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Delineating mastitis cases in dairy cows:
Development of an IoT-enabled intelligent
decision support system for dairy farms

Mohammad Farhan Khan, Vivi Mørkøre Thorup, and Zhenhua Luo

Abstract— Mastitis, an intramammary bacterial infection,
is not only known to adversely affect the health of a dairy
cow but also to cause significant economic loss to the
dairy industry. The severity and spread of mastitis can
be restrained by identifying the early signs of infection in
the cows through an intelligent decision support system.
Early intervention and control of infection largely depend
on the availability of on-site high throughput machinery,
which can analyse milk samples regularly. However, due
to limited resources, marginal and small farms usually can
not afford such high-end machinery, hence the financial
loss in such farms due to mastitis may become significant.
To overcome such limitations, this paper proposes a low-
complexity yet affordable automated system for accurate
prediction of early signs of clinical mastitis infection in
dairy cows. In this work, behavioural data collected through
IoT-enabled wearable sensors for cows is utilised to de-
velop a support vector machine (SVM) model for the daily
prediction of mastitis cases in a dairy farm. The data set
from the research herd utilises the information of 415 cows
collected in the span of 4.75 years in which 75 cows had
mastitis. In addition to relevant behavioural features, other
statistically significant features such as daily milk yield,
lactation period, and age are also utilised as features. Our
study indicates that the SVM model comprising a subset
of behavioural and non-behavioural features can deliver a
mastitis prediction accuracy of 89.2%.

Index Terms— Animal health informatics, automated de-
tection, clinical mastitis, decision support system, IoT
wearable sensor.

I. INTRODUCTION

Mastitis is a production disease in dairy cattle, which
triggers an inflammatory condition in the mammary gland [1].
Some of the major mastitis-causing pathogens are contagious
and easily spread from one cow to another, hence adversely
impacting the dairy industry [2]. The UK economy annually
suffers a loss of approximately £170 million due to mastitis
in cattle [3]. To reduce the financial losses resulting from

”This study was carried out with the support of Innovate UK under
Grant no. 104989.”

M. F. Khan is with the Sir David Bell Building, Digby Stuart College,
University of Roehampton, London SW15 5PU, UK (e-mail: moham-
mad.f.khan@roehampton.ac.uk).

V. M. Thorup was with IceRobotics Ltd, now: Peacock Technology,
Unit 13 Alpha Centre, Stirling University Innovation Park, Scotland FK
4NF, UK. She is now with the Department of Animal Health, Aarhus
University, Tjele - DK 8830, Denmark (e-mail: vivim.thorup@anis.au.dk).

Z. Luo is with the School of Water, Energy, Environment and
Agrifood, Cranfield University, Cranfield - MK43 0AL, UK (e-mail:
z.luo@cranfield.ac.uk).

to proliferation of the disease, it is desirable to predict the
onset of mastitis in the earliest phase and thereby enable
intervention.

Diagnosing mastitis in cows can help control the disease,
which in turn can assist animal welfare by hindering the severe
effect of mastitis otherwise due to prediction delays [4]. The
intervention of mastitis requires a decision support system
that can extract vital information related to cows and utilise
the core information to forecast the possible signs of disease.
Several studies have been conducted in the domain of decision
support systems that can predict the signs of disease using
wearable sensors [5].

The study conducted by Nogami et al. [6] used a wearable
sensor system to measure the body temperature of a calf
by mounting the sensor on the calf’s tail. In another study,
Miura et al. [7] used a wireless sensor system for detecting
estrus in cattle by monitoring their ventral tail base surface
temperature. On the other hand, Benaissa et al. [8] has
developed automatic wearable monitoring systems to quantify
the behaviour of cows with the help of leg- and neck-mounted
accelerators. Similarly, Norton et al. [9] has investigated the
role of wearable sensing systems in accurately predicting stress
in horses in real-time.

Integrating machine learning algorithms with diverse data
sets can identify complex patterns associated with the disease
and can provide timely insights by contributing to improved
animal welfare, enhanced milk quality, and increased farm
productivity. Support vector machine (SVM), decision trees,
neural networks, and logistic regression are some of the well-
known machine learning algorithms that are widely utilised
in the literature for classifying mastitis disease [10]. Out of
various machine learning algorithms, SVM is considered one
of the most efficient and frequently opted algorithms [11].
SVM can differentiate between the classes of infected and
healthy cows by creating an optimal classification boundary
[12]. It is worthwhile noticing that the performance of machine
learning algorithms largely depends on the quality of the
feature space, which might be compromised due to noise and
bias within the data set [13]–[15].

