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Abstract 

A systematic mapping approach was utilised to explore the literature and critically review the use 

of mental model frameworks in analysing trust facilitation of automation and human system 

interactions, using a variety of knowledge databases and keywords to yield appropriate results.  

 

The review highlights key trends of human automation interaction research relating to trust 

facilitation and mental models schemata. Principal outcomes suggest limiting factors of 

appropriate trust with automation include system transparency, cognitive dissonance and 

performance and system disuse/misuse. However, the literature suggests counteractive actions 

such as priming, training or educating operators can support development of robust mental models.   
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Introduction 

Automation is a critical future trend in military domains [1] and civilian industries. 

Increased levels of automation can provide greater system capability and assistance in decision 

making, data selection or process management, as well as performing tasks that are otherwise 

“dangerous, time-consuming, or outside of human desire or capability” [2] [3]. As automated 

systems advance, the role of the operator will change in nature from active control (i.e. ‘Human-

in-the-loop’) to a supervisory management position (i.e. ‘Human-on-the-loop’) [4]. Understanding 

the difference between levels of automation in a predominantly human-oriented and safety- or 

mission-critical system is an important consideration as the utilisation of more advanced, 

sophisticated technologies becomes ubiquitous in both military and civilian domains. However, 

trust in automation (TIA) remains a diverse and broad research field as technology advances faster 

than literature can appropriately keep up with [5]. 

There are three main views throughout the literature regarding human factors and human 

system interaction; these are ‘human-in-the-loop’, ‘on-the-loop’ and ‘out-of-the-loop’ (Wogalter, 

2006). The latter is problematic for human-automation interaction (HAI) research. It suggests the 

system may act independently of a human operator, or system integration has failed and operators 

are unsure on what the status of the system actually is, thus divorced from the interaction. 

Integration currently strives to achieve in-the-loop interaction, with human and system integrated 

well, and with both ‘actors’ aware of each other’s influences. On-the-loop refers to the ideal for 

HAI system integration activities and development programmes, with human actors removed from 

the overall system functionality and allocated tasks that are predominantly focused on surveillance 

and maintenance of the autonomous actions of the system. Factors that influence trust are 

imperative for appropriate use and reliance on the system and subsequent decision making. In the 

context of this review Human Mental Models (HMM) are frameworks (schema/schemata) that 



individuals cognitively construct based on prior experience and knowledge to support their 

expectations and interpretations of their environment.  

 

Review Methodology 

A scoping review methodology was adopted to explore new and emerging research in the 

field of human system automation and mental models. This protocol was used to focus on the gaps 

in the literature as opposed to answering a narrow research question which systematic review 

methodology traditionally utilises [7]. However, systematic review procedure was applied where 

appropriate, such as inclusion criteria, quality filtering and data extraction where appropriate.  

 

Scoping Review Framework 

The search criteria for the databases included (Google Scholar, IEEE Xplore, Science 

Direct and Wiley Online Library databases) include keywords reflective of the broad scope of HAI 

research. Related articles and bibliographic citations were screened for applicable sources. To 

ensure relevance, a date range restriction of articles since 2005 was imposed. Figure 1 illustrates 

the search strategy adopted.  

All articles were qualitatively assessed for relevancy. Such as human mental models as the 

focus of discussion, and/or experimentation with automation, systems interaction or computer 

interaction as secondary variables. Journals within critical workplaces, such as the military or 

healthcare were prioritised (with relevant age groups (working age, 18-60)). Clinical studies were 

excluded, as they lack ecological validity/environmental generalisability. Other exclusion criteria 

are unpublished or non-English literature, or where literature was not available in full text form. 

 



 

Figure 1- Eligibility Screening Identification 

 

Study design and methodological information were extracted where possible. Primarily 

qualitative research materials that provided scope and context include discussion pieces, reviews 



and meta-analyses. Elements such as location, participant demographics, outcome measures and 

results were sought where possible to provide appropriate context and generalisability to the 

sources reviewed. Outcomes were clustered according to grouping criteria using a modified 

version of the Three Factor Human-Robot Trust Model outlined in Hancock et al (2011). [8]. 

Although this model focusses on Human-Robot1  issues, these themes closely align to general 

system behaviour within sociotechnical domains 

Quality assurance of the scoping review adhered to existing systematic review protocol 

such as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

protocols (The PRISMA Group) (Moher & Liberati, 2009) [9] with regard to evaluation guidelines 

and inclusion criteria2  and Meta-analysis of Observational Studies in Epidemiology (MOOSE) 

[10] guidelines.  

