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Abstract: The mechanisms responsible for ignition of explosive materials in response to low

energy stimuli, known as “insults” in the literature, are still not well understood. It is in general

believed that explosive ignition is of thermal origin, with mechanical energy being converted into

heat energy in localised regions, forming so-called “hot spots”. When an explosive sample is subject

to a mechanical insult pre-existing, or new, microcracks will be in compression and shear. It is

possible for such microcracks to grow in size if the local stress is great enough and, due to friction

between solid surfaces, heat is released during the growth process. Subsequent to sufficient heat

release, the crack surface temperature will be raised to the solid melting point and a thin sheared

melt layer will be formed, separating the solid surfaces. This thin melt layer will continue to be

heated through viscous dissipation and subsequent chemical reaction, and is thought to be a prime

location for so-called hot spot generation.

Mechanical insults, resulting from low-speed impacts which shear an explosive, have been identi-

fied as a possible ignition source. However, modelling such an ignition mechanism numerically with

hydrocodes proves to offer some considerable challenges. To supplement the numerical approach,

we develop an analytical model of the shearing, melting and subsequent ignition of an explosive

material. We consider the melting of a thin viscous layer of explosive material due to an applied

shear in an idealised planar geometry. The model accounts for self-heating due to mechanical dissi-

pation, and a single-step Arrhenius reaction is used to describe the heating of the explosive due to

subsequent chemical reaction. A solution is sought by considering perturbations from a melt layer

of uniform width. In particular, we consider the effects of modelling the temperature dependence

of the liquid viscosity and specific heat are studied. In contrast to previous work which does not

account for the temperature dependence of material properties, it is shown that allowing the vis-

cosity to vary with temperature can lead to non-uniform mechanical heating in the layer to leading

order. Such localised heating may be associated with generation of localised hot spots which give

rise to ignition.
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1 Introduction

Mechanical insults, resulting from low-speed impacts which shear an explosive, have long been

identified as a possible ignition source in reactive materials. In particular, it is possible for thin

molten layers of explosive material to form within an explosive sample as a result of shear. In

this paper we present a model describing the heating of thin molten layers of explosive material

undergoing shear. The model was originally formulated to investigate the possibility of local material

inhomogeneity being a mechanism for hot spot formation and subsequent thermal runaway. Here

we investigate further to see if allowing the material properties to be a function of temperature can

give rise to new hot spot mechanisms, or affect the behaviour of the mechanisms observed when

modelling shear melt layers with constant material properties. Ultimately, improved understanding

of the mechanisms which have the capability to induce localised temperature increase will aid in

the design of safe storage and handling procedures for explosive materials.

Numerous mechanisms arising from shear are widely discussed in the literature. For instance,

Bowden et al. [5], Ubbelohde [18], Bowden and Gurton [3], and Bowden and Yoffe [4] all discuss

frictional rubbing as a well established ignition mechanism. During rubbing contact between two

solids, the hot spot temperature is determined by the solid with the lower melting point – the

lower melting point solid ‘quenches’ the hot spot temperature to the melting temperature. Bowden

and Gurton were able to measure hot spot ignition temperatures for a wide range of explosives

by choosing grits of different melting points and measuring the effect on the sensitivities of the

explosives [3].

Shear localisation has been widely studied in inert materials, see, for example, Bai and Dodd

[? ], and DiLellio and Olmstead [10]. There have been very few analytical studies on localised

shear in explosive materials. However, many experimental studies can be found in the literature.

Evidence for localised shear within the explosive sample can be observed in recovered unexploded

samples. Photographic evidence for adiabatic shear is given by Field et al. [11], showing ignition and

propagation occurring in a shear band in a sample of PETN (pentaerythritol tetranitrate). Notable

work on shear localisation in explosive materials includes: Boyle et al. [6]; Chen et al. [7]; Dienes

[9]; Frey [12]; and the substantial work by Afanas’ev and Bobolev [1]. Also worthy of mention

are the experimental works by Howe et al. [13] and Mohan et al. [15]. It is in general concluded

that localised shear is a prevalent hot spot mechanism, which manifests in many differing loading

scenarios.

Investigation of these effects through the use of numerical continuum mechanics methods, such

as finite element models, often breaks down owing to problems such as severe mesh deformation [8].

