experiencing difficulties during specific times of the year associated with periods 

of elevated organics due to heavy rainfall or snow melt. During these periods of 

elevated organics, operational robustness is being reduced, especially in terms of 

dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), 

colour and rapid gravity filter run time.  

 

Surface charge is of particular importance for the majority of processes involved in 

water treatment, especially concerning the aggregation of particles during coagulation 

and flocculation, and capture by media filtration. Waters from moorland catchments 

(Yorkshire, UK) are characterised by low turbidities and high colour and as such 

coagulation is controlled by the concentration and character of the organics in the 

water.  Natural organic matter (NOM) can be considered as a mixture of molecular 

weight anionic polyelectrolytes. The iso-electric point (IEP) of the raw water is 

generally between pH 1-2.5 and as such is normally negatively charged at the raw 

water pH.  Coagulants such as ferric chloride or alum interact with the NOM by 

forming complexes with the positively charged hydrolysis products.  Further 

interaction occurs as additional NOM adsorbs onto metal hydroxide precipitate and 

the NOM-coagulant complexes (O’Melia et al., 1999; Duan and Gregory, 2003). The 

understanding of these reactions and more importantly, the flocs that subsequently 

form, is complicated as the NOM has a dynamic character which alters according to 

changing condition within the catchment.  

 

The aim of the study reported in this paper was to investigate the link between NOM 

seasonality, the charge of the NOM-coagulant complex and removal. In addition to 

iron, the use of a highly charged novel coagulant was also investigated. This 

coagulant has found its application in the leather processing industry, reacting with 

the carboxyl groups present on the animal skins, although its application to water 

treatment has never been previously documented. 



Chapter 4(B): Bench Scale Coagulation  Paper 6 

Page 149 

4(B).2 Materials and Methods 

Albert Water Treatment Works (WTW) is situated in Halifax, UK and the reservoir is 

fed by an upland peat catchment system. The raw water source has been the subject of 

various character, fractionation and reactivity studies (Jarvis et al., 2003; Goslan et al., 

2002; Fearing et al., 2004). Seasonal variations in water quality at Albert WTW are 

shown below (Table 4(B).1). 

 

Table 4(B).1: Raw water quality at Albert WTW.  
 

Parameter Units Water quality (Summer) Water quality (Autumn) 

DOC mg.l
-1 

4.3-7.0 8.8-14.2 

UV-Abs l.m
-1 

39.3-48.7 72.2-52.3 

pH - 6.2-6.4 5.5-6.6 

Turbidity NTU 3.7-5.9 5.9-7.0 

 

4(B).2.1 Apparatus 

The turbidity of the samples was measured using a HACH2100 turbidity meter 

(Camlab, UK). A Shimadzu 5000A TOC analyzer was used for determining the DOC 

content. UV-Abs (l/m) at a wavelength of 254nm was measured using a Jenway 6505 

UV/Vis spectrophotometer. All samples were passed through a Fischer Scientific 

MF200 1µm glass microfibre filter paper before both UV and DOC analyses. The zeta 

potential was measured with a zetasizer 2000HSA (Malvern Instruments, UK). The 

coagulation and flocculation experiments were undertaken using a Phipps and Bird 

PB-900 six paddle jar tester. 

 

4(B).2.2 Reagents 

The coagulants under investigation were: Ferric sulphate (Ferripol xl, EA West) and a 

highly charged novel coagulant (patent pending). The cationic polymer 

polydiallyldimethylammoniumchloride (PolyDADMAC), with a molecular weight 

(MW) of 100,000-200,000, was obtained from Sigma-Aldrich as a 20 wt% aqueous 

solution. This was then diluted to a 0.1% solution with the charge density calculated 

to be 6.2 meq.g
-1
 from the manufacturer’s information. Details of the preparation of 

the novel coagulant are provided in Parsons and Jefferson (2004). 
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4(B).2.3 Procedure 

Four raw water samples, collected from September to December 2003, were 

fractionated by XAD resin adsorption techniques into their hydrophobic (HPOA) and 

hydrophilic (HPIA) components using a method adapted from Malcolm and 

MacCarthy (1992). An Amberlite XAD-7HP and Amberlite XAD-4 resin pair were 

used (Rohm and Haas, PA, USA). This method has been previously used on raw 

water collected from Albert WTW reservoir (Fearing et al., 2004; Goslan et al., 2002). 

The hydrophobic fractions were then separated further by reducing the pH to 1 and 

precipitating the humic acid fraction (HAF), with FAF remaining in the supernatant. 

The non-adsorbed fraction was categorised as hydrophilic non adsorbed (HPINA).  

 

The charge density of the NOM fractions was determined using the Malvern zetasizer 

and PolyDADMAC. A beaker containing 100ml of deionised water, 2.5mg of the 

appropriate NOM fraction and a magnetic stirrer bar were placed on a magnetic stirrer. 

Varying amounts of 0.1% PolyDADMAC were added to the beaker, with the pH 

adjusted to 7 with NaOH, and the zeta potential measured until the point of zero 

charge or iso-electric point (IEP) had been established.  

 

With regards to the coagulation-flocculation experiments only one jar was used at any 

one time. Raw water samples were stored at 5°C prior to jar testing and subsequent jar 

testing was undertaken at room temperature (20°C). The initial rapid mix was for 2 

minutes at 200 rpm whilst adding the required dose of coagulant. NaOH was then 

added, until reaching the required coagulation pH, whilst stirring for an additional 1.5 

minutes, also at 200 rpm. The order of chemical addition was chosen, as from 

experience this both produces the best results and matches full-scale operation at 

Albert WTW. The jars were then stirred for 15 minutes at 30 rpm and left to settle for 

an additional 20 minutes before taking the samples, which were extracted from the 

centre of the jar. The surface charge was measured with a zetasizer at 20°C. The 

zetasizer yields estimates and standard deviations of the zeta potential directly, and all 

measurements were conducted in triplicate. The general accuracy of the zetasizer was 

determined using standard solutions (Malvern Instruments, UK.) The zeta potential 

was initially measured at varying stages of the jar test procedure from the end of the 

rapid mix to the final settlement, and was found to show no significant variation. 
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4(B).3 Results and Discussion 

4(B).3.1 Changes in NOM composition and character 

The raw water at Albert WTW is highly coloured with low turbidity (Table 1). Total 

DOC levels remained relatively stable at 9.4 ± 0.3 mg.l
-1
 across all the samples 

analysed with the exception of the sample collected in September 2003 which was 

considerably lower at 6.6 mg.l
-1
 (Figure 4(B).1a). Fractionation of the raw water 

revealed that the make up of the water varied throughout the year even during periods 

of relatively stable total DOC.  The water consisted of between 58 and 76 % 

hydrophobic material of which the fulvic component contributed between 27 and 46% 

(Figure 4(B).1b).  From meteorological observations, the periods of high hydrophobic 

content follow periods of increased rainfall. Rainfall in the north increased from 

17.6mm in August to 43.6mm for September, followed by an additional increase from 

55.6mm in November to 79.1mm in December (Met Office, 2004). 

 

The charge density was determined for NOM fractions taken from April 2002, a 

reference sample relating to previous work undertaken at Albert WTW (Goslan et al., 

2002; Fearing et al., 2004), and showed the charge density of the hydrophobic 

fractions to be nearly two orders of magnitude greater than the hydrophilic fractions 

(Figure 4(B).2a). The charge density of the HAF fraction was 6.8 meq.g
-1 
compared 

with 4.2 meq.g
-1 
for the FAF fraction. Corresponding charge densities of 0.06 and 

<0.01 meq.g
-1
 were measured for the HPIA and HPINA respectively.  In fact the 

charge density of the HPINA fraction was so low that it remained effectively below 

the limit of detection of the method employed.  The values from the current study are 

in broad agreement with those of Kam and Gregory (2001) at 5-5.6 meq. g
-1
 for humic 

acid and Tipping (1993) at 5-10 meq.g
-1 
for both humic and fulvic acids. 

 

Measurement of the charge density of the fractions during different seasons revealed 

similar variability as with fractional make up (Figure 4(B).2b). To illustrate, the 

charge density of the FAF fraction decreased from 3.2 meq.g
-1
 in Jun 03 progressively 

to 1.2 meq.g
-1
 in Nov 03.  This compares to a value of 4.2 meq.g

-1
 as reported above 

and demonstrates that the charge density of the FAF fraction can vary by at least a 

factor of 3.5 due to seasonal effects. No correlation between DOC concentration, 

percentage contribution and charge density could be determined during the study 
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indicating that the nature of the molecules within each fraction varies considerably 

throughout the year, making it very difficult to dose coagulant stoichiometrically 

based on the NOM fraction make-up.  
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Figure 4(B).1: NOM fraction contribution (a) as mg.l
-1
 DOC and (b) expressed as a 

percentage of the raw water. 
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Figure 4(B).2: The impact of (a) NOM fraction and (b) season on FAF charge density. 

 

4(B).3.2 Coagulation conditions for IEP  

The zeta potential profiles demonstrate the impact of NOM concentration and 

character on the surface charge (Figure 4(B).3a).  The IEP of the system shifts 

towards more basic conditions as the ratio of DOC to Fe decreases due to the greater 

influence of the coagulants on the net surface properties of the complex.  For instance, 

with regard to the water collected in September 2003, the IEP shifted from pH 3.2 at a 

DOC:Fe ratio of 3 to a pH of 6 at a DOC:Fe ratio of 1. Consequently, at the pH of 

operation (pH 4.5) the water shifts from being relatively negatively charged to 

positively charged at the two DOC:Fe ratios described above. Comparison with water 

collected during December 2002 shows a more sensitive impact of DOC:Fe during the 

December samples. Unfortunately no charge density data was available for this period, 

although macroscopic changes in the water, such as a higher DOC and subsequent 

(b) 

(a) 
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FAF concentration could be responsible for the increased sensitivity. Charge density 

data for FAF was available for October 2002, at 4.2 meq.g
-1 
and it is therefore likely 

that the value for December 2002 is in the same region.  

 

The influence of coagulant was examined by conducting trials with a highly charged 

novel coagulant (Figure 4(B).3b).  This has a charge density of 0.04 eq.g
-1
 and exists 

principally in its 4+
 
form across a broad range of pHs.  Comparison of the September 

03 water revealed that using the highly charged coagulant decreased the influence of 

the DOC:coagulant ratio on the i.e.p, based on a mass ratio. When converted to moles, 

for the 1:1 ratio, this equates to 0.1 moles of iron compared to only 0.07 moles of the 

novel coagulant. 

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9

i.e.p.

D
O
C
:F
e 
(m
g
.L
-1
)

Dec-02 raw water Sept-03 raw water

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9

i.e.p.

D
O
C
:C
o
a
g
u
la
n
t 
(m
g
.L
-1
)

Iron Novel coagulant
 

Figure 4(B).3: pH of zero charge plotted against DOC:coagulant ratio for (a) water 

samples collected from two different seasonal periods and dosed with iron and (b) 

September water dosed with iron or the novel coagulant. 
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4(B).3.3 Zeta potential vs. removal 

Direct comparison of the residual concentration of turbidity and DOC to the zeta 

potential reveals that residual concentrations are minimised at low zeta potentials.  For 

instance, residual turbidity remained below 0.5 NTU between zeta potentials of -18 to 

+5 mV (Figure 4(B).4a). Comparison of the two coagulants revealed no statistical 

difference between the two systems over the above zeta potential range. Similar 

results were observed in terms of residual DOC concentration except that the 

optimised range was much narrower than for turbidity and was centred around a zeta 

potential of 0 mV (Figure 4(B).4b). The use of the highly charged novel coagulant 

also appeared to extend the range over which residuals remained low for both 

turbidity and DOC.  In the case of turbidity this was observed as an extension to more 

positive value whereas the range extended in both positive and negative values for 

organics removal.   
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Figure 4(B).4: Zeta potential vs. removal performance in terms of (a) turbidity and (b) 

DOC residuals. 
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4(B).4 Conclusions 

From results presented, it is apparent that the raw water characteristics for the period 

September to December 2003 alter considerably even though the DOC level remained 

stable.  This variability has been demonstrated for both fractional make up and charge 

density.  The impact of the variation in charge density has been to alter the charge 

response of the system at set dose rates such that the zeta potential can vary 

considerably even though nothing in the system appears to have been altered.  The 

effect zeta potential variation may have on treatment has been indicated by the 

relationship between zeta potential and residual turbidity and DOC. Whilst the 

optimum range for turbidity removal is fairly broad the equivalent range for DOC is 

narrow.  The implication is that changes in make up in the water may reduce organics 

removal whilst the plant appears to be operating at steady state.   

 

Results presented here have shown the potential benefit of using alternative chemicals. 

The experiments with the highly charged novel coagulant appear to generate a better 

level of removal at a comparative zeta potential, a less sensitive system to changes in 

the raw water and a broader range of operationally suitable zeta potentials. However, 

when considering the use of this novel coagulant, the economic costs should also be 

considered as at present it is still an expensive alternative.  

 

Finally, results from this investigation show that better understanding of the charge 

density variations in the water is important.  Consequently, zeta potential monitoring 

may become important during periods of operational difficulties to develop more 

robust solutions.   
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Abstract  

At present little is known about the relationship between raw water characteristics, 

such as natural organic matter (NOM) content, and the universal applicability of 

coagulation optimisation through surface charge measurement. This research aims to 

investigate this issue by comparing case study sites in the US (Poudre River, Fort 

Collins, Colorado) and the UK (Albert Reservoir, Halifax) across periods of elevated 

organic levels. During the period of April to June 2004, raw Poudre River water 

dissolved organic carbon (DOC) levels increased rapidly from 3.5 to 7.4 mg.l
-1
 as a 

direct result of the spring snowmelt run-off. Whereas at Albert reservoir, which is a 

moorland peat catchment, DOC concentrations varied between 7.8 and 10.1 mg.l
-1
 

during the period of January to March 2004. NOM is a highly heterogeneous mixture 

of organic compounds that vary with regards to acidity, molecular weight, 

hydrophobicity and charge density. XAD resin adsorption techniques were employed 

to fractionate the water into their hydrophobic and hydrophilic components. Results 

revealed that NOM composition and characteristics can vary both temporally and 

spatially, with increased DOC concentrations associated with both an increase in 

hydrophobic content and charge density. Optimising coagulation based on a zeta 
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potential range (-10 to +5 mV) produced stable average DOC residuals for both 

locations. The exact value is also dependent on the hydrophilic composition of the 

water and the coagulant used, with alum removing approximately 0.5 mg.l
-1
 less DOC 

compared to ferric.  

 

Keywords 

Coagulation, Natural organic matter (NOM), Zeta potential.  
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5(A).1 Introduction 

Natural waters throughout the world contain natural organic matter (NOM) as a result 

of the interactions between the hydrological cycle and both the biosphere and 

geosphere. This is dependent on the surrounding environmental biogeochemical 

cycles, resulting in a highly heterogeneous mixture of organic compounds that vary 

with regard to acidity, molecular weight and charge density (Goslan et al., 2002; 

Edzwald, 1993; Collins et al., 1986). A number of UK and US water utilities, 

particularly those in the moorland peat catchment areas of northern England, and 

mountain catchment areas in the US, are experiencing difficulties during specific 

times of the year associated with periods of elevated organics following heavy rainfall 

or snow melt. The removal of NOM has become increasingly important in light of the 

potential for carcinogenic disinfection by-products (DBP) to form from residual 

organics during the disinfection process. However, it is the operational robustness, 

especially in terms of dissolved organic carbon (DOC) removal and subsequent DBP 

formation, which is being reduced during these periods of elevated organic 

concentrations. 

 

NOM is traditionally removed through conventional coagulation with trivalent metal 

ions (Fearing et al., 2004). Coagulants such as ferric chloride or alum interact with the 

NOM by forming complexes with the positively charged hydrolysis products.  Further 

removal occurs as additional NOM adsorbs onto metal hydroxide precipitate and the 

NOM-coagulant complexes (Duan and Gregory, 2003). At present little is known 

about the relationship between raw water characteristics, such as NOM content and 

character on optimising the coagulation process. Previous research at bench-scale 

using Albert reservoir water has highlighted that the coagulation process could be 

optimised through surface charge measurement (Sharp et al., 2004).  

 

The aim of this study was to investigate the link further on a pilot scale by comparing 

two case study sites, in the US and the UK, across periods of varying raw water 

characteristics and coagulated with both ferric and alum based coagulants. Hence 

investigating the relationship with regards to NOM composition, character, source and 

coagulant type. 
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5(A).2 Materials and Methods 

The first case study was the Poudre river, at the Fort Collins water treatment facility 

(FCWTF), Colorado, USA. During the period of April to June 2004, the raw Poudre 

river DOC levels increased rapidly from 3.5 to 7.4 mg.l
-1
 as a result of the spring 

snowmelt run-off. The second case study was the Albert reservoir, situated at the 

Albert water treatment works (WTW), Halifax, UK, during the period of January to 

March 2004 when the DOC concentrations varied between 7.8 and 10.1 mg.l
-1
. This is 

a moorland peat catchment area producing a more coloured water for the majority of 

the year, and is also subject to increased DOC levels following periods of heavy rain.  

Variations in water quality at both locations are shown below (Table 5(A).1). 

 

Table 5(A).1: Raw water quality variations.  
 

Parameter Units Albert Reservoir (Jan-Mar) Poudre River (Apr-June) 

DOC mg.l
-1 

7.8-10.1 3.5-7.4 

UV-Abs l.m
-1 

39.7-43.6 11.0-22.5 

pH - 5.9-6.1 7.0-7.6 

Turbidity NTU 3.7-7.0 0.5-19.6 

 

5(A).2.1 Pilot plant facilities 

The FCWTF Pilot included two parallel trains designed to reflect the operational 

characteristics of full-scale treatment, including rapid mix, 3 stage plug flow 

flocculation and lamella plate settling (Figure 5(A).1). Raw Poudre River water was 

pumped into each train at a flow of 1.82 M
3
.h

-1
. Lime (Mississippi Lime Company, 

MO, USA) and carbon dioxide (Fisher Scientific, USA, 10-752-1G regulator and 

Omega, USA, model FMA1916 gas mass flow controller) were added to the raw 

Poudre River water before it was split between the two trains, in order to both achieve 

an alkalinity of 25-35mg.l
-1
 as CaCO3 and manipulate the coagulation pH.

