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ABSTRACT 

Engineering systems are expected to function effectively whilst maintaining reliability in 

service. These systems consist of various equipment units, many of which are maintained 

on a corrective or time-based basis. Challenges to plan maintenance accounting for 

turnaround times, equipment availability and resulting costs manifest varying degrees of 

uncertainty stemming from multiple quantitative and qualitative (compound) sources 

throughout the in-service life. 

Under or over-estimating this uncertainty can lead to increased failure rates or, more 

often, unnecessary maintenance being carried out. As well as the quality availability of 

data, uncertainty is driven by the influence of expert experience or assumptions and 

environmental operating conditions. Accommodating for uncertainty requires the 

determination of key contributors, their influence on interconnected units and how this 

might change over time. 

This research aims to develop a modelling approach to quantify, aggregate and forecast 

uncertainty given by a combination of historic equipment data and heuristic estimates for 

in-service engineering systems. Research gaps and challenges are identified through a 

systematic literature review and supported by a series of surveys and interviews with 

industrial practitioners. These are addressed by the development of two frameworks: (1) 

quantify and aggregate compound uncertainty, and (2) predict uncertainty under limited 

data.  

The two frameworks are brought together to produce the Multistep Compound Dynamic 

Uncertainty Quantification (MCDUQ) app, developed in MATLAB. Results demonstrate 

effective measurement of compound uncertainties and their impact on system reliability, 

along with robust predictions under limited data with an immersive visualisation of 

dynamic uncertainty. The embedded frameworks are each validated through 

implementation in two case studies. The app is verified with industrial experts through a 

series of interviews and virtual demonstrations. 

Keywords: Engineering systems; Limited data; Uncertainty aggregation; Uncertainty 

prediction 
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RSS Root-sum-square 

RUL Remaining useful life  

SA Sensitivity analysis 

SALSA Search, appraisal, synthesis, analysis 

SAR Selected acquisition report 

SLR Systematic literature review 

UQ Uncertainty quantification 
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 INTRODUCTION 
 

 

 

Through-life service contracts deliver levels of availability, affordability and performance 

for assets operating in various challenging environments consisting of increasingly 

complex engineering systems (CES). Decisions made planning maintenance for such 

assets historically requires significant experience and expertise, as well as the use of 

equipment data that may be inaccurate, sporadic, or outdated. Numerous uncertainties are 

raised here concerning the validity of expert opinions and accuracy of recorded data, 

which risk over or under estimation of factors relating to maintenance carried out. 

Significant costs and delays are risked as a result. Uncertainty is defined in this thesis as 

the difference between the degree of information required and information held to make 

a decision concerning a given entity. As well as deviations in quantitative, recorded data, 

this definition encompasses information sourced from qualitative, subjective opinions, 

assumptions and environmental factors. The resulting risk is the impact the uncertainty 

will have on the given entity [1,2,20]. This thesis focuses on uncertainty, not the resulting 

risk. Modern analytical methods can provide rigorous, self-learning scientific approaches 

to quantify and predict uncertainty by employing intelligent logical systems to automate 

and learn from live and historic data to aid decision-making. This has the potential to 

significantly reduce risk factors while improving performance, efficiency, and safety 

[5,7]. 

 

Uncertainty quantification (UQ) has been explored in various fields [3,11,15,18]. This is 

the practice of characterising uncertainties for computational and real-world applications. 

Many approaches model a particular type of uncertainty from statistical sources under 

probability theory. Methods to obtain and analyse qualitative attributes often go 

undefined and unmitigated, which has the potential to increase the occurrence likelihood 
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of unforeseen events [2]. A holistic aggregation of uncertainty from quantitative and 

qualitative sources will aid decision-making and reduce under or over estimation of 

maintenance costs and turnaround time. 

Aggregation traditionally considers a summation of best and worst-case scenarios to 

define boundaries for likely outcomes. This raises the question of whether uncertainties 

can be aggregated across multiple elements represented through different probability 

distributions. To do so, a second question is raised of how to standardise and validate 

qualitative estimates attributed by expert opinion. 

To consider how this may change over time, a third question considers how uncertainty 

can be forecast over the in-service phase of an asset’s life cycle. The availability, 

consistency and accessibility of equipment data can change dynamically over time, 

necessitating the need for rigorous UQ techniques to optimally incorporate resulting 

challenges into maintenance planning. This is dependent on the selection of the best 

applicable UQ method, such as probability theory, Monte Carlo, Bayesian deep learning 

and neural networks (NN). 

This novel research examines the quantification of uncertainty propagated by these 

challenges, along with those faced in maintenance delivery. This is considered to be 

unique in literature for this context and offers defined academic contributions around 

dynamic quantification of technical uncertainties at the equipment-type (ET) level in real-

world industrial applications. The ET level considers multiple subsystems that interact 

with unique availability requirements, prompting a high influence on maintenance 

expenditure [13]. The increasing complexity of engineering systems makes it 

progressively difficult to comprehend the impact of uncertainty for alternative 

maintenance scenarios in Product-Service Systems (PSS). This promotes the need to 

scientifically quantify uncertainty rather than rely solely on expert opinion that is 

inherently subjective. There is also a need to implement self-learning systems capable of 

making predictions and recommendations based on historic data and human input to 

optimise decision-making for the in-service phase of an asset’s life cycle. 
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The aim of this research is to develop a modelling approach to quantify, aggregate and 

forecast uncertainty given by a combination of historic equipment data and heuristic 

estimates for in-service engineering systems. 

It is hypothesised that a rigorous and structured approach to quantify, aggregate and 

forecast technical engineering uncertainties from quantitative and qualitative sources 

throughout the in-service phase will improve uncertainty management at the ET level for 

real-world industrial maintenance under limited and sporadic data. To test this hypothesis 

and deliver on the aim, four key objectives were set: 

Objective 1: Map current practice to identify core challenges and resulting uncertainties 

around equipment cost and availability and how these differ from forecast behaviour 

within complex engineering systems. 

Objective 2: Develop a framework to aggregate uncertainty from quantitative and 

qualitative sources represented through different probability distributions with an 

identification of the source of greatest uncertainty. 

Objective 3: Develop an approach to predict uncertainty given by limited available data 

and qualitative factors to relate to equipment cost and availability over the in-service 

phase. 

Objective 4: Validate the final model to assess implementation effectiveness and 

usability in context. 

 

The research presented in this thesis was developed through collaboration between the 

Through-life Engineering Services Centre (TES) at Cranfield University (UK) and BAE 

Systems Maritime Services (UK). The research was funded by the Engineering and 

Physical Sciences Research Council (EPSRC), project reference 1944319, and Doctoral 

Training Partnership (DTP). Underlying data for each chapter is available on the 

Cranfield University repository, CORD, under the project title of this thesis. 
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This thesis is presented as a series of chapters adapted from journal papers. Each chapter 

begins with a title page consisting of an abstract and details of published or submitted 

manuscripts, including DOI links. Chapters 3-5 present approaches used to fulfil the 

objectives. Their discussions and critique are therefore given at the end of the respective 

chapter, tied together in Chapter 6. References and appendices are provided at the end of 

the thesis. All experimental work was completed as specified by Alex Grenyer at 

Cranfield University (UK), with set-up assistance from Dr Pavan Addepalli and suppliers 

of measurement equipment. Interviews discussed in Chapter 3 were held at BAE Systems 

Maritime Services, Portsmouth Naval Base (UK), organised by Darren Goodman. Further 

validation with industrial practitioners was obtained in workshops with the Society for 

Cost Analysis and Forecasting (SCAF) and at the 36th International Symposium on 

Military Research (ISMOR). Final validation and verification interviews discussed at the 

end of Chapter 5 and Chapter 6 were held virtually. 

 

A summary of the thesis structure is given in Figure 1.1 with feedforward and feedback 

loops to illustrate where chapters feed into each other. Chapter 2 presents an in-depth 

systematic literature review to identify and assess existing methodologies to quantify, 

aggregate and forecast uncertainty from quantitative and qualitative (compound) sources 

with a view to better understand the impact on cost and availability to aid decision making 

throughout the in-service phase. A total of 107 papers were analysed to answer three 

research questions based on the scope, through which three key research gaps were 

identified. The review outcome informed the selection of methodologies to develop 

frameworks that will fulfil objectives and address the research gaps. The literature 

reviews from the manuscripts on which Chapters 3-5 are based have been incorporated 

into this chapter. The methodology selection process is detailed in Appendix B. 

Chapter 3 examines current practice and challenges in industrial maintenance that exhibit 

uncertainties around equipment cost and availability, fulfilling Objective 1. Surveys and 

interviews were held with maintenance managers and validated with wider industrial 

practitioners. Challenges were examined in practice, considering interlinked systems in 

the product-service system (PSS) context Core factors that manifest uncertainty in 

maintenance were identified. 
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Chapter 4 presents the Compound Uncertainty Quantification and Aggregation (CUQA) 

framework to fulfil Objective 2. Influenced by the findings of the previous chapters, this 

framework expanded upon existing techniques to aggregate compound uncertainties 

through the coefficient of variation (CV) and illustrate which inputs incite the greatest 

source of uncertainty. 

Chapter 5 presents the framework for uncertainty prediction under limited data (UPLD), 

which embraces the third objective for the in-service life cycle phase. This multistep 

prediction model combines spatial geometry with long-short term memory (LSTM) 

neural networks. The framework is designed to be flexible to enable use in a variety of 

systems and allows the user to tune parameters to enhance the robustness of predictions. 

Chapter 6 evaluates the research gaps and critiques the contributions to knowledge. The 

two frameworks are brought together to form the Multistep Compound Dynamic 

Uncertainty Quantification (MCDUQ) modelling approach, detailed in Appendix F. 

Feedback from the industrial sponsor concerning the model’s implementation is presented 

to achieve the fourth objective. 

 

 

Figure 1.1. Thesis structure 
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Chapter 7 summarises the key conclusions against the objectives and recommendations 

of future work in the field of uncertainty quantification, aggregation and prediction. Table 

1.1 summarises the thesis plan and the status of paper submissions at the time of writing. 

A table of experiments performed in the thesis, along with their justification towards the 

methodology, is given in Table 1.2. 

 

Table 1.1. Thesis plan and status of paper submissions 

Chapter Adapted 

from paper 

Objective Title Journal Status 

2 1 1, 2, 3 A systematic review of 

multivariate uncertainty 

quantification for 

engineering systems 

CIRP Journal of 

Manufacturing, 

Science and 

Technology 

Published 

2021 

[97] 

3 2 1 Identifying challenges in 

quantifying uncertainty: 

case study in infrared 

thermography 

Procedia CIRP: 

IPS2 Conference 

2018 

Published 

2018 

[191] 

3 3 1 Current practice and 

challenges towards 

handling uncertainty for 

effective outcomes in 

maintenance 

Procedia CIRP: 

CIRPe Web 

Conference 2019 

Published 

2019 

[10] 

4 4 2 An uncertainty 

quantification and 

aggregation framework 

for system performance 

assessment in industrial 

maintenance 

SSRN: TES 

Conference 2020 

Published 

2020 

[30] 

4 5 2 Compound uncertainty 

quantification and 

aggregation (CUQA) for 

reliability measurement 

in industrial maintenance 

Reliability 

Engineering & 

System Safety 

Submitted 

2021 

5 6 3 Dynamic multistep 

uncertainty prediction in 

spatial geometry 

Procedia CIRP: 

CIRPe Web 

Conference 2020 

Published 

2020 

[196] 

5 7 3 Multistep prediction of 

dynamic uncertainty 

under limited data 

CIRP Journal of 

Manufacturing, 

Science and 

Technology 

Published 

2022 

  

6 - 1, 2, 3, 4 Discussion of overall 

work 

- - 

7 - - Conclusions and future 

work 

- - 
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Table 1.2. Table of experiments 

Chapter Case study Type Justification 

3 Current practice 

and challenges 

Survey / 

interview 

Identification of current practice and challenges 

that manifest uncertainty in industrial 

maintenance. 

4 Heat exchanger 

test rig 

Lab work, live 

data recording 

Combination of digital and analogue recording 

devices as well as qualitative factors to manifest 

compound uncertainty in heat exchanger 

performance. Demonstration of CUQA 

framework to assess impact on full system. 

4 C-MAPSS 

turbofan engine 

degradation 

Simulated dataset Simulated degradation comprising of multiple 

sensor measurements and qualitative factors. 

Demonstrated use of CUQA framework to 

analyse aggregated compound uncertainty over 

time. 

5 US SAR cost 

variance 

Pre-existing 

dataset 

Dataset used to validate initial spatial geometry 

approach [28]. Applied for UPLD provide 

comparable consistency in the application and 

demonstrate the wide applicability of the 

framework. 

5 C-MAPSS 

turbofan engine 

degradation 

(results from 

Chapter 4) 

Calculated 

uncertainties from 

simulated dataset 

Aggregated and individual uncertainties 

calculated by the CUQA framework (Chapter 4). 

Applied to UPLD to further demonstrate the 

capability to predict uncertainty under limited 

data. 

5 UPLD 

verification 

Survey/interview Review of the pertinence of the UPLD 

framework, its benefits and where improvements 

are required. 

5 UPLD approach 

comparison 

Method 

comparison 

Comparison of prediction results using UPLD 

with other approaches, made by calculating the 

percentage difference of symmetry from 

resulting predictions to that observed. 

5 UPLD 

comparison with 

additional data 

Comparison with 

additial data 

(simulated time 

series) 

Use of additional, simulated time series data to 

evaluate effectiveness of the UPLD approach. 

6 MCDUQ 

validation 

Survey/interview, 

demonstration 

Demonstration of the final MCDUQ modelling 

approach with industrial practitioners to provide 

validation and feedback. Discussions and 

surveys were held regarding its effectiveness 

and steps towards industrial implementation. 
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 LITERATURE REVIEW 
 

 

Abstract 

Engineering systems must function effectively whilst maintaining reliability in service. Predicting 

maintenance costs and asset availability raises varying degrees of uncertainty from multiple sources. 

Previous reviews in this domain have assessed cost uncertainty and estimation for the entire life cycle. This 

chapter presents a systematic review to investigate existing methodologies and challenges in uncertainty 

quantification, aggregation and prediction for modern engineering systems through their in-service life. 

Approaches to predict uncertainty are hindered chiefly by the quality of available data, experience, and 

knowledge. A total of 107 papers were analysed to answer three research questions based on the scope, 

through which three core research gaps are identified. An integrated combination of identified approaches 

will enhance rigour in uncertainty assessment and prediction. This review contributes a systematic 

identification and assessment of current practices in uncertainty quantification and scientific methodologies 

to quantify, aggregate and predict quantitative and qualitative uncertainties to better understand their impact 

on cost and availability, aiding decision making throughout the in-service phase. 

 

Paper 1 A systematic review of multivariate uncertainty quantification for engineering systems 

 

Published: CIRP Journal of Manufacturing, Science and Technology 

DOI: 10.1016/j.cirpj.2021.03.004 

Data access: Available upon request 
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The increasing complexity and dynamic nature of engineering systems drives an 

inherently high level of uncertainty. Many such complex engineering systems (CES) 

consist of multiple component parts or subsystems that interact in a collective manner not 

representative of individual parts [4,16,19]. Examples of complex systems range from 

biological organisms, global climate and meteorology to bridges, ships and aircraft. 

