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ABSTRACT

Engineering systems are expected to function effectively whilst maintaining reliability in
service. These systems consist of various equipment units, many of which are maintained
on a corrective or time-based basis. Challenges to plan maintenance accounting for
turnaround times, equipment availability and resulting costs manifest varying degrees of
uncertainty stemming from multiple quantitative and qualitative (compound) sources

throughout the in-service life.

Under or over-estimating this uncertainty can lead to increased failure rates or, more
often, unnecessary maintenance being carried out. As well as the quality availability of
data, uncertainty is driven by the influence of expert experience or assumptions and
environmental operating conditions. Accommodating for uncertainty requires the
determination of key contributors, their influence on interconnected units and how this

might change over time.

This research aims to develop a modelling approach to quantify, aggregate and forecast
uncertainty given by a combination of historic equipment data and heuristic estimates for
in-service engineering systems. Research gaps and challenges are identified through a
systematic literature review and supported by a series of surveys and interviews with
industrial practitioners. These are addressed by the development of two frameworks: (1)
quantify and aggregate compound uncertainty, and (2) predict uncertainty under limited
data.

The two frameworks are brought together to produce the Multistep Compound Dynamic
Uncertainty Quantification (MCDUQ) app, developed in MATLAB. Results demonstrate
effective measurement of compound uncertainties and their impact on system reliability,
along with robust predictions under limited data with an immersive visualisation of
dynamic uncertainty. The embedded frameworks are each validated through
implementation in two case studies. The app is verified with industrial experts through a

series of interviews and virtual demonstrations.

Keywords: Engineering systems; Limited data; Uncertainty aggregation; Uncertainty
prediction
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CHAPTER 1. INTRODUCTION

1.1 Background

Through-life service contracts deliver levels of availability, affordability and performance
for assets operating in various challenging environments consisting of increasingly
complex engineering systems (CES). Decisions made planning maintenance for such
assets historically requires significant experience and expertise, as well as the use of
equipment data that may be inaccurate, sporadic, or outdated. Numerous uncertainties are
raised here concerning the validity of expert opinions and accuracy of recorded data,
which risk over or under estimation of factors relating to maintenance carried out.
Significant costs and delays are risked as a result. Uncertainty is defined in this thesis as
the difference between the degree of information required and information held to make
a decision concerning a given entity. As well as deviations in quantitative, recorded data,
this definition encompasses information sourced from qualitative, subjective opinions,
assumptions and environmental factors. The resulting risk is the impact the uncertainty
will have on the given entity [1,2,20]. This thesis focuses on uncertainty, not the resulting
risk. Modern analytical methods can provide rigorous, self-learning scientific approaches
to quantify and predict uncertainty by employing intelligent logical systems to automate
and learn from live and historic data to aid decision-making. This has the potential to
significantly reduce risk factors while improving performance, efficiency, and safety
[5,7].

1.2 Problem statement

Uncertainty quantification (UQ) has been explored in various fields [3,11,15,18]. This is
the practice of characterising uncertainties for computational and real-world applications.
Many approaches model a particular type of uncertainty from statistical sources under
probability theory. Methods to obtain and analyse qualitative attributes often go

undefined and unmitigated, which has the potential to increase the occurrence likelihood



of unforeseen events [2]. A holistic aggregation of uncertainty from quantitative and
qualitative sources will aid decision-making and reduce under or over estimation of

maintenance costs and turnaround time.

Aggregation traditionally considers a summation of best and worst-case scenarios to
define boundaries for likely outcomes. This raises the question of whether uncertainties
can be aggregated across multiple elements represented through different probability
distributions. To do so, a second question is raised of how to standardise and validate
qualitative estimates attributed by expert opinion.

To consider how this may change over time, a third question considers how uncertainty
can be forecast over the in-service phase of an asset’s life cycle. The availability,
consistency and accessibility of equipment data can change dynamically over time,
necessitating the need for rigorous UQ techniques to optimally incorporate resulting
challenges into maintenance planning. This is dependent on the selection of the best
applicable UQ method, such as probability theory, Monte Carlo, Bayesian deep learning

and neural networks (NN).

This novel research examines the quantification of uncertainty propagated by these
challenges, along with those faced in maintenance delivery. This is considered to be
unique in literature for this context and offers defined academic contributions around
dynamic quantification of technical uncertainties at the equipment-type (ET) level in real-
world industrial applications. The ET level considers multiple subsystems that interact
with unique availability requirements, prompting a high influence on maintenance
expenditure [13]. The increasing complexity of engineering systems makes it
progressively difficult to comprehend the impact of uncertainty for alternative
maintenance scenarios in Product-Service Systems (PSS). This promotes the need to
scientifically quantify uncertainty rather than rely solely on expert opinion that is
inherently subjective. There is also a need to implement self-learning systems capable of
making predictions and recommendations based on historic data and human input to

optimise decision-making for the in-service phase of an asset’s life cycle.



1.3 Aim and objectives

The aim of this research is to develop a modelling approach to quantify, aggregate and
forecast uncertainty given by a combination of historic equipment data and heuristic

estimates for in-service engineering systems.

It is hypothesised that a rigorous and structured approach to quantify, aggregate and
forecast technical engineering uncertainties from quantitative and qualitative sources
throughout the in-service phase will improve uncertainty management at the ET level for
real-world industrial maintenance under limited and sporadic data. To test this hypothesis

and deliver on the aim, four key objectives were set:

Objective 1: Map current practice to identify core challenges and resulting uncertainties
around equipment cost and availability and how these differ from forecast behaviour

within complex engineering systems.

Objective 2: Develop a framework to aggregate uncertainty from quantitative and
qualitative sources represented through different probability distributions with an
identification of the source of greatest uncertainty.

Objective 3: Develop an approach to predict uncertainty given by limited available data
and qualitative factors to relate to equipment cost and availability over the in-service

phase.

Objective 4: Validate the final model to assess implementation effectiveness and

usability in context.

1.4 Research development

The research presented in this thesis was developed through collaboration between the
Through-life Engineering Services Centre (TES) at Cranfield University (UK) and BAE
Systems Maritime Services (UK). The research was funded by the Engineering and
Physical Sciences Research Council (EPSRC), project reference 1944319, and Doctoral
Training Partnership (DTP). Underlying data for each chapter is available on the
Cranfield University repository, CORD, under the project title of this thesis.



This thesis is presented as a series of chapters adapted from journal papers. Each chapter
begins with a title page consisting of an abstract and details of published or submitted
manuscripts, including DOI links. Chapters 3-5 present approaches used to fulfil the
objectives. Their discussions and critique are therefore given at the end of the respective
chapter, tied together in Chapter 6. References and appendices are provided at the end of
the thesis. All experimental work was completed as specified by Alex Grenyer at
Cranfield University (UK), with set-up assistance from Dr Pavan Addepalli and suppliers
of measurement equipment. Interviews discussed in Chapter 3 were held at BAE Systems
Maritime Services, Portsmouth Naval Base (UK), organised by Darren Goodman. Further
validation with industrial practitioners was obtained in workshops with the Society for
Cost Analysis and Forecasting (SCAF) and at the 36™ International Symposium on
Military Research (ISMOR). Final validation and verification interviews discussed at the

end of Chapter 5 and Chapter 6 were held virtually.

1.5 Thesis structure

A summary of the thesis structure is given in Figure 1.1 with feedforward and feedback
loops to illustrate where chapters feed into each other. Chapter 2 presents an in-depth
systematic literature review to identify and assess existing methodologies to quantify,
aggregate and forecast uncertainty from guantitative and qualitative (compound) sources
with a view to better understand the impact on cost and availability to aid decision making
throughout the in-service phase. A total of 107 papers were analysed to answer three
research questions based on the scope, through which three key research gaps were
identified. The review outcome informed the selection of methodologies to develop
frameworks that will fulfil objectives and address the research gaps. The literature
reviews from the manuscripts on which Chapters 3-5 are based have been incorporated
into this chapter. The methodology selection process is detailed in Appendix B.

Chapter 3 examines current practice and challenges in industrial maintenance that exhibit
uncertainties around equipment cost and availability, fulfilling Objective 1. Surveys and
interviews were held with maintenance managers and validated with wider industrial
practitioners. Challenges were examined in practice, considering interlinked systems in
the product-service system (PSS) context Core factors that manifest uncertainty in

maintenance were identified.
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Figure 1.1. Thesis structure

Chapter 4 presents the Compound Uncertainty Quantification and Aggregation (CUQA)
framework to fulfil Objective 2. Influenced by the findings of the previous chapters, this
framework expanded upon existing techniques to aggregate compound uncertainties
through the coefficient of variation (CV) and illustrate which inputs incite the greatest

source of uncertainty.

Chapter 5 presents the framework for uncertainty prediction under limited data (UPLD),
which embraces the third objective for the in-service life cycle phase. This multistep
prediction model combines spatial geometry with long-short term memory (LSTM)
neural networks. The framework is designed to be flexible to enable use in a variety of

systems and allows the user to tune parameters to enhance the robustness of predictions.

Chapter 6 evaluates the research gaps and critiques the contributions to knowledge. The
two frameworks are brought together to form the Multistep Compound Dynamic
Uncertainty Quantification (MCDUQ) modelling approach, detailed in Appendix F.
Feedback from the industrial sponsor concerning the model’s implementation is presented

to achieve the fourth objective.



Chapter 7 summarises the key conclusions against the objectives and recommendations

of future work in the field of uncertainty quantification, aggregation and prediction. Table

1.1 summarises the thesis plan and the status of paper submissions at the time of writing.

A table of experiments performed in the thesis, along with their justification towards the

methodology, is given in Table 1.2.

Table 1.1. Thesis plan and status of paper submissions

Chapter ~ Adapted  Objective Title Journal Status
from paper
2 1 1,23 A systematic review of ~ CIRP Journal of  Published
multivariate uncertainty ~ Manufacturing, 2021
quantification for Science and [97]
engineering systems Technology
3 2 1 Identifying challengesin ~ Procedia CIRP:  Published
quantifying uncertainty:  IPS2 Conference 2018
case study in infrared 2018 [191]
thermography
3 3 1 Current practice and Procedia CIRP:  Published
challenges towards CIRPe Web 2019
handling uncertainty for ~ Conference 2019 [10]
effective outcomes in
maintenance
4 4 2 An uncertainty SSRN: TES Published
quantification and Conference 2020 2020
aggregation framework [30]
for system performance
assessment in industrial
maintenance
4 5 2 Compound uncertainty Reliability Submitted
quantification and Engineering & 2021
aggregation (CUQA) for System Safety
reliability measurement
in industrial maintenance
5 6 3 Dynamic multistep Procedia CIRP:  Published
uncertainty prediction in CIRPe Web 2020
spatial geometry Conference 2020 [196]
5 7 3 Multistep prediction of CIRP Journal of  Published
dynamic uncertainty Manufacturing, 2022
under limited data Science and
Technology
6 - 1,2,3,4 Discussion of overall - -
work
7 - - Conclusions and future - -
work




Table 1.2. Table of experiments

Chapter Case study Type Justification

3 Current practice Survey / Identification of current practice and challenges
and challenges interview that manifest uncertainty in industrial

maintenance.

4 Heat exchanger Lab work, live Combination of digital and analogue recording
test rig data recording devices as well as qualitative factors to manifest

compound uncertainty in heat exchanger
performance. Demonstration of CUQA
framework to assess impact on full system.

4 C-MAPSS Simulated dataset ~ Simulated degradation comprising of multiple
turbofan engine sensor measurements and qualitative factors.
degradation Demonstrated use of CUQA framework to

analyse aggregated compound uncertainty over
time.

5 US SAR cost Pre-existing Dataset used to validate initial spatial geometry
variance dataset approach [28]. Applied for UPLD provide

comparable consistency in the application and
demonstrate the wide applicability of the
framework.

5 C-MAPSS Calculated Aggregated and individual uncertainties
turbofan engine uncertainties from calculated by the CUQA framework (Chapter 4).
degradation simulated dataset ~ Applied to UPLD to further demonstrate the
(results from capability to predict uncertainty under limited
Chapter 4) data.

5 UPLD Survey/interview  Review of the pertinence of the UPLD
verification framework, its benefits and where improvements

are required.

5 UPLD approach Method Comparison of prediction results using UPLD
comparison comparison with other approaches, made by calculating the

percentage difference of symmetry from
resulting predictions to that observed.

5 UPLD Comparison with  Use of additional, simulated time series data to
comparison with  additial data evaluate effectiveness of the UPLD approach.
additional data (simulated time

series)

6 MCDUQ Survey/interview, Demonstration of the final MCDUQ modelling

validation demonstration approach with industrial practitioners to provide

validation and feedback. Discussions and
surveys were held regarding its effectiveness
and steps towards industrial implementation.







CHAPTER 2. LITERATURE REVIEW

Abstract

Engineering systems must function effectively whilst maintaining reliability in service. Predicting
maintenance costs and asset availability raises varying degrees of uncertainty from multiple sources.
Previous reviews in this domain have assessed cost uncertainty and estimation for the entire life cycle. This
chapter presents a systematic review to investigate existing methodologies and challenges in uncertainty
quantification, aggregation and prediction for modern engineering systems through their in-service life.
Approaches to predict uncertainty are hindered chiefly by the quality of available data, experience, and
knowledge. A total of 107 papers were analysed to answer three research questions based on the scope,
through which three core research gaps are identified. An integrated combination of identified approaches
will enhance rigour in uncertainty assessment and prediction. This review contributes a systematic
identification and assessment of current practices in uncertainty quantification and scientific methodologies
to quantify, aggregate and predict quantitative and qualitative uncertainties to better understand their impact

on cost and availability, aiding decision making throughout the in-service phase.

Paper 1 A systematic review of multivariate uncertainty quantification for engineering systems

Published: CIRP Journal of Manufacturing, Science and Technology
DOI: 10.1016/j.cirpj.2021.03.004
Data access: Available upon request



2.1 Introduction

The increasing complexity and dynamic nature of engineering systems drives an
inherently high level of uncertainty. Many such complex engineering systems (CES)
consist of multiple component parts or subsystems that interact in a collective manner not
representative of individual parts [4,16,19]. Examples of complex systems range from
biological organisms, global climate and meteorology to bridges, ships and aircraft.
Engineering systems are expected to carry out intended functions whilst maintaining
reliability in service. It is therefore increasingly challenging to confidently predict
availability, cost and performance in various operating conditions [4,6,21]. Decisions
made concerning these factors are shrouded in uncertainty, requiring significant
experience and expertise, as well as the use of often outdated equipment data. This is
typically managed under through-life product-service system (PSS) contracts, where the
client makes use of a product in their possession but does not take ownership
[23,25,27,29,31].

This review is motivated by the requirement for scientific approaches to quantify,
aggregate and forecast technical engineering uncertainties for complex and non-complex
engineering systems. These uncertainties impact the ability to effectively carry out
maintenance tasks given available techniques and technology to required industry
standards. Examples include uncertainties in degradation, no-fault found, obsolescence
and failure rates [17,33,35].

It is therefore hypothesised that the utilisation of the above approaches considering a
compound aggregation of measured, recorded data (quantitative) and experience-driven
opinion or human factors (qualitative) will increase confidence and rigour in
determination of the impact of uncertainty over time. There is a requirement to look
beyond the probabilistic world and embrace subjective and expert opinions. Such
approaches should be applicable for various scenarios where data may be incomplete,
inconsistent, inaccessible, and reliant on expert opinion [26,39,52]. In the light of
dramatically increasing data volumes and computational capability in engineering
systems, rigorous machine learning algorithms should be incorporated to predict how

uncertainty may change over the in-service phase [42,44].
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Previous reviews in this domain have considered the role of uncertainty estimation in life
cycle costing under PSS [26,46,48,50]. The in-service phase covers the largest portion of
an asset’s lifecycle between contract bidding and disposal. Many approaches to aggregate
different types of uncertainty consider a summation of best and worst-case scenarios,
represented by probability distributions, to define boundaries for likely outcomes [26].
Inadvertently disregarding the space between these scenarios may result in under or over-

estimation and data distortion, adversely impacting decision-making.

This chapter presents a systematic literature review (SLR) to investigate distinct
approaches in uncertainty quantification and aggregation that can be applied in a real-
world context, in conjunction with how changes in uncertainty can be predicted in-
service. Both complex and non-complex engineering systems are considered in this
review, with a focus towards CES owing to their increasing relevance within the research
scope. The objectives and resulting research questions (RQs) to achieve this are depicted
in Section 2.3. The review follows the 4-stage analytical framework composed by Booth,
Papaioannou and Sutton [53] to conduct an SLR: search, appraisal, synthesis and analysis
(SALSA). This generic approach is well validated and can be applied under varying
conditions to provide a clear analysis of literature published in the field of uncertainty
and identify research gaps [54,56,58].

The primary contribution of this review is the combined consideration of scientific
methodologies to quantify (numerical expression of an entity), aggregate (collation of
entities) and predict (likely future outcomes) quantitative and qualitative uncertainties to
better understand their impact on cost and availability to aid decision making throughout
the in-service phase. A total of 107 papers were analysed to answer three research

questions, through which three core research gaps were identified.

The chapter is structured as follows: Section 2.2 discusses a topology of engineering
systems and uncertainty, including classification and recognised standards. Section 2.3
defines the research scope and subsequent RQs for the review. The search, appraisal and
synthesis stages of the SALSA framework is given in Appendix A. Section 2.4 analyses
the findings. Section 2.5 discusses the research findings parallel to the RQs. Section 2.6

concludes the review and identifies research gaps and future work.
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2.2 Topology of engineering systems and uncertainty

As stated in Section 2.1, a complex system is comprised of multiple component parts or
subsystems interacting linearly or non-linearly, exhibiting a collective behaviour that is
distinct from and seldom predictable by that of individual parts or subsystems [4,16,19].
Conversely, a complicated system can be comprised of a myriad of interconnected parts
but still exhibit a predictable collective behaviour [16,19]. Complex systems science is a
rapidly expanding and evolving field, the theory of which is widely documented
[4,6,16,19,21,60,62].

A complex engineering system (CES) is one that is focused on an engineering domain
rather than, for example, social, biological or meteorological systems. The inherently
complex and dynamic nature of CES manifests high levels of uncertainty. This takes
shape in various forms including costing, policymaking, supply chains and technical
uncertainties [19,21]. Technical engineering uncertainties within engineering systems set
the context for this research, where uncertainty in the performance of one component or
subsystem (node) may have knock-on effects with interconnected nodes or the whole
system. The level of uncertainty can change throughout the in-service life of each node
in an unpredictable and often non-linear manner [16,19]. This calls for adaptive and
intelligent approaches to predict uncertainty based on a combination of available data and

expert opinion.

There are several definitions and interpretations of uncertainty in literature
[1,2,71,72,18,20,64,66—-70]. It is defined here as the difference between the amount of
information that is required to perform a task and the amount of information already
possessed. The relevance of information, or lack of, should be specified concerning the
functionality of the organisation or application in question [73]. Uncertainty is caused by
variability in the environment, human error and/or human ambiguity (e.g. lack of
knowledge) and could cause a negative, positive or neutral impact on overall performance
[74]. All of these elements come into play for CES and should be accounted for to avoid

unnecessary costs.

The terms error and uncertainty are often used interchangeably. Risk is generally
interpreted as purely negative impacts of uncertainty [1,66,67,70,75]. It is important to

differentiate these concepts. A statistical error is the (unknown) difference between a
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measured value and a true value, following probability distributions. Measurement
uncertainty is the lack of information about the magnitude of these errors. Risk is the
positive or negative impact specific sources of uncertainty will have on the measurand
(the system or components for which uncertainty is being assessed). The degree of

uncertainty associated with the measurand can be utilised to aid decision making.

There are two key types of uncertainty described in literature: Type A, which are sourced
from quantitative data; and Type B, which make use of qualitative technical and expert
knowledge or experience [2,18,52,76-78]. These are further explored in Section 2.4.2. In
the context of this research, Type A will hence be referred to as ‘quantitative’ and Type
B as ‘qualitative’. Uncertainty can be further characterised as aleatory and epistemic.
Epistemic uncertainties are those that could be known in principle but are not known in
practice [14,79-82]. This may be due to inaccurate measurements or the measurement
model neglecting certain characteristics. Epistemic uncertainties can therefore be reduced
by obtaining more data or by refining models. Aleatory uncertainty cannot be reduced as
it represents statistical variables that differ each time a given experiment is carried out
[7,14,87,88,79-86]. The influence of different types of uncertainty can play a key role in

confidence determination for risk and reliability analysis [69].

Further examination can be made by the four ‘(un)known-(un)known risk quadrants’,
described in detail by Marshall et al. [89]. These levels of risk identification can be
applied to both quantitative and qualitative uncertainty since risk is the impact of
uncertainty on the measurand. As their names suggest, ‘known knowns’ are uncertainty
sources that have been taken into account and catered for; ‘known unknowns’ are
understood to exist but their magnitude is not defined; ‘unknown knowns’ are
unidentified sources that may be accounted for through alternate means (possibly by other
sources creating information asymmetry [90]); ‘unknown unknowns’ have not been
identified or accounted for and, therefore, pose the greatest risk [21,89,91]. These traits
can also represent predictable uncertainties not initially apparent and unpredictable ‘black
swan’ events. Where the amount of information (uncertainty) is known, risk can be
reduced. A categorisation of uncertainties centred on the four quadrants based on the

nature and source of uncertainty is illustrated in Figure 2.1 [89,91]. An example
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uncertainty source for each quadrant is linked to possible types — quantitative, qualitative,

epistemic and aleatory.

Unpredictable o Unknown
‘black swans’ @ unknown

Human
error

Recorded @
data @

Equipment
calibration &

Epistemic @ .% Quantitative @

®5100«

Aleatory [ ) '.3?’5.' = Qualitative
Figure 2.1. Categorisation of uncertainties based on their nature and sources

Frameworks to assess uncertainty in engineering systems, as well as the systems
themselves, require a degree of flexibility to accommodate complexity while maintaining
a degree of robustness to meet core objectives within specified confidence boundaries
[21,31,80]. Flexibility in engineering systems design allows for mitigation in the face of
unknown-unknowns, allowing the system to “evolve” when presented with unpredictable
challenges to the point of being reconfigurable with high degrees of freedom [21,23,44].
Robust systems are highly reliable within their design scope and predictable range of
associated uncertainty [92]. The level of complexity in a robust system is controlled by
identifying and mitigating factors that pose the greatest uncertainty [19,23]. The
flexibility of machine learning algorithms allows uncertainties to be predicted in a variety

of complex domains, examined further in Section 2.4.4 and Chapter 5.

2.3 Research definition

Defining the research scope is necessary to frame clear, answerable questions that
formulate the aim and objectives described in Chapter 1; which inform search terms and
inclusion/exclusion criteria in the succeeding phases [53]. VVarious frameworks have been

composed to define the research scope and successive research questions (RQs).
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The PICOC framework illustrated in Table 2.3 was adopted for this review [53,56,58].
This was selected against others proposed by Booth et al [53,93-95] such as SPICE [94]
and CIMO [96] as it provides a transparent and duplicable identification of key concepts

to be implemented in the SALSA framework.

Table 2.3. Research scope definition — PICOC framework

Concept  Definition

Population  Uncertainty prediction and assessment; considering the impact attributed by a
combination of quantitative and qualitative inputs over the in-service phase of complex
or non-complex engineering systems

Intervention Examination of existing UQ techniques, qualitative assessments, uncertainty prediction,
compound uncertainty aggregation for differing probability distributions

Comparison  Current industrial practices — how does the new proposal compare to the existing
methods and academic processes?

Outcomes Determination of relevant probability distributions and guidance on how to quantify
uncertainty in context to aid decision making for industrial maintenance

Identification of methodologies to quantify qualitative uncertainty attributes, combine
quantitative and qualitative uncertainties and assess significant correlations

Identification of methodologies to predict uncertainty through the in-service phase and
optimise outputs as new information is acquired

Context Compound quantification, aggregation and prediction of technical engineering
uncertainty for engineering systems in-service, applicable to industrial maintenance

The scope was adapted as more research was uncovered and the author’s understanding
of the topic grew. The resulting objectives and corresponding RQs are depicted in Table
2.4. These objectives were derived as the basis to achieve the outcomes defined in the
PICOC framework to establish key approaches to quantify and predict uncertainty in the

maintenance of engineering systems.

Table 2.4. Research objectives and research questions

Obijectives Research question

1 Identify current practices in the quantification How can compound uncertainties be aggregated
and aggregation of different types of and represented through different probability
uncertainty distributions?

2 ldentify and assess approaches that could How can qualitative estimates driven by expert
analyse and estimate compound uncertainties opinion and individual experiences be
for real-world applications standardised and validated?

3 Explore techniques to predict uncertainty in How can uncertainty be predicted over the in-
engineering systems. service phase of an asset’s life cycle and what

are the key challenges faced in doing so?
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The research search, appraisal and synthesis stages of the SALSA framework are detailed
in Appendix A.1 to A.3. A timeline of the review process for the published manuscript
[97] is given in Appendix A.4.

2.4 Analysis of synthesised data

This section examines the categorised themes from the synthesis of extracted data (Figure
2.4) to answer the RQs defined in Section 2.3. Thematic analyses are presented to
examine the coverage of each theme over the included papers and correlations between
them, assessing results from the synthesis. Narrative analysis is presented for each theme
to discuss results and case examples. The evidence base from the thematic and narrative
analyses are evaluated to answer the RQs in Section 2.5. Any generated hypotheses were
grounded to populate an emergent theory. Conclusions are drawn and compared with

other studies in the category [53,98].

The identification of uncertainties that influence the measurand will inherently vary in
dynamic nature depending on the context of the measurand; be it a simple system under
laboratory conditions or a complex engineering system (CES) with a myriad of
interconnected subsystems. Section 2.4.1 discusses the allocation of studies in the defined
contextual applications. Section 2.4.2 examines RQ1, focusing on the aggregation of
uncertainty across multiple elements. Section 2.4.3 looks at the selection and use of
relevant probability distributions to conduct the analysis. RQ2 is examined in Section
2.4.2.2, where methods to conduct qualitative uncertainty analysis are discussed. Section
2.4.4 examines RQ3, focusing on uncertainty prediction for the in-service phase of

engineering systems with deep learning techniques.

Publication details of year and type for the 107 included papers are illustrated in Figure
2.2 and Figure 2.3. The majority of examined papers were published in 2019-20. A
positive linear trend in publications up to the present indicates a growing relevance and
interest within the research scope. The term ‘Conference’ includes workshops; ‘Book’
includes book sections and booklets. The majority of examined publications are journal
articles, which are identified specifically in Table 2.5. ‘Other’ consists of journal

publications featured once.
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Figure 2.2. Analysis: Included papers — Publication year
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Figure 2.3. Analysis: Included papers — Publication type

2013 =

Thesis, 3, 3%
Report, 3, 3% Book, 5, 4%
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Table 2.5. Analysis: Included papers — Featured journal publications

2019 me—

2020 mE————

Publication Papers
CIRP Journal of Manufacturing Science and Technology 11
Reliability Engineering & System Safety 8
Journal of Petroleum Science and Engineering 3
CIRP Annals - Manufacturing Technology 3
Progress in Aerospace Sciences 3
International Journal of Life Cycle Assessment 2
Sustainability 2
International Journal of Production Research 2
Journal of Hydrology 2
Others 44
Total 80
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2.4.1 Contextual application

The contextual application theme identified in Table A.3 groups publications, as the name
suggests, in their applied context. Through the refinement process described in the
synthesis, 4 categories were identified: Aerospace & defence (Inc. nuclear weapons and
other military applications), Emissions, energy & environment (Inc. oil & gas,
meteorology, energy & power, greenhouse gases and coastal models), Manufacturing &
maintenance (Inc. optimisation of processes around PSS and in general, structured
surfaces, machine tooling and miscellaneous case studies) and Theory (Inc. description
and derivation of analytical methods without a specified application). The number and

percentage distribution of these applications are illustrated in Figure 2.4.

The majority of included papers examine the theory in uncertainty analysis, aggregation
and forecasting (41%). These include statistical analysis, qualitative methods such as the
pedigree approach and machine learning and Bayesian reasoning for forecasting. Papers

applied in the other three contexts are reasonably distributed.

Theory,
44, 41%

Aerospace &
defence, 12, 11%

Contextual

application Emissions, energy &

environment, 25, 24%

Manufacturing &
maintenance, 26, 24%

Figure 2.4. Analysis: Contextual application classification of included papers

2.4.2 Uncertainty propagation and simulation techniques

This section examines identified techniques to propagate uncertainty. Findings influenced
the composition of the modelling approach in Chapter 4. The percentage of the 107
included papers that make use of or adapt the main techniques identified through the
synthesis are illustrated in Figure 2.5, stacked by their contextual application. The ‘other’
category encompasses less used methods used in the research context such as Latin

Hypercube sampling and Taylor series expansion.
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Figure 2.5. Analysis: Percentage of uncertainty propagation and simulation techniques used in

included papers by contextual application

The categorised techniques can apply to purely quantitative, (Section 2.4.2.1), qualitative
(Section 2.4.2.2) or compound (Section 2.4.2.3) uncertainty quantification and analysis.

The distribution of analysis types by contextual application is shown in Figure 2.6. Purely
quantitative analysis is considered by 43 papers (40%), purely qualitative is considered
by 23 (21%) and a compound aggregation is considered by 41 (38%). A core objective of
this research is to equate qualitative uncertainties in line with quantitative to enable

compound aggregation of technical engineering uncertainties in engineering systems.

