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Abstract

Over the past few decades, autonomous vehicles have been widely considered as the next

generation of road transportation. As a result, relevant technology has been rapidly devel-

oped, and one specific topic is enabling autonomous vehicles to operate under demanding

conditions. This requires the autonomous driving controller to have a good understand-

ing of the vehicle dynamics at the limits of handling, and is expected to improve the

performance as well as safety of autonomous vehicles especially in extreme situations.

Furthermore, there has been application of techniques such as torque vectoring and four-

wheel steering on modern vehicles as part of the driver assistance system, while such

multi-actuation can be deployed on an autonomous vehicle in order to further enhance its

performance in response to challenging manoeuvres and scenarios.

This thesis aims to develop a real-time path tracking control strategy for an autonomous

electric vehicle at the limits of handling, taking advantage of torque vectoring and four-

wheel steering techniques for the enhanced control of vehicle dynamics. A nonlinear

model predictive control formulation based on a three degree-of-freedom vehicle model

is proposed for control design, which takes into account the nonlinearities in vehicle dy-

namics at the limits of handling as well as the crucial actuator constraints. In addition,

steady-state references of steering inputs as well as vehicle states are generated based

on a bicycle model and included in the control formulation to improve the performance.

Two path tracking models with different coordinate systems are introduced to the control

formulation, and compared to understand the more suitable one for the proposed path

tracking purpose. Then the path tracking performance with different levels of actuation
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is investigated. According to the high-fidelity simulation results, the vehicle achieves the

minimum lateral deviation with the over-actuation topology including both torque vec-

toring and four-wheel steering, which illustrates that the over-actuation formulation can

enhance the path tracking performance by enduing the vehicle with the best flexibility as

well as stability during operation at the limits of handling.

Before being implemented on the vehicle, the performance of the proposed control strat-

egy is further assessed with regards to real-time operation. After evaluating the con-

trol performance with different prediction horizons and sampling time, the most suitable

setup is identified which compromises between the control performance and the capabil-

ity of real-time execution. Finally, the control algorithm is implemented on a real vehicle

for practical testing. The controller is tested in four different scenarios, and the results

demonstrate that the proposed controller is capable of path tracking control and vehicle

stabilisation for multi-actuated autonomous vehicles at the limits of handling.

In general, this thesis has proposed a path tracking controller for autonomous vehicles

which takes into account nonlinear vehicle dynamics at the limits of handling. Following

some necessary simplification, the developed controller has been successfully deployed

on a real vehicle in real time, and the control performance has been validated in several

challenging scenarios. The controller proves itself to be able to improve the vehicle’s

flexibility as well as to stabilise the vehicle at the limits of handling, and furthermore, it is

able to accommodate relatively large side slip angles during the demanding manoeuvres

as well.
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Chapter 1

Introduction

1.1 Overview

Over the past few decades, due to the increasing demands to improve the safety, effi-

ciency and comfort of road vehicles, autonomous ground vehicles (AGVs) have been

widely considered as the next generation of road transportation. AGV is often used to de-

scribe vehicles that are able to perform part or all of the dynamic driving tasks, including

driving environment perception, manoeuvre planning and vehicle motion control in both

longitudinal and lateral direction [1]. Figure 1.1 shows a schematic view of the operation

of an AGV.

With regards to the development of AGVs, the control techniques for AGVs have been

rapidly developed with a great deal of research work carried out for various objectives,

including path and motion planning [2, 3, 4], path tracking [5, 6], obstacle detection and

avoidance [7, 8] and so forth. Among these topics, the path tracking control, as one of the

fundamental functions of AGVs, is the main focus of this thesis.

The dynamical capability of a vehicle is basically determined by the maximum available

tyre-road friction force. A large number of car accidents are caused by inexperienced

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of the operation of an AGV. [1].

drivers carrying out aggressive manoeuvres that exceeds the friction limits, and in re-

sponse to that, techniques such as electronic stability programme (ESP) have been de-

veloped to improve a vehicle’s stability. While on the other hand, a professional driver

is able to operate the car at its friction limits, which extends the mobility of the vehicle

in extreme conditions. Inspired by this, if an autonomous vehicle is able to make full

use of its dynamical capability, the path tracking performance can be maximised. Hence,

this thesis is particularly focused in the path tracking and stability control of autonomous

vehicles at the limits of handling.

1.2 State of the Art

Regarding the path tracking problem, geometric path tracking controllers are able to track

a path only with the geometry of vehicle kinematics and of the reference path, but they

are less suitable for control at the limits of handling due to the lack of knowledge on ve-

hicle dynamics. In comparison, control methods that involve vehicle dynamics such as

H-infinity technique and sliding mode controllers are able to provide more robust control

performance. In addition to these, optimal control theories such as linear quadratic regula-
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tor (LQR) has also been introduced to the scope, and are able provided better performance

in terms of tracking deviation in some research [9].

Among various control methods, model predictive control (MPC) is found as an effective

technique for autonomous vehicle control. It is able to achieve better control performance

than geometric and LQR controllers, and is more suitable for multi-variable systems.

Futhermore, MPC has shown its advantage in dealing with constraints such as state and

input limits or road boundaries. Hence, it has been widely utilized for autonomous vehicle

control. However, despite the outstanding control performance and robustness of MPC, it

requires more computation time, which make it difficult to be implemented in real time.

In some studies, linear models are used to simplify the control formulation, but such

simplification is not sufficient for the operation at the limits of handling, when the vehicle

behaviour becomes highly nonlinear.

In addition to active FWS control, techniques like DYC and torque vectoring (TV) have

been extensively discussed in the literature for vehicle control. TV refers to the technique

that is able to manipulate the individual torque on each wheel. According to some re-

search, TV can effectively improve the cornering response at the limits of handling by

generating a direct yaw moment to stabilise the vehicle. Hence, TV has been applied in

several studies for the development of driver assist systems, aiming to improve the vehi-

cle performance and guarantee consistently safe and stable cornering response. In recent

years, there are more studies including four wheel steering (4WS) into the actuation for-

mulation for path tracking control design, and demonstrate that 4WS is able to improve

the stability and flexibility of the vehicle. To the best of our knowledge, there are few

studies on the multi-actuation control including both TV and 4WS in the actuation topol-

ogy for path tracking purpose, which is part of the novelty of this thesis. In addition, the

real time implementation of such a controller is also in the scope.
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1.3 Aim and Contributions

The aim of this research is to develop a real-time implementable control strategy for a

multi-actuated autonomous electric vehicle, for the purpose of path tracking under the

condition of limits of handling. It is worthy to be mentioned that although the control

strategy is supposed to be implemented on a vehicle with specific actuation topology, it is

developed in a general formulation and thus it can be easily extended to fit other vehicles

with different topology.

In order to realise this aim, following contributions has been made in this research:

• develop an optimal control strategy for the specific vehicle actuation topology, with

a more suitable formulation between two alternatives for optimal path tracking perfor-

mance,

• compare the path tracking performance of the vehicle with different level of actuation

in simulation,

• validate and modify the control strategy in real-time simulation,

• implement the control algorithm on the vehicle platform and validate the control per-

formance in practical testing.

This research first compares predictive control with different path tracking formulations

to understand the most suitable one for the proposed path tracking purpose. Then the

path tracking performance with different level of actuation is investigated. According

to the high-fidelity simulation results, the vehicle achieves the minimum lateral devia-

tion with the over actuation topology including both torque vectoring and four-wheel

steering, which illustrates that the over actuation topology can enhance the path tracking

performance by enduing the vehicle with the best stability and flexibility during extreme

operation.

Before being implemented on the vehicle, the performance of the proposed control strat-



1.4. THESIS OUTLINE 5

egy is further assessed in real-time simulation. After evaluating the control performance

with different sampling time and prediction horizons, the best setup is identified for com-

promise between good control performance and the capability of real-time execution.

Finally, the control algorithm is implemented on a vehicle platform for practical testing.

The testing results demonstrate that the developed controller is capable of autonomous

vehicle control at the limits of handling with good path tracking and vehicle stabilisation

performance.

1.4 Thesis Outline

This thesis is organised as follows. Chapter 2 discusses the main contribution in litera-

ture on path tracking control, vehicle dynamics control at the limits of handling and the

application of multi-actuation, with a particular interest on real-time implementation. In

Chapter 3, the modelling of the vehicle dynamics and the generation of steady-state ref-

erences are introduced. Chapter 4 demonstrates the formulation of the optimal control

problem based on NMPC as well as the development of the optimal path tracking control

strategy, and discusses about the control performance with different path tracking formu-

lation. The control strategy is further studied in Chapter 5 by comparing the path tracking

performance with different levels of actuation. Before being implemented for practical

testing, the control strategy is evaluated in Chapter 6 for real-time executability. The con-

trol performance under various sampling time and prediction horizons are compared to

make compromise between short computation time and good prediction of system dy-

namics. Finally, the developed control algorithm is implemented on the vehicle platform,

and Chapter 7 shows the results of the practical testing. In the end, The research outcome

is summarised in Chapter 8.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, the relevant context to this research is elaborated including the work in

academia as well as in the automotive industry. The literature review is particularly fo-

cused on three topics, corresponding to the following three sections in this chapter. The

first section is in regards to the path tracking control of autonomous vehicles. Various

control methods are discussed and compared to recognise an appropriate approach for this

research. In the next section, studies in vehicle dynamic control at the limits of handling

are reviewed, including the scenarios of vehicle stability control, and the application in

autonomous racing. Here interest lies in how different control approaches can contribute

to vehicle stabilisation at extreme conditions, and how the performance is evaluated. At

last, the application of multi-actuation is reviewed. This includes the utilisation of TV and

RWS, in both driver assistance systems and autonomous vehicles. It is concerned how the

application of such multi-actuation techniques can lead to enhanced vehicle performance.

In addition, another point of interest is put on the possibility of real-time implementation

of the studies, as this is one of the objectives of this research.

7
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2.2 Path Tracking Control of Autonomous Ground Vehi-

cles

Corresponding to the motion control layer in Introduction, path tracking is one of the fun-

damental tasks of AGVs. Among the various path tracking control methods, geometry-

based methods are the most basic ones. This kind of approaches is based on the geometry

of the vehicle and path, with the assumption of zero slip angles on the wheels [10]. Coul-

ter raised the pure pursuit steering control algorithm for the path tracking purpose [11].

With only the geometric relationship between vehicle position and a look ahead “goal

point”, the algorithm determined steering commands by calculating the curvature of the

desired arc guiding the vehicle towards the goal point. This algorithm had been proven

effective in practical application, but some limitations were addressed, one of which was

lack of robustness during rear wheel slip due to a sharp change of curvature at high speed.

Another geometric approach for path tracking was often called Stanley controller, named

after the autonomous robot vehicle Stanley, which applied the method and won the 2005

DARPA Grand Challenge [12]. The Stanley controller is generally based on a nonlin-

ear feedback function of the cross-track error, which consisted of the heading error and

lateral distance error. When the cross-track error became zero, the controller would ap-

ply a steering angle aiming to point the front wheels parallel to the path. In comparison

with the pure pursuit controller, the Stanley controller was more suitable for higher speed.

Apart from purely geometric control methods, there have been approaches based on kine-

matic vehicle models as well [13, 14]. In [14], a chained form controller was developed

based on a kinematic bicycle model. According to the simulation, the controller achieved

similar results as the geometric controllers, with reduced performance at high speed com-

pared with the Stanley controller. In summary, the above control methods were developed

purely based on vehicle kinematics and path geometry. They were simple and effective

for AGV navigation in some conditions, but due to the lack of knowledge on vehicle dy-

namics, they were less suitable for control at the limits of handling as the derived control
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actions can be infeasible or lead to instability.

In addition to the geometric and kinematic control approaches, simple feedback control

methods such as PID can also be used for path tracking control. It compares the system

output and the desired reference, and applies a control law based on the error. Due to its

simple theory and design, PID is broadly used in the industry [15, 16, 17, 18]. In terms of

its application for path tracking control, Marino et al. proposed a steering control strategy

for autonomous lane keeping [19]. A PID controller was developed to generate the yaw

rate reference on the basis of lateral error, and the steering angle was determined by a

second PI controller based on the yaw rate tracking error. In [18], a path tracking con-

troller was designed for autonomous driving. In this approach, the steering command was

produced by applying the PID control law on the cross-track error of the vehicle. PID

control works without a system model, and is generally triggered by the error between the

feedback states of the system and the corresponding desired values. This theory makes

PID easy to be designed and implemented. However, PID can hardly take into account

the physical characteristics or limitations of the system, so the system stability and con-

trol performance can not be guaranteed especially when the vehicle is operating with a

significant deviation from the reference. This lack of robustness could be compensated

by applying an adaptive control law to automatically tune control parameters in response

to the changing condition [20], while tuning is another problem with PID. There has not

been a theory on the tuning of PID, or criteria for assessing if the optimal performance is

achieved. Hence, the tuning of PID can be quite difficult [15, 18].

More researches have been done on the development of dynamic controllers for au-

tonomous path tracking, which incorporate vehicle dynamics in the control design. In

[14], geometric, kinematic and dynamic controllers were compared in the aspects such

as path requirements, robustness and steady-state error, and it was shown that dynamic

controllers were able to achieve better path tracking performance in general. Roselli et

al. proposed a path tracking steering controller for lane-keeping at a constant speed [21].
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The controller was based on the H-infinity technique, and was formulated with interest on

the lateral tracking error and the derivative of a look-ahead error. According to the exper-

imental tests, the H-infinity controller was able to achieve overall smaller lateral error in

comparison with a PID controller with feedforward, leading to a smoother action in the

corner. Tagne et al. developed a higher-order sliding mode controller for lateral control

of AGV [22]. It aimed to stabilise the vehicle and enhance the path tracking performance

especially at high speed, while with a special goal of reducing chattering. The devel-

oped controller was validated in several scenarios with lateral acceleration up to 7 m/s2,

and showed its robustness to speed variation, curvature change and vehicle parameter un-

certainty. In [23], a feedback-feedforward steering controller was designed to maintain

vehicle stability and to minimise the path tracking deviation at the limits of handling.

The controller took into account the combination of the desired path heading and vehicle

sideslip information to produce the feedforward steering command, which was integrated

with the feedback component of the control strategy looking at a predicted steady-state

path tracking error based on a linear vehicle model. The controller was implemented

on an Audi TTS and validated in experimental tests, during which the controller showed

good robustness, and the vehicle tracked the reference path with lateral error up to 2m, at

the limits of handling indicated by the 9 m/s2 lateral acceleration.

The above dynamic controllers have shown the advantage of including vehicle dynamics

in path tracking control design that enhances the robustness and improves the tracking

performance. However, they all used single-track bicycle models for lateral vehicle dy-

namics. This helps to simplify the control formulation, but due to the fact that the differ-

ence between the left and right wheels is neglected, it may not be sufficient in comparison

with a more detailed vehicle model for the control of extreme cornering manoeuvre where

that difference becomes significant [15]. Hence, full vehicle models have been applied for

control design as well [24, 25, 26, 27]. In [25], a control system for AGVs was developed

for stability control and path tracking at high speed. The controller was based on a full

vehicle model, and on sliding mode control to handle the uncertainties from un-modelled
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dynamics and road condition. The proposed controller was evaluated in simulation, dur-

ing which the vehicle maintained stability when driving along a general path at a constant

speed of 50 kph, with lateral tracking error up to 0.06m. In [26], an H-infinity output-

feedback control strategy was designed for AGVs. It was supposed to carry out path

tracking without the information of the lateral velocity of the vehicle. The simulation

results showed that the controller was able to maintain robustness and achieve good path

tracking performance within 1 m under the condition of the given uncertainty. Chen et

al. presented a hierarchical control strategy for autonomous path tracking without the

information of friction condition or external disturbance [27]. A full vehicle model was

applied in the control design, while separated into two modules in order to deal with mo-

tion control and wheel slip dynamics respectively. These studies demonstrated that with

a better knowledge of the vehicle dynamics during high-speed turning, robustness can be

maintained even with the presence of uncertainty and disturbance. Hence, the utilisation

of full vehicle models in control design can improve the path tracking performance to a

higher level.

In addition to the control methods mentioned above for path tracking, optimal control

theories have also been introduced to the scope. The linear quadratic control is a typical

optimal control formulation. It describes the desired control target as a cost in the form of

a quadratic function, and the control law aims to bring the cost function to the minimum

based on the linear state feedback [28]. LQR was applied in [29] for autonomous path

tracking control based on a bicycle model. The study showed that in comparison with

ordinary PD control which could not provide satisfying performance in both response

and convergence, the developed LQR controller was able to provide better path tracking

performance. Sharp et al. proposed a mathematical model for the steering control of an

autonomous vehicle [30], and the work was extended in [31] where an optimal steering

control approach for path tracking was developed. The control design was based on LQR,

and the path tracking problem was represented as optimal preview control in the local

driver view. Different cost functions were attempted with priority on minimising position



12 CHAPTER 2. LITERATURE REVIEW

error or attitude angle error. The former formulation provided a better path tracking ac-

curacy with more oscillation on the steering, while the latter formulation led to smoother

yaw motion with larger path tracking error. Extended from LQR, linear quadratic Gaus-

sian control has also been used for path tracking. Lee et al. proposed an optimal path

tracking controller for AGVs [9]. The controller was based on LQG, and thus was able to

handle the noise of system states during operation. The controller was implemented on a

test vehicle, and provided better performance with less tracking deviation than geometric

controllers in both low and high speed conditions. Another LQG path tracking controller

was developed in [32]. With the application of an augmented state space model, the path

tracking performance was improved compared with conventional LQG controllers.