Engineering systems are expected to carry out intended functions whilst maintaining 

reliability in service. It is therefore increasingly challenging to confidently predict 

availability, cost and performance in various operating conditions [4,6,21]. Decisions 

made concerning these factors are shrouded in uncertainty, requiring significant 

experience and expertise, as well as the use of often outdated equipment data. This is 

typically managed under through-life product-service system (PSS) contracts, where the 

client makes use of a product in their possession but does not take ownership 

[23,25,27,29,31].  

This review is motivated by the requirement for scientific approaches to quantify, 

aggregate and forecast technical engineering uncertainties for complex and non-complex 

engineering systems. These uncertainties impact the ability to effectively carry out 

maintenance tasks given available techniques and technology to required industry 

standards. Examples include uncertainties in degradation, no-fault found, obsolescence 

and failure rates [17,33,35]. 

It is therefore hypothesised that the utilisation of the above approaches considering a 

compound aggregation of measured, recorded data (quantitative) and experience-driven 

opinion or human factors (qualitative) will increase confidence and rigour in 

determination of the impact of uncertainty over time. There is a requirement to look 

beyond the probabilistic world and embrace subjective and expert opinions. Such 

approaches should be applicable for various scenarios where data may be incomplete, 

inconsistent, inaccessible, and reliant on expert opinion [26,39,52]. In the light of 

dramatically increasing data volumes and computational capability in engineering 

systems, rigorous machine learning algorithms should be incorporated to predict how 

uncertainty may change over the in-service phase [42,44]. 
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Previous reviews in this domain have considered the role of uncertainty estimation in life 

cycle costing under PSS [26,46,48,50]. The in-service phase covers the largest portion of 

an asset’s lifecycle between contract bidding and disposal. Many approaches to aggregate 

different types of uncertainty consider a summation of best and worst-case scenarios, 

represented by probability distributions, to define boundaries for likely outcomes [26]. 

Inadvertently disregarding the space between these scenarios may result in under or over-

estimation and data distortion, adversely impacting decision-making. 

This chapter presents a systematic literature review (SLR) to investigate distinct 

approaches in uncertainty quantification and aggregation that can be applied in a real-

world context, in conjunction with how changes in uncertainty can be predicted in-

service. Both complex and non-complex engineering systems are considered in this 

review, with a focus towards CES owing to their increasing relevance within the research 

scope. The objectives and resulting research questions (RQs) to achieve this are depicted 

in Section 2.3. The review follows the 4-stage analytical framework composed by Booth, 

Papaioannou and Sutton [53] to conduct an SLR: search, appraisal, synthesis and analysis 

(SALSA). This generic approach is well validated and can be applied under varying 

conditions to provide a clear analysis of literature published in the field of uncertainty 

and identify research gaps [54,56,58]. 

The primary contribution of this review is the combined consideration of scientific 

methodologies to quantify (numerical expression of an entity), aggregate (collation of 

entities) and predict (likely future outcomes) quantitative and qualitative uncertainties to 

better understand their impact on cost and availability to aid decision making throughout 

the in-service phase. A total of 107 papers were analysed to answer three research 

questions, through which three core research gaps were identified. 

The chapter is structured as follows: Section 2.2 discusses a topology of engineering 

systems and uncertainty, including classification and recognised standards. Section 2.3 

defines the research scope and subsequent RQs for the review. The search, appraisal and 

synthesis stages of the SALSA framework is given in Appendix A. Section 2.4 analyses 

the findings. Section 2.5 discusses the research findings parallel to the RQs. Section 2.6 

concludes the review and identifies research gaps and future work. 
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As stated in Section 2.1, a complex system is comprised of multiple component parts or 

subsystems interacting linearly or non-linearly, exhibiting a collective behaviour that is 

distinct from and seldom predictable by that of individual parts or subsystems [4,16,19]. 

Conversely, a complicated system can be comprised of a myriad of interconnected parts 

but still exhibit a predictable collective behaviour [16,19]. Complex systems science is a 

rapidly expanding and evolving field, the theory of which is widely documented 

[4,6,16,19,21,60,62]. 

A complex engineering system (CES) is one that is focused on an engineering domain 

rather than, for example, social, biological or meteorological systems. The inherently 

complex and dynamic nature of CES manifests high levels of uncertainty. This takes 

shape in various forms including costing, policymaking, supply chains and technical 

uncertainties [19,21]. Technical engineering uncertainties within engineering systems set 

the context for this research, where uncertainty in the performance of one component or 

subsystem (node) may have knock-on effects with interconnected nodes or the whole 

system. The level of uncertainty can change throughout the in-service life of each node 

in an unpredictable and often non-linear manner [16,19]. This calls for adaptive and 

intelligent approaches to predict uncertainty based on a combination of available data and 

expert opinion. 

There are several definitions and interpretations of uncertainty in literature 

[1,2,71,72,18,20,64,66–70]. It is defined here as the difference between the amount of 

information that is required to perform a task and the amount of information already 

possessed. The relevance of information, or lack of, should be specified concerning the 

functionality of the organisation or application in question [73]. Uncertainty is caused by 

variability in the environment, human error and/or human ambiguity (e.g. lack of 

knowledge) and could cause a negative, positive or neutral impact on overall performance 

[74]. All of these elements come into play for CES and should be accounted for to avoid 

unnecessary costs. 

The terms error and uncertainty are often used interchangeably. Risk is generally 

interpreted as purely negative impacts of uncertainty [1,66,67,70,75]. It is important to 

differentiate these concepts. A statistical error is the (unknown) difference between a 
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measured value and a true value, following probability distributions. Measurement 

uncertainty is the lack of information about the magnitude of these errors. Risk is the 

positive or negative impact specific sources of uncertainty will have on the measurand 

(the system or components for which uncertainty is being assessed). The degree of 

uncertainty associated with the measurand can be utilised to aid decision making. 

There are two key types of uncertainty described in literature: Type A, which are sourced 

from quantitative data; and Type B, which make use of qualitative technical and expert 

knowledge or experience [2,18,52,76–78]. These are further explored in Section 2.4.2. In 

the context of this research, Type A will hence be referred to as ‘quantitative’ and Type 

B as ‘qualitative’. Uncertainty can be further characterised as aleatory and epistemic. 

Epistemic uncertainties are those that could be known in principle but are not known in 

practice [14,79–82]. This may be due to inaccurate measurements or the measurement 

model neglecting certain characteristics. Epistemic uncertainties can therefore be reduced 

by obtaining more data or by refining models. Aleatory uncertainty cannot be reduced as 

it represents statistical variables that differ each time a given experiment is carried out 

[7,14,87,88,79–86]. The influence of different types of uncertainty can play a key role in 

confidence determination for risk and reliability analysis [69]. 

Further examination can be made by the four ‘(un)known-(un)known risk quadrants’, 

described in detail by Marshall et al. [89]. These levels of risk identification can be 

applied to both quantitative and qualitative uncertainty since risk is the impact of 

uncertainty on the measurand. As their names suggest, ‘known knowns’ are uncertainty 

sources that have been taken into account and catered for; ‘known unknowns’ are 

understood to exist but their magnitude is not defined; ‘unknown knowns’ are 

unidentified sources that may be accounted for through alternate means (possibly by other 

sources creating information asymmetry  [90]); ‘unknown unknowns’ have not been 

identified or accounted for and, therefore, pose the greatest risk [21,89,91]. These traits 

can also represent predictable uncertainties not initially apparent and unpredictable ‘black 

swan’ events. Where the amount of information (uncertainty) is known, risk can be 

reduced. A categorisation of uncertainties centred on the four quadrants based on the 

nature and source of uncertainty is illustrated in Figure 2.1 [89,91]. An example 
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uncertainty source for each quadrant is linked to possible types – quantitative, qualitative, 

epistemic and aleatory. 

 

Frameworks to assess uncertainty in engineering systems, as well as the systems 

themselves, require a degree of flexibility to accommodate complexity while maintaining 

a degree of robustness to meet core objectives within specified confidence boundaries 

[21,31,80]. Flexibility in engineering systems design allows for mitigation in the face of 

unknown-unknowns, allowing the system to “evolve” when presented with unpredictable 

challenges to the point of being reconfigurable with high degrees of freedom [21,23,44]. 

Robust systems are highly reliable within their design scope and predictable range of 

associated uncertainty [92]. The level of complexity in a robust system is controlled by 

identifying and mitigating factors that pose the greatest uncertainty [19,23]. The 

flexibility of machine learning algorithms allows uncertainties to be predicted in a variety 

of complex domains, examined further in Section 2.4.4 and Chapter 5. 

 

Defining the research scope is necessary to frame clear, answerable questions that 

formulate the aim and objectives described in Chapter 1; which inform search terms and 

inclusion/exclusion criteria in the succeeding phases [53]. Various frameworks have been 

composed to define the research scope and successive research questions (RQs). 

 

Figure 2.1. Categorisation of uncertainties based on their nature and sources 
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The PICOC framework illustrated in Table 2.3 was adopted for this review [53,56,58]. 

This was selected against others proposed by Booth et al [53,93–95] such as SPICE [94] 

and CIMO [96] as it provides a transparent and duplicable identification of key concepts 

to be implemented in the SALSA framework. 

 

The scope was adapted as more research was uncovered and the author’s understanding 

of the topic grew. The resulting objectives and corresponding RQs are depicted in Table 

2.4. These objectives were derived as the basis to achieve the outcomes defined in the 

PICOC framework to establish key approaches to quantify and predict uncertainty in the 

maintenance of engineering systems. 

 

Table 2.3. Research scope definition – PICOC framework 

Concept Definition 

Population Uncertainty prediction and assessment; considering the impact attributed by a 

combination of quantitative and qualitative inputs over the in-service phase of complex 

or non-complex engineering systems 

Intervention Examination of existing UQ techniques, qualitative assessments, uncertainty prediction, 

compound uncertainty aggregation for differing probability distributions 

Comparison Current industrial practices – how does the new proposal compare to the existing 

methods and academic processes? 

Outcomes Determination of relevant probability distributions and guidance on how to quantify 

uncertainty in context to aid decision making for industrial maintenance 

Identification of methodologies to quantify qualitative uncertainty attributes, combine 

quantitative and qualitative uncertainties and assess significant correlations 

Identification of methodologies to predict uncertainty through the in-service phase and 

optimise outputs as new information is acquired 

Context Compound quantification, aggregation and prediction of technical engineering 

uncertainty for engineering systems in-service, applicable to industrial maintenance 

 

Table 2.4. Research objectives and research questions 

 Objectives Research question 

1 Identify current practices in the quantification 

and aggregation of different types of 

uncertainty 

How can compound uncertainties be aggregated 

and represented through different probability 

distributions?  

2 Identify and assess approaches that could 

analyse and estimate compound uncertainties 

for real-world applications 

How can qualitative estimates driven by expert 

opinion and individual experiences be 

standardised and validated? 

3 Explore techniques to predict uncertainty in 

engineering systems. 

How can uncertainty be predicted over the in-

service phase of an asset’s life cycle and what 

are the key challenges faced in doing so? 
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The research search, appraisal and synthesis stages of the SALSA framework are detailed 

in Appendix A.1 to A.3. A timeline of the review process for the published manuscript 

[97] is given in Appendix A.4. 

 

This section examines the categorised themes from the synthesis of extracted data (Figure 

2.4) to answer the RQs defined in Section 2.3. Thematic analyses are presented to 

examine the coverage of each theme over the included papers and correlations between 

them, assessing results from the synthesis. Narrative analysis is presented for each theme 

to discuss results and case examples. The evidence base from the thematic and narrative 

analyses are evaluated to answer the RQs in Section 2.5. Any generated hypotheses were 

grounded to populate an emergent theory. Conclusions are drawn and compared with 

other studies in the category [53,98]. 

The identification of uncertainties that influence the measurand will inherently vary in 

dynamic nature depending on the context of the measurand; be it a simple system under 

laboratory conditions or a complex engineering system (CES) with a myriad of 

interconnected subsystems. Section 2.4.1 discusses the allocation of studies in the defined 

contextual applications. Section 2.4.2 examines RQ1, focusing on the aggregation of 

uncertainty across multiple elements. Section 2.4.3 looks at the selection and use of 

relevant probability distributions to conduct the analysis. RQ2 is examined in Section 

2.4.2.2, where methods to conduct qualitative uncertainty analysis are discussed. Section 

2.4.4 examines RQ3, focusing on uncertainty prediction for the in-service phase of 

engineering systems with deep learning techniques. 

Publication details of year and type for the 107 included papers are illustrated in Figure 

2.2 and Figure 2.3. The majority of examined papers were published in 2019-20. A 

positive linear trend in publications up to the present indicates a growing relevance and 

interest within the research scope. The term ‘Conference’ includes workshops; ‘Book’ 

includes book sections and booklets. The majority of examined publications are journal 

articles, which are identified specifically in Table 2.5. ‘Other’ consists of journal 

publications featured once. 
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Figure 2.2. Analysis: Included papers – Publication year 
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Figure 2.3. Analysis: Included papers – Publication type 

 

Book, 5, 4%

Conference, 

16, 15%

Journal, 

80, 75%

Report, 3, 3%

Thesis, 3, 3%

Publication

type

Table 2.5. Analysis: Included papers – Featured journal publications 

Publication Papers 

CIRP Journal of Manufacturing Science and Technology 11 

Reliability Engineering & System Safety 8 

Journal of Petroleum Science and Engineering 3 

CIRP Annals - Manufacturing Technology 3 

Progress in Aerospace Sciences 3 

International Journal of Life Cycle Assessment 2 

Sustainability 2 

International Journal of Production Research 2 

Journal of Hydrology 2 

Others 44 

Total 80 
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2.4.1 Contextual application 

The contextual application theme identified in Table A.3 groups publications, as the name 

suggests, in their applied context. Through the refinement process described in the 

synthesis, 4 categories were identified: Aerospace & defence (Inc. nuclear weapons and 

other military applications), Emissions, energy & environment (Inc. oil & gas, 

meteorology, energy & power, greenhouse gases and coastal models), Manufacturing & 

maintenance (Inc. optimisation of processes around PSS and in general, structured 

surfaces, machine tooling and miscellaneous case studies) and Theory (Inc. description 

and derivation of analytical methods without a specified application). The number and 

percentage distribution of these applications are illustrated in Figure 2.4. 

The majority of included papers examine the theory in uncertainty analysis, aggregation 

and forecasting (41%). These include statistical analysis, qualitative methods such as the 

pedigree approach and machine learning and Bayesian reasoning for forecasting. Papers 

applied in the other three contexts are reasonably distributed. 

 

2.4.2 Uncertainty propagation and simulation techniques 

This section examines identified techniques to propagate uncertainty. Findings influenced 

the composition of the modelling approach in Chapter 4. The percentage of the 107 

included papers that make use of or adapt the main techniques identified through the 

synthesis are illustrated in Figure 2.5, stacked by their contextual application. The ‘other’ 

category encompasses less used methods used in the research context such as Latin 

Hypercube sampling and Taylor series expansion. 