This consideration is necessary for real-world applications but not essential when
considering costing of such systems in theory (further explained in Sections 2.4.2.2 and
2.4.2.3). Terms such as ‘variance’, ‘standard deviation’ and ‘stochastic’ were not
included as they were considered too generic. Some commonly used techniques appear
to feature less frequently than one might expect (e.g. degrees of freedom in 9% of the 107
papers). The reason for this is that some studies focus on a specific part of the analysis
process (e.g. uncertainty source identification through expert opinion or interviews) and

so consider other stages to be out of scope.
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Figure 2.6. Analysis: Percentage of analysis type used in included papers by contextual

application

2.4.2.1 Quantitative uncertainty analysis

Purely quantitative uncertainty analysis focuses on epistemic, statistical data. Techniques
are discussed in theory below, which are then applied in case examples. Qualitative
aspects need to be taken into consideration to be applied to real-world dynamic cases.
The most commonly used techniques in the included papers that focus on quantitative

analysis are illustrated in Figure 2.7, again stacked by contextual application.

Quantitative uncertainty is statistically equal to the standard deviation of a given dataset,
which is equal to the square root of the distribution variance and referred to as the
‘standard uncertainty’ [2,99]. As seen in Figure 2.7, 40% of the 43 quantitative analysis
papers reviewed explicitly use sensitivity analysis and 23% discussed correlation between

the inputs.

Correlation accounts for dependencies between input parameters [2,11,37,43,100,101].
The aggregated uncertainty (v,) due to the uncertainty in quantitative parameters is equal
to the root-sum-square (RSS) of those uncertainties (o) added to significant correlation
coefficients (Eq. 2-1) [102]. If parameters are independent (p = 0), the second half of the

equation is zero and cancels out.
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The significance of positive and negative correlations on the aggregated uncertainty
estimate will vary with system complexity as well as the coefficient value. It is important
to remember that correlation is not causation and while two parameters can show a
significant correlation, they may not be impacted by one another in practice. This could

lead to overestimation of the aggregated uncertainty.

Many potentially identifiable uncertainties will have a negligible impact on the
measurand. To maintain focus on uncertainties that have a tangible impact on the system,
alongside expert judgement, sensitivity analysis (SA) is conducted across the input
parameters [9,80,109,110,81,92,103-108]. SA gives an illustration of relationships
between different inputs of various PDFs and parameters. Those with negligible effects
can be removed. An important tool in uncertainty assessment, design optimisation and
reliability measurement, SA is performed in two ways — local and global. Local sensitivity
analysis (LSA) explores the change of the quantity of interest around a certain reference
point, such as nominal values via partial derivatives. This is the simplest approach but

can prove arduous when applied for a large number of parameters. Global sensitivity
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analysis (GSA) studies the effect over the full range of the input space, typically adopting
Monte Carlo techniques.

UQ in CES involves the propagation of errors around the sample mean of each parameter
via simulation [37]. The three most common and validated propagation techniques are
Taylor series expansion, Monte Carlo simulation and Latin Hypercube Sampling (LHS).
The widely used propagation of error model uses Taylor series expansion to consider
local sensitivity coefficients within the aggregation, given by partial derivatives
[2,37,45,102]. While suitable for non-complex models, the use of partial derivatives in
complex non-linear models has been shown to give a large degree of error and lead to
under or overestimation of propagated uncertainty [45]. LHS migrates simple Monte
Carlo to assess convergence of cumulative probability distributions for output variables
[9,14,45].

Monte Carlo simulation is by far the most widely used simulation method to evaluate
uncertainty; used in 63% of the 43 quantitative papers and 52% of the total 107 included
papers. It can be applied to multiple probability distributions for compound analysis,
shown to provide effective results in many situations for various combinations and
complexities [28,32,34,48,52,72,82,108,111,112]. Extensive sampling of uncertainty
ranges for individual variables can be achieved without the use of substitute models [9].
However, it can require significant computational power, with 1,000-10,000 simulation
runs generally accepted as appropriate coverage depending on model complexity
[111,113].

Clarke et al. [45] applied these propagation techniques in a thermodynamic analysis of
heat exchanger designs. This highlighted the need to consider both quantitative and
qualitative uncertainty and the identification of parameters that pose the greatest influence
on uncertainty through SA [114]. Similarly, Tatara and Lupia [43] examined heat
exchanger performance through temperature measurement uncertainty, with a spotlight
on the effect data acquisition methods and measurement devices have on the resulting

uncertainty. These studies influenced the composition of the study in Section 4.3.1.

Groen [115] compared GSA methods in environmental life cycle assessment, of which

Spearman correlation coefficients and Sobol’ indices were found to give the best overall
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performance. Generally, the best method depends on available data, uncertainty
magnitude and the goal of the study. Spearman correlation coefficients assume linearity
in the system, which is often not the case in practice. Sobol’ indices allow for nonlinearity
but assume all parameters to be independent to identify the influence of each input
parameter on the output [9,14,122,81,115-121]. Correlation coefficients should ideally
be established between input parameters [41,115]. Discounting correlation is acceptable
when the sensitivity of parameter x is significantly greater than parameter y, rendering

Pxy Negligible [40]. Where it is not, discounting correlation can lead to under or

overestimation of the resulting uncertainty estimate.

Bayesian analysis derives the probability of an event occurring given that a prior event
has occurred. This is given as a probabilistic function of the two events occurring
independently or together [2,82,123]. Bayesian methods applied in uncertainty prediction
are further covered in Section 2.4.4.

In 1995, the International Standards Organisation (ISO) published the Guide to the
Expression of Uncertainty Measurement (GUM). Commonly referred to in literature as
‘the Guide’ or ‘GUM?’, this has seen various updates and expansions since its inception
[2,18,32,76,78,124]. The general uncertainty analysis process defined by the GUM
involves 5 core stages [2,18,124]: (1) Identify the measurand; (2) Identify uncertainty
sources and associated probability distributions; (3) Quantify uncertainties (simulation);
(4) Aggregate uncertainties; (5) Report analysis results. While proficient for purely
quantitative estimates, the GUM employs coverage factors and confidence limits to
accommodate for qualitative or compound estimates. These often lead to
underestimation, do not permit flexibility and, therefore, cannot be realistically applied

in dynamic, complex engineering systems [92,125].

Since its inception, the GUM has been applied and adapted to assess uncertainty in a
range of applications from structured surfaces [11] to micro gear measurement [3], smart
grid power systems [105] and risk and reliability assessment in the nuclear weapons
sector [85]. Uncertainty typically increases where significant correlation between exists
input parameters. Correlation and sensitivity are key considerations for rigorous
uncertainty analysis to capitalise on risk with the best possible model representation.

Complex system uncertainty analysis involves representations of epistemic and aleatory
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uncertainty. For epistemic analysis, uncertainty can be represented through various means
including interval analysis, possibility theory, evidence theory and probability theory
[16,21,85,126]. Probability theory is the dominant method, but others can be useful in the
CES context — examined and compared in Sections 2.4.2.2 and 2.4.4. The main challenges
for UQ in these contexts include the aggregation of information from multiple sources
and the propagation of complex computational models that incorporate flexibility in

design, while holding a degree of robustness to deliver on objectives [16,23,31,85].

2.4.2.2 Qualitative uncertainty analysis

The consideration of qualitative uncertainty factors can have significant effects on the
overall estimate. The identification of known qualitative uncertainty sources typically
relies on expert opinion. Methods to aid their derivation include surveys, interviews and
the pedigree matrix [39,52,74]. Qualitative frameworks are often used in conjunction with
guantitative methods such as Monte Carlo and SA in the context of real-world
applications. Therefore, the majority of qualitative applied cases are discussed in Section
2.4.2.3, including those considering surveys and interviews. Figure 2.8 shows the

distribution of techniques used in purely qualitative analyses.

Expert opinion and Monte Carlo were implemented in 52% and 26% of the 23 qualitative
papers respectively. This section will examine commonly used qualitative propagation
approaches, namely the pedigree matrix, as well as comparisons between probability

theory, evidence theory and fuzzy set theory.

The pedigree approach is a widely renowned and verified approach to equate qualitative
estimates in line with quantitative data. First proposed by Funtowicz and Ravetz [127],
the approach comprises a matrix to score expert knowledge and opinion according to

predefined criteria to permit quantitative reliability assessment.

This has been used in 17% of the 23 papers considering purely qualitative analysis (Figure
2.8), solely applied in the emissions, energy & environment context, and 22% of the 41
papers considering compound analysis (Figure 2.9), applied in all 4 considered contexts,
though largely again in emissions, energy & environment. It has also been applied in
medical fields and genealogy, largely visualised using decision trees, though these are not
examined in the scope of this review [10,32,39,52,104,128].
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Figure 2.8. Analysis: Percentage of techniques used in included papers for qualitative analysis
by contextual application

Pedigree can be applied on its own or through an encompassing approach to standardise
combined uncertainty dimensions via 5 qualifiers: Numeral, Unit, Spread, Assessment
and Pedigree (NUSAP) [32,51,52,128]. The first 3 terms consider quantitative factors:
quantity value, acquisition date and random error of the variance of the dataset (addressed
by SA and Monte Carlo simulation), respectively. Implementation of NUSAP is further

discussed in Section 2.4.2.3.

Pedigree criteria are defined according to the contextual application of the study
[39,52,128]. Qualitative assumptions made in uncertainty analysis can have a significant
impact on the resulting estimate, especially in complex systems. The application of the
pedigree matrix in complex environmental problems can highlight bias, implausibility,
disagreement among stakeholders, limitations and sensitivities (further explored in
Chapter 3) [104].

Additional uncertainty propagation approaches include probability theory, evidence
theory and fuzzy set theory [72,123]. Probability theory is the ‘classic’ UQ method for
input parameters with definable probability distributions, discussed in much of this
review. Evidence theory makes use of artificial intelligence (Al) and machine learning to
collate evidence from different sources and presents an evaluation to understand if the

available evidence is common or contradictory [46,72,129]. Evidence theory can neglect
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deterministic decision-making, which considers the outcome alone without associated
risk, by keeping an ‘open eye’ to new information, governed by a belief system to dictate
possibility measures [46]. This may be a suitable approach for qualitative reasoning but
is less suited to estimating quantitative uncertainty, which is centred on recorded data
[72].

Fuzzy set theory is applied in machine learning to assign a grading to input parameters
(e.g. ascale of 0 to 1 rather than 0 or 1). This is well suited in cases where recorded data
and knowledge is lacking and available data is inherently subjective
[14,39,46,72,123,130]. This lack of mediated data is one of the major challenges in UQ
for both complex and non-complex engineering systems [4,13,16,26,39,74,130].
Uncertainty analysis where data is scarce benefits greatly from the application of artificial
neural networks (NNs). These networks of cooperating input elements are applied to a
model and trained to give an optimum output by learning from previous examples
[46,131]. NNs are a go-to option for forecasting and prediction tasks to be undertaken —

discussed further in Section 2.4.4.

2.4.2.3 Compound uncertainty analysis

The term ‘compound’ is defined here as the aggregation of uncertainty from quantitative,
measured, recorded data and qualitative, experience-driven opinion or human factors.
Since qualitative estimates are obtained from technical expert knowledge or experience,
they were not initially classed as purely statistical quantities with definable degrees of
freedom [2,77]. The GUM proposed coverage factors and confidence limits as methods
to accommodate for qualitative or compound estimates. An ‘effective’ degrees of
freedom is applied using the Welch-Satterwhite formula [2,102], though this was later
found to lead to underestimation of the combined uncertainty [76,78,125,132,133]. Since
then, a range of advanced qualitative, quantitative and compound methods have been
proposed to gauge qualitative estimates in a way that can be statistically equal to

quantitative estimates.

The percentage of included papers that used compound analysis is shown in Figure 2.9.
Expert opinion and assumptions made to carry out the assessment were considered in
39% of the 41 compound analysis papers (discussed in the previous section). The quality
of the opinion sways the confidence in the result (considered in 49% of compound
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analysis papers), which can be determined through the pedigree matrix (in 22%) and

sensitivity analysis (in 32%).
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Figure 2.9. Analysis: Percentage of techniques used in included papers for compound analysis

by contextual application

The pedigree matrix can be applied to simple calculations and complex models through
explicit and systematic reflections on compound uncertainty [39,52,128,134].
Uncertainty estimation in life cycle costing under product-service systems (PSS) is a
growing field of interest, where uncertainty changes throughout the life cycle stages
[25,26,29,46,48,50,126]. Uncertainty analysis in PSS is examined further in Section
2.4.4. NUSAP has been implemented to estimate uncertainty in cost estimation from
different sources at the bidding stage of industrial PSS contracts in the aerospace &
defence context [135]. Uncertainties were identified through a predefined classification;
commercial, affordability, performance, training, operation, engineering (CAPTOE)
[136] and ranked using NUSAP [52].

The incorporation of qualitative estimates with quantitative assessments in the in-service
phase of industrial PSS may present challenges due to increasing complexity but can also
draw parallels from other phases of the life cycle [25,31]. Additional reviews have
analysed value capture for PSS throughout the product life cycle on the transition to

servitisation [29], availability support [137] and information flow [50]. Lack of concrete
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data and qualitative decisions cause uncertainty that can lead to undesirable results. This
also prompts the need for flexibility in PSS under uncertainty [23].

Data quality in life cycle assessments (LCA) is enhanced through a compound
consideration of parameters. The use of pedigree and SA allows uncertainty parameters
with negligible impact to be eliminated, enabling focus on those that influence the
measurand [48,103]. This helps to alleviate the trade-off between accuracy and

implementation costs in LCA to identify the most significant input parameters.

Another application domain of compound uncertainty in engineering systems is real-time
systems. Largely considered in software engineering, these systems are highly dependent
on confident and thorough uncertainty estimates to account for worst-case scenarios
[138,139]. Uncertainties considered can range from computational processing times
[138,140] to environmental and human factors, such as in virtual reality (VR) applications
with remote maintenance [139]. Literature concerning real-time systems in this review is
considered under the manufacturing and maintenance context. Real-time systems are
inherently complex owing to the range of assumptions taken into account and
unpredictable behaviour and interaction of system elements. To obtain confident
predictions of worst-case execution times, evolutionary algorithms are employed along
with surrogate models, neural networks and regression models — further explored in
Section 2.4.4 [140,141].

Further applications of the pedigree matrix and SA, along with Monte Carlo and Taylor
Series expansion, are made in the oil & gas sector to estimate uncertainty in greenhouse
gas emissions [111]. These highly complex operations consist of compound estimates
requiring rigorous estimates. Confidence levels associated with individual sources are
dependent on data availability and quality. This process followed the core methods
described in the GUM [2,18,111,124]. While applied solely to the oil & gas sector in the
examined literature [111], the analysis method should be applicable in broader areas

within the research scope.

Ciroth et al. [32] presented a process to improve uncertainty estimation by gauging
qualitative uncertainty factors through the pedigree approach for flow data in a
multidimensional database. Estimates are attributed by their geometric standard deviation
(GSD), where inputs fit the multiplicative lognormal distribution (Eq.2-2) [32,34,36]. The
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arithmetic standard deviation used to attribute uncertainty in quantitative data has the
disadvantage of relying on the scale (unit) of data in a linear manner [32,34]. Therefore,
for the analysis of data from varying sources and measured in different units, uncertainty

factors need to be independent of scaling effects — achieved using GSD.

(2-2)

Where: 6y = GSD; n = number of inputs; x; = dataset; X4 = geometric mean of dataset

To enable aggregation where data sources do not follow a lognormal distribution, GSD
ratios are obtained via the coefficient of variation (CV) [34,142]. This is a dimensionless
measure of variability defined as the ratio between the standard deviation and the mean
[142,143]. Muller et al. [34] provided formulas to apply the CV to various distributions

to allow the user to select the most appropriate types for analysis.

The CV can be used as a measure of uncertainty for each input and aggregated to give a
representative total. The application of CV and pedigree aims to convert quality and lack
of knowledge into uncertainty figures [34]. This is a key method to aggregate compound
uncertainties through different PDFs, given in Table 2.4, the robustness of which was

tested for each parameter PDF using Monte Carlo simulation.

To combine quantitative, recorded parameters with qualitative factors, all parameter
uncertainties are converted to their respective CVs according to their PDF type. The
arithmetic mean of symmetric PDFs such as Normal and Uniform is equal to the mode
and, as such, does not change when uncertainty increases [34]. They can therefore be
aggregated additively by RSS (Eq.2-1). Lognormal distributions are asymmetric; the
arithmetic mean will change with increasing or decreasing uncertainty. CVs represented
by the lognormal distribution, CVyn, are aggregated multiplicatively by Eq. 2-3 [34]. To
combine these with symmetric distributions, a new arithmetic mean needs to be calculated

to account for the shifting uncertainty, given by Eq. 2-4 [34].
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Table 2.4. Probability distribution function (PDF) and relative coefficient of variation (CV)

calculations [32,34]
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n
cv,, = H(cvi2 +1)-1 (2-3)
i=1

UrCVy = /cvszym + CVRgn (2-4)

Qualitative uncertainties given by subjective opinion are intuitively correlated in terms
of rank rather than linear relationships [9]. Spearman’s rank correlation (p) is, therefore,
best suited to consider the correlation between compound uncertainties (x, y) — given by
Eqg. 2-5. The proposed approach to aggregate compound uncertainty is discussed in
Chapter 4.

Y lp(x) = s () — A
Pxy = ~ ~ 2_5)
JEL G - s B, 000 - PO (

2.4.3 Probability distributions for uncertainty analysis

The selection of the most appropriate PDF depends on the nature of each input parameter
(quantitative or qualitative sources) and how it is recorded [39,144]. The most common
types of PDF used in the included papers are stacked by their contextual application in
Figure 2.10.
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Figure 2.10. Analysis: Percentage of PDFs used in included papers by contextual application
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Statistical measured data is typically represented by the normal (Gaussian) distribution,
used in 58% of the 107 examined papers, or lognormal in 9%. Uniform distributions are
considered in 33% of papers. When recording data, an individual digital readout has a
uniformly distributed uncertainty, since it is on or off. The values of the readout are

represented by a different distribution, depending on how it was recorded.

Several publications therefore considered more than one type of distribution. Table 2.7
describes the main distributions identified in the papers, adapted from Stockton and Wang
[144], Everitt and Skrondal [68], and Erkoyuncu [39].

The Weibull distribution is used in reliability modelling and analysis for life cycle
forecasting [26,33,145]. This could be an important distribution choice when considering
forecasting uncertainty, however, it was only considered in 6% of papers included in this

review.

2.4.4 Uncertainty assessment, prediction and forecasting

This section of the analysis focuses on how uncertainty can be modelled and predicted
over the in-service phase of an asset’s life cycle and where these are or can be applied to
complex and non-complex engineering systems. The term ‘assessment’ is a judgement of
value or quality based on available information. A forecast is the determination of future
outcomes based on historic and new data (Bayesian), while a prediction is an indication

of a future event with or without prior information [68,142].

The majority of reviewed manuscripts in the PSS context centre around cost estimation
[13,23,25,26,28,29,46,48,74,123]. The in-service phase of PSS covers the largest portion
of the life cycle situated between contract bidding and disposal. This phase calls for
numerous equipment considerations including reliability, flexibility, availability and
maintainability to ensure the asset is fit for purpose [46,135]. Each of these considerations

raise challenges which promote numerous uncertainties, covered in Section 2.4.2.3.
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Table 2.7. Analysis: Comparison of commonly used PDFs [39,68,144]

Distribution Parameters Application Advantage Disadvantage
Beta Lower and upper Variability overa  Highly flexible Requires additional
range plus 2 fixed range distribution estimation points to
shaping parameters shape appropriately
Lognormal Mean and Log. of  Nonlinear, Works well for Can be difficult to
standard deviation ~ skewed ranges factors that express standard
interact in a deviation
multiplicative Criticised for giving
manner over estimated
probability
Normal Mean and standard ~ Standard Works well for Not as applicable for
deviation distribution is symmetrical data  defining risk, which is
considered as usually asymmetrical
standard
uncertainty of the
estimate
Triangular Minimum, Used when most ~ Simple and Points are highly
maximum and likely value is intuitive, can be  absolute
mean distinguished skewed or Can lead to under or
symmetric over estimation as
confidence levels
cannot be stated
Uniform Minimum and Constant data Very simple to High risk of over or
maximum flow or where use under estimation
shape is unknown
Weibull Scale and shape Reliability Can take the Parameter selection
parameters modelling and form of multiple  can be inaccurate —
W(L, o, B) is an analysis, life distributions, leads to
open-ended cycle forecasting  depending on the  underestimation

distribution with
location L, scale
parameter o, and
shape parameter 3

value of

An overwhelming issue in the forecasting of equipment states and related maintenance is
the quality and availability of data [10,74,84,139,146]. To make accurate and robust

predictions, a degree of historic data is required. Where this does not exist, the solution

is generally to model the physical system and obtain data through simulation. As systems

grow in complexity, robust and dependable models are harder and more expensive to
produce [59,146]. Schwabe et al. [28] stated that the ability to quantify and forecast cost

uncertainty is often limited by minimal measurement points, lack of experience, unknown

history and low data quality. This precipitates innovation hesitancy in the face of an ever-

increasing rise in technological innovation [147].
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In the CES context, sampling rates are rarely consistent and feature a highly variable
number of signals from different system units [10]. It then falls to subjective opinions and
assumptions of experts — designers and manufacturers — to determine when maintenance
will be required, equipment needed, time scales and resulting costs. This naturally places
a large degree of uncertainty on the accuracy and robustness of such predictions, which
must be quantified and considered.

Three prominent areas that have seen advancements in forecasting and prediction
capability in recent years considering uncertainty are remaining useful life (RUL)
prediction [59,146,148], cost estimation [13,25,26,28,48] and meteorology [149]. RUL
prediction is a central task for maintenance practices of CES [65]. There are a myriad of
RUL prediction approaches, notably reviewed by Lei et al. [146]. While the theory,
general implementation and evaluation metrics of many approaches are open source,
several industries have developed their own protected approaches for their specific
requirements. Uncertainty is a significant point of vulnerability in long-term RUL
predictions. Bayesian filtering algorithms are typically applied, the most prominent of
which are Kalman filters; only suitable for linear systems and variations thereof for non-
linear systems [146]. A more flexible algorithm is the particle filter, designed for use with
nonlinear systems, which has become a widely used method for performing real-time
uncertainty assessment in RUL predictions [146,148,150,151].

Another key tool in forecasting is deep learning, which makes use of neural networks
(NNs) to learn from existing data. The quality of data ultimately determines the quality
of the result. Applications are covered in detail for RUL prediction by Lei et al. [146].
NNs are composed of multiple layers, allowing them to learn complex non-linear
relationships. Bayesian deep learning (BDL) and variations thereof have been widely
applied to forecast future events given existing data and update when presented with new
data [42,88,152—-158]. Deep learning models are only as accurate as the data they are
trained on and, as such, typically require large datasets with defined trends over time [42].
They must therefore be flexible to consider all data properties necessary to achieve robust
predictions. Flexible models can make better predictions, but all predictions involve

assumptions that manifest uncertainty [42,97,152].
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The end of Section 2.4.2.2 identified the endorsement of NNs to aid uncertainty analysis
for complex engineering systems. The terms and qualities identified in the synthesis to
represent uncertainty assessment, prediction and forecasting are illustrated in Figure 2.11

and stacked by contextual application.

Uses of NNs and Bayesian techniques from Figure 2.5 and selected distributions from
Figure 2.10 are included for comparison. Life cycles of products or services were
considered in 39% of the 107 included papers, with 21% considering NNs and 32%
considering Bayesian techniques.

Percentage of papers, %
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Uncertainty asesssment, prediction & forecasting terms & qualities

m Aerospace & defence  mEmissions, energy & environment ~ m Manufacturing & maintenance Theory

Figure 2.11. Analysis: Percentage of terms and attributes in included papers for uncertainty

assessment and forecasting

To give greater confidence in estimates such as maintenance costing, backpropagation
algorithms can be applied to further improve the quality of NN training
[33,44,141,149,157,159,160]. Applications were reviewed in terms of their learning
capability and reliability in uncertainty prediction. Stochastic models calculated from
steady-state probabilities do not necessarily reflect reality since maintenance policies can
take several years to stabilise [33].

Naturally, the structure of NNs and training options applied have a significant impact on
prediction accuracy for specific applications [146]. Determination of parameters that
result in minimal prediction error can be achieved through hyperparameter tuning, often
performed via a grid search technique [65,161]. Bayesian deep learning (BDL) is one of

the most popular techniques to learn from and forecast data trends
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[42,88,152,153,158,162]. However, this approach requires significant modification
models, adopting variation inference instead of backpropagation. Modification of deep
learning models as more data becomes available can make implementation more complex

and require extensive computation time [149,158,161].

This issue can be mitigated in part by dropout training, applied by Gal [158] in a method
to approximate Bayesian inference in Gaussian processes (GPs) in deep neural networks
and more generally by Cicuttin et al. [163] and Srivastava et al. [161]. GPs are highly
flexible non-parametric models widely used for regression and classification, growing in
complexity in line with the density of training data [42,152,164,165]. Defined as a layer
within the network structure, dropout randomly sets input sequences below a defined
probability to zero. This alters the underlying network structure for each iteration to
prevent overfitting [158,163]. The uncertainty assessed by Gal [158] was in the deep
learning process itself, not the resulting uncertainty interval. These methods still require
enough prior data of sufficient quantity and quality to fulfil the Central Limit Theorem,
where the normalised sum of variables will tend towards a normal distribution
[2,26,28,145,146].

The General Likelihood Uncertainty Estimation (GLUE) method uses Bayesian inference
to assess uncertainty in model predictions. Largely applied in hydrology and
meteorology, the method uses ensemble forecasting of weighted parameter sets to
identify the contribution level of each set for a forecasted point in time [119,155,166,167].

Wang et al. [149] proposed a deep uncertainty quantification (DUQ) prediction model to
learn from historic data through a negative log-likelihood error (NLE) calculation to
forecast weather patterns. The combination of deep learning and UQ was shown to
improve generalisation of point estimation compared to RMSE calculation to forecast
multi-step meteorological time series but is best suited to scenario modelling in

meteorology.

Recurrent neural networks (RNNs) are a form of NN with a feedback loop to better
capture non-linear relationships. Long short-term memory (LSTM) networks are a type
of RNN increasingly used in sequential time-series forecasting and RUL prediction, the
theory of which is widely covered in literature [59,63,65,160,168]. A key advantage of

LSTMs over other types of NN is their ability to use gates to avoid vanishing or exploding
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gradients, increasing prediction accuracy [59,160,168]. Wu et al. [65] applied a vanilla
LSTM model to predict RUL and identify physical degradation mechanisms, the
parameters of which were defined through hyperparameter tuning. Shi and Chehade [59]
proposed a Dual-LSTM framework to predict uncertain change points from which
degradation accelerates and heath indexes that can be used to determine RUL in real-
time. Both studies were compared with, and found to outperform, benchmark methods.
A common trait among the examined publications is the use of the C-MAPSS turbofan
engine degradation dataset to test and demonstrate RUL prediction with proposed
methodologies [59,61,63,65,169,170]. Further applications of this dataset are examined
and ranked by Ramasso [57]. Different approaches to account for uncertainty in the
datasets are also covered —the most popular being probability theory. The turbofan engine

degradation dataset is also used in this research — detailed in Chapter 5.

Uncertainty in cost estimation is largely examined in the context of product-service
systems (PSS) [13,25,26,28,48,74,97]. Multiple equipment uncertainties arise in this
context including reliability, availability, and maintainability. Smart [142] applied Bayes’
Theorem to estimate costs from trends with minimal data points. Existing data and
assumptions were combined with limited real-time data to produce accurate forecasts

with a degree of confidence.

Schwabe et al. [28,131] devised an approach to estimate cost uncertainty under limited
data. The topology and symmetry of variance data is given by its geometric shape at the
time of estimation. This was initially driven by the idea that most statistical conclusions
obtained arithmetically can also be achieved by geometry, which can simplify otherwise
complex conclusions [28,171]. Rather than interdependencies between individual data
points, spatial geometry describes the behaviour of a space created by connecting outlying
data points, represented in vector space in a point cloud around an origin, forming a
regular cyclical polygon. A shape with greater symmetry requires less information to be
described. A positive correlation was therefore hypothesised between symmetry and
information entropy. The symmetry of the space created by each input dimension (cost
variances) was able to predict future development without requiring significant volumes

of data [26,28]. This is a promising approach to predict uncertainty under limited data.
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There is limited literature on holistic, compound cost uncertainty estimation for the in-
service phase of PSS [13,46]. Guidance is scarce to aid the selection of suitable
uncertainty modelling methods such as NN, BDL and fuzzy set theory, which in

themselves generally only consider epistemic forms of uncertainty [42,46,72,123,131].

2.5 Research results and discussion

The final phase of the review methodology discusses the research methodology and
results conducted through the SALSA framework [53]. An evaluation of the validity of
research methods adopted and findings culminated throughout the review is given in
Appendix A.5. Research questions 1 and 2 share many similarities and are discussed in
Section 2.5.1, summarised in Table 2.6. Research question 3 is discussed in Section2.5.2,
summarised in Table 2.7. Section 2.5.3 summarises the core contributions to knowledge

from findings of the research questions.