 
The pilot 

plant was run using both aluminum sulphate and ferric sulphate at doses ranging from 

14 to 44 mg.l
-1
 (1.3-4 mg.l

-1
 as Al) and from 10.4 to 17.4 mg.l

-1
 (3-5 mg.l

-1
 as Fe) 

respectively (General Chemical, USA).  

 

Two pilot plants were operated using raw water from Albert reservoir. The first 

(Cranfield), was operated in January 2004 at a flow of 450 L.h
-1
, and included a rapid 

mix stage followed by two stage flocculation. pH was controlled through the addition 

of 0.1M NaOH into the rapid mix tank. The second pilot plant (DA20), was operated 
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in March 2004 at a flow of 15 M
3
.h

-1
 and included inline static mixing of the 

coagulant and 25% Kalic suspension (Buxton Lime, UK), the latter was added to 

control the coagulation pH. This was followed by three stage plug flow flocculation 

and dissolved air flotation. Both pilot plants were run using ferric sulphate (EA West, 

UK) with doses varying between 5 and 15mg.l
-1
 as Fe (0.09 mMol-0.18 mMol as Fe). 

For all pilot investigations, coagulant dose and pH were varied in order to manipulate 

the zeta potential. A more detailed description of all three pilot plants has been 

published previously (Parsons et al., 2005). 

 

       
Figure 5(A).1: (a) Fort Collins, (b) Cranfield and (c) DA20 pilot plants 
 

5(A).2.2 Analysis 

Once pilot plant conditions had stabilised, samples were taken in triplicate and 

analysed for UV absorbance at a wavelength of 254nm (Jenway 6505 UV/Vis 

spectrophotometer, Jenway, UK), pH, DOC, in some cases TOC, (Shimadzu TOC-

5000A analyser in the UK and Sievers Model 800TOC analyzer at FCWTF ), and 

high performance size exclusion chromatography (HPSEC) (Shimadzu VP series, 

Shimadzu, UK).  The HPSEC analysis used a TSK gel, GW3000SW column, 7.5mm 

internal diameter and 30cm in length. The guard column was also TSK, 7.5mm 

internal diameter and 7.5cm in length (Tsoh Biosep GmbH, Stuttgart, Germany). All 

samples were filtered to remove suspended solids before UV254, DOC and HPSEC 

analysis (Glass microfibre in the UK and Durapore membrane filter at FCWTF, Fisher 

Scientific). The surface charge was measured with a Zetasizer (Malvern Instruments, 

UK) at 25°C. The Zetasizer yields estimates and standard deviations of the zeta 

potential directly, and all measurements were conducted in triplicate on unfiltered 

samples. The general accuracy of the Zetasizer was determined using standard 

solutions (Malvern Instruments, UK.) 

 

(a) (b) (c) 
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5(A).2.3 Fractionation 

Raw water samples were collected from Albert reservoir in January 2004, and from 

the Poudre river both before and during the spring snowmelt run-off (April and May 

2004). The samples were fractionated by XAD resin adsorption techniques into their 

hydrophobic (HPOA) and hydrophilic (HPIA) components using a method adapted 

from Malcolm and MacCarthy (1992). An Amberlite XAD-7HP and Amberlite  

XAD-4 resin pair was used (Rohm and Haas, PA, USA). This method has been 

previously used on raw water collected from Albert reservoir (Goslan et al., 2002). 

The hydrophobic fractions were then separated further by reducing the pH to 1 and 

precipitating the humic acid fraction (HAF), with the fulvic acid fraction (FAF) 

remaining in the supernatant. The non-adsorbed fraction was categorised as 

hydrophilic non adsorbed (HPINA).  

 

5(A).2.4 Charge density 

The charge density of the raw water samples was determined using the Malvern 

Zetasizer and PolyDADMAC (Sigma-Aldrich, UK). A beaker containing 1litre of raw 

water and a magnetic stirrer bar were placed on a magnetic stirrer. Varying amounts 

of 0.1% PolyDADMAC were added to the beaker, with the pH adjusted to 7 with 

NaOH, and the zeta potential measured until the point of zero charge or iso-electric 

point (IEP) had been established.  

 

5(A).3 Results and Discussion 

5(A).3.1 Characterisation 

Bulk water analyses demonstrated the effect of increased surface run-off on the total 

organic levels at each location. For instance, a rapid rise in Poudre river DOC 

concentrations, from 4.4 mg.l
-1 
to 7.4 mg.l

-1
, was recorded during the period of May 

4
th
 to May 13

th 
as a direct result of the spring snowmelt run-off. Albert reservoir is 

located in a moorland peat catchment and therefore subject to more frequent rainfall 

events, the impact of which is that organic levels remain high over the majority of the 

year, with a variation in DOC concentrations between 7.8 mg.l
-1 
and 10.1 mg.l

-1
 

recorded for the period of January to March.  

 

HPSEC traces of the raw Poudre river water samples clearly demonstrate an increase 

in UV254 absorbing compounds associated with the increased DOC concentrations 
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(Figure 5(A).2a). For instance, the area under the graph increased by an additional 

122% coinciding with a 40% increase in DOC from 4.4 mg.l
-1
 to 7.4 mg.l

-1
. Results 

also revealed a shift in the main peak from 8.5 to 8.3 minutes, indicating an increase 

in the molecular weight of the organic material (Pikkarainen et al., 2004). At Albert 

reservoir, the HPSEC traces exhibited less variation, with the area under the graph 

increasing by just 1% with an associated increase in DOC of 30% from 7.8 mg.l
-1 
to 

10.1 mg.l
-1
 (Figure 5(A).2b). 
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Figure 5(A).2: HPSEC profiles for (a) Raw Poudre river water during the initial 

stages of the 2004 spring snowmelt run-off with corresponding DOC concentrations 

and (b) Poudre river and Albert reservoir water. 

(a) 

(b) 
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Fractionation data revealed an increase in the hydrophobic content (HAF and FAF 

combined) of the Poudre river from 65% to 75% during the spring snowmelt run-off, 

and was similar to the 74% hydrophobic content present at Albert reservoir in January 

(Figure 5(A).3). The charge density of the Poudre river raw water increased from 

0.009 meq.l
-1
 to 0.029 meq.l

-1
compared to 0.023 meq.l

-1 
at Albert reservoir in January. 

This corresponds to an increase from 2.0 meq.g
-1
DOC  to 3.9 meq.g

-1
DOC for the 

Poudre river. Green (1997), also recorded an increase of 2.0 to 2.5 meq.g
-1
DOC 

during the 1997 Poudre river snowmelt run-off period. The increased charge density is 

attributed to the fact that hydrophobic fractions contribute the largest proportion of 

colloidal charge, at least one order of magnitude greater than the hydrophilic 

components. Hence their increased presence will exert a greater coagulant demand 

required to minimise the surface charge and promote particle agglomeration (Sharp et 

al., 2004; Edzwald, 1993; Collins et al., 1986). However, comparing the relative 

charge densities for both locations revealed a lower value for Albert reservoir, at 2.7 

meq.g
-1
DOC. Further consideration of fractionation data revealed that despite their 

similarities, the individual NOM fraction make-up between the two samples also 

varied. For instance the HAF, FAF, HPIA and HPINA contributions were 23%, 52%, 

9% and 16% for Poudre river run-off water, compared to 15%, 59%, 12% and 14% 

for Albert reservoir in January. Previous research has also looked at the charge 

density of individual fractions and found no correlation between DOC concentration, 

percentage contribution and charge density could be determined (Sharp et al., 2004). 

Hence indicating that the nature of the molecules within each fraction varies 

considerably throughout the year, and therefore making it very difficult to dose 

coagulant stoichiometrically based on bulk parameters such as UV254 absorbance. 

Consequently, some consideration of charge is also required in order to optimise the 

coagulation process. 
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Figure 5(A).3: Fractionation data for Poudre river and Albert reservoir raw waters. 
 

5(A).3.2 Coagulation and zeta potential 

The zeta potential profiles demonstrate the impact of surface charge on coagulation 

performance despite the varying NOM composition, character, pilot plant scale and 

raw water source (Figure 5(A).4). Operating within a zeta potential window of -10 to 

+5 mV produced stable DOC residuals of 1.5 ± 0.2 mV and 1.2 ± 0.2 mV for Poudre 

river and Albert reservoir respectively. The definition of a range, as opposed to a 

single value, suggests that in general, colloidal destabilisation occurs before complete 

charge neutralisation of surface charge which is why good optimal residuals are still 

possible although the zeta potential may not necessarily be zero (Ratnaweera et al., 

1999). The extent of the range is likely to be determined by additional non Derjaguin 

Verwey Landau Overbeek (DVLO) forces present in the system, such as hydrophobic 

or steric effects, and is therefore likely to be dependent on the character of the 

organics present. However, although the operational window at Albert reservoir was 

slightly wider, with stable DOC residuals still possible at a zeta potential of -13 mV, 

these results demonstrate a degree of overlap and the definition of an operational 

window that would suit both systems. 

 

The principle difference in zeta potential profiles between the two water sources was 

the variation in optimal DOC residual, with an additional 0.3 mg removal possible 

with Albert reservoir water compared to the Poudre river, when coagulating both with 

ferric sulphate. However, the variation in NOM fraction make-up can also influence 
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the achievable residual DOC concentration when operating within the optimum zeta 

potential range, with previous research having reported poor removal during 

conventional coagulation of NOM fractions with more hydrophilic tendencies 

(Edwards, 1997; White et al., 1997). In this case, comparison of the HPINA fraction 

contribution from both sources revealed similar values, 1.0-1.2 mg.l
-1
 and 1.2 mg.l

-1
 

for the Poudre river and Albert reservoir respectively. Nevertheless, previous research 

has identified a link between the HPINA fraction and the DOC residual when samples 

relate to the same source (Parsons et al., 2005) Consequently, fractionation in this 

instance is a useful tool, indicating if the DOC residual following treatment is likely to 

meet current regulations or whether an additional treatment stage should be 

considered.  
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Figure 5(A).4: Zeta potential vs. DOC residual for both raw water sources when 

coagulated with ferric sulphate. 

The concept of optimisation through zeta potential measurements was investigated 

further when alum and ferric sulphate based coagulants were both trialled using the 

Poudre river water. Similar zeta potential profiles with respect to residual DOC and 

turbidity concentrations were achieved, although, a lower DOC residual was possible 

with ferric sulphate, removing 0.5mg more DOC at the optimum zeta potential, 

compared to alum (Figure 5(A).5). Similar findings have been reported by Bell-Ajy et 

al. (2000), who looked at 16 different sites with initial TOC concentrations ranging 

from 1.5 to 16.3 mg.l
-1
, and found it was possible to remove on average 0.86 mg.l

-1
 

more DOC with ferric chloride than alum. It has been suggested that the improved 
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performance is due to the fact that alum based coagulants are more selective and ferric 

can remove more DOC at higher doses, especially when treating elevated levels of 

organics (Budd et al., 2004; Kastl et al., 2004).  

 

0

1

2

3

4

5

6

-20 -15 -10 -5 0 5 10
Zeta potential (mV)

D
O
C
 r
es
id
u
a
l 
(m
g
.L
-1
)

Ferric (Poudre May-04) Alum (Poudre Apr-04) Alum (Poudre May-04)
 

Figure 5(A).5: Zeta potential vs. DOC residual for raw Poudre river water when 

coagulated with either alum or ferric. 

 

5(A).4 Conclusions 

The results presented here demonstrate both the similarities and differences in NOM 

composition and character of source waters. However, despite this variability it was 

shown that the coagulation process could be optimised by surface charge 

measurements. The existence of operational windows was identified, such that, when 

operating within the zeta potential range of -10 to +5 mV produced optimal DOC 

residuals for both water sources. However, the exact DOC residual is dependent on 

both the organic composition of the water, the HPINA fraction in particular, and the 

coagulant used, with ferric resulting in an increased DOC removal of approximately 

0.5 mg.l
-1
 compared to alum. Analysis of NOM composition will provide a 

straightforward guide to the mechanistic understanding of treating NOM rich waters 

and, in combination with zeta potential monitoring, should help with the development 

of more robust solutions during periods of elevated organic levels.   
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5(B) Operational zeta potential windows for optimal DOC 

removal. 
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Abstract  

Pilot-scale coagulation studies were conducted using waters from an upland peat 

catchment and snowmelt run-off waters from a high mountain watershed to 

investigate the relationship between changing characteristics and concentrations of 

natural organic matter (NOM) and the use of zeta potential to optimise the removal of 

dissolved organic carbon (DOC). XAD resin adsorption techniques were employed to 

fractionate the water samples into their hydrophobic and hydrophilic components. The 

charge density of both the raw water and NOM fractions was determined with the 

addition of the cationic polyelectrolyte, polydiallyldimethylammoniumchloride 

(PolyDADMAC). With both water sources, despite the changing NOM composition 

and character, optimum DOC removal was achieved when the zeta potential was 

minimised for both alumunium and iron based coagulants. Results from this 

investigation indicate the existence of an operational window of zeta potential (-10 to 
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+5 mV) within which hydrophobic NOM removal efficiencies are high and effluent 

DOC concentrations are minimized. 

 

Keywords 

Charge density, Coagulation, Natural organic matter, Water treatment, Zeta potential. 
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5(B).1 Introduction 

A number of UK and US water treatment facilities experience operational difficulties 

when raw water dissolved organic carbon (DOC) levels increase during run-off 

periods or after heavy rainfall. Changes in land management, such as the disturbance 

of peat or vegetation damage, can lead to increased decomposition and the production 

of loosely bound natural organic matter (NOM) (Worrall and Burt; 2005; Niskavaara 

et al., 1997). The accumulated organics are then flushed into the aquatic environment 

during the first rainfall following a dry period (Hurst et al., 2004; Goslan et al., 2002). 

Mountain regions are also affected by a first flush phenomenon, when snowmelt 

waters percolate through undisturbed forest floors containing organic material, 

resulting in high DOC concentrations. 

 

NOM is a highly heterogeneous mixture of organic compounds that vary with regards 

to acidity, molecular weight (MW), hydrophobicity and charge density (Goslan et al., 

2002; Hwang et al., 2001; Vuorio et al., 1998; Edzwald, 1993). However, it is not 

NOM itself but the residual organics remaining after treatment which pose the 

greatest problem. The residual organics are converted into disinfection by-products 

(DBP), such as trihalomethanes (THM) and haloacetic acids (HAA), when chlorine is 

used in water treatment. These have been shown to cause cancer in laboratory animals 

(Rodriguez et al., 2000; Singer et al., 1999), therefore prompting legislation in the US 

to reduce the limit for THMs from 100 µg.l
-1
, as is currently in force in the UK, to 80 

µg.l
-1 
(Crozes et al., 1995). However, reactivity with chlorine is known to vary 

depending on the NOM composition, with the hydrophilic NOM typically less 

reactive (Collins et al., 1986; Croué et al., 1996). Malcolm (1985), showed that, as the 

DOC of a water increases, the additional organic matter is likely to be hydrophobic in 

character and therefore optimising NOM removal in order to reduce residual organics 

is of increased importance during these periods. 

 

The application of charge measurement for the diagnosis and control of water and 

wastewater treatment processes is not new, and the basic understanding of how charge 

controls performance has not changed considerably over recent years. As the zeta 

potential diminishes, the particles can approach one another more closely, increasing 

the likelihood of agglomeration. Consequently, colloid destabilisation occurs before 
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complete neutralisation of surface charge, hence the zeta potential may not necessarily 

be zero (Ratnaweera et al.,1999). Optimisation of the coagulation process occurs 

under acidic conditions between the iso-electric point (IEP) of the coagulant and the 

NOM. This is typically around pH 4.5-5 for iron and pH 5-6 for aluminum based 

coagulants (Amirtharajah and O’Melia, 1990). In reality, optimised charge conditions 

occur over a range of values, rather than specifically at the IEP of the system, such 

that operational zeta potential windows exist within which residuals are minimised. 

Several studies have reported conditions favourable for particle removal with zeta 

potential values ranging between +10 and –10 mV (McCurdy et al., 2004; Tseng et al., 

2000, Carlson et al., 1996).  

 

The NOM content of the water controls the critical coagulant concentration due to its 

high charge content. However, this may change significantly with raw water 

characteristics known to vary both temporally and spatially, often experiencing rapid 

increases during periods of elevated organics (Carlson et al., 1994; Owen et al., 1993). 

Water treatment is often controlled on bulk water parameters such as UV254 

absorbance or residual turbidity levels. However, previous research has shown that 

such an approach may fail to detect changes in the NOM composition and character of 

the water, the change in charge and associated coagulant demand. (Sharp et al., 2004). 

At present, little is known about the relationship between water characteristics and the 

applicability of optimisation through charge measurement during periods of elevated 

organics. Therefore, the overall objectives of this paper were to investigate this issue 

further in relation to conventional treatment, coagulation and flocculation using metal 

salts. Two different water sources were investigated, in the UK and US, both subject 

to rapidly changing levels of organics.  

 

5(B).2 Materials and Methods 

5(B).2.1 Study site locations 

The first case study was located at the Fort Collins water treatment facility (FCWTF), 

Colorado, USA. During the period from April to June 2004, the TOC levels in the 

Poudre river, a raw water source for the FCWTF, increased rapidly from a baseline of 

approximately 2 mg.l
-1
 to 7.7 mg.l

-1
 as a direct result of the spring snowmelt run-off 

(Figure 5(B).1). The second case study site was located at Albert water treatment 
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works (WTW), Halifax, UK, in January, March, August, and September 2004, when 

the DOC concentrations increased from 8.3-10.1mg.l
-1 
to

 
11.4-13.8 mg.l

-1.
 This is an 

upland peat catchment area producing coloured water throughout the year, although 

still subject to rapid changes and increases in organic levels following periods of 

heavy rain.  

 

5(B).2.2 Pilot plants  

The FCWTF pilot plant includes two parallel trains designed to reflect the operational 

characteristics of full-scale treatment, including rapid mix (1000 RPM), 3 stage plug 

flow flocculation (11, 8 and 3.5 RPM) and lamella plate settling (0.83 m
3
.m

-2
.h

-1 
or 

0.34 gpm.ft
-2
). This pilot plant has also been used in previously reported experimental 

work at FCWTF (Gregory and Carlson, 2003; Billica and Gertig, 2000). For the 

current research, raw Poudre river water was pumped into each pilot train at a flow of 

1.8m
3
.h

-1
 (8 gpm). Lime (Mississippi Lime Company, MO, USA) and carbon dioxide 

(Fisher Scientific, USA, 10-752-1G regulator and Omega, USA, model FMA1916 gas 

mass flow controller) were added to the raw water before it was split between the two 

trains, in order to both achieve an alkalinity of 25-35 mg.l
-1 
as CaCO3  and to 

manipulate the coagulation pH. Trials were conducted using both aluminium sulphate 

(General Chemical, USA) and ferric sulphate (Eaglebrook Inc, USA) at doses of 1.3-4 

mg.l
-1
 as Al  and 3-5 mg.l

-1
 as Fe respectively. 

