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Graded index media whose electric susceptibility satisfies the spatial Kramers-Kronig relations
are shown to be one-way reflectionless to electromagnetic radiation, for all angles of incidence. We
demonstrate how a family of these media, in addition to being reflectionless, also have negligible
transmission, hence maximising the absorption of the wave’s energy. On a different note, the
transmission of a wave through a randomly chosen ‘pile of plates’ typically decreases exponentially
with the number of plates, a phenomenon closely related to Anderson localisation. In apparent
contradiction we construct disordered planar permittivity profiles which are real-valued, two-way
reflectionless and perfectly transmitting for a single angle of incidence and a narrow frequency range.
This behaviour is confirmed by numerical simulations. Finally, by mapping out the behaviour of
phase fronts, we have designed two dimensional graded-index media which don’t scatter at all. In
particular, we have designed a medium which behaves as a ’beam-shifter’ at a single frequency;
acting to laterally shift a plane wave, or sufficiently wide beam, without reflection. Additionally, we
have designed a periodic grating for which diffraction is completely suppressed at a single frequency
at normal incidence to the periodicity.

INTRODUCTION

Wave propagation through inhomogeneous media can-
not be solved analytically in most cases, even in one di-
mension. There are a small number of cases which can
be solved exactly, such as the non-reflecting Pöschl-Teller
profiles [1, 2]. However, the space of possible media is too
large to be able to calculate reflection and transmission
coefficients numerically in all cases. Instead, mathemati-
cal techniques can be used to make progress, particularly
with a view to designing non-scattering media.

Consider the situation of a monochromatic wave of fre-
quency ω incident on a linear isotropic material whose
permittivity varies only along one direction, as shown
in figure 1. The electric field ϕ corresponding to

FIG. 1: A wave of wavenumber k0 = ω/c is incident from
the negative x axis upon a material whose permittivity may
be described by ε(x) and is spatially homogeneous along the
y direction. In general it is expected that the incident wave
will split into three parts: a reflected wave, a transmitted
wave and a part absorbed into the medium.

a TE polarised plane wave propagating in the (x, y)-
plane through a material uniform in the y direction
with permittivity ε(x) and unit permeability satisfies the

Helmholtz equation[
d2

dx2
+ k2

0ε(x)− k2
y

]
ϕ(x) = 0. (1)

Here k0 = ω
c and ky determines the angle of incidence

of the wave. In what follows it is assumed without loss
of generality that ky = 0 (setting ky = 0 corresponds to
normal incidence; a non-zero ky merely shifts the back-
ground value of the effective 1d permittivity). Consider-
ing the situation of a medium sitting in free space, it is
natural to split the permittivity up into its background
value εvac (which from now on will be taken as unity)
and the electric susceptibility χ containing the inhomo-
geneous part ε(x) = εvac + χ(x).

SPATIAL KRAMERS-KRONIG RELATIONS AND
THE REFLECTIONLESSNESS OF LEFT

INCIDENT WAVES:

This section is based on work in [4].
Consider Helmholtz’s equation (1) being analytically

continued to a complex position z = x1 + ix2, ε(z) =
1 + χ(z). There are a special class of profiles that are
analytic on one half of the complex position plane [3, 4].
These satisfy the spatial Kramers-Kronig relations [5]

Re(χ(x)) =
1

π
P
∫ ∞
−∞

Im(χ(x′))

x′ − x
dx′

Im(χ(x)) = − 1

π
P
∫ ∞
−∞

Re(χ(x′))

x′ − x
dx′.

(2)

Consider a wave propagating left-to-right through the
medium. The analytic continuation of the transmitted
wave along the large semi-circle of the complex position
plane is shown in figure 2. The asymptotic behaviour
of the solution in vacuum at an angle θ can be writ-
ten as a combination of left and right propagating waves
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FIG. 2: On the far right of the profile, the asymptotic form
of the wave can be analytically continued into the upper half
position plane. The right-going wave is exponentially dimin-
ished while the left-going wave is exponentially amplified.

t(θ)eik0z + r(θ)e−ik0z. A non-zero reflection coefficient
r(θ) leads to an exponentially growing solution as the
semi-circle radius is increased. However, as the solution
must be analytic in this upper half plane, and the sus-
ceptibility decays to zero, there cannot be a discontinuity
in the asymptotic behaviour of the solution, which would
be required by a non-zero reflection coefficient, thus ex-
plaining why the reflection coefficient must vanish.

