

Studying the Effects of

Solution Processing Conditions on Morphology of Studtite and UO₃

Nathan Thompson, Prof. Neil C. Hyatt, Dr. Matthew Gilbert Department of Materials Science & Engineering, University of Sheffield

Summary

Nuclear forensic signatures are useful in the determination of origin and processing conditions of illicitly trafficked nuclear materials. In this investigation, UO_3 was examined (as a product of heating studtite starting material ([$(UO_2)(O_2)(H_2O)_2$]·2H₂O)). Based on previous screening experiments, relationships and interactions between processing variables were studied for their effects on the characteristics of studtite and UO_3 powder.

Background and Aims

Screening Experiments

Initial screening experiments helped to establish the processing conditions that may affect the physical and chemical properties of UO_3 product. A potential relationship between solution concentration and powder morphology (shape and form) was found, leading to further investigation by a fractional factorial matrix.

Figure 1: UO₃ powders produced from studtite (A-C) samples.

Aims

To further establish the relationships that exist between solution processing parameters (e.g. concentration, strike order, etc) and finished UO_3 powder morphology.

Material Preparation

Studtite and UO_3 powder synthesis

Synthetic studtite was prepared by mixing aqueous uranyl nitrate (0.1 and 1 M) and hydrogen peroxide (H_2O_2 , 5 and 30 w/w%) via forward (H_2O_2 added to U nitrate) or reverse addition (U nitrate added to H_2O_2). All mixing was performed robotically by a Metrohm Titrosampler, filtered under vacuum and dried for 48 hours. UO₃ was obtained directly by heating studtite powder to 535 °C in nitrogen (N_2) at 10 °C/min.

Figure 2: Metrohm Titrosampler

Factorial Matrix and Images

Design of Experiments

To test for relationships and/or interactions between effects of processing variables, a 2⁴⁻¹ fractional factorial experiment was used, requiring a total of 8 experimental runs.

Conc. U Nitrate (M)	Conc. $H_2O_2(w/w\%)$	Strike	Washing
0.1	5	Forward	W
0.1	5	Rerverse	UnW
0.1	30	Forward	UnW
0.1	30	Reverse	W
1	5	Forward	UnW
1	5	Reverse	W
1	30	Forward	W
1	30	Reverse	UnW

Scanning Electron Microscopy (SEM) 0.1M U Nitrate, 0.1M U Nitrate, 0.1M U Nitrate, 0.1M U Nitrate, 5% H₂O₂, R, UnW 30% H₂O₂, F, UnW 5% H₂O₂, F, W 30% H₂O₂, R, W 1M U Nitrate, **1M U Nitrate**, 1M U Nitrate, 1M U Nitrate, 5% H₂O₂, R, W 30% H₂O₂, F, W 5% H₂O₂, F, UnW 30% H₂O₂, R, UnW

Figure 3: SEM images of ground studtite precipitates (R=Reverse, UnW=Unwashed)

Particle Morphology Discussion

Particles generally appeared faceted and angular when produced by reverse-strike addition, particularly at low U nitrate concentrations. **Reverse-strike** precipitation will occur with slower growth rate than forward, due to immediate excess dilution in H_2O_2 . Washing appears to

make little difference to morphology.

UO₃ Morphology

Heating studtite to 535 °C in N_2 at a rate of 10 °C/min appeared to have no effect on the particle morphology. This result may prove relevant to nuclear forensic applications, where

Figure 5: 0.1M 30% F UnW at RT (D) and 535°C (D1)

µm scale

Forward-strike samples appeared rounded and clumped when either i) nitrate:peroxide concentration levels were equal and ii) washing had occurred after precipitation. Further work will be considered to discern the main effect contributing to these observations.

Figure 6: 0.1M 30% R, W at RT (C) and 535°C (C1)

a sample of UO_3 (or other thermal product of studtite) may be traced to its starting material using the UO_3 morphology, compared to a set of known standards.

Conclusion

Initial screening experiments demonstrated that it is possible to obtain different morphologies of studtite, and therefore UO_3 , from different solution processing conditions. By running a 2⁴⁻¹ fractional factorial matrix, it was found that the morphology of studtite and its heat products are affected by a combination of concentration, concentration ratio and strike order of reagent during the studtite precipitation stages.

Acknowledgements

Special thanks go to project supervisors Professor Neil C. Hyatt and Dr. Matthew Gilbert (AWE). Additionally to Dr. Martin C. Stennett and all group members of the Sheffield ISL. This research was performed in part at the MIDAS Facility, at the University of Sheffield, which was established with support from the Department of Energy and Climate Change.

Department of Materials Science & Engineering, University of Sheffield