2.5.1 Discussion of findings for research questions 1 and 2

How can compound uncertainties be aggregated and represented through different
probability distributions?

The analysis of papers to answer this question is presented in Sections 2.4.2 and 2.4.3.
Quantitative uncertainty analysis considers an aggregation of input parameter uncertainty
whose value is derived from statistical data. Sensitivity analysis and Monte Carlo
simulation are used to propagate uncertainty ranges over multiple PDFs along with
correlation between inputs and respective degrees of freedom. The majority of solely
quantitative approaches follow the standard GUM method, or an adaption thereof.

The main qualitative analysis techniques combined the pedigree matrix, largely integrated
in NUSAP, with quantitative assessment methods such as quantitative risk assessments
and LCA. The former appreciated the need for compound considerations but there were
no examples found of a combined approach. The latter applied SA to eliminate negligible
inputs to alleviate the trade-off between measurement accuracy and implementation costs.
However, uncertainty over the life cycle was considered constant, when in reality it is

likely to fluctuate. The compound aggregation of quantitative and qualitative uncertainty

38



Is essential in real-world contextual applications to provide estimates of cost, availability
and reliability with high levels of confidence.

The selection of the most appropriate PDF to represent a given uncertainty source is
crucial in the analysis process [39,144]. This can be achieved visually by comparing fits
against a plotted histogram of the data. Attributing qualitative factors as geometric
standard deviation (GSD) enables the quantification and aggregation of compound
uncertainties through an amalgamation of the pedigree matrix, Monte Carlo simulation
and coefficient of variation (CV) [32,34]. This method can be applied to a range of
symmetric and asymmetric PDFs. While formulae to denote inputs of varying PDFs by
their respective CVs are defined, a method to aggregate CVs from a mix of symmetric
and asymmetric PDFs in a compound manner is unclear. This is necessary to establish
compound uncertainty estimates represented by different PDFs with a high degree of

confidence.

The compound aggregation approach can be used in GSA to calculate sensitivity indices.
Correlations should be considered where suitable to avoid under or overestimation in the
estimate. However, the majority of applied studies assume input variables to be
independent. It is logical to assume there will be significant correlations between
quantitative, measured variables and the qualitative influence on how those variables are
recorded. Incorporation with qualitative uncertainties requires further research at this
stage [9,118,120,121]. The risks in ignoring correlation in uncertainty propagation and
SA are explored extensively by Groen [40,115]. The consideration of correlation through
the sampling GSA approach allows for increased accuracy in the determination of which
variables have the most significant impact on the overall uncertainty, and is therefore
incorporated in Chapter 4 [40,41]. The ability to consider PDFs other than normal will

further enhance this capability in the aggregation modelling approach.

Findings were qualified by referred sources and standardised methods for quantitative
and qualitative uncertainty analysis. The probity of the amalgamation of these methods
is considered unbiased since it can, in theory, be applied to multiple PDFs in multiple
contexts. It also fulfils the outcome of the PICOC framework to determine relevant
probability distributions and methods to quantify uncertainty that can be applied in

industrial maintenance. Other approaches examined were only applied in theory,
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prompting the need for further research in applied fields. Alternative techniques may exist
that were not covered in this review. This can be down to the probity of the initial search

string and robustness of the elimination process.

How can qualitative estimates driven by expert opinion and individual experiences

be standardised and validated?

The analysis of papers to answer this question is presented in Section 2.4.2.2. Qualitative
approaches applied in real-world cases are used in conjunction with quantitative methods
such as Monte Carlo and SA. The pedigree matrix is one of the most widely used methods
to validate qualitative attributes such as expert opinion and experience
[32,34,39,52,127,128]. This requires the definition of pedigree criteria upon which the
experience or qualifications of an ‘expert’ are scored and aggregated to attribute a
quantitative measure of uncertainty. These criteria can be defined through surveys and
interviews with industrial practitioners and academics. This approach has been adapted
and implemented in a range of fields for various purposes [32,52,72,103,104,111,128].
Expert opinion and individual experiences can be validated against defined pedigree

criteria to provide a standardised representation of uncertainty.

The definition of criteria alleviates bias in the approach, though this should be made by a
diverse selection of suitably qualified individuals. The pedigree approach was the only
qualitative technique explored in detail as it was deemed best suited and widely accepted
to fulfil the desired application. Other approaches or adaptations of pedigree may warrant
further investigation, but the application through GSD and CV proposed by Ciroth [32]
and Muller [34] appear best suited to fulfil RQs 1 and 2. These factors also achieve the
outcome portion of the PICOC framework in Table 2.3 to identify methodologies to
quantify qualitative uncertainty attributes and combine them with quantitative

uncertainties.
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Table 2.6. Identified approaches to resolve RQ1 and RQ2

Problem RQ1: Aggregation of compound

Approach

uncertainties represented through
different probability distributions

RQ2: Standardise and
validate qualitative
estimates

GUM method
[2,18,32,76,78,124]

NUSAP
[52,128]

Geometric standard
deviation (GSD) and
Coefficient of variation
(CV)

[32,34,142,143]

Willink method
[78,125]

Top-down approach AKA:
Nordtest approach, Single-
lab validation

[133]

Standardised methods for quantitative
aggregation (standard deviation)

Gives standard 5-step process to identify,
quantify and combine uncertainties

Uses effective degrees of freedom for
qualitative aggregation, leads to
underestimation

Widely used with small variations in
multiple applications

Can be applied to simple calculations and
complex models

Found to improve the depiction of
uncertainty through visualisation and
background knowledge compared to
quantitative risk assessments

Not clear how quantitative and qualitative
estimates were combined explicitly

Estimates are represented under the
lognormal distribution as GSD to
eliminate scaling effects from different
types of data

CV enables aggregation of quantitative
and qualitative uncertainties represented
by different PDFs

Fits quantitative estimates to qualitative
by attributing a known parent distribution
to quantitative

“Proposed method improves performance
when some error components are drawn
from non-normal distributions whose
variances are obtained by non-statistical
means”

Broad level — does not go far into
measurement procedure and does not
attempt to quantify all uncertainty sources
individually, contrary to GUM, but
follows the same 5-step process

Instead, uncertainty sources are quantified
in large “batches” via components that
take several uncertainty sources into
account

Uncertainty obtained characterises
analysis procedure rather than an explicit
result

Use of effective degrees
of freedom via Welch-
Satterwhite formula can
lead to underestimation of
combined uncertainty —
improved method
presented by Willink
[125]

Uses pedigree to attribute
qualitative estimates in a
quantitative manner,
suited to a broad range of
applications

Uses pedigree to attribute
qualitative estimates via
GSD

Quialitative estimates
represented by known
variance and ‘coefficient
of excess’

Removes bias of overall
variance estimate

Considers uncertainty
component by possible
bias — determined against
an uncertain reference
value
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2.5.2 Discussion of findings for research question 3

How can uncertainty be predicted over the in-service phase of an asset’s life cycle

and what are the key challenges faced in doing so?

The analysis of papers to answer this question is presented in Section 2.4.4. The quality
and availability of data is the greatest driver of uncertainty in the forecasting and
prediction of equipment states, RUL, and determination of when and how maintenance
should be carried out [85,172]. Growing complexity in engineering systems makes
precise modelling of physical systems harder and more expensive to produce in order to
obtain reliable simulated data [59,146]. These challenges limit the ability to optimally
train networks through probabilistic Bayesian learning, which reduces confidence and

robustness in associated uncertainty estimates.

Intelligent learning techniques are increasingly used to flexibly forecast uncertainty in a
range of fields, though applied methods for in-service maintenance are limited. RUL
prediction is a key determinate for maintenance scheduling and costing in CES [65,146].
Variants of RNN are widely used but require sufficient data with which to train networks
to make accurate and robust predictions. This also limits the robustness of probabilistic
methods such as BDL [42].

Hyperparameter tuning is not suitable for regular updates to network architectures owing
to significant computation time when comparing multiple training options and network
structures [168]. It can, however, can provide an effective starting point to make initial
predictions. Dropout training can help improve prediction robustness by preventing
overfitting, as well as updating the LSTM state at each prediction step as more data
becomes available. Alternative approaches to predict uncertainty under limited data have
been proposed such as deep uncertainty quantification (DUQ) [149], drop out learning

[158] and spatial geometry [28].

Uncertainty manifested under limited data and assumptions as discussed above should be
predicted to allow decision-makers to plan with greater confidence. Doing so will reduce
under or over estimation. Uncertainties that may pose an undesirable risk at a given point

in time can be mitigated to reduce the likelihood of unforeseen costs and delays [97].
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Predictions need to be robust and as accurate as possible despite being produced under
limited data, where traditional probabilistic methods are not applicable.

Findings for RQ3 may be considered biased towards the context of cost estimation in PSS
[23,25,29,50,137]. Additional research is needed to examine how the assessed deep
learning approaches can be applied for uncertainty assessment in industrial maintenance
under limited data [130,139]. This requires a compound aggregation at present and a
prediction of how the uncertainty may change through the in-service phase, considered
for individual system components and as a whole. This achieves the final outcome of the
PICOC framework to identify methods to predict uncertainty and the core challenge of
limited data. Predictions can be utilised by decision-makers to mitigate uncertainty,

reducing the likelihood of unforeseen costs and delays.

Table 2.7. Identified approaches to resolve RQ3

Problem RQ3: Forecasting uncertainty over the in-service phase of an
Method asset’s life cycle
Fuzzy set theory Function assigns a grade between 0 and 1 to each input parameter of a set, as

[14,39,46,72,123,130]

Neural network (NN)
with Backpropagation
(BPN)

[39,42,85,140-
142,144,158,173]

GLUE method
[119,155,166,167]

Deep uncertainty
quantification (DUQ)

[149]

opposed to Boolean that are 0 or 1
Suitable for qualitative reasoning, not for estimating quantitative uncertainty.

Often recommended in cases where recorded data and knowledge is lacking,
and available data is inherently subjective.

Used alongside NNs to aid uncertainty analysis

A flexible network of cooperating processing elements to give an output.
Applied to a model and ‘trained’ to give an optimum output
Backpropagation computes the gradient of the loss function and uses it to
change input parameters to reduce mistakes and optimise the output

Other applications reviewed regarding learning capability and reliability in
uncertainty prediction, giving greater confidence in maintenance cost
estimates

BPN addresses stabilisation of maintenance policies based on steady-state
probabilities from stochastic models at inception that may not reflect reality
for forecasts.

Uses Bayesian inference and ensemble forecasting to assess uncertainty and
contribution (sensitivity) of factors for a forecasted point in time

Monte Carlo simulation provides information to the decision-maker on
expected uncertainty with a degree of confidence.

Allows for identification of differences in model performance and
quantification of parameter-induced uncertainty

Combines deep learning and UQ to forecast multi-step meteorological time
series

Uncertainty is incorporated straight into a loss function and is directly
optimised through backpropagation
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Improves generalisation compared to mean squared error (MSE) and mean
absolute error (MAE)

BPN incorporates uncertainty directly into loss function for direct
optimisation

Regression is solved as a mapping problem rather than curve fitting and so
cannot be naturally applied to multi-step timer-series forecasting

Dropout as Bayesian Theoretical framework casting dropout training in deep NNs as approximate
approximation Bayesian inference in deep Gaussian processes
[158] Bayesian models require significant modification to train deep models,

making them harder to implement and computationally slower

Dropout training used to approximate Bayesian inference in Gaussian
processes

Approximate Bayesian inference updates probability as more evidence
becomes available

Considerable improvement in predictive log-likelihood and RMSE compared
to existing state-of-the-art methods such as BDL

LSTM networks Feedback loop to better capture non-linear relationships

[59,65] Use gates to avoid vanishing or exploding gradients, increasing prediction
accuracy

Spatial geometry Forecasts cost uncertainty for a given point in time where available data is

[28,131] scarce, determined by the geometric symmetry of cost variance data at the

time of estimation

Represents uncertainty in a vector space, aggregated to give probable cost
variance in state space.

Propagation described through the symmetrical relationship between cost
variance data at a given point in time set apart from 0.

Alternative to traditional parametric techniques where available data is not
sufficient to fulfil the Central Limit Theorem

2.5.3 Research questions contribution to knowledge

The analysis of synthesised literature to answer RQ1 in Section 2.4.2 summarised the key
UQ approaches used to undertake purely quantitative, purely gqualitative and compound
analysis. The importance of considering correlation and sensitivity was highlighted.
Section 2.4.3 identified PDFs best suited for uncertainty analysis applicable to industrial
maintenance. Standardisation of qualitative factors to answer RQ2 in Sections 2.4.2.2 and
2.4.2.3 highlighted the use of the pedigree matrix to assign scores corresponding to
uncertainty intervals [39,52]. These are attributed by their geometric standard deviation
(GSD) to combine with quantitative estimates. To gauge these on an equivalent scale for
aggregation, the respective coefficient of variation (CV) of each input is used as the
uncertainty measure [32,34]. Systems in the reviewed context of emissions, energy &
environment are inherently complex. Methods used must be flexible and therefore likely

to be transferable to industrial maintenance.
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The analysis to answer RQ3 in Section 2.4.4 highlighted the use of deep learning to
predict uncertainty. Methods to predict individual and aggregated uncertainty manifested
by data availability, quality, experience and knowledge over time should be applicable
under limited data where traditional probabilistic Bayesian learning cannot be applied.
Approaches summarised in Table 2.7 should be explored to make confident predictions
of which uncertainties will pose undesirable risk throughout the in-service phase.

2.6 Conclusions and future work

The purpose of this review was to investigate distinct methodologies used to quantify,
aggregate and predict uncertainty for real-world applications. Knowledge gaps within the
research scope were highlighted, prompting the future research direction for dynamic
uncertainties manifested in engineering systems to optimise performance and availability

for the in-service phase.

Section 2.1 hypothesised that current approaches considering a compound aggregation of
factors will increase confidence and rigour in determining the impact of uncertainty over
time under limited available data. The methodologies identified above for compound
aggregation in theoretical and real-world applications, along with deep learning
techniques to predict uncertainty have been shown to achieve this and consequently prove

the hypothesis to be true.

Conclusions drawn from the discussion of approaches prove that the aggregation and
prediction of uncertainty are hindered by the quality of available data, experience and
knowledge. Modern engineering systems feature a myriad of subsystems interacting
simultaneously and nonlinearly with each other with levels of importance dependent on
operational conditions and system environment. Limited data concerning the optimisation
of such systems and interactions between them increases uncertainty throughout their in-
service life. The in-service life typically spans several years, prompting a need for robust
predictions of technical engineering uncertainties relating to cost and equipment
availability. These systems typically operate under product-service system (PSS)
contracts with multiple stakeholders, which presents challenges to confidently and
accurately determine the level of uncertainty at present or in the future. Uncertainties
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related to stakeholder relationships are largely tied into supply chains and therefore out
of scope for this research [23,50].

From the findings of this review in answering the three research questions, three core

research gaps were identified:

1. Approaches to quantify and aggregate compound uncertainties represented by
different distributions, considering dependencies between them, applicable to
increasingly complex engineering systems.

2. Application of GSA to determine the impact of individual uncertainties on the
aggregated total, accounting for compound parameters and significant correlation.

3. Limited approaches to predict uncertainty in engineering systems with complex and
non-complex entities under limited data, and to do this without the need to produce

complicated and expensive models of physical systems.

Future work to close the first and second gaps is recommended to develop robust
frameworks that consider dependencies between compound inputs within increasingly
complex system boundaries and identify which inputs have the greatest influence on the
aggregated uncertainty. Flexibility in engineering systems design allows unpredictable
unknown-unknowns to be mitigated (Figure 2.1), which should be reflected in UQ
frameworks. While many UQ approaches exist for purely quantitative scenarios,
standardised methodologies to quantify compound uncertainty are limited in the
manufacturing and maintenance context, especially for the in-service phase. The
suitability of the pedigree matrix to determine qualitative uncertainty in the context of the

research questions proves promising for the research direction.

Future work to fulfil the third gap can be achieved through a combination of deep learning
LSTM networks and spatial geometry. This will allow uncertainty to be forecast for real-
world applications, incorporating complex and non-complex entities. LSTMs can make
flexible forecasts based on prior data and update when new data becomes available.
Spatial geometry offers a novel approach to predict uncertainty under limited data, though
not yet applied outside of cost estimation. The push to develop deep learning methods to
predict uncertainty is gathering importance as data volumes, computational capability and

complexity in engineering systems increases.
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Maintenance processes can be simulated through surrogate models, incorporating the
identified challenges to execute frameworks to quantify, aggregate and predict resulting
uncertainties. Simulated data can then be incorporated to train developed frameworks to

confidently aggregate and predict compound uncertainty.
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CHAPTER 3. CURRENT PRACTICE AND CHALLENGES

Abstract

Complex engineering systems present a wealth of uncertainties in factors from performance measurements
to maintainability and through-life characteristics. A quantifiable understanding of these uncertainties is
vital to system optimisation and plays a key role in decision-making processes for manufacturing
organisations worldwide; impacting profit, product availability and manufacturing efficiency. The
influence of 32 categorised uncertainty factors is assessed through a questionnaire completed by nine
experienced maintenance managers from a leading defence company. The pedigree approach is applied to
score the validity of respondents’ answers according to their experience and job role to normalise scores.
Results are discussed in interviews with respondents along with current practice in, and ways to improve,
uncertainty assessment. Six core challenges are verified with 40 practitioners from various industrial
backgrounds. From the interviews, it is deemed that a holistic view of heuristic and statistical attributes
ultimately allows for more accomplished decision-making but requires trade-offs between quality and cost

over the asset’s life cycle.

Paper 2 Identifying challenges in quantifying uncertainty: Case study in infrared thermography

Published: Procedia CIRP, IPS2 Conference 2018
DOI: 10.1016/j.procir.2018.03.301
Data access: 10.17862/cranfield.rd.11961435.v2

Paper 3 Current practice and challenges towards handling uncertainty for successful outcomes in
maintenance

Published: Procedia CIRP, CIRPe Web Conference 2019

DOI: 10.1016/j.procir.2020.01.024
Data access: 10.17862/cranfield.rd.11949021.v3
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3.1 Introduction

Decision-making in industrial maintenance is typically based on two broad factors:
recorded data and subjective expert opinions. The prior presents hard facts, subject to a
degree of uncertainty that can be quantified statistically by the standard deviation of the
dataset. The latter attributes qualitative uncertainty by what traits qualify someone as an
expert and the basis of their view to establish its validity. Data recording methods,
accuracy of equipment used, or maintainer performance are rarely considered as an
attribute to overall uncertainty. Once statistical uncertainty estimates are obtained from
recorded data, it is necessary to also question how these recordings were made, their
accuracy and how such approaches may differ in various operating conditions. In complex
engineering systems (CES), decisions made for one component or subsystem can have
unforeseen effects on others. An example of one such system is the maintainer. The
degree of uncertainty associated with the maintainer’s discretion in the quality of
maintenance carried out is significant due to the number of variables that may influence

their decisions; such as training level, measurement quality and environmental conditions.

A combination of the hard facts and subjective opinion needs to be considered to make
informed and effective decisions leading to prosperous outcomes in maintenance. Some
cases require more expertise; some require more data. The question here is whether a
holistic view of these uncertainties can improve decision-making capabilities and reduce

through-life costs as well as unforeseen challenges.

In the context of industrial product-service systems (PSS), maintenance responsibilities
are shifted back from the client to the product provider (contractor) [174]. These service
contracts are increasing in scale and complexity, now accommodating highly complex
and dynamic systems. Operational life cycles of such systems promote extensive
relationships between the contractor and client. The availability, reliability and
maintainability of these systems and equipment is therefore essential in logistical
contracts and through-life support services. Some significant maintenance technologies
that support these services are non-destructive testing (NDT) and degradation assessment,
repair and remote maintenance that sustain maintenance activities [174,175]. These
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should therefore be profitable to the contractor, but also ensure supply chain sustainability
and customer affordability [176].

The approach to a specific maintenance task by a contracted maintainer may differ from
that of the client’s maintainer on the same task. Decisions made here raise several

qualitative uncertainties from both sides that are naturally problematic to quantify.

This chapter presents a survey questionnaire to examine and rank prominent factors that
influence uncertainty in maintenance based on literature and input from industry experts.
Uncertainties are considered in the context of maintenance for CES, considering the
dynamic nature of system requirements over time and the effect these may have on the
through-life maintainability of CES from the perspective of industrial PSS.

Respondent qualities are attributed in a pedigree assessment. Results are reviewed and
discussed in a series of semi-structured interviews and validated with wider industrial
practitioners before producing a refined survey and pedigree criteria. Results are ranked
using the well-established Analytical Hierarchy Process (AHP) to determine areas facing

the most significant challenges and uncertainties.

3.2 Research background

3.2.1 How does uncertainty affect industrial PSS?

Cost assessments for the service and support of long-term projects is a challenge shrouded
in uncertainty owing to the variable nature of such services and unpredictable changes in
customer requirements [46,137]. Further uncertainties are found in highly variable
equipment usage rates, lack of information to make accurate forecasts, importance of
creating the right incentives around long-term maintenance and accurately predicting
schedules [177]. These uncertainties present an inherent degree of risk to industrial PSS,
which can be utilised as a measure of future uncertainties in achieving performance within

defined cost, schedule and performance constraints [178].

3.2.2 Decision-making techniques

Saaty’s [179] AHP has been extensively implemented and validated to prioritise

alternative options via a set of evaluation criteria. Pairwise comparisons are applied to
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each criterion in a set of matrices to generate weighted scores, which are then aggregated
to give a global indication of the best or most popular option [103,135,180,181].

Other multi-criteria decision making (MCDM) methods such as TOPSIS and
PROMETHEE can be applied in tandem with AHP to compare complex parameters such
as algorithms through fuzzy theory [182-185]. Other qualitative approaches such as
SWOT (strengths, weaknesses, opportunities, threats) analysis can be used to quickly
identify risks and factors influencing uncertainties in a group setting, but may result in a
plethora of factors that can’t be accurately summarised in a quantitative manner with
resources available [46,136,178]. AHP is therefore adopted in this study to identify the

most significant challenges with a high level of accuracy.

3.3 Survey questionnaire — core challenges influencing
uncertainty

A survey questionnaire was composed to rank prominent factors that influence
uncertainty in maintenance based on literature and input from industry experts to gather
heuristic data on challenges in industrial maintenance and the underlying uncertainty
propagation. This consisted of scored and open questions. Scored questions were used to
gain quantitative values denoting the degree to which, for example, the respondent agreed
with a given statement. Open questions only restricted by the topic allowed respondents
to give a clearer view of their true opinions and lead to further discussions and a clearer

understanding of the subject.

The questionnaire comprised of four core sections:

e Current practice; considering the nature of long-term projects and resulting
relationships with clients and external contractors, maintenance procedures in complex
systems and the impact of maintainer wellbeing on maintenance quality

¢ Influencing factors; ranking of uncertainties arising in long-term projects according to
the influence they have on the quality and effectiveness of maintenance carried out

¢ Data handling; systems and methods used to manage maintenance data and techniques
used to influence decisions for future projects

¢ Risk and mitigation; strategies used to reduce uncertainty in maintenance
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Nine responses were obtained from a leading defence company. Respondents scored 32
factors according to their influence on uncertainty on eight-point Likert scales (0-7) from
“no influence” to “high influence” to avoid the neutral middle point, with a ‘0’ option for
‘no effect’ [68,186]. These were refined and adapted by respondents and the author from
a list defined by Erkoyuncu et al. [74], divided into 5 categories: commercial,
affordability, maintainer performance, operational and engineering — illustrated in Figure
3.1 [135]. Respondents were each assigned a random ID to protect their anonymity.
Respondent years of experience in current and relevant previous roles are illustrated in

Figure 3.2.

3.3.1 Pedigree assessment

The pedigree matrix scores qualitative, expert opinion against predefined criteria to
permit quantitative reliability assessment [52,127]. These criteria are defined according
to the contextual application of the study [39,52,128]. The criteria were scored according
to (1) years of experience in current role, (2) years of relevant experience prior to current
role and (3.1-5) years of experience working on 5 select ship classes. Each criterion
adhered to the same 1 to 5 scale: 1 = <5 years, 2 = 5-9 years, 3 = 10-14 years, 4 = 15-20
years, 5 = >20 years. Explicit roles were not included here to uphold anonymity.

An example of pedigree scores for two respondents is shown in Table 3.1. The weighted
mean of these scores was used as a scaling factor to attribute proportionate scoring to
their survey answers. These are compared with the mean scores in Figure 3.3. The weights

of each criterion were defined by the author and are in themselves inherently subjective.
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Table 3.1. Survey: Example pedigree scores for two respondents

D 1) 2 (B1) (B2 (33) (34)

(35 (3.6) Mean W.mean

R1 5 S) - 2 2 4
R2 5 2 - - 5 -

2 5 3.57 3.85
- 1 400 254

1gree score

? 3
&2

Ped

R2 R3

q
4
|| ||I|||
O .
R1 R4 R5 R6 R7 RE& RO

Mean
B Weighted mean

Respondent number

Figure 3.3. Survey: Mean and weighted mean comparison of pedigree scores for all respondent

attributes

The mean and range for each influencing factor and category were evaluated in MS Excel.
This is represented for all factors in Figure 3.4 numbered in the x-axis corresponding to
Figure 3.1. Agreement between respondents is represented by the range, where a high
range reflects high disagreement. These can be influenced by a specific project and not
necessarily reflect their overall view. Factors that showed contrasting levels of agreement
between the respondents are summarised below.

e High influence on uncertainty, high levels of agreement: Ability to screen

candidates in training (12); Quality of information from OEM (18); Data reliability &

quality (29)

¢ High influence, high disagreement: Customer ability to spend (9); Availability of

resources to support maintenance (19); Supply chain logistics (24)

¢ Low influence, high disagreement: Labour efficiency (1); KPI specs (3); MTBF data

(23)
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3.3.2 AHP implementation

AHP estimates relative magnitudes of inputs through pairwise comparisons [179]. These
were represented in a positive reciprocal matrix adopting an algorithm defined by
Erkoyuncu [39] for each of the 5 categories. Detailed results of the AHP are available in
the supplementary data. The resulting weights highlighted the most prominent factors in
each category, which were elaborated on in the interviews.

3.3.3 Interviews with industry

Survey results were analysed and discussed in a series of semi-structured interviews with
respondents to obtain subjective views across maintenance departments. This structure
allowed discussion of relevant topics while permitting respondents to provide further
detail on their viewpoint from the survey [74,135,187]. Strategies and examples from
literature [186-189] were used to structure and phrase the questions to obtain relevant
information that can then be put forward to compose a framework capable of predicting
the level of subsequent uncertainty influenced by challenges raised. Respondents were
assured that responses would be handled confidentially and would not be linked to
individuals. Where necessary, probes and prompts were used to encourage further

responses and greater clarity [187]. The interview questions are depicted in Appendix C.

3.3.4 Core challenges summary

Core challenges that influence uncertainty prediction in maintenance, as highlighted from

the questionnaire and interviews, can be summarised in six factors as follows:
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Intellectual property rights (IPR), where modern systems are comprised of a vast
number of components, many of which can only be maintained by the OEM due to IPR.
This yields a degree of information asymmetry leading to uncertainty around the accuracy
and availability of technical data; validated by the ‘OEM logistics’ factor having the
single greatest influence on uncertainty in the survey. If a specialist maintainer cannot

be sent out to fix the component, significant delays could ensue.

Maintainer performance, where levels of knowledge and experience can have a
significant impact on maintenance quality and material state awareness. Additional time
pressures and individual attitudes impact effort put into completing a task. Naval ships
are deployed for several months at a time, whereas platforms such as aircraft are flown
for a matter of hours and undergo rigorous maintenance checks between sorties. Over
time, each ship on deployment naturally develops its own ‘crew culture’. This has a core
influence on maintainer attitude and affects the quality to which they conduct and record
maintenance activities. Dockside maintainers would then not hold accurate data on the
material state of a given part. If a problem was found the part would have to be replaced,
accumulating unplanned costs and delays.

Quality of information, where documentation on maintenance procedures from OEMs
is not well maintained. Books of Reference (BoR) are reviewed every 5 years, yet some
date back to 1995. This can influence KPI specifications for a given platform, further
raising uncertainty in maintenance procedures. In ship support, Job Instruction Cards
(JIC), customer instructions and OEM documentation often lack detail. This exaggerates
issues in data application for industrial and managerial support. Maintenance scheduling
can then be affected, causing components to be maintained on a reactive basis rather than
preventive. Materials and parts are not always available on the shelf when they should be
and a robust system to purchase these materials is not in place. A range of data
management systems are used for different ship platforms. For some, data is not

necessarily recorded by the required party. Managers only get half the picture.

Resistance to change, where what is expected by the customer goes against what is or
can be provided by the primary contractor. Many maintenance tasks need to be sub-
contracted to a third-party OEM, which the primary contractor has no control over. That

OEM could be operating under a one-off contract to maintain a specific part or system.
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Significant uncertainties are raised here for the primary contractor as the time schedule
and cost incurred from the third-party OEM cannot be finalised until the contract is

completed, which may have knock-on effects for interconnected systems.

Stakeholder communication, where subcontractors may be fully qualified to sign off
work done but cannot due to conflicts of interest, so the same task is repeated, resulting
in unnecessary time and cost losses. An example was given in the interviews where two
maintainers who have not conversed did not know the current material state or planned
maintenance schedule of systems that connect at a platform level. The asset, maintained
by the OEM, was rendered obsolete by ship staff while on deployment. It therefore missed
a planned maintenance period when in dock, meaning the ship could not carry out its

tasked duties.

