Assured Multi-Agent Reinforcement Learning

Putting the Trust in Trustworthy Robotic Teams
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1. What Assured Multi-Agent Reinforcement 2. Background
Learnin g can do for you! Issues of Multi-Agent Reinforcement Learning Abstract Markov Decision Process (AMDP) Quantitative Verification (QV)
(MARL) : : : L
Multi-robot systems have been proposed for a myriad of exciting and Working with MDPs that include all states and state transitions can easily QV is a tec.hn}q.ue that allows the analysis of quantitative aspects of a system,
: . . : : : : : : : : . . . such as reliability, safety, performance etc. It makes use ot formal methods to
game-changing scenarios*. Many of which will remove humans from Reinforcement learning (RL) is a machine learning technique with | become conflated, especially in large environments. An MDP can be , , .
. : : . , _ _ , , : . analyse mathematical models such as an MDP. Using QV, for example, it is
potential harm and increase work performance and quality of life. roots in behavioural psychology. An agent will receive numerical abstracted to enable MDPs to be used efficiently and be eligible for : , o ] o
: ; . - : possible to determine the probability of a system completing a goal within a
rewards or punishments when it takes actions within an analysis. : : e S :
Wi : : _ - : . certain amount of actions. Some commonly used probabilistic model checking
ithout assurances that these systems will behave safely and that their safe environment based on the utility of said action. , PRISM and STORM
behaviour doesn’t compromise mission objectives, their use will remain When abstracting an MDP, identifying important states and states with tools are an ‘
significantly limited. RL uses two types of behavioural selection methods: exploitation commonality is required. Important states will be represented within the , _
5 Y TP . bro” ’ J b 3 TP PRISM allows us to construct an MDP using the PRISM coding language and
where the agent selects the most useful action, and exploration, AMDP, but the states that share great commonality can be grouped : : . S . i
A : : : : . . e . : : describe requirements using probabilistic computational tree logic (PCTL). An
ssured Multi-Agent Reinforcement Learning supplies these assurances which selects an action at random. It is in this stochastic process together and represented with a single abstracted state. Such as, all states . | : " :
O : : : : e o . . example of such a description can be seen here: P>=1 [ F "terminate" | meaning
through quantitatively verified constraints that provide formal guarantees where safety issues occur due to unpredictability. within a room can be abstracted into a single state that represents the "the aloorith 1 . fullv with nrobability 1"
on both safety and functionality—helping to bridge the gap between entirety of the room. the algorithm eventually terminates successtully with probability 17
contained system use and real-world use.
\
Exciting and Game-Changing Scenarios*: Search and Rescue, Hospital 3. Assured Multi—Agent Reinforcement Learning (AMARL)
Assistance, Planetary Exploration, Nuclear Power Plant Operations, Care Home
Assistance, Security Operations, Military Operations, Agriculture. DeSCI‘lptIOIl Stage One Stage Two Stage Three
e VNt The Stages
AMARL is an approach that delivers safe I |
. . . .. I |
multi-agent re.mforcement learning policies : | 1. Analysis of the problem domain and the
that c‘omply with formal‘ gutdrantees on : v : requirements of the system. Identity key features in
functlongl .and satety objectives, negating the : I]n&l[l Synthesises : preparation for stage two.
stochastic issues of RL. Analysis of Domain I
. | : | | -
| and Requirements I i , I |
i - titati Safe Abstract . :
These formal ggarantees are supplied : (If::::dﬁ*cé;:: | |\ Foorel il R . I %‘;:?ﬁcl;l;:e . ;olic?e:ac : 2. Creation of an AMDP to allow crucial
L , . unctiona afe equirements . . . . .
thr?‘_lgh QV, which sy nt.hes1s safe abs‘tract | Safety) : | 5 B dtact Miikoy Dyecision Process | | I information to be captured while allowing efficient
policies used to constrain agents. This iy 4 . S | e e e e e e e e e a ~
hesis all level of be blaced - QV. Formally define functional and safety
synthesis a owsﬁa evel of trust to be place —— | requirements using PCTL,
on a system, which was not present before. [ Bl W& > @e-----ommommmmmoooo ot i B L L L LEL L ELEEL L L LS :
stract Policy
AMARL 1s unique as 1t allows agents to Fem e e e e e e e e e e m e m e m———————— e ———— == - : 3. QV, through probabilistic model checking,
enter into risky environments and perform Borril B I synthesises safe abstract policies. These abstract
risky actions, allowing more flexible use of Expert Constrains Produces | policies will provide formal guarantees of safety and
MARL but with confidence they will meet : functionality.