Since its origin in the late 1970s, MPC has had a significant influence on control engi-

neering [33, 34]. Taking advantage of a dynamic model of the system, MPC is capable

of predicting the system response within a finite horizon, and determining a series of the

optimal control actions to minimise the gap between the system output and the desired ref-

erence. Among various control methods, MPC is found as an outstanding technique. In

[35], the path tracking control performance of geometric, LQR and MPC controllers were

compared in simulation, and the results showed that MPC achieved the best path track-

ing performance among the three approaches, with the minimum control effort. Yakub et

al. extended the study by comparing the path tracking performance of MPC and linear

quadratic control for different speed, tyre-road friction coefficient and control topology

including FWS, four-wheel steering (4WS) and FWS with direct yaw moment control

(DYC) [36]. A similar conclusion was drawn that MPC was more suitable for multi-

variable systems. Hence, MPC has been widely used for autonomous vehicle control,

including path tracking control. In [37], a linear MPC control structure was presented

for path tracking control. Alessandretti et al. developed two MPC control algorithms for

path-following and trajectory tracking control of constrained underactuated vehicles [38].

The effect of MPC was evaluated in [39] for autonomous path tracking under crosswind

condition. The simulation results demonstrated that MPC was capable of maintaining ro-
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bustness given the disturbance produced by side wind. In addition, it was also shown that

with a more detailed vehicle model, the tracking performance as well as vehicle stability

were considerably improved in conditions with different friction.

Compared with other control approaches, one advantage of MPC is that it is able to han-

dle complicated system models. Linear vehicle models may not be sufficient when the

vehicle is operating at the limits of handling, during which the nonlinearity of system dy-

namics becomes dominant. Thus, nonlinear models are critical to provide more realistic

description of vehicle dynamics, which is able to enhance the performance of MPC due

to its theory. Falcone et al. developed an NMPC controller for an FWS autonomous ve-

hicle [40]. Despite the application of a bicycle model, the nonlinearities related to lateral

vehicle stabilisation were taken into account. Experimental results showed that with the

proposed controller, the vehicle was able to track a double lane change trajectory at the

speed of 21m/s on icy roads. Berntorp et al. developed an MPC trajectory tracking con-

troller which was adaptive to varying friction conditions [41]. This shows the advantage

of MPC in providing the robust control performance with the change of conditions.

Furthermore, MPC has also shown its advantage in dealing with constraints from state and

input limits as well as road boundaries [41, 42, 43, 44, 4]. In [42], an NMPC strategy was

developed for autonomous path tracking control. The controller was supposed to track

the reference path while respecting the state constraints and steering actuator limitation

depending on the velocity. The controller was implemented for practical testing, in which

the effectiveness of path tracking capability was demonstrated at speed up to 40 kph,

while none of the constraints was violated. In [43], a hierarchical NMPC control structure

was produced for autonomous vehicle control. The control scheme took into account

the acceleration limits of the vehicle determined by the friction circle, as well as the

feasible region of driving torque on wheels. Chen et al. developed a controller focusing

on path tracking while dealing with cut-in vehicles [44]. In addition to the constraints

of vehicle dynamical states and actuator limitations, vehicle position was also included
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in the boundaries to provide good path tracking performance while maintaining a safe

distance from the cut-in vehicle.

Despite the advantage of MPC, it is computationally expensive for practical implementa-

tion. In [45], it was reflected in simulation that the MPC controller with more complicated

model was more time consuming and more difficult to tune. As a result, in order to im-

plement MPC in real time, a powerful enough computing platform is required, otherwise

simplification should be carried out to ease the computation burden. This could be re-

duced system complexity [41], or limited application condition [40]. In recent years,

MPC based on neural network has been proposed for path tracking problem [46, 47]. In-

stead of a detailed but complicated system model, a neural network model was applied

in the MPC formulation, which can significantly reduce the system complexity. How-

ever, this kind of approaches requires initial training, so it is lack of flexibility in different

scenarios.

2.3 Vehicle Control at the Limits of Handling

The handling limits of vehicles is often defined as the situation where the vehicle’s full

dynamical capability is used, namely the available tyre forces are exploited. Operating

vehicles at the limits of handling is not only for the best performance, but also for pro-

viding a potential solution in emergency scenarios. The first part of this section discusses

about the approaches in literature for vehicle stabilisation at the limits of handling, and the

second part particularly focuses on the autonomous vehicle control for aggressive driving

manoeuvres.
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2.3.1 Vehicle Stability Control at the Limits of Handling

Limitations exist in the vehicle handling capability due to the tyre-road friction as well as

physical limits of actuators. Professional drivers are capable of operating the vehicle at

these handling limits without getting into instability, while less skilled drivers may exceed

the limits probably due to emergency manoeuvring or aggressive intension, sometimes

leading to an accident. This is the reason why vehicle stability control is vital, and has

been massively developed in the industry as part of the driver assist system. Generally

speaking, the purpose of vehicle stability control is to guarantee realisation of the intended

manoeuvre. Techniques like ABS and ESP have been developed and applied for a few

decades in the industry for assisting the driver to maintain vehicle stability. ABS and

traction control aims to prevent the tyres from sliding significantly, while ESP aims to

fulfill the required yaw moment by braking the individual wheels. In addition to these,

Tchamna et al. designed a differential braking control based on sliding mode control [48].

It took yaw rate and side slip angle as control objectives, while taking into account the

longitudinal dynamics of the vehicle. Kakalis et al. presented a differential throttle and

brake controller to enhance the dynamic behaviour of a RWD sport vehicle [49]. This was

realised by generating an asymmetric longitudinal force distribution according to the yaw

rate target. These techniques have significantly improved the car stability, but the driver

takes full charge of the lateral control, so persistent stability cannot be guaranteed. When

it comes to AGV, steering is also included in the control authority, which helps to reach

the optimal stability control.

In terms of vehicle statbility control including steering, a gain scheduled active steering

controller was developed in [50] for vehicle stability control in extreme handling condi-

tions. The controller applied a rational tyre model which took the saturation of tyre force

into account, and aimed to achieve the desired yaw rate and minimal side slip angle. The

controller was validated in simulation with different road friction condition, and good

vehicle response was observed even if a large yaw rate is required.
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More controllers for vehicle vehicle stabilisation have been developed based on MPC.

Falcone et al. developed two combined steering and braking MPC controllers with vehi-

cle models of different complexity [45]. Both controllers were tested with a lane change

manoeuvre and according to the simulation results, the controller with the complicated

model was able to achieve good tracking performance at both low and high speed, while

the controller with the simplified model could not stabilise the vehicle at high speed. Beal

et al. developed an MPC controller for vehicle stabilisation [51]. The approach took

advantage of the estimation of vehicle sideslip as well as tyre-road friction coefficient

to understand the vehicle dynamical limitations. An MPC envelope controller based on

a linear bicycle model was developed to identify the optimal control actions to guaran-

tee the vehicle states within the range of defined boundaries. Gao et al. presented two

control frameworks based on MPC for AGVs to carry out obstacle avoidance on slip-

pery roads [52]. One approach combined path planning and path tracking in one level,

while the other approach separated the two tasks in a hierarchical structure. Both con-

trollers applied a full vehicle model for path tracking control, and the obstacle avoidance

problem was formulated into a cost function with regards to the distance between the ve-

hicle and the obstacle. Both controllers were validated in simulation, and the hierarchical

control framework was able to maintain vehicle stability at higher speed of 55kph while

the single layer approach could reach 40kph for maximum. In addition, the single layer

controller required longer computation time in higher speed operation. The two layer

control required lower computational burden, but it was due to the application of a sim-

plified vehicle model for path planning. Funke et al. presented a control strategy which

was capable of vehicle stabilisation and obstacle avoidance during path tracking [8]. The

controller utilised MPC so that it could make full use of vehicle’s dynamical capability,

which was critical in emergency scenarios. In terms of the potential conflict among the

three objectives, priority was put on obstacle avoidance over path tracking or vehicle sta-

bilisation so that the accident could be minimised. Lee et al. developed a MPC controller

for aggressive cornering manoeuvre, which took into account the effect of a large steering
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angle on the longitudinal dynamics of the vehicle [53].

2.3.2 Autonomous Vehicle Control at the Limits of Handling

One scenario of autonomous vehicle control at the limits of handling, is actively con-

trolling the vehicle to carry out aggressive manoeuvres, which is often related to racing

purpose. The idea is to make full use of the vehicle dynamical capability, which is essen-

tial in racing so that the path could be negotiated within the shortest time. Thommyppillai

et al. proposed the development of a car driver model which is able to exploit full ca-

pacity of a racing car [54]. The control strategy was based on optimal linear preview

control theory, and according to the simulation results, the vehicle was able to track three

different paths at a fixed high speed of 30m/s. With adaptive control strategy, the lateral

tracking error was significantly reduced. In [55], aggressive autonomous vehicle driving

was realised by using smooth curvature polynomial spiral and g-g diagram to generate

maximum safe velocity profile to keep the vehicle within its friction limits.

In terms of MPC, Kritayakirana proposed the work on developing autonomous vehicle

control at the limits of handling [56]. A longitudinal controller was designed to track a

desired speed profile. It included feedforward and feedback sections to take care of the

maximum available acceleration per slip circle. A steering controller was developed as

well which aimed to exploit the vehicle dynamical capability to track the desired path

at the limits of handling. The control framework was implemented on an autonomous

Audi TTS and tested at Pikes Peak. The performance was impressive as the vehicle was

able to negotiate the path with mixed paved and dirt sections, while reaching the handling

limits indicated by the maximum lateral acceleration at 1G. Malmir et al. developed an

LTV-MPC controller for the minimum time cornering problem [57]. The controller was

supposed to drive the vehicle through a circuit within minimum time. This required to

make full use of the available tyre force. Ni et al. developed a path tracking controller

for an autonomous electric race car that won the 2017 Formula Student Autonomous
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Competition. The controller was based on H infinity control, and managed to operate the

vehicle at a random track at the limits of handling. Laurense et al. proposed a controller

for autonomous path tracking at the limits of handling [6]. The control scheme consisted

of a longitudinal controller which calculated the speed command based on desired yaw

rate, and of a steering controller dependent on the slip angle information. This control

scheme was effective for the continuous operation of an autonomous vehicle at the limits

of handling, with significantly reduced requirement on the friction estimation accuracy.

Alcala et al. proposed a control strategy for autonomous racing based on LPV-MPC [58].

The controller used a bicycle model for vehicle dynamics prediction, and was supposed

to track the optimal trajectory provided by the path planning algorithm. The controller

was successfully implemented on a RC vehicle and tested in real time. The simulation

showed good tracking performance, but in the practical testing, the tracking performance

was degraded to some extent potentially due to the simplification of vehicle modelling.

Liniger et al. [59] raised two inspiring control algorithms for the purpose of autonomous

racing. The first controller has a hierarchical structure, including two levels carrying out

path planning and path tracking separately, while the other one integrates the two tasks

by formulating the problem in a single layer, so that path planning and path tracking

can be done simultaneously. Both controllers are based on the LTV approximation of

the system dynamics, and aim to determine the optimal manoeuvres to maximise the

progress on the track, while in addition to that, obstacle avoidance is also included in the

scope, and is realised by means of a high-level corridor planner, which generates convex

constraints for the controller to find out the optimal path with regards to the maximum

progress, while ensuring not hitting the obstacles. This work has been validated with

1:43 scale RC cars in real time. According to the experiment results, both controllers

are able to operate the RC car at its handling limits, which is indicated by saturated rear

tyre force, while at the same time taking care of the track borders and on-track obstacles.

This well demonstrates the advantage of MPC in dealing with complicated constraints.
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However, simple linear vehicle model and tyre model are used in this study to reduce the

computational complexity of MPC. This works well for a 1:43 scale RC model car, but if

the controller is to be implemented on a full-size vehicle, such simplification is no longer

sufficient to guarantee good prediction of the vehicle dynamics at the vehicle’s handling

limits, where the vehicle behaviour becomes highly nonlinear.

In addition to autonomous racing, drifting is another typical manoeuvre to illustrate vehi-

cle operation at the limits of handling. It is an oversteering manoeuvre featuring a large

side slip angle, where vehicle is at the margin of stability with a loss of traction force.

Velenis et al studies the steady-state equilibria of a RWD vehicle during the drifting ma-

noeuvre with aggressive sideslip, and proposes a novel drift stabilisation controller based

on LQR and backstepping control [60]. The controller was successfully validated in sim-

ulation, and provided a similar performance as the testing results provided by a real driver.

The study was continued by Gonzales et al. who realised autonomous drifting on a 1/10

RC car, using LQR and vision-based state estimation techniques [61]. Apart from LQR,

[62] managed to control a real vehicle to autonomously drift along a constant-radius tra-

jectory through lookahead error regulation and novel feedback control law for sideslip

stabilisation. The experimental results demonstrated high robustness and good overall

performance in terms of path tracking and drifting stabilisation.

Goh et al. developed a controller for autonomous drifting control [63]. The controller was

supposed to track a circle path at high side slip angle around 45 degrees, while maintain

vehicle stability. The work was extended in [64], where the proposed control strategy was

capable of autonomous drifting along a complex path. Zhang et al. proposed a motion

control strategy which could track the reference drifting trajectory provided by a higher

level path planning algorithm. The control algorithm was implemented on a RC car, and

validated in the experiments.

In recent years, neural network based reinforcement learning approaches have been de-

veloped and used in academia for autonomous vehicle control at the limits of handling.
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[Williams2017] introduced an information theoretic MPC algorithm for aggressive driv-

ing control on an off-road track. In this study, multi-layer neural networks were used as

the system dynamics model utilised for the MPC formulation, and the experiment tests

showed that the 1/5 scale rally car was able to carry out extreme manoeuvres on the off-

road track with loose friction and significant disturbance. [Acosta20181] presented an

autonomous drifting controller as well based on a data-based neural network approach.

In this work, autonomous drifting was achieved through MPC combined with feedfor-

ward neural network structure, and the structure was trained using the data obtained from

driver-in-the-loop simulation. It was impressive that with this approach, autonomous

drifting could be achieved even without any tyre-road friction information, as the con-

troller was provided with a vehicle state database containing the required drifting equi-

librium. The application of neural networks ccan satisfy the requirement of high-fidelity

system model to some extent, but one of the most disadvantage of this approach is that

the controller requires initial training specific to scenarios and manoeuvres, which reduces

the flexibility of controller for different scenarios. In addition, [Di2021] also mentioned

that this kind of approaches could lead to unstable behaviour of vehicles.

2.4 Multi-Actuation Control of Autonomous Vehicles

2.4.1 Torque Vectoring

To achieve the desired yaw rate is a key criterion to identify the performance of vehicle

stability and path tracking purpose. In the previous review of the literature, most studies

used only front steering for yaw control. In addition to DYC as well as active FWS

control, techniques like torque vectoring (TV) have been extensively discussed in the

literature for vehicle control. Typically, TV refers to the differential technique which

varies the torque delivered on each wheel. This makes TV different from the traditional

technology like ESP that is commonly used in the automotive industry. With the rapid
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development of electric vehicles (EVs), the application of independent in-wheel motors

provides a more straightforward realisation of TV.

[Smith2017] analysed the effect of TV on the vehicle handling characteristics in mini-

mum time cornering motion. The results showed that TV was able to compensate for

the load transfer effects during manoeuvres with high longitudinal or lateral acceleration.

Chatzikomis et al. compared a selection of path tracking controllers with and without

the TV functionality, and the results confirmed that TV control could effectively improve

the cornering response at the limits of handling by generating a direct yaw moment to

stabilise the vehicle [65]. Hence, TV has been applied in several studies for the develop-

ment of driver assist systems, aiming to improve the vehicle performance and guarantee

consistently safe and stable cornering response [66, 67, 68]. In [Siampis2015], an MPC

control architecture was proposed for electric vehicle stabilisation near the limits of han-

dling. In this study, TV technique was applied on the rear axle with the use of individual

wheel motors. The study demonstrated that TV could significantly improve vehicle sta-

bility by compensating the insufficient yaw moment required to negotiate the turn. In

[67], a TV control algorithm was presented for electric cars with independent wheel drive

as well. Based on MPC with a nonlinear vehicle model, the controller aimed to iden-

tify the optimal independent torque to be applied on each wheel that helped to achieve

the required yaw motion according to the steering input. Simulation results showed that

the proposed approach successfully achieved the target with the application of TV. Miku-

las et al developed two TV control algorithms for a Formula Student electric racing car.

Both controllers were based on MPC, one was LTV while the other was nonlinear. It was

addressed that the application of TV could stabilise the vehicle near the limits of han-

dling and achieve a smaller turning radius compared to the formulation with equal torque

distribution at the same condition.

Given the improvement in vehicle stabilisation by TV, there is no doubt that AGV control

can benefit from the multi-actuation formulation, referring to the integration of TV and
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steering. Shim et al. developed an active steering and wheel torque controller based

on MPC [69]. The higher level motion planner generated the reference trajectory in the

form of double lane change manoeuvre to avoid collision with obstacles, and the path

tracking controller aimed to track the generated path. Simulation results suggested the

effectiveness of the proposed controller with robustness to changing obstacles. Guo et

al. presented a real-time implementable path tracking controller based on MPC [70].