Usually, a real-world data set is comprised of noisy data
values, which severely decrease the quality of the feature space
by developing erroneous conjectures. Another major factor
that reduces the performance of machine learning algorithms
is a bias among the classes, causing a tendency to miss the
adequate information of the minority class and favour the
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majority class during the learning process.

II. RELATED WORK AND MOTIVATION

Some recent studies have focused on predicting the on-
set of clinical mastitis using machine learning models. The
study conducted by Hyde et al. [3] has developed a random
forest model that can predict contagious and environmental
mastitis cases in dairy cows. Ghafoor and Sitkowska [16]
have developed a highly accurate random forest classifier that
utilises the up-sampling method for reducing data bias while
detecting clinical mastitis. Similarly, Fadul-Pacheco et al. [17]
developed a random forest model on various features including
somatic cell score and milk production. The prediction model
can forecast the onset of clinical mastitis with an accuracy
of 72% during first lactation and the same 72% on a daily
basis. On the other hand, the model proposed by Fan et al.
[18] can attain a sensitivity of 95% for predicting clinical
mastitis cases by up-sampling the feature space which includes
electrical conductivity (EC). Similarly, the study conducted
by Luo et al. [19] can predict clinical mastitis cases with an
accuracy of 97% by including EC as one of the features.

According to most of the other recent studies reported in
Table I [20]–[30], the two crucial factors that highly contribute
in differentiating between healthy cows and mastitis infected
cows are somatic cell count (SCC) and milk EC. However, to
evaluate crucial milk parameters such as SCC and milk EC of
diseased cows requires a high throughput on-farm machinery,
which can analyse milk samples regularly [31]. However, the
resources that are available to marginal and small dairy farmers
are limited and prevent them from affording such machinery
[32].

Under such scenarios, the classic approach would be moni-
toring the behavioural pattern of a cow, which tends to change
after contracting the disease [33]. A wearable internet of
things (IoT) sensor is capable of continuous collection of the
movement and behavioural data of individual cows, and it
may raise a simple alert for a diseased cow at early phase
of infection. The anomaly in the behaviour of a cow can be
closely monitored by observing the core behavioural pattern of
each cow through lying time, standing time, step count, etc.
[35]–[37]. However, usually the relationship of behavioural
factors with animal welfare is highly complex, hence making
the disease almost unobservable at its earliest phase [37].
Using machine learning to identify and exact the hidden
patterns in the behavioural data, would provide a mean to
handle such complex relationship and effectively differentiate
diseased cow from healthy ones [38], [39].

In this study, both of the aforementioned obstacles are
dealt with while developing machine learning algorithms for
mastitis detection, so that the proposed model can predict
the change in the behaviour of the cow. To the best of our
knowledge, to date, no study has considered the role of bias
within the behavioural data set while developing a machine
learning model for predicting the early phase of clinical
mastitis in dairy cows. Fig 1 illustrates the procedure adopted
in this study for diagnosing clinical mastitis in Holstein
Friesian dairy cows, which includes behavioural data collected

through IceQube sensor, synchronisation with the farm study
along with other non-behavioural data sets, under-sampling
of data to remove bias between healthy and mastitis classes,
and different feature elimination procedures for developing
machine learning models. It should be noted that for this
study, a healthy cow has not had mastitis identified during
the previous 14 days. A cow was allowed to have other types
of disease during those 14 days, to allow real-world situations.

The reminder of this paper is organized as follows: An
overview of an IoT enabled sensor, data acquisition, pre-
processing, and statistical analysis of the feature space and
its role in the development of an unbiased SVM model is
discussed in Section III. Results are reported and their meaning
is interpreted in detail in Section IV, followed by concluding
remarks in Section V.

III. MATERIALS AND METHODS

A. IoT sensor
This study used data collected through an IoT-enabled

wearable sensor [40], namely a 3-dimensional accelerometer
(IceQube, IceRobotics Ltd, South Queensferry, UK). Fig. 2 il-
lustrates the attachment of a sensor that records data from indi-
vidual cows. The IceQube sensor captures various behavioural
features of a cow, such as lying time, standing time, lying bout,
standing bout, step count, IceScore, and motion index. Lying
time is recorded when the hind leg is in a horizontal position,
while standing time is recorded when the hind leg is not in
a horizontal position, that is, lying and standing postures are
mutually exclusive. A lying bout is recorded when a sensor
changes from vertical to horizontal. Similarly, a standing bout
is recorded when a sensor changes from a horizontal to a
vertical position. The step count measures the number of times
a cow lifts its leg and places it back down again. The motion
index is a summarisation of the acceleration of the leg in all
three dimensions, thus expressing overall leg activity [41]. The
IceScore is a proprietary feature. The latter two features have
no unit. The features are summarised in steps of 15 minutes,
and at each milking data were transferred from the IceQube
sensor through the local farm server to a cloud-based server,
CowAlert [40].