  

Figure 2.4. Analysis: Contextual application classification of included papers 
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The categorised techniques can apply to purely quantitative, (Section 2.4.2.1), qualitative 

(Section 2.4.2.2) or compound (Section 2.4.2.3) uncertainty quantification and analysis.  

The distribution of analysis types by contextual application is shown in Figure 2.6. Purely 

quantitative analysis is considered by 43 papers (40%), purely qualitative is considered 

by 23 (21%) and a compound aggregation is considered by 41 (38%). A core objective of 

this research is to equate qualitative uncertainties in line with quantitative to enable 

compound aggregation of technical engineering uncertainties in engineering systems. 

This consideration is necessary for real-world applications but not essential when 

considering costing of such systems in theory (further explained in Sections 2.4.2.2 and 

2.4.2.3). Terms such as ‘variance’, ‘standard deviation’ and ‘stochastic’ were not 

included as they were considered too generic. Some commonly used techniques appear 

to feature less frequently than one might expect (e.g. degrees of freedom in 9% of the 107 

papers). The reason for this is that some studies focus on a specific part of the analysis 

process (e.g. uncertainty source identification through expert opinion or interviews) and 

so consider other stages to be out of scope.  

 

Figure 2.5. Analysis: Percentage of uncertainty propagation and simulation techniques used in 

included papers by contextual application 
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2.4.2.1 Quantitative uncertainty analysis 

Purely quantitative uncertainty analysis focuses on epistemic, statistical data. Techniques 

are discussed in theory below, which are then applied in case examples. Qualitative 

aspects need to be taken into consideration to be applied to real-world dynamic cases. 

The most commonly used techniques in the included papers that focus on quantitative 

analysis are illustrated in Figure 2.7, again stacked by contextual application. 

Quantitative uncertainty is statistically equal to the standard deviation of a given dataset, 

which is equal to the square root of the distribution variance and referred to as the 

‘standard uncertainty’ [2,99]. As seen in Figure 2.7, 40% of the 43 quantitative analysis 

papers reviewed explicitly use sensitivity analysis and 23% discussed correlation between 

the inputs.  

Correlation accounts for dependencies between input parameters [2,11,37,43,100,101]. 

The aggregated uncertainty (𝑈𝑇) due to the uncertainty in quantitative parameters is equal 

to the root-sum-square (RSS) of those uncertainties (𝜎) added to significant correlation 

coefficients (Eq. 2-1) [102]. If parameters are independent (𝜌 = 0), the second half of the 

equation is zero and cancels out. 

 

Figure 2.6. Analysis: Percentage of analysis type used in included papers by contextual 

application 
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 𝑈𝑇 = √∑(𝜎𝑥𝑖
2 + 𝜎𝑦𝑖

2 )

𝑛

𝑖=1

+ 2(𝜌𝑥,𝑦 𝜎𝑥  𝜎𝑦) (2-1) 

The significance of positive and negative correlations on the aggregated uncertainty 

estimate will vary with system complexity as well as the coefficient value. It is important 

to remember that correlation is not causation and while two parameters can show a 

significant correlation, they may not be impacted by one another in practice. This could 

lead to overestimation of the aggregated uncertainty. 

Many potentially identifiable uncertainties will have a negligible impact on the 

measurand. To maintain focus on uncertainties that have a tangible impact on the system, 

alongside expert judgement, sensitivity analysis (SA) is conducted across the input 

parameters [9,80,109,110,81,92,103–108]. SA gives an illustration of relationships 

between different inputs of various PDFs and parameters. Those with negligible effects 

can be removed. An important tool in uncertainty assessment, design optimisation and 

reliability measurement, SA is performed in two ways – local and global. Local sensitivity 

analysis (LSA) explores the change of the quantity of interest around a certain reference 

point, such as nominal values via partial derivatives. This is the simplest approach but 

can prove arduous when applied for a large number of parameters. Global sensitivity 

 

Figure 2.7. Analysis: Percentage of techniques used in included papers for quantitative analysis 

by contextual application 
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analysis (GSA) studies the effect over the full range of the input space, typically adopting 

Monte Carlo techniques. 

UQ in CES involves the propagation of errors around the sample mean of each parameter 

via simulation [37]. The three most common and validated propagation techniques are 

Taylor series expansion, Monte Carlo simulation and Latin Hypercube Sampling (LHS). 

The widely used propagation of error model uses Taylor series expansion to consider 

local sensitivity coefficients within the aggregation, given by partial derivatives 

[2,37,45,102]. While suitable for non-complex models, the use of partial derivatives in 

complex non-linear models has been shown to give a large degree of error and lead to 

under or overestimation of propagated uncertainty [45]. LHS migrates simple Monte 

Carlo to assess convergence of cumulative probability distributions for output variables 

[9,14,45]. 

Monte Carlo simulation is by far the most widely used simulation method to evaluate 

uncertainty; used in 63% of the 43 quantitative papers and 52% of the total 107 included 

papers. It can be applied to multiple probability distributions for compound analysis, 

shown to provide effective results in many situations for various combinations and 

complexities [28,32,34,48,52,72,82,108,111,112]. Extensive sampling of uncertainty 

ranges for individual variables can be achieved without the use of substitute models [9]. 

However, it can require significant computational power, with 1,000-10,000 simulation 

runs generally accepted as appropriate coverage depending on model complexity 

[111,113]. 

Clarke et al. [45] applied these propagation techniques in a thermodynamic analysis of 

heat exchanger designs. This highlighted the need to consider both quantitative and 

qualitative uncertainty and the identification of parameters that pose the greatest influence 

on uncertainty through SA [114]. Similarly, Tatara and Lupia [43] examined heat 

exchanger performance through temperature measurement uncertainty, with a spotlight 

on the effect data acquisition methods and measurement devices have on the resulting 

uncertainty. These studies influenced the composition of the study in Section 4.3.1. 

Groen [115] compared GSA methods in environmental life cycle assessment, of which 

Spearman correlation coefficients and Sobol’ indices were found to give the best overall 
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performance. Generally, the best method depends on available data, uncertainty 

magnitude and the goal of the study. Spearman correlation coefficients assume linearity 

in the system, which is often not the case in practice. Sobol’ indices allow for nonlinearity 

but assume all parameters to be independent to identify the influence of each input 

parameter on the output [9,14,122,81,115–121]. Correlation coefficients should ideally 

be established between input parameters [41,115]. Discounting correlation is acceptable 

when the sensitivity of parameter 𝑥 is significantly greater than parameter 𝑦, rendering 

𝜌𝑥,𝑦 negligible [40]. Where it is not, discounting correlation can lead to under or 

overestimation of the resulting uncertainty estimate.  

Bayesian analysis derives the probability of an event occurring given that a prior event 

has occurred. This is given as a probabilistic function of the two events occurring 

independently or together [2,82,123]. Bayesian methods applied in uncertainty prediction 

are further covered in Section 2.4.4. 

In 1995, the International Standards Organisation (ISO) published the Guide to the 

Expression of Uncertainty Measurement (GUM). Commonly referred to in literature as 

‘the Guide’ or ‘GUM’, this has seen various updates and expansions since its inception 

[2,18,32,76,78,124]. The general uncertainty analysis process defined by the GUM 

involves 5 core stages [2,18,124]: (1) Identify the measurand; (2) Identify uncertainty 

sources and associated probability distributions; (3) Quantify uncertainties (simulation); 

(4) Aggregate uncertainties; (5) Report analysis results. While proficient for purely 

quantitative estimates, the GUM employs coverage factors and confidence limits to 

accommodate for qualitative or compound estimates. These often lead to 

underestimation, do not permit flexibility and, therefore, cannot be realistically applied 

in dynamic, complex engineering systems [92,125]. 

Since its inception, the GUM has been applied and adapted to assess uncertainty in a 

range of applications from structured surfaces [11] to micro gear measurement [3], smart 

grid power systems [105] and risk and reliability assessment in the nuclear weapons 

sector [85]. Uncertainty typically increases where significant correlation between exists 

input parameters. Correlation and sensitivity are key considerations for rigorous 

uncertainty analysis to capitalise on risk with the best possible model representation. 

Complex system uncertainty analysis involves representations of epistemic and aleatory 
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uncertainty. For epistemic analysis, uncertainty can be represented through various means 

including interval analysis, possibility theory, evidence theory and probability theory 

[16,21,85,126]. Probability theory is the dominant method, but others can be useful in the 

CES context – examined and compared in Sections 2.4.2.2 and 2.4.4. The main challenges 

for UQ in these contexts include the aggregation of information from multiple sources 

and the propagation of complex computational models that incorporate flexibility in 

design, while holding a degree of robustness to deliver on objectives [16,23,31,85]. 

2.4.2.2 Qualitative uncertainty analysis 

The consideration of qualitative uncertainty factors can have significant effects on the 

overall estimate. The identification of known qualitative uncertainty sources typically 

relies on expert opinion. Methods to aid their derivation include surveys, interviews and 

the pedigree matrix [39,52,74]. Qualitative frameworks are often used in conjunction with 

quantitative methods such as Monte Carlo and SA in the context of real-world 

applications. Therefore, the majority of qualitative applied cases are discussed in Section 

2.4.2.3, including those considering surveys and interviews. Figure 2.8 shows the 

distribution of techniques used in purely qualitative analyses.  

Expert opinion and Monte Carlo were implemented in 52% and 26% of the 23 qualitative 

papers respectively. This section will examine commonly used qualitative propagation 

approaches, namely the pedigree matrix, as well as comparisons between probability 

theory, evidence theory and fuzzy set theory. 

The pedigree approach is a widely renowned and verified approach to equate qualitative 

estimates in line with quantitative data. First proposed by Funtowicz and Ravetz [127], 

the approach comprises a matrix to score expert knowledge and opinion according to 

predefined criteria to permit quantitative reliability assessment.  

This has been used in 17% of the 23 papers considering purely qualitative analysis (Figure 

2.8), solely applied in the emissions, energy & environment context, and 22% of the 41  

papers considering compound analysis (Figure 2.9), applied in all 4 considered contexts, 

though largely again in emissions, energy & environment. It has also been applied in 

medical fields and genealogy, largely visualised using decision trees, though these are not 

examined in the scope of this review [10,32,39,52,104,128]. 
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Pedigree can be applied on its own or through an encompassing approach to standardise 

combined uncertainty dimensions via 5 qualifiers: Numeral, Unit, Spread, Assessment 

and Pedigree (NUSAP) [32,51,52,128]. The first 3 terms consider quantitative factors:  

quantity value, acquisition date and random error of the variance of the dataset (addressed 

by SA and Monte Carlo simulation), respectively. Implementation of NUSAP is further 

discussed in Section 2.4.2.3. 

Pedigree criteria are defined according to the contextual application of the study 

[39,52,128]. Qualitative assumptions made in uncertainty analysis can have a significant 

impact on the resulting estimate, especially in complex systems. The application of the 

pedigree matrix in complex environmental problems can highlight bias, implausibility, 

disagreement among stakeholders, limitations and sensitivities (further explored in 

Chapter 3) [104]. 

Additional uncertainty propagation approaches include probability theory, evidence 

theory and fuzzy set theory [72,123]. Probability theory is the ‘classic’ UQ method for 

input parameters with definable probability distributions, discussed in much of this 

review. Evidence theory makes use of artificial intelligence (AI) and machine learning to 

collate evidence from different sources and presents an evaluation to understand if the 

available evidence is common or contradictory [46,72,129]. Evidence theory can neglect 

 

Figure 2.8. Analysis: Percentage of techniques used in included papers for qualitative analysis 

by contextual application 
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deterministic decision-making, which considers the outcome alone without associated 

risk, by keeping an ‘open eye’ to new information, governed by a belief system to dictate 

possibility measures [46]. This may be a suitable approach for qualitative reasoning but 

is less suited to estimating quantitative uncertainty, which is centred on recorded data 

[72]. 

Fuzzy set theory is applied in machine learning to assign a grading to input parameters 

(e.g. a scale of 0 to 1 rather than 0 or 1). This is well suited in cases where recorded data 

and knowledge is lacking and available data is inherently subjective 

[14,39,46,72,123,130]. This lack of mediated data is one of the major challenges in UQ 

for both complex and non-complex engineering systems [4,13,16,26,39,74,130]. 

Uncertainty analysis where data is scarce benefits greatly from the application of artificial 

neural networks (NNs). These networks of cooperating input elements are applied to a 

model and trained to give an optimum output by learning from previous examples 

[46,131]. NNs are a go-to option for forecasting and prediction tasks to be undertaken – 

discussed further in Section 2.4.4. 

2.4.2.3 Compound uncertainty analysis 

The term ‘compound’ is defined here as the aggregation of uncertainty from quantitative, 

measured, recorded data and qualitative, experience-driven opinion or human factors. 

Since qualitative estimates are obtained from technical expert knowledge or experience, 

they were not initially classed as purely statistical quantities with definable degrees of 

freedom [2,77]. The GUM proposed coverage factors and confidence limits as methods 

to accommodate for qualitative or compound estimates. An ‘effective’ degrees of 

freedom is applied using the Welch-Satterwhite formula [2,102], though this was later 

found to lead to underestimation of the combined uncertainty [76,78,125,132,133]. Since 

then, a range of advanced qualitative, quantitative and compound methods have been 

proposed to gauge qualitative estimates in a way that can be statistically equal to 

quantitative estimates. 

The percentage of included papers that used compound analysis is shown in Figure 2.9. 

Expert opinion and assumptions made to carry out the assessment were considered in 

39% of the 41 compound analysis papers (discussed in the previous section). The quality 

of the opinion sways the confidence in the result (considered in 49% of compound 
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analysis papers), which can be determined through the pedigree matrix (in 22%) and 

sensitivity analysis (in 32%). 

 

The pedigree matrix can be applied to simple calculations and complex models through 

explicit and systematic reflections on compound uncertainty [39,52,128,134]. 

Uncertainty estimation in life cycle costing under product-service systems (PSS) is a 

growing field of interest, where uncertainty changes throughout the life cycle stages 

[25,26,29,46,48,50,126]. Uncertainty analysis in PSS is examined further in Section 

2.4.4. NUSAP has been implemented to estimate uncertainty in cost estimation from 

different sources at the bidding stage of industrial PSS contracts in the aerospace & 

defence context [135]. Uncertainties were identified through a predefined classification; 

commercial, affordability, performance, training, operation, engineering (CAPTOE) 

[136] and ranked using NUSAP [52]. 

The incorporation of qualitative estimates with quantitative assessments in the in-service 

phase of industrial PSS may present challenges due to increasing complexity but can also 

draw parallels from other phases of the life cycle [25,31]. Additional reviews have 

analysed value capture for PSS throughout the product life cycle on the transition to 

servitisation [29], availability support [137] and information flow [50]. Lack of concrete 

 

Figure 2.9. Analysis: Percentage of techniques used in included papers for compound analysis 

by contextual application 
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data and qualitative decisions cause uncertainty that can lead to undesirable results. This 

also prompts the need for flexibility in PSS under uncertainty [23]. 