 

Two pilot plants were operated using raw water from the Albert reservoir. The first, 

the DA20, was located at the Albert reservoir and a second was based at Cranfield and 

raw water was transported by tanker for the trials. The DA20 was operated during two 

periods, March and August/September 2004, and included inline static mixing (Series 

100, Statiflow, UK), of both the aluminium or ferric based coagulants and the 12% 

Calic suspension (Buxton Lime, UK). This was followed by three stage plug flow 

flocculation (5 RPM for 20 mins) and dissolved air flotation (6.3 m.h
-1
, 8% recycle 

and 5 bar saturator pressure). The Cranfield pilot plant was operated in January 2004, 

and included a rapid mix (200 RPM) and 2 stage flocculation (30 RPM for 10 mins 

per stage). pH was controlled through the addition of 0.1M NaOH (Fisher Scientific, 

UK) into the rapid mix tank. Both pilot plants were run using a ferric sulphate 

coagulant (Ferripol XL, EA West, UK), with varying doses between 5 and 15 mg.l
-1 
as 

Fe (0.09-0.18 mMol as Fe). The DA20 was also operated using aluminium sulphate 
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(Alum, EA West, UK) during the August/September 2004 period, at a dose of 10 

mg.l
-1
 as Al (0.37 mMol as Al). 

 

For all pilot trials, coagulant dose and pH were varied in order to manipulate the zeta 

potential. Once conditions had stabilised, samples were taken in triplicate and 

analysed for UV absorbance at a wavelength of 254nm (Jenway 6505 UV/Vis 

spectrophotometer, Jenway, UK), pH, DOC, in some cases TOC, (Shimadzu TOC-

5000A analyser in the UK and Sievers Model 800TOC analyzer at FCWTF ), and 

high performance size exclusion chromatography (HPSEC) (Shimadzu VP series, 

Shimadzu, UK).  The HPSEC analysis used a TSK gel, GW3000SW column, 7.5mm 

internal diameter and 30cm in length. The guard column was also TSK, 7.5mm 

internal diameter and 7.5cm in length (Tsoh Biosep GmbH, Stuttgart, Germany). All 

samples were filtered to remove suspended solids before UV254, DOC and HPSEC 

analysis (Glass microfibre in the UK and Durapore membrane filter at FCWTF, Fisher 

Scientific). The surface charge was measured with a zetasizer (Malvern Instruments, 

UK) at 20°C. The zetasizer yields estimates and standard deviations of the zeta 

potential directly, and all measurements were conducted in triplicate on unfiltered 

samples. The general accuracy of the zetasizer was determined using standard 

solutions (Malvern Instruments, UK.) 

 

5(B).2.3 Raw water monitoring  

Raw water characteristics were monitored daily at FCWTF, including HPSEC, DOC 

and TOC analysis, throughout the rapidly changing run-off period. Two raw Poudre 

river water samples, one collected before the snowmelt run-off and the second 

collected at the height of run-off, were fractionated by XAD resin adsorption 

techniques into their hydrophobic (HPOA) and hydrophilic (HPIA) components using 

a method adapted from Malcolm and MacCarthy (1992). An Amberlite XAD-7HP 

and Amberlite XAD-4 resin pair was used (Rohm and Haas, PA, USA). This method 

has been previously used on raw water collected from Albert reservoir (Fearing et al., 

2004; Goslan et al., 2002). The hydrophobic fractions were then separated further by 

reducing the pH to 1 and precipitating the humic acid fraction (HAF), with the fulvic 

acid fraction (FAF), remaining in the supernatant. The non-adsorbed fraction was 

categorised as hydrophilic non adsorbed (HPINA).  
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The charge density of both the run-off and pre run-off raw water samples was 

determined using the zetasizer and the cationic polymer 

polydialyldimethylammoniumchloride (PolyDADMAC), with a MW of 100,000-

200,000 and a calculated charge density of 6.2 meq.g
-1
 (Sigma-Aldrich, UK). A 

beaker containing one litre of Poudre river water, was placed on a magnetic stirrer. 

Varying amounts of 0.1% PolyDADMAC solution were added to the beaker, with the 

pH adjusted to 7 with 0.1 M NaOH, and the zeta potential measured until the point of 

zero charge, or IEP, had been established. This was then repeated twice and the 

volume of PolyDADMAC solution used to calculate the charge density of the raw 

water both per litre and per mg of DOC. The process was then repeated for each of the 

NOM fractions, at a concentration of 25 mg.l
-1
 in 100 ml of deionised water. The 

HPINA fraction was only available in an unconcentrated form, between 1-2mg.l
-1
 

DOC, and a 0.001% PolyDADMAC solution was therefore used for charge density 

determination.  

 

All raw water analysis, including fractionation and charge density determination, was 

repeated with Albert reservoir water samples from January and August 2004 when the 

DOC increased from 8.3 to 13.3 mg.l
-1
. The charge density of the filtered raw water 

samples was also determined, using a 1 µm glass microfibre filter (Fisher Scientific, 

UK) and filtering to 1µm was shown to have no effect on the charge density of the 

sample. 

 

5(B).3 Results and Discussion 

5(B).3.1 Raw water composition  

Raw water characteristics were monitored at both sites throughout the investigation 

period. At FCWTF, over the period of April to June 2004, the main increase in 

organic levels occurred over a relatively short period of time. DOC concentrations 

increased from 4.4 mg.l
-1
 to 7.4 mg.l

-1
 DOC between the 4

th
 and the 13

th
 May 2004 

(Figure 5(B).1). The DOC at FCWTF contributed over 90% of the TOC, 

corresponding to in increase in TOC from 4.5 mg.l
-1
 to 7.7 mg.l

-1
 for the same period. 

Comparison of 2003 and 2004 data reveal some annual variation with the TOC 

concentration in 2003 reaching a peak of 11.5mg.l
-1
. At Albert reservoir DOC 

concentrations also show both seasonal and annual variation. In 2003 a low of 4.3 
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mg.l
-1
DOC was recorded in September 2003, rising to 8.6 mg.l

-1
 following heavy 

rains at the beginning of October. However, in 2004 concentrations remained above 8 

mg.l
-1
 for the majority of the year and rose to between 13.3-13.8 mg.l

-1
 following 

heavy rains in August 2004 (Table 5(B).1).  

0

2

4

6

8

10

12

14

16

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
O
C
 (
F
C
W
T
F
) 
a
n
d
 D
O
C
 (
A
lb
e
rt
 )
 m
g
.L
-1

FCWTF 2003 FCWTF 2004 Albert 2003 Albert 2004
 

Figure 5(B).1: Raw water TOC and DOC levels for FCWTF and Albert during 2003 

and 2004. 

 

Table 5(B).1: Raw water and NOM fraction characteristics 
 

Sample 

date 

Location HAF 

mg.l
-1
 

(meq.g
-1
) 

FAF 

mg.l
-1
 

(meq.g
-1
) 

HPIA 

mg.l
-1
 

(meq.g
-1
) 

HPINA 

mg.l
-1
 

(meq.g
-1
) 

Raw water  

mg.l
-1
 

(meq.g
-1
) 

Apr-02 Albert 1.5 

(6.8) 

 

3.9 

(4.2) 

0.8 

(0.06) 

1.3 7.5 

Jan-04 Albert 1.2 

(4.3)  

 

4.9 

(4.5)  

1.0 

(1.5)  

1.2 8.3 

(2.7)  

Aug-04 Albert 4.9 

(3.7) 

 

2.9 

(3.5) 

2.9 

(1.2) 

2.5 13.3 

(3.7)  

Apr-04 FCWTF 0 2.8 0.6 1.0 4.4 

(2.0)  

 

May-04 FCWTF 1.7 3.8 

(3.7) 

0.7 1.2 7.4 

(3.9)  

 

HPSEC analysis, of the raw waters under investigation, identified an increase in the 

higher MW components for FCWTF during the spring snowmelt run-off, when the 
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DOC increased from 4.4 to 7.4 mg.l
-1
 (Figure 5(B).2). This was demonstrated by a 

shift in position of the main peak from an elution time of 8.5 to 8.1 minutes, 

corresponding to an increase in MW distribution from <3 kDa to 3-4 kDa, 

respectively (Pikkarainen et al., 2004). In comparison, the samples from Albert 

reservoir also represent a shift in MW distribution when the DOC concentration 

increases from 8.3 to 13.3 mg.l
-1
.
  
  However, in this case, it represents an increase in 

the lower MW material. The position of the main peak did not change significantly, 

increasing from 8.0 to 8.2 minutes elution time (4-5 kDa), although the magnitude of 

the peak did increase slightly. However, this coincided with an increase in peaks at 

the later elution times of 8.5, 9.0, 9.8 and 10.2 minutes (3-0.5 kDa). The Albert 

HPSEC profiles also identified a peak at approximately 5.8 minutes (>5 kDa), which 

was not present with either of the FCWTF samples.  
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Figure 5(B).2: HPSEC chromatograms for FCWTF and Albert WTW raw waters 

during high and low TOC and DOC periods. 

 

Raw water fractionations revealed that at FCWTF the increase in organics 

corresponds to an increase in the hydrophobic content of the water (Figure 5(B).3). 

Interestingly, there was no HAF present when the DOC was 4.4 mg.l
-1
, although when 

the DOC increased to 7.4 mg.l
-1
, the increase occurred principally through the 

existence of a new HAF fraction which contributed 1.7 mg.l
-1
 of the increased DOC 

(Table 5(B).1). The total hydrophobic fraction (HAF and FAF) at FCWTF increased 

from 2.8 mg.l
-1
 to 5.5 mg.l

-1
 whereas the hydrophilic fractions (HPIA and HPINA) 
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only increased from 1.6 to 1.9 mg l
-1
. In contrast, results from Albert revealed a 33% 

increase in hydrophobic material from 5.9 mg.l
-1
 to 7.8mg.l

-1
, but more importantly a 

145% increase in hydrophilic material from 2.2 to 5.4 mg.l
-1
, as the total DOC 

increased from 8.3 to 13.3 mg.l
-1
.  

 

The observed changes can be related to the changes in the condition in the catchment 

throughout the year. For instance, variations in total organic levels, with regards to 

snowmelt run-off, depends on the moisture content of the snowpack just prior to the 

spring melting period. In 2003, the snow water equivalent in the FCWTF catchment 

was over 300% of average, resulting in a TOC peak of 11.5 mg.l
-1
 during the height of 

run-off.   In 2004, the snow water equivalent was only 53% of average, resulting in a 

TOC peak of 7.7 mg.l
-1
. Dissolved organic matter in peat drainage systems varies in a 

more complex manner, exhibiting both seasonal and year by year variations, and 

affected by both the duration and intensity of rainfall. Consequently, Albert WTW 

samples exhibited a greater annual variation compared to FCWTF, with a low of 4.5 

mg.l
-1
 in September 2003 at the end of a dry summer period, compared to a high of 

13.8 in August 2004 at the end of a relatively wet summer. Elucidating this 

relationship, Scott et al., (1998) observed a 55% reduction in the production of 

dissolved organic matter (DOM), from 15 to 7 g.m
-2
.a

-1
 when the annual rainfall 

decreased from 1299 mm to 904 mm. Comparison with published data reveals similar 

levels and variation in DOC across different seasons for river and lake systems from 

both Europe (Ratnaweera et al., 1999) and the United States of America (Aiken et al., 

2004). The Santa Ana river for example, exhibited DOC variations between 2.2 mg.l
-1
 

and a high of 9 mg.l
-1
during the period from June 2000 to May 2002 (Aiken et al., 

2004). 
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Figure 5(B).3: Fractionation data, before and after increase in organics, from Albert 

(January and August) and FCWTF (April and May). 

 

With regards to NOM fraction make-up during the period of elevated organics, 

FCWTF raw water contained a higher proportion of hydrophobic NOM (74%) 

compared to Albert WTW samples (59%). Carlson et al. (1994) also observed an 

increase in the higher MW hydrophobic content (HAF and FAF) of the water due to 

snowmelt run-off at FCWTF, from 33% to 50% during snowmelt run-off. However, 

the hydrophobic content may have been lower as the total TOC concentration was 

reported to be significantly lower in 1994, at approximately 4.8 mg.l
-1
 compared to 

7.7 mg.l
-1
 during the 2004 run-off period. Therefore the results for FCWTF are in 

agreement with Malcolm (1985) who stated that elevated organic levels are likely to 

coincide with a higher hydrophobic proportion of NOM. At Albert however, this was 

not the case as the increased organic concentrations were due to an increase in both 

the hydrophobic and hydrophilic content of the water. Similarly, Scott et al. (1998), 

looked at the seasonal variations in NOM obtained from a UK upland peat catchment 

system. They observed variations in the hydrophilic content of the water of between 

20 and 80%, with the higher proportions occurring during the summer months. This 

can be compared to a variation of 27% to 41%, of the total DOC, between January 

and August in the current study. The increases in hydrophilic content following the 

initial periods of heavy rain during the late summer and autumn were attributed to its 

relative ease of dissolution, whereas the hydrophobic material is leached more slowly.  
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5(B).3.2 Charge density measurements 

Charge density measurements of the raw water samples in the current study were 

shown to increase as the organic concentrations increased. For example, in relation to 

water fractionated from samples collected from FCWTF, the charge demand of the 

raw water increased from 0.009 meq.l
-1
 when the DOC concentration was 4.4 mg.l

-1
, 

to a charge density of 0.029 meq.l
-1
 when the DOC concentration was 7.4 mg.l

-1
 

(Table 5(B).1). A similar increase was observed with the samples from Albert when 

the charge demand increased from 0.023 meq.l
-1
 in January, when the DOC 

concentration of the sample was 8.3 mg.l
-1
, to 0.049 meq.l

-1
 when the DOC 

concentration of the sample had increased to 13.3 mg.l
-1
. Comparing both water 

sources reveal similar charge densities for both water sources, at initial values of 2.0 

and 2.7 meq.g
-1
DOC for FCWTF and Albert respectively, increasing to 3.7-3.9  

meq.g
-1 
DOC during the period of elevated organics. Green (1997) also calculated the 

colloid charge capacity (CCC) of blended Horsetooth reservoir and Poudre river water 

at FCWTF, using a fluorescence polarization colloid titration method. The CCC was 

found to increase from 2 to 2.5 meq.g
-1
 DOC, during the 1997 spring snowmelt run-

off period. This run-off value is lower than calculated during this study for the 2004 

run-off, which was solely for Poudre river water. According to Carlson et al. (1994), 

the blended water studied by Green (1997) has been shown to contain a lower 

hydrophobic content which would explain the reduced charge. Furthermore, Collins et 

al. (1986), also achieved similar values when using a potentiometric titration method 

to determine the carboxylic acidity of the hydrophobic organic matter for a number of 

raw waters and fulvic acid components. For instance, charges of 0.035 meq.l
-1 
and 

0.030 meq.l
-1
 were determined for the Grasse River and Floridan aquifer samples 

respectively. 

 

Charge density measurements of the raw water fractions in the current study revealed 

the majority of the total colloidal charge to exist in the hydrophobic fractions. 

Although the charge density for the FAF fractions of both FCWTF and Albert WTW 

were similar at 3.7 meq.g
-1
DOC and 3.5-4.5 meq.g

-1
 DOC respectively (Table 5(B).1).  

These values are in agreement with other reported studies where humic and fulvic 

waters have shown charge densities ranging between 2 and 15 meq.g
-1
DOC (Kam and 

Gregory, 2001; .Scott et al., 2001; Edzwald, 1993; Collins et al., 1986). The charge 

density of the hydrophilic fractions however, was significantly lower. For instance the 
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charge density of the HPIA fraction varied between 0.06 and 1.5 meq.g
-1
DOC. There 

is also a significant difference between the charge density result for the April 2002 

HPIA, at 0.06 meq.g
-1
DOC, and both the January and August 2004 HPIA samples at 

1.5 and 1.2 meq.g
-1
DOC respectively, obtained from the Albert fractionation. HPSEC 

chromatograms of the HPIA fractions (Figure 5(B).4) show a significant shift in the 

MW distribution for the April 2002 sample. The HPSEC chromatograms for Albert 

HPIA samples show the main peak at an elution time of 6.9 minutes for both the 

January and August 2004, corresponding to a MW of >5 kDa. However, with regards 

to the April 2002 HPIA fraction, HPSEC peaks have been identified at 8.9, 9.4, 10.2 

and 12.1 minutes (3-<0.5 kDa). In all cases, the charge density for the HPINA fraction 

was below the level of detection. Edzwald (1993) reported similar findings for both 

hydrophilic bases and neutrals and found that the acid fraction was at least an order of 

magnitude smaller that the hydrophobic fractions. Relating these findings and their 

influence on coagulation requirements, the differences in carboxylic acidity or charge 

density will therefore influence the coagulant demand and the water treatment process 

and a higher charge is associated with the larger MW fractions (Collins et al., 1986; 

Ratnaweera et al., 1999). These variations however, cannot be detected by simple 

DOC measurement. 
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Figure 5(B).4: HPSEC chromatograms for HPIA fractions. 
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5(B).3.3 Operational envelope  

An operational envelope can be described where turbidity and DOC removal is high 

and effluent concentrations are low and stable in relation to the zeta potential of the 

NOM-coagulant complexes. The operational envelope for DOC removal is often over 

a narrower zeta potential than for turbidity as shown by normalised plots taken from 

the DA20 during trials in March 2004 (Figure 5(B).5). To illustrate with regard to the 

negative zeta potential boundary, turbidity residuals remained stable as the zeta 

potential increased from 0 mV to –15.5 mV, whereas both the DOC and UV254 

residuals increased gradually over the same zeta potential range. This is in agreement 

with Dennett et al. (1995), who state that optimising for DOC removal also produces 

good turbidity removal (Dennett et al., 1995). Therefore, with regards to this research, 

results will be discussed in terms of the conditions required for optimum DOC 

removal. Direct comparison of the residual DOC concentration with the zeta potential 

reveals that residual concentrations are minimised at zeta potentials near zero. At 

FCWTF, coagulating with ferric and operating at a coagulation zeta potential of 

between -10 and +5 mV, the residual DOC remained stable at 1.5 ± 0.2 mg.l
-1
. 