Typically, a very high resolution is required to overcome these issues, but this comes at the cost of

computational resources and time. Additionally, large scale numerical codes do not always offer as

much physical insight as small scale, simplified, analytical models. Such simplified models are to

be employed here to try and gain a deeper understanding of the mechanisms which lead to thermal
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runaway.

Starobin and Dienes [16] present a one-dimensional model for the lateral melting and ignition of a

thin sheared viscous layer. In their work a self-similar solution for parabolic melt front propagation

in non-reactive materials is found, as well numerical results for non-steady sliding of the crack surface

and a non-linear Arrhenius source term. The results presented demonstrate that shear melting in

the one-dimensional geometry leads to an increase in the peak hot spot temperature relative to

the melting point of HMX (cyclotetramethylene tetranitramine). Recently, this model was formally

derived and extended into two spatial dimensions [17].

In their study, Starobin and Dienes [16] treat all material properties as constant, allowing one to

reasonably assume a linear velocity profile across the melt layer. However, the temperature across

the layer varies from the melt temperature of 520 K to a peak temperature of over 700 K. Inevitably

this large increase in temperature will have some effect on the material properties. In particular, it

is suggested that the viscosity may vary significantly across the layer, and the linearisation of the

fluid velocity across the layer would break down.

Here we further the develop the two-dimensional model, allowing the specific heat and viscosity to

vary with temperature. We introduce temperature-dependent specific heat by means of an Einstein

relation, as used in the numerical simulation for shear localisation presented by Austin et al. [2],

and the viscosity of the liquid phase of HMX is modelled using an Arrhenius law, which accounts

for the dependence of the viscosity on temperature. The thinness of the melt layer is exploited, and

a lubrication analysis is made. Within the lubrication approximation, small deviations from the

one-dimensional solution are considered and an asymptotic solution is calculated numerically up to

first order.

2 Mathematical Model

We consider a semi-infinite solid block of explosive material occupying the region x > 0 , with a

rigid wall located at x = 0, where x is the horizontal coordinate in the usual Cartesian coordinate

system. At time t = 0 the wall moves impulsively downwards with speed vw. The movement

provides a shear force on the explosive sample, generating sufficient heat to melt the material near

the wall, such that at t = t0 there already exists a thin viscous liquid melt layer adjacent to the

wall, see Figure 1.

The problem formulation is as in [17], where the non-dimensional variables are: the velocity

components in the melt layer (u, v) in the (x, y) directions, the pressure p, and temperature T .

Note, all variables have been non-dimensionalised using the wall speed vw, time scale t∗, density

ρ, reference specific heat c∗, reference viscosity µ∗ and temperature difference ∆T . The reference

values for the material properties may be found in Table 1. Currently the time scale t∗ is chosen to

give a correct order of magnitude for the time to thermal runaway when compared with results from

experiments. However, further work could be undertaken to calibrate the time scale, thus giving
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Figure 1: Shear melt layer model.

more accurate predictions for the time to runaway.

The explosive sample is initially heated by viscous dissipation in the melt layer and, once the

temperature rise is sufficient, heated further by a consequent chemical reaction. As in previous

work, e.g. Curtis [8], this is modelled using a single step Arrhenius reaction

∂α

∂t
= Â(1− α) exp

(
−Ê
T

)
, (1)

where Â = t∗A is the non-dimensional pre-exponential factor, Ê = E/(R∆T ) is the non-dimensional

activation energy, E is the activation energy, R is the molar gas constant and α the mass fraction,

ranging from 0 (unreacted) to 1 (fully reacted). The conservation of energy equation thus reads

c(T )
DT

Dt
=

1

Pe
∇2T +

Ec Pr

Pe
Φ + Ω̂

∂α

∂t
, (2)

where Pe = (c∗ρv2wt
∗)/κ is the Péclet number, Ec = v2w/(c

∗∆T ) is the Eckert number, Pr = (c∗µ∗)/κ

is the Prandtl number, κ is the thermal conductivity, and Ω̂ = Ω/(c∗∆T ) is the non-dimensional

heat of reaction, where Ω is the specific heat of the reaction. The viscous dissipation in the melt

layer is given by

Φ = 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

− 1

3

(
∂u

∂x
+
∂v

∂y

)2
]