Without the requirement of analyticity in the upper
half plane, this argument breaks down due to the pres-
ence of branch cuts crossing the semicircular path of fig-
ure 2, across which the asymptotic expansion of the so-
lution in terms of plane waves is discontinuous [3]. This
leads to a Stokes phenomenon- the presence of differing
asymptotic expansions in different regions of the complex
plane [6]. Having this analyticity condition removes the
Stokes phenomenon, and hence any reflected wave.

By replacing the left and right propagating plane waves
with the more accurate WKB waves [6]

1

ε(z)1/4
e±ik0

∫ z
a

√
ε(ẑ)dẑ (3)

and keeping track of the zero phase reference point, a,
as it moves along the semi-circle with the solution, the
transmission coefficient can be calculated, in the limit as
semi-circle radius tends to infinity, as

t = eik0
∫∞
−∞

√
ε(x)dx. (4)

PERFECTLY ABSORBING MEDIA

This section is based on the work in [7].
Transformation optics can also be used to design per-

fect absorbers. For example, perfectly matched layers
(PMLs) [8] are commonly used in numerical simulations
to absorb waves without reflection. However, they gener-
ally consist of an anisotropic permittivity and permeabil-
ity, making them difficult to realise practically. In this

work, non-reflecting, non-transmitting, isotropic graded
index media are designed, based on the work of the pre-
vious section. An experimental realisation of near per-
fect absorbers based on these media has been carried out
in [9].

Having obtained the transmission coefficient for spatial
Kramers-Kronig media, the conditions for obtaining zero
transmission (and hence perfect absorption) can be ob-
tained. Consider a subset of the class of spatial Kramers-
Kronig media: permittivity profiles containing a finite
number of poles in the lower half position plane:

ε(z) = 1 +

N1∑
k=1

a1,k

z − z1,k
+

N2∑
k=1

a2,k

(z − z1,k)2
+ ... (5)

Integrating around a large semi-circle C in the upper half
plane contributes half a residue from each of the simple
poles leading to a transmission coefficient [4]

|t| = e
1
2πk0Re

∑N1
k=1 a1,k . (6)

It is therefore clear how to make graded index permit-
tivity profiles having any desired transmission coefficient
between 0 and 1 by tuning the residues of simple poles
in ε. However, it is not clear how to make the trans-
mission coefficient negligible without taking the limit of
one of the simple pole residues going to −∞ (and hence
the imaginary part of the permittivity to ∞). In the
rest of this work, we explore how to make the transmis-
sion coefficient negligible whilst keeping the permittivity
bounded.

High absorption has been achieved experimentally by
a metamaterial having a profile of the form (5) where the
number of poles n is finite [9]. However, for these spatial
Kramers-Kronig media, to make the transmission coeffi-
cient completely vanish and have all of the incident wave
absorbed, it follows from (6) that we require a profile
where the sum of the residues is infinite∑

k

Re(a1,k) = −∞. (7)

The transmission coefficient can be classified in terms of
the decay of the susceptibility in the following way:

|t| = 1 if χ(x) < O(1/x) as x→∞
0 < |t| < 1 if χ(x) = O(1/x) as x→∞
|t| = 0 if χ(x) > O(1/x) as x→∞.