Operating outside this envelope resulted in residuals which were no longer stable and 

increased rapidly. When operating within the same operational envelope, similar 

results were also observed at Albert WTW. For instance, when operating the DA20 in 

August and September 2004, if the zeta potential remained between the values of -10 

and +5 mV, the residual DOC was stable at 2.1 ± 0.3 mg.l
-1
. These results are in 

agreement with previously suggested zeta potential ranges for optimum organic and 

turbidity removal, ranging from +10 to -10 mV. However, the lack of clear correlation 

between zeta potential and optimum coagulation for different systems suggests that 

mechanisms other than charge neutralisation, which are not identified by zeta 

potential monitoring, may also be in operation (Ratnaweera et al., 1999). 
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Figure 5(B).5: Normalised plot of DOC, UV254 absorbance and turbidity residual 

against zeta potential for the DA20 pilot plant after clarification. 

 

5(B).3.4 Aluminium vs. iron  

Trials were undertaken simultaneously on the two identical trains of the FCWTF pilot 

plant, during the run-off period when the TOC was approximately 6 mg.l
-1
, in order to 

compare the performance of aluminium sulphate (alum) and ferric coagulants. Similar 

experiments were also carried out at Albert WTW with the DA20 during August and 

September 2004. Results from both coagulants display similar profiles for DOC 

residuals with respect to zeta potential. Within the optimum operational envelope, as 

identified previously at between -10 and +5 mV, DOC residuals remained stable at 

2.1± 0.5 mg.l
-1
 and 2.9± 0.5 mg.l

-1
 for the FCWTF and DA20 pilot plants, 

respectively, with alum. However, a lower DOC residual was possible with the ferric 

coagulant, removing 0.5- 0.8 mg.l
-1
 more DOC than alum (Figure 5(B).6). Overlaying 

data from clarified spot samples obtained from a number of upland, reservoir and 

river based water works across the UK, also follows a similar trend, depending on 

whether iron or aluminium is used in the coagulation process.  Note, however, that 

coagulation at these sites was not optimised using zeta potential at the time of 

sampling. 
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Figure 5(B).6: DOC residual versus zeta potential for: FCWTF and DA20 pilot plant 

trials coagulated with both ferric and alum overlaid with additional clarified water 

spot samples from a range of water treatment works across the UK. 

 

Similar findings were reported by Bell-Ajy et al. (2000), who looked at 16 different 

sites with initial TOC concentrations ranging from 1.5 to 16.3 mg.l
-1
, and found it was 

possible to remove on average 0.86 mg.l
-1
 more DOC with ferric chloride than alum. 

In fact, a number of authors have achieved higher DOC removal with ferric salts 

compared to aluminium salts (Hwang et al., 2001; Edzwald and Tobiason, 1999). 

Ratnaweera et al. (1999) looked at the coagulation of eight Norwegian high TOC 

waters and found that optimised alum coagulation produced fewer, more positively 

charged flocs than ferric based coagulants thus leading to a reduced number of 

collisions. Vigle-Ritter (1999), state that floc structure may be affected by coagulation 

pH, with alum operating at a higher pH compared to ferric, as increasing the 

coagulation pH produces a more loosely connected NOM aggregate. However, 

although there is little evidence in the literature to explain the difference in floc 

properties of alum and ferric based systems, it has been suggested that the improved 

performance is due to the fact that alum based coagulants are more selective and ferric 

can remove more DOC at higher doses, especially when treating elevated levels of 

organics (Budd et al., 2004; Kastl et al., 2004).  
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5(B).3.5 Zeta potential 

Zeta potential profiles for both coagulants indicate that achieving a certain zeta 

potential should produce a given DOC residual, regardless of the combination of 

coagulant dose or pH. This was demonstrated at FCWTF, when ferric and alum doses 

were increased and the coagulation pH was varied, in order to maintain a constant zeta 

potential of +4 for alum and +3 for ferric (Figure 5(B).7). The DOC residual remained 

constant at approximately 2.1 ± 0.1 mg.l
-1 
for a pH range 4.9-6.5 and an alum dose of 

32-44 mg.L.
-1 
(0.29-0.4 mg.l

-1
 as Al).  Increasing the ferric dose from 5 to 15mg.l

-1
 (as 

Fe) also had no effect on the DOC residual which remained at 1.4 ± 0.1 mg.l
-1
. 

Similar results were also achieved when a negative zeta potential was maintained. For 

instance, when the zeta potential was maintained at -4 mV, the DOC residual 

remained constant at approximately 2.5 ± 0.2 mg.l
-1
 for a pH range 6.3-7.0 and an 

alum dose
 
of 20-40 mg.l

-1
 (1.8-3.6 mg.l

-1
 as Al). Once optimal removal has been 

achieved, increasing the coagulant dose further, whilst maintaining the same zeta 

potential, did not produce increased removal. Krasner et al. (1994) carried out jar tests 

on California State Project Water at incremented alum doses from 22 to 111 mg.l
-1
. 

They also found that after a certain dose of 47 mg.l
-1
 (as alum), there was a plateauing 

of DOC removal. With regards to pH, Hundt and O’Melia (1988) achieved a constant 

80% DOC fulvic acid removal for the pH range 6-8 when the alum doses were 

increased accordingly. These findings promote the theory that attaining the optimum 

zeta potential is more important for achieving optimal DOC removal than separately 

considering specific values of coagulation pH and coagulant dose. 
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Figure 5(B).7: Coagulation pH versus DOC residual and coagulant dose for FCWTF 

samples operating within optimum zeta potential range +4 (alum) and +3 (ferric). 

 

5(B).3.6 DOC Residual 

Comparison of results from the different water samples, all coagulated with ferric, 

present similar profiles with respect to zeta potential (Figure 5(B).8). However, when 

operating within the operational envelope of -10 to +5 mV, the residual DOC 

remaining at optimum has been shown to differ. The difference was greatest with the 

trials using water from Albert WTW. In January 2004 a residual of 1.1 ± 0.1 mg.l
-1
 

was achieved, compared to 2.1 ± 0.3 mg.l
-1
 in August and September 2004. The 

observed increase in residual DOC coincided with an increase from 1.2 to 2.5 mg.l
-1
 

over the same period in terms of the polar hydrophilics (HPINA). In contrast, the 

residual concentration at FCWTF exhibited less variation over the period studied, at 

2.0 mg.l
-1 
in April and 2.2 mg.l

-1 
at the height of run-off although the raw water 

changed from 4.4 mg.l
-1 
to 7.4 mg.l

-1
. However, in this case, fractionation data 

revealed that HPINA content only increased from 1.0 to 1.2 mg.l
-1
. Similar results 

have been previously reported by Krasner et al. (1994), when they blended two waters, 

both with low MW DOC concentrations of 1.3- 1.4 mg.l
-1
, and found the residual after 

alum coagulation was 1.0-1.3 mg.l
-1
 DOC, regardless of the blend. Further, a number 

of authors have identified that the higher MW, more hydrophobic NOM fraction is 

generally more sorbable and easily removed during coagulation, and there is also a 
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non sorbable fraction, with more hydrophilic tendencies, that is not (Randtke, 1988; 

Owen et al., 1993; Krasner et al., 1994; Edwards, 1997; White et al., 1997) 

Combining the work indicates that the polar hydrophilic level in the raw water 

provides a useful guide as to the likely residual DOC concentration achievable 

through coagulation with metal salts. Further, as the hydrophobic components contain 

the majority of the charged species the concentration of this fraction gives an 

indication of the likely coagulant demand. Consequently, fractionation of raw waters 

appears a useful tool to understand the demands and limitations of coagulation of 

NOM.  
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Figure 5(B).8: DOC residual versus zeta potential for all water samples coagulated 

with ferric. 

 

5(B).4 Conclusions 

Results from this investigation indicate the existence of an operational window of zeta 

potential (-10 to +5 mV) within which DOC removal efficiencies are high and effluent 

DOC concentrations are minimized. This operational window appears unaffected by 

changing organic concentrations and characteristics. However, the increased 

hydrophobic content of the water, and the associated increase in raw water charge 

density, results in an increased coagulant demand required to minimize the surface 

charge of the organics. The variation in NOM fraction make-up and the coagulant 
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used also influence the achievable residual DOC concentration at optimum zeta 

potential, especially when there is a portion of the hydrophilic NOM which cannot be 

removed through conventional coagulation processes, with either aluminium or iron 

based coagulants. 
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5(C) Coagulation of NOM: Linking character to treatment. 

 

EMMA L. SHARP, SIMON A. PARSONS and BRUCE JEFFERSON. 

School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 OAL, 

UK.  

 

Abstract  

The paper presents an overview and discussion on the link between NOM character 

and its treatability by coagulation. Trials were conducted on a series of bench scale 

and pilot plant trials on three source waters: Two from UK moorland catchments and 

one from a US snowmelt source. Overall the work demonstrates the importance of the 

polarity balance and the charge density of the NOM contained within the source 

water. The hydrophobic content controls the coagulant demand such that variation in 

the demand between sources or sampling periods can be accounted for by changes in 

the hydrophobic content and its charge density. The raw water hydrophilic content, 

and specifically the non acid fraction, provides a useful indicator of the achievable 

residual. Analysis of coagulation performance revealed a clear relationship between 

zeta potential and residual DOC. For each source an operational zeta potential range 

exists within which the residual concentration is optimal. Comparison of the ranges 

achieved during each trial demonstrated that a communal range between -10 and +3 

mV exists for all waters thus providing a useful guide range for operational control.  

 

Keywords 

Coagulation, Natural organic matter, Zeta potential.  
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5(C).1 Introduction 

Natural waters throughout the world contain natural organic matter (NOM) which is 

composed of a diversity of compounds with respect to acidity, molecular weight and 

charge density (Edzwald, 1993). NOM is known to vary in terms of its organic 

concentration and character due to both temporal and spatial variations between 

sources (Scott et al., 2001). Process options for the treatment of NOM are well 

established and for the most part produce stable high quality product waters. However, 

a number of plants are experiencing difficulties during specific times of the year 

associated with periods of elevated organics due to heavy rainfall or snowmelt. 

During these periods of elevated organics the current treatment streams are failing to 

maintain quality and throughput especially in terms of dissolved organic carbon 

(DOC), trihalomethane formation potential (THMFP) and colour.  

 

NOM is traditionally removed by coagulation with trivalent metal ions. The 

coagulation mechanisms that are thought to prevail with regards to NOM removal, are 

charge neutralisation for colloidal material and charge complexation for soluble 

compounds. Accordingly, optimisation of the coagulation process occurs under acidic 

conditions between the isoelectric point (IEP) of the coagulant and the NOM; pH 4.5-

5.5 for iron based system and pH 5-6 for aluminium based coagulants. Understanding 

of the specific mechanisms and control points is much less well understood due to a 

paucity of knowledge on which individual species are present, the variation in all the 

possible species as a function of time and location, their specific interaction with the 

coagulant and how the combination of all the possible components interact. 

Nevertheless at a practical level a lot of information can be gained by utilising 

relatively straightforward diagnostic techniques to understand the link between 

character and treatability.  

 

The current paper describes and discusses this link through three case study sites 

situated either in the USA (snowmelt water) or the UK (2 moorland waters). All three 

sources can be described as high colour, low turbidity, low alkalinity source waters. 
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5(C).2 Materials and Methods 

Water was collected from three sites: Fort Collins water treatment facility (FCWTF), 

Colorado, USA which experiences changes in organic concentration due to spring 

snowmelts between April and June, Albert water treatment works (WTW), Halifax, 

and Bamford WTW, Derbyshire, both in the UK which experience elevated organics 

following periods of heavy rainfall after the summer. Jar tests were conducted with 

Albert WTW and Bamford WTW water and pilot plant trials were conducted for 

FCWTF and Albert WTW water.  

 

5(C).2.1 Pilot plant facilities 

The FCWTF Pilot included two parallel trains designed to reflect the operational 

characteristics of full-scale treatment, including rapid mix, 3 stage flocculation and 

lamella plate settling (Figure 5(C).1). Raw water was pumped into each train at a flow 

of 1.82 M
3
.h

-1
. Lime (Mississippi Lime Company, MO, USA) and carbon dioxide 

(Fisher Scientific, USA, 10-752-1G regulator and Omega, USA, model FMA1916 gas 

mass flow controller) were added to the raw water before it was split between the two 

trains, in order to both achieve an alkalinity of 25-35mg.l
-1
 as CaCO3 and manipulate 

the coagulation pH.
 
The pilot plant was run using ferric sulphate at doses ranging 

from 10.4 to 17.4 mg.l
-1
 (3-5 mg.l

-1
 as Fe) (General Chemical, USA).  

 

Two pilot plants were operated using raw water from Albert reservoir: one was a         

450 L.h
-1
 plant including a rapid mix stage followed by two stage flocculation. The 

other pilot plant, which was operated in March and August 2004 at a flow of 15 m
3
.h

-1
 

included inline static mixing of the coagulant and 25% Calic suspension of pH control 

(Buxton Lime, UK). This was followed by a three stage flocculation and dissolved air 

flotation. Both pilot plants were run using ferric sulphate (EA West, UK) with doses 

varying between 5 and 15mg.l
-1
 as Fe (0.09 mMol-0.18 mMol as Fe). A more detailed 

description of all three pilot plants has been published previously (Parsons et al., 

2005). Bench scale trials were undertaken in accordance with procedures outlined in 

detail elsewhere (Sharp et al., 2004) and involved coagulation with ferric sulphate 

with an initial rapid mix period of 1.5 minutes at 200 RPM and a slow stir for 15 

minutes at 30 RPM after which the jars were left to settle for an additional 20 minutes 

before taking the samples, which were extracted from the centre of the jar.  

 



Chapter 5(C): Pilot Scale Coagulation  Paper 9 

Page 199   

5(C).2.2 Analysis 

All samples were filtered to remove suspended solids before DOC and high 

performance size exclusion chromatography (HPSEC) analysis (Glass microfibre in 

the UK and Durapore membrane filter at FCWTF, Fisher Scientific). DOC, 

(Shimadzu TOC-5000A analyser in the UK and Sievers Model 800TOC analyzer at 

FCWTF) and high performance size exclusion chromatography (HPSEC) (Shimadzu 

VP series, Shimadzu, UK) were conducted on both raw and fractionated samples.  

The HPSEC analysis used a TSK gel, GW3000SW column, 7.5mm internal diameter 

and 30cm in length. The guard column was also TSK, 7.5mm internal diameter and 

7.5cm in length (Tsoh Biosep GmbH, Stuttgart, Germany). The surface charge was 

measured with a zetasizer (Malvern Instruments, UK) at 25°C. 

 

5(C).2.3 Fractionation 

Raw water samples were fractionated by XAD resin adsorption techniques into their 

hydrophobic (HPOA) and hydrophilic (HPIA) components using a method adapted 

from Malcolm and MacCarthy (1992). An Amberlite XAD-7HP and Amberlite XAD-

4 resin pair were used (Rohm and Haas, PA, USA). The hydrophobic fractions were 

then separated further by reducing the pH to 1 and precipitating the humic acid 

fraction (HAF), with fulvic acid fraction (FAF) remaining in the supernatant. The 

non-adsorbed fraction was categorised as hydrophilic non acid (HPINA).  

 

5(C).2.4 Charge density 

The charge density of the raw water samples was determined using the Malvern 

zetasizer and PolyDADMAC (Sigma-Aldrich, UK). A beaker containing 1L of raw 

water and a magnetic stirrer bar were placed on a magnetic stirrer. Varying amounts 

of 0.1% PolyDADMAC were added to the beaker, with the pH adjusted to 7 with 

NaOH, and the zeta potential measured until the point of zero charge or IEP had been 

established. This was then repeated twice and the volume of PolyDADMAC solution 

used to calculate the charge density of the raw water both per litre and per mg of DOC. 

The process was then repeated for each of the NOM fractions, at a concentration of 25 

mg.l
-1
 in 100 ml of deionised water. 
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5(C).3 Results and Discussion 

5(C).3.1 Characterisation 

The DOC of the three water sources varied from a minimum of 4.4 mg.l
-1
 in April 

2004 (FCWTF) to a maximum of 13.3 mg.l
-1
 in August 2004 (Albert WTW). The 

most significant increase in DOC occurred after either the first period of heavy rain in 

autumn in the UK or snowmelt in spring in the USA. Fractionation of the raw waters 

revealed that the majority of the organic material was hydrophobic in character with 

on average 66-75% of the organic material being accounted for by the HAF and FAF 

fractions (Figures 5(C).1, 5(C).2). Similar findings have been reported for NOM 

source waters fractionated in Europe (Ratnaweera et al., 1999) and the USA (Aiken et 

al., 2004). In general, the increased DOC was accounted for by changes in the 

hydrophobic content in the water in line with previous findings (Malcolm, 1985). 