+ µ

(
∂v

∂x
+
∂u

∂y

)2

. (3)

The relation between the (dimensionless) specific heat c and temperature is given by

c(T ) =
(θ1/T )2 exp(θ1/T )

(exp(θ1/T )− 1)2
, (4)
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where θ1 = (1000 K)/∆T . This particular functional form has been used by Austin et al. [2] to

describe the heat capacity for the β phase of HMX, and it is therein assumed that the heat capacity

of the liquid phase is identical to that of the solid phase. In the interest of simplicity we make

the same assumption here and use the above relation for the specific heat of liquid HMX. The

temperature dependence of the viscosity µ is modelled using an Arrhenius law

µ(T ) = exp

(
θ2
T
− θ2
θ3

)
, (5)

where θ2 = (7800 K)/∆T and θ3 = (800 K)/∆T are experimentally determined constants.

The non-dimensional specific heat and viscosity are related to their dimensional counterparts

through the scalings c∗ = 1034 J kg−1 K−1 and µ∗ = 5.5× 10−3 kg m−1 s−1, respectively. For the

viscosity we use the values given by Menikoff and Sewell [14], who state that at 800 K the viscosity

of HMX drops to 5.5× 10−3 kg m−1 s−1, whereas the scaling for the specific heat has been chosen

to compare well with previous modelling.

The dynamics of the liquid layer are governed by the Navier-Stokes equations. In previous work

which developed a model of a shear melt layer with constant material properties it was shown that

a lubrication approximation is appropriate, due to the assumed thinness of the melt layer [17]. To

account for this thinness, we adopt the following scalings in the liquid region

x = εX, u = εU , p = ε−2P , (6)

where ε = Pe−1/2. These scalings are substituted into the Navier-Stokes equations and only the

leading order terms are retained. The resulting governing equations of motion are the lubrication

equations

∂U

∂X
+
∂v

∂y
= 0, (7)

∂P

∂X
= 0, (8)

−∂P
∂y

+
∂

∂X

(
µ(T )

∂v

∂X

)
= 0, (9)

which are based on the usual assumption that both ε� 1 and ε2 Re� 1. The equations (7) – (9)

are to be solved subject to no-slip boundary conditions on the wall X = 0 and melt front X = Xf ,

that is

U = 0, v = −1 on X = 0, (10)

U = 0, v = 0 on X = Xf . (11)

We expect that far from the site of the the two dimensional disturbance that the solution will
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Explosive Property HMX

Activation Energy E 2.2× 105 J mol−1

Heat of Reaction Ω 5.02× 106 J kg−1

Molar Gas Constant R 8.314 J kg−1 K−1

Pre-Exponential Const. A 5.011 872 336× 1019 s−1

Density ρ 1860 kg m−3

Reference Viscosity µ∗ 5.5× 10−3 kg m−1 s−1

Latent Heat L 2.08× 105 J kg−1

Melting Temperature Tm 520.6 K
Reference Specific Heat c∗ 1034 J kg−1 K−1

Thermal Conductivity κ 0.404 W m−1 K−1

Table 1: Material properties for HMX taken from Curtis [8], Menikoff and Sewell [14] and Starobin and Dienes [16].

resemble the one dimensional solution, and that the pressure will be constant. It is sufficient to

impose the following condition on the pressure

∂P

∂y
→ 0 as y → ±∞. (12)

After substitution of the scalings (6), the energy equation (13) reads

c(T )
DT

Dt
=
∂2T

∂X2
+ Ec Pr Φ + Ω̂

∂α

∂t
, (13)

where Φ = µ(T )(∂v/∂X)2. The energy equation (13) is to be solved subject to the following

boundary conditions on the temperature

∂T

∂X
= 0 at X = 0, T = Tm at X = Xf (y, t), (14)

∂T

∂y
→ 0 as y →∞ ∂T

∂y
→ 0 as y → −∞, (15)

where Tm is the non-dimensional melting temperature. The location of the melt front Xf is deter-

mined by the Stefan condition, which equates the temperature flux discontinuity with the magnitude

of the latent heat sink at the phase boundary

∂Xf

∂t
= −Ste

∂T

∂X

∣∣∣∣
X=X−f

, (16)

where Ste = (c∗∆T )/L is the Stefan number, which is the ratio of sensible heat to latent heat, L.