Data quality in life cycle assessments (LCA) is enhanced through a compound 

consideration of parameters. The use of pedigree and SA allows uncertainty parameters 

with negligible impact to be eliminated, enabling focus on those that influence the 

measurand [48,103]. This helps to alleviate the trade-off between accuracy and 

implementation costs in LCA to identify the most significant input parameters. 

Another application domain of compound uncertainty in engineering systems is real-time 

systems. Largely considered in software engineering, these systems are highly dependent 

on confident and thorough uncertainty estimates to account for worst-case scenarios 

[138,139]. Uncertainties considered can range from computational processing times 

[138,140] to environmental and human factors, such as in virtual reality (VR) applications 

with remote maintenance [139]. Literature concerning real-time systems in this review is 

considered under the manufacturing and maintenance context. Real-time systems are 

inherently complex owing to the range of assumptions taken into account and 

unpredictable behaviour and interaction of system elements. To obtain confident 

predictions of worst-case execution times, evolutionary algorithms are employed along 

with surrogate models, neural networks and regression models – further explored in 

Section 2.4.4 [140,141]. 

Further applications of the pedigree matrix and SA, along with Monte Carlo and Taylor 

Series expansion, are made in the oil & gas sector to estimate uncertainty in greenhouse 

gas emissions [111]. These highly complex operations consist of compound estimates 

requiring rigorous estimates. Confidence levels associated with individual sources are 

dependent on data availability and quality. This process followed the core methods 

described in the GUM [2,18,111,124]. While applied solely to the oil & gas sector in the 

examined literature [111], the analysis method should be applicable in broader areas 

within the research scope. 

Ciroth et al. [32] presented a process to improve uncertainty estimation by gauging 

qualitative uncertainty factors through the pedigree approach for flow data in a 

multidimensional database. Estimates are attributed by their geometric standard deviation 

(GSD), where inputs fit the multiplicative lognormal distribution (Eq.2-2) [32,34,36]. The 
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arithmetic standard deviation used to attribute uncertainty in quantitative data has the 

disadvantage of relying on the scale (unit) of data in a linear manner [32,34]. Therefore, 

for the analysis of data from varying sources and measured in different units, uncertainty 

factors need to be independent of scaling effects – achieved using GSD. 

 𝜎𝑔 = exp (√
1

𝑛
× ∑ 𝑙𝑛 (

𝑥𝑖

𝑥̅𝑔

)

2𝑛

𝑖=1

) (2-2) 

Where: σg = GSD; n = number of inputs; xi = dataset; x̄g = geometric mean of dataset 

To enable aggregation where data sources do not follow a lognormal distribution, GSD 

ratios are obtained via the coefficient of variation (CV) [34,142]. This is a dimensionless 

measure of variability defined as the ratio between the standard deviation and the mean 

[142,143]. Muller et al. [34] provided formulas to apply the CV to various distributions 

to allow the user to select the most appropriate types for analysis.  

The CV can be used as a measure of uncertainty for each input and aggregated to give a 

representative total. The application of CV and pedigree aims to convert quality and lack 

of knowledge into uncertainty figures [34]. This is a key method to aggregate compound 

uncertainties through different PDFs, given in Table 2.4, the robustness of which was 

tested for each parameter PDF using Monte Carlo simulation. 

To combine quantitative, recorded parameters with qualitative factors, all parameter 

uncertainties are converted to their respective CVs according to their PDF type. The 

arithmetic mean of symmetric PDFs such as Normal and Uniform is equal to the mode 

and, as such, does not change when uncertainty increases [34]. They can therefore be 

aggregated additively by RSS (Eq.2-1). Lognormal distributions are asymmetric; the 

arithmetic mean will change with increasing or decreasing uncertainty. CVs represented 

by the lognormal distribution, CVLn, are aggregated multiplicatively by Eq. 2-3 [34]. To 

combine these with symmetric distributions, a new arithmetic mean needs to be calculated 

to account for the shifting uncertainty, given by Eq. 2-4 [34]. 
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Table 2.4. Probability distribution function (PDF) and relative coefficient of variation (CV) 

calculations [32,34] 
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 𝐶𝑉𝐿𝑛 = √∏ሺ𝐶𝑉𝑖
2 + 1ሻ

𝑛

𝑖=1

− 1 (2-3) 

 

 𝜇𝑇𝐶𝑉𝑇 = 𝜇ට𝐶𝑉𝑆𝑦𝑚
2 + 𝐶𝑉𝐿𝑜𝑔𝑛

2  (2-4) 

Qualitative uncertainties given by subjective opinion are intuitively correlated in terms 

of rank rather than linear relationships [9]. Spearman’s rank correlation (𝜌) is, therefore, 

best suited to consider the correlation between compound uncertainties (𝑥, 𝑦) – given by 

Eq. 2-5. The proposed approach to aggregate compound uncertainty is discussed in 

Chapter 4. 

 𝜌𝑥,𝑦 =
∑ [𝜌ሺ𝑥𝑖ሻ − 𝜌̅ሺ𝑥

𝑛

𝑖=1
ሻ][𝜌ሺ𝑦𝑖ሻ − 𝜌̅ሺ𝑦ሻ]

ට∑ [𝜌ሺ𝑥𝑖ሻ − 𝜌̅ሺ𝑥ሻ
𝑛

𝑖=1
]2 ∙ ∑ [𝜌ሺ𝑦𝑖ሻ − 𝜌̅ሺ𝑦ሻ]2𝑛

𝑖=1

 
(2-5) 

 

2.4.3 Probability distributions for uncertainty analysis 

The selection of the most appropriate PDF depends on the nature of each input parameter 

(quantitative or qualitative sources) and how it is recorded [39,144]. The most common 

types of PDF used in the included papers are stacked by their contextual application in 

Figure 2.10. 

 

 

Figure 2.10. Analysis: Percentage of PDFs used in included papers by contextual application 
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Statistical measured data is typically represented by the normal (Gaussian) distribution, 

used in 58% of the 107 examined papers, or lognormal in 9%. Uniform distributions are 

considered in 33% of papers. When recording data, an individual digital readout has a 

uniformly distributed uncertainty, since it is on or off. The values of the readout are 

represented by a different distribution, depending on how it was recorded. 

Several publications therefore considered more than one type of distribution. Table 2.7 

describes the main distributions identified in the papers, adapted from Stockton and Wang 

[144], Everitt and Skrondal [68], and Erkoyuncu [39]. 

The Weibull distribution is used in reliability modelling and analysis for life cycle 

forecasting [26,33,145]. This could be an important distribution choice when considering 

forecasting uncertainty, however, it was only considered in 6% of papers included in this 

review. 

2.4.4 Uncertainty assessment, prediction and forecasting 

This section of the analysis focuses on how uncertainty can be modelled and predicted 

over the in-service phase of an asset’s life cycle and where these are or can be applied to 

complex and non-complex engineering systems. The term ‘assessment’ is a judgement of 

value or quality based on available information. A forecast is the determination of future 

outcomes based on historic and new data (Bayesian), while a prediction is an indication 

of a future event with or without prior information [68,142]. 

The majority of reviewed manuscripts in the PSS context centre around cost estimation 

[13,23,25,26,28,29,46,48,74,123]. The in-service phase of PSS covers the largest portion 

of the life cycle situated between contract bidding and disposal. This phase calls for 

numerous equipment considerations including reliability, flexibility, availability and 

maintainability to ensure the asset is fit for purpose [46,135]. Each of these considerations 

raise challenges which promote numerous uncertainties, covered in Section 2.4.2.3. 
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An overwhelming issue in the forecasting of equipment states and related maintenance is 

the quality and availability of data [10,74,84,139,146]. To make accurate and robust 

predictions, a degree of historic data is required. Where this does not exist, the solution 

is generally to model the physical system and obtain data through simulation. As systems 

grow in complexity, robust and dependable models are harder and more expensive to 

produce [59,146]. Schwabe et al. [28] stated that the ability to quantify and forecast cost 

uncertainty is often limited by minimal measurement points, lack of experience, unknown 

history and low data quality. This precipitates innovation hesitancy in the face of an ever-

increasing rise in technological innovation [147]. 

Table 2.7. Analysis: Comparison of commonly used PDFs [39,68,144] 

Distribution Parameters Application Advantage Disadvantage 

Beta  Lower and upper 

range plus 2 

shaping parameters 

Variability over a 

fixed range 

Highly flexible 

distribution 

Requires additional 

estimation points to 

shape appropriately 

Lognormal 

 

Mean and Log. of 

standard deviation 

Nonlinear, 

skewed ranges 

Works well for 

factors that 

interact in a 

multiplicative 

manner  

Can be difficult to 

express standard 

deviation 

Criticised for giving 

over estimated 

probability 

Normal  

 

Mean and standard 

deviation 

Standard 

distribution is 

considered as 

standard 

uncertainty of the 

estimate 

Works well for 

symmetrical data 

Not as applicable for 

defining risk, which is 

usually asymmetrical 

Triangular Minimum, 

maximum and 

mean 

Used when most 

likely value is 

distinguished  

Simple and 

intuitive, can be 

skewed or 

symmetric 

Points are highly 

absolute 

Can lead to under or 

over estimation as 

confidence levels 

cannot be stated 

Uniform Minimum and 

maximum 

Constant data 

flow or where 

shape is unknown 

Very simple to 

use 

High risk of over or 

under estimation 

Weibull Scale and shape 

parameters 

WሺL, α, βሻ is an 

open-ended 

distribution with 

location L, scale 

parameter α, and 

shape parameter β 

Reliability 

modelling and 

analysis, life 

cycle forecasting 

Can take the 

form of multiple 

distributions, 

depending on the 

value of β 

Parameter selection 

can be inaccurate – 

leads to 

underestimation 
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In the CES context, sampling rates are rarely consistent and feature a highly variable 

number of signals from different system units [10]. It then falls to subjective opinions and 

assumptions of experts – designers and manufacturers – to determine when maintenance 

will be required, equipment needed, time scales and resulting costs. This naturally places 

a large degree of uncertainty on the accuracy and robustness of such predictions, which 

must be quantified and considered.  

Three prominent areas that have seen advancements in forecasting and prediction 

capability in recent years considering uncertainty are remaining useful life (RUL) 

prediction [59,146,148], cost estimation [13,25,26,28,48] and meteorology [149]. RUL 

prediction is a central task for maintenance practices of CES [65]. There are a myriad of 

RUL prediction approaches, notably reviewed by Lei et al. [146]. While the theory, 

general implementation and evaluation metrics of many approaches are open source, 

several industries have developed their own protected approaches for their specific 

requirements. Uncertainty is a significant point of vulnerability in long-term RUL 

predictions. Bayesian filtering algorithms are typically applied, the most prominent of 

which are Kalman filters; only suitable for linear systems and variations thereof for non-

linear systems [146]. A more flexible algorithm is the particle filter, designed for use with 

nonlinear systems, which has become a widely used method for performing real-time 

uncertainty assessment in RUL predictions [146,148,150,151]. 

Another key tool in forecasting is deep learning, which makes use of neural networks 

(NNs) to learn from existing data. The quality of data ultimately determines the quality 

of the result. Applications are covered in detail for RUL prediction by Lei et al. [146]. 

NNs are composed of multiple layers, allowing them to learn complex non-linear 

relationships. Bayesian deep learning (BDL) and variations thereof have been widely 

applied to forecast future events given existing data and update when presented with new 

data [42,88,152–158]. Deep learning models are only as accurate as the data they are 

trained on and, as such, typically require large datasets with defined trends over time [42]. 

They must therefore be flexible to consider all data properties necessary to achieve robust 

predictions. Flexible models can make better predictions, but all predictions involve 

assumptions that manifest uncertainty [42,97,152]. 



 

35 

The end of Section 2.4.2.2 identified the endorsement of NNs to aid uncertainty analysis 

for complex engineering systems. The terms and qualities identified in the synthesis to 

represent uncertainty assessment, prediction and forecasting are illustrated in Figure 2.11 

and stacked by contextual application. 

Uses of NNs and Bayesian techniques from Figure 2.5 and selected distributions from 

Figure 2.10 are included for comparison. Life cycles of products or services were 

considered in 39% of the 107 included papers, with 21% considering NNs and 32% 

considering Bayesian techniques. 

 

To give greater confidence in estimates such as maintenance costing, backpropagation 

algorithms can be applied to further improve the quality of NN training 

[33,44,141,149,157,159,160]. Applications were reviewed in terms of their learning 

capability and reliability in uncertainty prediction. Stochastic models calculated from 

steady-state probabilities do not necessarily reflect reality since maintenance policies can 

take several years to stabilise [33]. 

Naturally, the structure of NNs and training options applied have a significant impact on 

prediction accuracy for specific applications [146]. Determination of parameters that 

result in minimal prediction error can be achieved through hyperparameter tuning, often 

performed via a grid search technique [65,161]. Bayesian deep learning (BDL) is one of 

the most popular techniques to learn from and forecast data trends 

 

Figure 2.11. Analysis: Percentage of terms and attributes in included papers for uncertainty 

assessment and forecasting 
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[42,88,152,153,158,162]. However, this approach requires significant modification 

models, adopting variation inference instead of backpropagation. Modification of deep 

learning models as more data becomes available can make implementation more complex 

and require extensive computation time [149,158,161]. 

This issue can be mitigated in part by dropout training, applied by Gal [158] in a method 

to approximate Bayesian inference in Gaussian processes (GPs) in deep neural networks 

and more generally by Cicuttin et al. [163] and Srivastava et al. [161]. GPs are highly 

flexible non-parametric models widely used for regression and classification, growing in 

complexity in line with the density of training data [42,152,164,165]. Defined as a layer 

within the network structure, dropout randomly sets input sequences below a defined 

probability to zero. This alters the underlying network structure for each iteration to 

prevent overfitting [158,163]. The uncertainty assessed by Gal [158] was in the deep 

learning process itself, not the resulting uncertainty interval. These methods still require 

enough prior data of sufficient quantity and quality to fulfil the Central Limit Theorem, 

where the normalised sum of variables will tend towards a normal distribution 

[2,26,28,145,146]. 

The General Likelihood Uncertainty Estimation (GLUE) method uses Bayesian inference 

to assess uncertainty in model predictions. Largely applied in hydrology and 

meteorology, the method uses ensemble forecasting of weighted parameter sets to 

identify the contribution level of each set for a forecasted point in time [119,155,166,167].  

Wang et al. [149] proposed a deep uncertainty quantification (DUQ) prediction model to 

learn from historic data through a negative log-likelihood error (NLE) calculation to 

forecast weather patterns. The combination of deep learning and UQ was shown to 

improve generalisation of point estimation compared to RMSE calculation to forecast 

multi-step meteorological time series but is best suited to scenario modelling in 

meteorology. 