The assessed literature are categorised into the relevant thematic categories. These are as 

follows: Human Related, subcategorised by Ability Based and Characteristics; System Related, 

subcategorised by Performance Based and Attribute Based; and Environmental, subcategorised by 

Team Collaboration and Tasking. Literature within these tables have been refined by author, 

alphabetically. 

  

                                                 
1 ‘robot’ is under the umbrella of system in this review 
2 the risk of bias could not be conclusively assessed across all included sources in the recommended 

methodology [64]. High risk sources were excluded and medium risk literature was moderated. 



Results 

Search Results 

The eligibility screening process in Figure 1 provided keyword and terminology parameters 

for each database search.  The resulting data pool was relatively large for the field of research 

(N=4537) [11]. A portion of sources were excluded due to irrelevant titles or abstracts and a third 

excluded through search parameters (e.g. category restrictions available on electronic databases 

(e.g. full text versions/English only)). A number of duplicates and reproductions of identical 

studies to multiple sources (conference proceedings and subsequent journal article omitted. Of the 

remaining 93 eligible sources, a further 41 were excluded through review of content, leaving a 

total 52 sources reviewed in this document. 

  



Table 1 

Summary of Results 

Study: Author(s), Country Subdomain Exp3 Obv Lit/D Actors 

Human Related      

Ability Based: 12      

Aydoğan, Sharpanskykh, & Lo 

(2014) Netherlands 

Aviation ̶   ̶

Birkmeier, Korn, & Flemisch 

(2011, October) Germany 

Aviation ̶   ATCo (n=8) 

Chua, Storey, & Chiang (2012) 

North America 

Civilian ̶  ̶ High Skilled Engineer 

(n=14) 

Fallon, Murphy, Zimmerman, 

& Mueller (2010, May) North 

America 

Civilian/University ̶ ̶  ̶

Hawkley, Mares, & 

Giammanco (2005) North 

America 

Military ̶ ̶  ̶

Hoffman & Woods (2011) 

North America 

Civilian ̶ ̶  ̶

Lim, Dey, & Avrahami (2009, 

April) North America 

Civilian ̶  ̶ 51% female; 49% male; 

Mean Age 29.8 (n=55) 

Neerincx, et al (2008, January) 

Netherlands 

Naval  ̶ ̶ Warfare 

Officers/Assistants 

(n=8) 

Piccinini, Rodrigues, Leitão, & 

Simões (2015) Portugal 

Automotive  ̶ ̶ 13 ACC users (age 

42.2 (SD=9.9), 13 

non-ACC users (age 

26.7 (SD=9.9).(n=26) 

RTO/NATO (2007) 

Multinational 

Military ̶ ̶  ̶

Wilkison, Fisk, & Rogers 

(2007, October) North 

America 

Civilian/University ̶  ̶ Undergraduate 

participants (58% 

F;42% M;Ages18-

30)(n=12) 

                                                 
3 Exp = Experimental study design / Obv = Observational study design / Lit/D = Literature review, 

discussion piece and other review based sources 



Study: Author(s), Country Subdomain Exp3 Obv Lit/D Actors 

Zhang, Kaber, & Hsiang 

(2010) North America 

Automotive  ̶ ̶ Male Participants, 

Mean Age: 25 

(SD=2.4)(n=12) 

Characteristics: 19      

Arkin, Ulam, & Wagner 

(2012) North America 

Military ̶ ̶  ̶

Beggiato & Krems (2013) 

Germany 

Automotive  ̶ ̶ 51% Female;49% Male; 

Mean Age: 24 (n=51) 

Beggiato, Pereira, Petzoldt, & 

Krems (2015) Germany 

Automotive  ̶ ̶ 47%: Female; 53% 

Male; Mean Age: 28 

(SD=1.82); (n=15) 

Bruemmer, Gertman, & 

Nielsen (2007) North America 

Automotive (USAR) ̶  ̶ (n=153) 

Bunt, Lount, & Lauzon (2012, 

February) Canada 

Civilian/University ̶  ̶ Exp1 (n=21); Exp2: 

(n=14) 

 