The initial melt front is a prescribed function of y, written Xf (y, t0), and is allowed to evolve in

time.
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2.1 Perturbation scheme

In this section we consider small deviations from a uniform-width melt front Xf = Xf (t) by means

of the small parameter δ � 1 which characterises the size of the two-dimensional disturbance. We

look for a solution in terms of a perturbation series in, i.e.

(Xf ,P )(y, t) = (Xf0,P0)(t) + δ(Xf1,P1)(y, t) +O(δ2), (17)

(U , v,T ,α)(ξ, y, t) = (U0, v0,T0,α0)(ξ, t) + δ(U1, v1,T1,α1)(ξ, y, t) +O(δ2), (18)

(c,µ)(ξ, y, t) = (c0,µ0)(ξ, t) + δ(c1,µ1)(ξ, y, t) +O(δ2), (19)

where we have introduced the front-fixed coordinate ξ = X/Xf0 which fixes the melt front at ξ = 1

to leading order, and later proves useful in numerical computations. In order to introduce two-

dimensional effects into the model we impose a shape on the initial melt front, which must decay to

the corresponding one-dimensional melt width at the infinity. It is recognised that the specific heat

and viscosity may be expressed in terms of the temperature expansion. However, their expansions

provide a useful notational convenience. These expansions may be substituted into the governing

equations, and collecting terms with like powers of δ forms a hierarchy of problems which may be

solved numerically.

Since the viscosity is temperature-dependent, the momentum and energy equations do not decou-

ple, as is typically the case in lubrication theory. However, we may obtain the following expression

for the leading order vertical velocity component

v0(ξ, t) =

(∫ 1

0

1

µ0
dξ

)−1 ∫ ξ

0

1

µ0
dξ − 1. (20)

Obtaining the first order correction requires a little more work. However, the problem is somewhat

simplified if we assume that the first order correction have a particular y dependence. By virtue of

the lubrication equations, the first order corrections have the following form

Xf1 ∼ Xf1(t)S(y), U1 ∼ U1(ξ, t)S
′(y), v1 ∼ v1(ξ, t)S(y),

∂P1

∂y
∼ P1(t)S(y),

T1 ∼ T1(ξ, t)S(y), α1 ∼ α1(ξ, t)S(y), c1 ∼ c1(ξ, t)S(y), µ1 ∼ µ1(t)S(y), (21)

where the shape function S(y) gives the y dependence of the melt front location. As a first ap-

proximation, derivatives of the shape function are neglected. This may place some restriction on

the choice of initial melt front shape Xf (y, t0). However, full numerical simulations of the shear

melt model with constant material properties reveal that the magnitude of the horizontal velocity

component is indeed small for the initial melt front shapes used in this study.

Substitution of the expansions (17) – (19) into the governing equations (7) – (16), and collecting

terms O(δ) gives an expression involving the first order velocity correction, which may be integrated
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twice to obtain

v1(ξ, t) = X2
f0P1

∫ ξ

0

ξ′

µ0
dξ′ −

∫ ξ

0

µ1
µ0

∂v0
∂ξ′

dξ′ + d1(t)

∫ ξ

0

1

µ0
dξ′ + d2(t). (22)

Application of the boundary conditions gives

d1(t) = −
(∫ 1

0

1

µ0
dξ′
)−1 [

Xf1

Xf0

∂v0
∂ξ

∣∣∣∣
ξ=1

+X2
f0P1

∫ 1

0

ξ′

µ0
dξ′ −

∫ 1

0

µ1
µ0

∂v0
∂ξ′

dξ′
]

, (23)

d2(t) = 0. (24)