safety requirements. | |
: : I' _____ | I ' 4. Safe abstract policy selection to constrain the
1ssues and systems by utilising a plug-in style | 2222 . I Abstract Policy Learning Reinforcement Learning : : . ’
fOI“ a plethOI‘a Of needS : Low-Level | D e o e e o e e _! Wthh prOduceS Safe p011C1eS‘
Alonso-Mora, J., et al., 2017. Multi-robot formation control.
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4. Domain Examples 5. Results From One Set Of Experiments :
. — _ 6. Conclusion
We ran our eXperlmen.ts on three ‘nuclear power p.lant inspired domains, Running three separate MARL algorithms with st Map C - Curnulative Risk
with varying system sizes, system types, and algorithms to showcase the differing behaviours, we analyse the battery X — e
plugin nature of our AMARL approach. consumption and the cumulative risk of learning @ iy | ° , _ RL AMARL Fron? our cu.rrent experiments, we can clearly seed trend
an over enisodes 18 | | Passable Efficient Batterv Battery forming. This trend supports our approach to satisty the
In Maps A, B, and C, robotic agents must visit all patrol points ‘diamonds’ un-over ep ' _g L6 - Indi-Q Perfomance Performance demand for safety and functional assurances and establish these
at least three times between themselves while using as few actions as they . o = 14 ¢ X ' RL AMARL assurances with formal methods, with homogenous and
e e The unacceptable level of cumulative risk is shown 12 S : . e :
can to preserve battery and limiting their time in risky areas. . ki : : Robot-1|Robot-2| Robot-1| Robot-2 heterogeneous robotic teams of differing sizes.
as a light red square. As can been seen, the © L | ngpeeeessewe Rnisods 50
. 'w‘, i". |_, We frame these problems as algorithms constrained using our approach never ”:“ 0.8 ‘ Q & Episode 100 Our work, being the first approach to
| l:— \0 ----- RERYY . = an inspection problem, entered Into this square and, in general, were much = 06 & X Episode 150 48 *f—i E apply quantitative verification for
il P L e e : : : . X, : L :
(it R i e where agents must inspect more predictable than unconstrained learning. - 04 Episode 200 48 'l' MARL constraint in this fashion, helps
v i@l i | o - N o : 02 Team-Q WoLF-PHC " L- . . .
L I \ _|7| —, . sensitive equipment over i - AMART RL. AMART. O’ establish a bridge between the academic
-------- e | | R .time. By using robotic teams [?u? jco the nature of the constrained approach ‘TR AMARL| RL [AMARL| RL |AMARL Robot-1|Robot-2| Robot-1] Robot-2 | Robot-1] Robot-2 | Robot-1 | Robot-2 o use of MARL and its use in safety-
MapA =S instead of humans, we show limiting the state-space, the battery performance e In'()lu Q U Tc;un-()()) I\: ou--mo(\< Episode 50 23 | a1 3 0 | 37 . ‘! critical scenarios.
. . . =pisode 5 3 N 6 S ; 8
0 - Not visited -——- o the potential of our research was much more efficient using our constrained | Lgmdt oo T oo T 14 1 oo | oz 1 oo |[Episode 100 49 | 48 | 38 | 34 33 - . _ e
‘ ;:&Zﬁj g:v‘ie cé);tesf; réf:tg Risky leading to safer conditions approach, as seen by the lack of red in AMARLSs Epiode150 13 09 | 18 | 07 | 08 07 Epﬁsode 150 45 41 38 _ ' ;(g’”}ljxer;:;f ijzrnlj;; ZZZ%; msggp‘;ty{‘glii;a lg‘f”’f
o Vidtod Thre Times = = Areas for humans. performance seen in the battery graph. Episode 200 1.1 0.9 1.2 0.7 0.7 0.7 |Episode 200 44 43 38 L—ﬁ Scenarios, 2021,