Dehais, Causse, Vachon, & 

Tremblay (2012) France 

Military/Automotive  ̶ ̶ Mean age: 27.84 (SD 

= 6.53) (n=13) 

 

Groom & Nass (2007) North 

America 

Military/Civilian ̶ ̶  ̶

Hancock, et al. (2011) North 

America 

Military/Civilian ̶ ̶  ̶

Hoff & Bashir (2015) North 

America 

Military/Civilian ̶ ̶  ̶

Hoffman, Johnson, Bradshaw, 

& Underbrink (2013) North 

America 

Civilian ̶ ̶  ̶

Lee, Lau, Kiesler, & Chiu 

(2005, April) North America; 

Hong Kong 

Civilian  ̶ ̶ Exp 1: n=60); Exp 2: 

(n=48) 

Nachtwei (2011) Germany Civilian ̶ ̶  ̶

Nothdurft, Lang, Klepsch, & 

Minker (2013, April) Germany 

Civilian  ̶ ̶ (n=48) 

Oleson, Billings, Kocsis, Chen, 

& Hancock (2011, February) 

North America 

Military/Civilian ̶ ̶  ̶



Study: Author(s), Country Subdomain Exp3 Obv Lit/D Actors 

Olson, Fisk, & Rogers (2009, 

October ) North America 

Civilian  ̶ ̶ Older population 

(ages between 60-80) 

(n=19) 

Sanders, Oleson, Billings, 

Chen, & Hancock (2011, 

September) North America 

Military ̶ ̶  ̶

Schaefer, et al. (2014) North 

America 

Military ̶ ̶  ̶

Talone, Phillips, Ososky, & 

Jentsch (2015, September) 

North America 

Military  ̶ ̶ (n=100) 

System Related      

Performance Based: 6 

Barg-Walkow (2013) North 

America 

Civilian  ̶ ̶ N= 60 (38% Female; 

62% Male; Mean 

Age: 19.8 (0.21 SD) 

Cassidy (2009) North America Military/Naval  ̶ ̶ 26% Female;74% 

Male (n=42) 

 

Dawson, Crawford, Dillon, & 

Anderson (2015, May) North 

America 

Military/Civilian  ̶ ̶ (n=40) 

Mosier, et al. (2013) North 

America 

Aviation ̶ ̶  ̶

Schaefer, Evans III, & Hill 

(2015) North America 

Military ̶ ̶  ̶

Westin, Borst, & Hilburn 

(2016) Netherlands 

Aviation/Civilian ̶ ̶  ̶

Attribute Based: 4      

Andersson (2010) Sweden Civilian ̶  ̶ ̶

Sheridan & Nadler (2006) 

North America 

Aerospace ̶ ̶  ̶

Shin, Busby, Hibberd, & 

McMahon (2005) UK 

Civilian ̶ ̶  ̶

Silva & Hansman (2015) 

North America 

Aviation ̶ ̶  ̶

Environment Related:       

Team Collaboration: 10      



Study: Author(s), Country Subdomain Exp3 Obv Lit/D Actors 

Chen & Barnes (2013) North 

America 

Military ̶ ̶  ̶

Hawley, Mares, & Giammanco 

(2006) North America 

Military ̶ ̶  ̶

Joe, O’Hara, Medema, & 

Oxstrand (2014, June) North 

America 

Civilian/Military ̶ ̶  ̶

Morita & Burns (2014) 

Canada 

Civilian/University ̶  ̶ (n=200) 

Ososky (2013) North America Civilian/Military/University  ̶ ̶ Undergraduate 

psychology student 

population. Mean 

Age: 18.78 (SD 1.61) 

(n=120) 

Phillips, Ososky, & Jentsch 

(2014, September) North 

America 

Military ̶ ̶  ̶

Phillips, Ososky, Grove, & 

Jentsch (2011, September) 

North America 

Military ̶ ̶  ̶

Sætrevik (2013) Norway Civilian ̶  ̶ ̶

Schaffernicht & Groesser 

(2011) Multinational (South 

America/Switzerland) 

Civilian ̶ ̶  ̶

Smith, Borgvall, & Lif (2007) 