Integration of the continuity equation across the gap width provides the first order pressure correc-

tion

P1(t) =
1

X2
f0

∫ 1
0

(∫ ξ′
0

µ1
µ0

∂v0
∂ξ′′ dξ′′ +

∫ ξ′
0

1
µ0

dξ′∫ 1
0

1
µ0

dξ′

[
Xf1
Xf0

∂v0
∂ξ

∣∣∣
ξ=1
−
∫ 1
0
µ1
µ0

∂v0
∂ξ′′ dξ′′

])
dξ′

∫ 1
0

(∫ ξ′
0

ξ′′
µ0

dξ′′ −
∫ ξ′
0

1
µ0

dξ′∫ 1
0

1
µ0

dξ′

∫ 1
0
ξ′′
µ0

dξ′′
)

dξ′
(25)

The vertical velocity components (20) and (22) may then be substituted into the energy equation,

reducing the problem to a set of two coupled partial differential equations (PDEs) – one for the

temperature and another for the reaction extent. The resulting PDEs are solved numerically using

an iterative Crank-Nicolson scheme.

3 Numerical Results

Results are given for a sample of HMX subject to a uniform wall speed vw = 70 m s−1. See Table 1 for

material properties of HMX. It is assumed that at time t = t0 a melt layer has already been formed.

In previous work, an early-time solution has been found which provides an initial condition for the

simulation [17]. When studying a non-uniform melt layer two-dimensional effects are introduced via

an imposed shape function, giving initial melt front Xf (y, t0). Such effects may manifest physically

as a result of the inhomogeneous nature of the explosive material. For example, material properties

may locally differ in space, causing some areas to melt more rapidly than others, thus resulting in a

non-uniform melt width. The aim of this work is not to describe how such two-dimensionality may

arise, but to study the effects spatial variations in the melt front may have on the temperature field

and time to runaway.

In Section 3.1 we present the leading order solutions, demonstrating a departure from the lin-

earised velocity profile assumed by Starobin and Dienes [16] and the resulting localisation in the

mechanical heating across the layer. Note that the leading order problem is the temperature-

dependent material properties analogue of the model presented by Starobin and Dienes [16]. We
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then present an example two-dimensional solution in Section 3.2, which is computed up to O(δ) in

the perturbation scheme. It is shown that the localisation mechanisms that arise due to the melt

front disturbance persist when we relax the assumption of constant specific heat and viscosity. In

the interest of brevity we only present a single two-dimensional solution to illustrate the effects of

temperature-dependent material properties, but similar conclusions hold for the other melt front

shapes discussed in previous work [17].

3.1 One-dimensional results

Figure 2 shows the leading order specific heat and viscosity across the melt layer at a series of

increasing times. We observe that the specific heat increases with temperature, with the shape of

the plot looking much like a typical temperature profile across the layer (compare with Figure 4).

Conversely, the viscosity decreases with temperature and thus takes its smallest value adjacent to

the moving wall where the temperature is greatest. Interestingly we see very little change in the

viscosity as a function of time, with all snapshots virtually coinciding. The initial temperature

profile is such that we already observe a dramatic decrease in the viscosity across the melt layer,

and the local changes in temperature have relatively little effect on the viscosity as time proceeds.
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Figure 2: (a) The dimensional specific heat c across the melt layer at times t = 501, 992, 1483 and 1974 ns. (b) The
dimensional viscosity µ across the melt layer shown at the same times.

Figure 3 shows the leading order vertical velocity and mechanical dissipation across the melt

layer. As predicted by Starobin and Dienes [16], most of the slip is supported by the melt layer

near the sliding surface, and the velocity profile moves further away from the linear profile as the

temperature increases. With the non-constant material properties, we now observe that the leading

order dissipation is no longer constant in the melt layer, owing to the breakdown of the linearisation
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of the velocity profile. The dissipation term is given by

Φ = µ0

(
∂v0
∂X

)2

+ δ

[
2µ0

∂v0
∂X

∂V1
∂X

+ µ1

(
∂v0
∂X

)2
]

+O(δ2), (26)

where we note that that in the leading order term both µ0 and ∂v0/∂X are functions of X. This

should be contrasted with the dissipation for a melt layer modelled with constant material properties,

which is given by

Φ =
1

(Xf0(t))2
+O(δ). (27)

Here the leading order mechanical dissipation has no spatial dependence and is proportional to the

inverse square of the melt width.