Technology integration, where the exponential progression of technology means that
training may not have kept up and software required to interrogate a system for diagnostic
checks is not held by maintainers. New builds often have maintenance procedures locked
in the design phase. Older platforms experience multiple upgrades over their lifetime
which can result in examples such as seven different ship types under one platform
grouped into a maintenance procedure, even though procedures for each type are
different. Customer requirements may also change through design and upgrade
programmes, which induce substantial costs and schedule delays.

A summary of the six core factors that influence uncertainty in industrial maintenance for
industrial PSS and current approaches to maintenance is represented by Figure 3.5 in a
broad sense between the OEM, contractor and client. The outer blue factors elaborate on

areas where uncertainty is manifested, as discussed in the interviews.
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Figure 3.5. Survey results: Core factors influencing uncertainty in industrial maintenance

3.3.5 Wider industrial input

A live survey was carried out with industry practitioners and cost estimators at a
workshop on modelling risk and uncertainty. The six core challenges identified were
presented using Mentimeter live voting software. Respondents were asked if they
considered a combination of quantitative, statistical (Type A) and qualitative, heuristic
(Type B) uncertainty in their work and to identify their background, achieving 58

responses.

Segmentation of respondents according to their answer to the first two questions is
illustrated in Figure 3.6 (unknown means the first question was unanswered). 41% of
respondents were from the defence sector, 16% from aerospace and 24% cost analysists.
A near 50:50 division of backgrounds was found and was relatively equal across each
sector. Finally, respondents ranked the six challenges according to their influence on
uncertainty, which gained 40 responses. The weighted mean score of each factor is shown
in Figure 3.7, with an area plot for response distribution on the Likert scales. Higher
weights are applied to data points with more responses, illustrated by peaks in the
distributions.

59



Do you consider

No, 15, Yes. 16, combined uncertainty?
48% 5206 ® Ves
No
14
Unknown
9
38% [ 3
0,
s ¢ £ i34 & & & £ &
> g 2z Yz 23 g g 2 &
& g = ] Q 5} 5]
- = A B B 4
-z g S g
=
Respondent background

Figure 3.6. Live survey results: Respondent background according to whether they consider

Intellectual property rights
Maintainer performance
Quality of information

Resistance to change

Sharcholder communication

—T)

T T T

Technology integration ~ — “\:‘
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Quality of information showed the greatest influence on uncertainty, with a weighted
mean score of 6.3. This is followed by technology integration, with a weighted mean
score of 5. Maintainer performance, resistance to change and stakeholder communication
were found to have a relatively wide distribution spread, indicating disagreement between
respondents. However, maintainer performance shows a higher distribution towards ‘high
influence’. As before, disagreement can be due to respondents’ own comparative
experiences in their industry in general or on a specific project they are working on. IPR

showed the lowest influence, with a weighted mean of 3.1.
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3.4 Discussion and conclusions

This chapter aimed to identify and rank core factors that influence uncertainties
originating from challenges in the maintenance of complex assets under industrial PSS.
Maintenance managers from a leading defence company completed a survey
questionnaire identifying these factors. An assessment of the validity of their responses
was made through defined pedigree criteria, the results of which were applied to each
respondent to normalise their answers. Results were discussed and developed in a series
of semi-structured interviews. Mean scores for each factor were weighted using AHP to
identify the most influential factors. Core challenges were discussed in Section 3.3.4.

The derivation of pedigree criteria is inherently subjective. The criteria selected for this
study (Section 3.3.1) were deemed, through the interviews and academic input, most
applicable to score a level of expertise to respondents. Ranking more detailed
qualifications against each other adds levels of complexity deemed out of scope for this

study.

The AHP allowed factors to be weighed against each other within the survey categories.
From this, the six core challenges were determined. These were validated through wider
industrial input in a live survey, where the quality of information was deemed the most

influential factor on uncertainty.

A shared understanding of material state across all departments is required to fill gaps in
the supply chain, improve communication between stakeholders, overall decision-making
and cost-effectiveness of ship support. Maintenance regimes used by the contractor or
client may also differ, therefore holding a greater degree of uncertainty. In CES, where a
change in uncertainty in one system has an unknown impact on another, this issue is
amplified as different components may be maintained by different parties in the same
system. There are approximately 300 different data repositories in use across the studied
company, the majority of which are not linked and consist of numerous duplicate entries
[190]. This includes DRACAS (Data Reporting, Analysis and Corrective Action System)
and UMMS (Unit Maintenance Management System), where data may not be recorded
in a useable fashion. This restricts the availability of data concerning specific components

and the impact they will have on interlinked systems [191].
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A common support model (CSM) is under development to tackle this challenge, featuring
five management disciplines for through-life ship support: enterprise, class, design,
maintenance and equipment [190]. These are endorsed by a complex web of information
and knowledge management that is historically subject to a degree of asymmetry. This
was made apparent in the interviews and previous studies across industrial sectors
[48,192,193].

Stress levels and working conditions further influence uncertainty, as a heightened degree
of each will negatively impact the quality of maintenance. It is incredibly difficult to
obtain data on maintainer wellbeing as unions do not like to give or authorise the
collection of such information. In many cases, more attention is given to critical and
complex components. Non-critical components therefore receive less attention. For

example, bypass valves could be considered non-essential until they fail.

A combined understanding of the impact of qualitative and quantitative uncertainty on
system performance will provide a holistic picture allowing for more informed and
effective decisions leading to prosperous outcomes in maintenance, but this comes at a
cost. Budgets can be set for this with the ‘spend to save’ approach or set aside lump sums

for unforeseen circumstances. Ultimately, a trade-off is required.

This study can be extended in several ways for further research. First, a broader
framework can be developed to identify contributing factors in a given system, define
them as quantitative (statistical) or qualitative (heuristic), identify acceptable uncertainty
parameters for each element and combine the total subsystem uncertainties to gain a more
holistic, quantitative picture. Second, the interrelationship between criteria can be
incorporated and modelled through other quantitative and qualitative techniques such as
the Analytic Network Process (ANP) [181] and PROMETHEE. Third is to develop
analytical frameworks in order to better understand potential impacts of uncertainty and

the ability to manage them should they arise.
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CHAPTER 4. COMPOUND UNCERTAINTY
QUANTIFICATION AND AGGREGATION

Abstract

The mounting increase in technological complexity of modern engineering systems demands rigorous
determination of equipment availability and turnaround time whilst allowing for overruns and unforeseen
costs. Quality and availability of quantitative data, as well as qualitative expert opinion and experience,
expose uncertainties that can result in under or overestimation of the above factors. Quantifying such
uncertainty should consider inter-connected components and associated processes from a combination of
quantitative and qualitative (compound) perspectives. This chapter presents a Compound Uncertainty
Quantification and Aggregation (CUQA) framework to determine the compound output along with an
assessment of which parameters contribute the greatest uncertainty through global sensitivity analysis. This
will provide maintenance planners with a confident, comprehensive view of parameters surrounding the
above factors to improve decision-making capabilities. The framework was validated by assessing
compound uncertainties in two case studies: a bespoke heat exchanger test rig and a simulated turbofan
engine. The results demonstrate an effective measurement of compound uncertainty through the CUQA
framework and the impact on system reliability. Further work will derive methods to predict uncertainty

through the in-service phase of an asset’s life cycle and its incorporation with more complex case studies.
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4.1 Introduction

Uncertainty quantification (UQ) concerning the maintenance of engineering systems is
growing in recognition and rigour as the complexity of such systems surges in the modern
world. Complex engineering systems (CES) are comprised of multiple sub-elements
including equipment and operators that interact simultaneously and nonlinearly with each
other and the environment on multiple levels [2,3]. Consideration of the relationships
between elements is vital to understand emergent behaviour to aid decision making [4].
Complex systems science is a field in itself, the theory of which is widely discussed in
literature [4,6,8,9] but is out of scope for this research.

The maintenance of complex and non-complex engineering systems exhibit a range of
uncertainties from interconnected factors such as quality and availability of quantitative
equipment data and the qualitative influence of operators, expert opinion, experience and
environmental conditions [10]. These uncertainties are represented by varying probability
distribution functions (PDFs) and can lead to under or overestimation of maintenance
costs, reliability measurement, equipment availability and delays in maintenance
scheduling. Recent research in CES has explored UQ in micro gear measurements [3],
structured surfaces using metrological characteristics [11], correlation uncertainty in gear
conformity [12], grey-box energy models for office buildings [14], uncertainty in
disassembly line design [15] and others reviewed in various related studies. Many of these
approaches only consider quantitative uncertainty given by variability in measured data,
rather than the compound aggregation of quantitative and qualitative uncertainties
[3,11,14,15]. Methodologies to do this are growing in many areas, but are limited from
an industrial maintenance perspective. This is necessary to obtain a comprehensive
understanding of system reliability, as well as the inherent risks and knock-on effects
imposed by altering elements within the system. Limited research guiding the aggregation

of compound uncertainty sets the focus for this chapter.

A 6-step framework is presented to quantify and aggregate compound uncertainties to
enhance system performance assessment. This will provide maintenance planners with a
comprehensive view of parameters surrounding the above factors to improve decision-

making capabilities.
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The proposed framework is detailed in Section 4.2 along with key mathematical formulae,
functions and assumptions made. Section 4.3 applies the framework to two case studies:
a bespoke heat exchanger test rig comprised of multiple sub-systems, developed at
Cranfield University [17], and a simulated dataset for turbofan engine degradation.
Individual uncertainties from quantitative and qualitative sources and correlations
between them are assessed and aggregated to give a confident indication of system
performance. Section 4.4 discusses the results, strengths and limitations of the framework

along with conclusions and future work in this area.

4.2 Compound uncertainty quantification & aggregation
(CUQA) framework

Every measurement or estimate is subject to a degree of error, which in turn contributes
a level of uncertainty. Quantifying this uncertainty enables a thorough assessment of the
scale of risk inflicted on the system by each component [2,18]. This chapter contributes
a holistic assessment of compound uncertainties in dynamic data represented by different
distributions with an integrated assessment of correlations and sensitivity. This addresses
research gaps 1 and 2 identified in Chapter 2, achieved through a 6-step modelling
approach developed in MATLAB, described below and illustrated in Figure 4.1.

The framework was designed as an extension and amalgamation of existing
methodologies from literature [2,18,20,22,24,26,28]. An initial version was presented in
Grenyer et al. [30]. Here it is further developed and validated in two case studies,
considering key parameter variables identified within the system. This chapter has been
submitted as a manuscript and is under peer review at the time of writing. The framework
steps were developed from the traditional approach in the GUM, extended to consider

compound uncertainty and GSA, detailed as follows:

Step 1: Outline system setup & uncertainty sources. Inputs are grouped according to
their uncertainty type — quantitative or qualitative. This includes all measured data,
assumptions made and environmental predictions. Distribution types are established by

‘goodness-of-fit’ tests. Selected types are indexed for later calculation.

65



Identification & classification

& uncertainty sources distributions

| |
| |
| |
'@ |
| H - |
! ?Outlme system set up Define parameters & !
| |
| |
| |

i
: I
1 |
| I
| v |
| ) |
" Datcutae ndwidual | "“p"';da‘a | Spift Gtz it !
| . .
uncertainties — homogeneous sub-arra !
| Calculate statistical 9 ¥ :< ............................................
: (3\ v parameters :
I o) . v Calculate standard i
! Assess correlations Monte Carlo uncertainty for each time [ —
between parameters i ive i !
| € p simulation unit of respective inputs |
|
| + |
@ G Qualitai '
AN P ; ualitative i o
! Calculate respective @ Defne ucerainy facors | | | 5 _ <k
: CVs - : and corresponding pedigree : @ § = g
| Create pedigree matrix criteria ! S 3 P E
: |25 |82
| SV =
| Calculate GSD of each attribute Define scale range and : a E ; §
! for respective time unit uncertainty indicators | L5 =
| | @4 [
! | QLS =D
L 1 S @ [
v - g4
———————————————————————————————————————————————————— 1 o 2
| . | A -
' (5)Aggregation : 3£
! Sum of symmetric Kﬂ\Product of asymmetric | 2 5
- distributions distributions b 3 8
| | Combine CVs -+ l L2
| A -
! | Significant correlations | i 7'y
! |

(6) Global sensitivity analysis

Regression model

|

|

|

|

|

|

|

l Calculate total partial variance Calculate partial variance of Plot results
: given by each parameter uncorrelated parameters
| |

|

|

|

|

|

|

|

v Index less

Calculate partial variance of —>| Calculate sensitivity indices | significant

correlated parameters Y parameters
U 4

Figure 4.1. CUQA framework overview

Step 2: Calculate individual uncertainties. Statistical parameters are calculated for each
input according to their relative distribution via Monte Carlo simulation and the pedigree
matrix. These are grouped for each subsystem; for which the standard uncertainties and
correlations are determined separately before combining with the whole system,

elaborated as follows:
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Step 2a: Quantitative, recorded data is concatenated in a cell array to allow inputs with a
varying number of data points to be considered. Any non-numeric values are removed.
Monte Carlo simulations are run for the relative indexed PDF over a user-defined number
of points (default 10,000) or to the size of the largest input parameter. This propagates
input data to a homogeneous array size. In order to consider the uncertainty in the
measured values, each dataset (X;) is split into sub-arrays over the recorded time period.
The number of rows for each sub-array (S;) can be selected by the user or defined
automatically. Possible values for S; are defined by the number of factors (Ny) in the value
of the length of the dataset (dim (X;)). The automatic selection is given by Eq.4-1. This
aims to select the middle factor, providing enough values to determine the uncertainty at
each point while allocating enough sub-arrays to determine the change in uncertainty for
the recorded period. Each dataset is then reshaped according to Eq.4-2, where S ; is the

reshaped sub-array dimension.

Ny
[(7) + 1],1vf <10
S, = N, ,Si =1 (4-1)
() =
X; € RIMXD - ¥, € RSij (4-2)

The arithmetic and geometric mean and deviation are calculated for each sub-array and
the full dataset, along with maximum and minimum values of each input variable. The
standard deviation of each time unit is then calculated using the simulated data for each
distribution type. For lognormal variables, the mean and standard deviation is given as
geometric. Normal and uniform distribution variables are arithmetic [32]. To visualise
the data, boxplots for each sub-array are overlaid on the initial dataset. These plots give
more detailed information than standard error bars on the change in uncertainty over time

with dynamic datasets.

Step 2b: Qualitative factors are defined through pedigree criteria. Based on the example
implemented by Ciroth [32], the matrix defines uncertainty indicators based on expert
judgement. Criteria are defined for each score for each factor, which relates to predefined
case-dependent uncertainty measures. The ideal case has a pedigree score of 1,
corresponding to minimal uncertainty. Scores of 2-n have progressively higher

uncertainties owing to their representative criteria. While there is no limit to the number
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of scores, typically a maximum of 5-7 is used. The scores for each factor correspond to
an uncertainty indicator, the GSD of which is obtained from one or multiple sources
(interviews, surveys etc.). These scores will not be fixed over time, and so are pseudo-
randomly applied £1 of the defined score for each sub-array. If the uncertainty indicators
are obtained from a single source, the GSD is given as its square root. If they are obtained
from multiple sources, the GSD is given by Eg. 2-2, modelled by the lognormal
distribution [32,34,36]. The GSD of less ideal indicators is given as a ratio of the
calculated GSD and that of the ideal score for each input, meaning that it is always equal

to or greater than 1 [32].

Step 3: Determine significant correlations between input parameters. To best
determine correlation, input parameters must be of equal length. For quantitative data,
initial recordings prior to Monte Carlo are sampled to the size of the largest parameter
length around their respective PDF type. Qualitative parameters are sampled using their
uncertainty score as the respective mean and GSD as standard deviation under a
lognormal distribution to achieve a homogeneous sample size. Spearman’s correlation
coefficient p (Eq. 2-5) is calculated between each pairwise input parameter, along with
their corresponding p-values. These are the result of the null hypothesis significance test
that determines whether what is observed in the data sample is likely to be true for a wider
population. A default significance level (a) of 0.05 determines that for p-values < a,
there is 5% chance that a significant correlation does not exist between those parameters
[9,37]. In addition, an ideal limit to define significant coefficient magnitude is defined by
the user as, pyim, and cut-off, pq,.rr. If there is not at least one pairwise coefficient for
which the absolute value |p| > p;im , the ideal py;,, is reduced in increments of 0.01 via

a ‘while’ loop until the condition is true or the defined p.,.,f is reached. This enables

the user to define the degree of correlation to be included in the aggregation with the
assurance that the resulting coefficients are statistically significant. Corresponding input
parameters for which the final condition is true are plotted in a correlation matrix and
stored for use in Step 5. This matrix provides a visualisation of correlation magnitude for

each parameter with a significantly correlated pair [38].
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Step 4: Calculate the CV for each input. Uncertainties from different data types
represented by different PDFs must be considered on an equal scale in order to be
aggregated. This is achieved through the CV, explained in Section 2.4.2.3, the formulae
for which are given in Table 2.4 [34]. These are calculated within the framework by a
sequential algorithm according to the specified input and distribution type. Summary
tables are then generated for the compound inputs and correlation, as calculated in Steps
2-3.

Step 5: Aggregate respective CVs and correlated parameters. As discussed in Section
2.4.2.1, symmetric distributions are aggregated additively by RSS (Eq. 2-1). Asymmetric
distributions, given by lognormal distributions, CVn, are aggregated multiplicatively by
Eq. 2-3 [34]. The framework splits the calculated CVs of quantitative inputs according to
the distribution type. The sum of symmetric attributes is added to the product of
lognormal attributes. Comparing this with Eq. 2-1, the aggregated uncertainty is given by
CVy in Eq. 4-3:

n n n
CVr= |3 (V) + (H(Can +1) - 1) +2) (pey CV, CK) (4-3)
i=1 i=1 i=1

Where (p,.,, CV, CV,) is the Spearman correlation coefficient of 2 parameters x and y multiplied by their respective CV.

Individual CVs are plotted as bars against the aggregated total, along with a colour bar to
visualise the acceptability of relative factors according to predefined scales. The
correlation coefficient standardizes the variables and is therefore unaffected by changes
in scale or units. The formulae allow the aggregated CV of quantitative and qualitative
data to be determined as a measure of total uncertainty. Given that CV is the ratio between
the standard deviation and the mean, the output follows a normal distribution. The

uncertainty can therefore be expressed back as the standard deviation via Eq. 4-4.

or = Z(m)z = ZWV) (4-4)
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Steps 2-5 are repeated for each sub-array unit. Summary variables including the
individual and aggregated CV are stored and used to calculate the sensitivity indices in
Step 6.

Step 6: Conduct GSA and visualise results. The relative influence of individual
uncertainties on the aggregated total is calculated as the response vector over each sub-
array time unit. The sampling approach proposed by Groen [40], influenced by Xu and
Gertner [41], is applied to consider the effect of correlated parameters using an adjusted
regression model. Results are visualised by a 3D bar plot to show dependant and
independent effects against the total, with the same colour scale applied as for Step 5 to
illustrate the severity. A feedback loop is then taken back to Step 2 where parameters with
total effects below a defined threshold (default 5%) are discounted. The aggregated
uncertainty and sensitivity indices are updated to determine the parameters contributing

the greatest impact to the aggregated uncertainty, visualised in the same manner.

4.3 Stepped implementation and results of CUQA framework

4.3.1 Case study 1: Heat exchanger test rig

The framework was first applied to a bespoke heat exchanger test rig, developed from an
initial design by Addepalli et al. [17] with the installation of a motorised pump and digital
sensors. The combination of digital and analogue recording, along with qualitative factors
discussed below, manifests compound uncertainty in heat exchanger performance. These
uncertainties need to be quantified and aggregated to assess their impact on the system,
assessed via the heat transfer coefficient [43,45,47]. This is calculated with the resulting

uncertainty, derived alongside the CUQA framework as follows:

Step 1: Outline system setup & uncertainty sources. The system comprised of a hot
closed-loop system and a cold open-loop system, illustrated in Figure 4.2 (notation
defined in Table 4.2). Component specifications are described in Table 4.1.
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Figure 4.2. Heat exchanger test rig: System design [17]

Table 4.1. Heat exchanger test rig: Component specifications of the initial design

Component Specification

Qil Aero shell turbine 500

Pump Vivoil X2P4702EBBA motorised pump

Heater 3 connected units controlled by 3 switches, temp. indicated by probe
Heat exchanger Jaguar oil cooler, plate-fin type

Temperature sensors Barksdale BTS38GVM0050M1

Pressure sensor Barksdale BPS38GVM0010B

10-Link master Pepperl+Fuchs ICE2-810L-G65L-V1D

The experimental setup comprised of seven quantitative parameters, summarised in Table
4.2 along with their corresponding reading interval and error, and five qualitative factors:
(1) Reliability of data, (2) Basis of estimate, (3) Reading accuracy, (4) Environmental
conditions and (5) Sample size — each modelled by the lognormal distribution. Oil
temperature at the inlet (T1) and outlet (T2) was measured by dual temperature sensors. A
constant flow rate was maintained by a motorised pump. Qil pressure (P1) was regulated
by a pressure relief valve, recorded by a dual pressure sensor at the pump outlet. The
sensors fed real-time data to the PC controller via 10-Link, logged to a CSV file in 1-

second intervals along with a timestamp.
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Table 4.2. Heat exchanger test rig: Uncertainty sources — measured parameters

Parameter Reading type PDF E?:EJQIQ Er?i(rjing
Imlt'osfir;? r("’?:c))t fUGIEmP- - pigital Lognormal 0.1°C £0.1°C
-(l)—lZJ’t iinljgx r(]‘?(t:)fIUiOI M pigita Lognormal 0.1°C £0.1°C
oo Ef'a,L,;? t("fgid P Analogue Normal 5°C £2°C
&r%iﬁtvg%kg%l;id e Analogue Uniform 2°C +0.5°C
g;ésssir;zop:’reh-cl)—:g? i((l:)ar) Digital Lognormal 0.01 bar +0.01 bar
S(z),sEIi—?ll—th?g;rl)Uid pressire Analogue Uniform 0.5 bar + 0.3 bar
V, Volumetric flow rate of Analogue Uniform 5 L/min £ 2 L/min

hot fluid (L/min)

The heat transfer coefficient is given by the heat load Q of the hot (k) and cold (c) fluid
(Eq. 4-5):

Qn =my cPr* (Thin — Thout)

. (4-5)
Qc =m¢ o (Teout — Te )

Where 1 = mass flow rate, given by the product of the volumetric flow rate V and density p; cp = specific heat capacity; and T;,, —

Toy: is the fluid temperature differential in and out of the heat exchanger.
The heat balance error and composite heat load considering associated uncertainty are
given by Eqg. 4-6 and Eq. 4-7 respectively, as derived by Tatara and Lupia [43].

Contributing measurement uncertainties and additional qualitative bias in the system were

calculated separately using the propagation of error method [37].

While |HBE| < |Uygg| (Eq. 4-8), the overall heat transfer coefficient can be found and
associated measurement uncertainties are considered valid [43]. The focus of this study
was on the uncertainty in the measured values over time, not the uncertainty of the overall

recording period.

HBE = Qn—CQc 100% (4-6)
Qn
Q.U + QuUZ, @7
- Uéh + Uéc
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UHBE = 100% :
Q_’l\/(umh)2 +( UThin )2+( “UThout )2+(%)2 _|_( UTcin )2 +( “UTcoue )2 (4-8)
Qc mp Thin—Thout Thin—Thout me Temm=Tcout Temn—Tcout

The heating system was set to switch off at 80°C to prevent overheating. However, due

to its design, the heater was not able to sustain the temperature at 0.02°C/min for 10mins,
as recommended by Tatara and Lupia [43] to determine steady-state. While this is
unsuitable for thorough thermodynamic assessment of heat transfer efficiency from the
heat exchanger, it contributes further qualitative uncertainty to the system, which is

reflected in the application of the CUQA framework.

The steady-state region was therefore defined by the time of the first and last peak
temperature readings at Ti. Two cycles were completed, with a total of 85 minutes
recorded: a total of 5590 data points for the three digital parameters. The temperature
recorded at T1 had an overall range of 6.8°C and 1.2°C at T over the recorded period.
The pressure, P1 was set at 1.8 bar, following a lognormal distribution with a range of
0.32 bar.

Aside from these readings, all variable measurements were recorded via in-line analogue
dials. Many of these dials gave readings on different interval scales, varying measurement
accuracy, and therefore resulted in an increased uncertainty. Additional attributes such as

parallax error and ambient temperature further increase uncertainty in the measurement.

The volumetric flowrate V,, of the oil (hot fluid) was held at 5 L/min (0.83x10° m%/s)
with a uniform distribution. A reading error of £2L/min was assigned owing to the scale
of the flowmeter. At a maximum temperature of 80°C, p ~ 0.95 kg/L (950 kg/md).
Therefore, m, for the hot fluid = 0.08Kkg/s. cpy, is given as 1800 J/kg.C. For the air (cold
fluid), m, was given as 1.12 kg/s and cp, as 1005 J/kg.C. Further thermodynamic analysis
involving parameters such as oil viscosity and temperature loss through connecting pipes
were out of scope for the framework application. The uncertainty contributed by these

factors was factored into the pedigree matrix.
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Step 2a: Calculate quantitative uncertainties. A summary of the seven quantitative
parameters is given in Table 4.4. Summary statistics from the logged data for Ty, T and
P1 are given by the boxplots in Figure 4.3. Outliers are values greater than g5 +
w(qs - q,) or less than q; - w(qs - q1), where w is the maximum whisker length, 1.5

times the interquartile range, and g, & q; are the 25" and 75" quartiles of the respective
dataset [49].

co
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Figure 4.3. Heat exchanger test rig: Boxplots for T4, T, and P

The three digitally recorded parameters were split into 65 homogeneous sub-arrays over
the 5590 data points. The overlaid boxplots are shown in Figure 4.4, plotted over the time
series of the logged data. Owing to the multimodal shape of the data, the sub-array
standard deviation for T is low to negligible at the peaks and troughs and high for
temperature increases or decreases. The temperature at T, is more constant respective to

T1 showing a step change over time owing to the heat transfer coefficient of the heat
exchanger.

The greater the sub-array size (S;) the greater the uncertainty in the measurement. This is
illustrated in Appendix D (Figure D.1) for all possible factors (left), with a focus on S;
values of 0-130 and the automatically selected value, 86, highlighted (right). This
procedure enables a mean uncertainty estimate to be obtained where the recorded data is

not able to meet the criterion for steady-state readings.
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Figure 4.4. Heat exchanger test rig: Sub-array boxplots over time-series data

As S; increases, the number of sub-arrays decreases, resulting in greater uncertainty. This

is considered by the ‘basis of estimate’ factor in the pedigree matrix.

The four remaining quantitative parameters were acquired by analogue dials with varying
reading intervals (Table 4.2). These were taken every 30mins over the recording period,
resulting in limited data in comparison to the automated recording. Using Monte Carlo
simulation, the readings were propagated to match the array size of the three digital

parameters according to their statistical range and rounded to their corresponding reading
intervals.

75



Step 2b: Calculate qualitative uncertainties. The 5 qualitative factors were scored by
defined pedigree criteria detailed in Table 4.3. These were based on adjusted examples
from literature to apply to the case study [10,51,52]. Uncertainty indicators for each factor
for increasing pedigree scores corresponding to the criteria are illustrated in Figure 4.5.

For this case study, the uncertainty indicators were obtained from a single source (the

authors opinion) and applied to the full dataset.

Table 4.3. Heat exchanger test rig: Pedigree criteria

Score 1 2 3 4 5
Reliability of  Datais <2 Datais< 6 Datais< 12 Data is > 12 Age or source
data months old months old months old months old of data
and/or and/or and/or and/or unknown or >
recorded by recorded by recorded by recorded by 12 months old
fully fully qualified  experienced experienced
calibrated person but person but person, sensor
sensor or fully  sensor sensor accuracy
qualified requires requires unknown
person recalibration recalibration
Basis of Best possible Smaller Limited Incomplete No experience
estimate data, use of sample of available data, data, small in the data
historical field historic data, unverified, sample,
data, validated  parametric inexperienced  educated
tools and estimates, opinions guesses,
independently internally indirect
verified data, verified data, approximate
given by fully  some rule of thumb
qualified experience in estimate
person the area
Reading Measurements  Measurements  Measurements  Measurements  Measurements
accuracy taken using taken using taken using taken using taken using
fully recently recently accurate un-calibrated
calibrated and calibrated but  calibrated but  equipment that and inaccurate
accurate less accurate less accurate may need equipment
equipment: equipment: equipment: recalibrating
+0.01°C, +0.1 £0.1°C, #0.5 >+1°C, >+2
bar bar bar
Environmental Datarecorded Datarecorded Datarecorded Datarecorded Data from
conditions under specific  in generally in generally in a range of unknown or
consistent consistent consistent unspecified distinctly
conditions ora  conditions conditions, conditions different areas
specified with changes not
range of fluctuations specified
conditions specified
from area
under study
Mean sample > 1000 > 100 >50 <50 Unknown
size
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Their GSD is therefore given as the square root of the uncertainty indicator. These scores
will not remain fixed over time and are therefore pseudo-randomly applied £1 of the

defined score circled in Figure 4.5 for each sub-array.