B. Data acquisition and pre-processing
The complete data set utilised in this study was from a

period of approximately 4.75 years, from October 2013 to
June 2018. It was captured from the Langhill herd at Crichton
Royal Farm, Dumfries, UK, which belongs to Scotlands Rural
College, where the temperature rarely exceeds 20◦C and the
temperature-humidity index stays below 68. The Crichton
Royal farm runs two distinct genetic groups of Holstein
Friesian dairy cows; the Select group is a genetic line with
increased milk fat and crude protein yield, while the Control
group is another genetic line that remains close to average
merit for milk fat plus crude protein yield [42]. Cows remained
in the herd for three lactations, or until there was a suitable
replacement unless the animal was culled for welfare reasons.
Calving took place all year round. Lactating cows were loose-
housed in four pens of 24 cubicles with rubber mattresses,
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TABLE I
MACHINE LEARNING ALGORITHMS USING SCC AND MILK EC AS FEATURES TO DIFFERENTIATE BETWEEN HEALTHY COWS AND MASTITIS INFECTED

COWS.

Reference Features used Data balancing Best performing algorithm Best performing metric
[3] SCC and other parameters - Random forest Accuracy = 98.2%
[16] Udder inhale/exhale limits and body temperature Random up-sampling Random forest Accuracy = 99.1%
[17] SCC and other parameters SMOTE up-sampling Random forest AUC = 72%
[18] EC and other parameters Random under-sampling Decision tree based ensemble Sensitivity = 95%
[19] EC and other parameters SMOTE up-sampling Decision tree Accuracy = 98%
[20] SCC - Linear discriminant analysis Accuracy = 79%
[21] SCC and other parameters - Gradient boosted tree Accuracy = 84.9%
[22] SCC, EC and other parameters - SVM Sensitivity = 89%
[23] EC and other parameters - SVM Sensitivity = 84.6%
[24] SCC, EC and other parameters - Random forest Accuracy = 90%
[25] SCC, EC and other parameters - Extra trees classifier AUC = 79%
[26] SCC and other parameters - Linear regression AUC = 71%
[27] SCC, EC and other parameters - Conventional neural network Accuracy = 76.2%
[28] SCC and mid-infrared spectroscopy - Partial least squares regression AUC = 85%
[29] SCC and other parameters - SVM Accuracy = 79.6%
[30] SCC, EC, behavioural and other parameters - Recurrent neural network Accuracy = 84.3%
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Fig. 1. Illustration of the procedure in the farm adopted by farm staff for diagnosing clinical mastitis in Holstein Friesian dairy cows. The behavioural
data collected through IceQube sensor is synchronised with the farm study along with other non-behavioural data sets and sampled together to
create balanced classes of healthy and mastitis cases for developing the feature defined SVM models.

Fig. 2. IceQube sensor attached to the hind leg of a cow. Photos:
Courtesy of IceRobotics Ltd.

top-dressed with sawdust, and grooved concrete floors in the
alleys with automatic scrapers. Cows were milked three times
daily in a conventional milking parlour, the milking periods

ranged from 0730 to 1000 h; 1430 to 1630 h; and 2130 to
2330 h. Milk yield was measured at each milking. The cows
left the pen as a group for about 40 min/milking.

Mastitis was diagnosed by farm staff during the milking
procedure by checking for the signs of mastitis at each
milking instance. A cow was declared as having mastitis if
signs of clinical mastitis were noted, including udder changes
(inflammation/swelling) or abnormal milk (clots/flakes), with
or without signs of systemic illness. Following diagnosis, cows
were treated for three days with antibiotics and analgesics. If
symptoms persisted, treatment was repeated. An aseptically
collected sample was taken from the affected quarter/quarters
and sent for bacteriological culture to identify the cause
of each clinical mastitis case. In the present study, a cow
was defined as healthy when she had no clinical veterinary
treatment in the past 14 days. All treatments made were
entered into the research database, and codes referring to
different treatments have been established as routine practice.
In the present study, these treatment codes were grouped into
two categories: (i) clinical mastitis, and (ii) all other disorders,
including reproductive, metabolic, and leg disorders etc.
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Fig. 3. Frequency of mastitis instances with respect to healthy instances
in each month over the observation period. To estimate the prevalence,
the total number of affected cows has been divided by total number of
cows at each month.