The controller applied an LTV system and was in the hierarchical structure, with the

upper level determining the FWS angle as well as required yaw moment, and the lower

level achieving that requirement through control allocation. Acosta et al. proposed a

multi-actuation controller based on nonlinear vehicle and tyre models for autonomous

drift control [71]. The work demonstrated the potential of combined FWS and TV to

exploit the vehicle’s dynamical capability. However, path tracking was excluded from the

MPC strategy, and was carried out by a PID controller, which meant that the vehicle might

not be able to follow complex path properly. In addition, the controller might not be able

to be implemented in real-time. Ni et al. proposed a control strategy for path tracking

of an AGV with TV functionality [72]. Within the control algorithm, a feedforward-

feedback controller was developed to identify the required steering angle for the desired

path, and a yaw moment controller based on SMC was used to prevent the vehicle from

losing stability at the handling limits.

[Acosta2018] introduced a hierarchical autonomous drift control system to fully exploit

the dynamical capability of a multi-actuated ground vehicle. The high-level controller in-

cluded a path following controller and a drift reference generator, and the low-level con-

troller utilises MPC to identify the optimal steering input and optimal torque on individual

wheels to satisfy the vehicle state reference. The control performance was evaluated in

simulation, and it was shown that with the controller, the vehicle was able to drift along

tight paths while maintaining stability at high side slip angles.
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2.4.2 Rear Wheel Steering

In addition to the FWS control, RWS has also been introduced to the industry. After its

commercial debut in 1985 on the Nissan R31 Skyline [73], RWS has been expanded for

application among various manufacturers. One of the advantages to apply RWS is that

it can improve the manoeuvrability of vehicles. It has been stated that a vehicle with

4WS system can achieve a significantly smaller turning radius - 21% smaller compared

to a vehicle with FWS only [74]. Thus, RWS has been widely used in large engineer-

ing vehicles. For instance, electrohydraulic rear axle steering systems have been applied

for agricultural vehicles [75]. Furthermore, RWS can also improve the stability and dy-

namical response of vehicles. At high speeds, RWS can actively reduce the over-steering

condition by applying a steering on rear wheels in the same direction as the front ones

[74]. This is typically realised with a controller dependent on forward velocity mapping

[73]. Due to the increased complexity in chassis structure, nowadays the RWS technique

tends to be available more often in high-end sports cars such as Ferrari F12TDF, Lam-

borghini Urus, BMW 850 CSi, Porsche 911 GT3 and so forth, while there are normally

several degrees available in the turning of rear wheels.

The effect of RWS has been extensively researched in the academia. Alexandru devel-

oped a mechanical integral steering system focusing on rear wheels, and the dynamical

analysis showed that the application of RWS could significantly reduce body oscillation

and improve stability during a single lane change manoeuvre at high speed [76]. Li et al.

proposed a hierarchical control strategy which integrated direct yaw moment and active

rear steering to enhance vehicle stability [77]. Sliding mode control was utilized to gen-

erate the required yaw moment and rear steering commands. The controller was proven

effect in simulation as the stability as well as handling performance of the vehicle were

improved in both slalom and double lane change manoeuvres. Zhang et al. proposed

a pulsed active rear steering strategy which aimed to prevent sport utility vehicles from

rolling over [78]. Instead of a constant rear steering angle, a pulsed angle was applied
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regarding to the front steering angle provided by the driver, and the pulsation was based

on a rollover coefficient regarding to the load transfer on left and right wheels. The con-

troller was implemented in practical testing, and it proved that the proposed controller

was able to stabilise the vehicle at extreme conditions. The work was extended in [79],

where the pulse active rear steering system was applied for vehicle yaw stability control.

In [39], it was concluded that the introduction of RWS were beneficial to vehicle control

by reducing turning radius at low speed, enhancing handling at high speed and improving

path tracking performance. He et al. proposed an H infinity coordination control scheme

based on active front and rear steering to improve the lateral motion control performance

of autonomous vehicle at the limits of handling [80].

Given the advantage of RWS in vehicle stabilisation as well as flexibility improvement,

RWS has also been utilised for the purpose of path tracking. [Hang2021] proposed a 4WS

controller for the path tracking purpose of an AGV. Taking advantage of LQR and a linear

parameter variant system model, the vehicle was able to track the desired path aiming

minimum lateral and heading error. Good robustness was achieved under different road

friction condition. Zhang et al. proposed a path tracking control strategy for active rear

steering vehicles assisting the driver’s FWS commands for tracking a desired trajectory

[81]. MPC was applied for the control design, and the work demonstrated that including

RWS could significantly improve the tracking performance and reduce the workloads on

the FWS.

By combining TV and RWS can give vehicle more flexibility and potential to stay sta-

bility. In [44], a path tracking controller for four-wheel drive (4WD) and 4WS vehicles

was developed. The controller was based on linear vehicle and tyre models, and a sim-

ilar hierarchical structure. The disadvantage of such formulation was the exclusion of

steering from control allocation, leading to suboptimality in the results. What’s more, as

the higher levels were based on linear system, it was hard to guarantee feasibility, espe-

cially in extreme conditions. This could hinder the vehicle from operating at the limits
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of handling. To the best of the author’s knowledge, there has been less work on the over

actuation formulation combining TV and RWS in control authority for the path tracking

purpose, which is the novelty of this thesis.

2.5 Summary

According to the literature, there has been numerous research work done for autonomous

vehicle control. Among the various control methods used for path tracking, MPC is the

most outstanding approach. Based on a good knowledge of the system dynamics, MPC

is able to improve path tracking performance as well as system stability. Furthermore, It

is compatible with complicated system dynamics and constraints, which makes MPC the

most suitable approach for this research. However, despite the advantages of MPC, the

application of a complicated formulation can lead to high computational burden, which

makes it more difficult for MPC compared with other control methods to be implemented

in real time.

In regards to vehicle control at the limits of handling, work has been done on vehicle sta-

bility control as well as aggressive autonomous driving. It is shown that vehicle control

at the limits of handling raises critical requirement on taking into account the physical

limitations of vehicle dynamics, and thus MPC has again shown its advantage in limits of

handling control. Furthermore, the application of multi actuation can extend the dynami-

cal capability of vehicles, and enhance the performance at extreme conditions. It has been

studied that techniques like TV can help to achieve the desired yaw motion while stabil-

ising the vehicle at its handling limits by manipulating the driving torque on each wheel

individually. Besides, the introduction of RWS can also improve the flexibility and sta-

bility of the vehicle. These techniques have been developed and applied in academia and

the industry, but according to the literature review, less work has been done on integrat-

ing both TV and RWS in an over actuation formulation for autonomous vehicle control,



26 CHAPTER 2. LITERATURE REVIEW

especially for real-time operation at the limits of handling, which defines the novelty of

this thesis.

Aiming at the research gap, this thesis proposes a control strategy for autonomous vehi-

cles at the limits of handling. The control strategy aims to exploit the entire dynamical

capability of the multi actuation formulation with TV and 4WS, to reach the limits of han-

dling. The controller is able to take into account the physical limitations of the vehicle,

and to be implemented in real time.



Chapter 3

Vehicle Dynamics Modelling

3.1 Introduction

This chapter introduces the modelling of vehicle dynamics and tyre force for the devel-

opment of the optimal path tracking control strategy, followed by the methodology of

reference generation on vehicle states and position for the controller.

Figure 3.1: Actuator topology of the case study vehicle. M1. M2 and M3 refers to the
three motors installed on the vehicle. D refers to the differential system through which
M1 drives the front axle of the vehicle.

As mentioned in Chapter 1, the autonomous vehicle control algorithm developed in this

research is supposed to be implemented on a vehicle platform. The platform is provided

by Delta Motorsport, which is a company being expert at battery systems and platform

27
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master control. The platform has got in-wheel hub motors on each of the rear wheels,

while the front wheels are driven by a third motor through the differential system. With the

individual rear motors, TV can be carried out for enhanced performance. Furthermore, the

platform is equipped with 4WS capability, which improved the flexibility of the platform

as well. Figure 3.1 shows the actuation topology of the platform, and more details of the

platform are introduced in Chapter 7.

3.2 Vehicle Modelling

Figure 3.2 shows the coordinate frame in which the equations of motion (EOM) are ex-

pressed. It is called ”intermediate axis system” [82], which is a local coordinate system

that originates at the vehicle’s COG. As a common practice to reduce inconsequential

system complexity, the following assumptions are made:

Figure 3.2: Intermediate coordinate frame.

• The vehicle travels on a horizontal plane,

• the pitch, roll and heave motion are neglected,

• the Ackerman Principle is neglected, namely the front wheels or rear wheels steers

with the same angle,

• the wheel dynamics are neglected,
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• the camber angles and toe angles of the wheels are zero,

• the rolling resistance is neglected,

• the aerodynamic force is neglected.

3.2.1 Equations of Motion

A three degree-of-freedom (DOF) nonlinear vehicle model is applied in this research as

the modelling of system dynamics for control design. Compared with vehicle models

including higher degrees of freedom, such as a 7DOF model as used in [60], the 3DOF

model omits less essential information regarding this research such as wheel dynamics,

which reduces the system complexity and benefits real-time implementation of the con-

troller. The EOM is derived with Newton’s Second Law in the longitudinal and lateral

direction of the vehicle’s frame:
max = Σ fx,

may = Σ fy,

(3.1)

where ax and ay refer to the vector components of the vehicle acceleration in longitudinal

and lateral direction, while Σ fx and Σ fy represent the total force applied on the vehicle

in the relative direction. The yaw motion of the vehicle can be described with Euler’s

rotation equations:

Iα = ΣM, (3.2)

where α is the angular acceleration of the vehicle, and ΣM is the total yaw moment

applied on the vehicle. Based on these theorems, the EOM of the two-track vehicle model

are given as follows:

m(V̇x−Vyr) = ( fFLx + fFRx)cosδF − ( fFLy + fFRy)sinδF

+( fRLx + fRRx)cosδR− ( fRLy + fRRy)sinδR

(3.3)
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m(V̇y +Vxr) = ( fFLx + fFRx)sinδF − ( fFLy + fFRy)cosδF

+( fRLx + fRRx)sinδR− ( fRLy + fRRy)cosδR

(3.4)

Izṙ = lF · ( fFLx + fFRx)sinδF + lF · ( fFLy + fFRy)cosδF

−lR · ( fRLx + fRRx)sinδR− lR · ( fRLy + fRRy)cosδR

−wL · ( fFLx cosδF − fFLy sinδF)−wL · ( fRLx cosδR− fFLy sinδR)

+wR · ( fFRx cosδF − fFRy sinδF)+wR · ( fRRx cosδR− fRRy sinδR)

(3.5)

In the above equations, Vx and Vy are the longitudinal and lateral velocity at COG, and r

is the yaw rate. The vehicle’s mass is represented by m, and Iz is the vehicle’s moment

of inertia about the vertical axis through COG. The dimensions of the vehicle are given

by lF and lR, which stand for the distances from COG to the front and rear axle, and by

wL and wR, which stand for the left and right portions of the track width divided by COG.

The longitudinal and lateral tyre forces are denoted by Fi jk (i = F,R, j = L,R, k = x,y).

Finally, δF and δR denotes the steering angles respectively on the front and rear wheels.

Figure 3.3 shows a diagram of the vehicle model.

Figure 3.3: EOM diagram of the case study vehicle.
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3.2.2 Load Transfer

Figure 3.4: Static load distribution.

Figure 3.4 shows the static load distribution on the wheels, which can be calculated as:

f 0
FLz =

mglRwR

(lF + lR)(wL +wR)
, f 0

FRz =
mglRwL

(lF + lR)(wL +wR)
,

f 0
RLz =

mglFwR

(lF + lR)(wL +wR)
, f 0

RRz =
mglFwL

(lF + lR)(wL +wR)
,

(3.6)

where f 0
i jz represents the static load on each tyre. However, the actual tyre load could

differ from the static distribution due to longitudinal and lateral acceleration, which is

called load transfer effect. The difference can be significant during operation at the limits

of handling with large vehicle acceleration, so it is vital to take the load transfer effect in

account. Figure 3.5 shows the dynamic load distribution on the wheels considering load

transfer, and based on the assumptions of a fixed roll axis and a rigid vehicle body, the

change in tyre load can be calculated as:

∆ f x
L =

mhwR

(lF + lR)(wL +wR)
·ax, ∆ f x

R =
mhwL

(lF + lR)(wL +wR)
·ax,

∆ f y
F =

mhlR
(lF + lR)(wL +wR)

·ay, ∆ f y
R =

mhlF
(lF + lR)(wL +wR)

·ay,

(3.7)

where ∆ f x
j and ∆ f y

i represent the change of tyre load due to ax and ay respectively, and h

denotes the height of COG from the ground.
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Figure 3.5: Dynamic load distribution during to longitudinal and lateral acceleration.

As a sum of the static load and the transferred weight. The total vertical load at each

wheel Fi jz are given by:

fFLz = f 0
FLz−∆ f x

L−∆ f y
F , fFRz = f 0

FRz−∆ f x
R +∆ f y

F ,

fRLz = f 0
RLz +∆ f x

L−∆ f y
R, fRRz = f 0

RRz +∆ f x
R +∆ f y

R,

(3.8)

3.2.3 Tyre Model

Vehicle dynamics are significantly impacted by the forces and moments from the tyre-road

contact, and as a result, the handling limits of a vehicle is highly related to the physical

limitations of the available tyre force. Hence, an appropriate tyre force model is crucial

for the operation at the limits of handling.

Assuming that the tyre does not exceed the adhesion limit in the longitudinal direction,

which can be enforced through an appropriate constraint in the controller development,

the wheel rotational dynamics can be neglected. In this case, the longitudinal tyre force is

proportional to the applied driving or braking torque on the wheel. As introduced in the

previous section, the front wheels are driven by a single motor through the differential, it

is assumed that the torque on the front axle is evenly distributed on the two front wheels.

By introducing the three control inputs TF , TRL and TRR, the longitudinal tyre force on
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each wheel can be calculated as follows:

fF jx =
TF/2
Rw

(3.9)

fR jx =
TR j

Rw
(3.10)

The lateral tyre force is related to the slip angle. The slip angle of a tyre is defined as

the angle between the orientation of the tyre and the orientation of the velocity vector of

the wheel [83]. The side slip angles on the front and rear tyres can be calculated by the

following equations. It is assumed that the side slip angles are the same at left and right

tyres.

αF = arctan
Vy + lF · r

Vx
−δF (3.11)

αR = arctan
Vy− lR · r

Vx
−δR (3.12)

And the lateral tyre force on individual wheels can be calculated by the simplified Pace-

jka’s Magic Formula tyre model [84]

fi jy =− fi jz ·Dsin(C arctan(Bαi)) (3.13)

3.2.4 Friction Circle

Assuming that the tyre-road friction coefficient µ is independent of the vertical tyre load,

the total available tyre force can be calculated as:

fi j,max = µ fi jz. (3.14)
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The tyre force on each wheel consists of two vector components in the longitudinal and

lateral direction:

fi j =
√

fi jx
2 + fi jy

2. (3.15)

Figure 3.6: Friction circle.

Figure 3.6 provides a geometric view of Equation 3.15. Given a particular friction coef-

ficient and vertical tyre load, the total available tyre force remains constant. Thus, for a

specific longitudinal tyre force value, the maximum lateral tyre force is specific so that

the total tyre force doesn’t exceed its limitation.

fi jy,max =
√

fi j,max
2− fi jx

2. (3.16)

The limitation is often called friction circle. The friction circle indicates the connection

between longitudinal and lateral tyre force, and thus is an important concept to take in

account for tyre modelling, especially for the limits of handling. Based on this, Equation

3.13 can be reformulated as:

fi jy =− fi jy,max · sin(C arctan(Bαi)) (3.17)
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3.3 Steady-State Reference Generation

In normal practice of MPC control design, when constructing the cost function, penal-

ties are applied directly on the control inputs in order to minimise control efforts from a

perspective of energy saving. However, minimal steering action is not expected in this

research, as the vehicle is supposed to be operating at the limits of handling condition.

Hence, in addition to the target vehicle states including Vx, Vy, r as well as the position

information, references of the steering inputs δF and δR are also provided to the controller.

A bicycle model is used for the reference generation of the steering inputs. Assuming that

the turning radius is much larger than the wheelbase of the vehicle, small angles can be

assumed, and thus the difference between inner and outer wheels can be negligible [85].

A bicycle model can be obtained by representing left and right wheels with a single one,

with a cornering force equivalent to both wheels.

Figure 3.7: Bicycle model.

Figure 3.7 shows a diagram of the bicycle model for reference generation. With the focus

on lateral dynamics only, the EOM are given in the state space form by:

 V̇y

ṙ

=

 − (CF+CR)
mVx

−Vx− (lFCF−lRCR)
mVx

− (lFCF−lRCR)
IzVx

− (lF 2CF+lR2CR)
IzVx

 ·
 Vy

r


+

 CF
m

CR
m

lFCF
Iz

−lRCR
Iz

 ·
 δF

δR

 ,

(3.18)
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where CF and CR are the cornering stiffness of the front and rear tyres respectively. By

assuming a steady-state condition where V̇y and ṙ are zero, Equation 3.18 can be trans-

formed as the following:

 δF,SS

δR,SS

=−

 CF
m

CR
m

lFCF
Iz

−lRCR
Iz


−1

·

 − (CF+CR)
mVx,SS

−Vx,SS− (lFCF−lRCR)
mVx,SS

− (lFCF−lRCR)
IzVx,SS

− (lF 2CF+lR2CR)
IzVx,SS

 ·
 Vy,SS

rSS

 ,

(3.19)

where Vx,SS, Vy,SS and rSS are the steady states of the vehicle according to the references,

while δF,SS and δR,SS are the corresponding steering inputs. With Equation 3.19, refer-

ences of the steering inputs can be calculated given the reference velocity, side slip angle

and yaw rate. Providing such reference inputs to the controller helps to normalise the

variation of steering actions during steady-state condition, and thus aids the stabilisation

of the vehicle.