With the temperature-dependent models for specific heat and viscosity we observe more mechan-

ical heating near the sliding surface, with dissipation increasing across the layer due to the shape of

the temperature profile, but decreasing globally in time due to an inverse square relation to the melt

width. For the final time plotted we observe a sharp peak in the mechanical heating near ξ = 0 due

to the considerable increase in temperature resulting from thermal runaway, Figure 3. The overall

shape of the leading order dissipation profile is initially somewhat surprising, as one might expect

that the dissipation should be greatest near the melt front where the viscosity is greater. However,

the large velocity gradient near ξ = 0, which is a direct result of allowing the viscosity to depend on

the temperature, more than compensates for the drop in viscosity and is in fact the driving factor

in determining where the most mechanical heating takes place at leading order.
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Figure 3: (a) The vertical velocity profile across the melt layer at times t = 501, 992, 1483 and 1974 ns. (b) The
power density of the mechanical dissipation term as a function of ξ = X/Xf0, the front-fixed coordinate across melt
layer, shown at the same times.

Figure 4 shows a comparison of the leading order temperature and power density of the Arrhenius

source term for the constant material properties simulation (red dashed) and temperature-dependent
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material properties simulation (black solid). When accounting for the temperature dependence of

the specific heat and viscosity we see that the temperature profile take on a different shape across

the layer due to the leading order spatial dependence in the mechanical heating. It is found that the

temperature is increased adjacent to the wall and drops more rapidly across the layer when compared

with previous results. Once the reaction kicks in the temperature profiles for the constant and non-

constant material properties models are almost indistinguishable near the sliding surface at ξ = 0.

By this time the power density of the reaction term has such magnitude that the differences in results

owing to the modelling of the temperature-dependent specific heat and viscosity are negligible close

to the reaction site.

Further from the reaction site, we see that the temperature increase in the melt layer is reduced

when accounting for temperature dependence in the material properties. This is in part due to the

lessened mechanical heating here, and the effect is further exaggerated by the specific heat, which

increases with temperature, thus altering the shape of the temperature profile across the layer.
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Figure 4: (a) The temperature across the melt layer, and (b) the power density of the Arrhenius source term,
with constant material properties (red) and with temperature-dependent material properties (black). The plots show
snapshots at approximately 25%, 50%, 75% and 100% of the time to thermal runaway. For the constant material
properties simulation this corresponds to times t = 228, 446, 664 and 882 ns, and for the temperature-dependent
simulation the corresponding times are t = 501, 992, 1483 and 1974 ns.

3.2 Two-dimensional results

Previous work has shown that when the melt layer is perturbed from one of uniform width me-

chanical hot spots are formed in the layer [17]. These areas of localised heating due to mechanical

dissipation form either opposite or adjacent to the imposed perturbation, depending on the sign

of the disturbance. It is found that perturbations which make the melt layer locally wider than

the far-field width cause the formation of a mechanical hot spot on the sliding wall, whereas a hot

spot is formed adjacent to the melt front in the case of perturbations which make the melt layer
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locally more narrow. In both cases an accompanying “cool spot” is observed on the opposite side

of the melt layer – this is an area where the local heating due to mechanical dissipation is reduced

compared with the mechanical heating in the bulk of the layer.

Somewhat counterintuitively, when studying the two-dimensional we find that disturbances which

widen the initial melt layer appear to be the most violent initial condition in the sense of decreasing

time to runaway. Here, we choose present results for HMX with an initial melt shape Xf (y, t0) ∼
1+(δ/2)e−y

2
with δ = 0.8. This particular shape was selected as in the previous work it was found to

have a significant effect on the time to runaway, and thus serves as an excellent illustrative example

to study when concerned with the question of whether the previously observed hot spot mechanisms

persist upon inclusion of temperature-dependent material properties in the model. In such a case,

an extreme localised increase in mechanical heating is observed [17]. The temperature increase

due to the hot spot on the wall is sufficient to initiate a local reaction, causing the temperature

to rise rapidly, see Figure 5. This has the resultant effect of causing the disturbance to grow in

magnitude, causing further temperature localisation. Thus the overall time to runaway is reduced

when compared with the one-dimensional case.