To predict the daily mastitis cases, data from the different
sources were integrated, meaning all the data recorded with
small step sizes or at each milking, such as the behavioural
features and the milk yield, were averaged or summarised to
24-hour values.

The overall data set consisted of 415 cows, out of which
75 cows had a mastitis diagnosis. Each cow was continuously
recorded around the clock in steps of 15 minutes. There were
175395 valid log entries in the data set, where each entry
comprised a detailed profile of a cow. A complete profile of
each cow includes cow ID, unique ear tag, date and time of
data logging, icescore which calculates the difference between
motion index and steps, steps taken by a cow, standing time,
lying time, lying bouts which counts the number of times a
cow gets down from standing position, standing bouts which
counts the number of times a cow gets up from lying position,
total daily milk yield (milking three times a day), calving date,
cow weight at calving, cow weight at drying off instance, date
of birth.

The frequency of mastitis instances in the herd over the
observation period along with the frequency of infection across
the lactation period is illustrated in Fig. 3. The IceQube sensor
records behavioural data that sometimes fails to capture the
data and records values as zero, which is then completely
removed from the data set due to its rare occurrence. In the
current data set, there are approximately 430 additional bad
log entries, which implies around 0.24% of missing log entries
in the data set.

Note that, other factors than disease do affect cow be-
haviour; management procedures regarding feeding, milking,
cleaning the stall, season, and physiological stage (when did
the cow have her last calf, is the cow in estrus, is it a high or
low yielding cow). The management procedures we assumed
in this study were identical for all cows, and the physiological
stage is accounted for in the model by including age, days
since calving, and milk yield.

C. Support vector machine

The SVM is one of the most highly recognised machine
learning algorithms, which can predict the class of a new
data value by utilising a selection criterion developed with the
help of training inputs. The SVM can differentiate between

the healthy and the diseased class by formulating a mean
classification hyperplane [12].

Consider a set of training data values (xi, yi), i =
1, 2, · · · , n where input feature xi ∈ Rn and output yi ∈
{−1, 1}. The SVM maximises the gap between two hyper-
planes H1 and H2 (associated with the diseased and healthy
class) by maximising the modified dual Lagrange objective
function:

max
n∑

i=1

βi −
1

2

n∑
i=1

n∑
j=1

βiβjyiyj(xi · xj) (1)

s.t. Ĉ ≥ βi ≥ 0 ∀i,
n∑

i=1

βiyi = 0

where, β is Lagrange constraint, and Ĉ is a soft control vari-
able (box constraint), which determines a trade-off between
margin width and classification mistakes. To handle a complex
non-linear classification problem, the expression (xi · xj) in
the objective function can be mapped to a non-linear kernel
function K(xi, xj), where K can be a quadratic function,
cubic function, radial basis function (RBF), etc.

IV. RESULTS AND DISCUSSION

Table II reports the descriptive statistics of the aforemen-
tioned data recorded during approximately 4 years and 7
months. From Table II, observing the mean and standard
deviation of all the features along with respective skewness
and kurtosis values, it can be observed that the larger portion
of the data points of all the features (except daily milk yield)
of mastitis infected cows are conflated into the healthy data
points, hence might require a non-linear kernel function for
formulating an accurate SVM hyperplane.

Further, the number of data points for mastitis and healthy
class are highly skewed, which is likely to create a positive
bias in predicting healthy cases [15]. The bias in a SVM model
can be eliminated in two ways, that is either by quantitatively
down-sampling the healthy data points or up-sampling the
mastitis data points by introducing synthetic data points.
However, the current database is comprised of approximately
1511 times higher quantitative skewness, therefore opting for
up-sampling criteria will introduce a large number of synthetic
data points that might resemble unrealistic mastitis infection.
Therefore, in this study, a down-sampling criteria is opted to
quantitatively balance the skewness between the classes.

The down-sampling of the database can be performed by
either randomly choosing a subset of 116 data points from the
healthy class or utilising a day prior healthy data of all the
cows that have contracted mastitis. Given that the objective of
the study is to predict the earliest phase of clinical mastitis
for early intervention, then among both the down-sampling
possibilities, the latter scenario is comparatively more feasible,
because it helps analysing the imperceptible change in the
behaviour of the cows after contracting the disease.