Chapter 4

MPC Control Formulations

4.1 Introduction

In this chapter, controllers are developed for the purpose of path tracking at the limits of

handling by applying MPC.

MPC doesn’t represent a specific control strategy, instead it refers to a wide variety of

control methods that make explicit use of a system model for control development [34].

The basic idea of MPC, is to take advantage of a dynamic model to predict system states,

and obtain the optimal control action by minimising an objective function. Figure 4.1

shows a scheme of discrete MPC. At current time k, the system state is measured. The

future system state within a prediction horizon is then predicted based on the system

dynamic model, the measurement state and predicted control input. In this procedure,

different control inputs are attempted to find out the one leading to the most ideal output

prediction. Once the series of control actions are determined for this time step, only the

first control input will be applied to the system. After that, another measurement will be

taken on the system states and the procedure will be repeated at next time k+1.

Different with the optimal control methods such as LQR, which normally solve a QP

37
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Figure 4.1: Scheme of discrete MPC principle.

problem in an infinite time domain, MPC carries out optimisation within a finite time

domain. The prediction horizon of MPC rolls ahead along with MPC works in so called a

receding horizon, and this is why MPC is also called receding horizon control. Working in

the receding horizon allows MPC to effectively respond to the change of system condition

or to external disturbance, which improves the system robustness.

Another great advantage of MPC compared with classic control and optimal control meth-

ods like PID, LQR, sliding mode control and so on, is that it is able to take into account the

constraints, even the complicated ones can be dealt with properly. This helps to include

the limitation of actuators and vehicle to ensure that the control commands are feasible

and suitable.

According to the principle of MPC shown above, it is obvious that the dynamic model

plays an important role in the MPC control. It determines the precision of the prediction

of system behaviour within the horizon, and thus have a great impact on the final control

performance. However, a high fidelity model often means high complexity, which could

lead to potential long computation time. In order to realise real-time control, it is critical

to find a balance between control performance and computation time.

The vehicle and tyre model discussed in Chapter 4 is used as the internal model for MPC
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controller design. Two MPC controllers are developed and discussed in this chapter and

the difference lays in the fact that they apply different road models in the formulation for

path tracking. One controller uses Cartesian Coordinate system, while the other controller

applies so called ”curvilinear coordinate system” which cares more about the relative

position of the vehicle with regards to the reference path. The control performance of the

two controllers are compared to see which is more suitable for the dynamic model used

and for the specific path tracking purpose.

4.2 Cartesian Coordinate Formulation

For the path tracking purpose, it is fundamental to include the vehicle position in the

model. In this section, global coordinates are used to identify the vehicle position. This is

a straightforward formulation as the required position information can be easily obtained

from localisation technology like GPS sensors. The derivatives of the vehicle position as

well as yaw angle Ψ can be calculated as:

Ẋ =Vx cos(Ψ)−Vy sin(Ψ) (4.1)

Ẏ =Vx sin(Ψ)+Vy cos(Ψ) (4.2)

Ψ̇ = r (4.3)

The nonlinear continuous-time system can be described as:

ẋt = f c(xt , ut), (4.4)

where xt stands for the state vector [Vx,Vy,r,X ,Y,Ψ]T and u refers to the control input
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vector [δF ,δR,TF ,TRL,TRR]
T .

The controller development is based on NMPC, and is realised in the sampled-data frame-

work by discretizing the nonlinear continuous-time system with explicit Runge-Kutta 4th

order method. The main purpose of the controller is to follow the reference path at the

reference velocity, and the discrete NMPC problem is formulated as

min
x,u

N−1

∑
k=0

(xk+1− xre f ,k+1)
T Q(xk+1− xre f ,k+1)+(uk−ure f ,k)

T R(uk−ure f ,k)

st. x0 = xinitial

xk+1 = fd(xk,uk),k = 0, · · · ,N−1

xmin,k ≤ xk ≤ xmax,k,k = 0, · · · ,N−1

umin,k ≤ uk ≤ umax,k,k = 0, · · · ,N−1

(4.5)

where N is the prediction horizon steps, and Q, R are the weighting matrices of the state

and control input vectors respectively. fd represents the discrete-time system derived from

fc.

The reference states are calculated with the bicycle model introduced in Chapter 3, ac-

cording to the actual vehicle status. The reference path is parametrised by the arc length

S along the path from the origin point, where S ∈ [0,L] and L is the total length of the

path. With this parameterisation, the position Xre f (S), Yre f (S) of any point on the refer-

ence path can be obtained by carrying out spline interpolation according to the argument

S. In addition, the tangential angle of the path at the point can be obtained as

Ψre f (S) = arctan
∂Yre f (S)
∂Xre f (S)

, (4.6)

and it is used as the reference yaw angle of the vehicle. This parameterisation takes advan-

tage of the known waypoints on the reference path and provides an accurate interpolation

within them [59].



4.2. CARTESIAN COORDINATE FORMULATION 41

For path tracking purpose, the relative position of the vehicle with regards to the reference

path is required. Point Xre f (S0),Yre f (S0)) is proposed as the projection of the vehicle

position on the reference path, and S0 can be obtained by solving the optimisation problem

S0 = min
S

[X−Xre f (S)]2 +[Y −Yre f (S)]2. (4.7)

S0 can be used to denote the progress of the vehicle along the reference path, and the

distance between the vehicle and this projection point refers to the lateral deviation of the

vehicle from the path.

For the discrete objective function, a total of N waypoints are required to generate Zre f .

The waypoints are supposed to follow the projection point (Xre f (S0),Yre f (S0)), with an

interval of ∆S,

∆S =Vre f · ts, (4.8)

Figure 4.2: Diagram of the reference waypoints. The red point represents the vehicle’s
position, and the green point stands for the projection of vehicle position on the reference
path. The interval of the waypoints ∆S = Vre f ts, where Vre f is the reference velocity and
ts is the sampling time of the controller.

where Vre f is the reference velocity and ts is the sampling time of the discrete-time system.

Figure 4.2 shows a diagram of the generated waypoints based on the vehicle’s position, the

projection waypoint and the reference velocity. The reference Cartesian coordinates and

yaw angle are then evaluated by carrying out spline interpolation based on the argument S.

In order to reduce the computation time, the solving of this optimisation problem is carried
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out in a ”local” range, which means only the points within a specific range are included

in the problem, and the range is supposed to be within a short distance proportional to

velocity to the vehicle’s last position. This could massively increase the efficiency of

localisation while maintaining accurate solution under assumption that the vehicle does

not deviated far from the reference path.

4.3 Curvilinear Coordinate Formulation

Another way to identify the vehicle position, is to translate it as the relative position with

regards to the reference path, which is exactly what a curvilinear coordinate system does.

Figure 4.3 shows a diagram of the curvilinear coordinate system used in this formulation.

Similar to the Cartesian coordinate system introduced in the last section, this also requires

three degrees of freedom to describe the vehicle position. It interprets the vehicle position

into S, εy and εΨ, where S refers to the distance that the vehicle has travelled along the

reference path, εy indicates the lateral deviation of the vehicle from the reference path,

which can also be identified as the tracking error, and εΨ is the difference between the

vehicle’s yaw angle and the tangent of the reference path at projected point of the vehicle’s

position on the path.

Figure 4.3: Diagram of the curvilinear coordinate system used in the control system.
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The derivatives of the curvilinear coordinates can be calculated with Equation 4.9:

Ṡ =
Vx cos(εΨ)−Vy sin(εΨ)

1−κεy

ε̇y =Vx sin(εΨ)+Vy cos(εΨ)

ε̇Ψ =r−κ Ṡ

(4.9)

The nonlinear continuous-time system can be described again by Equation 4.4, with the

state vector xt replaced by [Vx,Vy,r,S,εy,εΨ]
T , while the control input vector u remains

the same as [δF ,δR,TF ,TRL,TRR]
T . The discrete NMPC problem can be constructed in the

same formulation as given by Equation 4.5.

Figure 4.4 shows the diagram of the complete control algorithm. The parameterisation of

the desired path is completed offline prior to the simulation. Since there is a QP problem

within the NMPC formulation to be solved, a solver is required. Due to the target of

applying the controller in real-time operation, it is necessary to ensure that the solver

is able to solve the QP problem in short time as well as to provide the correct optimal

solution. In this project, the NMPC solver is built with a tool called Forces Pro [86,

87], which can generate fast executable optimisation solvers based on highly customised

optimisation problem.

4.4 Simulation Results

This section demonstrates the simulation results of the vehicle’s path tracking perfor-

mance with different control formulation and configurations. The main purpose of the

controller is to track a reference path at a reference velocity. First the controllers with Car-

tisian coordinate formulation (CTSNF) and curvilinear coordinate formulation (CVLRF)

are compared in two scenarios, including a double lane change and a double U-turn. Then

the control performance is further investigated to evaluate the effect of steady-state refer-
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Figure 4.4: Diagram of the control system.
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ence (SSR). The simulation is carried out within IPG CarMaker, which is a software that

provides high fidelity vehicle dynamics simulation. The simulation sessions are run on a

workstation laptop, and its specification can be found in Appendix D. In the simulation,

a good tyre-road friction is assumed (µ = 1.16), while the parameters of the vehicle are

listed in Appendix A.

4.4.1 Comparison of Different Path Tracking Formulation

Double Lane Change Scenario

The two controllers with different path tracking formulations are first evaluated in a dou-

ble lane change manoeuvre. This is a common manoeuvre in daily driving for overtaking

and obstacle avoidance, and thus is widely used in automotive industry for testing vehicle

dynamics and handling response. A reference path is designed according to the dimen-

sions of the double lane-change track defined in ISO 3888-1-2018, the detailed layout of

which can be found in Appendix B.2. The vehicle is expected to track a constant reference

velocity throughout the double lane change manoeuvre. The purpose of the simulation is

to find out the maximum entry speed allowed by both controllers to carry out a qualified

double lane change. Here a qualified double lane change is defined as tracking the refer-

ence path within an lateral tracking error of 0.3m at the exit of the double lane change.

Given the track width as well as the vehicle dimension, the 0.3m limitation would guar-

antee that the vehicle won’t hit the boundary of the track.

Figure 4.5 shows the states of the vehicle during the double lane change manoeuvre under

both control formulations. According to the simulation, the CVLRF controller was able to

maintain the vehicle within the 0.3m lateral error at 49.2 m/s, while the CTSNF controller

manages to maintain the lateral error within 0.3m at the velocity up to 50.0 m/s, which is

shown in Figure 4.5c. Figure 4.5a shows the trajectory of the vehicle and in Figure 4.5b,

it can be seen that the vehicle has reached the acceleration limit, indicating the limits of
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 4.5: Vehicle states in the double lane change scenario with CVLRF and CTSNF
controllers.
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(a) Steering commands (b) Steering commands

(c) Front wheel torque commands (d) Front wheel torque commands

(e) Rear wheel torque commands (f) Rear wheel torque commands

Figure 4.6: Control commands in the double lane change scenario with CVLRF and CT-
SNF controllers.
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Table 4.1: Summary of path-tracking performance of CVLRF and CTSNF controllers in
the double lane change scenario.

CVLRF CTSNF

Max V (m/s) 49.2 50.0

RMS εy (m) 0.162 0.182

Max |εy| (m) 0.483 0.478

Average tsolve (s) 0.033 0.029

Max tsolve (s) 0.055 0.060

handling.

Table 4.1 shows a summary of some key performance indicators of path-tracking perfor-

mance with CVLRF and CTSNF controllers in the double lane change scenario. It can

be seen that the CTSNF controller is able to reach higher velocity and maintain smaller

lateral tracking error while taking lower computation time, but the advantage is not sig-

nificant. On the other hand, the maximum computation time of the CTSNF controller is

actually higher than the CVLRF controller, suggesting that optimisation on the formula-

tion is required on the CTSNF controller for more consistent performance.

Double U-turn Scenario

The performance of the two formulations are tested in a double U-turn scenario as well.

The reference path has two semicircle turns with the same radius of 10m, and two straights

on the beginning and end of the double U-turn. A diagram of the reference path is shown

in the Appendix B.1. Different from the double lane change scenario, the double U-turn

track has in-continuous curvature profile, which could be a challenge for the controllers

to track the path with minimum error. A reference velocity of 10m/s is provided to both

controllers for path tracking, and their performance is then compared. A particular focus

is put on the vehicle stability as well as tracking performance at the joining point of the

two semicircle turning course, where the maximal change of curvature takes place.
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In the simulation, the vehicle reaches its handling limits again with both controllers, as

demonstrated by Figure 4.7b. It can be noticed that the vehicle’s acceleration is deviated

more from the lateral direction with the CVLRF controller. Figure 4.7c shows the velocity

of the vehicle, and it can be seen that a drop of velocity happens with the CVLRF con-

troller in midway of the path, where the harsh change of direction happens. In contrast,

the CTSNF controller is able to track the reference velocity with a maximal deviation

of 0.2 m/s, which is much better than the 0.7 m/s deviation with the CVLRF controller.

As shown in Figure 4.7d, the CVLRF controller achieves smaller sideslip angle than the

CTSNF, while in Figure 4.7e, the yaw rate of the vehicle is smoother with the CTSNF

controller.

In terms of the path tracking performance, Figure 4.7f shows the lateral tracking error

of the vehicle with both controllers. The CTSNF controller is able to maintain the lateral

tracking error within 0.12 m over the entire path, while a larger error up to 0.43 m happens

with the CVLRF controller. Together with Figure 4.7a showing the vehicle trajectory, it

can be told that the drawback of path tracking performance with the CVLRF controller

happens right after the change of direction in the midway of the double U-turn path. The

CVLRF doesn’t respond promptly enough to the direction change, leading to a larger

deviation from the reference path.

Figure 4.8 shows the control commands from both controllers during the double U-turn

scenario. From Figure 4.8a and Figure 4.8b it can be seen that opposite front and rear

steering angles are commanded by both controllers during the turning. The system

Table 4.2 shows a summary of the path-tracking performance of both CVLRF and CTSNF

controllers in the double U-turn scenario. Here εV refers to the tracking error of veloc-

ity. In the double U-turn scenario, the CTSNF controller has shown its advantage over

the CVLRF controller, with obviously smaller tracking error of both reference velocity

and path. The average computation time of the CTSNF controller is also lower than the

CVLRF controller, while the maximum value is still higher.
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 4.7: Vehicle states in the double U-turn scenario.
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(a) Steering commands of CVLRF controller. (b) Steering commands of CTSNF controller.

(c) Front wheel torque commands of CVLRF
controller.

(d) Front wheel torque commands of CTSNF
controller.

(e) Rear wheel torque commands of CVLRF
controller.

(f) Rear wheel torque commands of CVLRF
controller

Figure 4.8: Control commands in the double U-turn scenario.
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Table 4.2: Summary of path-tracking performance of CVLRF and CTSNF controller in
the double U-turn scenario.

CVLRF CTSNF

RMS εV (m/s) 0.251 0.139

Max |εV | (m/s) 0.698 0.206

RMS εy (m) 0.117 0.040

Max |εy| (m) 0.432 0.120

Average tsolve (s) 0.033 0.029

Max tsolve (m) 0.056 0.060

4.4.2 Evaluation of the Steady-State Reference

The effect of the steady-state reference on the path tracking performance is also evaluated.

The steady-state reference is removed from the MPC formulation, and the performance is

compared with the CTSNF controller in the double U-turn scenario.

It can be told from Figure 4.9a and Figure 4.9f that without the SSR, The control perfor-

mance of the CTSNF controller is worse. More oscillations can be observed during the

entire tracking course. The velocity of the vehicle is shown in Figure 4.9c, and it can be

seen that the CTSNF controller without SSR fails to track the reference velocity as good

as the formulation including SSR. Similar circumstances are reflected in Figure 4.9d and

Figure 4.9e, where oscillation takes place in the side slip angle as well as yaw rate of the

vehicle.

The drawback in control performance without SSR is also reflected in the control com-

mands shown in Figure 4.11. The rear wheel steering angle fluctuates significantly during

turning without SSR, while with SSR the steering commands are much smoother. With

regards to the torque commands, oscillation can also be noticed without SSR.

Figure 4.11 shows the computation information of the Forces Pro solvers during sim-

ulation. It can be seen in Figure 4.11a that exitflag other than 1 takes place without the
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 4.9: Vehicle States in U-turn
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(a) Steering commands of CTSNF controller
without SSR.

(b) Steering commands of CTSNF controller.

(c) Front wheel torque commands of CTSNF
controller without SSR.

(d) Front wheel torque commands of CTSNF
controller.

(e) Rear wheel torque commands of CTSNF
controller withoutSSR.

(f) Rear wheel torque commands of CTSNF
controller without SSR.

Figure 4.10: Control commands in double-U-turn.

(a) Exitflag. (b) Solve time.

Figure 4.11: Forces Pro solver information.
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introduction of SSR, indicating that the solver fails to find he optimal solution of the MPC

problem. In addition, the solve time of the controller without SSR cannot maintain at low

level. From time to time the solve time is dramatically high, indicating that the solver

is struggling with the optimisation problem. This shows that the application of SSR in

the formulation helps the solver the find out optimal solutions more quickly, and thus

contributes to improving the robustness and performance of the system.