(8)

As an example of this, consider taking a1,k = −αk and
z1,k = −βki where α and β are positive constants. This
corresponds to the profile

ε(x) = 1− α

x

(
γ + ψ

(
1− ix

β

))
, (9)

where ψ(x) is the digamma function (the logarithmic
derivative of the Γ function) and γ is Euler’s constant.
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Having constructed this function from an infinite number
of simple poles, note that asymptotically

ε(x) = 1− αlnx

x
+ O

(
1

x

)
as x→ ±∞, (10)

so here it is the weaker ln(x)/x decay which leads to a
profile with zero transmission. Since all terms beyond
the second term do not affect the transmission (see (5)
and (6)), for simplicity consider the profile obtained by
neglecting the O(1/x) part of (10) and displacing the re-
maining singularity to the lower half plane (which merely
causes an O(1/x) alteration in the profile):

ε(x) = 1−
αln(xa + δi)

x
a + δi

, (11)

where δ and a are positive constants. This preserves
the required property of being analytic in the upper half
complex position plane, therefore satisfying the spatial
Kramers-Kronig relations. Wave propagation through
such a material is simulated in figure 3 where the ma-
terial has been spatially truncated on either side at ±8λ.

PERFECTLY TRANSMITTING DISORDERED
MEDIA

This section is based on the work in [11] (see also [12]
for a similar treatment).

A wave propagating through N randomly chosen loss-
less slabs of material tends to be exponentially ex-
tinguished as N increases [13, 14]. The transmission
through such a random combination of slabs is given
by the geometric mean of the transmissivity, |teff|2 =
exp(2 〈log(|t|)〉) corresponding to averaging over all pos-
sible realisations. For N slabs this is [13]

|teff|2 = exp

(
−2

N∑
i=1

〈
log

(
1

|ti|

)〉)
, (12)

where ti is the transmission coefficient for the ith slab).
The average transmissivity (12) clearly decreases expo-
nentially with increasing N (see [15] for bounds), leading
to the phenomenon where a layered transparent disor-
dered medium tends to act as a good mirror. Families
of layered media with permittivities that are similarly
random in the direction of propagation are constructed
and yet the expected high reflection and low transmis-
sion is avoided.This is connected to the phenomenon of
Anderson (strong) localisation, which predicts that the
eigenstates of a given disordered lattice will tend not to
extend over the entire lattice, but will be localised around
each of the sites [16, 17].

Importantly this implies that such profiles consisting
of poles of order two or higher (so N1 = 0 in (5)) exhibit
zero reflection and perfect transmission regardless of their

FIG. 3: (i) The real and imaginary parts of the permittivity

profile ε(x) = 1 − ln(k0x+2i)
k0x+2i

, truncated at x = ±50/k0. (ii)
The transmission coefficient on a logarithmic scale of a plane
wave propagating in either direction through the medium as
a function of incidence angle. (iii) and (iv) The reflection
coefficient for left and right incidence, respectively, as a func-
tion of incidence angle. (v) and (vi) Wave propagation simu-
lated in Comsol Multiphysics [10] by placing an out-of-plane
line source to the (ii) left and (iii) right of the medium and
the time-average of the absolute value of the electric field is
plotted. Reflection and transmission is suppressed for a left
incident wave whereas just the transmission is suppressed for
a right incident wave.

number Nj , weight aj,k or position zj,k in the lower half
plane (Im(zj,k) < 0). See [3] for a simulation of the wave
propagation through the permittivity corresponding to a
single double pole on the negative imaginary axis. More
generally, perfect transmission can be achieved when the
complex function χ(x) both satisfies (2) and integrates
to zero over the real line,∫ ∞

−∞
χ(x)dx = 0 (13)

a requirement found in [4, 18] and referred to by Longhi
as the ’cancellation condition’ (see [19]). For profiles
given by (5), the cancellation condition is equivalent to
only having poles of order two, or higher, and is guaran-
teed to give perfect transmission. To obtain real-valued
perfectly transmitting media, the technique of Berry and
Howls [20] is applied, where the following ansatz for ϕ is
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substituted into equation (1)

ϕ(x) =
1

p(x)1/4
exp

(
±iκ

∫ x

dx′
√
p(x′)

)
(14)

which is based on the form of the WKB solutions given
in e.g. [6]. The two possible signs in the exponent cor-
respond to right and left travelling waves propagating
without reflection, with unit transmission when p(x) is
real and tending to 1 at x→ ±∞. Upon substitution of
(14) into the Helmholtz equation (1), one can solve for
the requisite permittivity profile, which is found to be

ε(x, κ) = p(x)− p(x)1/4

κ2

d2

dx2

(
1

p(x)1/4

)
. (15)