However, after the first heavy storm events during the autumn in the UK, the increase 

occurred by an equal amount in both hydrophobic and hydrophilic fractions. To 

illustrate, after the first heavy rainfall in the autumn of 2003 the increased DOC was 

generated by a 1.1-1.3 mg.l
-1
 increase in hydrophobic material and a 1-1.1 mg.l

-1
 

increase in hydrophilic material. The consequence of which was to alter the polarity 

balance of the water from a relative hydrophilic content of 25 to 40%. Such 

observations are consistent with the work of Scott et al. (2001) which has shown that 

the initial increase in hydrophilic material after the first storm is attributed to its 

relative ease of dissolution relative to hydrophobic material, resulting in a faster 

release rate.  
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Figure 5(C).1: Raw water NOM fraction make 

up at Albert WTW 

Figure 5(C).2: Raw water NOM fraction make up 

at Bamford WTW and Fort Collins 

 

The findings are supported by analysis of HPSEC chromatograms of raw water 

samples before and after increased organic events. At the UK sites, the autumnal rain 
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event caused an increased absorbance but no shift in the primary peak (c5.7 minutes) 

combined with a decreased absorbance and shift in elution time from c7.7 to c8.5 

minutes in the secondary peak. The shift in elution time represents an approximate 

decrease in molecular weight (MW) from 4-5 to 3-4 kDa (Figure 5(C).3). In contrast, 

the equivalent chromatograms for the snowmelt events in the USA revealed a general 

increase across larger MW species (<9 minutes) and no significant change at longer 

elution times (small MWs) (Figure 5(C).4). 
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Figure 5(C).3: HSPEC of the raw water 

samples from Albert WTW and Bamford WTW 

across a storm event 

Figure 5(C).4: HSPEC of raw water samples 

from Fort Collins WTF across a snowmelt event 

 

Charge characterisation of the raw waters revealed the total charge load to vary 

between 0.009 and 0.029 meq.l
-1
 at Fort Collins WTF, and between 0.023 and 0.047 

meq.l
-1
 at Albert WTW (Table 5(C).1). The observed changes occurred because of a 

combined change in the DOC and the charge density of the water indicating 

stoichiometric dosing/monitoring of the DOC does not provide a control strategy in 

line with the nature with which the water changes. Analysis of the individual fractions 

demonstrates that the majority of the colloidal charge resides in the hydrophobic 

fractions. To illustrate, the average charge densities of the HAF, FAF and HPIA 

fractions were 5.1±1.3, 3.6±0.6 and 1.0±0.6 meq.g
-1
DOC respectively which are 

similar to previous reported levels (Tipping, 1993). Further, the charge density of the 

HPINA fraction was below the level of detection in all cases which concurs with the 

findings of Edzwald (1993). Conversion of the charge densities to load reveals that 

the hydrophilic material makes up a maximum of 11 % of the total charge demand. 

The implications of the findings are that the charge character of raw waters and hence 

their coagulant demand is controlled by the changes in the hydrophobic fraction 

within the water with regard to both its concentration and its character.  
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Table 5(C).1: Charge density (meq.g
-1
DOC) of the raw water samples and NOM 

fractions 
 

Date Location DOC  
(mg.l

-1
) 

HAF FAF HPIA HPINA Raw water 

Averages   5.1 3.6 1.0 n.d  

Nov 00 Albert 10.2 - 3.1 - - - 

Apr 02 Albert 7.5 6.8 4.2 0.06 n.d. - 

Oct 02 Albert 10.4 5.4 4.2 - - - 

June 03 Albert 8.9 - 3.2 - - - 

June 03 Bamford 7.2 - 3.7 - - - 

Sep 03 Albert 6.6 6.2 2.5 - - - 

Sep 03 Bamford 4.5 - 3.0 - - - 

Jan 04 Albert 8.3 4.3 4.5 1.5 n.d. 2.7 (0.023 meq.l
-1
) 

Apr 04 FCWTF 4.4 - - - - 2.7 (0.009 meq.l
-1
) 

May 04 FCWFT 7.4 - 3.7 - - 3.8 (0.029 meq.l
-1
) 

Aug 04 Albert 13.3 3.7 3.5 1.2 n.d. 3.7 (0.049 meq.l
-1
) 

Oct 04  Albert 13.3 3.5 4 1.2 n.d. 3.5 (0.047 meq.l
-1
) 

n.d. below the level of detection. 

- insufficient sample to determine charge density. 

 

5(C).3.2 Zeta vs. removal 

Analysis of the performance of the coagulation process revealed a clear relationship 

between zeta potential and residual DOC concentration. In each case a range of zeta 

potentials exist, termed operational windows, within which the residual DOC is 

optimised and stable for both jar tests (Figure 5(C).5) and pilot scale trails (Figure 

5(C).6). The exact range of zeta potentials and residual obtainable is not constant 

across all the waters sampled. However, a number of common features exist. The 

operational windows are not symmetrical around the zero zeta potential point. Instead, 

the zeta potential range for optimum residual extended to only small positive values 

but much greater negative values. For example, in the case of Albert water sampled in 

September 2003 a DOC residual of 0.8± 0.1 mg.l
-1
 was obtained within the zeta 

potential range of +2.9 to -4.3 mV. The non symmetrical shape of the curves indicates 

the importance of patchwork agglomeration where only partial neutralisation of the 

charge is required (Ratnaweera et al., 1999) and the large negative values that still 

provide optimal treatment suggest the potential importance of polymer bridging from 

the large MW material. No direct correlation could be found between the exact limits 

of the operational window and the characteristics of the source water with the 

exception that the more hydrophilic waters tended to extend to greater positive value 

before performance deterioration was observed and this remains an area of 

investigation. Across all the sites and sources tested a value of -10 mV was observed 
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to be within all the operational windows and potentially represents a safe target 

threshold value for coagulation monitoring and control. 
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Figure 5(C).5: DOC residual vs zeta potential 

(Jar tests) 

Figure 5(C).6: DOC residual vs zeta potential 

(Pilot plants) 
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Figure 5(C).7: HPSEC at different zeta potentials 

(Albert) 

Figure5(C). 8: HPSEC at different zeta potentials  

(Fort Collins) 

 

Inspection of the HPSEC traces of the residual organics post coagulation reveals that 

as the zeta potential decreases in magnitude a progressively greater proportion of the 

larger MW weight material is removed. Comparison of the trials with Albert WTW 

(Figure 5(C).7) and Fort Collins WTF (Figure 5(C).8) water reveal that the residual 

material within the operational window is based around the same elution times of 8 to 

11 minutes which approximately represents material with a molecular weight of 3 – 

0.5 kDa (Goslan et al., 2004). Further, once the zeta potential had been reduced to a 

sufficiently low magnitude negative value, -9.9 mV for Albert WTW and -7.7 mV for 

Fort Collins WTW, the HPSEC traces approximately overlapped indicating very little 

additional treatment. The importance of this is that once the zeta potential is within 

the operational window, increased coagulant dose and changes in pH do not improve 

the performance. For instance, in the case of water sampled from Albert WTW in 

September 2003, coagulated with 5 or 10 mg.l
-1
 ferric sulphate as Fe at a pH of 5.2 

and 5.8 respectively to maintain the same zeta potential, the resultant HPSEC 
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chromatograms were virtually identical (Figure 5(C).10). Further investigation into 

the differences in the achievable residual DOC from each trial demonstrated a clear 

relationship between the raw water HPINA concentration and the total residual DOC 

(Figure 5(C).9). The gradient of the regression line (R
2
 = 0.91) represents a correlated 

ratio of 90% indicating the majority of the residual is contained within the HPINA 

fraction. Such findings support previous studies which have shown that the HPINA 

fraction is very poorly removed by coagulation (Fearing et al., 2004; Bolto et al., 

2001) and relates to the fact that the material contained within this fraction is 

predominately uncharged (Sharp et al., 2005), low MW (Goslan et al., 2004) and 

comprised of carbohydrates and other very stable compounds in water (Leenheer et al., 

2000). Whilst the residual organics are likely to contain other material the results 

suggest the initial HPINA can serve as a useful guide to the likely achievable residual 

DOC by coagulation. 
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Figure 5(C).9: Residual DOC vs initial HPINA 

concentration 

Figure 5(C).10. HPSEC at the same zeta, 

different doses and pH. 

 

5(C).3.3 Overall interpretation  

The work conducted on the three water sources at different times before, during and 

after periods of elevated organics suggest that the polarity balance of the source water 

is the key to understanding the dose requirements and achievable performance of the 

coagulation process. The hydrophobic content of the raw water controls the coagulant 

demand which can be predicted through monitoring of the charge density and 

concentration of the appropriate fractions. Whereas, the initial hydrophilic content of 

the water, and specifically the non acid fraction, is an indication of the achievable 

DOC residual by coagulation. The consequence of this is that it should be possible to 

conduct a simple and rapid fractionation test to determine the requirements for and 

limitations of coagulation without the need for jar testing.  
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Interpretation of the data demonstrates that a single raw water over a period of time 

and two waters of the same bulk DOC can have very different coagulant demands and 

achievable residuals. Further, stoichiometric dosing in proportion to flow does not 

provide a robust means of coagulation control. Improved dose control can be achieved 

by linking dose to an indicator of the hydrophobic content such as UV254 monitoring. 

Although such an approach will fail to account for changes in the character of the 

hydrophobic material it provides a simple solution as long as the dose algorithms as 

sufficiently robust.  

 

Comparison of snowmelt and moorland waters during periods of elevated organic 

concentrations reveals that in the case of snowmelt waters the increased DOC occurs 

principally in the hydrophobic, large MW bands. This indicates that the elevated 

organic levels should not significantly alter the achievable organics residual but 

should increase the coagulant demand considerably. In contrast, in the case of the 

moorland waters the increase in DOC occurs across all MW bands and in both 

hydrophobic and hydrophilic components. Consequently, the impact is that the 

coagulant demand does not increase as significantly but the achievable organic 

residual is higher such that alternative treatment processes may become necessary.  

 

The combination of bench scale and pilot plant trials clearly indicated that the use of 

charge measurement is a useful operational indicator in relation to the coagulation of 

organic dominated waters. The operational range, as derived through zeta potential 

measurements, was seen to alter from one source to another without a clear 

correlation as to why.  This is likely to reflect the diversity of organic compounds that 

can be present and the differences they exert on the force balance involved in 

generating agglomerates. However, in all cases the range fell within the limits of -10 

mV to +3 mV irrespective of which source water or treatment system was used and so 

provides a useful guide range for operational monitoring. Importantly, within the 

operational ranges the combination of dose and pH used to reach any given zeta 

potential appears to be unimportant. Consequently, charge measurement provides a 

straightforward means of control of the coagulation chemistry which requires semi 

regular rather than continuous monitoring due to the specific temporal pattern of the 

changes in the source water. 
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5(C).4 Conclusions 

The present study has generated a number of 

observations in relation to the coagulation of NOM 

source waters. They relate to the importance of 

understanding the character of the NOM in terms of 

the polarity balance and charge density which can be 

used as a decision support tool in operating 

coagulation processes for NOM removal (Figure 

5(C).11): 

(1) The hydrophobic fraction of the NOM controls 

the coagulant demand. 

(2) The observed variations in coagulant demand 

between sources and sampling periods are due to 

changes in the organic concentration and the 

charge density of the hydrophobic fractions. 

(3) The raw water HPINA concentration provides a 

useful indicator of the achievable residual DOC. 

(4) Operational zeta potential ranges exist, within 

which the residual concentration is optimised. 

(5) A threshold range between -10 and +3 mV 

represents a safe guide to appropriate zeta 

potential for optimised treatment. 

(6) Within the threshold values the exact dose and 

pH used to achieve the given zeta potential is 

unimportant. 

 

Figure 5(C).11: Decision flow sheet for 

coagulation of NOM 
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6 Linking source water characteristics to treatment using 

zeta potential measurements: A mechanistic approach to 

coagulation. 

 

EMMA L. SHARP, MATT E. EDWARDS, PETER JARVIS, SIMON A. PARSONS 

and BRUCE JEFFERSON
 

School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 OAL, 

UK.  

 

Abstract  

Traditional approaches to coagulation control focus directly on the impact of dose and 

pH. However, this does not always allow the system to respond adequately to changes 

in organic levels and the variations in associated coagulant demand. A number of 

different organic dominated systems were investigated in order to link zeta potential 

to treatment performance. For all systems, results demonstrated the existence of a U 

shaped profile which in general produced low and stable DOC residuals when the zeta 

potential was within the range of -10 mV to +3 mV, despite the pH dose combination, 

with the achievable DOC residual under optimum conditions linked to the initial 

hydrophilic concentration. A similar relationship was seen between zeta potential and 

turbidity residuals, although the positive threshold value was extended beyond +3 mV 

as the specific UV absorbance (SUVA) value decreased. 
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6.1 Introduction 

Coagulation using metal salts to remove fine particles, colloids and dissolved 

contaminants such as natural organic matter (NOM), is a well established process in 

water treatment. When a metal salt is added to water it hydrolyses, producing a series 

of cationic dissociation products which act to reduce the net negative surface charge 

of the system, enabling particles to overcome the forces maintaining the stable 

suspension, thus promoting aggregation. Practical measurement is achieved through 

electrokinetic measurement as either zeta potential or streaming current. Advances in 

robustness and ease and reliability of measurements for the former are enabling it to 

be used more routinely on real sites in order to understand and optimise the process. 

 

When organics such as NOM dominate the water source, the coagulation process is 

subject to a combination of mechanisms: charge neutralisation for colloidal material 

and charge complexation/precipitation for soluble compounds, with additional 

removal occurring due to adsorption on to precipitated flocs and metal hydroxides 

(Randtke, 1988), and as such is sensitive to the balance of electrical forces. However, 

the nature of the contaminant load varies with location.  For instance, rivers can 

contain a high proportion of suspended clay colloids, upland peaty areas generate 

elevated levels of NOM, whereas algae is ubiquitous in all source waters. 

Consequently, the sensitivity of the system to variations in surface charge is also 

influenced by the source water characteristics. For example, optimum removal for 

cryptosporidium when coagulated with alum was found to occur when the zeta 

potential was 0 mV (Dai and Hozalski, 2002). Other systems however, were less 

sensitive with optimum kaolin removal, once again coagulating with alum, achieved 

at a zeta potential greater than -10 mV (Han et al., 2001) and -13 mV for Chlorella 

vulgaris (Edzwald and Wingler, 1990).  

 

The aim of the current paper is to investigate how the character of different organic 

dominated source waters influences the relationship between zeta potential and 

coagulation performance. 
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6.2 Materials and Methods 

A number of different systems were investigated relating treatment performance to 

zeta potential. The processes were all operated during periods of rapidly changing raw 

water characteristics, with varying operation in terms of treatment process, scale, 

coagulant and contaminant (Table 6.1). Full-scale data were obtained as spot samples, 

whereas details for the bench and pilot trials have been previously published 

elsewhere as shown. 

 

Samples were analysed for pH, Dissolved organic carbon (DOC) (Shimadzu TOC-

5000A analyser in the UK and Sievers Model 800TOC analyzer in the USA), UV 

absorbance at a wavelength of 254nm (Jenway 6505 UV/Vis spectrophotometer, 

Jenway, UK) and turbidity (HACH2100 in the UK and HACH 2100AN turbidimeter 

in the USA). High performance size exclusion chromatography (HPSEC) analysis was 

undertaken using a high performance liquid chromatography device (Shimadzu VP 

series, Shimadzu, Milton Keynes, UK). All samples were filtered to remove 

suspended solids before DOC and UV254 analysis (Glass microfibre in the UK and 

Durapore membrane filter in the USA, Fisher Scientific). The surface charge was 

measured with a zetasizer (Malvern Instruments, UK) at 25°C.  
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6.3 Results and Discussion 

6.3.1 Characterisation 

 The raw water systems investigated were subject to varying organic levels (Table 1). 

For instance, total organic carbon (TOC) values for the mountain catchments were 

reported to vary between 1.6 mg.l
-1 
and 10.6 mg.l

-1
, with the organic content generated 

when snowmelt waters percolate though undisturbed forest floors. Organic levels in 

moorland regions are also subject to similar variation, with the DOC concentrations 

reported to vary between 1.7 mg.l
-1 
and 10.7 mg.l

-1
, arising when accumulated 

organics were flushed into the aquatic environment during rainstorm events (Hurst et 

al., 2004).  However, although river waters also contained a relatively high organic 

content of 8 mg.l
-1
, in general the NOM character is less hydrophobic compared to 

reservoir sources (Martin-Mousset et al., 1997). This is demonstrated by a Specific 

UV Absorbance (SUVA) value of less than 2 m
-1
.l.mg

-1
DOC, which indicates low 

hydrophobicity, low molecular weight (MW) non-humic material (Edzwald and 

Tobiason, 1999). A low SUVA value of 0.6 m
-1
.l.mg

-1
DOC was also recorded for the 

algal water source, indicating similar organic characteristics to the river water.  

 

6.3.2 Particulate removal 

Analysis of clarification performance revealed a clear relationship between zeta 

potential and turbidity residual. For instance, results demonstrate the existence of a U 

shaped profile which in general produced low and stable residuals when the zeta 

potential was within the range of -10 mV to +3 mV. This observation was valid 

despite the variations in experimental set-up; from bench to full-scale, flotation and 

gravity separation processes and varying source water characteristics (Figure 6.1a).   

 

For each individual system, once operating the coagulation process within this 

operational window, with respect to zeta potential, the resultant turbidity was 

unaffected by an increase in coagulant dose provided the surface charge was 

maintained through pH adjustment. For instance, a residual post clarification turbidity 

of 0.98 NTU was achieved when coagulating the mountain water source with 3.5 

mg.l
-1
 as Al

 
at pH 7.1. A similar residual, of 1.09 NTU, was also achieved when the 

dose was reduced to 2.2 mg.l
-1
 as Al

 
and the pH decreased to 6.3. A similar 

performance can be explained as the resultant zeta potentials of both coagulation 
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combinations were similar at -6.0 mV and -3.3 mV respectively, and more 

importantly both values were within the range of -10 mV to +3 mV, where the 

residual was stable at 1.27 ± 0.4 NTU.   

 

Further investigation, however, highlights some variations in the profile with respect 

to zeta potential, particularly in relation to the location of the boundaries on either side 

of the operational window. The threshold or boundary values were determined by 

calculating the rate of change of the residual, and revealed that, in all cases, at 

negative zeta potentials beyond -10 mV to -15mV the effluent turbidity rose sharply 

as the suspended particles became more stable. The deterioration in residual quality 

was more significant for raw waters with a higher initial turbidity, indicating a 

heightened sensitivity to the operational window. For instance, the residual turbidity 

of the treated river water, with an initial turbidity of 14.3 NTU, increased from 1.0 

NTU at -10.2 mV to 10.4 at -12 mV. This corresponds to a decline of 4.7 NTU per 

mV. A similar deterioration was observed for the river water spiked with 5mg.l
-1
 

humic acid (HA) with the same initial turbidity, despite the increased organic content. 

Conversely, the increase in residual turbidity of the moorland source, with a lower 

initial turbidity of 9.3 NTU, was less pronounced at approximately 0.6 NTU per mV. 

 

The raw water characteristics were shown to influence the positive boundary of the 

operational window, as results revealed that an increased organic content reduced the 

magnitude of the positive zeta potential at the boundary. For example, the addition of 

5 mg.l
-1
 HA to the river water source decreased the magnitude of the zeta potential at 

the boundary from 17 to 7 mV. The window for the moorland water samples, which is 

highly coloured in comparison, was observed at 3 mV, and was obtained from the 

sedimentation jar tests when the initial DOC concentration was 6.5-9.9 mg.l
-1
. 