‘ Factors

18 —@— MeasRel.
-~ —@— BasisOfEst.
= ReadAccuracy
g —@—EnvCond.
8 16 —O— SampleSize
5
=z
é 1.4
3
S
)

1.2

Pedigree score

Figure 4.5. Heat exchanger test rig: Uncertainty indicators for increasing pedigree scores

The resulting CV calculated in Step 4 was significantly greater than that of the lognormal
recorded data. This is most likely due to the small number of data points in the sub-arrays.
To give a closer comparison of the uncertainty, the pedigree factors were rescaled by Eq.
4-9. The following results up to Step 6 illustrate an example for the first sub-array time

unit.

w; - 1
10

U;_scaled = +1 (4-9)

Where U; = uncertainty indicator

Step 3: Assess correlations between parameters. The ideal limit of p was set to 0.5,
with a cut-off at 0.2. Naturally, significant positive correlation was identified between Ty
and T», highlighted in red (Figure 4.6). The negative correlation to P1 reflects the pressure
drop due to oil viscosity with increasing temperature. This shows the effectiveness of

selecting the desired p limit to remove minor correlations from the analysis.
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Figure 4.6. Heat exchanger test rig: Significant correlations for which [p| = 0.5

Step 4: Calculate respective CVs. The summary tables with calculated CV for each
input are given in Table 4.4 and Table 4.5 for the quantitative and qualitative factors

respectively.

Table 4.4. Heat exchanger test rig: Recorded data and calculated parameters

Parameter Reading Reading Dist. Mean Standard Min Max CV

interval error deviation
T1 (°C) 0.1°C +0.1°C  Ln 80.8654 1.0209 77.9628 84.6012 0.0207
T2 (°C) 0.1°C +0.1°C N 27.3305 0.3351 26.7000 27.8581 0.0123
T3 (°C) 5.0°C +2.0°C Ln 24,6000 2.8810 20.0000 28.0000 0.1171
T4 (°C) 2.0°C +0.5°C U 21.6000 0.8944 20.0000 22.0000 0.0000
P, (bar) 0.5 bar +1.0bar N 1.8436 0.0088 1.8252 1.8612 0.0048
P, (bar) 0.5 bar +03bar U 0.9000 0.2236  0.5000 1.0000 0.0000
(quvin) 5L/min  +£2L/min U 4.9575 0.0253  4.9343  4.9865 0.0000
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Table 4.5. Heat exchanger test rig: Pedigree factors with relating GSD and CV

Factor Distribution ~ Pedigree  Uncertainty GSD Ccv
score indicator

Meas. Relbl. Lognormal 2 1.1 1.0488 0.0477

Basis of Est. Lognormal 2 1.2 1.0954 0.0914

Read Accuracy Lognormal 1 1.0 1.0000 0.0000

Envir. Cond. Lognormal 2 1.1 1.0488 0.0477

Sample Size Lognormal 3 1.4 1.1832 0.1694

Step 5: Combine CVs. The combined CV of each PDF is calculated by Eq. 4-3 and
summarised in Table 4.6, aggregated for symmetric and asymmetric distributions and

total CV with correlation between T and T2 — given in the table as 2(pr, 1, - CVr, - CVr,).

Table 4.6. Heat exchanger test rig: CV aggregation results

PDF CV comb. CV agg. Corr. CVr
Ln recorded 0.0207 0.2256 0.0001 0.2593
Ln pedigree 0.2050 0.0011

Norm. recorded 0.1179 0.1179

Uni. recorded 0.0000

The visualisation in Figure 4.7 illustrates the relative CV of each quantitative (blue),
qualitative (orange) and correlated (purple) input against the aggregated total (cream) for
one of the 86 sub-array time units. When calculated for only the quantitative parameters,
the aggregated CV fell to 0.1293; a percentage decrease of 50.1% for the example time
unit. This illustrates the significance of accounting for qualitative factors alongside
quantitative parameters — providing a holistic view of factors that manifest uncertainty in
the system. While the depiction of these factors is subjective, the compound consideration
reduces the risk of underestimating the aggregated uncertainty, which can occur if only
accounting for quantitative parameters [32]. Individual uncertainties are then expressed
as variances by the square of Eq. 4-4 to feed into Step 6. The change in individual and
aggregated CV over all time units for S; = 65 (86 sub-arrays) is given in Figure 4.8a and
compared with S; = 215 (26 sub-arrays) in Figure 4.8b. This demonstrates the effect of

sub-array size on the resulting uncertainty estimate.
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Figure 4.8. Heat exchanger test rig: Aggregated total CV against individual factors over all time
units for §; = 65 (a) and S; = 215 (b)

Calculating the heat load parameters from Eqs. 4-5 to 4-8 gives [43]: Qn = 366.2MW, Ugn
= 16.31MW, Q¢ = 4.52kW, Uqc = 97.56W and resulting Q = 4.52kW. The heat balance
error (HBE) = 99.98% and composite load uncertainty Unge = 311%. This passes the

validity test given by as |HBE| < |Uygg/|, indicating the measurements are valid.
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Step 6: GSA and visualisation. The relative influence of individual uncertainties on the
aggregated total is plotted in Figure 4.9a. The uncertainty in T3, the oil temperature after
being cooled by the heat exchanger, has an overwhelmingly greater effect (76%) on the
aggregated uncertainty than any other parameter. This is due to the large error margin of
+ 2°C given by the reading interval on the dial. If T3 is discounted, along with parameters
with an impact below 5% (uniformly distributed), the basis of the estimate was deemed
to have the greatest effect at 56% (Figure 4.9b). The influence of T1 and T is minimal

due to the comparatively equal deviation for each sub-array time unit.
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Figure 4.9. Heat exchanger test rig: Sensitivity effects of individual to aggregated uncertainty

over all time units for all factors (a) and most influential parameters (b)

Altering the pedigree score allocation of the qualitative factors impacts the degree of
uncertainty each factor will contribute to the aggregated total, according to the defined
uncertainty indicators in Figure 4.5. Applying higher pedigree scores will apply a higher
representative level of uncertainty. The difference between one uncertainty indicator to
another will influence the respective factor’s sensitivity index owing to the pseudorandom
score allocation. Increasing the degree of allocation (e.g., from +1 to +2) will also
influence the respective sensitivity indices, though this was not deemed necessary in this
study for the score range of 1-5. While the uncertainty indicator scores are subjective,
they are expected to increase linearly or exponentially. Therefore, lower scores will have

less influence on the aggregated total.
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4.3.2 Case study 2: Turbofan engine degradation

The framework was applied to a turbofan engine degradation dataset simulated from the
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) tool, developed
by NASA [55,57]. This publicly available dataset has been widely applied in prognostics
and health management (PHM) [57,59,61,63,65]. The C-MAPSS data consists of four
datasets simulated under different operating conditions. The FDOO1 training dataset,
simulating degradation of the high-pressure compressor (HPC), was applied to the CUQA
framework to analyse the aggregated uncertainty in the measurements over time:

Step 1: Outline system setup & uncertainty sources. The FD0O01 dataset consisted of
21 sensors measuring temperature, pressure and speed for 100 engine units, each with a
random start time and normal operating level, running to failure. For this study, one
engine unit was selected with 192 cycles to failure. The system design is illustrated in
Figure 4.10.
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Figure 4.10. C-MAPSS turbofan engine: System design as simulated in C-MAPSS [55]
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Previous work using this dataset focused on remaining useful life (RUL) prediction
[59,65]. In these studies, sensor data was divided into three categories according to the
data trend; ascending, descending and irregular/constant. Data that does not exhibit an
ascending or descending trend over time (uniform) is not viable for RUL prediction and
was therefore discounted from the dataset. The previous case study showed that constant,
uniform parameters do not contribute to the uncertainty. Therefore, the same approach is

applied here. A description of the 14 included sensors is given in Table 4.7,

Step 2a: Calculate quantitative uncertainties. The sensor data was indexed and divided

into 16 sub-arrays consisting of 12 rows by Eq. 4-1. The mean and deviation of each array
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were calculated up to the point of failure. This is illustrated for 4 of the 14 inputs in Figure
D.2. A comparison of sub-array size to the mean deviation is given in Figure D.3. Other
than for the derivation of pedigree factors in Step 2b, the illustrated results up to Step 6
give an example for the first sub-array unit. A summary of the quantitative sensor data

for this example is given in Table 4.9.

Table 4.7. C-MAPSS turbofan engine: Detailed description of sensors [55]

Sensor

number  Notation  Description Unit

2 T24 Total temperature at LPC inlet  °R (Rankine scale)

3 T30 Total temperature at HPC inlet  °R

4 T50 Total temperature at LPT inlet  °R

7 P30 Total pressure at HPC outlet psi abs. (pounds per square inch, abs.)
8 Nf Physical fan speed rpm (revolutions per minute)

9 Nc Physical core speed rpm

11 Ps30 Static pressure at HPC outlet psi abs.

12 Phi Ratio of fuel flow to Ps30 psi

13 NRf Corrected fan speed rpm

14 NRc Corrected core speed rpm

15 BPR Bypass ratio -

17 htBleed Bleed enthalpy -

20 w31l HPT coolant bleed Ibm/s (pound mass per second)
21 W32 LPT coolant bleed Ibm/s

Step 2b: Calculate qualitative uncertainties. Random noise models were used to
propagate qualitative factors associated with the simulated data with a mix of distributions
to give realistic results [55,59]. This was given as a combination of three core factors
applied to all sensors: manufacturing and assembly variations (resulting in varying
degrees of initial wear), process noise (factors not taken into account in modelling) and
measurement noise. More in-depth factors concerning maintenance between flights and
environmental operating conditions could be considered in practice. For this study, they
are incorporated in the three core factors for the simulated data, scored against the
pedigree criteria detailed in Table 4.8 [55]. Uncertainty indicators for each factor are

illustrated in Figure 4.11, with GSD given as the square root of the uncertainty indicator.
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As for the previous study, the scores are pseudo-randomly applied £1 of the defined score
circled in Figure 4.11 for each sub-array, scaled by Eq. 4-9.

Step 3: Assess correlations between parameters. Each sub-array consists of 12 data
points. The ideal limit of p therefore needed to be set to a high level of 0.8, with a cut-off
at 0.6. No significant correlations were present above 0.8, so the value was reduced
incrementally to 0.78, for which significant correlation was detected between the pressure
at the HPC outlet and turbine core speed (Figure 4.12a). While it is logical to expect a
positive relationship between these parameters, notable in the plot, it was not maintained
through the other 15 sub-arrays. This does not mean the relationship was not present, but
that other dependencies were more prevalent below the limit of 0.8. When run for all data

points, a positive trend was identified between the physical and corrected core speed of

the engine (Figure 4.12Db).

Table 4.8. C-MAPSS turbofan engine: Pedigree criteria

Score 1 2 3 4 5
Manufacturing  Negligible Minimal range Notable range  Notable range  High range in
and assembly  range of initial in initial wear  in initial wear  in initial wear initial wear on
variations wear on on engine on engine on engine engine
components, components components, components, components,
not occasional regular high variance
contributing to reduction in reduction in in engine
engine engine engine efficiency
efficiency efficiency efficiency
Process noise  Negligible Minor trend in  Minor trend in  Significant Highly
trend in degradation degradation trend in contaminated
degradation trajectory, trajectory, degradation degradation
trajectory, no minimal noise  manageable trajectory, trajectory
noise noise variable noise
Measurement  Negligible Minimal Notable Significant High random
noise Sensor noise, Sensor noise, random random complex
no impact minor impact,  complex complex Sensor noise,
predictable Sensor noise, Sensor noise, tangible point
trend measurable inaccurate estimate
impact impact unobtainable
measurement

84



1.9 4

181 Factors
’ —@— ManufVariations
171 —@— ProcssNoise
’;— MeasurmntNoise
= 161
=
_'J
'§ 1.5 1
2 14
g
=
§ 1.3 4
=)
1.2 4
b ﬂ
1 T T T |
1 2 3 4 5

Pedigree score

Figure 4.11. C-MAPSS turbofan engine: Uncertainty indicators for increasing pedigree scores
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Figure 4.12. C-MAPSS turbofan engine: Significant correlations for which |p| = 0.6

Step 4: Calculate respective CVs. Summary tables with calculated CV for each input
are given in Table 4.9 and Table 4.10 for the quantitative and qualitative factors
respectively. The majority of factors here are lognormally distributed by the goodness of

fit tests.
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Table 4.9. C-MAPSS turbofan engine: Recorded data and calculated parameters

Parameter Distribution Mean Deviation Min Max Ccv
S2 (T24) Ln 642.20 1.0004 641.71 642.56  0.0004
S3(T30) Ln 1586.85 1.0026  1581.75 159232  0.0026
S4 (T50) Ln 1400.76 1.0021  1394.80 1406.22  0.0021
S7 (P30) Ln 554.17 1.0007 553.59 554.67  0.0007
S8 (Nf) Ln 2388.05 1.0000  2388.00 2388.11  0.0000
S9 (Nc) N 9049.55 49243  9040.80 9059.13  0.0005
S11 (Ps30) Ln 47.25 1.0029 47.03 4749  0.0029
S12 (Phi) Ln 522.05 1.0008 521.40 522.86  0.0008
S13 (NRf) Ln 2388.04 1.0000  2388.01 2388.08  0.0000
S14 (NRc) Ln 8133.09 1.0005  8125.69 8140.58  0.0005
S15 (BPR) Ln 8.41 1.0027 8.37 8.43  0.0027
S17 (htBleed)  Ln 391.75 1.0022 390.00 393.00  0.0022
$20 (W31) Ln 38.99 1.0018 38.88 39.10  0.0018
S21 (W32) Ln 23.40 1.0021 23.31 2348  0.0021

Table 4.10. C-MAPSS turbofan engine: Pedigree factors with related GSD and CV

Factor Distribution  Pedigree Uncertainty GSD Ccv
score indicator

ManufVariations Lognormal 2 1.01 1.0488 0.0477

ProcssNoise Lognormal 3 1.06 1.0954 0.0914

MeasurmntNoise  Lognormal 4 1.05 1.3038 0.2701

Step 5: Combine CVs. The combined CV is summarised in Table 4.11, aggregated for
symmetric and asymmetric distributions and total CV with correlation. The visualisation
in Figure 4.13 illustrates the relative CV of each input against the aggregated total for the

example time unit.

Table 4.11. C-MAPSS turbofan engine: CV aggregation results

PDF CV comb. CV agg. | Corr. CVr
Ln recorded 0.00639 0.29049 2.7168e-07 0.2905
Ln pedigree 0.29042

Norm. recorded 0.000544 0.000544

Uni. recorded 0
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Figure 4.13. C-MAPSS turbofan engine: Aggregated total CV against individual factors for one
time unit

For the example time unit, the measured data has minimal uncertainty compared to the
qualitative factors. Discounting the qualitative factors here resulted in a 97.8% decrease
in the aggregated CV from 0.2905 to 0.0065. The minimal quantitative uncertainty is due
to the spread of the 12 data points in the sub-array. Increasing the number of data points
increases the mean uncertainty depending on the variability in the dataset, but reduces the
number of sub-arrays (Figure D.3). The change in individual and aggregated CV over all
time units for S; = 12 (16 sub-arrays) is given in Figure 4.14a and compared with S; = 3
(64 sub-arrays) in Figure 4.14b.
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Figure 4.14. C-MAPSS turbofan engine: Aggregated total CV against individual factors over all
time units for §; = 12 (a) and S; = 3 (b)
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Step 6: GSA and visualisation. The relative influence of individual uncertainties on the
aggregated total is plotted in Figure 4.15a and results after discounting the less influential
parameters factors (Figure 4.15b). The quantitative parameters have a greater influence
than the qualitative factors, despite them having a lower CV for all sub-array units. The
most influential parameter uncertainty was T50 (temperature at LPT inlet) at 37%.
Discounting parameters with an impact < 5% results in Nc (turbine core speed) having a
dominating influence, while T50 dropped to 9%. This is again due to the variation in the

data points of each sub-array.

As for case study 1, the difference between one uncertainty indicator to another, defined
in Figure 4.11, will influence the respective factor’s sensitivity index owing to the

pseudorandom score allocation.
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Figure 4.15. C-MAPSS turbofan engine: Sensitivity effects of individual to aggregated

uncertainty over all time units for all factors (a) and most influential parameters (b)

4.4 Discussion and conclusions

The CUQA framework presented in this chapter was designed to enhance system
reliability measurement in a manner applicable to complex and non-complex engineering
systems through quantification and aggregation of compound uncertainties. These
develop as a result of recording methods and assumptions made about the system and are
modelled by different distribution types. The framework builds on existing literature to

aggregate compound uncertainty considering dependant variables in the analysis, as well
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as identification of the greatest contributing factors through GSA. Benefits of this
framework include enhancements to performance assessment and corresponding
maintenance planning for complex and non-complex engineering systems and respective

subsystems.

The framework was first applied to a bespoke heat exchanger test rig, which contributed
a range of uncertainties that impacted measurement quality and accuracy. Three
distributions were considered: lognormal, normal and uniform. All qualitative factors
were lognormal [32]. The measured parameters were deemed valid, though true steady-
state was not obtainable owing to the heating system [43]. The second case study
implemented a simulated engine degradation dataset [55]. The majority of the selected
sensors exhibited a lognormal distribution up to failure. The following paragraphs critique
the effectiveness of the framework through the results of the two case studies, concluding

with a summary of the contributions and recommendations for future work.

The CUQA framework is capable of assessing uncertainty for nonhomogeneous input
data. The user can view and select the best-suited distribution for each input via
‘goodness-of-fit” tests. While effective for a small number of inputs, an automated
method would prove more efficient for more complex systems. Monte Carlo simulation
was used in Step 2a to give a homogeneous array size, enabling level consideration of
each input. Monte Carlo was selected due to its flexibility with multiple distributions [9].
The inherently random nature of the simulation, though within respective distribution
parameters, causes different results each time the experiment is run, which may impact
the accuracy of parameter values. Other techniques such as Latin Hypercube Sampling
(LHS) and Taylor series expansion may provide samples tighter to the respective mean,

but do not show the same flexibility as Monte Carlo for multiple distribution types.

Splitting the input data into sub-arrays enabled uncertainty in the measured values to be
determined over time. The greater the number of rows in each sub-array, the fewer arrays
are allocated over the time series. The more arrays allocated, the more loops are
performed between Steps 2 to 5, increasing execution time. It is therefore necessary to
find a balance with optimum values in each sub-array, which was the purpose of the
automatic selection by Eq. 4-1 (comparisons of mean deviation with increasing sub-array

size are illustrated in Appendix D for the two case studies). Input parameters that do not
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maintain a positive or negative trend require more sub-arrays to account for their
variation. The framework allocates the same number of sub-arrays to each input to
maintain equal consideration throughout the analysis. Flexible size allocation by
individual input trend or average variance rather than sample size warrants further

investigation.

Step 2b defined uncertainty indicators associated with qualitative inputs. These are ideally
defined by multiple sources such as surveys, interviews and historical trends. The mean
indicator is taken to calculate the geometric standard deviation (GSD). Naturally, high
uncertainty reflects low confidence in the measured parameter. While the use of GSD
overcomes scale dependency in measured data, the resulting coefficient of variation (CV)
was found to be considerably lower than that of normally distributed data and the
qualitative factors attributed by the pedigree matrix. This is due to the number of data
points in the sub-array unit. Uncertainty indicators for the qualitative factors were initially
assigned on a scale between 1 and 2, and the square root calculated to give the GSD [32].
These were rescaled by Eqg. 4-9 to give a more equal comparison to the quantitative data.
This would however artificially reduce the aggregated total, and saw normally distributed
parameters such as Tz in case study 1 attributing the greatest influence over the aggregated

total.

Significant correlations between input variables are defined via Spearman’s rank
coefficient in Step 3. The ability to define the ideal coefficient limit allows the user to
define the desired level of detail of dependant variables. This can have a significant
impact on the resulting estimate. The dependencies identified between parameter values
did not impact the aggregated total of the two case studies in Step 5. However, the
influence attributed by individual CVs to the aggregated total in Step 6 was shown to
exhibit dependencies that warrant further investigation. Stronger dependencies between
parameter values will have a greater influence on emergent behaviour in more complex

systems.

The CV was adopted as the uncertainty measure in Step 4 to allow inputs of varying
distribution types to be represented on an equal scale, enabling effective uncertainty
guantification. Representing uncertainty by the CV proved effective to aggregate

uncertainties represented by different distributions in Step 5, but further research is
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required into the scaling of geometric against arithmetic standard deviations. Acceptable
levels of uncertainty are user-defined according to the application and visualised by the
colour scale. Conversion of further distribution types such as Weibull and non-parametric
derivations will allow for the consideration of more complex datasets. Aggregating the
individual CVs by a combination of the propagation of error method for symmetric CVs
and the product of asymmetric CVs allowed an aggregated total estimate to be obtained.
This can be used to determine how the aggregated uncertainty changes over time, which

is converted back to the standard deviation and used as the response vector in Step 6.

Global sensitivity analysis (GSA) was employed to identify which individual
uncertainties contribute the greatest influence to the aggregated total. The sampling
method was applied by Groen [40] using matrix-based LCA. It was applied in this study
using the individual uncertainties of each sub-array as the inputs and the aggregated
uncertainty at each point as the response. It was deemed the best suited GSA method for
the CUQA framework because it can be implemented with relatively small datasets and
illustrates the influence of correlated and uncorrelated uncertainties against the total
effects. While the sub-array derivation in Step 2a is more accurate with a greater number
of rows in each sub-array, the number of sub-arrays affects the quality of the GSA over
each unit. The removal of factors that do not contribute to the aggregated total (uniformly
distributed or negligible for each iteration) allowed for a focused analysis on influential
parameters in a second pass through the feedback loop. The risks formed as a result of
these uncertainties can then be mitigated. More in-depth GSA at each time unit using
methods such as Sobol indices would require derivation of model process equations for

the system application, which is out of scope for this study.

Compared to complex engineering systems used in operational environments, case study
1 represented a relatively simple laboratory system set-up but served to prove the
functionality of the CUQA framework as it exhibited uncertainties akin to those faced in
such environments and presents comparable challenges to UQ. While the coefficients of
correlated parameters fell between negligible error margins for both case studies with
minimal risk, they may have a significant impact in real-world environments where
operating conditions such as atmospheric temperatures or wind speeds will impact the

accuracy of recorded data or subjective opinion.
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The core contributions of the CUQA framework are:
1. Use of CV to enable effective quantification and aggregation of compound
uncertainties represented by different distribution types
2. Assessment of correlation between compound parameters
3. GSA for dependant compound parameters
4. Intuitive visualisation of results — most significant parameters, greatest effects

The authors propose future work to derive uncertainty from non-parametric and stochastic
distributions through clustering techniques. Further assessment of aggregated compound
uncertainty is necessary, incorporating additional distribution types and improving the
rigour of the GSA approach in variance decomposition for each sub-array time unit. The
emergent behaviour of uncertainties should be forecast through the in-service life to

determine when and where further mitigation may be required.
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CHAPTER 5. UNCERTAINTY PREDICTION UNDER
LIMITED DATA

Abstract

Engineering systems are growing in complexity, requiring increasingly intelligent and flexible methods to
account for and predict uncertainties in service. Increasing complexity manifests varying degrees of
quantitative and qualitative uncertainty over time, driven by the quality and availability of data, experience
and knowledge of system performance. Under limited available data, existing approaches seldom consider
how the resulting uncertainty may change over time, leading to under or over estimation of factors including
maintenance costs, equipment availability and failure rates. To that end, this chapter presents a framework
for dynamic uncertainty prediction under limited data (UPLD). The theory of spatial geometry is
incorporated with LSTM networks to enable multistep prediction. This provides an element of self-
validation with uncertainty given in real-time by the symmetry of the geometric shape area, given in vector
space. The framework was tested and validated through two case studies: US SAR cost uncertainty data
and simulated degradation of a turbofan engine. Results demonstrate robust prediction of trends in limited
and dynamic uncertainty data with parallel determination of geometric symmetry at each point in time.
Immersive visualisation of dynamic uncertainty is presented. Future work is recommended to explore
alternative network architectures suited to limited data and development for applications of visualisation in

augmented reality.

Paper 6 Initial conference paper: Dynamic multistep uncertainty prediction in spatial geometry
Published: Procedia CIRP, CIRPe Web Conference 2020

DOI: 10.1016/j.procir.2021.01.055
Data access: 10.17862/cranfield.rd.12906716.v1

Paper 7 Multistep prediction of dynamic uncertainty under limited data
Published: CIRP Journal of Manufacturing, Science and Technology

DOI: 10.1016/j.cirpj.2022.01.002
Data access: 10.17862/cranfield.rd.14381987
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5.1 Introduction

The growing complexity in engineering systems manifests a range of uncertainty
surrounding in-service maintenance. Such systems are comprised of various equipment
units, many of which are maintained on a corrective or time-based basis. Unexpected
failures outside planned maintenance periods require reactive maintenance to repair or
replace units. Sampling rates of maintenance data in this context are often sporadic due
to manual recording methods and disjointed signals from equipment units. The resulting
quality and availability of data, as well as the influence of expert experience, assumptions,
and environmental operating conditions, drive uncertainty that increases the likelihood of
under or overestimating factors such as turnaround times, equipment availability and
resulting costs [13,194,195]. This can lead to increased failure rates or, more often,
unnecessary maintenance carried out. Accommodating for uncertainty requires the
determination of key contributors, their influence on interconnected units how this might

change over time.

Limited available or poor-quality data directly hinders forecast accuracy and robustness.
Once quantified, predictions of the uncertainty in such data and assumptions made
surrounding it can enhance decision-making capabilities for the maintenance of
increasingly complex systems and equipment units. This sets the motivation of the
chapter, which presents a framework to predict dynamic uncertainty under limited
available time-series data. The framework is designed to be embedded in a range of
systems such as engines, radar, and heating systems as well as uncertainty in associated
maintenance costs. The aim is not to mitigate or reduce the uncertainty, but to provide a

holistic view as to which factors require mitigation or may become an issue in the future.

The framework structure is detailed in Section 5.2, along with key mathematical formulae
and assumptions made. Section 5.3 applies the framework to two use cases: US SAR cost
uncertainty data and simulated turbofan engine degradation. Results of each step are given
to illustrate the multistep prediction for each long-short term memory (LSTM) network
allocation. Section 5.4 discusses the strengths and limitations of each step of the

framework, while Section 5.5 summarises the study along with future work in this area.
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5.2 Framework overview: Uncertainty prediction under
limited data (UPLD)

This chapter contributes a framework for dynamic uncertainty prediction under limited
data (UPLD). Spatial geometry is combined with LSTMSs to enable covariant analysis of
dynamic variables within state space, whereby a change in one variable will affect
another. For each time step of the input sequence, the network learns to predict the value
of the next time step. This work builds on a conceptual model presented in Grenyer et al.
[196]. Here it is further developed and validated through two case studies. This chapter
has been submitted as a manuscript and is under peer review at the time of writing. The
steps were developed from emerging studies in literature utilising LSTM networks to
forecast time-series data, extended to consider the geometric symmetry between input
variances to improve prediction robustness under limited data. This addresses the third
research gap from Chapter 2 and is achieved through a 5-step framework developed in
MATLAB, described below and illustrated in Figure 5.1.

Step 1. Evaluate input topology. To examine interactions, uncertainties and knock-on
effects within the system, its topology must first be defined. Input uncertainty data is
given as a time series of changing variance, formatted as row vectors where each column
represents one time unit. The number of rows gives the number of input dimensions. The
variance data is scaled according to the range of each input dimension i over each time
slice j by Eq. 5-1, where n is the number of input dimensions. Under limited data a robust
standard deviation cannot be applied, making traditional standardisation methods with

mean and standard deviation undesirable [28].

dScaled; ; =

—=)+= (5-1)

data; j — dMin; (1 1) 1
n

dRange; n

Where: dScaled = scaled dataset; data = initial dataset; dMin = minimum value of each input over the time series; dRange =

range of each input over the time series

The scaled variance data is split into training and test data according to a defined partition.
The default partition is set to 60% to allow for a comparable proportion of observed and
predicted values to determine prediction accuracy and robustness with varying input

dimensions. The number of training steps is given by Eq. 5-2.
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Figure 5.1. UPLD Framework overview

nStepsTrain = |P - nStepsTotal| (5-2)

Where: P = Partition; nStepsTrain = Number of training steps; nStepsTotal = Total number of time steps
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The input to be forecast is the scaled training data. The forecast data is then compared
against the test data to determine prediction error. In parallel, the symmetry and aggregate
vectors are calculated for the training, test and predicted data, detailed in the next step,
and compared in the same manner. The LSTM networks then take the next time step,

update the network state and corresponding prediction.

Step 2. Calculate input geometry, symmetry, and aggregate vectors. Spatial geometry
determines an uncertainty range based on the geometric symmetry between input
variances for each available time unit via polar force-field analysis in vector space. The
procedures in this step to calculate symmetry and vector coordinates are based on

previous work by Schwabe et al. [28].

Symmetry is defined as the relationship between the actual shape area of the evaluated
time slice and the maximum possible area from the created geometry, illustrated in Figure
5.2 by an example time slice with six input dimensions [28]. For each calculation in this
step, the radial degree between each input vector and their input order (dimensional

sequence) is kept constant [131].