Recurrent neural networks (RNNs) are a form of NN with a feedback loop to better 

capture non-linear relationships. Long short-term memory (LSTM) networks are a type 

of RNN increasingly used in sequential time-series forecasting and RUL prediction, the 

theory of which is widely covered in literature [59,63,65,160,168]. A key advantage of 

LSTMs over other types of NN is their ability to use gates to avoid vanishing or exploding 
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gradients, increasing prediction accuracy [59,160,168]. Wu et al. [65] applied a vanilla 

LSTM model to predict RUL and identify physical degradation mechanisms, the 

parameters of which were defined through hyperparameter tuning. Shi and Chehade [59] 

proposed a Dual-LSTM framework to predict uncertain change points from which 

degradation accelerates and heath indexes that can be used to determine RUL in real-

time. Both studies were compared with, and found to outperform, benchmark methods. 

A common trait among the examined publications is the use of the C-MAPSS turbofan 

engine degradation dataset to test and demonstrate RUL prediction with proposed 

methodologies [59,61,63,65,169,170]. Further applications of this dataset are examined 

and ranked by Ramasso [57]. Different approaches to account for uncertainty in the 

datasets are also covered – the most popular being probability theory. The turbofan engine 

degradation dataset is also used in this research – detailed in Chapter 5. 

Uncertainty in cost estimation is largely examined in the context of product-service 

systems (PSS) [13,25,26,28,48,74,97]. Multiple equipment uncertainties arise in this 

context including reliability, availability, and maintainability. Smart [142] applied Bayes’ 

Theorem to estimate costs from trends with minimal data points. Existing data and 

assumptions were combined with limited real-time data to produce accurate forecasts 

with a degree of confidence. 

Schwabe et al. [28,131] devised an approach to estimate cost uncertainty under limited 

data. The topology and symmetry of variance data is given by its geometric shape at the 

time of estimation. This was initially driven by the idea that most statistical conclusions 

obtained arithmetically can also be achieved by geometry, which can simplify otherwise 

complex conclusions [28,171]. Rather than interdependencies between individual data 

points, spatial geometry describes the behaviour of a space created by connecting outlying 

data points, represented in vector space in a point cloud around an origin, forming a 

regular cyclical polygon. A shape with greater symmetry requires less information to be 

described. A positive correlation was therefore hypothesised between symmetry and 

information entropy. The symmetry of the space created by each input dimension (cost 

variances) was able to predict future development without requiring significant volumes 

of data [26,28]. This is a promising approach to predict uncertainty under limited data. 
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There is limited literature on holistic, compound cost uncertainty estimation for the in-

service phase of PSS [13,46]. Guidance is scarce to aid the selection of suitable 

uncertainty modelling methods such as NN, BDL and fuzzy set theory, which in 

themselves generally only consider epistemic forms of uncertainty [42,46,72,123,131]. 

 

The final phase of the review methodology discusses the research methodology and 

results conducted through the SALSA framework [53]. An evaluation of the validity of 

research methods adopted and findings culminated throughout the review is given in 

Appendix A.5. Research questions 1 and 2 share many similarities and are discussed in 

Section 2.5.1, summarised in Table 2.6. Research question 3 is discussed in Section2.5.2, 

summarised in Table 2.7. Section 2.5.3 summarises the core contributions to knowledge 

from findings of the research questions. 

2.5.1 Discussion of findings for research questions 1 and 2 

How can compound uncertainties be aggregated and represented through different 

probability distributions?  

The analysis of papers to answer this question is presented in Sections 2.4.2 and 2.4.3. 

Quantitative uncertainty analysis considers an aggregation of input parameter uncertainty 

whose value is derived from statistical data. Sensitivity analysis and Monte Carlo 

simulation are used to propagate uncertainty ranges over multiple PDFs along with 

correlation between inputs and respective degrees of freedom. The majority of solely 

quantitative approaches follow the standard GUM method, or an adaption thereof. 

The main qualitative analysis techniques combined the pedigree matrix, largely integrated 

in NUSAP, with quantitative assessment methods such as quantitative risk assessments 

and LCA. The former appreciated the need for compound considerations but there were 

no examples found of a combined approach. The latter applied SA to eliminate negligible 

inputs to alleviate the trade-off between measurement accuracy and implementation costs. 

However, uncertainty over the life cycle was considered constant, when in reality it is 

likely to fluctuate. The compound aggregation of quantitative and qualitative uncertainty 
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is essential in real-world contextual applications to provide estimates of cost, availability 

and reliability with high levels of confidence. 

The selection of the most appropriate PDF to represent a given uncertainty source is 

crucial in the analysis process [39,144]. This can be achieved visually by comparing fits 

against a plotted histogram of the data. Attributing qualitative factors as geometric 

standard deviation (GSD) enables the quantification and aggregation of compound 

uncertainties through an amalgamation of the pedigree matrix, Monte Carlo simulation 

and coefficient of variation (CV) [32,34]. This method can be applied to a range of 

symmetric and asymmetric PDFs. While formulae to denote inputs of varying PDFs by 

their respective CVs are defined, a method to aggregate CVs from a mix of symmetric 

and asymmetric PDFs in a compound manner is unclear. This is necessary to establish 

compound uncertainty estimates represented by different PDFs with a high degree of 

confidence.  

The compound aggregation approach can be used in GSA to calculate sensitivity indices. 

Correlations should be considered where suitable to avoid under or overestimation in the 

estimate. However, the majority of applied studies assume input variables to be 

independent. It is logical to assume there will be significant correlations between 

quantitative, measured variables and the qualitative influence on how those variables are 

recorded. Incorporation with qualitative uncertainties requires further research at this 

stage [9,118,120,121]. The risks in ignoring correlation in uncertainty propagation and 

SA are explored extensively by Groen [40,115]. The consideration of correlation through 

the sampling GSA approach allows for increased accuracy in the determination of which 

variables have the most significant impact on the overall uncertainty, and is therefore 

incorporated in Chapter 4 [40,41]. The ability to consider PDFs other than normal will 

further enhance this capability in the aggregation modelling approach. 

Findings were qualified by referred sources and standardised methods for quantitative 

and qualitative uncertainty analysis. The probity of the amalgamation of these methods 

is considered unbiased since it can, in theory, be applied to multiple PDFs in multiple 

contexts. It also fulfils the outcome of the PICOC framework to determine relevant 

probability distributions and methods to quantify uncertainty that can be applied in 

industrial maintenance. Other approaches examined were only applied in theory, 
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prompting the need for further research in applied fields. Alternative techniques may exist 

that were not covered in this review. This can be down to the probity of the initial search 

string and robustness of the elimination process.  

How can qualitative estimates driven by expert opinion and individual experiences 

be standardised and validated? 

The analysis of papers to answer this question is presented in Section 2.4.2.2. Qualitative 

approaches applied in real-world cases are used in conjunction with quantitative methods 

such as Monte Carlo and SA. The pedigree matrix is one of the most widely used methods 

to validate qualitative attributes such as expert opinion and experience 

[32,34,39,52,127,128]. This requires the definition of pedigree criteria upon which the 

experience or qualifications of an ‘expert’ are scored and aggregated to attribute a 

quantitative measure of uncertainty. These criteria can be defined through surveys and 

interviews with industrial practitioners and academics. This approach has been adapted 

and implemented in a range of fields for various purposes [32,52,72,103,104,111,128]. 

Expert opinion and individual experiences can be validated against defined pedigree 

criteria to provide a standardised representation of uncertainty. 

The definition of criteria alleviates bias in the approach, though this should be made by a 

diverse selection of suitably qualified individuals. The pedigree approach was the only 

qualitative technique explored in detail as it was deemed best suited and widely accepted 

to fulfil the desired application. Other approaches or adaptations of pedigree may warrant 

further investigation, but the application through GSD and CV proposed by Ciroth [32] 

and Muller [34] appear best suited to fulfil RQs 1 and 2. These factors also achieve the 

outcome portion of the PICOC framework in Table 2.3 to identify methodologies to 

quantify qualitative uncertainty attributes and combine them with quantitative 

uncertainties. 
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Table 2.6. Identified approaches to resolve RQ1 and RQ2 

Problem 

 

Approach 

RQ1: Aggregation of compound 

uncertainties represented through 

different probability distributions 

RQ2: Standardise and 

validate qualitative 

estimates 

GUM method 

[2,18,32,76,78,124] 

 

Standardised methods for quantitative 

aggregation (standard deviation) 

Gives standard 5-step process to identify, 

quantify and combine uncertainties 

Uses effective degrees of freedom for 

qualitative aggregation, leads to 

underestimation 

Widely used with small variations in 

multiple applications  

Use of effective degrees 

of freedom via Welch-

Satterwhite formula can 

lead to underestimation of 

combined uncertainty – 

improved method 

presented by Willink 

[125] 

NUSAP 

[52,128] 

Can be applied to simple calculations and 

complex models  

Found to improve the depiction of 

uncertainty through visualisation and 

background knowledge compared to 

quantitative risk assessments 

Not clear how quantitative and qualitative 

estimates were combined explicitly  

Uses pedigree to attribute 

qualitative estimates in a 

quantitative manner, 

suited to a broad range of 

applications 

Geometric standard 

deviation (GSD) and 

Coefficient of variation 

(CV) 

[32,34,142,143] 

Estimates are represented under the 

lognormal distribution as GSD to 

eliminate scaling effects from different 

types of data 

CV enables aggregation of quantitative 

and qualitative uncertainties represented 

by different PDFs 

Uses pedigree to attribute 

qualitative estimates via 

GSD 

Willink method 

[78,125] 

Fits quantitative estimates to qualitative 

by attributing a known parent distribution 

to quantitative 

“Proposed method improves performance 

when some error components are drawn 

from non-normal distributions whose 

variances are obtained by non-statistical 

means”  

Qualitative estimates 

represented by known 

variance and ‘coefficient 

of excess’ 

Removes bias of overall 

variance estimate 

 

Top-down approach AKA: 

Nordtest approach, Single-

lab validation 

[133] 

Broad level – does not go far into 

measurement procedure and does not 

attempt to quantify all uncertainty sources 

individually, contrary to GUM, but 

follows the same 5-step process 

Instead, uncertainty sources are quantified 

in large “batches” via components that 

take several uncertainty sources into 

account 

Uncertainty obtained characterises 

analysis procedure rather than an explicit 

result 

Considers uncertainty 

component by possible 

bias – determined against 

an uncertain reference 

value 
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2.5.2 Discussion of findings for research question 3 

How can uncertainty be predicted over the in-service phase of an asset’s life cycle 

and what are the key challenges faced in doing so? 

The analysis of papers to answer this question is presented in Section 2.4.4. The quality 

and availability of data is the greatest driver of uncertainty in the forecasting and 

prediction of equipment states, RUL, and determination of when and how maintenance 

should be carried out [85,172]. Growing complexity in engineering systems makes 

precise modelling of physical systems harder and more expensive to produce in order to 

obtain reliable simulated data [59,146]. These challenges limit the ability to optimally 

train networks through probabilistic Bayesian learning, which reduces confidence and 

robustness in associated uncertainty estimates. 

Intelligent learning techniques are increasingly used to flexibly forecast uncertainty in a 

range of fields, though applied methods for in-service maintenance are limited. RUL 

prediction is a key determinate for maintenance scheduling and costing in CES [65,146]. 

Variants of RNN are widely used but require sufficient data with which to train networks 

to make accurate and robust predictions. This also limits the robustness of probabilistic 

methods such as BDL [42]. 

Hyperparameter tuning is not suitable for regular updates to network architectures owing 

to significant computation time when comparing multiple training options and network 

structures [168]. It can, however, can provide an effective starting point to make initial 

predictions. Dropout training can help improve prediction robustness by preventing 

overfitting, as well as updating the LSTM state at each prediction step as more data 

becomes available. Alternative approaches to predict uncertainty under limited data have 

been proposed such as deep uncertainty quantification (DUQ) [149], drop out learning 

[158] and spatial geometry [28]. 

Uncertainty manifested under limited data and assumptions as discussed above should be 

predicted to allow decision-makers to plan with greater confidence. Doing so will reduce 

under or over estimation. Uncertainties that may pose an undesirable risk at a given point 

in time can be mitigated to reduce the likelihood of unforeseen costs and delays [97]. 
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Predictions need to be robust and as accurate as possible despite being produced under 

limited data, where traditional probabilistic methods are not applicable. 

Findings for RQ3 may be considered biased towards the context of cost estimation in PSS 

[23,25,29,50,137]. Additional research is needed to examine how the assessed deep 

learning approaches can be applied for uncertainty assessment in industrial maintenance 

under limited data [130,139]. This requires a compound aggregation at present and a 

prediction of how the uncertainty may change through the in-service phase, considered 

for individual system components and as a whole. This achieves the final outcome of the 

PICOC framework to identify methods to predict uncertainty and the core challenge of 

limited data. Predictions can be utilised by decision-makers to mitigate uncertainty, 

reducing the likelihood of unforeseen costs and delays. 

Table 2.7. Identified approaches to resolve RQ3 

Problem 

Method 

RQ3: Forecasting uncertainty over the in-service phase of an 

asset’s life cycle 

Fuzzy set theory 

[14,39,46,72,123,130] 

Function assigns a grade between 0 and 1 to each input parameter of a set, as 

opposed to Boolean that are 0 or 1 

Suitable for qualitative reasoning, not for estimating quantitative uncertainty. 

Often recommended in cases where recorded data and knowledge is lacking, 

and available data is inherently subjective. 

Used alongside NNs to aid uncertainty analysis 

Neural network (NN) 

with Backpropagation 

(BPN) 

[39,42,85,140–

142,144,158,173] 

A flexible network of cooperating processing elements to give an output. 

Applied to a model and ‘trained’ to give an optimum output 

Backpropagation computes the gradient of the loss function and uses it to 

change input parameters to reduce mistakes and optimise the output 

Other applications reviewed regarding learning capability and reliability in 

uncertainty prediction, giving greater confidence in maintenance cost 

estimates 

BPN addresses stabilisation of maintenance policies based on steady-state 

probabilities from stochastic models at inception that may not reflect reality 

for forecasts. 

GLUE method 

[119,155,166,167] 

Uses Bayesian inference and ensemble forecasting to assess uncertainty and 

contribution (sensitivity) of factors for a forecasted point in time 

Monte Carlo simulation provides information to the decision-maker on 

expected uncertainty with a degree of confidence. 

Allows for identification of differences in model performance and 

quantification of parameter-induced uncertainty 

Deep uncertainty 

quantification (DUQ) 

[149] 

Combines deep learning and UQ to forecast multi-step meteorological time 

series 

Uncertainty is incorporated straight into a loss function and is directly 

optimised through backpropagation 
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Improves generalisation compared to mean squared error (MSE) and mean 

absolute error (MAE) 

BPN incorporates uncertainty directly into loss function for direct 

optimisation  

Regression is solved as a mapping problem rather than curve fitting and so 

cannot be naturally applied to multi-step timer-series forecasting 

Dropout as Bayesian 

approximation 

[158] 

Theoretical framework casting dropout training in deep NNs as approximate 

Bayesian inference in deep Gaussian processes 

Bayesian models require significant modification to train deep models, 

making them harder to implement and computationally slower 

Dropout training used to approximate Bayesian inference in Gaussian 

processes 

Approximate Bayesian inference updates probability as more evidence 

becomes available 

Considerable improvement in predictive log-likelihood and RMSE compared 

to existing state-of-the-art methods such as BDL 

LSTM networks 

[59,65] 

 

Feedback loop to better capture non-linear relationships 

Use gates to avoid vanishing or exploding gradients, increasing prediction 

accuracy 

Spatial geometry  

[28,131] 

Forecasts cost uncertainty for a given point in time where available data is 

scarce, determined by the geometric symmetry of cost variance data at the 

time of estimation 

Represents uncertainty in a vector space, aggregated to give probable cost 

variance in state space. 