Thus, in this study, 24-hour prior recorded data was utilised
to analyse the change in the feature values compared to the
one when the cow had contracted the infection. The reason
behind opting for this period is to allow the farmers to test
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TABLE II
DESCRIPTIVE STATISTICS OF FEATURES USED FOR CLASSIFICATION OF MASTITIS CASES AND HEALTHY CASES.

Feature ID Features Mastitis (N1 = 116) Healthy (N2 = 175279)
Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

1 IceScore (no unit) 1.31 0.50 0.382 2.721 1.37 0.51 0.856 5.09
2 Standing bout (number/day) 10.0 3.56 0.581 3.532 9.71 3.38 1.351 7.40
3 Step count (number/day) 1105 1791 2.460 9.100 1453 1083 4.027 72.27
4 Motion index (no unit) 3901 2930 2.599 10.288 5204 5064 36.030 3523.30
5 Standing time (sec/day) 48194 9236 0.423 3.258 46653 8705 0.033 3.48
6 Lying time (sec/day) 38206 9236 -0.423 3.258 39746 8705 -0.034 3.48
7 Lying bout (number/day) 10.0 3.68 0.491 3.571 9.84 3.43 1.264 7.06
8 Milk yield (kg/day) 12.3 9.11 0.877 4.085 28.3 8.80 0.433 3.43
9 Days since calving (days) 142 94.7 0.679 2.762 189 112.6 0.673 3.93
10 Calving weight (kg) 622 60.0 0.411 3.047 587 69.9 0.266 2.93
11 Dry-off weight (kg) 710 83.7 0.1394 3.339 692 108 7.357 112.50
12 Age (days) 1442 363 0.764 3.816 1319 402 0.690 3.00

the milk for bacterial growth and start the treatment earlier,
which may increase the likelihood of curing and decrease the
excessive usage of antibiotics. Fig. 4 illustrates the distribution
of all the twelve feature values of 75 cows that contracted
mastitis during the period of data collection. Note that, out
of 75 infected cows, 41 cows were reinfected in a span of
4 years and 7 months, and hence has been considered as a
new mastitis case for developing machine learning models.
Fig. 4(h), the daily yield of mastitis cows is visually quite
lower than the yield of healthy cows. Although cows with
mastitis are still being milked, their milk is discarded and
therefore not recorded as soon as a laboratory investigation
confirms contraction of the infection. Hence, for infected cows,
the remaining milking slots (in a day) have been recorded as
zero which creates a bias in a data logging process. Therefore,
in this work, a daily milk yield feature is to be used to observe
the impact of the bias of a feature while training the SVM
model.

A. Analysis of variance and χ2 test

Before developing the SVM model for predicting mastitis
cases on a daily basis, it is vital to statistically analyse the
significance of the feature space using analysis of variance
and χ2 test [43]. Table III demonstrates the variation between
cows with mastitis with respect to the 24-hour prior data of the
healthy cows using a sum of squares, F-ratio, and p-value of
each feature, respectively. Following are the null and alternate
hypothesis statements for the features considered in Table III:

Null hypothesis (H0): There is no significant difference
between the specific features of mastitis-infected cows and
healthy cows.

Alternate hypothesis (H1): There is a significant difference
between the specific features of mastitis-infected cows and
healthy cows.

In Table III, the sum of squares represents the deviation of
all the data points from the mean value, while F-ratio signifies
the relative variability of group mean values. Note that, the
magnitude of a sum of squares largely depends on the average
value of that specific feature. Observing Table III along with
Fig. 4, it can be asserted that IceScore, lying time, calving
weight, and dry-off weight are not very good classification
features, because their null hypothesis is accepted, meaning
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Fig. 4. A raincloud representation of feature space of cows with mastitis
(shown in red colour) and with healthy cows (shown in blue colour): (a)
IceScore, (b) standing bout, (c) step count, (d) motion index, (e) standing
time, (f) lying time, (g) lying bout, (h) milk yield, (i) days since calving, (j)
calving weight, (k) dry-off weight, and (l) age.

there is no significant difference between the mastitis infected
cows and healthy cows for these features.

