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2. Background

To view more see: Utilising Assured Multi-Agent 
Reinforcement Learning within Safety-Critical 
Scenarios., 2021.

Description

AMARL is an approach that delivers safe 
multi-agent reinforcement learning policies 
that comply with formal guarantees on 
functional and safety objectives, negating the
stochastic issues of  RL.

These formal guarantees are supplied 
through QV, which synthesis safe abstract 
policies used to constrain agents. This 
synthesis allows a level of  trust to be placed 
on a system, which was not present before.

AMARL is unique as it allows agents to 
enter into risky environments and perform 
risky actions, allowing more flexible use of  
MARL but with confidence they will meet 
safety requirements.

It is designed to be used on a broad range of  
issues and systems by utilising a plug-in style 
for a plethora of  needs.

1. Analysis of  the problem domain and the 
requirements of  the system. Identify key features in 
preparation for stage two.

2. Creation of  an AMDP to allow crucial 
information to be captured while allowing efficient 
QV. Formally define functional and safety 
requirements using PCTL.

3. QV, through probabilistic model checking, 
synthesises safe abstract policies. These abstract 
policies will provide formal guarantees of  safety and 
functionality.

4. Safe abstract policy selection to constrain the 
MARL agents from preforming unwanted behaviour, 
which produces safe policies.

Multi-robot systems have been proposed for a myriad of  exciting and 
game-changing scenarios*. Many of  which will remove humans from 
potential harm and increase work performance and quality of  life.

Without assurances that these systems will behave safely and that their safe 
behaviour doesn’t compromise mission objectives, their use will remain 
significantly limited.

Assured Multi-Agent Reinforcement Learning supplies these assurances 
through quantitatively verified constraints that provide formal guarantees 
on both safety and functionality—helping to bridge the gap between 
contained system use and real-world use.

Exciting and Game-Changing Scenarios*: Search and Rescue, Hospital 
Assistance, Planetary Exploration, Nuclear Power Plant Operations, Care Home 
Assistance, Security Operations, Military Operations, Agriculture.

The Stages

Issues of  Multi-Agent Reinforcement Learning 
(MARL)

Reinforcement learning (RL) is a machine learning technique with 
roots in behavioural psychology. An agent will receive numerical 
rewards or punishments when it takes actions within an 
environment based on the utility of  said action. 

RL uses two types of  behavioural selection methods: exploitation, 
where the agent selects the most useful action, and exploration, 
which selects an action at random. It is in this stochastic process 
where safety issues occur due to unpredictability.

From our current experiments, we can clearly see a trend 
forming. This trend supports our approach to satisfy the 
demand for safety and functional assurances and establish these 
assurances with formal methods, with homogenous and 
heterogeneous robotic teams of  differing sizes.

Our work, being the first approach to 
apply quantitative verification for  
MARL constraint in this fashion, helps 
establish a bridge between the academic 
use of  MARL and its use in safety-
critical scenarios.

Running three separate MARL algorithms with 
differing behaviours, we analyse the battery 
consumption and the cumulative risk of  learning 
run over episodes. 

The unacceptable level of  cumulative risk is shown 
as a light red square. As can been seen, the 
algorithms constrained using our approach never 
entered into this square and, in general, were much 
more predictable than unconstrained learning.

Due to the nature of  the constrained approach 
limiting the state-space, the battery performance 
was much more efficient using our constrained 
approach, as seen by the lack of  red in AMARLs 
performance seen in the battery graph.

We ran our experiments on three ‘nuclear power plant’ inspired domains, 
with varying system sizes, system types, and algorithms to showcase the 
plugin nature of  our AMARL approach. 

In Maps A, B, and C, robotic agents must visit all patrol points ‘diamonds’ 
at least three times between themselves while using as few actions as they 
can to preserve battery and limiting their time in risky areas.
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We frame these problems as 
an inspection problem, 
where agents must inspect 
sensitive equipment over 
time. By using robotic teams 
instead of  humans, we show 
the potential of  our research 
leading to safer conditions 
for humans.

Abstract Markov Decision Process (AMDP)

Working with MDPs that include all states and state transitions can easily 
become conflated, especially in large environments. An MDP can be 
abstracted to enable MDPs to be used efficiently and be eligible for 
analysis. 

When abstracting an MDP, identifying important states and states with 
commonality is required. Important states will be represented within the 
AMDP, but the states that share great commonality can be grouped 
together and represented with a single abstracted state. Such as, all states 
within a room can be abstracted into a single state that represents the 
entirety of  the room. 

Quantitative Verification  (QV)

QV is a technique that allows the analysis of  quantitative aspects of  a system, 
such as reliability, safety, performance etc. It makes use of  formal methods to 
analyse mathematical models such as an MDP. Using QV, for example, it is 
possible to determine the probability of  a system completing a goal within a 
certain amount of  actions. Some commonly used probabilistic model checking 
tools are PRISM and STORM.

PRISM allows us to construct an MDP using the PRISM coding language and 
describe requirements using probabilistic computational tree logic (PCTL). An 
example of  such a description can be seen here: P>=1 [ F "terminate"] meaning 
"the algorithm eventually terminates successfully with probability 1".
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