Equation (15) gives a recipe for the construction of real-
valued permittivity profiles that are reflectionless at nor-
mal incidence, for fixed κ. By choosing p(x) as a ran-
domly varying function (with a rapidly decaying two-
point correlation function and a Hurst exponent close
to 0.5), we obtain a similarly randomly varying permit-
tivity profile that exhibits perfect transmission at the
wavenumber k0 = κ. An example of this is shown in fig-
ure 4, where p(x) is defined as a finite (but long) Fourier
sine series with compact support

p(x) = 1 +

{∑N
n=1 ansin

(
nπx
L

)
, 0 < x < L

0, otherwise
(16)

and the coefficients are chosen randomly in such a way

that
∑bn−1

2 c
i=1 (n−2i)an−2i is taken from a symmetric real

uniform distribution for n = 1, 2, ..., N − 2 and is vanish-
ing for n = N − 1, N . This ensures the smoothness of p,
and hence the continuity of ε. An example is shown in
figure 4.

WAVE PROPAGATION IN TWO DIMENSIONS

Solving the problem of wave propagation in two dimen-
sions is, unsurprisingly, a more difficult problem than the
one-dimensional analogue. With the extra complications,
however, comes a greater range of practical possibilities,
such as beam bending, shifting or focussing, as well as
cloaking. It is common to use ray tracing (see for exam-
ple [21]) to manipulate the path of propagation of the
light. For example, radial index profiles, such as the
Luneburg lens [22], can be used to focus light from a
plane wave to a single point. However, such an approach
relies on the validity of the geometrical optics approxi-
mation, which will break down near the focus of the rays.
By considering the exact wave problem, such difficulties
are bypassed enabling a greater control of the sort of
frequencies our media can function at. Transformation
optics using conformal mapping [23, 24] has been at the
forefront of recent developments; in particular motivating

FIG. 4: (i) A particular choice of p(x) given by (16) with
N = 250. (ii) The corresponding permittivity when κ = 5π.
(iii) Time-averaged (red, upper) amplitude of a left incident
wave of wavenumber κ, propagating through a medium with
permittivity ε(x, κ). Real and imaginary parts of the wave
are shown in blue and green, respectively. The lack of oscilla-
tions in (iii) indicates that the profile is reflectionless for this
wave. The wave is also transmitted without a change in am-
plitude or a shift in phase. (iv) The reflection as a function
of wavenumber k0. The reflection coefficient is very sensitive
to the frequency of the incident wave and high reflection is
possible except in a region about k0 = κ where the reflection
is negligible.

the possibility of cloaking as has extensively been tested
experimentally (see for example [25, 26]).

In two dimensions, the out-of-plane component of the
electric field corresponding to a monochromatic Trans-
verse Electric (TE) polarised wave of frequency ω inci-
dent upon a medium with real-valued permittivity ε sat-
isfies the two-dimensional Helmholtz equation[

∇2 + k2
0ε
]
ϕ = 0. (17)

Instead of attempting to solve directly, it is convenient
to rewrite the solution in terms of its real-valued am-
plitude A and phase S as φ = A(x, y)eik0S(x,y). Upon
substitution back into (17) and separation into real and
imaginary parts, the following equations result:

ε = (∇S)2 − ∇
2A

k2
0A

0 = ∇ · (A2∇S).

(18)

Special cases in which geometrical optics gives the ex-
act solution are explored in [27] i.e. when the ’quan-
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tum potential’ term ∇2A
A vanishes. Instead, here we

start with solving this second equation, and use the
first to obtain the corresponding permittivity. The di-
vergence free quantity A2∇S is exactly proportional to
the time-averaged Poynting vector (more precisely S =

1
2µ0

A2∇S), and this equation is simply an energy conser-
vation equation expressing the assumption that no cur-
rent sources are present in the medium.

THE BEAM-SHIFTER:

Beam-shifters have largely been designed using the co-
ordinate transformations of transformation optics con-
tained in [23] using anisotropic media with graded per-
mittivity and permeability tensors (see for example [28–
30]). Instead an isotropic permittivity profile which lat-
erally shifts a beam at a single frequency with negligible
reflection is proposed.