The low F-ratio of IceScore, lying time, calving weight, and
dry-off weight suggest that the group means are very close,
hence the variability is low between the groups relative to
within the group. On the other hand, the higher F-ratio of
the remaining features signifies greater variability of group
means as compared to the within-group variability. Hence such
factors are likely to contribute to a greater extent in accurately
classifying the cows as diseased or healthy.
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TABLE III
ESTIMATION OF FEATURE RELATION OF MASTITIS INFECTED COWS

WITH RESPECT TO 24 HOUR PRIOR HEALTH DATA USING ANOVA TEST.

Features Sum of F-ratio p-value Null
squares hypothesis

IceScore 0.15 0.51 0.47 Accept
Standing bout 124.57 9.54 <0.01 Reject
Step count 7.81×106 7.80 <0.01 Reject
Motion index 1.09×108 7.89 <0.01 Reject
Standing time 6.04×108 5.01 0.02 Reject
Lying time 1.42×107 0.13 0.71 Accept
Lying bout 89.38 6.44 0.01 Reject
Milk yield 1.21×104 119.63 <0.01 Reject
Days since calving 1.63×105 13.28 <0.01 Reject
Calving weight 33.37 0.00 0.95 Accept
Dry-off weight 347.65 0.02 0.89 Accept
Age 1.88×106 9.94 <0.01 Reject
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Fig. 5. Confidence score of individual feature estimated using MRMR
algorithm.

Note that, there are other factors than the disease which
affect cow behaviour; examples include management proce-
dures regarding feeding, milking, cleaning the stall, season,
and physiological stage. In the data set, the management
procedures were assumed identical for all cows, and the
accounted physiological stage is considered in the model by
including age, days since calving, and milk yield.

B. Minimum redundancy maximum relevance

Another algorithm that has been adopted in this work
for identifying the significance of features is minimum re-
dundancy maximum relevance (MRMR), which ranks the
features of the entire feature space using a forward addition
scheme [44]. The MRMR algorithm chooses an optimum set
of maximally and mutually diverse features to adequately
represent the response variable. Fig. 5 illustrates the estimated
confidence score of the features using the MRMR algorithm.
A high score indicates maximum confidence in the feature
in differentiating infected cows from healthy ones. Observing
Fig. 5, it can be asserted that milk yield, step count, and days
since calving are the three most important features that have
maximum relevance compared to other features for predicting
infection cases.

C. Multicollinearity

Multicollinearity is one of the most important factors that
need to be investigated in the data set prior to developing
machine learning algorithms [45]. In the realm of machine
learning, the presence of multicollinearity demands meticulous
scrutiny before model development due to its potential to
significantly distort the results and undermine the reliability
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Fig. 6. PCC of all the features with respect to other features in feature
space.

of the predictive model. The linearly correlated variables
may exhibit redundant information, making it challenging to
identify which predictors contribute unique insights to the
model. Consequently, the model may include unnecessary
variables, increase complexity without enhancing predictive
performance, or overlook important features, diminishing the
model’s explanatory power [46], [47]. Hence, in this current
study, if any two features have a linear Pearson correlation
coefficient (PCC) > 0.5 are considered moderately correlated,
hence one feature is dropped from the feature space while
retaining the other feature. Fig. 6 illustrates the PCC of
variables concerning each other, and it has been found that
eight features namely icescore, standing bout, step count,
standing time, lying time, milk yield, days since calving, and
calving weight are not strongly correlated, hence considered
for disease classification.

D. Performance of SVM classification model

To develop the SVM model for predicting the daily mas-
titis cases, a 5-fold cross-validation approach was adopted
along with four kernel variants. In the 5-fold cross-validation
approach, 1-fold is reserved for testing purposes while the
remaining four are used for training purposes. To implement
the 5-fold cross-validation approach, the data set is randomly
shuffled and split into five closely equal sub-samples. Then
five iterations are conducted, and in each iteration, a unique
1-fold of the sub-sample is reserved for testing while the
remaining 4-folds are used for training. In the end, the average
value of performance metrics namely accuracy, area under
curve (AUC), sensitivity, specificity, and Matthews correlation
coefficient (MCC) are recorded. Note that, for evaluating the
performance of the SVM models, a mastitis-infected cow
was deemed as a positive instance, while a healthy cow was
considered as a negative instance.