It is found that the introduction of temperature dependence in the specific heat and viscosity

does not suppress the localisation mechanisms induced by perturbing the melt front. As found

in the previous study, the imposed disturbance in the melt front causes a mechanical hot spot

adjacent to the moving wall, see Figure 6. This is most clearly seen in the middle pane which shows

the magnitude of the reaction source term in the melt layer – we see that the reaction is causing

significant heating along the wall, owing the the increased mechanical heating near X = 0, but there

is clearly a localised hot spot opposite the site of the disturbance in the melt front. This highly

localised heating ultimately leads to a substantial temperature increase and the time to ignition

is significantly decreased when compared with the corresponding one-dimensional (or, equivalently,

uniform width) case.

Figure 7 (a) shows the temperature along the wall at a series of increasing times as runaway is

approached. It is observed that there is a hot spot centred around y = 0 on the wall, resulting

from the imposed melt front shape. Such a hot spot mechanisms was observed in the constant

material properties model, and persists here when accounting for temperature-dependent material

properties. The temperature across the layer at y = 0 is shown in Figure 7 at the same times. We

observe a substantial temperature rise close to the wall, due to the localised increase in mechanical

heating and subsequent chemical reaction.
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Figure 5: Snapshot of results from the constant material properties model showing: (a) Power density of mechan-
ical dissipation source term (W m−3); (b) power density of Arrhenius source term (W m−3); and (c) dimensional
temperature (K) for a sample of HMX.
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4 Conclusions

In this study, the effects of allowing temperature-dependent material properties in a two-dimensional

model for thin sheared viscous layers have been investigated. In previous work it was demonstrated

that small non-uniformities in the melt front location can lead to greatly reduced runaway times

due to the presence of localised hot spots. As a result, one-dimensional models of the response

of explosive materials to low-speed impacts (“insults”) may badly predict times to runaway. Here

it has been verified that this is still the case even when accounting for temperature dependence

of the material properties. That is, the predicted time to runaway may be considerably reduced

when taking into account two-dimensional effects in both the constant and non-constant material

properties models.

In contrast with previous work, the assumption of constant material properties has been relaxed,

and the the specific heat and viscosity were allowed to vary with temperature. It was shown that the

leading order (with respect to the melt front perturbation) velocity profile was no longer linear, with

most of the slip being supported in the region of the melt layer adjacent to the wall. This introduced

spatial dependence into the leading order mechanical dissipation term. The results suggest that the

temperature dependence of material properties has the potential to be a mechanism responsible for

localised reactions occurring within molten layers of explosive material, even in the absence of any

other inhomogeneity.

Previously reported numerical results demonstrated that variations from a uniform width melt

layer can indeed cause localised heating due to mechanical dissipation [17]. This leads to so-called

hot spots in the melted explosive material. Interestingly, whilst different geometries all give rise

to temperature localisation, they can have substantially different effects on the time to runaway,

dependent on the hot spot location. When the melt front was perturbed, the heating mechanisms
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observed in the constant material properties persisted in the temperature-dependent model, and

the conclusions regarding melt front shape still held true.

Whilst the temperature field resulting from this model was qualitatively very similar upon com-

parison with earlier work which held the material properties constant, it was demonstrated that

the times to ignition may change considerably when modelling the temperature dependence of the

selected material properties. In order to make any concrete conclusions about the ignition times

reported herein further study is needed to calibrate the models used for non-constant specific heat

and viscosity. However, we remind the reader that this work is interested in the qualitative results

and the results are not indented to be used for predictions of key measures such as time to onset of

reaction or time to thermal runaway. As a further extension to the model, the pressure dependence

of the material properties may also be studied. For example, Menikoff and Sewell [14] propose a

modified form of the viscosity which increases with pressure, which may go some way to offset the

drop in viscosity associated with the temperature increase across the layer.

In order to investigate any two-dimensional effects, highly idealised melt front shapes were se-

lected. A more realistic scenario may, for example, involve choosing a shape which coincides with

the grain size of the explosive material in question or with typical dimensions of grit found within

the explosive. Although the grain size may be significantly larger than some of the melt thicknesses

studied so far, such an approach may be more appropriate for slower wall speeds where the melt

layer thickness is allowed to increase further before ignition. The solid wall used in the current

formulation may also be considered as a model for a piece of high melting point grit present in the

explosive sample. In any case, the heating mechanisms discussed here would still be present.
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