Whereas for the algae, with a significantly lower DOC concentration of 0.7-1 mg.l
-1
, 

the boundary was extended, with good turbidity residuals still achievable at a zeta 

potential of 15 mV. Further examination of the data also indicates that the character of 

the organic matter may also influence the positive boundary. For instance, the 

gradient of the regression line    (R
2
 = 0.89) demonstrates a good correlation exists 

between the specific UV absorbance (SUVA) and the positive threshold zeta potential 

values (Figure 6.1b). SUVA can be used to describe the composition of the water in 

terms of polarity, with a value greater than 4 m
-1
.l.mg

-1
DOC indicating high MW 
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hydrophobic material (Edzwald and Tobiason, 1999). Consequently, this suggests that 

the hydrophobicity of the organic material may also reduce the positive extent of the 

operational window. For instance, the positive operational boundary for the river 

water, with a SUVA value of 1.4 m
-1
.l.mg

-1
DOC, occurred at a zeta potential of +17 

mV. However, when this was spiked with 5 mg.l
-1
 HA, increasing the SUVA to 4.4 m

-

1
.l.mg

-1
DOC, this reduced the positive zeta potential boundary to +7 mV. 
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Figure 6.1: Turbidity residual and (a) the relationship between clarified turbidity and 

zeta potential (b) the relationship between the positive zeta potential boundary and 

SUVA (Full-scale:1,2, Pilot-scale: 3,4 Bench-scale: 5,6,7 and 8).  

 

6.3.3 Dissolved contaminant removal 

Analysis of DOC residuals, with respect to zeta potential, also revealed a U shaped 

profile with optimum DOC removals for all systems achieved between a zeta potential 

(a) 

(b) 
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of -10 mV to +3 mV. However, as with the turbidity residual, this profile also lacks 

symmetry, revealing a steep decline in performance as the magnitude of the positive 

zeta potential increased beyond +3 mV, and a more gradual decline for negative zeta 

potential values beyond -10 mV. Nevertheless, despite the coagulant dose and pH 

combination, similar removals were achieved when operating within the zeta potential 

window. This is supported by HPSEC chromatograms showing almost identical 

residual profiles for zeta potentials. For example, the mountain source water was 

coagulated with 4 mg.l
-1
 and 4.5 4 mg.l

-1
 Fe at pH 5.9 and 5.7 respectively, although a 

similar performance was observed as the resultant zeta potentials of both coagulation 

combinations were within the range of -10 mV to +3 mV, at -9.1 mV and -2.4 mV 

respectively (Figure 6.2a). However, increasing the negative zeta potential beyond -10 

mV also increased residual profile, as demonstrated with the moorland water source 

(Figure 6.2b).  

 

Traditional approaches to coagulation diagnostics focus directly on the impact of dose 

and pH, as they represent the main operational variables (Duan and Gregory, 2003). 

However, such an approach withdraws from a mechanistic understanding, leading to a 

heightened sensitivity to changes in either variable. This is manifested in a belief by 

many operators that NOM must be coagulated at a low pH to achieve maximum 

removal, whereas in fact any combination of dose and pH is possible provided that it 

generates a net zeta potential within the operational window. This is not contradictory 

to established practice as the minimum dose requirement will occur under acidic 

conditions due to the nature of metal-humic complexes (Amirtharajah and O’Melia, 

1990). However, with regards to the stability of the complexes formed, the same 

results have been observed whether the change in zeta potential was due to a pH 

change or the concentration of adsorbed organic matter (Kretzschmar et al., 1998).  

 

However, the comparison of DOC residual profiles, with respect to zeta potential, 

across different water sources is less uniform (Figure 6.3a). Within this operational 

window, for instance, optimum residuals for the moorland water source (4) was 1.2 ± 

0.2 mg.l
-1
 and 1.6 ± 0.2 mg.l

-1
 for the mountain water source (3). This is attributed to 

the complexity of coagulation, which depends on not only the surface charge of the 

formed particles but also the organic make-up for the water. The organic make-up of 

the water can be determined using ion exchange resins, fractionating the sample into 
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hydrophobic acid (HPO), hydrophilic acids (HPIA) and non acids (HPINA) (Malcolm 

and MacCarthy, 1992). Comparison across the schemes revealed a clear relationship 

between raw water hydrophilic content and total residual concentration achieved 

under optimum conditions (Figure 6.3b). This agrees with previous work on specific 

systems that have shown it is the hydrophobic fraction which is the most amenable to 

removal by coagulation, attributed in part to its high charge content (Edzwald, 1993). 
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Figure 6.2: HPSEC chromatograms of (a) Mountain source water coagulated with 

ferric sulphate at 4.5 mg.l
-1
 and pH 5.9 (-9.1 mV) and 4 mg.l

-1 
and pH 5.7 (-2.4 mV) 

and (b) Moorland source water coagulated with ferric sulphate at 12 mg.l
-1 
  and pHs 

5.5-7.5 (-15 mV to 0 mV). 
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Figure 6.3: DOC residual in terms of (a) zeta potential and (b) the relationship 

between initial HPINA and total hydrophilic (HPINA + HPIA) concentration 

(Adapted from Sharp et al., 2005). (Full-scale:1,2 Pilot-scale: 3,4 Bench-scale: 5). 
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6.4 Conclusions 

The overall picture has lead to the development of a number of operational guidelines 

when coagulating systems containing NOM: 

 

• Coagulation should be operated at a zeta potential greater than -10 mV 

• Rapid deterioration in DOC removal is expected at a zeta potential greater 

than + 3mV 

• Initial hydrophilic content is a good indicator of the achievable DOC residual 

under optimum conditions 

• Positive threshold for turbidty removal is extended beyond +3 mV as the 

SUVA value of the raw water decreases. 

 

Consequently, for water utilities operating the coagulation processes at a zeta 

potential of -10 to -15 mV, hence very close to the observed boundary, this could 

increase their susceptibility to changes in raw water characteristics, making them 

liable for process upset. However, in the majority of situations, simple monitoring and 

minor adjustment can provide a cost effective option for maintaining a robust 

operation.  
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7 The impact of zeta potential on the physical properties of 

NOM flocs. 
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School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 OAL, 

UK.  

 

Abstract  

The physical properties of natural organic matter (NOM) flocs, such as size, growth 

rate and strength, were investigated using a laser diffraction particle sizing device. 

Conditions were set such that varying carbon: coagulant ratio and zeta potential could 

both be investigated. Results demonstrate a link between zeta potential and 

coagulation and flocculation performance, with the production of strong flocs and low 

residual concentrations when the zeta potential was minimised. The overall strength 

of the connection points within the floc are believed to be determined by a 

combination of steric interactions, polymer bridging, Van der Waals forces and 

electrostatic forces. Hence, both dose ratio and zeta potential are important in 

understanding floc properties. Floc growth was influenced by dose ratio, whereas the 

response to elevated shear seemed to strongly relate to zeta potential. The steady state 

floc size appeared to be a combination of both factors. This allowed the continued 

development of a qualitative model in order to engineer optimal floc properties when 

coagulating NOM. 
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Coagulation, Floc size, Floc strength, Natural organic matter, Zeta potential. 
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7.1 Introduction 

The addition of metal salts to remove natural organic matter (NOM), is a well 

established process in water treatment. Chemical addition acts to reduce the negative 

surface charge, destabilizing the suspension, and promoting agglomeration and the 

formation of highly porous, irregularly shaped and loosely bound aggregates called 

flocs (Kim et al.,2001). As the coagulation of NOM is a charge related process (Sharp 

et al., 2005), an appropriate measurement is that of zeta potential which measures the 

charge character of colloids and particles. In complex heterogeneous systems such as 

NOM, zeta potential measurements relate to the range of hydrophobic and hydrophilic 

colloids but cannot directly measure soluble compounds. Such components will only 

be detected once they have reacted with the coagulant precipitate, although 

measurements still provide a reproducible relationship which can be used to 

understand and optimize the coagulation process. For instance, previous research has 

identified a link between zeta potential and coagulation performance whereby 

residuals are both low and stable when the zeta potential is maintained between -10 

mV and +3 mV (Sharp et al., 2005). However, although the removal of NOM by 

coagulation has been researched extensively, less attention has been placed on the 

properties of the flocs produced. 

 

In terms of the operation of physical treatment processes, floc properties are 

considered fundamental. For instance, resistance to shear is important as newly 

exposed surfaces of aggregates may alter the surface charge of the floc aggregate, 

leading to partial restabilisaton (McCurdy et al., 2004). In addition, floc breakage and 

the formation of smaller particles could also result in lower removal efficiencies 

(Boller and Blaser, 1998). Operational experience has suggested that pronounced floc 

breakage during solid liquid separation phases can also impact on downstream 

processes such as filtration, resulting in carryover onto the filters, greater particle 

loads, turbidity breakthrough and reduced filter run times. 

 

The strength of flocs depends on the magnitude and number of inter-particle bonds 

(Parker et al., 1972; Bache et al., 1997). Traditionally, flocs formed from the 

coagulation of NOM are considered weak and fragile, attributed to a lack of bridging 

bonds (Bache et al., 1997; Jarvis et al., 2005a). For hydrolyzing coagulants, such as 
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alum or ferric, a major route for NOM floc formation is a combination of charge 

neutralization and entrapment/adsorption of NOM onto the metal precipitate (Bache et 

al., 1999; Gregor et al., 1997; Rantke, 1988). Hence, the strength of the floc is 

thought to be derived from a combination of organic interactions, such as steric and 

bridging mechanisms, and electrostatic forces. The latter is commonly investigated by 

measuring the charge behaviour of the system through either streaming current or zeta 

potential. Floc diagnostics, such as floc strength, can provide valuable information in 

terms of the likely separation efficiency of aggregates formed. The strength of an 

aggregate can be described in a number of ways. This is generally considered in terms 

of the energy required to break flocs under tension, compression or shear (Zhang et al., 

1999), and has been investigated in terms of the following empirical relationship 

(Francois, 1987; Bache et al., 1999): 

logd = log C- γlog G    (1)  

d is the floc diameter, C is the floc strength constant, G is the average velocity 

gradient and γ is the stable floc size exponent. A modified version has also been used, 

with RPM in place of the velocity gradient G (Jarvis et al., 2005a; Henderson et al., 

2005): 

logd = log (C’)- (γ’)log RPM   (2) 

The modified relationship having arisen following some debate as to whether the 

velocity gradient was able to accurately describe the complexities of turbulent flow in 

stirred vessels (Boller and Blaser, 1998; Jarvis et al., 2003).  

 

The relative breakage of different flocculated systems have also been compared 

previously through the calculation of a strength factor (Fitzpatrick et al., 2003): 

100
)1(

)2(
×=

d

d
factorStrength    (3) 

The strength factor value indicates the ability of flocs to withstand shear, such that a 

higher value suggests a stronger floc.  

 

Previous research has suggested that it is an increase in carbon content, during periods 

of elevated organics that has an adverse effect on floc properties and subsequent 

removal (Jarvis et al., 2005b). However, the observed changes occurred with 

variations in both organic content and zeta potential, such that further resolution is 

required to decouple the two factors. Consequently, the overall objective of this paper 
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was to investigate the impact of zeta potential on floc properties with different organic 

contents, in order to identify the relative impact of surface charge and carbon content 

in relation to the physical properties of NOM flocs.  

 

7.2 Materials and Methods 

7.2.1 Sampling 

The raw water investigated in the current study was sampled from a moorland water 

works in the north of England and is typically characterized as a low turbidity (3.7-7.0 

NTU), low alkalinity (20 mg.l
-1
 CaCO3), high colour (44-160 hazens), high DOC (4.3-

14.5 mg.l
-1
) water. The treatment process train consists of coagulation with ferric 

sulphate, dissolved air flotation and deep bed filtration prior to chlorination and is 

mainly designed to control DOC and metal ions in the water. Samples were taken 

from the inlet channel from the reservoir in October 2004 and February 2005, when 

the DOC was 13.3 and 10.8 mg.l
-1
 respectively.  

 

7.2.2 Characterisation 

Raw water samples were fractionated by XAD resin adsorption techniques into their 

hydrophobic (HPOA) and hydrophilic (HPIA) components using a method adapted 

from Malcolm and MacCarthy (1992). The charge density of the raw water samples 

was determined using a method adapted from Kam and Gregory (2001), and used 

previously for a number of raw water sources (Sharp et al., 2005).  

 

7.2.3 Coagulation tests 

Raw water samples were stored at 5°C prior to coagulation jar testing, which was 

subsequently undertaken at room temperature (20°C) and involved a 1.5 minute rapid 

mix at 200 RPM, a 15 minute 30 RPM flocculation stage and 20 minute settlement 

period.  

 

7.2.4 Apparatus 

Coagulated samples were analysed for UV absorbance at a wavelength of 254nm 

(Jenway 6505 UV/Vis spectrophotometer, Jenway, UK), pH and dissolved organic 

carbon (DOC) (Shimadzu TOC-5000A analyser). All samples were filtered to remove 

suspended solids before UV254 and DOC analysis (Glass microfibre, Fisher Scientific). 
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The coagulation and flocculation experiments were undertaken using a Phipps and 

Bird PB-900 six paddle jar tester. The surface charge was measured with a zetasizer 

(Malvern Instruments, UK) at 25°C. The zetasizer yields estimates and standard 

deviations of the zeta potential directly, and all measurements were conducted in 

triplicate on unfiltered samples. The general accuracy of the zetasizer was determined 

using standard solutions (Malvern Instruments, UK.) 

 

7.2.5 Floc size and breakage 

Floc size and breakage experiments were performed using an identical experimental 

set-up to Jarvis et al. (2005a) and also similar to previous work by other authors 

(Biggs and Lant, 2000; Spicer et al., 1998). Coagulation tests were undertaken on a jar 

tester as before. However, following the 15 minute flocculation phase, the effect of 

increased shear was investigated by increasing the RPM for an additional 15 minutes. 

Each experiment was repeated twice for an RPM of 30, 40, 50, 75, 100 and 200. The 

dynamic floc size was measured during the growth and breakage of the flocs using a 

laser diffraction instrument (Malvern mastersizer 2000, Malvern UK). The suspension 

was monitored by drawing water through the optical unit of the mastersizer and back 

to the jar by a peristaltic pump on the return tube using a 5mm internal diameter 

peristaltic pump tubing at a flow rate of 1.5 L.h
-1
. Size measurements were taken 

every minute for the duration of the jar test and the data logged on a PC. 

 

7.3 Results  

7.3.1 Characterisation and removal 

Characterisation of the raw water revealed the DOC concentrations of the Albert raw 

water samples were 13.3 mg.l
-1
 and 10.8 mg.l

-1
 for October 2004 and February 2005 

respectively. The majority of the organic content (53-62%) was hydrophobic, as 

reservoir waters tend to be proportionally more abundant in the hydrophobic fraction 

(Martin-Mousset et al., 1997). The 23% decrease in DOC, from October 2004 to 

February 2005, also corresponded with a 24% decrease in charge density and a 21% 

decrease in UV254 absorbance over the same period (Table 7.1).  
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Table 7.1: Raw water characteristics. 
 

Source Date pH DOC 

(mg.l
-1
) 

Hydrophobic 

content (%) 
UV254 

abs. 

Charge 

density 
(meq.l

-1
) 

Turbidity 

(NTU) 

Albert 

 

Oct-

04 

5.9 13.3 53 55.2 0.047 3.32 

Albert Feb-

05 

6.1 10.8 61 45.3 0.038 2.90 

 

Analysis of coagulation performance revealed a U shaped relationship between zeta 

potential and residual concentrations for the two Albert water sources, such that both 

DOC and turbidity residuals were low when the zeta potential is minimised, despite 

the initial differences in raw water characteristics (Figure 7.1). Consequently, residual 

concentrations are strongly related to the zeta potential during coagulation.  For 

instance, the October 2004 sample was coagulated with 10mg.l
-1 
Fe to a 1.33:1 

DOC:Fe ratio and a zeta potential of -12.1 mV resulting in a turbidity residual of 0.93 

NTU. Whereas the February 2005 sample produced a similar turbidity residual of 0.89 

NTU when a similar zeta potential was achieved, -13.2 mV, despite the decreased 

DOC:Fe ratio of 1:1. However, although the exact range of zeta potentials and 

residual obtainable is not always identical (Sharp et al., 2005), a number of common 

features exist. The operational windows were not symmetrical around the zero zeta 

potential point, such that the zeta potential range for optimum residual extended to 

only small positive values but much greater negative values. For example, a residual 

turbidity of 0.6 ± 0.2 NTU was obtained within the zeta potential range of +3.9 to -

13.2 mV. The operational zeta potential range for optimum DOC residuals was also 

slightly narrower than for turbidity, with the achievable value also linked to the 

hydrophilic content of the raw water. This result agrees with work undertaken across a 

range of raw waters (Sharp et al., 2005). For instance, a DOC residual of 3.3 ± 0.3 

mg.l
-1
 was obtained within the zeta potential range of +3.3 to -12.4 mV for the 

October 2004 raw water. The stable DOC residual for the February 2005 raw water 

was lower at 2.5 ± 0.3 mg.l
-1
, as the original hydrophilic content was 30% lower 

compared to October 2004. 
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Figure 7.1: Zeta potential vs. (a) DOC residual and (b) turbidity residual, when 

coagulated with 10mg.l
-1
 ferric sulphate (as Fe) and varying the pH between 3 and 7. 

 

7.3.2 Floc size 

Analysis of the growth profile revealed an increase in floc size, as indicated by the 

median equivalent diameter (d50), as the zeta potential changed from positive to 

negative values (Figure 7.2). For instance, when coagulating the October 2004 raw 

water with a set dose of 10mg.l
-1
 at varying pHs, a resultant zeta potential of +5.1 mV 

produced a maximum floc size of 535 ± 37µm. Corresponding median floc sizes 

produced at zeta potentials of -18.1 mV, -3.3 mV and +3.5 mV were 795 ± 36µm, 603 

± 24µm and 594 ± 28µm respectively.  
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Furthermore, results revealed that the steady state floc size, whilst maintaining a 

constant zeta potential, was also influenced by the DOC:Fe ratio. For instance, 

coagulating with 15 mg.l
-1
 Fe to a DOC:Fe ratio of 0.7:1, at a zeta potential of -10.5 

mV, produced a d50 floc size of  602 ± 66 µm. This was reduced to 465 ± 41 µm when 

the coagulant dose was reduced to 5 mg.l
-1
 Fe (DOC:Fe ratio of 2:1), even though the 

zeta potential remained relatively constant at -9.5 mV. Previous work undertaken on 

Albert water also identified a decrease in floc size from 1000 µm to 400 µm as the 

DOC:Fe ratio increased from 0:1 to 3.8:1 (Jarvis et al., 2005b). 
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Figure 7.2: d50 floc size during the flocculation stage for Oct-04 sample coagulated 

with 10 mg.l
-1
 Fe at pH 4-6.  