Fig. 7 illustrates the variation in the accuracy of the SVM
model for predicting daily mastitis infection cases in cattle
for different kernel functions K(xi, xj) explored through
systematic grid-search. For the RBF kernel, the systematic
grid search has been performed by varying a combination
of box constraint and kernel scale variables in the range of
[10−3, 102] with a step size of 0.25. For the remaining kernel
functions only box constraint was varied in the aforementioned
range with a step size of 0.25.
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Fig. 7. Accuracy plot of SVM model for different kernel function: Linear, cubic and quadratic kernels for, (a) entire feature space, (b) behavioural
features, (c) statistically significant features, (d) MRMR features, (e) PCC features; RBF kernel for, (f) entire feature space, (g) behavioural features,
(h) statistically significant features, (i) MRMR features, (j) PCC features.

From Fig. 7(a) it can be stated that for the entire feature
space, the linear kernel can achieve the highest accuracy at Ĉ
= 0.50. However, the highest achievable accuracy of 58.5% by
linear kernel states that feature space is not linearly separable,
hence it is necessary to explore non-linear kernel functions
such as cubic, quadratic, and RBF. Observing the performance
of cubic and quadratic kernel functions in Fig. 7(a), it is found
that both functions performed worse than the linear kernel,
that is, cubic and quadratic kernels are able to achieve the
highest accuracy of 55.0%, and 54.1%, respectively. The box
constraint value that gives giving best performance for both
cubic and quadratic kernels is 0.25.

From the AUC value of all the three kernels from Table IV,
it can be asserted that the SVM models developed using the
aforementioned kernels hold substandard predictive power and
have a higher percentage of error by classifying an excessive
number of false positive cases.

Again observing Fig. 7(f) it can be stated that by considering
the entire feature space, the systematic grid-search can find a
maximum accuracy of 89.4% for RBF kernel scale = 13.00
and Ĉ = 5.75. Observing other metrics of the RBF kernel
in Table IV shows that the RBF kernel can achieve an AUC
of 0.95 with sensitivity and specificity of 88.5% and 90.4%,
respectively. The higher value of sensitivity, specificity, and
AUC suggest that the SVM model with an RBF kernel is
capable of predicting mastitis cases more accurately with a
lesser risk of assuming healthy instances as false positive and
mastitis instances as false negative. To further strengthen the
preposition, MCC is reported in Table IV. MCC gives more
importance to the true prediction of both positive and negative
instances. The high MCC values support the findings of the
SVM RBF kernel to be the highest-performing model.

A similar pattern is also followed by the SVM model
developed by considering a subset of seven behavioural fea-
tures recorded through the IceQube sensors. Fig. 7(b) and (g)
illustrate the highest possible performance of different kernel
functions by excluding all non-behavioural features of the cow.
The highest achievable accuracy of 63.4% is attained by the
RBF kernel for kernel scale = 2.00 and Ĉ = 0.75.

On the other hand, compared to the accuracy of the RBF
kernel, the remaining three kernels fell short by 8 to 10
percentage points. The linear, cubic, and quadratic kernels
can achieve the highest accuracy at Ĉ= 6.75, 8.75, and 0.001
respectively. Further, the lower value of MCC indicates poor
performance by non-RBF kernels in creating a balance for
accurately predicting positive and negative instances.

In contrast, Figs. 7(c) and (h) illustrate the importance of
statistically significant features in attaining closer behaviour
to that of the entire feature space. The subset of significant
features reported in Table III through ANOVA and χ2 test are
utilised to estimate a drop in classification performance. The
objective behind opting for statistically significant features is
to analyse the usefulness of less sparse data in reducing the
computational complexity of the low-end system. Statistical
analysis has indicated that opting for significant feature space
for optimised RBF kernel (with kernel scale = 2.25 and Ĉ =
0.50) produced the highest AUC value, which signifies that
opting for significant features tended to slightly suppress the
occurrence of false positive instances. Note that, the features
flagged in statistical analysis can be used individually but the
accuracy will be severely affected in those predictions. As
mentioned in Table IV, using all the statistically significant
features with the linear kernel gives only 55.4% accuracy,
which implies that the relation of the feature distribution is
not straightforward and there is a need to explore more com-
plex relations which can utilise all the statistically significant
features together.

Similar to statistically significant features, MRMR and PCC
algorithms are used to extract the important features that
are likely to contribute towards the classification of diseased
states with respect to healthy ones. From Figs. 7(d)-(e) and
(i)-(j), it can be stated that 8 features shortlisted by PCC
analysis have attained the accuracy of 89.2% for kernel scale
= 18.5 and Ĉ = 2.75. While only 3 features selected by
MRMR analysis can achieve an accuracy of 85.3% (for kernel
scale = 3.00 and Ĉ = 2.00), which is relatively close to the
highest achievable accuracy of 89.4%. Hence, it is evident
that MRMR features are the most optimal feature sub-spaces
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TABLE IV
PERFORMANCE OF FOUR VARIANTS OF THE SVM MODEL TRAINED OVER FIVE DIFFERENT SETS OF FEATURES.