UK 

Military ̶ ̶  ̶

Tasking: 1      

Clancey, Linde, Seah, & 

Shafto (2013) North America 

Aviation/Aerospace ̶ ̶  ̶

TOTAL COUNT: 52      



Human-Automation Interactions 

A common trend in HAI literature is priming (or knowledge of the system and its 

capabilities) can impact cognitive schema [12] [13] [14] [15]. Beggiato and Krems (2013) [12] 

and Beggiato et al (2015). [13] conducted studies of automated cruise control (ACC) and found 

initial information had an enduring effect on trust and acceptance and trust facilitation observed 

the Power Law of Learning [16]. Piccinini et al.(2015) [15] found automation error during critical 

situations had negative effects on behaviour and negative correlations between mental model and 

ACC operation. Zhang et al (2010) [17] also observed learnt mistrust behaviours from automation 

failure, as a result of over-estimation of system capability with SA and confidence ratings reflective 

of negative mental schema changes.  

Conversely, Lo et al. (2015) [18] observed that prior knowledge or experience does not 

necessarily impact trust or performance with automation, but noted that schema differ with 

experience associated with goal orientated decision making. Dehais et al (2012) [19] observed 

improper perservation behaviour 6  as a result of psychosocial attitudes and socio-technical 

demands, decreased performance, proper use of automation and overall trust facilitation in the 

operators’ mental models. Estimated knowledge or capability of a system and the effect on 

developing appropriate attitudes towards over- or under-reliance on automation also featured in  

Lee et al. (2005) [14]. 

The literature indicates TIA observes a positive trend when systems exhibit transparency 

and reliability, as these significantly influence construction of appropriate mental models and 

improvements to SA [20] [21] [22] [23]. Birkmeier et al (2011) [21] suggest increased trust in 

                                                 
6 Perservation behaviour is the repetition or continuation of a particular response despite the absence or 

cessation of the initial stimulus. For example, an individual may solely focus on completion of a task to the exclusion 

of initial overall goal, time taken to complete, communication with team members or other critical tasks (such as DRI).   



automation appropriate human-system interaction (HSI) is key for decision making and over-

reliance is connected to LOA and out-of-the-loop system architecture.  

Lim et al (2009) [23] found positive outcomes from transparency in experimental 

conditions with TIA, however found that priming did not have a statistically significant effect on 

mental models or perceptions of the system. Wilkinson et al (2007) [24] conversely reported 

primed mental models had improved task performance and TIA, stating participants with lower 

acquisition (weak schema of the system), compared to higher acquisition (robust mental models), 

demonstrated higher misuse and disuse with automation. 

Three studies used qualitatively grounded psychological approaches [25] [26] [27]. 

Bruemmer et al (2007) [27] utilised metaphors as primers to modify existing narratives to 

manipulate existing schema. Similarly, Arkin et al (2012) [26] used human psychology, behaviour 

and attitudes to develop artificial intelligence to simulate HMM and schema regarding moral traits 

for high-level automation in future battlespaces. 

The literature reviews and meta-analyses reviewed cover a diverse range and the following 

are grouped by the main outcome or theme explored in their respective sources. Education and 

training to promote appropriate HMM featured in five sources [28] [29] [30] [31] [11] in that 

schema can influence the operator’s SA and behaviours through dispositional, situational and 

learned trust which impact facilitation with automation [11]. Augmented, Mixed and Virtual 

Environment (AMVE) technology suggest embedding training within operational equipment to 

maintain appropriate schema [28] as do critical environments within the military domain Oleson 

et al (2011) [30], through implementation of appropriate training interventions. Fallon et al (2010) 

[29] reports cognitive elements affect operator trust facilitation, such as sense-making to reframe 

schema after automation failure and error. Shaefer et al (2014) [31] reported error (𝑔̅ = +.44) and 



communication feedback failure (𝑔̅ = +.45) had negative effects on trust development, whereas 

scenario training to support continued training has a large mediation effect (𝑔̅ = +.79).  

Function appropriation  is discussed in the research by Hawley et al (2005) [32] observing 

external factors (such as task allocation) and Hoffman and Woods (2011) [33] exploring internal 

factors (such as macro-cognition trade-offs between LOA and operator capability). Key outcomes 

of inappropriate task allocation [32] suggests fragmentation of workload (creating residuals) 

occurs between operator and system that cannot be properly framed by existing schema, may lead 

to interaction errors. Literature recommendations suggest clarification of task and suitable 

responses to automation error feedback,  and increase fidelity and transparency to improve trust in 

operators. Hancock et al. (2011) [8] meta-analysis found a positive correlation (𝑟2 = +26 ) 

between factors improving TIA in operators, were supported with literature analysis within the 

field [34]. 

