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Introduction

� The Boundary Element Method (BEM) is a powerful tool to model the scattering of electro-
magnetic waves by conducting and penetrable objects. It finds applications in forward and
inverse problems such as radar footprint determination, stealth technology and imaging for
diagnotics and security.

� The Impedance Boundary Condition (IBC) model specifies a relationship on the surface of the
scatterer between the magnetic and electric currents m = −zn̂ × j . IBC is especially well
suited to simulate metals coated by a dielectric or absorbing layer which is the base of current
stealth technologies.

� Classic IBC formulations suffer from low frequency and dense discretisation breakdowns. In
other words, the accuracy of the solution deteriorates and the computation time increases when
the frequency is low or when the number of unknowns in the problem N is high because more
iterations are required to solve the linear system. The formulation presented here solves these
problems using a multiplicative preconditionner that makes it stable and accurate at arbitrary
low frequency or dense mesh.

Figure: F-117 Nighthawk Figure: Stealth frigate

Formulation

� The classic Electric Field Integral Equation (EFIE) reads ηT j −
(
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2
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)
m = e i × n̂
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K (j) = n̂ × p.v.

∫
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× j(r ′)dr ′

� The unknown currents j and m are re-
spectively discretized with normalized
Rao-Wilton-Glisson (RWG) basis func-
tions (f i) and Buffa-Christiansen (BC)
basis functions (g j) which results in
the classic IBC-EFIE formulation: Figure: RWG basis function Figure: BC basis function
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Where (Gmix)ij = 〈n̂× f i ,g j〉, (G)ij = 〈f i , f j〉, (T)ij = 〈n̂× f i ,T (f j)〉, (K)ij = 〈n̂× f i ,g j〉
and (V)i = 〈n̂ × f i , e i × n̂〉.
The condition number of S or equivalently the number of iteration required to solve the system
grows proportionnally to the number of unknowns and the inverse of the frequency.

� Consider the quasi-Helmholtz projectors:
PΣ = Σ

(
ΣTΣ

)+
ΣT and PΛH = I − PΣ where Σ is

the star to RWG connectivity matrix. We define M1 to
rescale the incident plane wave in frequency and M2 to
rescale the currents: Figure: Star built

with RWG
Figure: Loop built
with RWG

M1 = PΣ +
1

ika
PΛH M2 = ikaPΣ +

iηka

iηka + z
PΛH

The following formulation is immune from the low frequency breakdown:

M1SM2Y = M1V j = M2Y

� Consider the dual projectors PΛ = Λ
(
ΛTΛ

)+
ΛT and PΣH = I − PΛ where Λ is the loop to

RWG connectivity matrix. The operator M3 uses a Calderon type preconditionning to solve
the dense discretization breakdown:

M3 =
1

a
PΣHTsP

ΣH + Th

where (Ts)ij = 〈n̂ × g i ,Ts(g j)〉 and (Th)ij = 〈n̂ × g i ,Th(g j)〉
� To regularize correctly the system we replace (G)ij = 〈f i , fj〉 by (Tδ)ij = 〈n̂ × f i ,Tδf j〉 :

Tδ =
1

δ
n̂ ×

∫

Γ

e−
R
δ

2πR
j(r ′)dr ′

Tδ tends to n̂× I when δ → 0 and Tδ inherits the properties of Ts as Tδ =
2
δTs(k = − i

δ). In
particular the singular values of Tδ scales as

1
N so Tδ can be regularized by Th those singular

values scales as N . The following system is immune from the dense discretization breakdown
in addition to the low frequency breakdown.

M3G
−1
mixM1SM2Y = M3G

−1
mixM1V

Results

� Our formulation for IBC remains well conditioned when the discretization increases, contrary
to other well established ones. In addition, relevant physical models for the impedance (e.g.
the Drude model) have an impedance that is function of the frequency. In these cases, our
formulation remains stable and accurate. The following figures show the condition number of
sereral formulations for a unit sphere.
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Figure: Condition number as a function of f for the copper
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Figure: Condition number as a function of h (z = 0.7 + 0.6i ,
f = 60MHz)

� Another use for IBC is the scattering of
a metal coated by an absorbing layer,
this is particularly relevant to simulate
stealth planes.

� The magnitude of the electric current
on the stealth airplane surface induced
by an incident plane wave is repre-
sented on this figure.
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Figure: Distribution of the electric current on an airplane surface
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Figure: RCS of the airplane for different incidence angles
(f = 10MHz)

� Our formulation shines especially when
there are several right hand side of the
system that need to be computed. This
is the case when the radar cross section
has to be simulated from each incident
direction.

� On this figure, the effect of the absorbing
layer that coats the airplane on the radar
footprint is evident.

Conclusion

� The impedance boundary condition has a large range of applications and it is particularly well
suited to simulate absorbing layer coated materials.

� This new formulation for the IBC-EFIE significantly improve the performance to solve the IBC
problem: the linear system is solved with a number of iterations independent of the frequency
and the number of unknowns. This property holds even when the impedance z tends to 0
(Perfect Electric Conductor) or when it is a function of the frequency as in physical models for
the impedance.

� It enables solving the IBC-EFIE in a O(N.log(N)) time complexity using a fast multipole
method.
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