There are a small number of special cases where the
energy conservation equation can be solved exactly to
give a permittivity profile with an interesting properties.
Here, a wide beam is laterally shifted without reflection
and will henceforth be referred to as the beam-shifter.
The energy conservation condition in one dimension

d

dx

(
A2 dS

dx

)
= 0. (19)

can immediately be integrated up to give

A =
A0√
dS
dx

. (20)

It is then common to take the geometrical optics limit
k0 � |∇ε|/ε3/2, where the remaining equation is simply

the eikonal equation ε =
(
dS
dx

)2
to get the WKB approxi-

mations [6]. In this case, however, progress can be made
in two dimensions without resorting to such approxima-
tions. Motivated by being able to solve the conservation
of energy equation in one dimension, it is natural to solve
the analogous two dimensional equation for a special case
by imposing that the second equation of (18) holds for
each of the individual coordinates. i.e.

∂

∂x

(
A2 ∂S

∂x

)
= 0

∂

∂y

(
A2 ∂S

∂y

)
= 0.

(21)

which can be solved separately to give two expressions
for the amplitude:

A =
Ay(y)√

∂S
∂x

=
Ax(x)√

∂S
∂y

. (22)

This can then be subsequently solved for the phase:

S = f(X(x) + Y (y)). (23)

where X ′ = 1/A2
x and Y ′ = 1/A2

y. The particularly
neat thing about this idea of separating the equations for
the different Cartesian coordinates is that the differential
equation for the rays takes a separable form

dy

dx
=
Y ′(y)

X ′(x)
. (24)

and, in particular, by taking Y (y) = y, say, the slope
of the rays depends only on the x coordinate and thus
the rays are translationally invariant in the y direction,
as one would expect for a beam-shifter. Meanwhile (18)
gives the expression for the permittivity

ε = (f ′)2
(
(X ′)2 + (Y ′)2

)
+

1

2k2
0

[
X ′′′

X ′
+
Y ′′′

Y ′
− 3

2

(
(X ′′)2

(X ′)2
+

(Y ′′)2

(Y ′)2

)]
+

1

2k2
0

[(
(X ′)2 + (Y ′)2

)(f ′′′
f ′
− 3(f ′′)2

2(f ′)2

)]
.

(25)

where only the first line would be retained in the geo-
metrical optics limit. As for the periodic grating, our
medium should sit in free space with a right propagating
plane wave incident on the medium emerging totally as
a right propagating plane wave without being scattered.
To ensure that the rays are horizontal either side of the
medium (X ′ → +∞ as x→ ±∞), we choose, as a simple
example,

X(x) =
sinh(αx)

α
Y (y) = y.

(26)

leading to rays y = 2
αarctan

(
tanh

(
αx
2

))
+constant which

bend and straighten with a lateral shift of π/α, as shown
in figure 5(i). To further ensure a right propagating plane
wave either side of the medium, it is required that S ∼ x
as x→ ±∞ so it is natural to choose f to be the inverse
of X:

f(z) = X−1(z) =
arsinh(αz)

α
. (27)

and we again choose a wavenumber of k0 = 10. With
these choices the permittivity profile obtained is shown
in figure 5(ii) and is given by

ε(x, y) =
1 + cosh2(αx)

1 + (αy + sinh(αx))2
+ O

(
1

k2
0

)
. (28)

where the correction terms to the geometrical optics limit
have been included in the plot but have been left out of
(28) for brevity. The resulting shift in the beam can
then be seen in a plot of the field norm, as shown in
figure 5(iii).
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FIG. 5: (i) The rays associated with the choices given in (26)
with α = 1. (ii) The corresponding permittivity profile with
f = X−1 and k0 = 10 in −5 < x < 5 and free space either
side. (iii) The field norm corresponding to a right propagating
incident Gaussian beam of width 4, simulated using Comsol
Multiphysics [10]. The wave is transmitted with negligible
reflection and with a beam shift of π.