D1

D6 D2

[C] Actual area

[[] Reference area

D4

Figure 5.2. Spatial geometry actual vs. reference shape area example

Coordinate data points for vertices of the actual area shape are given by the scaled input
variances for each time slice. The space between each vector dimension (D) out from the
origin is a triangle (six in Figure 5.2). The sum of each triangle’s area gives the full actual
shape area. This is calculated by Eq. 5-3, where a; and b; are the respective magnitudes
of each vector that make up the triangle sides and rad is the radial degree. The sum of

the outer face lengths then gives the shape perimeter, calculated by Eq. 5-4.
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Areay.; = <§ “a; b; sin(rad)) (5-3)

-

I
[y

1

n
Perimeter,, = Z \/ai2 + b? — 2(a; - b;) - cos(rad) (5-4)

i=1

The reference shape perimeter is calculated by the mean of the outer face lengths
multiplied by the number of input dimensions. This creates a regular polygon, for which
the apothem (line from centre to midpoint of each side) is given by Eq. 5-5. This is then
used to calculate the reference shape vertex magnitude (Eg. 5-6), which in turn is used to
calculate the reference shape area (Eq. 5-7). The symmetry between the actual and
reference shape areas is then calculated by Eq. 5-8 [28]. Spatial geometry uses a ring
topology, analysing the linear progression of symmetry. There is a positive correlation
between the percent change in the cumulative increase of actual area and symmetry. The
correlation factor for each time slice can be used to determine an uncertainty metric
against the baseline estimate. This is the most likely or best guess value of the data point

from which the input variance is obtained, explored further in Section 5.3.

Apothemg,; = \/FaceLength,zeef - <%) (5-5)
Vertexges = \/Apothemf?ef + <w>z (5-6)
Areager = % n- Vertexg, - sin (rad) (5-7)
Symmetry = j::—g:; (5-8)

To plot the change in shape geometry over time, X and Y end vector coordinates for each
dimension, i over the time period, j are obtained by Eq. 5-9, iterated through each radial
degree around the unit circle [196]. The sum of these points identifies the aggregate vector

(Eq. 5-10), whose magnitude is given by Eq. 5-11.
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absEndX; ; = cos(rad) - dScaled, (5-9)
absEndY; ; = sin(rad) - dScaled, ;

aggVectX; = ¥, absEndX;

5-10
aggVectY; = ¥i., absEndY; (5-10)

aggVectMag; = \/aggVectXf +aggVectY}? (5.11)

The aggregate vector magnitude and degree are assumed to represent the source of
greatest uncertainty for each time slice. The resulting plots for each time unit are stacked
to illustrate a dynamic change in the uncertainty of each input and aggregated vectors
over time. An example illustration is given in Figure 5.3 for six input dimensions, with

aggregate vectors removed for illustrative purposes.
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Figure 5.3. Stacked plot example [196]

Step 3. Allocate inputs to respective networks and train with optimal initial
architecture. While some inputs are relatively constant, others can vary significantly
over the time series. The mix of dynamic and comparatively constant trends on a single
network limits that network’s ability to accurately and robustly forecast future time steps.
To reduce under or over estimation, training is split across three networks with different

architectures and initial training options.

Different parameters are applied for different ranges of data according to the relation of

the coefficient of variation (CV) of the scaled data to the first and second quantiles of
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each input dimension. CV is a dimensionless measure of relative variability, given by the
ratio of the standard deviation to the mean [30,34]. This is illustrated in Figure 5.4, with

the networks hence referred to as “LSTM networks”.

Input dataset

v '

CV < Quantile 1 CV = Quantile 2

v

Quantile 1 < CV < Quantile 2

LSTM 1 LSTM 2 LSTM 3

Hyper-parameter tuning

|

[ Increased prediction accuracy ]

-/

Figure 5.4. LSTM network allocation according to input parameters

Each network has a variable structure and range of training options to best suit the
variability in the data applied to it. The best of these, i.e., the combination that gives the
lowest prediction error, is determined through hyperparameter tuning according to the

mean absolute percentage error (MAPE), discussed further in Step 5.

As shown in Figure 5.5, the variable structure for each network consists of 1-3 LSTM
layers, each with 100-250 hidden units, a rectified linear unit (ReLU) layer, dropout layer
(50-90%) and a regression output layer. Increasing the number of LSTM layers can make
predictions more robust but also increases computation time [168]. The ReLU layer
simply sets any value less than zero to zero, avoiding the vanishing gradient problem
found in tanh and sigmoid functions [163,164]. The dropout layer then sets input
sequences below a defined probability to zero to prevent overfitting [158,163]. The fully
connected layers compile all neurons in the previous layer to a defined output size. The

final regression output layer computes the half-mean-squared-error loss of the output.
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Figure 5.5. Hyperparameter setup metrics: Network structure

The range of training options compared by hyperparameter tuning is denoted in Table
5.1. Three solvers are compared: Adaptive moment estimation (Adam), Stochastic
gradient descent with momentum (SGDM) and root mean square propagation (RMS
prop). Each of these are variations of gradient descent algorithms that update network
parameters (weights and biases) to minimize prediction error by taking steps towards the
negative gradient of the loss function [59,160,163]. The number of epochs is the number
of full passes over the training data. The learning rate controls the changes made to the
model for every epoch.

Table 5.1. Hyperparameter setup metrics: Training options

Training options Value range

Solver Adam, SGDM, RMS prop
Max. Epochs 150-250

Initial learn rate 0.005-0.01

Learn rate drop factor 0.1-05

The optimal network structure and training options can be found by two methods: an
exhaustive grid search, comparing every possible combination with set interval ranges for
the parameters, or by Bayesian optimisation, where the software selectively alters a
specified range of hyperparameters to minimise or maximise a selected evaluation metric.
The three LSTM networks are then trained sequentially using the optimal

hyperparameters.

Step 4. Forecast uncertainties over specified time period. The scaled variance data is
forecast using the trained networks from the partition to the end of the initial dataset.
Initial predictions are made using the last time step of the training response. When making
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predictions using standardised data (according to mean and deviation) the same training
data parameters are used for the test (observed) data [59,196]. Therefore, this approach
uses the same range and minimum parameters from the training data to compare observed
data against predicted data. The corresponding symmetry and aggregate vectors are
calculated in parallel by Step 2 and compared in the same manner. The network state is
updated to use observed values at each step in place of the predicted values to increase
robustness [196]. The observed and predicted data is then plotted in vector space, stacked

for each time slice.

Step 5. Evaluate model performance. Prediction error between the observed 0O; and
predicted P; uncertainty can be attributed to the model parameters, unexpected changes
in the inputs (causing no clear trend) and the amount of data available. Prior to
performance evaluation, all variables are rescaled up to their original values by
rearranging Eq. 5-1, using the initial range and min. parameters, given by Eq. 5-12.
Common evaluation metrics are root-mean-square error (RMSE) (Eg. 5-13), mean
absolute percentage error (MAPE) (Eg. 5-14) and custom score functions. RMSE is
widely used in RUL prediction and regression problems. MAPE is a widely applied
evaluation metric to determine forecast accuracy and robustness, providing a distinct
percentage evaluation. As new data is recorded, the framework loops back to Step 1 to

reassess the input topology and feeds through to performance evaluation.

1

dScaled; j — —
data;; = 1 *dRange; + dMin; (5-12)
(1-3)
no(p. —(0.)2
RSME = —Zi:l(P;l 0) (5-13

)

MAPE = 1 i|0i_P"| 5-14
a7 (5-14)
i=
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5.3 Framework implementation and results

5.3.1 Case study 1: US SAR data

The initial spatial geometry approach utilised US Department of Defense Air Force
Selected Acquisition Report (SAR) summary tables to test and validate the method
[28,131]. This is made up of a mixture of summary cost data over various phases of
product life cycles in aerospace, land and sea sectors. Cost variances used were
considered significant enough to require monitoring by stakeholders [28]. The same
dataset is applied here to provide comparable consistency in the application and
demonstrate the wide applicability of the framework.

Step 1. Evaluate input topology. Annual cost variances in US $ Mil are given over the
life cycle of a range of US Air Force military platforms for a 28-year period from 1986-
2013. Further detail is given by Schwabe et al. [28,131]. The data is categorized into 6
cost variance factors and formatted as absolute integers as [196]:
e Quantity: Change in the number of units of an end item of equipment.
e Schedule: Change in procurement or delivery schedule, completion date,
development, or production milestone.
e Engineering: Alterations to physical or functional characteristics of a system.
e Estimating: Correction of previous estimating errors or refinements of current
estimates.
e Other: Unforeseeable events not covered in any other category (e.g., natural
disaster or strike).
e Support: Cost changes for support equipment of major hardware items not

included in other costs.

Step 2. Calculate input geometry, symmetry, and vector coordinates. Following Egs.
5-2 to 5-8, the resulting change in the actual area, reference area and symmetry over time
is illustrated in Figure 5.6. Initial observations can be made here to highlight the reduction
in symmetry through to 2005, indicating an increase in the amount of information
required to describe the shape. From here, the symmetry fluctuates up to the end of the

observed period.
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Figure 5.6. SAR data: (a) Change in actual and reference shape area over time and (b) change in

symmetry

The cumulative increase of actual area and symmetry gave a linear trend for the observed

period. The percent change for this increase between each unit is plotted in Figure 5.7a.

This displays a negative exponential trend with a correlation coefficient of 0.95 (Figure

5.7b).
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Figure 5.7. SAR data: (a) Percent change for cumulative increase and (b) correlation matrix

The gradient and intercept values from the actual area and symmetry trend line equations

were plugged in for 100 time units. Their correlation factor, given by the

actualArea/symmetry is illustrated in Figure 5.8 with an R? value of 1. The shaded

area shows the region of available data given by the 28 time units.
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Figure 5.8. SAR data: Actual vs. symmetry correlation factor for exponential trend

An interesting phenomenon occurs when taking a linear trend line from Figure 5.7a and

calculating the correlation factor in the same manner (Figure 5.9) where a lognormal

relationship is displayed. The asymptote where Y=1 appears to meet the x-axis just prior

to where the available data ends. The reasons for this warrant further investigation but are

out of scope for this study.

Corr. factor linear

Figure 5.9. SAR data:

cumulative % increase

® Linear
Auvailable data (28)

Year

Actual vs. symmetry correlation factor if assuming linear trend in

Next, the X and Y end vector coordinates are calculated for each input dimension over

the 28-year time period. The resulting endpoints and aggregated vectors for each input

dimension are stacked and plotted in Figure 5.10. The dynamic shape area is shown in

105



Figure 5.10a by the white lines and blue fill between each vector coordinate. The
aggregate vector magnitude in Figure 5.10b is visualised by the end marker, scaled up
40x for illustration. It can be seen here that the estimating factor prompts the greatest

variance over the analysed period.
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Figure 5.10. SAR data: (a) Stacked vector 3D plot and (b) face-on with aggregated vectors over
28-year period

It should also be noted that the radial degree between each input dimension is kept
constant — in this case 1.0472 radians (60°). The apparent difference between e.g.,
Quantity-Schedule and Schedule-Engineering is due to the scaling of the figure produced
in MATLAB.

Step 3. Allocate inputs to respective networks and train with optimal initial
architecture. The range and deviation of each input used to train the network varies
significantly. Using the CV as the deterministic parameter allows inputs with higher
variation to be trained separately from those with lower deviation. Summary statistics are
illustrated in Figure 5.11 and categorised into the relevant LSTM networks according to
Figure 5.4. For the training data, this fits the Engineering factor into the first network,

Quantity, Schedule, Estimating and Support into the second and Other into the third.
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Figure 5.11. SAR data: Summary statistics for each input and corresponding LSTM network
allocation

Hyperparameters were filtered through Bayesian optimisation to minimize the resulting
average MAPE between inputs for the respective networks, using defined ranges (e.g.,
100-250 hidden units). A maximum sweep time of 2hrs was set, which gave
approximately 200 runs. The resulting initial network structure is illustrated in Figure
5.12. The optimal initial network training options are given in Table 5.2. For all three

networks, the learning rate schedule was set to ‘Piecewise’ and gradient threshold to 1.
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Figure 5.12. SAR data: LSTM network input allocation and structure following hyperparameter

Fully connected layer Rectified Linear Unit
( Sequence input LSTM layer 1 Output size 100 (ReLU) layer

tuning

Table 5.2. SAR data: Defined training options following hyperparameter tuning

Training options LSTM 1 LSTM 2 LSTM 3
Solver SGDM Adam Adam
Max. Epochs 235 200 130
Initial Learn Rate 0.003 0.002 0.002
Learn rate drop 0.14 0.11 0.10
factor

Step 4. Forecast uncertainties over specified time period. Initial predictions made
using the trained networks are shown in Figure 5.13a, where the solid lines are the training
data for each input dimension (partitioned at 60% of the full dataset), the dashed lines are

the predictions, and the thin dotted lines are the actual (observed) data for the test period.

After resetting the network state, predictions were updated for each time step accounting
for the previous step in Figure 5.13b. Following the updated prediction, it was observed
that values for the Estimating factor now lie within the observed range. More detail in the

prediction error can be seen in Figure 5.15.
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Figure 5.13. SAR data: Observed vs. predicted uncertainty for () initial forecast and (b) updated

forecast

The corresponding symmetry, aggregate vectors and stacked vector plot built in Step 2

were calculated and updated in Table 5.3 and Figure 5.14. The percentage difference

between the observed and predicted symmetry and aggregate vector magnitudes over the

test period is directly influenced by the prediction error for each input dimension.

Table 5.3. SAR data: Observed vs. predicted symmetry and aggregate vectors

Symmetry Aggregate vector magnitude
Time | Observed  Predicted Diff. % Diff. { Observed Predicted Diff. % Diff.
18 81.44 87.71  6.27 7% 0.51 065 0.14 24%
19 76.35 7130  5.05 7% 0.34 065 0.31 62%
20 64.47 60.25  4.23 7% 0.59 0.66  0.07 11%
21 53.23 60.66  7.43 13% 0.67 0.65 0.03 4%
22 62.47 65.30 2.82 4% 0.38 061 0.23 47%
23 55.55 7449 18.94 29% 0.45 055 0.10 21%
24 7155 88.60 17.05 21% 0.30 049 0.20 50%
25 76.11 97.51 21.40 25% 0.03 048 045 177%
26 80.37 80.68  0.31 0% 0.02 0.55 0.53 185%
27 54.18 42,64 1154 24% 0.49 066 0.17 29%
28 7253 27.33 4520 91% 0.34 0.77 043 78%
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Significant percentage difference in the aggregate vector magnitude for years 25 and 26
Is due to the change in shape area, illustrated in the stacked 3D plot. Initial training data
was removed for the illustration. Due to the significant difference in variance magnitude
of the Estimating factor to all other factors, the aggregate vector direction is relatively

unchanged other than in years 25 and 26. Further evaluation is made in the final step.

Observed input dimension
- - vector end-coordinates
Predicted input dimension Observed shape area -
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4 ~@ Agg. V predicted
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Bl Shape predicted

D

/

Predicted shape
area for each
time unit

\

Aggregate veclors
(predicted)

"D..,c

Figure 5.14. SAR data: Stacked 3D vector plot including observed and predicted data

Step 5. Evaluate model performance. The difference in the observed and predicted data
is illustrated in Figure 5.15, scaled back up to the original variances, with corresponding
line and stem plots for each input dimension. The stem plots show the difference in the
observed to predicted data. Prediction error is noticeably variable over the time period for
each of the six input dimensions. This is due to the quantity of data on which the networks

were trained and the unpredictable peaks and troughs in the observed data.
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dimension (a-f)

For example, the Schedule factor (Figure 5.15b) is underestimated but the overall
downward trend is picked up in the prediction. The observed data of the Engineering and
Estimating factors (Figure 5.15c-d) is scaled to 1.0x10* US $Mil. The relatively constant
variance from year 20 to year 23 is accurately predicted, but the sudden increase was not
predictable in the training data. As the model updated the multistep prediction, the
increasing trend was identified up to year 28. Similarly, the Estimating factor (Figure
5.15d) was able to predict the overall downward trend in the test data period but not the

sudden changes in variance.

The MAPE and RMSE are calculated in Table 5.4. The lowest MAPE was observed in
the Engineering factor due to low prediction error in year 20 to year 23 and the following
positive trend. While the estimating factor appears to hold the trend of the observed data,

the scale of the variance means it has the highest MAPE and RMSE. The Other factor

holds constant up to year 23 before an unexpected dive, which the network was not able

to account for in the prediction.
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Table 5.4. SAR data: MAPE and RMSE of observed vs. predicted values over the test period

Input MAPE RMSE
Quantity 140% 2003
Schedule 92% 3834

Engineering 64% 8363
Estimating 867% 17110
Other 381% 208
Support 248% 4200

These sudden changes and the scale in the observed variance data directly impact the
mean prediction error, causing the high variation in MAPE and RMSE over the test
period. While the predictions cannot be considered accurate, the ability to reflect the
observed trends despite outliers in the observed data allows predictions to be deemed
robust [197].

5.3.2 Case study 2: Turbofan engine degradation

As discussed in Section 2.4.4, a number of studies have applied a turbofan engine
degradation dataset to forecast RUL using LSTMs, as well as other areas of prognostics
and health management (PHM) [55,57,59,61,63,65]. Simulated using the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS) tool, this publicly available
dataset consists of four degradation scenarios. The FDOO1 training set was selected for
this study because it consists of a range of quantitative data measured by sensors and
qualitative factors given as noise. Uncertainties in the data and assumptions made were
calculated by splitting the data into sub-arrays in Section 4.3.2. The resulting uncertainty
data over 16 time cycles was applied to the framework to further demonstrate the
capability to predict uncertainty under limited data.

Step 1. Evaluate input topology. The initial dataset consisted of 21 sensors measuring
temperature, pressure and speed for 100 engine units, each with a random start time and
normal operating level, running to failure. Previous studies using this dataset discounted
any uniform sensor data as these will not change in any forecasts made or contribute to
the uncertainty. The same approach is applied here, as well as discounting parameters

whose individual uncertainty has a minimal impact on the aggregated uncertainty or
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overall forecast. A description of the resulting 10 input dimensions forecast is given in
Table 4.7. As for the SAR data case study, a partition of 60% was applied to split the
training and test data, which was then scaled according to the range of the training data.
The C-MAPSS dataset does consist of defined training and test sensor data for RUL
prediction. The focus of this study is to forecast the uncertainty of that data, where there
is limited previous data on which to base predictions. Using the training set from the

database was therefore deemed sufficient.

Table 5.5. C-MAPSS data: Description of input dimensions to be forecast [55]

Sensor number Notation Description

3 T30 Total temperature at HPC inlet
4 T50 Total temperature at LPT inlet
7 P30 Total pressure at HPC outlet

9 Nc Physical core speed

11 Ps30 Static pressure at HPC outlet
12 Phi Ratio of fuel flow to Ps30

14 NRc Corrected core speed

15 BPR Bypass ratio

20 w31 HPT coolant bleed

- - Process noise

Step 2. Calculate input geometry, symmetry, and vector coordinates. The actual and
reference shape areas and resulting symmetry over time are illustrated in Figure 5.16,
given by Egs. 5-2 to 5-8. For the 16 cycles observed, a trend cannot be identified for the

shape areas or symmetry.

As for the SAR data, the percent change for the cumulative increase in actual area and
symmetry shows a negative exponential trend (Figure 5.17a) with a highly significant

correlation coefficient of 0.97 (Figure 5.17b).
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Figure 5.16. C-MAPSS data: (a) Change in actual and reference shape area over time and

(b) change in symmetry
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matrix

Following the line equations given by the actual area and symmetry, the correlation factor
over 100 units given by the actualArea/symmetry is illustrated in Figure 5.18 with an
R? value of 1. The same asymptote trait occurred as for the SAR data when calculating
the correlation factor assuming a linear trend line, occurring where the available data
ends. The 16 time units signify uncertainty in the data up to engine failure. This plot is
purely illustrative to expand the decreasing correlation factor. A key difference here to

the SAR data is the opposite (negative) trend. As the variation and corresponding
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uncertainty in the sensor data increases up to failure, the relation of the geometric shape

area to its symmetry reduces.
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Figure 5.18. C-MAPSS data: Actual vs. symmetry correlation factor for exponential trend

The coordinate endpoints and aggregated vectors over the 16 time cycles for each input
dimension are stacked and plotted in Figure 5.19. The shape area is starkly different here
compared to the SAR data. This is due not only to the four additional input dimensions
but also the contrast in variability between the dimensions about the radial degree (0.63
radians, 36°). The aggregate vector magnitude in Figure 5.10b is scaled up 10x for

illustration and tend towards the low-pressure turbine inlet temperature (S4).
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Figure 5.19. C-MAPSS data: Stacked vector 3D plot and face-on with aggregated vectors over

16 time units
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Step 3. Allocate inputs to respective networks and train with optimal initial
architecture. The variation in the uncertainty data is illustrated in the summary statistics
in Figure 5.20. Categorised by Figure 5.4 according to the respective CV, the majority of
dimensions fell into LSTM network 3. The turbine core speed (S9) was placed in LSTM
1 and the high-pressure turbine coolant bleed (S20) in LSTM 2.
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Figure 5.20. C-MAPSS data: Summary statistics for each input and corresponding LSTM
network allocation

The hyperparameter ranges applied to identify the optimal initial network structure are
the same limits as for the SAR data, trained using Bayesian optimisation for the same
maximum of 2hrs. The resulting structure is summarised by Figure 5.21 and training
options in Table 5.6. For all three networks, the learning rate schedule was set to

Piecewise and gradient threshold to 1.
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Figure 5.21. C-MAPSS data: LSTM network input allocation and structure following

hyperparameter tuning

Table 5.6. C-MAPSS data: Defined training options following hyperparameter tuning

Training options LSTM 1 LSTM 2 LSTM 3
Solver Adam Adam Adam
Max. Epochs 220 180 120
Initial Learn Rate 0.009 0.009 0.021
Learn rate drop 0.23 0.061 0.138
factor

Step 4. Forecast uncertainties over specified time period. Initial predictions made
using the trained networks are shown in Figure 5.22a. As for the SAR data, the solid lines
are the training data, dashed lines are the predictions and thin dotted lines are the observed
data for the test period. Figure 5.22b shows the predictions after updating for each time
step to account for the previous step. Changes in the predicted values are examined in
Step 5. While not immediately noticeable in the plots, a reduction is noted in S3 (blue)
from time cycle 12, a reduction in the negative gradient in S20 (orange) and a constant

period in S7 between cycles 13 and 14.
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Figure 5.22. C-MAPSS data: Observed vs. predicted uncertainty for (a) initial forecast and (b)
updated forecast

The corresponding symmetry and aggregate vectors from Step 2 are compared in Table
5.7 for each time step and through the stacked vector plot in Figure 5.23. The large
difference in symmetry for time cycles 13 and 14 is due to the exploding gradients within
the networks, which a higher dropout percentage could avoid. However, when tested at
80% rather than 50% the networks were found to give a constant line as the prediction.
Further testing of combinations and degrees of dropout layers may alleviate the errors
within the LSTM.

Table 5.7. C-MAPSS data: Observed vs. predicted symmetry and aggregate vector magnitude

Symmetry Aggregate vector magnitude
Time | Observed Predicted Diff. % Diff. | Observed Predicted Diff. % Diff.
11 141.67 14923  7.56 5% 1.28 033 095  118%
12 155.55 196.87 41.32 23% 0.83 0.40 0.42 69%
13 98.38 165.01 66.63 51% 0.75 0.56 0.19 29%
14 53.42 124.97 71.56 80% 1.10 078 032 34%
15 103.93 101.93 2.01 2% 1.27 0.87 040 37%
16 191.93 149.66 42.27 25% 0.74 0.86 0.2 15%

118



Observed input dimension

@ «| Asgregate vectors Observed shape © 83(T30)
: (observed) @ S4 (T50)
> ST (P30)

S9 (Nc)

S11 (Ps30)
«> S§12 (Phi)
5+ S14 (NRc)
~€>- S15 (BPR)

S20 (W31)
~€> Process noise
~@ Agg. V observed
----- @ Agg. V predicted
7 " Shape observed
Z B Shape predicted

vector end-coordinates

area for each
time unit

Predicted input dimension
vector end-coordinates

\ Predicted shape
¥ area foreach

time unit

3

Time cycle

Figure 5.23. C-MAPSS data: Stacked 3D vector plot for observed and predicted data

The stacked vector plot demonstrates this further (initial training data was removed for
the illustration). Notable differences in the observed and predicted data can be seen where
the grey shape area (observed) is not covered by the red area (predicted). Caused mainly
by S4, S9 and S14, these errors alter the resulting symmetry and corresponding aggregate

vector magnitude and direction towards different factors.

Step 5. Evaluate model performance. The difference in the rescaled observed and
predicted data is illustrated in Figure 5.24 in the line and stem plots for each input
dimension. The significant prediction error for a number of factors is most likely due to
the very limited number of steps on which it was trained and the lack of defined trends.
Development of the network allocation methodology or inclusion of additional networks
to train further variabilities in the data may improve robustness in the prediction. As for
the previous case study, the multistep prediction was not able to pick up sudden changes
in the variance data. Variances considered here are magnitudes smaller than those used

in the previous case study and propagated over a smaller time period.

The tracing of overall positive or negative trends in the test data where they are apparent,
such as for S7 (Figure 5.24c), S14 (g) and S15 (h), and predicting within the range
boundaries of the observed data is therefore considered a satisfactory result. This case

study illustrates the pitfalls of making predictions based on very limited data.
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Figure 5.24. C-MAPSS data: Observed vs. predicted variance over test period for each input

dimension (a-j)
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The MAPE and RMSE over the observed period for each input dimension are given in
Table 5.8. The range and scale of variances are comparatively small against the SAR data
in Section 5.3.1, which is where the MAPE demonstrates the ability to better compare the
prediction errors. Large variation in prediction error is due to unpredictable changes in
the data. This naturally drives up the prediction error, as seen in time cycle 14 in S4
(Figure 5.24b). Even if the remainder of the test period has a very low prediction error,
that increased error will increase the overall MAPE. As for Section 5.3.1, predictions are
robust as they reflect observed trends despite outliers and limited data on which to train
[197].

Table 5.8. C-MAPSS data: MAPE and RMSE of observed vs. predicted values over test period

Input MAPE RMSE
S3 (T30) 23% 1252
S4 (T50) 70% 0.00
S7 (P30) 30% 2.43
S9 (Nc) 46% 0.01
S11 (Ps30) 26% 7.25
S12 (Phi) 20% 0.09
S14 (NRc) 40% 0.01
S15 (BFR) 16% 0.02
$20 (W31) 20% 3.30

ProcssNoise 314% 0.12

5.4 Discussion

The following paragraphs critique the framework steps through the results of the two case
studies, concluding with an examination of industrial applications. Input uncertainty data
for both case studies were given as a time series of variances, formatted as row vectors.
The use of case studies in distinct domains demonstrated the framework’s flexibility to

be embedded in different systems.

The data was scaled according to the range of each input dimension. As stated in Section
5.2, the number of time steps available under limited data is unlikely to provide a robust

deviation measure required for traditional standardisation methods. The scaling equation
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(EqQ. 5-1) can theoretically be applied to any format of data such as standard deviation or
raw sensor data. The useability and results of using such formats in the framework have
not been explored and may warrant further investigation. The scaled data was split into
training and test data according to a defined partition, set to 60% to provide a comparable
proportion of observed and predicted values to determine robustness of predictions. A
lower partition would reduce the amount of data on which to train the networks, leading
to reduced robustness, while an increased partition would reduce the data on which to test
and update the networks and make predictions beyond the available time period.
Comparisons with a varying partition would be beneficial for cases with a larger
forecastable period, though up to a point the available data may no longer be considered
“limited” and more traditional statistical approaches can come into play. Schwabe et al.
[131] highlighted that at least 42 discrete time units are required for each parameter to
make forecasts with statistical certainty under Kolmogorov complexity theory. Even
when working with “big data”, parametrics and statistics must be treated with caution

prior to validation when significant correlations are unknown.

Spatial geometry was used as the uncertainty descriptor because of its ability to propagate
interdependent cost uncertainties under limited data. Connecting outlying data points in
vector space formed geometric shapes for each time slice, the area of which was used to
determine the symmetrical relationship between inputs. This enabled a simplification of
what may otherwise be complex conclusions [28,171]. The greater the symmetry, the
greater the information entropy and therefore representative uncertainty for a given time
slice. Symmetry and respective vector coordinates were calculated in Step 2 of the
framework and run in parallel with Step 4 as uncertainties were predicted through the
LSTM. The aggregated vectors for each time slice illustrated the greatest source of
uncertainty and gave an indication of shape change for the next time interval, stacked in

a point cloud in 3D space.

The visualisation provided an immersive view of shape change over time as well as the
source of greatest uncertainty via the aggregated vector. These uncertainties require the
most attention; be it mitigation, exploitation or simply increased awareness [196].
Employment of the ‘shape’ of data through spatial geometry for forecasting against the
correlation of individual data points is a significant novelty in the developing field of big
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data analysis. Live and continuous forecasts are beneficial to industry in several areas
including maintenance planning and digital twins in the face of mounting increases in

technological complexity.

To calculate the symmetry and aggregate vectors and build the 3D visualisation, defined
parameters had to be fixed while others were allowed to change over time. Summarised
in Table 5.9, key fixed parameters were the radial degree and dimensional sequence of
inputs, while changeable parameters included the vector coordinates of each dimension
over time. Altering the sequence of input dimensions would change the magnitude and
direction of the aggregate vector but should maintain the shape area. Adding a new input
dimension part-way into the space will alter the radial degree and require rescaling of the
full dataset. Repercussions and allowances for altering fixed parameters warrant further

research for spatial geometry.