4.5 Summary

In this chapter, two controllers are proposed based on MPC and different coordinate sys-

tem formulation for path tracking. The MPC strategies are based on the 3DOF two-track

vehicle model introduced in the previous chapter. The cost functions for both controllers

are constructed aiming for minimising the path tracking error, while taking as reference

the steady-state condition obtained by a bicycle model.

The controllers are tested in the simulation. Two different scenarios are used to validate

the control performance, and both controllers have shown their capability in path tracking

control at the limits of handling. In the double lane change scenario, the CTSNF controller

is able to achieve higher speed up to 50 m/s while maintaining the lateral tracking error

within the safety margin of 0.3 m. In comparison, the CVLRF controller reaches 49.2 m/s

to guarantee the similar tracking error.

In the double U-turn scenario, the CTSNF provides better performance than the CVLRF

controller upon the harsh change of direction in midway of the path. When the dirction

change is required, the CTSNF controller manages to maintain the vehicle’s velocity close

to the reference, while a drop of velocity can be noticed with CVLRF controller. At the

same time, the CTSNF controller also does a better job than the CVLRF controller in

minimising the lateral tracking error. In addition, there is less oscillation in the yaw rate

of the vehicle with the CTSNF controller. By studying the control commands from the
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controllers, both controllers command opposite front and rear steering during turning. TV

is applied by both controllers in response of the rapid change of direction, where a large

yaw moment is required in order to prevent the vehicle from deviating from the reference

path by a large error.

The CTSNF controller takes less time on average than the CVLRF controller during op-

eration, which is critical for real time implementation. However, both controllers take

longer time for execution than the sampling time, so further optimisation is required in

order to implement them in real time.

More simulation has been carried out of the CTSNF controller to evaluate its performance

without and without SSR. It is proven that the application of SSR can significantly im-

prove the system stability as well as path tracking performance.

According to the simulation, the CTSNF controller stands out in terms of the path tracking

performance. However, it cannot be concluded that the CVLRF controller is worse than

the CTSNF controller. The performance of the CVLRF controller may be improved by

further tuning the parameters or modification on the formulation. Based on the current

configuration, the CTSNF provides a better performance, and thus is more suitable for

this research. Hence, it is applied and will be further studied in the following parts of this

thesis.



Chapter 5

Path Tracking Control with Different

Levels of Actuation

5.1 Introduction

In this chapter, the effect of the application of multi-actuation on the performance of

autonomous vehicle control is evaluated. Four controllers based on different level of

actuation are proposed, including front-wheel steering only (FWS), four-wheel steering

(4WS), front-wheel steering with TV (FWS-TV) and four-wheel steering with TV (4WS-

TV). They are tested in the double U-turn as well as double lane change scenario, and the

control performance is compared.

5.2 Formulation of Different Levels of Actuation

With regards to the actuation configuration, there are four formulations to be investigated,

including FWS, FWS-TV, 4WS and 4WS-TV. For the FWS and FWS-TV formulations,

the RWS is not supposed to be included in the functionality, and thus remains zero. For the

57
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Table 5.1: System Configuration of the Controllers

Controller Steering Driving Torque

FWS FWS only Same on each wheel

FWS-TV FWS only TV applied on rear wheels

4WS FWS+RWS Same on each wheel

4WS-TV FWS+RWS TV applied on rear wheels

FWS and 4WS formulations, it is assumed that the driving torque delivered on each wheel

equals the same, which means the torque from the three motors have the relationship:

TF

2
= TRL = TRR = Tw, (5.1)

where Tw is the actual control input in the FWS and 4WS formulations. Table 5.1 shows

the actuation configuration of each formulation, and the control input vector U of each of

them is shown as follows,

uFWS = [δF ,Tw]
T

u4WS = [δF ,δR,Tw]
T

uFWS−TV = [δF ,TF ,TRL,TRR]
T

u4WS−TV = [δF ,δR,TF ,TRL,TRR]
T

(5.2)

5.3 Simulation Results

In this section, the simulation results of the path tracking performance with the four con-

trollers are demonstrated. The controllers are tested in two scenarios, double U-turn and

double lane change.
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5.3.1 Double Lane Change Scenario

The four controllers are tested in the double lane scenario first. The reference velocity

for each controller keeps increasing by 0.1m/s until the lateral deviation on exit exceeds

0.3m.

Figure 5.1c shows the highest velocity that each controller can achieve during the simu-

lation. The FWS controller can only carry out the double lane change manoeuvre up to

44.6m/s, while the FWS-TV controller handles the same task up to 46.3m/s. The 4WS

and 4WS-TV controllers are able to achieve higher velocity, with the former up to 48.1

m/s and the latter up to 50m/s. Looking into Figure 5.1d and Figure 5.1e, it can be seen

that the two controllers with rear steering helps the vehicle to pass the double lane change

course with smaller side slip angle as well as smaller yaw rate.

Figure 5.2 shows the commands of the four controllers during the double lane change.

It can be seen that there is again quite a few oscillation in the commands of the FWS

controller. In terms of the steering commands, it is noticed that both 4WS and 4WS-TV

controllers requires front and rear steering in the same direction, so that less tyre force in

the lateral direction is required for the lateral motion of the vehicle.

Figure 5.3b shows the computation time costed by the four controllers, which is generally

similar as the results in the double U-turn scenario. The FWS controller requires generally

the shortest time for computation, while it takes the most time for the 4WS-TV controller

to operate. All of the four controllers take longer time than the sampling time of 0.02 s for

computation, which means that none of them can be directly implemented in real time,

and further simplification is required for doing so.

Table 5.2 shows a summary of the path-tracking performance with different levels of

actuation in the double lane change scenario.
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 5.1: Vehicle States in double lane change.
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(a) Steering commands of
FWS controller.

(b) Front wheel torque com-
mands of FWS controller.

(c) Rear wheel torque com-
mands of FWS controller.

(d) Steering commands of
4WS controller.

(e) Front wheel torque com-
mands of 4WS controller.

(f) Rear wheel torque com-
mands of 4WS controller.

(g) Steering commands of
FWS-TV controller.

(h) Front wheel torque com-
mands of FWS-TV controller.

(i) Rear wheel torque com-
mands of FWS-TV controller.

(j) Steering commands of
4WS-TV controller.

(k) Front wheel torque com-
mands of 4WS-TV controller.

(l) Rear wheel torque com-
mands of 4WS-TV controller.

Figure 5.2: Control commands in double lane change.



62CHAPTER 5. PATH TRACKING CONTROL WITH DIFFERENT LEVELS OF ACTUATION

(a) Exitflag. (b) Solve time.

Figure 5.3: Forces Pro solver information.

Table 5.2: Summary of path-tracking performance with different levels of actuation in the
double lane change scenario.

FWS 4WS FWS-TV 4WS-TV

Max V (m/s) 44.6 48.1 46.3 50.0

RMS εy (m) 0.119 0.123 0.128 0.182

Max |εy| (m) 0.283 0.291 0.297 0.478

Average tsolve (s) 0.010 0.012 0.026 0.029

Max tsolve (m) 0.028 0.022 0.057 0.060

5.3.2 Double U-turn Scenario

Next, the controllers are tested in the double U-turn scenario. The controllers are sup-

posed to track the reference path at a constant reference velocity which is given as 10m/s.

Figure 5.4b shows the acceleration of the vehicle. It can be seen that the vehicle is quite

close to the friction limit with all the four controllers, indicating the operation at the limits

of handling on the double U-turn path. However, evident oscillation in acceleration can

be observed with the FWS and 4WS controllers. Figure 5.4c shows the velocity tracking

performance of the vehicle. The FWS and 4WS controllers has larger variation in ve-

locity tracking. In comparison, the FWS-TV and 4WS-TV controllers do a better job in

maintaining the velocity during the sharp turn.

Figure 5.4d shows the side slip angle of the vehicle. It can be seen that the vehicle tends

to have a smaller side slip angle with the 4WS and 4WS-TV controllers, while a larger
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side slip angle can be noticed with the other two control formulation without rear steering.

This proves that the introduction of RWS in the control formulation helps to manipulate

the vehicle attitude control, as the cost function includes a reference side slip angle of 0◦.

Figure 5.4e shows the yaw rate of the vehicle, and a larger overshoot can be seen with the

FWS controller after the double U-turns.

The vehicle trajectories are shown in Figure 5.4a. The vehicle deviates significantly from

the reference path with the FWS controller, which shows that the FWS controller is not

able to handle the turning at the extreme condition. The performance of the 4WS con-

troller is acceptable, but its performance gets worse after the change of direction. In

comparison, the FWS-TV and 4WS-TV controllers have achieved better path tracking

performance, especially keeping close to the reference path after the sharp change direc-

tion. Figure 5.4f shows the lateral deviation εy of the vehicle from the reference path

with all four controllers. The vehicle has got the largest lateral deviation up to 3m with

the FWS controller on the double U-turns. The application of either 4WS or TV can

significantly reduce the lateral tracking error, but the utilisation of TV provides a greater

improvement. The 4WS controller has the lateral deviation up to 0.6m, while the FWS-

TV controller maintains the tracking error within 0.15m. Among the four controllers, the

4WS-TV controller achieves the best path tracking performance with the smallest lateral

tracking error. By comparing the FWS-TV and 4WS-TV controllers in particular, it can

be seen that the vehicle has smaller steady-state error during turning, and the error gets

back to zero quicker after the change of direction. This proves the advantage of RWS in

addition to TV for autonomous vehicle path tracking, particularly when close to the limits

of handling. RWS improves the vehicle’s flexibility and potential to deal with emergency

scenarios that require sharp turning.

Figure 5.5 shows the control commands of the controllers. There is large fluctuation in the

commands of the FWS controller, showing that it is quite struggling in the path tracking

control of the vehicle. In terms of the steering commands, both the 4WS and 4WS-
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 5.4: Vehicle States in U-turn
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(a) Steering commands of
FWS controller.

(b) Front wheel torque com-
mands of FWS controller.

(c) Rear wheel torque com-
mands of FWS controller.

(d) Steering commands of
4WS controller.

(e) Front wheel torque com-
mands of 4WS controller.

(f) Rear wheel torque com-
mands of 4WS controller.

(g) Steering commands of
FWS-TV controller.

(h) Front wheel torque com-
mands of FWS-TV controller.

(i) Rear wheel torque com-
mands of FWS-TV controller.

(j) Steering commands of
4WS-TV controller.

(k) Front wheel torque com-
mands of 4WS-TV controller.

(l) Rear wheel torque com-
mands of 4WS-TV controller.

Figure 5.5: Control commands in double-U-turn.
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(a) Exitflag. (b) Solve time.

Figure 5.6: Forces Pro solver information.

TV controllers have front and rear steering angle in opposite direction, so that a large

yaw moment is generated to handle the required yaw rate. In addition, because of the

application of rear steering, they both require less front steering angle than the FWS-TV

controller.

With regards to the torque commands, TV can be observed with both FWS-TV and 4WS-

TV controllers, which generates a yaw moment during the turning and helps to improve

the path tracking performance. Hence, there is less oscillation in the torque commands of

the FWS-TV and 4WS-TV controllers, indicating that TV helps to maintain the vehicle’s

stability by manipulating the wheel torque individually. In addition, by comparing the

FWS-TV and the 4WS-TV controllers, it can be seen than the 4WS-TV controller requires

less torque difference on the rear wheels at the changge of direction. This is because of

the presence of rear steering, which contributes to the vehicle stabilisation.

Figure 5.6a shows the exitflag of the controllers during the simulation. Most of the bad

exitflag comes from the FWS controller, which shows that the required double U-turn

scenario is too challenging for the FWS-only formulation to handle, and explains the

oscillation in the control commands. The 4WS controller is better, but there is still some

bad exitflag at the points with curvature changing. In comparison, the FWS-TV and 4WS-

TV controllers have provided a reliable performance throughout the entire path.

Figure 5.6b shows the computation time of each controller. Here the solve time refers

to the time that FORCES PRO takes to solve the optimisation problem. In general, the
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Table 5.3: Summary of path-tracking performance with different levels of actuation in the
double U-turn scenario.

FWS 4WS FWS-TV 4WS-TV

RMS εV (m/s) 0.244 0.138 0.136 0.139

Max |εV | (m/s) 0.586 0.373 0.213 0.206

RMS εy (m) 1.453 0.229 0.071 0.040

Max |εy| (m) 3.028 0.614 0.158 0.120

Average tsolve (s) 0.010 0.012 0.026 0.029

Max tsolve (m) 0.028 0.022 0.057 0.060

computation time is related to the number of state and control variables in the formulation.

The FWS controller has the shortest computation time, while the 4WS has the second

shortest computation time. Despite the better path tracking performance, the FWS-TV

and 4WS-TV require longer time over 0.02 s on average for computation due to the system

complexity.

Table 5.3 shows a summary of the path-tracking performance with different levels of

actuation in the double U-turn scenario.

5.4 Summary

This chapter compares the path-tracking performance with different levels of actuation

available. By comparing the simulation results of the four controllers in double lane

change and double U-turn scenarios, it is obvious that both 4WS and TV is able to im-

prove the path tracking performance of the vehicle. TV improves the vehicle’s response

and stability in turning by generating a yaw moment directly. In addition to that, 4WS is

able to manipulate the vehicle’s motion with the direction of FWS and RWS angles, thus

the vehicle’s flexibility is increased. The 4WS-TV provides the best path tracking perfor-

mance among the four formulations, but at the same time it requires more computation
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time. Hence, further investigation is required on simplification for real-time operation. In

addition, it is worth mentioning that along with the improved performance brought by the

increased levels of actuation, practical disadvantages such as increased hardware com-

plexity and higher manufacturing cost also arise. Such influence is not taken into account

in this research, but is definitely required to be considered about when the multi-actuation

system is to be adopted in mass production.



Chapter 6

MPC Sampling Time and Horizon for

Real-time Execution

6.1 Introduction

The developed 4WS-TV controller has been validated in the previous simulation and has

proven its capability in the path tracking control as well as stabilisation of autonomous

vehicles. However, due to the system complexity, it takes longer time than the sampling

time for computation, which prevents the controller from being implemented in real time.

In this chapter, the proposed 4WS-TV controller is to be simplified for real time operation

by looking for the most suitable configuration of sampling time and horizon. Once a com-

promise is made between low computational complexity and good control performance,

the controller will be implemented in a real time target machine for practical validation.
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6.2 Changing Control Horizon

First of all, it is tested to reduce the frequency of control actions. This is realised by

increasing the sampling time of the controller, while taking more iterations within the

sampling time to compensate the loss of accuracy in system state estimation. Here the

sampling time is increased from 0.02s to 0.1s, while setting up 5 nodes in the integration

(N5), so that the control action is updated every 0.1s, while the internal integration of

system states is equivalent to the formulation with sampling time of 0.02s (N1).

The performance of the N5 controller is tested in the double U-turn scenario, and com-

pared with the N1 controller. Figure 6.1 shows the vehicle states with the two controllers

during the simulation, and it can be seen that the two controllers have achieved similar

performance in terms of the tracking of velocity and reference path. As expected, there

is drawback in the path tracking performance with the N5 controller, where the N1 con-

troller has smaller lateral tracking error. While on the other hand, it can been seen that

the N5 controller does a slightly better job in tracking the reference velocity. From Figure

6.1a and 6.1f, it can be seen that with a longer control horizon, the N5 controller cannot

respond promptly to rapid changes of curvature, so that the vehicle tends to cut more cor-

ners and to go wide on both of the U-turns, which could lead to a larger turning radius

allowing a higher velocity.

Figure 6.2 shows the control commands of both controllers. Similar control commands

are requested by the two controllers, while there is less torque differential on the rear axle

with the N5 controller.

Figure 6.3 shows the computation time of the two controllers, and it can be seen that the

N5 controller massively reduces the computation burden. The sampling time of the N5

controller is 100ms, and it has a mean computation time of 8.7ms. In comparison, the

N1 controller has a sampling time of 20ms, while it costs around 28.5ms on average for

computation. In order to implement the controller in real time, it is essential to assure
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 6.1: Vehicle States in U-turn
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(a) Steering commands of N1 controller. (b) Steering commands of N5 controller.

(c) Front wheel torque commands of N1 con-
troller.

(d) Front wheel torque commands of N5 con-
troller.

(e) Rear wheel torque commands of N1 con-
troller.

(f) Rear wheel torque commands of N5 con-
troller.

Figure 6.2: Control commands in double-U-turn.

Figure 6.3: Solve time.
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Table 6.1: Summary of path-tracking performance of N1 and N5 controllers in the double
U-turn scenario.

N1 N5

RMS εV (m/s) 0.139 0.105

Max |εV | (m/s) 0.206 0.169

RMS εy (m) 0.040 0.043

Max |εy| (m) 0.120 0.181

Average tsolve (s) 0.029 0.009

Max tsolve (m) 0.060 0.016

that the computation time is consistently below the sampling time, which determines the

frequency that the solver is executed in. Considering about the computation time as well

as sampling time of the two controllers, the N1 controller is not able to be running in real

time, but the N5 controller is supposed to be real-time implementable, which is a signifi-

cant improvement with the modified formulation. What’s more, the control performance

is maintained with the N5 controller. As the result, the further control development is

based on the N5 formulation.

Table 6.1 shows a summary of the path-tracking performance of the N1 and N5 controllers

in the double U-turn scenario.