A primary problem in psychosocial narrative frameworks in the literature stem from 

viewing system-teammates as parallel to human-human interaction. Negative impact on 

appropriate trust development and reliance [35] [36] and narrative framework divergence between 

operators and system designers can also facilitate mistrust with automation [37] was observed in 

this review. 

Human-System Interactions 

Perceived reliability and actual reliability were not aligned in neither Barg-Walkow (2013) 

[38] nor Cassidy (2009) [39], which implies despite  reliability increases, perception of automation 

capability may be limited to the operator schemata. Dawson et al (2015) [40] reported those with 

prior training or information had more stable perceptions of capability and were more inclined to 

trust automation. However, the study also indicated training did not significantly impact HMM in 

operators, and in some cases detrimental to developing TIA. SA played a role in system 



transparency and appropriate use, the authors reported spatial, temporal and environmental cues 

(STEC) are key for operators in developing appropriate understanding of autonomous agent 

behaviour. 

Andersson (2010) [41] reported miscalibration exists between actual and perceived reality, 

when there is a dissonance between operator’s schema and the technical capability of the 

automation. For example, when the mental model attributes larger functional capacity to the 

technical processes underpinning an automated system, there is an over-reliance on that system. 

The research implies that LOA may affect operator’s mental models through degradation from 

non-continuous use (skill-fade) and creating cognitive dissonance.  

Sheridan and Nadler (2006) [42] reported high occurrences of HAI error as a result of 

misuse of the system. The main findings found fidelity and transparency are key to maintaining 

appropriate schema, otherwise incorrect, inadequate or inaccurate feedback may negatively impact 

trust facilitation. Cognitive divergence and dissonance between human-automation capabilities is 

a common trend in accident analysis scenarios. Silva and Hansman (2015) [43] reported cognitive 

divergence as a failure in HSI through lack of transparency and feedback, such as the system 

changing state without operator input.  

Shin, Busby, Hibberd and McMahon (2005) [44] report increased system complexity 

generates new mechanisms for design and human error. Their analysis supports cognitive 

dissonance errors in the mismatch between internal representations of system function and reality 

of operators’ existing schemata with increased LOA. Shin et al (2005) [44] suggests there is only 

a partial overlap of mental models of system between designers and users regarding the underlying 

rationality of the system. 



Environment and Social Influences 

The environmental based research support the assertion that positive associations in 

operator interpretation of accuracy with congruent information, develop robust mental models 

which improve task performance and facilitate appropriate use of automated systems.  

Morita and Burns (2014) [45] explore intuitive trust and HMM and frames group trust to 

explore the socio-cultural impact of external influences. The study investigates shared mental 

models (SMM), the impact of interpersonal trust and the regulating factors involved in best 

facilitating TIA with human-human teams. Sætrevik and Eid (2013) [46] similarly report SMM in 

human-human-automation teams facilitate appropriate team processes and performance. They 

observe shared information reflects higher degrees of SMM and appropriate SA. Furthermore, 

misinformed leadership (influenced by weak mental models and weak SMM with teammates) had 

a negative impact on team similarity indexes and reported lower accuracy and performance. 

Clancey et al (2013) [47] explores the use of Brahms GÜM model to verify and validate a 

theoretical new assessment method for human-system simulations. The model uses cognitive 

framework to include interactions of pilots and air traffic control operators (ATCOs; modelled to 

represent human ontologies for different actors) – the research found distributed actants operating 

without knowledge of the other’s actions (e.g. low transparency or increased cognitive divergence) 

create unexpected behaviour that is difficult to control and simulate. 

Hawley et al (2006) [48] found better accretion with automation when appropriate mental 

model framework aids were utilised, and weak schema were accompanied with lower performance 

outcomes and error prone behaviour. In the Phillips et al (2014) [49] review, they reported 

increased levels of misuse, disuse and abuse where operators had weaker mental models and lower 

TIA and produced an overview of the many antecedents to facilitating TIA. Operator cognitive 

capacity (such as memory, task allocation, etc.) and HMM is discussed in another review by 



Phillips et al (2011) [50] in which transference of human attributes from H-H teams onto H-S 

teams is discussed. Joe et al (2014) [51] reviews the mimicry of human behaviour in H-S teams 

and automation and suggests avoiding utilising human narratives and analogies as system parallels. 