Propagation described through the symmetrical relationship between cost 

variance data at a given point in time set apart from 0. 

Alternative to traditional parametric techniques where available data is not 

sufficient to fulfil the Central Limit Theorem 

2.5.3 Research questions contribution to knowledge  

The analysis of synthesised literature to answer RQ1 in Section 2.4.2 summarised the key 

UQ approaches used to undertake purely quantitative, purely qualitative and compound 

analysis. The importance of considering correlation and sensitivity was highlighted. 

Section 2.4.3 identified PDFs best suited for uncertainty analysis applicable to industrial 

maintenance. Standardisation of qualitative factors to answer RQ2 in Sections 2.4.2.2 and 

2.4.2.3 highlighted the use of the pedigree matrix to assign scores corresponding to 

uncertainty intervals [39,52]. These are attributed by their geometric standard deviation 

(GSD) to combine with quantitative estimates. To gauge these on an equivalent scale for 

aggregation, the respective coefficient of variation (CV) of each input is used as the 

uncertainty measure [32,34]. Systems in the reviewed context of emissions, energy & 

environment are inherently complex. Methods used must be flexible and therefore likely 

to be transferable to industrial maintenance. 
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The analysis to answer RQ3 in Section 2.4.4 highlighted the use of deep learning to 

predict uncertainty. Methods to predict individual and aggregated uncertainty manifested 

by data availability, quality, experience and knowledge over time should be applicable 

under limited data where traditional probabilistic Bayesian learning cannot be applied. 

Approaches summarised in Table 2.7 should be explored to make confident predictions 

of which uncertainties will pose undesirable risk throughout the in-service phase.  

 

The purpose of this review was to investigate distinct methodologies used to quantify, 

aggregate and predict uncertainty for real-world applications. Knowledge gaps within the 

research scope were highlighted, prompting the future research direction for dynamic 

uncertainties manifested in engineering systems to optimise performance and availability 

for the in-service phase. 

Section 2.1 hypothesised that current approaches considering a compound aggregation of 

factors will increase confidence and rigour in determining the impact of uncertainty over 

time under limited available data. The methodologies identified above for compound 

aggregation in theoretical and real-world applications, along with deep learning 

techniques to predict uncertainty have been shown to achieve this and consequently prove 

the hypothesis to be true. 

Conclusions drawn from the discussion of approaches prove that the aggregation and 

prediction of uncertainty are hindered by the quality of available data, experience and 

knowledge. Modern engineering systems feature a myriad of subsystems interacting 

simultaneously and nonlinearly with each other with levels of importance dependent on 

operational conditions and system environment. Limited data concerning the optimisation 

of such systems and interactions between them increases uncertainty throughout their in-

service life. The in-service life typically spans several years, prompting a need for robust 

predictions of technical engineering uncertainties relating to cost and equipment 

availability. These systems typically operate under product-service system (PSS) 

contracts with multiple stakeholders, which presents challenges to confidently and 

accurately determine the level of uncertainty at present or in the future. Uncertainties 
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related to stakeholder relationships are largely tied into supply chains and therefore out 

of scope for this research [23,50].  

From the findings of this review in answering the three research questions, three core 

research gaps were identified: 

1. Approaches to quantify and aggregate compound uncertainties represented by 

different distributions, considering dependencies between them, applicable to 

increasingly complex engineering systems. 

2. Application of GSA to determine the impact of individual uncertainties on the 

aggregated total, accounting for compound parameters and significant correlation. 

3. Limited approaches to predict uncertainty in engineering systems with complex and 

non-complex entities under limited data, and to do this without the need to produce 

complicated and expensive models of physical systems.  

Future work to close the first and second gaps is recommended to develop robust 

frameworks that consider dependencies between compound inputs within increasingly 

complex system boundaries and identify which inputs have the greatest influence on the 

aggregated uncertainty. Flexibility in engineering systems design allows unpredictable 

unknown-unknowns to be mitigated (Figure 2.1), which should be reflected in UQ 

frameworks. While many UQ approaches exist for purely quantitative scenarios, 

standardised methodologies to quantify compound uncertainty are limited in the 

manufacturing and maintenance context, especially for the in-service phase. The 

suitability of the pedigree matrix to determine qualitative uncertainty in the context of the 

research questions proves promising for the research direction. 

Future work to fulfil the third gap can be achieved through a combination of deep learning 

LSTM networks and spatial geometry. This will allow uncertainty to be forecast for real-

world applications, incorporating complex and non-complex entities. LSTMs can make 

flexible forecasts based on prior data and update when new data becomes available. 

Spatial geometry offers a novel approach to predict uncertainty under limited data, though 

not yet applied outside of cost estimation. The push to develop deep learning methods to 

predict uncertainty is gathering importance as data volumes, computational capability and 

complexity in engineering systems increases. 
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Maintenance processes can be simulated through surrogate models, incorporating the 

identified challenges to execute frameworks to quantify, aggregate and predict resulting 

uncertainties. Simulated data can then be incorporated to train developed frameworks to 

confidently aggregate and predict compound uncertainty. 
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 CURRENT PRACTICE AND CHALLENGES 
 

 

Abstract 

Complex engineering systems present a wealth of uncertainties in factors from performance measurements 

to maintainability and through-life characteristics. A quantifiable understanding of these uncertainties is 

vital to system optimisation and plays a key role in decision-making processes for manufacturing 

organisations worldwide; impacting profit, product availability and manufacturing efficiency. The 

influence of 32 categorised uncertainty factors is assessed through a questionnaire completed by nine 

experienced maintenance managers from a leading defence company. The pedigree approach is applied to 

score the validity of respondents’ answers according to their experience and job role to normalise scores. 

Results are discussed in interviews with respondents along with current practice in, and ways to improve, 

uncertainty assessment. Six core challenges are verified with 40 practitioners from various industrial 

backgrounds. From the interviews, it is deemed that a holistic view of heuristic and statistical attributes 

ultimately allows for more accomplished decision-making but requires trade-offs between quality and cost 

over the asset’s life cycle. 

 

Paper 2 Identifying challenges in quantifying uncertainty: Case study in infrared thermography 

 

Published: Procedia CIRP, IPS2 Conference 2018 

DOI: 10.1016/j.procir.2018.03.301 

Data access: 10.17862/cranfield.rd.11961435.v2 

 

Paper 3 Current practice and challenges towards handling uncertainty for successful outcomes in 

maintenance 

 

Published: Procedia CIRP, CIRPe Web Conference 2019 
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Decision-making in industrial maintenance is typically based on two broad factors: 

recorded data and subjective expert opinions. The prior presents hard facts, subject to a 

degree of uncertainty that can be quantified statistically by the standard deviation of the 

dataset. The latter attributes qualitative uncertainty by what traits qualify someone as an 

expert and the basis of their view to establish its validity. Data recording methods, 

accuracy of equipment used, or maintainer performance are rarely considered as an 

attribute to overall uncertainty. Once statistical uncertainty estimates are obtained from 

recorded data, it is necessary to also question how these recordings were made, their 

accuracy and how such approaches may differ in various operating conditions. In complex 

engineering systems (CES), decisions made for one component or subsystem can have 

unforeseen effects on others. An example of one such system is the maintainer. The 

degree of uncertainty associated with the maintainer’s discretion in the quality of 

maintenance carried out is significant due to the number of variables that may influence 

their decisions; such as training level, measurement quality and environmental conditions. 

A combination of the hard facts and subjective opinion needs to be considered to make 

informed and effective decisions leading to prosperous outcomes in maintenance. Some 

cases require more expertise; some require more data. The question here is whether a 

holistic view of these uncertainties can improve decision-making capabilities and reduce 

through-life costs as well as unforeseen challenges. 

In the context of industrial product-service systems (PSS), maintenance responsibilities 

are shifted back from the client to the product provider (contractor) [174]. These service 

contracts are increasing in scale and complexity, now accommodating highly complex 

and dynamic systems. Operational life cycles of such systems promote extensive 

relationships between the contractor and client. The availability, reliability and 

maintainability of these systems and equipment is therefore essential in logistical 

contracts and through-life support services. Some significant maintenance technologies 

that support these services are non-destructive testing (NDT) and degradation assessment, 

repair and remote maintenance that sustain maintenance activities [174,175]. These 
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should therefore be profitable to the contractor, but also ensure supply chain sustainability 

and customer affordability [176]. 

The approach to a specific maintenance task by a contracted maintainer may differ from 

that of the client’s maintainer on the same task. Decisions made here raise several 

qualitative uncertainties from both sides that are naturally problematic to quantify.  

This chapter presents a survey questionnaire to examine and rank prominent factors that 

influence uncertainty in maintenance based on literature and input from industry experts. 

Uncertainties are considered in the context of maintenance for CES, considering the 

dynamic nature of system requirements over time and the effect these may have on the 

through-life maintainability of CES from the perspective of industrial PSS. 

Respondent qualities are attributed in a pedigree assessment. Results are reviewed and 

discussed in a series of semi-structured interviews and validated with wider industrial 

practitioners before producing a refined survey and pedigree criteria. Results are ranked 

using the well-established Analytical Hierarchy Process (AHP) to determine areas facing 

the most significant challenges and uncertainties. 

 

3.2.1 How does uncertainty affect industrial PSS? 

Cost assessments for the service and support of long-term projects is a challenge shrouded 

in uncertainty owing to the variable nature of such services and unpredictable changes in 

customer requirements [46,137]. Further uncertainties are found in highly variable 

equipment usage rates, lack of information to make accurate forecasts, importance of 

creating the right incentives around long-term maintenance and accurately predicting 

schedules [177]. These uncertainties present an inherent degree of risk to industrial PSS, 

which can be utilised as a measure of future uncertainties in achieving performance within 

defined cost, schedule and performance constraints [178]. 

3.2.2 Decision-making techniques 

Saaty’s [179] AHP has been extensively implemented and validated to prioritise 

alternative options via a set of evaluation criteria. Pairwise comparisons are applied to 
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each criterion in a set of matrices to generate weighted scores, which are then aggregated 

to give a global indication of the best or most popular option [103,135,180,181].  

Other multi-criteria decision making (MCDM) methods such as TOPSIS and 

PROMETHEE can be applied in tandem with AHP to compare complex parameters such 

as algorithms through fuzzy theory [182–185]. Other qualitative approaches such as 

SWOT (strengths, weaknesses, opportunities, threats) analysis can be used to quickly 

identify risks and factors influencing uncertainties in a group setting, but may result in a 

plethora of factors that can’t be accurately summarised in a quantitative manner with 

resources available [46,136,178]. AHP is therefore adopted in this study to identify the 

most significant challenges with a high level of accuracy. 

 

A survey questionnaire was composed to rank prominent factors that influence 

uncertainty in maintenance based on literature and input from industry experts to gather 

heuristic data on challenges in industrial maintenance and the underlying uncertainty 

propagation. This consisted of scored and open questions. Scored questions were used to 

gain quantitative values denoting the degree to which, for example, the respondent agreed 

with a given statement. Open questions only restricted by the topic allowed respondents 

to give a clearer view of their true opinions and lead to further discussions and a clearer 

understanding of the subject. 

The questionnaire comprised of four core sections: 

• Current practice; considering the nature of long-term projects and resulting 

relationships with clients and external contractors, maintenance procedures in complex 

systems and the impact of maintainer wellbeing on maintenance quality 

• Influencing factors; ranking of uncertainties arising in long-term projects according to 

the influence they have on the quality and effectiveness of maintenance carried out 

• Data handling; systems and methods used to manage maintenance data and techniques 

used to influence decisions for future projects 

• Risk and mitigation; strategies used to reduce uncertainty in maintenance 
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Nine responses were obtained from a leading defence company. Respondents scored 32 

factors according to their influence on uncertainty on eight-point Likert scales (0-7) from 

“no influence” to “high influence” to avoid the neutral middle point, with a ‘0’ option for 

‘no effect’ [68,186]. These were refined and adapted by respondents and the author from 

a list defined by Erkoyuncu et al. [74], divided into 5 categories: commercial, 

affordability, maintainer performance, operational and engineering – illustrated in Figure 

3.1 [135]. Respondents were each assigned a random ID to protect their anonymity. 

Respondent years of experience in current and relevant previous roles are illustrated in 

Figure 3.2. 

3.3.1 Pedigree assessment 

The pedigree matrix scores qualitative, expert opinion against predefined criteria to 

permit quantitative reliability assessment [52,127]. These criteria are defined according 

to the contextual application of the study [39,52,128]. The criteria were scored according 

to (1) years of experience in current role, (2) years of relevant experience prior to current 

role and (3.1-5) years of experience working on 5 select ship classes. Each criterion 

adhered to the same 1 to 5 scale: 1 = <5 years, 2 = 5-9 years, 3 = 10-14 years, 4 = 15-20 

years, 5 = >20 years. Explicit roles were not included here to uphold anonymity. 

An example of pedigree scores for two respondents is shown in Table 3.1. The weighted 

mean of these scores was used as a scaling factor to attribute proportionate scoring to 

their survey answers. These are compared with the mean scores in Figure 3.3. The weights 

of each criterion were defined by the author and are in themselves inherently subjective. 
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Figure 3.1. Survey: Influential factors for uncertainty in industrial maintenance [135] 

 

Figure 3.2. Survey: Respondent years of experience 



 

55 

 

 

The mean and range for each influencing factor and category were evaluated in MS Excel. 

This is represented for all factors in Figure 3.4 numbered in the x-axis corresponding to 

Figure 3.1. Agreement between respondents is represented by the range, where a high 

range reflects high disagreement. These can be influenced by a specific project and not 

necessarily reflect their overall view. Factors that showed contrasting levels of agreement 

between the respondents are summarised below.  

• High influence on uncertainty, high levels of agreement: Ability to screen 

candidates in training (12); Quality of information from OEM (18); Data reliability & 

quality (29) 

• High influence, high disagreement: Customer ability to spend (9); Availability of 

resources to support maintenance (19); Supply chain logistics (24) 

• Low influence, high disagreement: Labour efficiency (1); KPI specs (3); MTBF data 

(23) 

Table 3.1. Survey: Example pedigree scores for two respondents 

ID (1) (2) (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) Mean  W. mean 

R1 5 5 - 2 2 4 2 5 3.57 3.85 

R2 5 2 - - 5 - - 1 4.00 2.54 

 

 

Figure 3.3. Survey: Mean and weighted mean comparison of pedigree scores for all respondent 

attributes 
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3.3.2 AHP implementation 

AHP estimates relative magnitudes of inputs through pairwise comparisons [179]. These 

were represented in a positive reciprocal matrix adopting an algorithm defined by 

Erkoyuncu [39] for each of the 5 categories. Detailed results of the AHP are available in 

the supplementary data. The resulting weights highlighted the most prominent factors in 

each category, which were elaborated on in the interviews. 