Feature set No. of features SVM kernel Performance metrics
Accuracy (%) AUC Sensitivity (%) Specificity (%) MCC

All features 12 Linear 58.5 0.51 49.2 51.1 0.15
Cubic 55.0 0.51 49.1 52.0 0.14
Quadratic 54.1 0.51 49.9 51.7 0.13
RBF 89.4 0.95 88.5 90.4 0.79

Behavioural features 7 Linear 53.4 0.53 57.4 58.8 0.16
Cubic 55.5 0.52 56.0 57.6 0.14
Quadratic 53.1 0.51 49.1 51.1 0.14
RBF 63.4 0.70 58.2 59.8 0.18

Statistically significant features 8 Linear 55.4 0.55 62.6 63.3 0.53
Cubic 54.1 0.51 50.0 53.4 0.20
Quadratic 54.1 0.52 51.5 55.8 0.20
RBF 88.1 0.97 87.5 88.7 0.76

MRMR features 3 Linear 58.1 0.52 52.6 53.3 0.19
Cubic 55.8 0.51 51.2 52.2 0.19
Quadratic 55.1 0.51 51.8 53.1 0.20
RBF 85.3 0.91 84.7 86.8 0.69

PCC features 8 Linear 59.1 0.52 52.6 53.4 0.16
Cubic 58.2 0.51 51.2 51.9 0.14
Quadratic 58.1 0.51 51.1 51.5 0.14
RBF 89.2 0.96 87.8 90.1 0.78

that can achieve comparatively high accuracy by dropping a
large number of irrelevant features, which is very helpful in
reducing the computational complexity of portable devices.
Note that, the objective of the paper is to propose a prediction
model for a specific farm operating under specific conditions
by collecting behavioural and non-behavioural data, hence the
proposed model can’t be deemed as generalised one.

Comparing the proposed machine learning algorithms with
the most relevant techniques reported by Hyde et al. [3],
Fadul-Pacheco et al. [17], Fan et al. [18], and Luo et al.
[19], it can be stated that all of the techniques rely on either
of the two crucial factors namely SCC and EC to predict the
mastitis cases in dairy farms. By utilising SCC or EC, the
aforementioned techniques are able to achieve from reasonable
to a higher level of sensitivity, however evaluating the SCC
and EC might not be possible for marginal and small dairy
farmers due to limited resources. It is worth noting that, the
PCC analysis conducted on the data collected from Scottish
Holstein Friesian dairy cows came out to be 0.5722, which
shows that a practically weak relationship exists between
mastitis and SCC for Holstein Friesian dairy cows in that
specific farm. On the other hand, Ghafoor and Sitkowska [16]
opted for the up-sampling criteria for removing the bias in
the data set, which has introduced a large number of synthetic
data points resembling unrealistic mastitis infection.

V. CONCLUSION

In this paper, a solution for detecting clinical mastitis in the
early stage of infection for marginal dairy farms has been in-
troduced with the help of an IoT-enabled wearable sensor and
machine learning. The complete data set consisted of seven
behavioural features plus eight simplistic non-behavioural fea-
tures, which have been collected in a span of approximately 5
years and aggregated to a step size of 24 hours. To analyse the
importance of each feature and curtail excessive computational
complexity for low-end systems, PCC, MRMR, and ANOVA

tests have been employed. The statistical analyses show that
out of all the features, three features namely milk yield, step
count, and days since calving are the most important features
that significantly capture the difference between healthy cows
and infected cows. The proposed SVM model developed
using the eight PCC features is able to predict the daily
mastitis cases in dairy cows with the near highest achievable
accuracy, sensitivity, and specificity of 89.2%, 87.8%, and
90.1%, respectively. It is worth noting that, if other diseases
elicit the same behavioural response and decline the milk
yield like clinical mastitis then the model will not be able
to distinguish the other disease from mastitis. In addition, for
all the RBF kernels, the best performing Ĉ value was lying
at a low magnitude value, which depicts that the RBF kernel-
based SVM model is giving more freedom to misclassification
of data points that are leading to a smoother separation.
Hence it can be concluded that, for predicting clinical mastitis
cases, strict separation of classes is going to deteriorate the
performance of the SVM classification model and should be
avoided.
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