 

7.3.3 Floc growth rate 

Monitoring of the floc growth rate, for a constant DOC:Fe ratio of 1.3:1, revealed that 

whilst the ultimate size changes as a function of zeta potential, the growth rate 

remained relatively constant at 89-96 µm.min
-1 
at all zeta potential values. However, 

the floc formed at a zeta potential of +5 mV took 10 minutes to reach d50, compared to 

5 minutes at -18.1 mV, owing to differences in the final size (Table 7.2). In contrast, 

the DOC:Fe ratio impacted on the initial growth rate, with values of 56-62 µm.min
-1
, 

80-96 µm.min
-1
 and 146-202 µm.min

-1
 for DOC:Fe ratios of 2.2:1, 1.3:1 and 0.7:1 

respectively, such that increasing the Fe content increased the growth rate. 
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7.3.4 Floc breakage 

Once the flocs had reached a steady state size during the slow stir phase, they were 

then exposed to increased shear. Analysis of the profile revealed a classical response 

composed of two components: an initial large drop in floc size, followed by a more 

gradual decline (Figure 7.3). 

 

The response of the flocs formed at different zeta potentials, to increases in shear were 

quite different (Figure 7.4). When the floc size after 15 minutes of elevated shear was 

plotted against RPM a straight line relationship was identified on a log-log scale. 

Interpretation of such plots is through the value of the gradient or stable floc size 

exponent (γ’), revealing that as the magnitude of the zeta potential increased, so did 

the value of the slope , representing a lower resistance to shear. For instance, at a zeta 

potential of -18 mV the value for the slope was (-0.58), this was reduced to (-0.46) for 

a zeta potential of -3.3 mV. A more pronounced reduction was observed when the 

positive zeta potential was reduced from +5.1 mV to +3.5 mV, from (-0.64) to (-0.52), 

suggesting both the magnitude and sign of the zeta potential is important in relation to 

the flocs response to elevated shear. Previous studies (Jarvis et al., 2005a) have shown 

the strength plots to converge at higher RPMs, suggesting a limiting strength to the 

network. However, in the current study, no convergence was observed indicating the 

possible importance of zeta potential in understanding the strength of floc networks. 

An additional point to observe is the steady state floc size after exposure to 200 RPM, 

which also revealed differences with varying zeta potential as opposed to a 

convergence towards a single floc size. Consequently, even when exposed to high 

levels of shear some floc systems retain some level of resistance. 
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Figure 7.3: Floc breakage profile for Oct-04 water sample coagulated with 10mg.l
-1
 

Fe at pH 5.5 and a zeta potential of -3.3 mV. 
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Figure 7.4: Floc breakage rates for Oct-04 sample coagulated with 10 mg.l
-1
 Fe at 

pH 4-6.  

 

In general, bigger flocs are thought to break more easily. However, regardless of 

initial maximum floc size, results here revealed that the flocs produced at a zeta 

potential of -3.3 mV were most resistant to both low (50 RPM) and high (200 RPM) 

shear, and the smallest flocs formed at a zeta potential of +5.1 mV were also the 

Shear increase 
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weakest. This was demonstrated through the calculation of strength factors, with 

values of 39 and 29 for -3.3 mV and +5.1 mV respectively, which are similar to the 40 

calculated for NOM flocs by Jarvis et al. (2005a). Previous reports of the floc strength 

values for alum- kaolin flocs were lower at 14-21 (Fitzpatrick et al., 2003). 

 

The floc strength constant can also be used as an indicator of the dominant floc 

breakage mechanism, where γ values of 0.5 are indicative of floc fragmentation while 

γ values of 1 suggest erosion mechanisms dominate. The floc strength constant γ’ was 

converted to γ resulting in a range of 0.3 to 0.42 for all the systems investigated, 

which is similar to those obtained by Bache and Rasool (2001) for alumino-humic 

flocs, where γ ranged from 0.44 to 0.64, and slightly higher than the 0.35 obtained by 

Biggs and Lant (2000) for activated sludge flocs. Analysis of the particle size 

distribution along the growth and breakage phases revealed two main characteristics. 

The shape of the distribution remained similar when the flocs were only exposed to 

relatively small increases in shear such that only a small shift in the median floc size 

was observed, combined with a slight reduction in peak height. This suggests a 

broadening of the distribution, although this was not significant in comparison to the 

other effects. The distribution did change shape at higher shears, with a larger fraction 

observed at smaller sizes. This is visualized by an increase in the slope of the 

distribution between floc sizes of 10-50 µm (Figure 7.5). This trend appeared 

consistent in all cases but was more prominent when a positive zeta potential was 

measured. The implication is that combinations of erosion and fragmentation are 

occurring, although fragmentation becomes more noticeable at high shears. 
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Figure 7.5: Oct-04 particle size distributions after 15 minutes flocculation time (30 

RPMa), followed by (a) an additional 15 minutes (30 RPMb), (b) 15 minutes low 

shear (50 RPM) or (c) 15 minutes high shear (200 RPM), all coagulated with 10 mg.l
-

1
 Fe at pH 4-6. 

 

Contrary to varying zeta potential values, the response of the different Fe:DOC ratios 

to increases in shear were similar, providing the zeta potential was constant (Figure 

7.6). For instance, coagulating to a DOC:Fe ratio of 1.3:1 with a zeta potential of -

18.1 mV produced a slope value of (-0.58). However, altering the ratio to 0.1:7 still 

produced a similar slope value of (-0.57) as the zeta potential remained constant at -

18.1 mV. In fact, maintaining a zeta potential within the range defined previously for 

optimum coagulation performance (+3.9 mV to -13.2 mV), produced flocs with 

similar responses to increased shear, despite differences in raw water characteristics 

and coagulation conditions (Figure 7.6c). Monitoring the floc size distribution 

revealed that alterations in the distribution appear related to the DOC:Fe ratio. For 

instance, at higher ratios, the pattern described previously appears to exist. Whereas, 

at lower DOC:Fe ratios with a higher coagulant dose, the distribution appears to alter 
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the shape more significantly. This indicates a more substantial breakage is occurring, 

confirmed by the gradient of the floc breakage curve (Figure 7.7). 
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Figure 7.6: Floc breakage rates for varying DOC:Fe ratios at a constant zeta 

potential *Additional data adapted from Jarvis et al., 2005b. 
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Figure 7.7: Feb-05 particle size distributions after 15 minutes flocculation time (30 

RPMa), followed by (a) an additional 15 minutes (30 RPMb), (b) 15 minutes low 

shear (50 RPM) or (c) 15 minutes high shear (200 RPM), coagulated with 5 (2.2:1) or 

15 (0.7:1) mg.l
-1
 Fe. 
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7.3.5 Floc strength and removal 

Combining both residual performance and the response to shear revealed a clear link 

when plotted against zeta potential, such that flocs with a greater resistance to shear 

produced the lowest residuals. (Figure 7.8). For example, a residual turbidity of 0.6 ± 

0.2 NTU was obtained within the zeta potential range of +3.9 to -13.2 mV, 

corresponding to 0.5 ± 0.03 for the value of the slope (γ’) which increased to 0.6 ± 

0.07 when the zeta potential was outside the range. The profile also lacks symmetry, 

with a gradual decline in both removal performance and response to shear as negative 

zeta potential exceeds -10 mV. Whereas for the positive zeta potential values, a rapid 

deterioration in performance and floc properties was observed once the +3 mV 

threshold value was surpassed. 
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Figure 7.8: Zeta potential vs. γ’ (slope) and removal (NTU residual). Albert-04 data 

adapted from Jarvis et al. (2005b). 

 

7.4 Discussion 

Results from this investigation agree with previous work, demonstrating a link 

between surface charge and optimum coagulation and flocculation performance, with 

low and stable residuals achieved when the zeta potential is minimised (Ratnaweera et 

al., 1999; Gregory and Carlson, 2003; Sharp et al., 2005). The results demonstrate 

further a definite change in floc properties with changes to either dose ratio or zeta 
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potential of the resultant floc. Each parameter appears to have a differing importance 

in relation to each characteristic. For instance, the rate of growth appears to be 

dominated by the dose ratio, which is to be expected as it relates to the amount of 

coagulant available. The steady state size achieved during the growth phases appears 

to be related to a combination of both factors. Whereas the response to elevated shear 

seems to be strongly related to the zeta potential. As such, the importance of both 

factors in determining steady state floc size reflects the balance of growth and 

breakage which occurs during flocculation. 

 

Previous work (Jarvis et al., 2005b) proposed a qualitative model to explain the 

importance of dose ratio on floc properties. The model was based on the interaction or 

organic layers on the surface of particles within the floc matrix, with NOM as the 

limiting factor. This has been demonstrated as the amount of NOM removed appears 

to be insensitive to coagulant dose, such that a greater amount of DOC was removed 

in high DOC:Fe flocs than at a lower ratio. The organics are believed to influence the 

floc properties through a combination of steric repulsion and changes in the 

hydrodynamic layer thickness. The separation distances between particles and 

microflocs within the agglomerate increase as the DOC content increases, reducing 

the strength of the bond and hence producing a weaker floc. Support for such a theory 

is provided from work investigating haematite particles, where the presence of 

organic layers on the particle reduce the attractive forces by 50%, due to larger 

separation distances (Amal et al., 1992). Similar results have also been reported for 

solid latex and iron oxide particles in the presence of humic and fulvic acid (Amal et 

al., 1992; Walker and Bob, 2001). However, more specific interpretation is restricted 

due to the complexity of the system under investigation, although the principle 

appears to fit the observed behaviour. 

 

The overall strength of the connection points within the floc is likely to be determined 

by the combination of steric interactions, polymer bridging, van der Waals forces and 

electrostatic forces, and hence it is evident that both dose ratio and zeta potential are 

important in understanding floc properties. This present work extends the previous 

model by including the role of electrostatics, through zeta potential measurements. 

The role of zeta potential is in determining the extent to which electrostatics control 

the properties of the flocs. For instance, low magnitude zeta potential values reduce 
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the electrostatic force, thus generating stronger flocs. However, this is complicated by 

the fact that the floc is made up of regions of positive and negative charges in places, 

where the coagulant or NOM have concentrated. Consequently, where opposing 

charges connect, an increase in strength is likely to occur. This follows the principle 

of electrostatic patch agglomeration (Gregory.1973), which was originally developed 

to describe the behaviour of polymers. This results in the formation of local excesses 

of both positive and negative charges within the floc matrix, such that complete 

charge neutralisation is not always required (Roussy et al., 2005). 

 

The critical observation of this is the asymmetrical nature of the plot showing zeta 

potential against floc gradient coefficient, where the flocs retain a better resistance to 

shear over a wide range of negative zeta potential values compared to when the zeta 

potential is positive. This is ultimately seen by the threshold values of -10 mV and +3 

mV. Consequently, electrostatic patch agglomeration appears more effective when the 

resultant floc has a negative charge overall (Roussy et al., 2005). Presumably, this 

reflects the need for NOM components to bond to spots of the positive charge derived 

from localized concentrations of coagulant. Once the floc becomes positively charged, 

the opportunity for patch agglomeration is restricted, so that the reduction in 

electrostatic repulsion is then critical for agglomeration. The +3 mV limit thus appears 

as a guide for the point at which other interaction forces outweigh any repulsive 

forces due to electrostatics. This is seen by the sharp increase in the coefficient for 

zeta potential values beyond the +3 mV threshold. 

 

The operational significance of the proposed model suggests that both dose ratio and 

zeta potential are important factors affecting the resulting floc structure. This work is 

based on an existing model to explain the properties of NOM flocs, based on steric 

interactions, polymer bridging and van der Waals forces. This work extends this 

concept further with the inclusion of electrostatic forces, based on zeta potential 

measurements. Zeta potential is important in terms of the impact on steady state floc 

size and the response to increased levels of shear. The dose ratio has been shown to 

impact on both steady state floc size and growth rate. Floc properties impact 

significantly on the overall process efficiency. For instance, reduced floc sizes have 

been shown to result in lower removal efficiencies (Gray et al., 1997; Aguilar et al., 

2003), whereas a poor response to shear has been shown to shift the zeta potential 
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outside the operational window (McCurdy et al., 2004), also resulting in poor removal 

due to partial re-stabilisation. Nevertheless, both floc properties and optimal removal 

can be engineered through the selection of an appropriate coagulant dose and pH, in 

order to achieve a certain dose ratio whilst operating at a zeta potential within the 

range -10 mV to +3 mV. However, owing to the highly heterogeneous nature of NOM 

which is known to vary both spatially and temporally (Owen et al., 1993; Scott et al., 

2001), more research is now needed to further validate this model and test its 

application to a wide range of NOM dominated systems. 
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8 Discussion of practical significance  

8.1 Operational Diagram 

Traditional approaches to coagulation diagnostics focus on the impact of coagulant 

dose and pH, as they represent the main operational variables (Duan and Gregory, 

2003). However, such an approach does not allow the process to adequately respond 

to rapid changes in organic levels, providing a route for non-compliance. Conversely, 

the findings from this investigation draw attention to zeta potential as both a straight 

forward means of coagulation monitoring and/or diagnostic tool, which would enable 

the system characteristics to be directly linked to performance. This has lead to the 

development of an operational diagram for NOM coagulation, with the principal aim 

being to both predict and engineer optimal coagulation conditions, and demonstrate 

the integral role of zeta potential in the treatment of NOM by metal coagulants 

(Figure 8.1).  
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Figure 8.1 Operational diagram for NOM coagulation. 

 

Each component of the operational diagram will be discussed in order to present an 

overview of the results in terms of the practical significance for the water utilities. 

Hence, by understanding and maintaining operational parameters within the limits set 

by the diagram, water utilities subject to rapidly changing organic levels should be 

able to operate under a more robust treatment strategy. 
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8.2 Operational zeta potential 

Proposed mechanisms for the removal of NOM with metal salts include a 

combination of charge neutralisation by complexation with metal species and 

adsorption onto hydroxide/ precipitate surfaces (Dennett et al., 1995; Gregor et al., 

1997; Bell-Ajy et al., 2000). Given that the process is strongly related to charge, the 

balance of electrical forces is important (Misra and Barnett, 1991). In addition, the 

existence of a zeta potential range, as opposed to a single value, suggests that in 

general colloidal de-stabilisation occurs before complete neutralisation of surface 

charge (Gray et al., 1997; Ratnaweera et al., 1999; Gregory and Carlson, 2003). This 

generates a U shaped profile, which in general produces low and stable residuals 

when the zeta potential was minimised to within -10 mV and +3 mV. This profile has 

been investigated in terms of varying source water (Paper 5 & 8), source water 

characteristics (Paper 9), NOM fraction composition (Paper 4), coagulant type (Paper 

6 & 7), floc properties (Paper 11) for both coagulation and clarification processes 

(Paper 10) at varying scales from laboratory experiments to full scale works. The 

exact location of the operational boundaries were seen to vary slightly, and this is 

likely to reflect the diversity of organic compounds present and their influence on the 

balance of forces involved in generating agglomerates. Furthermore, turbidity removal 

is less sensitive to zeta potential when compared to DOC (Paper 10), such that 

optimising for DOC removal will also produce minimum residual turbidity (Edzwald, 

1993; Dennett et al., 1995), added confirmation that it is the presence of organic 

material which is the main factor in determining optimum coagulation conditions, 

(Edzwald, 1993; Tseng et al., 2000). Nevertheless, in all cases the range fell within 

the limits of -10 mV to +3 mV irrespective of which source water or treatment system 

was used and so provides a useful guide for operational monitoring. Conversely, 

many processes currently operating in the water treatment industry operate within -8 

mV to -15 mV (Bourgeois et al., 2005), very close to the observed boundary, as 

indicated by the problem areas highlighted in the operational diagram. This heightens 

process sensitivity to changes in both raw water characteristics and the associated 

charge balance, therefore increasing the likelihood of a process upset. Furthermore, 

although the exact response depends on the system characteristics, performance has 

been shown to deteriorate rapidly once the threshold value has been exceeded (Paper 

10). For instance, the residual turbidity of the treated river water, with an initial 
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turbidity of 14.3 NTU, was shown to increase from 1.0 NTU at -10.2 mV to 10.4 at -

12 mV. Nevertheless, in the majority of situations, this can be avoided through simple 

and semi regular zeta potential monitoring, followed by minor adjustment, resulting in 

a cost effective option for maintaining a robust operation. 

 

The removal of DOC is an important concern for water utilities due to the formation 

of potentially carcinogenic disinfection by products (DBP) from residual organics 

during the disinfection process. DOC removal is independent of the solid liquid 

separation process (Malley, 1990; Edzwald and Malley, 1991), therefore, the 

achievable DOC residual is dependant on interaction with the coagulant which forms 

the metal-humic complexes. Results reveal a poor level of interaction of the 

hydrophilic NOM fractions, HPINA in particular, with both iron and aluminium 

coagulants (Paper 2 & 3).This was attributed to a negligible charge density, of at least 

an order of magnitude lower than the hydrophobic fractions (Edzwald, 1993). This 

fraction also contains lower molecular weight (MW) material (Fearing, 2004) as well 

as carbohydrates and other very stable compounds in water (Leenheer et al, 2000), 

which could also contribute to a poor removal. Comparison across different source 

waters has revealed a good correlation between residual DOC and the initial level of 

hydrophilic material (Papers 9 & 11). It is also possible to remove a portion of the 

hydrophilic material, as the DOC removal is greater than the total hydrophobic 

content of the water (White et al., 1997). The implication for water utilities is that 

simple monitoring of the polar NOM fraction can provide a good indication of the 

achievable DOC residual under optimum conditions without the need for additional 

jar testing. This is less significant for snowmelt waters, when the increase in DOC 

was attributed to a rise in the hydrophobic content whilst the hydrophilic 

concentration remained relatively stable (Paper 8). Conversely, for the moorland 

source waters the increase was observed for both hydrophobic and hydrophilic NOM 

fractions (Paper 5). Ultimately, this provides a tool to assess potential asset needs. For 

instance, when the initial hydrophilic content of the raw water is too high then 

additional treatment strategies, such as magnetic ion exchange resins 

(MIEX
®
)(Fearing et al., 2004), should be considered in order to remove more of this 

fraction. 
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Further investigation has revealed that NOM fraction make-up not only influences the 

achievable residual, but also the DOC residual profile with respect to zeta potential 

(Paper 4), attributed in part to the mechanisms involved in the formation of the metal-

humic complexes. The humic acid fraction (HAF) can be removed over a wide range 

of operational zeta potentials, through a combination of charge neutralisation (for 

colloids), complexation/precipitation and ligand exchange adsorption (Huang and 

Shiu, 1996). Whereas the profile for the fulvic acid fraction (FAF) is similar to the 

raw water, and is thought to be principally removed through an adsorption pathway 

(McKnight et al., 1992) and as such adsorption may be hindered as the electrostatic 

repulsion is increased. This presents further support for a charge based operating 

strategy, as UV254 monitoring is unlikely to distinguish between the two hydrophobic 

NOM fractions sufficiently. 