Table 5.9. Spatial geometry taxonomy for fixed and changeable parameters

Fixed parameters Translation space Changeable parameters
(over time)

e Scaling equation for all e Layout/plotting functions e Input dimension vector
input dimensions for visualisation coordinates

e  Shape area calculation e Computational complexity e  Shape area

e  Symmetry calculation e  Symmetry

o Radial degree between e  Aggregate vector direction
inputs and magnitude

o Dimensional sequence of e Forecast most likely
inputs variance

e  Origin location

The third step allocated the scaled inputs to one of three networks according to their
coefficient of variation (CV) over the time period, then used hyperparameter tuning to
define the optimal initial network structure and training options to yield robust
predictions. The CV was used as the deterministic measure for network allocation because
it provides a dimensionless measure of relative variability. Alternative measures such as
the mean are affected by outliers, while the mode and standard deviation are not suitable
for small sets of data. Other methods to define bins in which to allocate input dimensions
should be explored, such as interquartile range, and variable allocation methods based on

the amount of available data and respective variability. The allocation of input dimensions

123



to the three networks has a significant effect on the robustness of resulting predictions,
making this one of the most important steps of the framework.

Initial parameters for the adaptable network architecture were defined through
hyperparameter tuning. For both case studies, Bayesian optimisation was used to
minimise the MAPE by comparing a defined range of parameters. Experiments were run
for a maximum of 2hrs for each network. This computation time is not viable for regular
updates when new data becomes available so was only used to gain an optimal initial
setup. This does not necessarily give the best possible initial setup as not every
combination can be tested with the time frame. An exhaustive grid search comparing each

parameter iteration would not be viable without extensive computing power.

The allocation approach is similar to the semi-double-loop learning concept proposed by
Putnik et al. [198]. This was used to select the best learning models for predictive
maintenance scenarios. This method could prove effective in further development of the
UPLD framework, where the application of double-loop learning principles in
reinforcement learning would be used to help allocate input parameters and define initial

network architecture.

The defined ranges for training options and network structure are detailed in Section 5.2.
Different combinations will generate different results. Additional LSTM layers will
typically improve prediction accuracy but take longer to train. The hidden units of each
LSTM layer are equal. Comparisons of different sizes in each layer and additional training

options such as mini-batch size may improve results with reduced computation time.

The final output layer of each network was a regression layer. Regression typically relies
on statistical data sufficient to fulfil the Central Limit Theorem. Under limited data
scenarios, this is not the case without artificial propagation through Monte Carlo
simulation [83,145,196]. This may therefore lead to reduced robustness in predictions
based on the available training data. Alternative, custom output layers should be explored

to provide more robust predictions.

Uncertainty was predicted in Step 4 using the trained networks. The symmetry and
individual and aggregate vectors were calculated for the predicted data via Step 2 running

in parallel with the LSTMs. It is important to note the distinction of the forecast direction
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where the LSTMs forecast through the time axis, while the symmetry and aggregate
vectors are calculated for each predicted time unit. Predictions were rescaled to the
original input variances and plotted to illustrate the difference in the observed and forecast
uncertainty. The dropout layer prevented overfitting for each input parameter, but when
set too high resulted in near-constant predicted values and reduced accuracy. The
multistep model updated predictions as new data was fed in.

The initial, observed and predicted data were plotted in the stacked 3D vector space.
These plots provided an immersive view of the shape area through time as well the
aggregate vector magnitude and direction. However, the visualisation can become chaotic
when too many parameters are visualised at once. Further developments detailed in
Appendix F therefore allow selected parameters to be visualised and removed, as well as
value labels and altering the shape area fill transparency.

The fifth and final step of the framework evaluated model performance via the MAPE
and RMSE. Other evaluation metrics such as custom scoring functions should be
developed to gauge the quality of uncertainty prediction and develop a methodology to
identify areas where more data is required to allow comprehensive decisions to be made
concerning equipment availability, turnaround time and unforeseen costs through the

system life cycle.

The pertinence of the framework was discussed with key personnel from a leading
defence company in four hours of semi-structured interviews. These included some
participants from the initial studies detailed in Chapter 3. The questions posed are given
in Appendix E. A large degree of uncertainty is portioned to numerous data repositories,
maintenance formats and failure modes for different platforms. Sampling rates of
maintenance data from different systems can have unpredictable gaps and varying
sampling rates. The quality of signal reconstruction and determination of operational
defects is used to determine when maintenance will be required. Rates of degradation or
identification of other failure modes it is not always achievable. It was agreed that
continuous forecasting of uncertainties resulting from these traits is vital to facilitate
dependable maintenance costing and ensure equipment availability. Further work towards

implementation is discussed at the end of the next section.
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A direct comparison of the UPLD framework with traditional, probabilistic forecasting
methods such as regression is not suitable because they are designed for large volumes of
data that fulfil the Central Limit Theorem (as discussed above and in Chapter 2). Such
models aim to forecast statistical data, not the uncertainty in that data and surrounding

qualitative factors. They are therefore not appropriate under limited data scenarios.

A comparison of the percentage difference in symmetry given by predicted variables over
the test period of case study 2 against that observed is therefore plotted in Figure 5.25.
The results from Table 5.7 and Table 5.8 using UPLD are plotted against predictions
made by linear regression and exponential smoothing, using the training data from case
study 2. Predictions were also updated (upd) as per the UPLD framework by including
the data of the previous time step for each iteration. The symmetry for the resulting
predictions was calculated according to Step 2 of the UPLD framework to provide
comparative data. The UPLD LSTM gives the lowest percentage difference to the

observed symmetry, thus outperforming the other methods.
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Figure 5.25. Forecast method comparison — percentage difference of observed and predicted

symmetry

Further validation of the UPLD framework was made by testing its effectiveness with
non-limited data. A simulated time series dataset was applied, consisting of 12 parameters
over 50 time steps to provide enough points to consider statistical analysis under
Kolmogorov complexity theory [6]. The percentage difference of the observed symmetry
to the symmetry of data predicted by the UPLD LSTM is plotted in Figure 5.26 and
compared against the same methods as in Figure 5.25. Plots of symmetry and correlation
factor are available in the online supplementary data. The UPLD LSTM demonstrates an
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overall similar performance to the other methods up to time unit 47, where the other
methods see an increased percentage difference to the observed symmetry. This further
demonstrates the capabilities of the LSTM to make robust predictions of time series data.
Larger time series would not be considered ‘limited data’ and are therefore out of scope

for the application of the UPLD framework.
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Figure 5.26. Forecast method comparison for extended time series data — percentage difference

of observed and predicted symmetry

5.5 Conclusions and future work

This chapter presented a framework to predict dynamic uncertainty exhibited under
limited data (UPLD) for the maintenance of increasingly complex engineering systems.
These uncertainties arise as a result of data quality and availability, operating conditions
and assumptions made surrounding maintenance. Coded in MATLAB, the framework
was designed to be embedded in a variety of systems, building on supporting literature to
develop a flexible forecasting model capable of making predictions under limited data
from complex and non-complex factors without the need to develop precise models of
physical systems. LSTMs were applied in parallel with spatial geometry to predict
uncertainty in time-series data through the geometric symmetry between input
dimensions. Additional benefits include the ability to update uncertainty predictions as
new data becomes available by comparing initial predictions against the observed data
and projecting forecasts through the visualisation of polar force fields in 3D vector space.

This allows factors that may require future mitigation to be identified, which can, in turn,
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reduce under or over estimation of turnaround times, equipment availability and resulting

costs.

The framework was applied to two case studies in different contexts: Annual cost
variances for a range of US Air Force military platforms (SAR data) [28,131] and
precalculated uncertainties from a turbofan engine degradation simulation (C-MAPSS
data) [55,57]. The SAR data consisted of six input dimensions with a widespread of
variances over a 28-year period. The C-MAPSS data consisted of 10 dimensions made
up of sensor data and process noise, with variances precalculated for 16 time cycles,
determined initially from raw sensor data for RUL prediction [55]. Section 2.4.4
highlighted the wide use of LSTMs for RUL prediction, for which many studies use the
C-MAPSS dataset. While the study does not use the dataset directly, findings on
uncertainty in sensor and noise data will impact the determination of the acceptable range

on which decisions are made when planning maintenance for related systems.

Key findings of this research are:

e Employment of the ‘shape’ of data to describe uncertainty by the geometric
symmetry between inputs for each point in time provided discernible information
to determine and predict equipment health under limited data.

o Allocation of inputs to one of three networks according to their variation enabled
improved definition of initial network architecture and more robust predictions.

e As technological complexity grows, live and continuous forecasts of uncertainty

manifested by data quality and availability are of great benefit to industry.

The core contributions of the UPLD framework are:

1. Robust prediction of uncertainty under limited data

2. Adaptable allocation of inputs to networks with variable structure and training options

3. Initial technique for immersive visualisation of dynamic uncertainties and shape
change with an indication of magnitude and direction of the greatest contributing

factor

The authors propose future work to simulate and interpolate input data to fill gaps in
signal data. Implications of altering fixed parameters within spatial geometry merit

further research. The impact of changing the dimensional sequence of inputs (input order
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around the origin) for each time unit to a variable rather than a constant parameter is being
investigated. Prediction robustness of the LSTM networks may be improved by exploring
alternatives to the regression output layer. Alternative evaluation metrics such as custom
scoring functions should be developed to gauge prediction quality and identify where

additional data is required.

In terms of implementation, the framework enables forecasting under limited data, though
prediction robustness is highly dependent on the LSTM network architecture each
respective input dimension is assigned to. Further development of the approach should
explore implementation in real-time applications to receive live equipment data to update
predictions to ultimately provide uncertainty predictions on factors such as RUL. The
interoperability of such implementation will depend on data sampling rates,
computational processing times and varying environmental and human factors
[97,138,140]. Development of the visualisation for applications in AR will enhance
useability and allow the user to access additional state information for a given point in
time. In addition, suitable approaches to mitigate, tolerate or exploit uncertainty through
deep learning according to the magnitude should be explored.
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CHAPTER 6. OVERALL DISCUSSION

6.1 Introduction

This chapter discusses the core research findings by revisiting the research context and
initial research gaps identified in Chapter 2 as well as the elaborated gaps addressed in
subsequent chapters. The methodology selection approach and research findings are
evaluated along with a critique of the contributions to knowledge. Finally, the benefits to
industry are discussed with the composition of a MATLAB-based application tool

applying the two frameworks to quantify, aggregate and forecast uncertainty.

6.2 Research context revisited

The overall aim of the research was to develop a modelling approach capable of learning
from a combination of historic equipment data and qualitative estimates to allow the user
to quantify, aggregate and forecast uncertainty through the in-service life of engineering

systems.

Engineering systems are expected to function effectively whilst maintaining reliability in
service. These systems consist of various equipment units, many of which are maintained
on a corrective or time-based basis. Challenges to confidently and accurately plan
maintenance, accounting for turnaround times, equipment availability and resulting costs,
manifest varying degrees of uncertainty stemming from multiple quantitative and

qualitative sources throughout the in-service life.

Under or overestimating this uncertainty can ultimately lead to increased failure rates or,
more often, unnecessary maintenance carried out. As well as the quality and availability
of data, uncertainty is driven by the influence of expert experience or assumptions and
environmental operating conditions. Accommodating for uncertainty requires the

determination of key contributors, their influence on interconnected units and how this
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might change over time. In addition, sporadic sampling rates of maintenance data owing
to manual recordings manifest increased uncertainty in equipment and system

performance.

6.3 Evaluation of research gaps and critique of academic
contributions

Chapter 2 presented a systematic review of multivariate uncertainty quantification for
engineering systems. This contributed an identification and assessment of scientific
methodologies to (1) quantify uncertainty manifested by purely quantitative, purely
qualitative and compound factors, and (2) forecast that uncertainty for the in-service

phase with the application of emerging deep learning techniques.

The review identified three core research gaps:

1. Approaches to quantify and aggregate compound uncertainties represented by
different distributions, considering dependencies between them, applicable to
increasingly complex engineering systems.

2. Application of GSA to determine the impact of individual uncertainties on the
aggregated total, accounting for compound parameters and significant correlation.

3. Limited approaches to predict uncertainty in engineering systems with complex
and non-complex entities under limited data, and to do this without the need to

produce complicated and expensive models of physical systems.

An integrated combination of identified approaches was seen to enhance rigour in
uncertainty assessment and forecasting to better understand the impact on cost and

availability, which will aid decision-making throughout the in-service phase.

Chapter 3 sought to establish the current practice and challenges in industrial maintenance
concerning uncertainty. Six core challenges were identified and verified with
practitioners from various industrial backgrounds. These supported the findings of the
systematic review concerning the second research question. Three challenges were
deemed in scope of the research: maintainer performance (or skill), quality of information
and stakeholder communication. A holistic view of quantitative and qualitative attributes

ultimately allowed for more accomplished decision-making. However, trade-offs
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between quality and cost of implementation over the asset’s life cycle play a significant
role in the applicability of such considerations [10].

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method
was applied to identify the best-suited methodologies to address the research gaps,
detailed in Appendix B [182-184]. The research gaps identified in Chapter 2 and findings
from Chapter 3 were addressed through the development of two frameworks. These used
an amalgamation of the methods highlighted in the TOPSIS approach, explored by further
review of emerging literature in the above chapters.

6.3.1 Compound uncertainty quantification and aggregation

The Compound Uncertainty Quantification and Aggregation (CUQA) framework
(Chapter 4) sought to aggregate compound uncertainties given by quantitative data and
qualitative estimates, each represented by different PDFs [30]. This addressed the first
and second research questions from Chapter 2. Benefits of the framework included
enhancements to performance assessment and corresponding maintenance planning for

complex and non-complex engineering systems and respective subsystems.

Further review of emerging literature and development of the framework unveiled two
elaborated research gaps:

1. Approaches to quantify and aggregate compound uncertainties represented by
different distributions, considering dependencies between them, applicable to
increasingly complex engineering systems.

2. Application of global sensitivity analysis (GSA) to determine the impact of
individual uncertainties on the aggregated total, accounting for compound

parameters and significant correlation.

To resolve these gaps, the CUQA framework made four key academic contributions:
1. Use of coefficient of variation (CV) to enable effective quantification and
aggregation of compound uncertainties represented by different distribution types.
2. Assessment of correlation between compound parameters.
3. GSA for dependant compound parameters.

4. Intuitive visualisation of results — most significant parameters, greatest effects.

132



Deriving the uncertainty measure as the CV proved effective for aggregation of
uncertainties represented by different PDFs, but further research into the scaling of
geometric against arithmetic standard deviations is required. Aggregating the individual
CVs by a combination of the propagation of error method for symmetric CVs and the
product of asymmetric CVs allowed an aggregated total estimate to be obtained. This can

be used to determine how the aggregated uncertainty changes over time.

Dependencies between compound parameters were not found to impact the aggregated
total for the two case studies. However, the influence attributed by individual CVs to the
aggregated total was shown to exhibit dependencies that warrant further investigation.
Such dependencies may have a significant impact in real-world environments where
operating conditions such as atmospheric temperatures or wind speeds impact the
accuracy of recorded data or subjective opinion. As discussed in Section 4.4, the case
studies served to prove the functionality of the CUQA framework, exhibiting
uncertainties akin to those faced in operational environments and comparable challenges
to UQ. User-defined ideal limits to identify significant correlations between compound
parameters enabled the definition of desired levels of detail for dependant variables.
Stronger dependencies between parameter values will have a greater influence on

emergent behaviour in more complex systems.

The GSA method applied by Groen [40] was deemed the best-suited approach for the
CUQA framework because it can be implemented with relatively small datasets and
illustrated the influence of dependant and independent uncertainties against the
aggregated total. Intuitive visualisation of the results at each stage further boosted
framework useability and enabled rapid identification of uncertainties outside of

acceptable levels and where mitigation is required.

6.3.2 Uncertainty prediction under limited data

The second framework (Chapter 5) — uncertainty prediction under limited data (UPLD) —
addressed the third initial research question and the third gap from Chapter 2 [97]. The
critical research gaps were a lack of approaches to predict uncertainty in engineering
systems with complex and non-complex entities under limited data, and to do this without

the need to produce complicated and expensive models of physical systems.
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The utilisation of spatial geometry in parallel with LSTMs enabled multistep prediction
of dynamic uncertainty under limited data. Further benefits of the UPLD framework
include forecast projection through the visualisation of polar force fields in 3D vector
space. Factors that may require future mitigation can then be identified, ultimately leading
to reduction of under or over estimation of turnaround times, equipment availability and

resulting costs.

The UPLD framework made three contributions to knowledge:
1. Robust prediction of uncertainty under limited data
2. Adaptable allocation of inputs to networks with variable structure and training
options
3. Initial technique for immersive visualisation of dynamic uncertainties and shape
change, with an indication of magnitude and direction of the greatest contributing

factor

Employment of the ‘shape’ of data to describe uncertainty by the geometric symmetry
between inputs for each point in time provided discernible information to determine and
predict equipment health under limited data. This enabled a simplification of what may

otherwise be complex conclusions [28,171].

The framework was designed to be embedded in a variety of existing applications,
demonstrated by the use of two case studies from distinct domains. Allocation of inputs
to one of three networks according to their variation enabled a more robust definition of

initial network architecture and more robust predictions.

The immersive visualisation in vector space enabled interactive depiction of dynamic
shape area and the source of greatest uncertainty. As technological complexity grows,
live and continuous forecasts of uncertainty manifested by data quality and availability

are of great benefit to industry.

6.4 Discussions towards implementation with industry

The two frameworks have been brought together to produce the Multistep Compound
Dynamic Uncertainty Quantification (MCDUQ) application tool, detailed in Appendix F.
This has been developed in MATLAB using the app designer platform to boost useability.

Methodologies were adapted and expanded from those identified in literature
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[2,24,26,28,34,52,149,158] and interviews within the defence sector. This makes a key
contribution to optimise uncertainty management capabilities for real-world industrial

applications.

A summary presentation was held with the industrial sponsor to present the MCDUQ tool
via the developed app, discuss application benefits and areas where further development
was required. The eight attendees included maintenance managers present in the
interviews detailed in Chapter 3, as well as data scientists and modellers from the
company. The respondents first gauged two statements on a 7-point scale according to
whether they agreed or disagreed:

1. The approach and visualisation of results is intuitive and points to where

mitigation may be needed in the future
2. The approach will improve decision-making for maintenance practices

The results in Figure 6.1 show both statements scored a mean of 4.4 out of 7 with a wide
distribution, indicating a mix of opinions between respondents. This is due to different
respondents having different priorities concerning the contextual application and their
previous experience with the approaches, such as participation in the interviews in

Chapter 3 and Chapter 5.

The approach & visualisation of results is intuitive & points to
where mitigation may be needed in the future

Strongly agree

The approach will improve decision-making for
maintenance practices

Strongly disagree

Figure 6.1. Validation: Mentimeter survey

These results were further explored through two open-ended questions. The first was
“What do you think the benefits of the approach would be?”. The MCDUQ tool was
labelled as part of the journey to true condition-based maintenance, allowing greater
assurance of platform availability. Higher confidence in estimates concerning specific
equipment will allow action priorities to be assigned to tasks. The application tool could

also help identify the likelihood of equipment failures between maintenance periods. For
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the industrial sponsor, maintenance is usually focused within planned ‘docked’ periods,

with only low-level tasks completed otherwise.

The second question was “Are there any additions or amendments that could be made to
improve the approach before applying it?”. The main concerns were in the qualification
of the novel approaches used in the tool to real-world instances and how to build trust in
their application. ‘Real’ data from the company should be fed into the model to better
demonstrate its capabilities. As discussed in previous chapters, the confidentiality of such

data renders this a ‘catch 22’ situation.

An aggregated and individual picture of uncertainty at a given point in time,
determination of greatest or most undesirable sources of uncertainty and forecasts of how
these may change through the in-service phase are of great benefit to assess system
performance. However, a key element raised was how uncertainty in measured
parameters and assumptions can be linked to uncertainty prediction of factors such as
equipment availability. As discussed in Chapter 5, data sampling rates and gaps in data
play a key role in determining uncertainty. Reliable remaining useful life (RUL)
estimation is a major goal for maintenance planning. A holistic picture of the uncertainty

surrounding it will be of great benefit.

While the model implements a novel combination of methodologies to consider
increasingly complex data, outputs should be displayed in as simple a manner as possible
so they can be easily actionable by maintainers. The colour bar given in the CUQA model
in both the CV aggregation and sensitivity plot does this well, though parameter ranges
that determine colour bounds of ‘good’ and ‘bad’ should have a rigorous determination
procedure for each application. The 3D visualisation for the UPLD model provides useful

information for data analysts and planners that would see greater usability in AR.

Further discussions held with the company’s data science team explored data integration
and comparison with current practice to assess and forecast uncertainty for maintenance.
One of the greatest challenges here is the quality and availability of data [10,74,84]. Even
if big data is available, parametrics and statistical assessments must be treated with
caution without validation and established correlations. While it was agreed to be an area
of interest that requires attention for increasingly complex systems, the cost of

implementation and ways to interpolate gaps in data raise barriers to the development of
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a fully integrated model. As systems grow in complexity and variability, methodologies
to quantify, aggregate and forecast uncertainty must be flexible to accommodate a range

of input dimensions, scaling and sampling rates.

The verification and validation approach through these sessions was considered suitable
under the circumstances as they had to be held virtually [37]. In addition, the
implementation capabilities of the CQUA and UPLD frameworks are demonstrated
through case studies in their respective chapters. Further assessment to consider usability
in practice will require further development of the application tool to simplify the process
of adding new datasets that currently require manual coding and formatting. The
approaches used were deemed robust and beneficial to fulfil the academic requirements.

However, further development is required ahead of implementation.

Overall, a combined understanding of the impact of compound uncertainty on system
performance will provide a holistic picture allowing for more informed and effective
decisions. The ability to forecast such uncertainty given by limited and sporadic data will
improve decision-making capabilities, though the level of confidence and the range of
uncertainty must be taken into consideration to increase awareness of under or over
estimation. Alternative approaches involve simulating maintenance data, whether by
Monte Carlo techniques for individual parameters or agent-based modelling of
maintenance scenarios. Developing models that are representative of increasingly
complex systems requires significant computing power and cost. Acting upon forecast
uncertainty over time creates a trade-off between the cost of corresponding risk mitigation
and acceptance of the possibility of delays and increased maintenance costs through

unexpected failures or unnecessary work carried out.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The overall findings of this thesis deliver a novel combination of approaches to (1)
quantify and aggregate uncertainty contributed by quantitative and qualitative sources,
then (2) predict how that uncertainty may change over time under limited data scenarios.
The presented frameworks are designed to be applicable for increasingly complex
engineering systems. The initial hypothesis that this approach can improve uncertainty
management at the equipment-type level for real-world industrial maintenance is proven

by the fulfilment of the research objectives as follows:

Objective 1: Map current practice to identify core challenges and resulting uncertainties
around equipment cost and availability and how these differ from forecast behaviour
within complex engineering systems.

e Methodologies to quantify and aggregate purely quantitative uncertainty is well
versed in literature and applied in practice. Uncertainty attributed by qualitative,
subjective opinions is seldom taken into consideration alongside quantitative data.
This can lead to under or over estimation of uncertainty and determinate factors
for a given system (Chapter 2 and Chapter 3)

e Key challenges in the maintenance of increasingly complex systems that manifest
uncertainty include intellectual property rights (IPR), maintainer performance,
quality of information, resistance to change, stakeholder communication and
technology integration — with quality of information being the greatest driver
(Chapter 3). Since IPR, resistance to change and technology integration are
largely tied into other themes such as supply chain management, they were

considered out of scope for this thesis.
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A variety of support systems and data repositories are used to report failures and
track corrective actions. Many are not linked, resulting in duplicate entries, gaps
in historic data and further assumptions having to be made (Chapter 3)

The resulting limited data scenario prohibits traditional forecasting methods as
associated systems grow in complexity, calling for greater flexibility in methods
used to assess and forecast uncertainty for maintenance planning (Chapter 2)

A holistic picture of the impact of qualitative and quantitative uncertainty on
system performance can enable more informed and effective decision-making, but
a trade-off is required with implementation costs under a ‘spend to save’ approach

or set aside lump sums for unforeseen circumstances (Chapter 3)

Objective 2: Develop a framework to aggregate uncertainty from quantitative and

qualitative sources represented through different probability distributions with an

identification of the source of greatest uncertainty.

Existing methodologies to quantify and aggregate uncertainty from purely

quantitative, purely qualitative and compound perspectives were identified and

ranked using TOPSIS (Chapter 2 and Appendix B)

The compound uncertainty quantification and aggregation (CUQA) framework

was developed, incorporating the top-ranked approaches (Chapter 4):

o Uncertainty identification from a component to system level

o Improved rigour in uncertainty assessment for industrial maintenance

o Consideration of different probability distributions through use of coefficient
of variation (CV)

o Derivation of dependencies between parameters and identification of greatest
contributing factors through global sensitivity analysis (GSA)

Limitations of the CUQA framework that prompt future work in Section 7.2 are:

o Input data distributions are defined manually

o Number of data points in sub-array units can result in disproportionately low
CV for lognormally distributed parameters compared to qualitative factors

o Only tested for normal, lognormal and uniform distributions
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Objective 3: Develop an approach to predict uncertainty given by limited available data

and qualitative factors to relate to equipment cost and availability over the in-service

phase.

Existing methodologies were identified to forecast uncertainties in maintenance

that influence equipment cost and availability (largely in the product-service

systems (PSS) context), ranked using TOPSIS (Chapter 2 and Appendix B)

Methodologies to predict uncertainty and remaining useful life (RUL) were

assessed for use with limited maintenance data in increasingly complex

engineering systems (Chapter 2)

The framework for uncertainty prediction under limited data (UPLD) was

developed, incorporating the top-ranked approaches (Chapter 5):

o Robust prediction of trends in limited and dynamic uncertainty data given by
compound attributes

o Parallel determination of geometric symmetry at each point in time

o Immersive visualisation of dynamic uncertainties and shape change with an
indication of magnitude and direction of the greatest contributing factor

The model can be embedded in a range of applications, including uncertainty in

equipment availability and costs, but a direct connection is not made between

these and compound uncertainty in the presented work

Limitations of the UPLD framework that prompt future work in Section 7.2 are:

o Partition of training/observed to test/predicted data is fixed to 60%. This is
variable within the developed application, but not examined in the presented
work

o Number and order of input parameters is fixed for all predictions — new inputs
cannot be added over time

o Methodology to allocate input dimensions to LSTM networks has a significant
effect on the robustness of resulting predictions, making this one of the most
important steps of the framework

o Use of MAPE and RMSE as evaluation metrics resulted in significant
prediction errors. This was due to sudden changes in the observed data for
which predictions could not account
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Objective 4. Validate the final model to assess implementation effectiveness and

usability in context

Development of the MCDUQ app boosts framework usability, allowing results
and forecasts to be viewed in an intuitive manner.

Surveys held with industrial practitioners deemed the methodologies applied in
the model of great benefit to assess system performance. However, to be truly
implemented the app would likely require recoding in alternative programming
languages such as Python and in C# for AR applications.

A key subject was the application and qualification of the novel approach to real-
world scenarios and establish trust in the methodology. The use of ‘real’ data
would provide a better demonstration of the MCDUQ app’s capabilities. This was
not possible for this thesis owing to confidentiality restrictions.

A holistic picture of uncertainty surrounding RUL prediction is of great benefit,
taking qualitative factors, data sampling rates and gaps in data into consideration.
The next major step highlighted in the surveys was the linking of uncertainties
calculated and predicted via the MCDUQ app with factors such as equipment

availability, turnaround times and costing.

7.2 Future work

Recommendations for future research as a result of the studies undertaken in the above

chapters are listed below:

Uncertainty quantification and aggregation

Further assessment of aggregated compound uncertainty, incorporating additional
distribution types such as Weibull, Gamma and Beta. These may allow for greater
flexibility in highly variable time series data but require additional points to shape
and scale accurately.

Use of clustering techniques to derive and classify uncertainty from non-
parametric and stochastic distributions. While elements of the CUQA framework
are automated in the MCDUQ app, intelligent learning techniques to identify the
most appropriate sub-array size allocation or representative distributions are not
featured. These can enhance usability and robustness of the aggregated

uncertainty for more complex inputs.
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Improved rigour of the GSA approach in variance decomposition for each sub-
array time unit. The GSA approach applied in the CUQA framework can be
implemented with relatively small datasets and illustrate dependencies of
individual uncertainties against the total effects. A more rigorous depiction of the
greatest contributing factors may be achieved through derivation of Sobol indices.
However, this would require additional derivation of model/system process
equations for each application (such as heat transfer and energy loss). While out
of scope for this research, the model can be further developed to incorporate such

equations in the first step of the CUQA framework.

Uncertainty prediction under limited data

Simulate and interpolate input data to fill gaps in signal data. While the UPLD
framework is able to predict uncertainty for small datasets, it has not been applied
where data may be missing for certain time units. Gaps in data can be filled by
interpolation.

Explore implications of altering fixed parameters within spatial geometry.
Determination of shape area and symmetry relies on fixed parameters such as the
radial sequence between input dimensions. The impact of changing the input order
around the origin for each time unit to a variable rather than a constant parameter
is under investigation. Optimum input orders are not yet defined. Derivation may
be possible through testing the results of every possible order and taking the mean
result, though this would become cumbersome with an increasing number of
inputs.