NON-DIFFRACTING PERIODIC GRATINGS:

In order to guide a wave through a medium in some de-
sired fashion (i.e. along a particular set of rays) it is suf-
ficient to specify the phase S(x, y) of the wave inside the
medium. The conservation of energy condition then tells
us the corresponding amplitude distribution required to
achieve such a propagation though a lossless medium. By
explicitly writing out the energy conservation equation as

∂S

∂x

∂A

∂x
+
∂S

∂y

∂A

∂y
= −A

2
∇2S, (29)

it becomes of the form for which the method of char-
acteristics may be applied (see, for example, [31] for a
discussion of this method). Therefore the following set

of equations should be solved simultaneously:

∂x

∂λ
=
∂S

∂x
∂y

∂λ
=
∂S

∂y

∂A

∂λ
= −A

2
∇2S.

(30)

Together with suitable boundary conditions, the result-
ing parametric solution will map out a surface in (x, y,A)
space. The first two equations decouple from the third
and can be numerically solved to map out the rays (or
characteristics) in the (x, y) plane with the parameter λ
parameterising each ray (as can be seen by taking their

ratio dy
dx =

∂yS
∂xS

). The different rays are parameterised
by a different parameter, µ say, depending on the spe-
cific form of the boundary condition. The situation is
described visually in figure 6.

FIG. 6: Plots of two of the rays in (i) (x, y) space, and (ii)
(λ, µ) space. (λ, µ) defines a coordinate system in which the
rays are straight lines of constant µ. λ parameterises each ray
whilst µ parameterises the different rays. In (λ, µ) space, the
equation for amplitude becomes a simple ODE.

As a boundary condition, a uniform amplitude is im-
posed along a vertical line x =constant on the left (inci-
dent) side of the medium. Together with a suitable choice
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of phase S, this will correspond to a right propagating
plane wave without reflection.

Consider a plane wave propagating in the positive x
direction impinging on a medium periodic in the y direc-
tion, with periodicity a = 2π/kg and sitting in free space:
ε→ 1 as x→ ±∞. Such a periodic medium will typically
produce a diffraction pattern, the field being the sum of
waves propagating in different directions. Relative to an
angle of incidence θi with the positive x axis, the possible
angles for waves to scatter away from the medium are

sinθn = sinθi +
nkg
k0

. (31)

and the corresponding reflection and transmission coeffi-
cients can be written as

Rn =

√
k2

0 − (ky + nkg)2

kx
|ϕr,n|2

Tn =

√
k2

0 − (ky + nkg)2

kx
|ϕt,n|2.

(32)

where k0 = kxx̂+kyŷ. The situation is described visually
in figure 7.

FIG. 7: A wave incident from the left upon a permittivity pro-
file ε(x, y) periodic in the y direction with period a. The re-
sulting diffraction pattern consists of a superposition of waves
reflected and transmitted at various angles with intensities
given by equation (32) (the reflected waves aren’t shown in
this diagram to avoid cluttering).

Consider designing a profile for which diffraction is
suppressed for a particular wavenumber at normal in-
cidence to the periodicity (i.e. θi = 0). Then, for a right
propagating plane wave with perfect transmission with-
out reflection, the phase should asymptotically satisfy
S ∼ x as x→ ±∞, and any distortion in the rays should
be contained within the medium. To this end we make
the following choice of phase. In the region −a2 < y < a

2 ,
let

S = x+ berf
(x
c

)
+ αxe−( x

d )
2
[
1 + erf

( a
4 + y

h

)
erf

( a
4 − y
h

)]
,

(33)

where erf(z) = 2√
π

∫ z
0

e−z̃
2

dz̃ is the error function, which

switches smoothly from −1 to +1 with increasing argu-
ment. This is then repeated periodically up and down the
y axis. The characteristic method can then be used to
numerically find the rays, as shown in figure 8(i). Notice

FIG. 8: (i) The rays corresponding to the phase distribution
given in (33) in a ’unit cell’ where a = π, b = 2, c = 1, d =
1, h = 1/4 and α = 1/3. (ii) The corresponding amplitude
resulting from solving the characteristic equations (30). (iii)
The corresponding permittivity profile as determined from
the first equation of (18) corresponding to k0 = 10.