6.3 Changing Prediction Horizon

Based on the N5 formulation, here different prediction horizon time is attempted to eval-

uate the control performance on the vehicle. The sampling time of the controllers is fixed

to 0.1s with 5 internal integration steps, while the prediction horizon varies from 0.6s to

1.4s.

The controllers are tested in the double U-turn scenario, and the simulation results of

vehicle performance are shown in Figure 6.4. Generally speaking, better path tracking is
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achieved with longer prediction horizon. Largest lateral tracking error takes place with

0.6s prediction horizon, while in comparison, with the longest horizon time of 1.4s, the

lateral tracking error is maintained within 0.15m even at the harsh change of direction.

This proves that longer prediction horizon does help to improve the control performance.

Figure 6.5 shows the control commands of the controllers. Basicly the controller com-

mands are similar among the controllers, but with the shortest prediction horizon of 0.6s,

the controller is not able to plan the manoeuvre well, and thus the control commands are

fluctuating and quite deviated from the other controllers.

On the other hand, longer prediction horizon increases the computational burden. Figure

6.6b shows the computation time of the controllers with different prediction horizon. It

can be seen that a longer prediction horizon leads to longer computation time. The con-

troller with 0.6s horizon has an average computation time of 5.8ms, while the one with

1.4s horizon has an average computation time of 13.0ms. Furthermore, from Figure 6.6a,

it can be seen that there is exitflag other than 1 taking place with the 1.4s horizon, indi-

cating that there is computational error caused by the huge computation led by the long

prediction horizon.

By comparing the control performance under different prediction horizon, it can be seen

that the prediction horizon of 1 s provides the best compromise between performance and

computation time. Thus it is further evaluated with different sampling time in the next

section.

Table 6.2 shows a summary of the path-tracking performance with different prediction

horizon in the double lane change scenario.
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 6.4: Vehicle States in U-turn
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(a) Front steering commands. (b) Rear steering commands.

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 6.5: Control commands in double-U-turn.

(a) Exitflag. (b) Solve time.

Figure 6.6: Forces Pro solver information.
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Table 6.2: Summary of path-tracking performance with different prediction horizon in the
double U-turn scenario.

tp (s) 0.6s 0.8s 1.0 1.2 1.4

RMS εV (m/s) 0.194 0.111 0.090 0.084 0.077

Max |εV | (m/s) 0.281 0.151 0.130 0.127 0.128

RMS εy (m) 0.249 0.063 0.045 0.042 0.038

Max |εy| (m) 0.740 0.196 0.171 0.164 0.151

Average tsolve (s) 0.004 0.007 0.009 0.011 0.013

Max tsolve (s) 0.006 0.010 0.156 0.020 0.024

6.4 Changing Sampling Time

Based on the prediction horizon of 1s, the control performance of the 4WS-TV controller

is then tested with various sampling time from 0.04s to 0.25s. The internal integration is

fixed to 5 steps.

Figure 6.7 shows the vehicle states during simulation. The 0.25s sampling time provides

the worst tracking performance, especially at the end of the double U-turn, dramatic fluc-

tuation can be noticed in the vehicle states. This is because higher sampling time leads

to lower control frequency, which means that the controller is not able to respond to the

quick change in vehicle dynamical condition. In addition, with higher sampling time,

the accuracy of state estimation during the internal process of MPC is reduced. With the

reduction of the sampling time, the steady-state tracking error of velocity reduces, and

generally the lateral tracking error gets smaller.

Figure 6.8 shows the control commands of the controllers with different sampling time.

There is large oscillation in the commands of the controller with 0.25s sampling time,

which is the reason of the fluctuation in vehicle states. It can also be seen that some

deviation takes place with the shortest sampling time of 0.04s.

From Figure 6.9a, it can be seen that some bad exitflag happens with the longest and



78CHAPTER 6. MPC SAMPLING TIME AND HORIZON FOR REAL-TIME EXECUTION

Table 6.3: Summary of path-tracking performance with different sampling time in the
double U-turn scenario.

ts (s) 0.04s 0.05s 0.10 0.20 0.25

RMS εV (m/s) 0.083 0.081 0.090 0.112 0.154

Max |εV | (m/s) 0.135 0.122 0.126 0.155 0.455

RMS εy (m) 0.068 0.051 0.045 0.067 0.132

Max |εy| (m) 0.180 0.169 0.171 0.268 0.452

Average tsolve (s) 0.028 0.020 0.009 0.004 0.003

Max tsolve (m) 0.074 0.026 0.156 0.006 0.004

shortest sampling time, which explains the oscillation in control commands with these

two controllers. Figure 6.9b shows the computation time of the controllers. It can been a

shorter sampling time leads to longer computation time, due to the increased prediction

steps for the solver to compute.

Table 6.3 shows a summary of the path-tracking performance with different sampling time

in the double lane change scenario.

6.5 Summary

In this chapter, the control performance of the proposed 4WS-TV controller is further

evaluated with various sampling time and prediction horizon, to find out the most suitable

configuration of the NMPC formulation for real-time implementation. First of all, it is

tried to reduce the control frequency by increasing the sampling time of the formulation,

while introducing additional integration steps for system state estimation. According to

the simulation, the N5 controller with longer control horizon but equivalent sampling

time for integration achieve similar control performance with the N1 controller, while the

computation time is significantly reduced so that the N5 controller is supposed to be able

to run in real time.
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 6.7: Vehicle States in U-turn
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(a) Front steering commands. (b) Rear steering commands.

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 6.8: Control commands in double-U-turn.

(a) Exitflag. (b) Solve time.

Figure 6.9: Forces Pro solver information.
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Next, the controller is tested based on the N5 formulation with different prediction hori-

zon. It can be seen that in general, better control performance can be achieved with longer

prediction horizon, because a longer prediction horizon helps the controller to better plan

the manoeuvre according to the objectives. However, a longer horizon also leads to longer

computation time due to the additional computational burden. Besides, a few bad exitflag

takes place with the longest prediction horizon of 1.4s, which is probably due to the largest

computational burden on the solver that makes it difficult to find the optimal solution.

The controller is then tested with different sampling time. With the same prediction hori-

zon, a longer sampling time means that less integration steps is carried out during the

same period of time, leading to less accuracy in the estimation of the system states. This

is proven in the simulation, where worse path tracking performance in general is achieved

with the longer sampling time. Given the same prediction horizon of 1s, a sampling time

of 0.25s means that the frequency of the control action is only 4Hz, and thus the con-

troller is not able to respond quickly to the change of condition. On the other hand, longer

sampling time helps to reduce the required computation, which benefits the real-time op-

eration of the controller. The sampling time of 0.04s generates quite much computational

burden as what a long prediction horizon does, but the control performance is not obvi-

ouslt improved. What’s more, the additional computation also makes it more difficult for

the MPC solver to find out the optimal solution, as indicated by the bad exitflag during

simulation.

It needs no be mentioned that the testing vehicle has got a limitation on the fastest con-

trol frequency it can take, as the steering commands can only be updated every 100ms.

According to this as well as all the simulation results in this chapter, the setup with 5 in-

tegration steps within 0.1s sampling time and 1s prediction horizon makes the best com-

promise between control performance and the computation time, and thus will be applied

for implementation in real time for practical testing.
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Chapter 7

Practical Testing

7.1 Introduction

In this chapter, the developed 4WS-TV controller is implemented on a real vehicle for

practical validation, with the sampling time and prediction horizon time setup discussed

in the last chapter. A real time target machine installed on the vehicle is utilised to exe-

cute the control system, and the vehicle is supposed to carry out several manoeuvres that

require the operation at the limits of handling.

It should be mentioned that during the practical testing session, the real-time computation

capability was not as easily met as it was in the simulation. There has been solve time or

possible convergence issues with the solver indicated by a CPU overload problem with

the real time target machine when running the proposed control algorithm. The problem

took place occasionally, but this could lead to failure in control performance and even

serious safety issue. In order to prevent the CPU overload problem from happening while

retaining the sampling time and prediction horizon time setup, simplification has been

done in the system model of MPC, by removing the coupling of longitudinal and lateral

tyre force. In particular, the saturation of maximum lateral tyre force set by Equation 3.16
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is removed, while assuming that the maximum force is determined simply by the vertical

tyre load as well as the tyre-road friction coefficient. This simplification helps to reduce

the computation time of the control algorithm, and thus to guarantee real-time operation

of the controller. It is expected that there is some drawback in the path-tracking per-

formance during the practical testing, while according to the final test results, the control

performance is still acceptable. During the practical testing session, it was mainly focused

on the lateral dynamics of the vehicle, and significant change in longitudinal velocity is

not required, which could be one of the reasons that the drawback in control performance

is not obvious. Further research will be carried out in the future to investigate the detailed

impact of the specific simplification, and possible approaches to guarantee real-time op-

eration with presence of the saturation in practice.

This chapter first demonstrates the vehicle used in the practical testing and the testing

environment, followed by the hardware and software configuration of the control system.

Then the results of the practical testing are shown in this chapter. The vehicle has been

tested in four scenarios, including double lane change, constant radius turning, figure

8 tracking and general path tracking. In order to evaluate the effects of the controller,

simulation is carried out in the same scenarios and conditions, and the results are shown

for comparison.

7.2 Configuration

7.2.1 Testing Platform and Environment

The testing platform used for the practical testing session is provided by Delta Motorsport

under the AID-CAV project. AID-CAV stands for ”Advanced Integrated Dynamics for

Connected and Autonomous Vehicles”. The project is sponsored by UK Research and

Innovation (UKRI), and aims to develop key ”vehicle platform” technologies for the next
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generation of autonomous vehicles, which are supposed to have enhanced capability and

performance [88].

As introduced before, the platform is equipped with 4WS capability, and TV functionality

on the rear axle. The front wheels are driven by a single motor through differential.

Figure 7.1 shows a photo of the platform in the testing area. This vehicle provides a great

opportunity to validate the control strategy developed in this thesis in practical operation.

Figure 7.1: The AID-CAV Phase 2B vehicle platform used as the testing vehicle.

Figure 7.2: Satellite birdview of the MUEAVI testing area.
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The practical testing is carried out in part of the the MUEAVI area in Cranfield University.

MUEAVI refers to ”Multi User Environment for Autonomous Vehicle Innovation”, which

aims to provide both urban and off-road environments for autonomous vehicle testing

[89]. Figure 7.2 shows a birdview of the testing area in Google Map.

7.2.2 Hardware Setup

The testing vehicle is equipped with the following real-time processing devices: a dSpace

MicroAutoBox II, a Speedgoat Mobile and an OxTS RT1003. The Speedgoat Mobile

is where the developed control algorithm in this thesis is implemented. It takes the all

the necessary status information of the testing vehicle and determines the optimal control

commands for the vehicle. The MicroAutoBox II acts as the main ECU of the vehicle. It

runs the master control system developed by Delta Motorsport, which communicates with

all the sensors and actuators of the steer-by-wire system (SBW), brake-by-wire system

(BBW) and inverters (INV). MicroAutoBox II is responsible for monitoring the vehicle

status, providing information to the Speedgoat Mobile and passing the control commands

to the actuators. The OxTS RT1003 is an inertial navigation systems which is able to

provide the measurements of position, orientation and velocity of the vehicle. The com-

munication among the devices is based on Controller Area Network (CAN), and figure

7.3 shows the hardware topology of the testing vehicle. The detailed specifications of the

processing devices are listed in Appendix D.

With regards to the measurements by OxTS RT1003, it is worth to mention that real-time

kinematic positioning (RTK) is enabled to enhance the accuracy of measurements, which

is realised with a base station providing real-time corrections to the GNSS data. Table

7.1 shows the average measurement accuracy of the localisation signals with and without

RTK during the practical testing..
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Figure 7.3: Hardware topology of the testing vehicle for data processing.

Table 7.1: Comparison of measurement accuracy with and without RTK

Without RTK With RTK

Position accuracy north (m) 0.3719 0.0136

Position accuracy east (m) 0.3708 0.0136

Position accuracy down (m) 0.8999 0.0147

Velocity accuracy north (m/s) 0.0302 0.0110

Velocity accuracy east (m/s) 0.0302 0.0110

Velocity accuracy down (m/s) 0.0367 0.0055

Yaw angle accuracy (deg) 0.0760 0.0628

Pitch angle accuracy (deg) 0.0564 0.0379

Roll angle accuracy (deg) 0.0556 0.0379
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7.2.3 Control Structure

Figure 7.4 shows the diagram of the entire control algorithm to be running in the Speed-

goat. First of all, the vehicle status is received and processed in the CAN Rx block. Next,

the MPC controller collects all the required information of the vehicle status, and finds

out the optimal control commands for the intended manoeuvre. Before the commands

are sent out, the system condition including communication, vehicle status and ForcesPro

solver output are inspected by the safety controller. If anything goes wrong, the safety

controller will void the control commands or request emergency stop to avoid incidents.

Finally, the control commands together with necessary diagnostic information are trans-

mitted to the MicroAutoBox. The control algorithm runs in multi-rate during real-time

operation. The sampling time of the MPC controller is 0.1s as discussed in Chapter 6,

while the other parts of the control system run in the sampling time of 0.01s.

Figure 7.4: System Setup of the Control Algorithm.

Figure 7.5 shows the state flow of the control system included in the safety controller. The

key purpose of the safety controller is to make sure that only reliable commands is trans-
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mitted for execution. First of all, critical messages received from the CAN are inspected

according to two diagnostic information to make sure that correct data is received. One

information is the CRC checksum attached to the messages, which is used to identify if

the received data is genuine. 8-bit CRC Checksum is used in this project, and SAE CRC8

J1850 is used for CRC parameterisation. It provides reliable CRC check of the CAN mes-

sages in this project, while requiring less computation compared to CRC algorithms with

more bits. It should be mentioned that the CRC checksum is also applied on the messages

to be sent by the Speedgoat. The other diagnostic information is the counter signal com-

ing with the messages. This helps the controller to make sure if the data is received in

time. If there is inconsistency in the increment of the counter signal, it is suggested that a

delay in transmission has happened.

Besides the data transmission condition, the safety controller also monitors the exitflag

of the MPC solver as well as the condition of the OxTS. Failure in finding the optimal

solution of the MPC problem, or in the localisation of the vehicle, can also lead to the

”Fault” condition of the control system. As a critical information, the states of the control

system is sent to the MicroAutoBox. Automation will only be activated when the control

system is in ”Ready”, and a ”Fault” condition will lead to the emergency stop of the

vehicle.

7.3 Testing Results

In this section, the results of the practical testing are demonstrated. The performance of

the developed controller is tested in four scenarios, including double lane change, con-

stant radius turning, figure 8 tracking and general path tracking. Double lane change is

a standard manoeuvre used in the industry to evaluate vehicle stability characteristics.

Constant radius turning is another standard benchmark to evaluate the steady-state han-

dling performance of the vehicle at its limits of handling. In addition, figure 8 tracking
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Figure 7.5: State flow of Speedgoat Operation within Safety Controller.
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is a good extension to constant radius turning. It introduces a transient process into the

scenario, which makes it a much more demanding manoeuvre. Last but not least, a gen-

eral path-tracking scenario is also introduced in practical testing as it is close to real life

driving. Beside normal normal path tracking, more challenging tests are carried out with

additional references of vehicle states provided to the controller, which includes heading

angle and side slip angle in order to manipulate vehicle attitude during path tracking.

In order to prepare for the practical testing, simulation is carried out in advance within the

same scenario and condition. A model of the MUEAVI testing area is built in CarMaker,

which is shown in Figure 7.6. This helps to have a better idea of the prospective vehicle

performance in real time. The simulation results are also demonstrated here to have a

comparison of the simulation and testing performance.

Figure 7.6: Model of MUEAVI track in CarMaker.
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7.3.1 Double Lane Change Scenario

Double Lane Change without Heading Angle Reference

The developed control algorithm is first tested in a double lane change scenario. Due to

the limitation of testing area, the standard double lane change track cannot be carried out

in practical testing, and thus a substitute double lane change path with reduced length is

used as reference in practical testing. The dimension of the path is available in Appendix

B.3.

The controller is first supposed to track the reference path at a constant speed of 8m/s.

This is not the highest velocity that the vehicle can achieve on the specific path, but is the

maximum due to the limitation of testing area and safety reasons. Figure 7.7a shows the

trajectory of the vehicle in simulation and experiment, and similar path tracking results

have been achieved. Figure 7.7b shows the acceleration of the vehicle, and it can be

seen that the vehicle does not reach the friction limit. The acceleration is up to 6m/s2 in

simulation, and is up to 9m/s2 in the experiment due to oscillation. As shown in Figure

7.7c, neither in simulation nor in the testing is the vehicle able to reach the reference

velocity before entering the double lane change, which is because of the lack in distance

for acceleration. After reaching the reference velocity, the controller is able to maintain

the velocity tracking error within 0.1m/s. In comparison, larger variation can be noticed

during the path tracking process. Similar situation can be noticed in Figure 7.7d, where

the vehicle’s side slip angle is small in simulation, but there is larger fluctuation in the

experiment. Both simulation and experiment have similar yaw rate response. Figure 7.7f

shows the lateral tracking error of the vehicle. It can be seen that the vehicle does a better

job in the simulation with maximal position deviation of 0.04m, while in the practical

testing the lateral deviation increases to 0.4m. The maximum tracking error takes place at

the exit of the double lane change, and is reduced by the controller soon afterwards.

Figure 7.8 shows the control commands during the double lane change scenario. From
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.7: Vehicle states during double lane change without heading angle reference.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.8: Control commands during double lane change without heading angle refer-
ence.