Explore alternatives to regression output layers for the LSTM networks to
improve robustness in predictions. Regression output layers were used to provide
the prediction results. Typically, these would be based on sufficient data to fulfil
the Central Limit Theorem. Under limited data, the use of regression contributes
to prediction errors. Alternative, custom output layers should be explored to
provide greater robustness.

Develop the 3D visualisation for applications in AR. This will allow further detail
to be provided on each input node through time in an intuitive manner. The
uncertainty range can be illustrated via fan plots, as well as proposals for

mitigation and correlated factors.
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Overall

Test the frameworks with more complex inputs. The case studies applied in this
thesis to test and validate the CUQA and UPLD frameworks may be considered
comparatively simple in terms of the nature of inputs and qualitative factors such
as operational environments and assumptions grouped under 5-point scoring in
the pedigree approach. While the uncertainties exhibited are akin to those faced
in various environments and present comparable challenges to quantification and
forecasting, further testing in real-world scenarios will allow for further
development.

Integration of strategies to mitigate, tolerate or exploit uncertainty with
suggestions of how to manage different levels for each factor. Where the
quantified, aggregated or forecast uncertainties lie outside of an acceptable level,
approaches to manage them should be made available to the user. These
approaches could be predefined for different boundaries in the initial
identification of inputs. Visualisation of such approaches could be integrated as
part of the AR interface.

Simulate maintenance processes through surrogate models to replicate challenges
identified in Chapter 3. Data collected from simulations can then be incorporated
to train developed frameworks to aggregate and forecast compound uncertainty
with greater confidence where real-world data is not obtainable.

Uncertainties calculated and predicted using the amalgamation of methods
presented in this thesis need to be connected to their impact on factors such as
equipment availability, turnaround times and costing to enhance decision-making

capabilities in maintenance planning.
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APPENDICES

Appendix A. Literature review methodology: Search, appraisal, and
synthesis

A.1l Literature search

The literature search detailed the formulation of the search string entered in online
databases with applied filters (article type and publication year), inclusion of previously
cited and recommended papers (hand search), along with publications cited in highly
relevant sources [94]. The resulting string and search results are illustrated below and in
Table A.1:

Search string: ("Uncertainty quantification" AND (“aggregation” OR 'industrial

maintenance" OR “forecasting” OR "challenges" OR "complex engineering systems”))

Table A.1. Database search results

Database Search fields Date Documents
found
Google Scholar Title 07/07/2020 59
IEEE Xplore Title-Abs-Key 07/07/2020 79
Science Direct Title-Abs-Key 07/07/2020 275
Scopus (open access) Title-Abs-Key 07/07/2020 218
Total 631

From the database search, 148 files were downloaded on a basis of accessibility, format,
title and date. The hand search sourced 119 papers, while 24 were sourced from citations
within sourced papers. This resulted in a pool of documentation to assess in the appraisal
phase. Inclusion and exclusion criteria are required to refine the results, as well as a

structured data extraction methodology, defined in the following sections.

A.2 Appraisal of identified literature

A.2.1 Quality assessment

It is necessary to refine the number of publications obtained to appropriately satisfy the

RQs and assess the evidence base. To do this, a critical assessment of relevance and
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quality was conducted. The broad selection process in Figure A.1, adapted from Booth
[53], was implemented considering the PICOC framework in Section 2.3, as well as other
review examples and author experience. Specific inclusion and exclusion criteria, based
on the PICOC framework, are identified in Table A.2 [53,54,199].

[Stage]
]

Number Number
R deducted remaining
Identification
$ 2

:

Format > Duplicates
12 [ 280 18 | 262

Included in

synthesis Included

Figure A.1. Appraisal: Publication selection process [53,201]

Table A.2. Appraisal: Inclusion and exclusion criteria

Inclusion Exclusion
e UQ theory, uncertainty prediction and e Full source not accessible
analysis, contextual application, compound o Not written in English

uncertainty N —
. . . o Limited in-text citations or references to
e Uncertainty propagation and forecasting verify findings

¢ Industrial maintenance applications

o Clear techniques & referred sources for
validity & additional searching

A.2.2 Data extraction

A data extraction table was composed in MS Excel (Appendix A.2) to manage the

literature and assess the evidence base, allowing different studies to be appraised in a

consistent manner [53]. This included a record of:

e Publication details: Source folder, filename, publication title, author, year, type
(journal, book, etc.), source method (database search, citation search, recommended)

and author keywords
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e Study details: Context, aims/objectives, methodologies/theory adopted, data collection
strategies

e Results: Author’s conclusions, outcome / findings, strengths, limitations

Publication details were recorded for all sources that passed the screening stage in Figure
A.l. Eligibility was established in four main sifting stages: title, abstract,
introduction/conclusion and full-text reading. If deemed eligible based on title, a
preliminary understanding of study details and results was obtained from the abstract to
gain familiarity and identify key information. Publications considered relevant were then
looked over in more detail to gain a comprehensive understanding in the next two stages.
This allowed papers to be summarised into categories and identify relationships for
synthesis [200]. Cited publications within papers that could enhance the research picture
were searched for directly and fed back into the start of the process. A total of 185 papers
were eliminated in the process, based on the sifting stages illustrated in Figure A.1 and
Figure A.2.

Format, 12, 6%

Full text, 31,
17% Duplicates,
18, 10%

Publication -
Intro/conc, eliminations Title, 31,
36, 19% 17%

Outdated, Abstract,
29, 16% 28, 15%

Figure A.2. Appraisal: Quality assessment — Publication eliminations

A.3 Synthesis of extracted data

The synthesis phase of the SALSA framework overlaps with the search and analysis
phases to produce a breakdown of extracted data, comparing similarities and differences
within each category [53]. This phase will identify what the literature says. The analysis

identifies what it means.

Data extracted from the papers was categorised through a thematic synthesis. This is a
well-validated method for synthesising qualitative data [53,54,56,58,201]. Key themes

were established according to the research scope defined in the PICOC framework (Table
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2.3), RQs, discussions with academic supervisors and the author’s understanding of the
topic. The thematic categorisation involved the generation of several categories for each
established theme. This was achieved through a repetitive word counting process whereby
the most frequently used words in the full text of each included paper were cross-
referenced with the proposed category names using VLOOKUP functions in Excel
(snapshot in Figure A.4). The most recurring words were more likely to be identified as
categories that could be applied to the themes. Variations of words e.g., ‘predict’ and
‘prediction’ were included to account for word stemming and acronyms. This process
required several iterations to combine and refine categories within a larger area and

eliminate less frequent or irrelevant words; identified by the same method as key themes.

The category term most frequently recurring for each paper was highlighted. For each
category, the number of highlighted cells over the 107 papers was added to the number
of papers that contain that category term. The resulting ‘score’ was then used to identify
the most relevant categories in each theme, combining similar terms. The resulting themes
and categories are defined in Table A.3. Where applicable, the pros and cons of these
categories are discussed in the Analysis phase. Theme and category definitions were
determined through the author’s interpretation of occurrences in literature as well as
dictionary definitions. An example of the thematic synthesis data extraction for 3 papers
is illustrated in Table A.4.
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Table A.3. Synthesis: Definition of data extraction themes and categories

Theme Definition Category Definition
Contextual The field in which the Aerospace & Includes defence and commercial or
application proposed framework or  defence military aerospace sectors
study is applied Emissions, Includes oil & gas, energy & power and
energy & greenhouse gas cases
environment
Manufacturing Includes general maintenance and
& maintenance manufacturing processes in
miscellaneous applications
Theory Qualitative or quantitative theory and
frameworks with no applied context
Analysis type Type of analysis Quantitative Type A, considering purely statistical

Propagation &
simulation
techniques

carried out according to
the nature of
uncertainty sources

Most prominent
techniques used to
propagate uncertainty
in the analysis process

Qualitative

Compound

Bayesian

Confidence

Correlation

Degrees of
freedom

Expertise /
assumption

Fuzzy set theory

Monte Carlo

Neural network

Pedigree matrix

Sensitivity

analysis
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data sources

Type B, considering purely heuristic
data sources

Combination of Type A and B data
sources

Expresses the probability of an event
occurring given that a prior event has
occurred

Probability that true parameter value lies
within a specified range

Level of interdependence between 2 or
more variables

Amount of information in a sample
relevant to the estimation of a parameter

Derivation of a parameter through
opinion-based, non-statistical means

Function assigns a grade between 0 and
1 to each input parameter of a set, as
opposed to Boolean which is 0 or 1

Highly effective and flexible simulation
technique to generate random variables
about specified input parameters for
multiple distribution types

Network of cooperating processing
elements to give an output. This is
applied to a model and ‘trained’ to give
an optimum output

Scores results of qualitative expert
judgement or assumptions according to
predefined criteria to allow for
quantitative assessment

Identifies key input parameters for
uncertainty analysis. Quantifies how



Probability
distributions

Uncertainty
assessment and
forecasting

Type of distribution
function (PDF) used to
represent uncertainty
about a given range in
the analysis process

Most prominent terms
and qualities used to
predict and forecast
uncertainty

Survey /
interview

Other

Beta
Lognormal
Normal
Poisson
Triangular
Uniform
Weibull
Challenges

Deep learning

Forecasting

Life cycle

Optimisation

Over time

Prediction

changes in input value alter that of the
outcome

Qualitative data collection method for
expert or general population opinion on
a given topic

Methods not used in many papers
(See Table 2.7)

Hinders, adds complexity or prevents
action towards a given entity

Use of artificial networks to learn from
existing data to predict or optimise
future results

Predicting future trends based on past
and present data

A series of stages or developments that
take place over the useful lifetime of a
given product or service

Finding the best or most effective use of
a situation or resource

Measurable progress of past, present,
and future events

Estimate that something will happen or
will be a consequence of something else
— Synonym for forecasting

168



Table A.4. Synthesis: Thematic data extraction example for 3 papers

Theme Simmons et al. [167] Baek et al. [103] Erkoyuncu et al. [13]
Contextual Emissions, energy & Emissions, energy & Manufacturing &
application environment environment maintenance
Analysis type Quantitative Compound Compound
Propagation & Bayesian, Confidence, Confidence, Correlation.  Confidence, Sensitivity
simulation Monte Carlo, Sensitivity ~ Monte Carlo, Pedigree analysis
techniques analysis matrix, Sensitivity

analysis, Survey /

interview
Probability Normal, Uniform Normal, Uniform, Normal, Triangular,

distributions

Uncertainty
assessment and
forecasting

Estimation, Optimisation,
Prediction

Triangular

Estimation, Life cycle

Poisson, Weibull

Estimation, Life cycle,
Prediction
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Figure A.3 (cont’d). Snapshot of data extraction table for publication details, study details and

results of selected papers
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A.4 Review timeline
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A.5 Research methods validity and neutrality

The validity of research methods is distinguished here as the extent to which they achieve

the objectives. Neutrality is the measure to avoid bias and increase transparency and

replicability of the research. The following points examine these traits for the frameworks
and methods adopted in this review.

e Systematic review procedure: The SALSA framework was adopted to carry out the
review procedure due to its contextual flexibility and validity, as well as its successful
implementation in other systematic reviews [53,54,56,58]

e Scoping framework: The PICOC framework (Table 2.3) was adopted to scope the
research and define the aim, objectives and research questions as it provides a
transparent and duplicable identification of key concepts to be implemented in the
SALSA framework.

e Literature search: The PICOC framework was used to construct, refine and enhance
the search string (Table A.1). Literature deemed to encapsulate the scope of the
research criteria was selected to assess in the appraisal phase.

e Appraisal: Inclusion and exclusion criteria were defined through the research scope
and PICOC framework, as well as examples in literature [53,54,199]. Publications
were eliminated on a basis of format (accessibility), duplication, title, abstract, date,
introduction/conclusion and full-text reading (Figure A.1) according to these criteria
via the author’s interpretation of their relevance. The remaining papers were deemed
most relevant to answer the research gquestions. Data management was upheld using
the data extraction table described in Appendix A.2.2.

e Synthesis: Themes and categories were established through the repetitive word
counting process described in Appendix A.3. This reproducible process was validated
and refined by comparison with other reviews and academic feedback [56,58,200,201]

¢ Analysis: A combination of thematic, narrative, tabular and graphical approaches were
adopted to examine the literature and answer the research questions. Types of

uncertainty were discussed in Section 2.2 to provide context for the research scope.
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Appendix B. Methodology selection — TOPSIS

B.1 TOPSIS process

The six steps of the TOPSIS process are as follows:

Step 1: Define decision matrix, D and criteria weights, W for each criterion, C; compared

to the approaches, 4;

(9 C, . G
A1 X11 X12 Xli
p ="z Mz T K
ALK Xz o Xy
W = [Wl Wz . Wl]

Step 2: Calculate normalised decision matrix, )?ij

Xy = ——2u
ij = T — _
'T:lX?j (B-1)
Step 3: Calculate weighted normalised matrix, V;;
Vij = Xij X W; (B-2)
Step 4: Calculate ideal best, V* and worst, V~ value
vt =V T
) (~1_ ~2_ ~]_) (B-3)
74 :(Vl’VZ""’I/j)
Step 5: Calculate Euclidean distance from ideal best, S;" and worst, S;” value
st = JZm vy - )’
(B-4)
_ m _\2
Si = ijl(Vif _Vj )
Step 6: Calculate performance score, P;
p = L B-5
i Si+ +Si_ ( - )

175



B.2 TOPSIS application

Scoring criteria for the identified approaches are adapted from inclusion and exclusion
criteria used in the systematic review in Chapter 2 [97] and challenges recognised from
interviews with industry in Chapter 3 [10]. These are shown in Table B.1 along with an
indication of whether they are a benefit or cost to the ranking process.

Table B.1. Criteria definition with cost or benefit clarification

Number  Criteria Cost or benefit
1 Applications in industrial maintenance for CES or PSS Benefit

2 Presents flexible approach to quantify qualitative uncertainties Benefit

3 Allows for consideration of human and environmental factors Benefit

4 Demonstrates methods to combine uncertainties Benefit

5 Considers methods for multiple types of PDF Benefit

6 Enables interpolation of gaps in data Benefit

7 Capability to forecast uncertainty Benefit

8 Complexity of method Cost

9 Referred sources for validity Benefit

The decision matrix for each criterion, scored on a 5-point Likert scale defined in Table
B.2, against the identified approaches in Table B.3. The criteria are numbered in the table
heading. These scores are based on the author’s understanding of the approaches
following the systematic review, summarised by contrasting matrices in Appendix B.3,
and conclusions drawn by the authors that presented the approaches in literature.

Table B.2. 5-point Likert scale definition for scoring

Score Definition

Fulfils criterion fully to solve problem with implementation examples and is well cited/validate
Fulfils criterion in theory but is not widely validated
Fulfils criterion but is challenged by other sources in its accuracy and rigour

Does not satisfactorily fulfil criterion

N W s~ O

Not related to criterion
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Table B.3. Decision matrix for defined criteria against identified approaches, scored on 5-point

Likert scale
Criteria 1 3 5 6 7 8 9
GUM 3 3 4 1 1 3 5
NUSAP 4 5 2 1 1 2 4
Muller 3 5 5 1 1 2 3
Willink 2 3 3 1 1 4 3
Nordtest 3 3 2 1 1 3 4
BPN 4 1 2 5 4 3 5
DUQ 4 1 2 4 5 3 3
Dropout 3 1 2 4 5 4 3
Spatialgeo 5 1 3 4 5 4 4

The comparison matrices are scored on a 1-3 scale according to whether one method

improves on, is neutral to, or not improved by the other. The sum product of these scores

gives an initial indication of the best method, shown in Table B.4 and Table B.5.

Table B.4. Sum-product of scoring for RQ1 and RQ2

GUM NUSAP Muller Willink Nordtest
method method method approach
Green (3) 0 3 2 2 0
Orange (2) |1 1 2 1 1
Red (1) 3 0 0 1 3
Total 5 10 10 9 5
Table B.5. Sum-product of scoring for RQ3
BPN DUQ Dropout Spatial
geometry
Green(3) | O 2 0 1
Orange (2) | 3 1 2 2
Red (1) 0 0 1 0
Total 6 8 5 7
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The subjective weights applied for the level of importance of each criterion to RQ1-3 are
given in Table B.6. These were determined by the author on an interval of 0.2 between 0
and 1. Criteria that are not applicable to a problem are given a 0 weighting. These weights,
as well as the scores in Table B.2, are subjective and naturally have a direct influence on
the resulting rankings from the TOPSIS method. For a larger decision problem, additional
insights from decision-makers would be necessary to take a mean or mode of each
criterion and relative weight [183,184]. However, for this application, the scores are

deemed sufficient.

Table B.6. Problem weightings for defined criteria

Criteria 1 2 3 4 5 6 7 8 9
RQ1 weight 0.6 0.4 0.2 1.0 1.0 0.0 0.0 0.6 0.6

RQ2 weight 0.6 1.0 1.0 0.4 0.4 0.0 0.0 0.6 0.6

RQ3 weight 0.6 0.2 0.0 0.4 0.4 0.8 1.0 0.8 0.6

The resulting rankings for each method to RQ1-3 are shown in Table B.7 (1 is ranked top,
5 is ranked last). Muller’s [34] semi-quantitative approach is deemed the most suitable
for RQ1 and 2, using the coefficient of variation to combine quantitative and qualitative
inputs represented by different PDFs. Qualitative inputs are defined through the Pedigree
method, as they are for NUSAP [52,128]. These two approaches may be amalgamated to
optimise the use of Pedigree for RQ2.

Table B.7. Ranking of identified approaches

Rank Methods for RQ1 Methods for RQ2 Methods for RQ3
1 Muller Muller Spatial geometry

2 GUM NUSAP DUQ

3 NUSAP Willink BPN

4 Willink GUM Dropout

5 Nordtest Nordtest

Schwabe’s [28] spatial geometry is ranked best of the identified approaches for RQS3.
While focused on cost uncertainty, the approach to determine geometric symmetry of data

variance for a given point may be extended to consider uncertainties from a range of
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inputs. Once qualitative inputs are converted through the pedigree approach, combined
with quantitative types and equated through the coefficient of variation, Schwabe’s
approach can be applied to forecast how they may change over time. As with Wang’s
[149] and Gal’s [15] approaches, spatial geometry can make use of dropout training to
approximate Bayesian inference in Gaussian processes to update probability as more

evidence becomes available.
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B.3 Contrasting matrices of identified approaches

- Left method improves on or is favourable to top
- Methods can benefit each other / no clear positive or negative of using either
. left method has been improved on by top

Approaches suited to RQ1 & RQ2:

Nordtest approach

‘Willink method

Muller method

GUM method

GUM
method
Nordtest
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Approaches suited to RQ3:
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Appendix C. Current practice and challenges

C.1 Interview questions and discussion points

Part 1 — Influencing factors
e Discuss and highlight important factors from questionnaire results — Which ones can
be filtered out?
o General discussion of scores given for each section — Mean score, highest effect on
quality of maintenance
e How can this impact maintenance times/costs?
o E.g. having to redo a task because it wasn’t carried out effectively

e What can be improved?

Part 2 — Current practice

e Maintenance regimes — contractor vs client — effect on measurement accuracy

e Equipment quality

e Complex system context — change in one system maintained by another shareholder
has an unknown impact on another, increasing uncertainty

e Discussion of scores given in survey

Methods or systems used to record maintenance data

Are systems effective and fully utilised?

If not, how could they be improved?

How well is recorded data used to assess maintenance?

How is data from previous projects used to influence decisions on new projects?

Risk and Uncertainty

e Key points that influence uncertainties in their field?

e How are these mitigated to reduce uncertainty?

e Are methods in place to measure changes in uncertainty over time?

e Are uncertainties categorised? (E.g. people, processes, equipment)

Summary of discussions
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Appendix D. Compound uncertainty quantification and aggregation

D.1 Heat exchanger test rig
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Figure D.1. Heat exchanger test rig: Increasing deviation (uncertainty) with sub-array size

D.2 C-MAPSS turbofan engine
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Figure D.2. C-MAPSS turbofan engine: Sub-array boxplots over time-series data (example for

six input parameters)
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Appendix E. UPLD framework interview questions

Semi-structured interviews were held with key personnel from a leading defence

company. This included data analysts and modellers, some of whom participated in the

initial studies in Chapter 3. The interview questions and summary of answers is given

below:

1. What methods are used?

LSTMs in prognostics and health management (PHM) — autoencoders used to
reconstruct signals from assets

This is used to produce a health index — subject of patent, cannot discuss
Knowledge of reconstruction quality and operational defects is used to predict
when maintenance will be needed

Question of how long components have been failing for

Scoring is a big issue — which method is best for different failure modes?

2. What time scales are forecasts made on and what factors are forecast or predicted?

(Costs, turnaround times, required equipment, measured data)

There is a time window in which maintenance could be performed
An anomaly score is assigned for measured data

Depends on quality of reconstruction — if error is constant that’s ok

How much data is typically available on which to base forecasts?

Highly variable on number of signals and sampling rate
Can have unpredictable gaps in the data

Uncertain if all failure modes are being captured

For what level are forecasts made? (Whole system units or individual components)

Binary classification if it’s healthy or not — system level

e Work on the level of a machine, not e.g., a faulty pipe

e There is not enough data to define a specific fingerprint for specific faults
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Appendix F. Implementations of the work: Perspectives on the
effectiveness of the final framework

The first stage of the CUQA app is to load in the data and split it into sub-arrays to
quantify the uncertainty. The automatic sub-array size is used as default (as defined in
Chapter 4) along with the corresponding number of boxes, controlled by the left-hand
panel in Figure F.1. When switched to manual, the user can select any other possible size

using the ‘Sub array size’ drop-down component and view the corresponding plots.

4| MATLAE App - O X

Sub arrays Pedigree Summary tables Combine Sensitivity CV change over time

CUQA a
Q PP Plot sub arrays w» -
Initial data box plots
Change data Sub array size comparison . 1800 ==
1420 55| =5
NASA C-MAPSStu_. v - 5“3| | ‘59°| % | =] | | |
SubSize 52 (T24) mean | 83 (T30) mean 642 1580 1400
toatarn | @ ] 8436210 1.58350+0; 52 (T24) $3 (T30) 54 (T50) S7 ( P30)
2 6426210  158958+0: 23882| ; |ggggl¥| szzlgl
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Figure F.1. MCDUQ app: CUQA sub-array tab

The displayed input data is changed using the ‘Data’ drop-down component. The
examples in the figures use the C-MAPSS turbofan engine degradation dataset as
described in Chapter 4 and Chapter 5.
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The corresponding pedigree factors are plotted in the second tab shown in Figure F.2. The
user can define uncertainty factors for increasing pedigree scores, displayed in the line

plot, as well as the defined score for each factor.

When the ‘factor score type’ is set to ‘Random’, the app plots scores over the sub-array
time period £1 of the set score in individual bar charts. When set to ‘Constant’, the defined
scores are held constant over the time period. This mirrors the CUQA framework defined
in Chapter 4.

(4] MATLAE App - | X
Sub arrays Pedigres Summary tables Combine Sensitivity CV change over time
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Figure F.2. MCDUQ app: CUQA pedigree factors tab

The summarised quantitative, qualitative and correlation data is plotted in the summary
tables tab (Figure F.3). The correlation matrices are plotted in a separate app window for
all factors or only significant factors. The ‘Time unit’ drop-down component in the left

panel controls the time unit for which data is summarised. The individual and aggregated

187



uncertainty of the selected time unit is then plotted along with the breakdown of
distribution types in Figure F.4.
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Figure F.3. MCDUQ app: CUQA summary tables tab
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Figure F.4. MCDUQ app: CUQA combine CV tab

The 3D bar plots for the results of the global sensitivity analysis are plotted in the
sensitivity tab (Figure F.5) [40]. This is given for all variables along with a table denoting
the sensitivity indices. Factors within the 95% significance are highlighted red, while non-
significant factors are grey. Using the panel in the bottom left, the CUQA assessment is
looped for all time units and results saved in a structure array. The most significant factors
(95%) are then reassessed, as in Chapter 4, and plotted in the right figure for comparison.
These results are saved in a separate structure array, both of which can be optionally saved

to a defined file path location using the ‘Save results’ check box.
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Figure F.5. MCDUQ app: CUQA sensitivity tab

Once the uncertainty is quantified, aggregated and the most influential inputs and
dependencies are identified, the most significant uncertainties are forecast according to
the framework denoted in Chapter 5. The UPLD application tool also features a fixed
panel on the left side and a range of tabs displaying different plots and information on the
right side. The fixed panel allows the user to:

e Select different datasets

e Adjust the partition split between training and test data

e Train the networks

e View how many input dimensions are allocated to each network

e Open separate apps to view the 3D visualisation and run hyperparameter tests for

the network architecture
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The tabs on the right side are described in Table F.1. To aid usability, red and green lamps
were added next to each button to indicate when changes are being processed and plots

updated.

Table F.1. MCDUQ app: UPLD tabs description

Tab name Description

Input data Plots for initial and updated forecasts with live-updating partition
line

Input data summary Displays summary statistics as bar charts for each input and has an
option to use alternative deterministic measures for network
allocation

LSTM architecture Allows the user to adjust the initial structure and training options for

each network
Initial and updated forecasts Plots respective individual forecasts against observed data
Initial and updated error Plots respective individual forecast errors as MAPE or RMSE
SG: Symmetry e Summary table for shape areas, symmetry and cumulative

variables for each time unit

o Plot of symmetry over time

e Plot actual and reference areas over time

e Plot cumulative variables

SG: Shape comparison Plots reference shape dimensions and compares actual and reference
shape areas over time

SG: Correlation factor Plots percent change of cumulative actual area and symmetry over
time with comparison of correlation factors using linear, lognormal
and exponential trend line equations

SG: Linear regression Compares relationships between all input dimensions, displays
summary table with linear trend line equations and R? correlation,
plots top 5 strongest relationships

The ‘Input data’ tab is shown in Figure F.6. Three plots are displayed: the full-scaled
dataset, initial forecast given by the trained networks and the updated multistep
prediction. The partition slider is directly linked to the live partition line in the three plots
to visualise the training and test split. The forecasts are automatically updated using the
trained networks and given training data. Predicted data is plotted as dashed coloured
lines (matching the colour of the training data) against the dashed grey observed (test)
data. Prediction error is given by individual plots of predicted against observed data.

These plots also update when the partition slider value is changed.
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Figure F.6. MCDUQ app: UPLD input data tab
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The ‘SG: symmetry’ tab is shown in Figure F.7. This is the main page for the results of

the spatial geometry calculations. The table summarises the areas, symmetry and

cumulative values for each time unit, which are then visualised in the three plots. Before

the networks are trained, only the values for the initial dataset are displayed. Once trained,

the ‘Use predicted data’ button is enabled. This recalculates the areas and symmetry using

the predicted data in place of the observed data. When active, the same partition lines are

layered over the plots to show the initial and predicted data split. This also updates then

the partition slider value is changed.
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Figure F.7. MCDUQ app: UPLD spatial geometry symmetry tab

The ‘SG: Linear regression’ tab in Figure F.8 displays the relationships between all input

dimensions. The table gives linear trend line equations and R? correlation, sorted to show

the strongest correlation first. This indicates dependencies between variables. The top 5

strongest relationships are plotted below the table.

The ‘Plot 3D vectors’ button calls a separate app that displays the 3D plotting

functionality, shown in Figure F.9. This is linked directly into the forecasting app so that

when the partition slider value is changed, the subsequent training and test data split and

updated prediction are reflected in the 3D plot. The app has two additional tabs for a 2D

plot with each web overlayed on a single axis and the uncertainty range given by a 3D

bar plot and line plot of the triangular distribution.
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Figure F.8. MCDUQ app: UPLD spatial geometry regression tab

The ‘3D vectors’ tab has a series of checkboxes on the left side that allow the user to
switch on and off each element within the plot. The web shape fill transparency can also
be adjusted by a slider for the initial, observed and predicted data individually. The
colours of the end vector coordinate points are given by default. The predicted (dashed)
lines match the colour of the initial (solid) lines over time. the observed lines are shown
in grey. For the visualisation in Figure F.9, only the predicted lines are shown. To boost
visibility through the web fill and against the colours of the initial and predicted data
lines, the colour and scale of the aggregate vector end markers can be adjusted by the
user. Colours can be given as a 3-element RGB vector or by single letters as set by
MATLAB. Linking lines between the observed and predicted data points and aggregate
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vectors can also be shown to visualise the prediction error, as well as a text box
annotation. The figure has the links between the aggregate vectors switched on. The plot

legend automatically updates to allow identification of each selected element.

These features cover some of the issues highlighted in Chapter 5 for the useability of the
3D visualisation. Further developments may see these functionalities translated to a truly
immersive AR visualisation. The user would then be able to expand on each data point
and see additional information surrounding it, such as mitigation strategies and highly

correlated variables.

The schematics in Figure F.10 and Figure F.11 illustrate the model flow and links between
functions for the two phases of the MCDUQ app. The green diamond represents the
linking point for the resulting uncertainty data from the CUQA phase to the input
topology evaluation in the UPLD phase. Precalculated variance data can also be fed
directly into the UPLD phase.
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Figure F.9. MCDUQ app: UPLD 3D visualisation plot with optional perspectives
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Figure F.10. MCDUQ app: Schematic for CUQA phase
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Schematic for UPLD phase

Figure F.11. MCDUQ app