 

The lack of symmetry in the profile, such that large negative zeta potential values still 

provide optimal treatment, indicates the existence of other mechanisms such as 

polymer bridging, hydrogen bonding and electrostatic patch (Amal et al., 1992; 

Ashmore and Hearn, 2000; Bob and Walker, 2000; Das and Somasundarun, 2003; 

Roussy et al., 2005). An example of where this has been described previously is with 

the electrostatic patch theory (Gregory, 1973) which is believed to operate for 

polymers of a very high charge density interacting with oppositely charged particles 

of low charge density. Applying a similar principle to the current system provides one 

explanation for the extended range for the negative zeta potential values, although the 

electrostatic patch mechanism does appear to be more effective when the overall zeta 

potential is negative and only partial neutralisation of the negative charge is required 

(Gray et al. 1997; Roussy et al., 2005). Once the zeta potential exceeded the positive 

threshold of +3 mV, this resulted in a sharp deterioration in performance. 

Nevertheless, with regards to turbidity removal, results reveal that the positive 

threshold of the operational window could be extended further (Edwards, 2002), 

depending on the nature of organics. For instance, the higher charge content 

associated with an increased SUVA value leads to a heightened sensitivity to 

increased positive zeta potential values due to a greater degree of electrostatic 

repulsion between aggregates (Paper 11). However, when coagulating a water with a 

low SUVA value (>2 m
-1
.l.mg

-1
DOC), optimum turbidity removal can still be 
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achieved at higher positive zeta potential values, therefore extending the operational 

range as shown in the diagram (Figure 8.1). 

 

8.3 Chemical dosing regime 

Results support the hypothesis that achieving the required zeta potential is more 

important than achieving a certain coagulant dose or pH, provided that it generates a 

net zeta potential within the operational window. In general, an increasing DOC 

content does create a greater coagulant demand (Owen et al., 1993; Crozes et al., 

1995; Bell-Ajy et al., 2000; Volk et al., 2000). However, the coagulant dose required 

to maintain the zeta potential within this range, or at the IEP, is dependent on both the 

character and polarity of the organic matter (Papers 2, 3 & 4). The composition and 

character of organic material varies, especially in terms of MW, solubility, 

hydrophobicity, charge density and functional group composition (Edzwald, 1993; 

Korshin et al., 1997; Schlautman and Morgan, 1994; Vuorio et al., 1998). 

Consequently, differences in carboxylic acidity or charge density between the 

fractions are likely to influence the coagulant demand, as a higher charge is associated 

with the larger MW hydrophobic fractions (Collins et al. 1986; Edzwald, 1993). In 

addition, hydrophobic NOM fractions not only contribute to the majority of the charge 

load, but also impact most significantly on the resultant zeta potential of the metal-

humate precipitate. Reports in the literature suggest this is due to competitive 

interaction between coagulants and NOM, which are favoured towards the larger MW, 

more hydrophobic, more highly charged components (Gu et al., 1995; Huang and 

Shiu, 1996) due to the combination of charge neutralisation, 

complexation/precipitation and ligand exchange mechanisms which are thought to 

dominate NOM removal (McKnight et al., 1992; Filius et al., 2003). The implication 

for the water utilities in this instance is that stoichiometric dosing in proportion to 

flow, or bulk water parameters such as total DOC, does not always provide a robust 

means of coagulation control, such that any two waters with the same bulk DOC 

concentration can have very different coagulant demands. Improved dose control can 

be achieved by linking dose to an indicator of the hydrophobic content such as UV254 

monitoring, although such an approach will fail to account for changes in the NOM 

character.  Streaming potential or streaming current measurement, an on-line 

technique originally patented by Gerdes (1966), is one option for automatic 
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coagulation control. However, an offset is known to exist between elecrophoretic 

mobility and streaming current measurements, depending on the particular streaming 

current detector (SCD) probe and the SCD gain setting used (Briley and Knappe, 

2002). Consequently, preliminary jar tests are still required to determine the 

equivalence endpoint for any particular water source. Furthermore, not only are SCD 

sensors prone to fouling (Barron et al., 1992), but electrical charges have been shown 

to vary depending on the time of day, outside temperature and the weather (de Haas, 

1996). In contrast, zeta potential measurement is an off line technique, and an 

extremely useful operational indicator, universally applicable irrespective of source 

water, process scale and coagulant. Furthermore, the fact that the exact pH coagulant 

dose combination within the threshold values is unimportant generates a greater 

degree of flexibility, so that conditions can be adapted to manage the process as the 

source water characteristics vary. In this way, semi regular monitoring can provide the 

necessary control, especially as changes in water character do not occur 

instantaneously. 

 

In terms of the impact of different coagulants, the exact understanding of the way both 

aluminium and iron coagulants operate in relation to NOM removal is far from 

complete. Ferric based coagulants present approximately two times more active 

positive charges per dry weight of coagulant when compared to alum, and consume 

approximately twice as much alkalinity, therefore resulting in a lower pH (Crozes et 

al., 1995). However, examination of the differences in NOM-coagulant interactions 

appears to be minimal in terms of the IEP when based on a charge ratio (Paper 3). In 

fact, the main observed difference was that a greater degree of DOC removal was 

possible with iron compared to aluminium (Budd et al., 2004; Bell-Ajy et al., 2000; 

Edzwald and Tobiason, 1999). Nevertheless, if the differences do not originate from 

electrical interactions such as charge, then they may be controlled by the affinity of 

each coagulant to adsorb to the contaminant surface, or to form complexes with a 

particular functional group. In this respect, the increased removal with ferric ions 

could be attributed in part to a higher affinity for carboxylic groups present in the 

NOM (Leja, 1982).  
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8.4 Clarification performance 

Clarification performance is dependent not only on the zeta potential but also the 

clarification process involved and the characteristics of the floc aggregates. Flocs are 

held together by both chemical and physical bonds which depend on the nature of the 

interactions between particles (Yukselen and Gregory, 2004). This work has revealed 

that both DOC:Fe ratio and zeta potential are important in determining the resulting 

floc structure (Paper 11).  A previous explanation was based on an existing model 

which attributed the NOM floc properties to steric interactions, polymer bridging and 

van der Waals forces (Jarvis et al., 2005). However, the inclusion of zeta potential in 

this work adds another dimension to the model, therefore allowing water utilities to 

effectively engineer floc properties, such as size, growth and resistance to shear, in 

relation to a particular process. For instance, results from this investigation have 

revealed that floc aggregates formed within the operational window, -10 mV to +3 

mV, are stronger and therefore more likely to withstand exposure to increased shear 

regions. This is important in effective coagulation (Gregory, 1989), particularly as 

newly exposed surfaces of aggregates may alter the surface charge of the floc 

aggregate, leading to partial re-stabilisation (McCurdy et al., 2004). Furthermore, floc 

breakage and the creation of smaller particles could also result in lower removal 

efficiencies (Boller and Blaser, 1998). However, increasing the zeta potential beyond 

the threshold value will produce larger, more loosely connected NOM aggregate, 

attributed to the increased electrostatic repulsion within the matrix (Bache et al., 

1999). A theory supported by Vigle-Ritter (1999), who observed an adverse effect on 

floc structure with a higher coagulation pH and associated charge increase. 

 

A number of authors have concluded that increased floc size is a good indicator of 

floc strength for a given shear condition (Bache and Papavasilopoulos, 2003; 

Yukselen and Gregory, 2004; Jarvis et al., 2005). This work has indicated that 

increased floc sizes could result in increased removal, provided the zeta potential is 

maintained within the operation envelope. This has also been observed when 

coagulating latex with alum (Chakraborti et al., 2003). Larger floc sizes can be 

engineered by increasing the coagulant dose. One of the mechanisms in the 

coagulation of NOM involves the binding of metal species to anionic sites, 

neutralising the negative charge and leading to the precipitation of a metal humate 
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complex (Duan and Gregory, 2003). Hence, increasing the coagulant dose, and 

number of binding sites, is likely to increase both precipitation and floc size (Ching et 

al., 1994). However, in terms of the benefits of increased floc size for the water 

industry, this must be assessed in relation to the particular process involved and the 

costs associated with increased coagulant usage. Finally, the initial growth rate is 

another variable which is also dependent on the DOC:Fe ratio, with higher rates 

observed for lower ratios, irrespective of the operational zeta potential. This is an 

important consideration when optimising the capacity time of an existing process. 

 

8.5 Overall recommendations  

Two major recommendations have arisen from this work, the first being the need for a 

greater understanding of the system characteristics and the impact of NOM on 

coagulation, whereas the second is to maintain the coagulation process within a 

predefined operational window.  

 

With regards to the first recommendation, rapid fractionation tests can provide 

information on the polarity of the water in terms of the hydrophilic/hydrophobic 

balance, and coupled with charge density measurements this can provide a useful tool 

when optimising coagulation. For instance, the hydrophobic content indicates the 

amount of organic material which can be removed by conventional coagulation, and 

can be used to predict the required coagulant dose when used in combination with 

charge density measurements. The non adsorbed or HPINA fraction however, is a 

good indicator for the residual DOC concentration remaining after treatment. This is 

important, as residual organics can lead to the formation of potentially carcinogenic 

disinfection by products (DBP), such as Halo acetic acids (HAA) and 

Trihalomethanes (THM), during the disinfection process (Singer, 1999).  

 

In order to maintain a robust process, zeta potential can be used as both a 

straightforward means of coagulation control as well as a diagnostic tool, by 

maintaining a value within the range of -10 mV to +3 mV. In reality, a mid range set 

point is recommended, therefore allowing operators time to respond and adapt to 

fluctuations in the organic charge load. This can be achieved cost effectively though 

simple monitoring on a semi regular basis. Zeta potential can be manipulated through 
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either coagulant dose or pH adjustment. In fact, the exact combination is unimportant, 

provided the zeta potential remains within the threshold values. However, the DOC:Fe 

dose ratio is important when considering the properties of the floc aggregates formed, 

with an optimal ratio of 1:1 having been identified previously (Jarvis et al., 2005). For 

instance, a reduction in the DOC:Fe ratio will increase both the steady state floc size 

and the initial growth rate. This is an important consideration for processes in which 

floc size and characteristics are important, such as sedimentation.  

 

In general, results suggest that a robust operational performance can be maintained 

through the implementation of a series of flowsheet diagrams.  For instance: 

 

1. If the WTW is failing to meet the required residual organic concentration (Figure 

8.2a):  

(a) Check the post coagulation zeta potential, which should not exceed -10 mV 

and can be manipulated by altering either pH of coagulant dose 

(b) If the zeta potential is within the operational range, fractionate the raw water 

to determine the non adsorbed fraction concentration (HPINA). If the level 

exceeds the required residual concentration then additional treatment options 

should be investigated. 

 

2. If the floc properties are failing to meet the operational requirements (Figure 8.2b):  

(c) Check the post coagulation zeta potential, which should also not exceed -10 

mV in order to produce flocs with the most resistance to shear. 

(d) Check the DOC:Fe ratio and adjust to 1:1. 

(e) If floc properties are still not suitable for clarification, then process options 

should be reviewed. 
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Figure 8.2: Flow sheet diagrams for (a) optimal NOM removal and (b) optimal floc 

properties.                                                                                                                    . 
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9 Conclusions and Further work 

9.1 Conclusions 

This project has extended previous characterisation studies and demonstrates that the 

DOC, polarity and charge density of the waters vary considerably as both a function 

of location (source) and time of year or season. Furthermore, coagulation 

investigations at varying scales, from bench to full, clearly indicate the importance of 

zeta potential in terms of a universal indicator of the appropriateness of the treatment 

strategy, irrespective of the chemical used or the system investigated. The following 

overall conclusions have been drawn: 

 

• The variation in raw water characteristics for all sources was observed in 

terms of both DOC concentration and UV254 absorbance. However, 

characteristics also varied in terms of hydrophilic/hydrophobic content and 

charge density. Consequently, stoichiometric dosing of coagulants based on 

bulk water parameters, such as DOC and UV254, is not a viable option for 

maintaining a robust coagulation performance during these periods. 

• Raw water monitoring and characterisation revealed that during the period of 

elevated organics, the changes in NOM composition and character of 

snowmelt and moorland waters were considerably different. The increase in 

DOC for the snowmelt water source was attributed to an increase in the high 

MW hydrophobic material, whereas for the moorland waters the increase was 

observed for both the hydrophobic and hydrophilic NOM fractions, across a 

broad spectrum of molecular weights. 

• The hydrophobic NOM content contributes the majority of the charge load and 

subsequent coagulant demand, although this fraction is also most readily 

removed during conventional coagulation with metal salts. Fractionation and 

charge density measurements are an effective way to determine both the 

charge density and hydrophobic content of the water. 

• The FAF fraction most readily resembles the raw water with regards to both 

coagulation conditions and floc properties. This presents further support for a 

charge based operating strategy, as UV254 monitoring is unlikely to distinguish 

between the two hydrophobic NOM fractions sufficiently. 
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• The hydrophilic NOM fraction is less amenable to removal when coagulating 

with metal salts. Consequently, measurement of the polar NOM fraction 

(HPINA in particular) provides a good indication of the achievable DOC 

residual concentration when coagulating under optimum conditions. 

• Coagulation with ferric salts removed approximately 0.5 mg.l
-1
 more DOC 

than when coagulating with alum. However, results revealed no significant 

difference in the influence on the IEP based on charge ratio. 

• Comparison across different source waters, seasons, scales and chemical 

solutions revealed that good coagulation performance was achieved for all 

systems, in terms of DOC removal, when the zeta potential was maintained 

within the range  -10<ζ<+3 mV. 

• The combination of pH and coagulant dose is unimportant provided the 

resulting zeta potential is within the pre-determined operational window. 

• A similar operational zeta potential range exists for clarification processes, 

although the zeta potential value at the positive threshold is influenced by the 

nature of the organics. The positive zeta potential range, within which good 

turbidity residuals are achieved, is increased as the SUVA value of the raw 

water decreases. 

• Raw water sources with a higher turbidity were found to be more sensitive to 

the negative zeta potential threshold value, resulting in a more rapid 

deterioration in performance. 

• Both dose ratio and zeta potential are important factors in determining the 

resulting floc structure. Operating within the zeta potential range of -10<ζ<+3 

mV will increase the flocs resistance to shear, whereas increasing the 

coagulant dose and lowering the DOC:Fe ratio, whilst maintaining the zeta 

potential within the operational range, will increase the steady state floc size. 
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9.2 Further work 

This work has highlighted the benefit of characterisation techniques to evaluate the 

composition and character of organic matter present in each system. This has 

demonstrated that by understanding how the systems change, and the subsequent 

impact on both the coagulation process and the level of removal achieved, a WTW 

may be able to adapt their treatment processes in order to optimise both coagulation 

and downstream solid-liquid separation processes. However, more research is 

required in this area and should concentrate on: 

 

(1) The influence of raw water source. This work presented data from a number of 

sources, all containing a high hydrophobic NOM fraction. More research is 

required based on sources of a more hydrophilic nature, such as lowland or 

river waters, in order to test the strength of the relationships identified.  

(2) The use of zeta potential as a strategic planning tool in order to link catchment 

management and source water selection to optimal treatment performance. For 

instance, the development of a simple fractionation method for determining 

the hydrophilic content of the water, combined with enhanced raw water 

monitoring in terms of HPSEC and charge density, would allow source waters 

to be ranked in terms of both treatability and coagulant demand. 

(3) The use of highly charged novel coagulants. This study presented encouraging 

performance data using zirconium, a highly charged novel coagulant, based on 

bench scale experiments with one NOM rich water source. Consequently, 

more research is needed, especially in terms of the effect of varying NOM 

composition and increasing operational scale, in order to propose zirconium as 

a viable option for the future. 

(4) A further understanding of the differences observed between Iron and 

Aluminium based coagulants. This work has shown that these two coagulants 

give rise to different DOC residuals under optimum coagulation conditions. 

However, examination of the differences in NOM-coagulant interactions 

appears to be minimal in terms of the IEP when based on a charge ratio. Hence, 

the mechanistic description for these differences has not been adequately 

explained and therefore more research should focus on a fundamental analysis 
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of the molecular attraction between the metal hydroxide and the NOM using 

tools such as atomic force microscopy. 

(5) A reduction in flocculation time. This work has shown that under all the 

conditions investigated, the d50 floc size was reached within 10 minutes, with 

no net increase observed for any subsequent increase in slow stir flocculation 

time. Hence, the impact of a reduced flocculation time on treatment 

performance could be investigated as this could potentially reduce the 

residence time at a full-scale WTW. 

(6) The impact of zeta potential on downstream processes. This work has 

highlighted the relationship between zeta potential and the initial treatment 

stages of coagulation and clarification. However, more research is needed to 

investigate the impact of zeta potential on controlling downstream processes 

such as filtration, and in particular the influence residual organics may have on 

the system. 
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  Appendix 

A2 

High Performance Size Exclusion Chromatography (HPSEC) size calibration (Goslan, 

2003; Pikkarainen et al., 2004). 
 
 

 

Figure A.1: HPSEC chromatogram of Albert raw water with peaks assigned. 

 

Goslan, E.H. (2003). Natural organic matter character and reactivity: Assessing  

seasonal variation in a moorland water. PhD thesis, Cranfield University, UK. 
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