that the dependence of the medium transverse to the di-
rection of propagation acts to distort the rays. However,
upon propagation through the medium, the rays respace
evenly again. In particular, this means that a plane wave
incident upon the medium will emerge as a plane wave.
This has been done by solving the final equation of (30)
subject to the boundary condition A → 1 as x → −∞.
The amplitude is plotted in figure 8(ii). The unifor-
mity of the amplitude either side of the medium implies
that a monochromatic plane wave propagates through
the medium without scattering (whether in the form of
reflection or diffraction). Up to this point the choice of
frequency hasn’t needed to be made. However, to obtain
the permittivity profile using (18), a choice now must
be made. We have chosen a free space wavenumber of
k0 = 10. Bearing in mind the periodicity of the medium,
this value ensures that diffraction should be possible (in-
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deed the first four diffracted modes should be visible),
so that the absence of diffraction is a surprising result,
but not so high that the absence of reflection can be put
down to being in the geometrical optics limit. The corre-
sponding permittivity profile is plotted in figure 8(iii). As
expected, the permittivity approaches that of free space
as x→ ±∞ with a range of unity up to around 15 in the
medium.

The design process of such a non-scattering medium is
such that it is only expected to function for an incident
plane wave of frequency ω = ck0 = 10c. For other fre-
quencies there is no reason not to expect a large amount
of scattering in the form of both reflection and diffraction.
We have investigated the effect of sending in different
frequencies of radiation through the permittivity profile.
Some plots of the electric field norm are shown in figure 9.
Except at the wavenumber for which the medium is de-

FIG. 9: The electric field norm corresponding to a plane wave
propagating in the positive x direction through the permit-
tivity profile of figure 8(iii) at four different wavenumbers,
simulated using Comsol Multiphysics [10]. As expected the
field amplitude is uniform at the wavenumber k0 = 10 de-
signed to give no scattering whereas diffraction is visible at
other wavenumbers.

signed to be non-scattering, we see intricate diffraction
patterns on both the incident and transmitted sides of the
medium, with the fineness of the pattern being on the or-
der of the wavelength. Upon calculation of the reflected
and transmitted intensities going into each mode using
(32), plots of the intensities as a function of wavenum-

ber can be obtained and are shown for this example in
figure 10. For (k0 < 2), the wavelength is longer than

FIG. 10: The natural logarithm of the (i) reflected and (ii)
transmitted intensities of the first five non-negative diffracted
modes that a right propagating plane wave impinging on the
permittivity profile of figure 8(iii) at normal incidence scatters
into as a function of wavenumber. (iii) The total reflected (R)
and transmitted (T ) intensities and their sum. Almost all of
the wave ends up being transmitted through in a broadband
around k0 = 10.

the periodicity, diffraction is not possible and so only the
zero order modes corresponding to lateral transmission
and reflection are possible. As k0 is increased beyond
2, diffraction is expected and energy is carried via the
lower order modes via both reflection and transmission.
It is clear from these plots that, in general, these in-
tensities fluctuate very rapidly as the wavenumber is al-
tered through different sharp resonances. However, there
is a noticeable broader-band dip in all but the zero or-
der transmitted mode (the unscattered mode) around the
wavenumber k0 = 10 at which the structure is designed
to be reflectionless and perfectly transmitting.
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SUMMARY AND CONCLUSIONS:

We have designed reflectionless permittivity profiles
satisfying the spatial Kramers-Kronig relations, in par-
ticular showing how they can be made into perfect ab-
sorbers. The findings were numerically verified for a fi-
nite slab of material using Comsol Multiphysics [10]. We
have also explored real-valued permittivity profiles that
appear to have been generated by a random walk-like
process yet exhibit unit transmission and zero reflection
in a narrow band of frequency and a particular incidence
angle, thus avoiding Anderson localisation. Finally, by
considering ways of solving the local conservation of en-
ergy equation in terms of amplitude and phase for loss-
less media in two dimensions, we have derived a recipe
for designing ’beam-shifters’; graded-index permittivity
profiles which laterally shift a Gaussian beam of at least
a few wavelengths, without reflection, and a recipe for de-
signing periodic graded-index permittivity profiles which
suppress diffraction.
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