Cognitive capacity is also reviewed by Chen (2013) [52] into the appropriateness of ecological 

interface design to HAI and the appropriateness of human-system information exchange impacting 

on the performance of H-H and H-S teams.  

Schaffernicht and Groesser (2011) [53] and Smith et al (2007) [54] comprehensively 

explore metrics utilised in HMM research with a focal point towards individual and shared mental 

models in team communication and for mission success or goal attainment. 

Limitations of the Review 

The limitations are methodological as it is a scoping review and quality assessments for 

critical literature review require stricter guidelines. The synthesis of findings had challenges as 

guiding principles are ambiguous and undefined [7]. Some sources may have been missed in 

terminology selection mis-capture, article restrictions and unpublished technical reports. 

There are differences in statistical significance and effect size in the trends and results, due 

to small populations of participants. The literature has limitations with lack of randomisation in 

experimental study protocols, self-reporting error and androcentric subject populations. The issue 

of self-reporting is accepted in the studies which utilise validated questionnaires (e.g. Trust in 

Automation Questionnaire) or appropriate qualitative design protocol.  However, the review 

supports comparable outcomes in the existing literature.   

Conclusions 

The sources discussed support the use of HMM for exploring issues and limitations in 

facilitating TIA. The outcomes could be utilised in interface design recommendations, operator 

training and socio-technical bottlenecks. 



The experimental design studies overall suggest priming and prior training can positively 

influence operators TIA through reduction of mistrust or inappropriate behaviour with the system, 

and appropriate reliance and knowledge of limitations of the system capability. However, cognitive 

dissonance between perceived reliability and actual reliability, may be a factor requiring more 

exploration regardless of fidelity of automated systems. Olson, Fisk, and Rogers (2009) [55] 

Ososky (2013) [56] and Wilkinson, Fisk and Rogers (2007) [24] suggest distrust and incorrect 

estimations of automation accuracy were still apparent at 100% precision. Transparency between 

human and system interaction is vital for providing operators with congruent information which 

provide accurate and appropriate interpretation of the system’s capability and reliability, thereby 

robustly framing their schemata. 

The observational studies support these findings through recommendations of improving 

transparency, which thus improves SA [20] [21] [45] [46], especially in environments with high 

LOA. However, priming operators through education and training has mixed reviews in the 

observational studies [23].  Nonetheless, the majority of studies reviewed throughout the literature 

summarised herein indicate that lower acquisition mental models can increase inappropriate 

behaviour with the system, whereby robust mental models support improved interaction and 

facilitation. Cognitive dissonance between actual and perceived reality (such as the capability of 

the system, or SA) and cognitive overloads impacts trust facilitation, performance and subsequent 

degradation of mental models if behaviour is not accurately framed by the operator’s mental 

models. 

Mental model framework divergence is key in studies reviewed that explored accident 

analysis of human-system teams, as incidents featured human-system interaction misuse and 

disuse heavily. Weak schema are associated with lower performance outcomes and error behaviour 

– together with transparency education and training, may have prevented the incidents and more 



robust models would re-converge appropriate framework. Training and transparency are 

recommended to facilitate HAI/HSI in human-human and human-automation team collaboration 

(both individual operators and groups).  

The current literature seeks to explore underlying psychosocial impacts affecting 

performance and interaction within complex socio-technical environments through exploring 

mental models and schema. System transparency and operator priming through education can aid 

in facilitating appropriate trust as levels of automation rise. There are limitations within HAI 

research, as metrics used are varied and not cohesive across the literature and task performance 

outcomes are not necessarily representative of internal cognition and attitudes. Qualitative research 

and inquiry, although less objective, may yield rich contextual data to influence future HSI research 

in emerging and novel automation interaction and interfaces 

The overall scope of current literature is the utilisation of mental models as a theoretical 

framework for inquiry, is an expanding field of research in the identification of the shifting 

limitations of TIA research as technology emerges at an ever-expanding pace. Transparency of 

automation behaviour within the socio-technical system is key to the improvement of appropriate 

reliance and performance of both system and operator. In addition, training has shown positive 

effects on trust as it aids in creating appropriate schema, SA and the priming of mental models. 

The socio-cultural context and environment of human-system interaction is also significant in 

improving performance and task outcome through team communication, collaboration and 

leadership. 
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