3.3.3 Interviews with industry 

Survey results were analysed and discussed in a series of semi-structured interviews with 

respondents to obtain subjective views across maintenance departments. This structure 

allowed discussion of relevant topics while permitting respondents to provide further 

detail on their viewpoint from the survey [74,135,187]. Strategies and examples from 

literature [186–189] were used to structure and phrase the questions to obtain relevant 

information that can then be put forward to compose a framework capable of predicting 

the level of subsequent uncertainty influenced by challenges raised. Respondents were 

assured that responses would be handled confidentially and would not be linked to 

individuals. Where necessary, probes and prompts were used to encourage further 

responses and greater clarity [187]. The interview questions are depicted in Appendix C. 

3.3.4 Core challenges summary 

Core challenges that influence uncertainty prediction in maintenance, as highlighted from 

the questionnaire and interviews, can be summarised in six factors as follows:  

 

Figure 3.4. Survey results: Mean score for influence on uncertainty for all factors with level of 

disagreement  
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Intellectual property rights (IPR), where modern systems are comprised of a vast 

number of components, many of which can only be maintained by the OEM due to IPR. 

This yields a degree of information asymmetry leading to uncertainty around the accuracy 

and availability of technical data; validated by the ‘OEM logistics’ factor having the 

single greatest influence on uncertainty in the survey.   If a specialist maintainer cannot 

be sent out to fix the component, significant delays could ensue.  

Maintainer performance, where levels of knowledge and experience can have a 

significant impact on maintenance quality and material state awareness. Additional time 

pressures and individual attitudes impact effort put into completing a task. Naval ships 

are deployed for several months at a time, whereas platforms such as aircraft are flown 

for a matter of hours and undergo rigorous maintenance checks between sorties. Over 

time, each ship on deployment naturally develops its own ‘crew culture’. This has a core 

influence on maintainer attitude and affects the quality to which they conduct and record 

maintenance activities. Dockside maintainers would then not hold accurate data on the 

material state of a given part. If a problem was found the part would have to be replaced, 

accumulating unplanned costs and delays. 

Quality of information, where documentation on maintenance procedures from OEMs 

is not well maintained. Books of Reference (BoR) are reviewed every 5 years, yet some 

date back to 1995. This can influence KPI specifications for a given platform, further 

raising uncertainty in maintenance procedures. In ship support, Job Instruction Cards 

(JIC), customer instructions and OEM documentation often lack detail. This exaggerates 

issues in data application for industrial and managerial support. Maintenance scheduling 

can then be affected, causing components to be maintained on a reactive basis rather than 

preventive. Materials and parts are not always available on the shelf when they should be 

and a robust system to purchase these materials is not in place. A range of data 

management systems are used for different ship platforms. For some, data is not 

necessarily recorded by the required party. Managers only get half the picture. 

Resistance to change, where what is expected by the customer goes against what is or 

can be provided by the primary contractor. Many maintenance tasks need to be sub-

contracted to a third-party OEM, which the primary contractor has no control over. That 

OEM could be operating under a one-off contract to maintain a specific part or system. 
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Significant uncertainties are raised here for the primary contractor as the time schedule 

and cost incurred from the third-party OEM cannot be finalised until the contract is 

completed, which may have knock-on effects for interconnected systems. 

Stakeholder communication, where subcontractors may be fully qualified to sign off 

work done but cannot due to conflicts of interest, so the same task is repeated, resulting 

in unnecessary time and cost losses. An example was given in the interviews where two 

maintainers who have not conversed did not know the current material state or planned 

maintenance schedule of systems that connect at a platform level. The asset, maintained 

by the OEM, was rendered obsolete by ship staff while on deployment. It therefore missed 

a planned maintenance period when in dock, meaning the ship could not carry out its 

tasked duties. 

Technology integration, where the exponential progression of technology means that 

training may not have kept up and software required to interrogate a system for diagnostic 

checks is not held by maintainers. New builds often have maintenance procedures locked 

in the design phase. Older platforms experience multiple upgrades over their lifetime 

which can result in examples such as seven different ship types under one platform 

grouped into a maintenance procedure, even though procedures for each type are 

different. Customer requirements may also change through design and upgrade 

programmes, which induce substantial costs and schedule delays. 

A summary of the six core factors that influence uncertainty in industrial maintenance for 

industrial PSS and current approaches to maintenance is represented by Figure 3.5 in a 

broad sense between the OEM, contractor and client. The outer blue factors elaborate on 

areas where uncertainty is manifested, as discussed in the interviews. 
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3.3.5 Wider industrial input 

A live survey was carried out with industry practitioners and cost estimators at a 

workshop on modelling risk and uncertainty. The six core challenges identified were 

presented using Mentimeter live voting software. Respondents were asked if they 

considered a combination of quantitative, statistical (Type A) and qualitative, heuristic 

(Type B) uncertainty in their work and to identify their background, achieving 58 

responses. 

Segmentation of respondents according to their answer to the first two questions is 

illustrated in Figure 3.6 (unknown means the first question was unanswered). 41% of 

respondents were from the defence sector, 16% from aerospace and 24% cost analysists. 

A near 50:50 division of backgrounds was found and was relatively equal across each 

sector. Finally, respondents ranked the six challenges according to their influence on 

uncertainty, which gained 40 responses. The weighted mean score of each factor is shown 

in Figure 3.7, with an area plot for response distribution on the Likert scales. Higher 

weights are applied to data points with more responses, illustrated by peaks in the 

distributions. 

 

Figure 3.5. Survey results: Core factors influencing uncertainty in industrial maintenance 



 

60 

 

 

Quality of information showed the greatest influence on uncertainty, with a weighted 

mean score of 6.3. This is followed by technology integration, with a weighted mean 

score of 5. Maintainer performance, resistance to change and stakeholder communication 

were found to have a relatively wide distribution spread, indicating disagreement between 

respondents. However, maintainer performance shows a higher distribution towards ‘high 

influence’. As before, disagreement can be due to respondents’ own comparative 

experiences in their industry in general or on a specific project they are working on. IPR 

showed the lowest influence, with a weighted mean of 3.1. 

 

Figure 3.6. Live survey results: Respondent background according to whether they consider 

combined uncertainty 

 

Figure 3.7. Live survey results: Subjective opinions on the core factors influencing uncertainty 
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This chapter aimed to identify and rank core factors that influence uncertainties 

originating from challenges in the maintenance of complex assets under industrial PSS. 

Maintenance managers from a leading defence company completed a survey 

questionnaire identifying these factors. An assessment of the validity of their responses 

was made through defined pedigree criteria, the results of which were applied to each 

respondent to normalise their answers. Results were discussed and developed in a series 

of semi-structured interviews. Mean scores for each factor were weighted using AHP to 

identify the most influential factors. Core challenges were discussed in Section 3.3.4. 

The derivation of pedigree criteria is inherently subjective. The criteria selected for this 

study (Section 3.3.1) were deemed, through the interviews and academic input, most 

applicable to score a level of expertise to respondents. Ranking more detailed 

qualifications against each other adds levels of complexity deemed out of scope for this 

study. 

The AHP allowed factors to be weighed against each other within the survey categories. 

From this, the six core challenges were determined. These were validated through wider 

industrial input in a live survey, where the quality of information was deemed the most 

influential factor on uncertainty. 

A shared understanding of material state across all departments is required to fill gaps in 

the supply chain, improve communication between stakeholders, overall decision-making 

and cost-effectiveness of ship support. Maintenance regimes used by the contractor or 

client may also differ, therefore holding a greater degree of uncertainty. In CES, where a 

change in uncertainty in one system has an unknown impact on another, this issue is 

amplified as different components may be maintained by different parties in the same 

system. There are approximately 300 different data repositories in use across the studied 

company, the majority of which are not linked and consist of numerous duplicate entries 

[190]. This includes DRACAS (Data Reporting, Analysis and Corrective Action System) 

and UMMS (Unit Maintenance Management System), where data may not be recorded 

in a useable fashion. This restricts the availability of data concerning specific components 

and the impact they will have on interlinked systems [191]. 
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A common support model (CSM) is under development to tackle this challenge, featuring 

five management disciplines for through-life ship support: enterprise, class, design, 

maintenance and equipment [190]. These are endorsed by a complex web of information 

and knowledge management that is historically subject to a degree of asymmetry. This 

was made apparent in the interviews and previous studies across industrial sectors 

[48,192,193].  

Stress levels and working conditions further influence uncertainty, as a heightened degree 

of each will negatively impact the quality of maintenance. It is incredibly difficult to 

obtain data on maintainer wellbeing as unions do not like to give or authorise the 

collection of such information. In many cases, more attention is given to critical and 

complex components. Non-critical components therefore receive less attention. For 

example, bypass valves could be considered non-essential until they fail. 

A combined understanding of the impact of qualitative and quantitative uncertainty on 

system performance will provide a holistic picture allowing for more informed and 

effective decisions leading to prosperous outcomes in maintenance, but this comes at a 

cost. Budgets can be set for this with the ‘spend to save’ approach or set aside lump sums 

for unforeseen circumstances. Ultimately, a trade-off is required. 

This study can be extended in several ways for further research. First, a broader 

framework can be developed to identify contributing factors in a given system, define 

them as quantitative (statistical) or qualitative (heuristic), identify acceptable uncertainty 

parameters for each element and combine the total subsystem uncertainties to gain a more 

holistic, quantitative picture. Second, the interrelationship between criteria can be 

incorporated and modelled through other quantitative and qualitative techniques such as 

the Analytic Network Process (ANP) [181] and PROMETHEE. Third is to develop 

analytical frameworks in order to better understand potential impacts of uncertainty and 

the ability to manage them should they arise.  
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 COMPOUND UNCERTAINTY 

QUANTIFICATION AND AGGREGATION 
 

 

Abstract 

The mounting increase in technological complexity of modern engineering systems demands rigorous 

determination of equipment availability and turnaround time whilst allowing for overruns and unforeseen 

costs. Quality and availability of quantitative data, as well as qualitative expert opinion and experience, 

expose uncertainties that can result in under or overestimation of the above factors. Quantifying such 

uncertainty should consider inter-connected components and associated processes from a combination of 

quantitative and qualitative (compound) perspectives. This chapter presents a Compound Uncertainty 

Quantification and Aggregation (CUQA) framework to determine the compound output along with an 

assessment of which parameters contribute the greatest uncertainty through global sensitivity analysis. This 

will provide maintenance planners with a confident, comprehensive view of parameters surrounding the 

above factors to improve decision-making capabilities. The framework was validated by assessing 

compound uncertainties in two case studies: a bespoke heat exchanger test rig and a simulated turbofan 

engine. The results demonstrate an effective measurement of compound uncertainty through the CUQA 

framework and the impact on system reliability. Further work will derive methods to predict uncertainty 

through the in-service phase of an asset’s life cycle and its incorporation with more complex case studies. 

 

Paper 4 An uncertainty quantification and aggregation framework for system performance 

assessment in industrial maintenance 

 

Published: SSRN, TES Conference 2020 

DOI: 10.2139/ssrn.3718001 

Data access: 10.17862/cranfield.rd.12906443.v1 

 

Paper 5 Compound uncertainty quantification and aggregation (CUQA) for reliability 

measurement in industrial maintenance 

 

Submitted: Reliability Engineering and System Safety 

Data access: 10.17862/cranfield.rd.13550561 
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Uncertainty quantification (UQ) concerning the maintenance of engineering systems is 

growing in recognition and rigour as the complexity of such systems surges in the modern 

world. Complex engineering systems (CES) are comprised of multiple sub-elements 

including equipment and operators that interact simultaneously and nonlinearly with each 

other and the environment on multiple levels [2,3]. Consideration of the relationships 

between elements is vital to understand emergent behaviour to aid decision making [4]. 

Complex systems science is a field in itself, the theory of which is widely discussed in 

literature  [4,6,8,9] but is out of scope for this research.  

The maintenance of complex and non-complex engineering systems exhibit a range of 

uncertainties from interconnected factors such as quality and availability of quantitative 

equipment data and the qualitative influence of operators, expert opinion, experience and 

environmental conditions [10]. These uncertainties are represented by varying probability 

distribution functions (PDFs) and can lead to under or overestimation of maintenance 

costs, reliability measurement, equipment availability and delays in maintenance 

scheduling. Recent research in CES has explored UQ in micro gear measurements [3], 

structured surfaces using metrological characteristics [11], correlation uncertainty in gear 

conformity [12], grey-box energy models for office buildings [14], uncertainty in 

disassembly line design [15] and others reviewed in various related studies. Many of these 

approaches only consider quantitative uncertainty given by variability in measured data, 

rather than the compound aggregation of quantitative and qualitative uncertainties 

[3,11,14,15]. Methodologies to do this are growing in many areas, but are limited from 

an industrial maintenance perspective. This is necessary to obtain a comprehensive 

understanding of system reliability, as well as the inherent risks and knock-on effects 

imposed by altering elements within the system. Limited research guiding the aggregation 

of compound uncertainty sets the focus for this chapter. 

A 6-step framework is presented to quantify and aggregate compound uncertainties to 

enhance system performance assessment. This will provide maintenance planners with a 

comprehensive view of parameters surrounding the above factors to improve decision-

making capabilities. 
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The proposed framework is detailed in Section 4.2 along with key mathematical formulae, 

functions and assumptions made. Section 4.3 applies the framework to two case studies: 

a bespoke heat exchanger test rig comprised of multiple sub-systems, developed at 

Cranfield University [17], and a simulated dataset for turbofan engine degradation. 

Individual uncertainties from quantitative and qualitative sources and correlations 

between them are assessed and aggregated to give a confident indication of system 

performance. Section 4.4 discusses the results, strengths and limitations of the framework 

along with conclusions and future work in this area. 

 

Every measurement or estimate is subject to a degree of error, which in turn contributes 

a level of uncertainty. Quantifying this uncertainty enables a thorough assessment of the 

scale of risk inflicted on the system by each component [2,18]. This chapter contributes 

a holistic assessment of compound uncertainties in dynamic data represented by different 

distributions with an integrated assessment of correlations and sensitivity. This addresses 

research gaps 1 and 2 identified in Chapter 2, achieved through a 6-step modelling 

approach developed in MATLAB, described below and illustrated in Figure 4.1. 

The framework was designed as an extension and amalgamation of existing 

methodologies from literature [2,18,20,22,24,26,28]. An initial version was presented in 

Grenyer et al. [30]. Here it is further developed and validated in two case studies, 

considering key parameter variables identified within the system. This chapter has been 

submitted as a manuscript and is under peer review at the time of writing. The framework 

steps were developed from the traditional approach in the GUM, extended to consider 

compound uncertainty and GSA, detailed as follows: 

Step 1: Outline system setup & uncertainty sources. Inputs are grouped according to 

their uncertainty type – quantitative or qualitative. This includes all measured data, 

assumptions made and environmental predictions. Distribution types are established by 

‘goodness-of-fit’ tests. Selected types are indexed for later calculation.  
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Step 2: Calculate individual uncertainties. Statistical parameters are calculated for each 

input according to their relative distribution via Monte Carlo simulation and the pedigree 

matrix. These are grouped for each subsystem; for which the standard uncertainties and 

correlations are determined separately before combining with the whole system, 

elaborated as follows: 

  

Figure 4.1. CUQA framework overview 
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Step 2a: Quantitative, recorded data is concatenated in a cell array to allow inputs with a 

varying number of data points to be considered. Any non-numeric values are removed. 