(a) Exitflag (b) Computation time

Figure 7.9: Forces Pro solver information during double lane change without heading
angle reference.
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Figure 7.8a and Figure 7.8a, it can be seen that similar steering commands are requested

by the controller in simulation and experiments. By comparing the front and rear steering

angles, it can be told that opposite front and rear steering is demanded to generate the

required yaw moment for turning, which is in accordance with the results in the previous

simulation. In terms of the wheel torque commands, a gentle deceleration can be ob-

served in the experiments, which does not take place in the simulation. The wheel torque

commands remain small after the vehicle gets close to the reference velocity, but in the

practical testing more torque is required during turning.

Figure 7.9a shows the exitflag of the MPC solver in both simulation and experiment,

and it is suggested that the controller is able to find the optimal solution throughout both

situations. The computation time in both situations is shown in Figure 7.9b.

Double Lane Change with Heading Angle Reference

Following the normal double lane change, additional reference is provided on the heading

angle of the vehicle. The vehicle is supposed to track the double lane change path at the

constant velocity of 8m/s, and with a fixed heading angle parallel to the initial orientation

of the reference path.

Figure 7.10 shows the vehicle states during the double lane change with heading refer-

ence. The acceleration of the vehicle is up to 9m/s2. The controller again tracks the

reference velocity well in simulation with steady-state error within 0.1m/s. There is a

slight drop in velocity in the experiment, but the deviation is up to 0.2m/s. Figure 7.10d

shows the side slip angle of the vehicle, and it can be seen that side slip angle increases

gradually to around 19◦ in both direction to negotiate the double lane change scenario

with fixed heading angle, which results in the yaw rate of the vehicle close to zero in

both simulation and experiment as shown in Figure 7.10e. The controller achieves similar

trajectories in simulation and experiment, and the lateral tracking error is shown in Fig-

ure 7.10f. The lateral deviation is up to 0.18m in simulation, while exceeds 0.4m in the
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.10: Vehicle states during double lane change with heading angle reference.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.11: Control commands during double lane change with heading angle reference.

(a) Exitflag (b) Computation time

Figure 7.12: Forces Pro solver information during double lane change with heading angle
reference.
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practical testing.

Figure 7.11a and Figure 7.11b show the steering commands during the manoeuvre. Differ-

ent from the double lane change without heading reference, in this situation the controller

demands equivalent front and rear steering angles in the same direction for crabbing to

follow the reference path at fixed heading angle, and the steering commands are quite sim-

ilar in the simulation and experiment. This demonstrates the enhancement in the vehicle’s

flexibility brought by the 4WS capability.

Figure 7.12a shows the exitflag information of the MPC solver. The MPC problem is

solved without issue in both simulation and practical testing. The computation time is

shown in Figure 7.12b.

Despite not reaching the handling limits of the vehicle, the matching performance in sim-

ulation and experiments has proven the effectiveness of the developed control algorithm

in the path tracking control of the autonomous vehicle. Furthermore, being able to track

the double lane change path with and without heading reference has demonstrated that the

application of 4WS is able to improve the flexibility of the vehicle, and that the proposed

controller is able to take advantage of that to manipulate the attitude of the vehicle.

7.3.2 Constant Radius Turning Scenario

Constant Radius Turning without Side Slip Angle Reference

Following the double lane change scenario, the controller is then tested in the constant

radius turning scenario. This is good for inspecting the steady-state control performance.

The reference path in this scenario is a circle with the radius of 8m, which is shown in

Appendix B.4. The vehicle is supposed to track the circle at a constant velocity of 9m/s.

Figure 7.13a shows the trajectories of the vehicle in simulation and experiments. It can

be seen that the vehicle is quite close to the reference path in simulation, and there is a
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.13: Vehicle states during constant radius turning without side slip angle refer-
ence.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.14: Control commands during constant radius turning without side slip angle
reference.

(a) Exitflag (b) Computation time

Figure 7.15: Forces Pro solver information during constant radius turning without side
slip angle reference.
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larger deviation in the experiment. The acceleration of the vehicle is displayed in Figure

7.13b, which shows that the vehicle has reached the limits of handling in both situations.

As shown in Figure 7.13c, the controller tracks the reference velocity with a steady-state

deviation up to 0.2m/s in simulation, and with a maximum of 0.5m/s deviation in the

experiment. The side slip angle is close in simulation and experiment, while the yaw rate

in experiment is lower than the simulation due to the larger actual turning radius. Figure

7.13f shows the lateral tracking error of the vehicle. The controller does a great job in

tracking the reference path with steady-state deviation around 0.01m, which is impressive

given the extreme condition under which the vehicle is operating. There is some drawback

in the tracking performance in experiment, where the lateral tracking error is up to 0.75m.

Figure 7.14 shows the control commands during the constant radius turning manoeuvre.

From Figure 7.14a and Figure 7.14b, it can be seen that the controller requests similar

steering angles in simulation and experiment. Opposite front and rear steering angles are

demanded to satisfy the required yaw moment. As shown in Figure 7.14c, more driving

torque is applied on the front wheels in practical testing to maintain the velocity of the

vehicle. Figure 7.14d and 7.14e shows the torque commands on the rear wheels. There is

not much torque difference between the rear wheels in simulation, but in the experiment

TV is activated on the rear axle to generate additional yaw moment to stabilise the vehicle.

Figure 7.15a shows that there is no issue with the MPC solver, and the computation time

is shown in Figure 7.15b.

Constant Radius Turning with Side Slip Angle Reference

The constant radius turning manoeuvre is then extended to include additional reference

of the side slip angle. The vehicle is supposed to track the same circle at the reference

velocity of 9m/s, and with a side slip angle of 20◦.

Figure 7.16 shows the vehicle states during constant radius turning with side slip refer-
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ence. The acceleration of the vehicle is shown in Figure 7.16b, and it can been that the

vehicle again reaches the friction limits. As shown in Figure 7.16c, the tracking of ve-

locity is good in both simulation and experiment, with slight variation in the experiment.

Figure 7.16d shows the side slip angle of the vehicle. It can be seen that the vehicle is

not able to reach the 20◦ side slip angle reference, and the steady-state value is around

15◦. The yaw rate of the vehicle is shown in Figure 7.16e, and again because of the larger

turning radius, the yaw rate in practical testing is to some extent lower than that in the

simulation. Figure 7.16f shows the lateral deviation of the vehicle. Similar to the situ-

ation without side slip reference, the controller has achieved great tracking performance

in simulation. Despite the lateral tracking error up to 1m, the controller has shown its

effectiveness in controlling the autonomous vehicle at the handling limits.

Figure 7.17a and Figure 7.17b shows the steering commands of the controller. It can be

seen that the rear steering is saturated at its limitation of 19◦, while a small front steering

angle in the same direction is demanded by the controller in both simulation and experi-

ment. The front and rear steering in the same direction helps to track the side slip refer-

ence, and it is the difference between them that generates the required yaw moment for

turning. Figure 7.17d and Figure 7.17e shows the torque commands on the rear wheels. In

both simulation and experiment TV is utilised so that additional yaw moment is generated

for vehicle stabilisation, and the larger torque is requested in the practical testing.

Figure 7.18a shows the exitflag of the MPC solver, which indicates successful execution

of the MPC solver during the scenario. The computation time of the control system is

shown in Figure 7.18b.

In this section, the developed controller is validated in the constant radius turning sce-

nario. In the situation without side slip reference, the controller is able to track the refer-

ence path at the reference velocity while maintaining the vehicle stability. In addition, the

controller remains effective with the presence of side slip angle reference, which demon-

strates the advantage of the proposed control formulation in autonomous vehicle at the
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.16: Vehicle states during constant radius turning with side slip angle reference.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.17: Control commands during constant radius turning with side slip angle refer-
ence.

(a) Exitflag (b) Computation time

Figure 7.18: Forces Pro solver information during constant radius turning with side slip
angle reference.
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limits of handling.

7.3.3 Figure 8 Scenario

Figure 8 Tracking without Side Slip Angle Reference

Following the constant radius turning scenario, the reference path is expanded to a figure

8 track. It consists of two circles tangent to each other, and the radius of both circles are

8m. The layout of the reference path is shown in Appendix B.4. The vehicle is supposed

to track two circles one after the other as a closed loop, and a reference velocity of 8m/s

is given for the path tracking purpose.

Figure 7.19 shows the vehicle states during the figure 8 tracking. Figure 7.19a shows the

trajectory of the vehicle in comparison with the reference path. It can be seen that at the

cross point of the two circles, the vehicle deviated from the reference path in simulation

due to the quick change of turning direction, and the deviation is larger in the experiment.

When it gets back to steady-state, the tracking performance is better. The g-g diagram as

shown in 7.19b suggests that the vehicle is operated at its handling limits on both circles

in simulation as well as in the experiment. The steady-state tracking error of the velocity

is around 0.2m/s, while more variation in the velocity up to 0.5m/s takes place in the

experiment at the cross point, where the vehicle switches from one steady-state condition

to another within 3 seconds. Figure 7.19d shows the side slip angle of the vehicle. It

can be seen that the side slip angle remains small during the steady-state condition, while

spikes take place at the cross point in practical testing. The yaw rate of the vehicle is

shown in Figure 7.19e. Despite the oscillation in experiment compared with simulation,

the controller has done a good job in stabilising the vehicle in such an extreme condition.

With the presence of the dramatic transition between two steady-state conditions, the

controller has managed to stabilise the yaw rate efficiently. The lateral tracking error is

shown in Figure 7.19f. The controller is able to track the figure 8 path with a maximum
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.19: Vehicle states during figure 8 tracking without side slip angle reference.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.20: Control commands during figure 8 tracking without side slip angle reference.

(a) Exitflag (b) Computation time

Figure 7.21: Forces Pro solver information during figure 8 tracking without side slip angle
reference.
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deviation of 0.35m in simulation, while the tracking error is up to 1.6m in the experiment.

The steady-state tracking error is around 0.2m in practical testing, and is close to zero in

simulation.

Figure 7.20 shows the control commands during the figure 8 tracking. From Figure 7.20a

and Figure 7.20b it can be seen that opposite front and rear steering is applied by the

controller during the steady-state turning. The front wheel torque command is shown in

Figure 7.20c. During transition, larger torque on the front wheels is required in order

to compensate the loss in longitudinal velocity due to the harsh change of lateral mo-

tion. Figure 7.20d and Figure 7.20e show the rear wheel torque commands. Differential

torque on the rear axle can be observed in simulation which generates the yaw moment to

stabilise the vehicle, and the difference is greater in the practical testing.

Figure 7.21a shows the exitflag of the MPC solver. It can be seen that optimal solution is

consistently obtained by the controller regardless of the vehicle condition. The computa-

tion time of the control system is shown in Figure 7.21b.

Figure 8 Tracking with Side Slip Angle Reference

In addition to the figure 8 tracking, additional reference of side slip angle is included in the

control formulation. In detail, a reference side slip angle of 15◦ is given to the controller,

and the vehicle is still supposed to track the figure 8 path at the constant velocity of 8m/s.

Figure 7.22 shows the vehicle states in simulation and experiment. It can be seen in Figure

7.22a that the vehicle tends to cut the corner at the transition point to avoid going wide

from the reference path, and thus good tracking performance has been achieved by the

controller in both simulation and experiments. Figure 7.22b shows the acceleration of the

vehicle, which confirms the operation of the vehicle at the limits of handling. As shown

in Figure 7.22c, variation in velocity takes place at the transition point, with the tracking

error up to 0.2m/s in simulation and up to 0.6m/s in the experiment. Figure 7.22d shows
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.22: Vehicle states during figure 8 tracking with side slip angle reference.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.23: Control commands during figure 8 tracking with side slip angle reference.

(a) Exitflag (b) Computation time

Figure 7.24: Forces Pro solver information during figure 8 tracking without side slip angle
reference.
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the side slip angle of the vehicle compared to the reference. The controller is able to

track the side slip reference with the steady-state error less than 2 degrees. Figure 7.22e

shows the yaw rate of the vehicle, and it can be seen that the controller is effective in

stabilising the vehicle in both simulation and experiment during the transition. In the

practical testing, there is larger overshoot in the yaw rate at the transition point, but the

controller still manages to stabilise it in about 2 seconds. Figure 7.22f shows the lateral

tracking error of the vehicle. The lateral deviation is maintained within 0.5m in both

simulation and experiment, while the steady-state error is slightly larger than the figure 8

tracking without side slip angle reference.

Figure 7.23a and Figure 7.23b shows the steering commands of the controller during op-

eration. Similar with the constant radius turning scenario with side slip reference, the

rear steering is saturated at the constraint, and the front steering tends to be in the same

direction with a smaller value. Figure 7.23d and Figure 7.23e shows the rear wheel torque

commands, and it can be seen that again large torque differential on the rear wheels takes

place at the transition point to compensate the required yaw moment to change the direc-

tion of the vehicle promptly while maintaining vehicle stabilisation.

Figure 7.24a shows the exitflag of the MPC solver, and the computation time of the control

system is shown in Figure 7.24b.

As one step further from the constant radius turning scenario, the figure 8 tracking in-

troduces significant transition between steady-state conditions, which raises high require-

ment on the effectiveness and robustness of the controller. According to the results in

both simulation and practical testing, the proposed controller has shown its capability in

autonomous vehicle control at the limits of handling. Moreover, the figure 8 tracking with

side slip reference demonstrates the capability of the proposed controller in manipulating

the vehicle’s attitude relative to the reference path.
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7.3.4 General Path Tracking Scenario

Finally, the developed controller is tested in a general path tracking scenario. The refer-

ence path consists of straights, turning and lane change sections, and its layout is shown

in Appendix B.5. The vehicle is supposed to track this path at a reference velocity of

7.5m/s.

Figure 7.25a shows the trajectory of the vehicle in both simulation and experiment. The

controller is able to track the reference path, with a relatively large deviation taking place

at the exit of the lane change. Figure 7.25b shows the acceleration of the vehicle during

the lap, and it can be seen that the friction limit is reached. Figure 7.25c shows the

vehicle’s velocity against reference. The velocity tracking is better in the simulation, and

there is a maximum deviation of 0.5m/s in the practical testing. Figure 7.25f shows the

lateral tracking error of the vehicle. The lateral deviation is less than 0.2m in simulation,

and is up to 1.5m at the exit of the lane change in experiment.

Figure 7.26 shows the control commands of the controller. It can be seen that similar

control commands are demanded by the controller in simulation and experiment, while

there is some fluctuation in the commands in the experiment, which probably leads to the

lateral deviation at the exit of land change.

Figure 7.27a shows the exitflag of the MPC solver. Several abnormal exitflag of 0 can be

noticed during the experiment, indicating that the solver fails to find the optimal solution

within the iteration limits. This happens at the exit of the lane change, and is probably the

reason to the large lateral deviation during the experiment. The computation time of the

control system is shown in Figure 7.27b.
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(a) Vehicle trajectory

(b) g-g diagram (c) Velocity

(d) Side slip angle (e) Yaw rate

(f) Lateral tracking error

Figure 7.25: Vehicle states during general path tracking.
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(a) Front steering commands (b) Rear steering commands

(c) Front wheel torque commands.

(d) Rear left wheel torque commands. (e) Rear right wheel torque commands.

Figure 7.26: Control commands during general path tracking.

(a) Exitflag (b) Computation time

Figure 7.27: Forces Pro solver information during general path tracking.
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7.4 Summary

In this chapter, the developed controller is implemented on a real vehicle for practical

testing. First of all, a complete control algorithm is built up based on the core MPC

algorithm, including signal transmission, data validation and safety controller. The entire

system is then implemented on the real time target machine which is installed on the

testing vehicle.

The controller is first tested in a double lane change scenario. Due to the limitation in

testing area, the vehicle couldn’t reach the high velocity for limits of handling operation.

Despite that, the double lane change testing validates the effectiveness of the proposed

controller in autonomous vehicle control for path tracking. In addition, the double lane

change with fixed heading reference demonstrates the advantage of the 4WS in enhancing

the flexibility of the vehicle.

The controller is then tested in the constant radius turning scenario. The controller is able

to track the reference path at the reference velocity, and the g-g diagram confirms that

the friction limit is reached, indicating operation at the limits of handling. Moreover, it is

also tested to included side slip angle reference in the control formulation. In the constant

radius turning scenario, the controller is validated for path tracking and stabilisation of

the autonomous vehicles at the steady-state condition at the limits of handling.

Following the constant radius turning, the controller is tested in the figure 8 tracking sce-

nario. As an extension to the circle path, the vehicle is supposed to track two tangent

circles at a reference speed of 8m/s. This introduces a significant transition in the path

tracking process, which has a high requirement on the robustness of the controller in terms

of pathh tracking performance and vehicle stabilisation. Furthermore, the controller is

also tested with the presence of side slip reference. The controller manages to track both

velocity and side slip reference with relatively small deviation. In terms of the lateral

tracking error, the maximal deviation is as small as 0.5m. The figure 8 tracking testing
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further validates the control performance of the proposed controller. It is shown that the

controller is able to handle challenging transition during extreme conditions, which con-

firms the effectiveness and robustness of the proposed controller, and also demonstrates

the advantage of the proposed over actuation formulation for autonomous vehicle control.

The controller is finally tested in a general path tracking scenario, which combines straights,

turning and lane change manoeuvres. The controller is able to track the reference path at

the reference velocity, with a relatively large lateral deviation at the exit of the lane change

probably due to the failure of the MPC solver in finding the optimal solutions. This may

be improved by some fine tuning pf the MPC parameters.

In summary, the developed controller has been validated in the practical testing, in terms

of path tracking control at the limits of handling. It demonstrates the advantage of the pro-

posed over actuation formulation in path tracking control ad stabilisation of autonomous

vehicles. The application of TV on the rear axle enhances the stability of the vehicle

during extreme operation conditions, and 4WS helps to improve the flexibility of the ve-

hicle, which can be used to manipulate the vehicle attitude during operation at the limits

of handling.



Chapter 8

Conclusions

8.1 Summary of Contributions

This thesis has developed a control algorithm for an over actuated electric vehicle. The

controller is capable of path tracking at the limits of handling, by exploiting the full ve-

hicle dynamical capability with 4WS and TV functionalities. The control design is based

on MPC, and the system dynamics for MPC formulation is based on a 3dof vehicle model

taking into account the non-linearities in vehicle dynamics and tyre force, which is criti-

cal for vehicle control at the limits of handling. The MPC controller is formulated based

on this vehicle model, together with the vehicle state reference generated according to a

simplified bicycle model. The basic idea of the controller is to maintain the vehicle states

as close to the reference as possible, while respecting the constraints in the actuation.

Two path tracking model are first proposed and compared in simulation. In the double

lane change scenario, the CTSNF controller based on Cartesian coordinate system is able

to reach a higher speed compared to the CVLRF controller based on curvilinear coordi-

nate system. In the double U-turn scenario, the CTSNF controller does a better job in

stabilising the vehicle and maintaining smaller tracking error upon the sharp change of

117
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turning direction. Furthermore, the CTSNF controller takes less computation time than

the CVLRF controller. As a result, the CTSNF formulation is preferred and thus applied

in the further control development. The effect of the application of steady-state reference

on the control performance is also studied. By introducing the steady-state reference, it

makes the solver easier to find out the optimal solution, which reduces the oscillation in

control commands and improves the vehicle stability.

The effects of multi-actuation on the control performance is then investigated. In addition

to the CTSNF controller applying both 4WS and TV (4WS-TV), three additional control

formulations are proposed with different level of actuation, including FWS only (FWS),

4WS and FWS with TV (FWS-TV). The control performance of these four controllers are

compared in the simulation. In the double U-turn scenario, the FWS controller achieves

the worst tracking performance in terms of velocity tracking and lateral tracking error,

which is due to the lack of multi actuation. In comparison, the introduction of either

rear steering or TV can significantly improve the tracking performance as well as vehicle

stability. In particular, TV seems to be more effective than 4WS in enhancing vehicle

response, because it is able to manipulate the individual driving torque on the rear wheels.

Among the four controllers, the 4WS-TV controller achieves the best performance with

smallest lateral tracking error, while at the cost of the highest computation time. In the

double lane change scenario, the 4WS-TV is the most outstanding one as well that reaches

the highest velocity within the constrained lateral deviation on exit. The 4WS controller

reaches a higher velocity than the FWS-TV controller, and the FWS controller again

provides the worst performance among the four formulation. It can be concluded that the

application of 4WS and TV can enhance the vehicle’s response at the limits of handling,

and by combining these two, the produced over-actuation formulation helps to achieve the

best control performance. However, this increases the computation time of the system,

which is an disadvantage to the implementation of the developed controller in real time.

Several modification has been done in order to reduce the computation time. First, the
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sampling time is increased from 0.02s to 0.1s, while 5 additional integration steps is

carried out within the sampling time. By doing so, the frequency of control actions is re-

duced, while the accuracy of system state estimation is retained to some extent. By com-

paring the control performance in the double U-turn scenario, the updated sampling time

setup has achieved a similar control performance as the previous controller, but the com-

putation time is significantly reduced. Then, the control performance is investigated with

different prediction horizon time. Prediction horizon is critical to MPC as it determines

the time range within which the system states are taken into account in the optimisation

problem. According to the simulation, it is shown that a generally a longer prediction

horizon leads to a better path tracking performance. A prediction horizon of 0.6s is not

able to provide a prompt response to the required change of turning direction, while with

the 1.4s horizon the vehicle is able to maintain the lateral tracking error within 0.2m, and

keep the vehicle velocity closest to the reference. However, a longer prediction horizon

takes more time for computation, which has a negative influence on the real time execu-

tion. In the end, the control performance is compared with different sampling time, and

it is shown that the best control performance is achieved with the shortest sampling time,

but at the cost of the longest computation time. In overall, the combination of sampling

time of 0.1s and prediction horizon of 1s provides the best compromise between good

path tracking performance and short computation time, hence it is most suitable for the

proposed controller for real time operation.

Finally, the proposed controller is implemented in real time for practical testing. It is first

tested in the double lane change scenario. The controller is proven to be effective in the

path tracking control of autonomous vehicles. In addition, it is also tested the carry out the

double lane change with a fixed heading angle reference. This demonstrates the flexibility

in vehicle attitude control provided by the application of 4WS. The controller is then

tested in constant radius turning scenario with and without side slip reference. And the

results shows that the proposed controller is able to carry out path tracking and stability

control at the limits of handling. The controller is then tested in the figure 8 tracking
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scenario, which includes significant transition between steady conditions. The turning

direction changes sharply at the transition point, which is a challenge for the controller

to stabilise the vehicle. The testing results show that the controller is capable of tracking

the reference trajectory while maintaining the vehicle stabilisation. This demonstrates the

good robustness of the proposed controller. In the end the controller is tested in a general

path tracking scenario. The controller is able to negotiate the corner at the vehicle’s

handling limits, while keeping close to the reference velocity. The lateral tracking error

is up to 1.5m at the exit of lane change, which could be caused by the computation issue

of the MPC solver, and may be improved by fine tuning of the MPC parameters.

In summary, the control algorithm developed in this thesis has been proven effective in

enhancing the vehicle stability as well as performance at the limits of handling. It makes

the use of 4WS and TV to maximise the dynamical capability and flexibility of the vehicle.

What’s more, the controller is real time implementable, and has been validated in practical

testing. The controller has shown itself widely suitable for different scenarios and control

objectives, with consistent control performance and good robustness.

8.2 Future Work

The work presented in this thesis can be extended in the following areas:

• Fine-tuning of the weighting in the MPC formulation for different scenarios. It cannot

be guaranteed that the optimal tracking performance has been achieved in all the scenarios

presented in this thesis. It is possible that by further tuning of the MPC weighting, the

tracking performance can be improved.

• Investigate the impact of decoupling longitudinal and lateral tyre force on the path

tracking performance. Try to figure out a more appropriate approach to reduce the com-

putation time in prantice without decoupling the tyre force.
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• The constant velocity reference can be replaced with a speed profile so that the vehicle

will be able to keep operating at the handling limits throughout the entire general path.

This will help to examine the controller with the requirement of combined longitudinal

and lateral control.

• Including the function of path planning into the control structure. Given the low com-

putation time for the proposed controller, it is possible to include real time path planner

so that the reference trajectory of the vehicle is generated online according to conditions

and vehicle dynamics.
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Appendix A

Vehicle and Tyre Parameters

A list of the parameters of the vehicle and tyre in this thesis is shown in Table.

Table A.1: System Configuration of the Controllers

Parameter Value Parameter Value

m (kg) 874.5 B 9.50

Iz (kgm2) 1597.7 C 1.63

l (m) 1.995 D 1.16

l f (m) 0.815 CF 91393.39

lr (m) 1.180 CR 63123.40

w (m) 1.530 δF,lim (deg) 19

wl (m) 0.765 δR,lim (deg) 19

wr (m) 0.765 TF,lim (Nm) 800

h (m) 0.297 TR,lim (Nm) 350
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Appendix B

Reference Path Layout

B.1 Double U-Turn Scenario

Figure B.1: Specification of the double U-turn scenario. Two half circles with the radius
of 10m are connected directly, with straights before and after the path.
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B.2 Double Lane Change Scenario in Simulation

Figure B.2: Specification of the double lane change track defined by ISO 3888-1 2018.
The red line is a general path based on the track with unsmooth curvature. In order to
generate the reference path, a moving average filter is applied on the Y position along X
axis.
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B.3 Double Lane Change Scenario in Testing

Figure B.3: Specification of the double lane change track used in the practical testing.
Due to the limitation of the testing area, the length of the path is shortened.
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B.4 Constant Radius Turning and Figure 8 Scenario

Figure B.4: Specification of the constant radius turning and figure 8 tracking scenario.
The red dash line is a circle with the radius of 8m for constant radius turning, and is also
part of the figure 8 path. Another circle of 8m radius is attached to it to form the complete
.
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B.5 General Path Tracking Scenario

Figure B.5: Specification of the double lane change track defined by ISO 3888-1 2018.
The red line is a general path based on the track with unsmooth curvature. In order to
generate the reference path, a moving average filter is applied on the Y position against
X.
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Appendix C

MPC Parameters

Here shows the weighting factors used in the MPC controllers of this thesis.

In Chapter 4

CTSNF:
Q = diag(820.70,820.70,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.1)

CVLRF:
Q = diag(820.70,820.70,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.2)

In Chapter 5

FWS:
Q = diag(820.70,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.3)

4WS:
Q = diag(820.70,820.70,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.4)

131



132 APPENDIX C. MPC PARAMETERS

FWS-TV:
Q = diag(820.70,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.5)

4WS-TV:
Q = diag(820.70,820.70,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.6)

In Chapter 6

Q = diag(820.70,820.70,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,300.00,300.00,328.28)
(C.7)

In Chapter 7

Constant Radius Turning and Figure 8 Tracking:

Q = diag(2462.10,2462.10,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,100.00,100.00,328.28)
(C.8)

Double Lane Change and General Path Tracking:

Q = diag(2462.10,2462.10,0.000117,0.000612,0.000612)

R = diag(50.00,50.00,131.31,500.00,500.00,328.28)
(C.9)



Appendix D

Hardware Specification

Figure D.1 shows the hardware specifications of the two hardware devices used for control

algorithm execution.

Table D.1: Hardware Specification

Workstation Laptop Speedgoat Mobile

CPU Intel Core i7-8750H Intel Core i7-3555LE

Number of cores 6 2

Number of threads 12 4

Clock frequency 2.2GHz 2.5GHz

Cache 9MB 4MB

RAM 32GB N/A

Operating System Windows 10 Enterprise FreeDOS 1.0
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troller for autonomous car tracking in urban traffic. In 2013 17th International Con-

ference on System Theory, Control and Computing (ICSTCC), pages 15–20, 2013.

[17] A. O. M. Adeoye, B. I. Oladapo, A. A. Adekunle, A. J. Olademeji, and J. F. Kayode.

Design, simulation and implementation of a pid vector control for ehvpmsm for an

automobile with hybrid technology. Journal of Materials Research and Technology,

8(1):54–62, 2019.

[18] W. Farag. Complex trajectory tracking using pid control for autonomous driving.

International Journal of Intelligent Transportation Systems Research, 18(2):356–

366, may 2020.

[19] R. Marino, S. Scalzi, G. Orlando, and M. Netto. A nested pid steering control

for lane keeping in vision based autonomous vehicles. In 2009 American Control

Conference, pages 2885–2890, 2009.

[20] P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, and T. Mei. Design of a control system for

an autonomous vehicle based on adaptive-pid. International Journal of Advanced

Robotic Systems, 9:1–11, 2012.

[21] F. Roselli, M. Corno, S. M. Savaresi, M. Giorelli, D. Azzolini, A. Irilli, and G. Pan-

zani. H∞ control with look-ahead for lane keeping in autonomous vehicles. In 2017

IEEE Conference on Control Technology and Applications (CCTA), pages 2220–

2225, Aug 2017.

[22] G. Tagne, R. Talj, and A. Charara. Higher-order sliding mode control for lateral



138 REFERENCES

dynamics of autonomous vehicles, with experimental validation. In 2013 IEEE In-

telligent Vehicles Symposium (IV), pages 678–683, June 2013.

[23] N. R. Kapania and J. C. Gerdes. Design of a feedback-feedforward steering con-

troller for accurate path tracking and stability at the limits of handling. Vehicle

System Dynamics, 53(12):1687–1704, 2015.

[24] E. J. Rossetter. A Potential Field Framework for Active Vehicle Lanekeeping Assis-

tance. PhD thesis, Stanford University, 2003.

[25] J. Wang, J. Steiber, and B. Surampudi. Autonomous ground vehicle control system

for high-speed and safe operation. Int. J. of Vehicle Autonomous Systems, 7:218–

223, 07 2008.

[26] C. Hu, H. Jing, R. Wang, F. Yan, and M. Chadli. Robust h∞ output-feedback control

for path following of autonomous ground vehicles. Mechanical Systems and Signal

Processing, 70-71:414–427, 2016.

[27] C. Chen, Y. Jia, M. Shu, and Y. Wang. Hierarchical adaptive path-tracking control

for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems,

16(5):2900–2912, 2015.

[28] Q. Yao, Y. Tian, Q. Wang, and S. Wang. Control strategies on path tracking for

autonomous vehicle: State of the art and future challenges. IEEE Access, 8:161211–

161222, 2020.

[29] H. Mouri and H. Furusho. Automatic path tracking using linear quadratic control

theory. In Proceedings of Conference on Intelligent Transportation Systems, pages

948–953, 1997.

[30] R.S. Sharp, D. Casanova, and P. Symonds. A mathematical model for driver steering

control, with design, tuning and performance results. Vehicle System Dynamics,

33(5):289–326, 2000.



REFERENCES 139

[31] R.S. Sharp and V. Valtetsiotis. Optimal preview car steering control. Vehicle System

Dynamics Supplement, 35:101–117, 2001.

[32] S. Jeon, K. Lee, H. Kim, and D. Kum. Path tracking control of autonomous vehicles

using augmented lqg with curvature disturbance model. In 2019 19th International

Conference on Control, Automation and Systems (ICCAS), pages 1543–1548, 2019.

[33] J. M. Maciejowski. Predictive control: with constraints. Prentice Hall, Harlow,

England; New York, 2002.

[34] E. F. Camacho and C. B. Alba. Model Predictive Control. Springer-Verlag London,

2007.

[35] V. K, M. Ambalal Sheta, and V. Gumtapure. A comparative study of stanley, lqr and

mpc controllers for path tracking application (adas/ad). In 2019 IEEE International

Conference on Intelligent Systems and Green Technology (ICISGT), pages 67–71,

June 2019.

[36] F. Yakub and Y. Mori. Comparative study of autonomous path-following vehicle

control via model predictive control and linear quadratic control. Proceedings of the

Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,

229(12):1695–1714, 2015.

[37] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B. Becker. A

predictive controller for autonomous vehicle path tracking. IEEE Transactions on

Intelligent Transportation Systems, 10(1):92–102, March 2009.

[38] A. Alessandretti, A. P. Aguiar, and C. N. Jones. Trajectory-tracking and path-

following controllers for constrained underactuated vehicles using model predictive

control. In 2013 European Control Conference (ECC), pages 1371–1376, July 2013.

[39] F. Yakub, A. Abu, S. Sarip, and Y. Mori. Study of model predictive control for



140 REFERENCES

path-following autonomous ground vehicle control under crosswind effect. Journal

of Control Science and Engineering, 2016, apr 2016.

[40] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. Predictive active

steering control for autonomous vehicle systems. IEEE Transactions on Control

Systems Technology, 15(3):566–580, 2007.

[41] K. Berntorp, R. Quirynen, T. Uno, and S. Di Cairano. Trajectory tracking for au-

tonomous vehicles on varying road surfaces by friction-adaptive nonlinear model

predictive control. Vehicle System Dynamics, 58(5):705–725, 2020.

[42] R. Ritschel, F. Schrödel, J. Hädrich, and J. Jäkel. Nonlinear model predictive path-

following control for highly automated driving. IFAC-PapersOnLine, 52(8):350–

355, 2019.

[43] T. Novi, A. Liniger, R. Capitani, and C. Annicchiarico. Real-time control for at-limit

handling driving on a predefined path. Vehicle System Dynamics, 58(7):1007–1036,

2020.

[44] Y. Chen and J. Wang. Trajectory tracking control for autonomous vehicles in dif-

ferent cut-in scenarios. In 2019 American Control Conference (ACC), pages 4878–

4883, 2019.

[45] P. Falcone, H. E. Tseng, F. Borrelli, J. Asgari, and D. Hrovat. Mpc-based yaw and

lateral stabilisation via active front steering and braking. Vehicle System Dynamics,

46(sup1):611–628, 2008.

[46] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.

Theodorou. Information theoretic mpc for model-based reinforcement learning. In

2017 IEEE International Conference on Robotics and Automation (ICRA), pages

1714–1721, 2017.



REFERENCES 141

[47] X. Di and R. Shi. A survey on autonomous vehicle control in the era of mixed-

autonomy: From physics-based to ai-guided driving policy learning. Transportation

Research Part C: Emerging Technologies, 125:103008, 2021.

[48] R. Tchamna and I. Youn. Yaw rate and side-slip control considering vehicle lon-

gitudinal dynamics. International Journal of Automotive Technology, 14(1):53–60,

2013.

[49] L. Kakalis, A. Zorzutti, F. Cheli, and G. C. Travaglio. Brake based torque vectoring

for sport vehicle performance improvement. SAE International Journal of Passenger

Cars - Mechanical Systems, 1(1):514–525, Apr 2008.

[50] S. C. Baslamisli, I. Polat, and I. E. Köse. Gain scheduled active steering control
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