Monte Carlo simulations are run for the relative indexed PDF over a user-defined number 

of points (default 10,000) or to the size of the largest input parameter. This propagates 

input data to a homogeneous array size. In order to consider the uncertainty in the 

measured values, each dataset (𝑋𝑖) is split into sub-arrays over the recorded time period. 

The number of rows for each sub-array (𝑆𝑖) can be selected by the user or defined 

automatically. Possible values for 𝑆𝑖 are defined by the number of factors (𝑁𝑓) in the value 

of the length of the dataset (dim ሺ𝑋𝑖)). The automatic selection is given by Eq.4-1. This 

aims to select the middle factor, providing enough values to determine the uncertainty at 

each point while allocating enough sub-arrays to determine the change in uncertainty for 

the recorded period. Each dataset is then reshaped according to Eq.4-2, where 𝑆𝑖,𝑗 is the 

reshaped sub-array dimension. 

 𝑆𝑖 =  {
[൬

𝑁𝑓

2
൰ + 1] , 𝑁𝑓 < 10

[൬
𝑁𝑓

2
൰] , 𝑁𝑓 ≥ 10

, Si ≥ 1 (4-1) 

 
 

𝑋𝑖 ∈ ℝdimሺ𝑋𝑖ሻ → 𝑋𝑖 ∈ ℝ𝑆𝑖,𝑗 (4-2) 

The arithmetic and geometric mean and deviation are calculated for each sub-array and 

the full dataset, along with maximum and minimum values of each input variable. The 

standard deviation of each time unit is then calculated using the simulated data for each 

distribution type. For lognormal variables, the mean and standard deviation is given as 

geometric. Normal and uniform distribution variables are arithmetic [32]. To visualise 

the data, boxplots for each sub-array are overlaid on the initial dataset. These plots give 

more detailed information than standard error bars on the change in uncertainty over time 

with dynamic datasets. 

Step 2b: Qualitative factors are defined through pedigree criteria. Based on the example 

implemented by Ciroth [32], the matrix defines uncertainty indicators based on expert 

judgement. Criteria are defined for each score for each factor, which relates to predefined 

case-dependent uncertainty measures. The ideal case has a pedigree score of 1, 

corresponding to minimal uncertainty. Scores of 2-n have progressively higher 

uncertainties owing to their representative criteria. While there is no limit to the number 
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of scores, typically a maximum of 5-7 is used. The scores for each factor correspond to 

an uncertainty indicator, the GSD of which is obtained from one or multiple sources 

(interviews, surveys etc.). These scores will not be fixed over time, and so are pseudo-

randomly applied ±1 of the defined score for each sub-array. If the uncertainty indicators 

are obtained from a single source, the GSD is given as its square root. If they are obtained 

from multiple sources, the GSD is given by Eq. 2-2, modelled by the lognormal 

distribution [32,34,36]. The GSD of less ideal indicators is given as a ratio of the 

calculated GSD and that of the ideal score for each input, meaning that it is always equal 

to or greater than 1 [32].  

Step 3: Determine significant correlations between input parameters. To best 

determine correlation, input parameters must be of equal length. For quantitative data, 

initial recordings prior to Monte Carlo are sampled to the size of the largest parameter 

length around their respective PDF type. Qualitative parameters are sampled using their 

uncertainty score as the respective mean and GSD as standard deviation under a 

lognormal distribution to achieve a homogeneous sample size. Spearman’s correlation 

coefficient 𝜌 (Eq. 2-5) is calculated between each pairwise input parameter, along with 

their corresponding p-values. These are the result of the null hypothesis significance test 

that determines whether what is observed in the data sample is likely to be true for a wider 

population. A default significance level (𝛼) of 0.05 determines that for p-values < 𝛼, 

there is 5% chance that a significant correlation does not exist between those parameters 

[9,37]. In addition, an ideal limit to define significant coefficient magnitude is defined by 

the user as, 𝜌𝑙𝑖𝑚 and cut-off, 𝜌𝑐𝑢𝑡𝑜𝑓𝑓. If there is not at least one pairwise coefficient for 

which the absolute value |𝜌| > 𝜌𝑙𝑖𝑚 , the ideal 𝜌𝑙𝑖𝑚 is reduced in increments of 0.01 via 

a ‘while’ loop until the condition is true or the defined 𝜌𝑐𝑢𝑡𝑜𝑓𝑓 is reached. This enables 

the user to define the degree of correlation to be included in the aggregation with the 

assurance that the resulting coefficients are statistically significant. Corresponding input 

parameters for which the final condition is true are plotted in a correlation matrix and 

stored for use in Step 5. This matrix provides a visualisation of correlation magnitude for 

each parameter with a significantly correlated pair [38].  
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Step 4: Calculate the CV for each input. Uncertainties from different data types 

represented by different PDFs must be considered on an equal scale in order to be 

aggregated. This is achieved through the CV, explained in Section 2.4.2.3, the formulae 

for which are given in Table 2.4 [34]. These are calculated within the framework by a 

sequential algorithm according to the specified input and distribution type. Summary 

tables are then generated for the compound inputs and correlation, as calculated in Steps 

2-3.  

Step 5: Aggregate respective CVs and correlated parameters. As discussed in Section 

2.4.2.1, symmetric distributions are aggregated additively by RSS (Eq. 2-1). Asymmetric 

distributions, given by lognormal distributions, CVLn, are aggregated multiplicatively by 

Eq. 2-3 [34]. The framework splits the calculated CVs of quantitative inputs according to 

the distribution type. The sum of symmetric attributes is added to the product of 

lognormal attributes. Comparing this with Eq. 2-1, the aggregated uncertainty is given by 

𝐶𝑉𝑇 in Eq. 4-3: 

 𝐶𝑉𝑇 = √∑ሺ𝐶𝑉𝑠𝑦𝑚
2

𝑛

𝑖=1

ሻ + ൭∏ሺ𝐶𝑉𝐿𝑛
2 + 1ሻ

𝑛

𝑖=1

− 1൱ + 2 ∑(𝜌𝑥,𝑦 𝐶𝑉𝑥  𝐶𝑉𝑦)

𝑛

𝑖=1

  (4-3) 

Where ሺ𝜌𝑥.𝑦 𝐶𝑉𝑥 𝐶𝑉𝑦ሻ is the Spearman correlation coefficient of 2 parameters 𝑥 and 𝑦 multiplied by their respective CV. 

Individual CVs are plotted as bars against the aggregated total, along with a colour bar to 

visualise the acceptability of relative factors according to predefined scales. The 

correlation coefficient standardizes the variables and is therefore unaffected by changes 

in scale or units. The formulae allow the aggregated CV of quantitative and qualitative 

data to be determined as a measure of total uncertainty. Given that CV is the ratio between 

the standard deviation and the mean, the output follows a normal distribution. The 

uncertainty can therefore be expressed back as the standard deviation via Eq. 4-4. 

 

𝜎𝑇 = √∑ሺ𝜎𝑖ሻ
2

𝑛

𝑖=1

= √∑ሺ𝜇𝑖𝐶𝑉𝑖ሻ
2

𝑛

𝑖=1

 (4-4) 



 

70 

Steps 2-5 are repeated for each sub-array unit. Summary variables including the 

individual and aggregated CV are stored and used to calculate the sensitivity indices in 

Step 6. 

Step 6: Conduct GSA and visualise results. The relative influence of individual 

uncertainties on the aggregated total is calculated as the response vector over each sub-

array time unit. The sampling approach proposed by Groen [40], influenced by Xu and 

Gertner [41], is applied to consider the effect of correlated parameters using an adjusted 

regression model. Results are visualised by a 3D bar plot to show dependant and 

independent effects against the total, with the same colour scale applied as for Step 5 to 

illustrate the severity. A feedback loop is then taken back to Step 2 where parameters with 

total effects below a defined threshold (default 5%) are discounted. The aggregated 

uncertainty and sensitivity indices are updated to determine the parameters contributing 

the greatest impact to the aggregated uncertainty, visualised in the same manner. 

 

4.3.1  Case study 1: Heat exchanger test rig 

The framework was first applied to a bespoke heat exchanger test rig, developed from an 

initial design by Addepalli et al. [17] with the installation of a motorised pump and digital 

sensors. The combination of digital and analogue recording, along with qualitative factors 

discussed below, manifests compound uncertainty in heat exchanger performance. These 

uncertainties need to be quantified and aggregated to assess their impact on the system, 

assessed via the heat transfer coefficient [43,45,47]. This is calculated with the resulting 

uncertainty, derived alongside the CUQA framework as follows:  

Step 1: Outline system setup & uncertainty sources. The system comprised of a hot 

closed-loop system and a cold open-loop system, illustrated in Figure 4.2 (notation 

defined in Table 4.2). Component specifications are described in Table 4.1. 
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The experimental setup comprised of seven quantitative parameters, summarised in Table 

4.2 along with their corresponding reading interval and error, and five qualitative factors: 

(1) Reliability of data, (2) Basis of estimate, (3) Reading accuracy, (4) Environmental 

conditions and (5) Sample size – each modelled by the lognormal distribution. Oil 

temperature at the inlet (T1) and outlet (T2) was measured by dual temperature sensors. A 

constant flow rate was maintained by a motorised pump. Oil pressure (P1) was regulated 

by a pressure relief valve, recorded by a dual pressure sensor at the pump outlet. The 

sensors fed real-time data to the PC controller via IO-Link, logged to a CSV file in 1-

second intervals along with a timestamp.  

 

Figure 4.2. Heat exchanger test rig: System design [17] 

Table 4.1. Heat exchanger test rig: Component specifications of the initial design 

Component Specification 

Oil  Aero shell turbine 500 

Pump Vivoil X2P4702EBBA motorised pump 

Heater 3 connected units controlled by 3 switches, temp. indicated by probe 

Heat exchanger Jaguar oil cooler, plate-fin type 

Temperature sensors Barksdale BTS38GVM0050M1   

Pressure sensor Barksdale BPS38GVM0010B 

IO-Link master Pepperl+Fuchs ICE2-8IOL-G65L-V1D 
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The heat transfer coefficient is given by the heat load 𝑄 of the hot (ℎ) and cold (𝑐) fluid 

(Eq. 4-5): 

 
𝑄ℎ = 𝑚ℎ̇ ∙ 𝑐𝑝ℎ ∙ ሺ𝑇ℎ 𝐼𝑛 − 𝑇ℎ 𝑂𝑢𝑡ሻ 

𝑄𝑐 = 𝑚𝑐̇ ∙ 𝑐𝑝𝑐 ∙ ሺ𝑇𝑐 𝑂𝑢𝑡 − 𝑇𝑐 𝐼𝑛ሻ 
(4-5) 

Where 𝑚̇ = mass flow rate, given by the product of the volumetric flow rate 𝑉̇ and density 𝜌; 𝑐𝑝 = specific heat capacity; and 𝑇𝐼𝑛 −

𝑇𝑂𝑢𝑡 is the fluid temperature differential in and out of the heat exchanger. 

The heat balance error and composite heat load considering associated uncertainty are 

given by Eq. 4-6 and Eq. 4-7 respectively, as derived by Tatara and Lupia [43]. 

Contributing measurement uncertainties and additional qualitative bias in the system were 

calculated separately using the propagation of error method [37]. 

While |𝐻𝐵𝐸| < |𝑈𝐻𝐵𝐸| (Eq. 4-8), the overall heat transfer coefficient can be found and 

associated measurement uncertainties are considered valid [43]. The focus of this study 

was on the uncertainty in the measured values over time, not the uncertainty of the overall 

recording period. 

 𝐻𝐵𝐸 =
𝑄ℎ − 𝑄𝑐

𝑄ℎ

∙ 100% (4-6) 

 

 

𝑄 =
𝑄𝑐𝑈𝑄ℎ

2 + 𝑄ℎ𝑈𝑄𝑐
2

𝑈𝑄ℎ

2 + 𝑈𝑄𝑐

2  
(4-7) 

Table 4.2. Heat exchanger test rig: Uncertainty sources – measured parameters 

Parameter Reading type PDF 
Reading 

interval 

Reading 

error 

T1, Sensor, hot fluid temp. 

into HEx (°C) 
Digital Lognormal 0.1°C ± 0.1°C 

T2, Sensor, hot fluid temp. 

out of HEx (°C) 
Digital Lognormal 0.1°C ± 0.1°C 

T3, Dial, hot fluid temp. 

out of HEx (°C) 
Analogue Normal 5°C ± 2°C 

T4, Dial, cold fluid temp. 

(air blower) (°C) 
Analogue Uniform 2°C ± 0.5°C 

P1, Sensor, hot fluid 

pressure pre-HEx (bar) 
Digital Lognormal 0.01 bar ± 0.01 bar 

P2, Dial, hot fluid pressure 

post-HEx (bar) 
Analogue Uniform 0.5 bar ± 0.3 bar 

𝑉̇, Volumetric flow rate of 

hot fluid (L/min) 
Analogue Uniform 5 L/min ± 2 L/min 
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𝑈𝐻𝐵𝐸 = 100% ∙

𝑄ℎ
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2

  
(4-8) 

The heating system was set to switch off at 80°C to prevent overheating. However, due 

to its design, the heater was not able to sustain the temperature at 0.02°C/min for 10mins, 

as recommended by Tatara and Lupia [43] to determine steady-state. While this is 

unsuitable for thorough thermodynamic assessment of heat transfer efficiency from the 

heat exchanger, it contributes further qualitative uncertainty to the system, which is 

reflected in the application of the CUQA framework. 

The steady-state region was therefore defined by the time of the first and last peak 

temperature readings at T1. Two cycles were completed, with a total of 85 minutes 

recorded: a total of 5590 data points for the three digital parameters. The temperature 

recorded at T1 had an overall range of 6.8°C and 1.2°C at T2 over the recorded period. 

The pressure, P1 was set at 1.8 bar, following a lognormal distribution with a range of 

0.32 bar. 

Aside from these readings, all variable measurements were recorded via in-line analogue 

dials. Many of these dials gave readings on different interval scales, varying measurement 

accuracy, and therefore resulted in an increased uncertainty. Additional attributes such as 

parallax error and ambient temperature further increase uncertainty in the measurement.  

 The volumetric flowrate 𝑉ℎ̇ of the oil (hot fluid) was held at 5 L/min (0.83x10-3 m3/s) 

with a uniform distribution. A reading error of ±2L/min was assigned owing to the scale 

of the flowmeter. At a maximum temperature of 80°C, 𝜌 ≈ 0.95 kg/L (950 kg/m3). 

Therefore, 𝑚̇ℎ for the hot fluid = 0.08kg/s. 𝑐𝑝ℎ is given as 1800 J/kg.C. For the air (cold 

fluid), 𝑚̇𝑐 was given as 1.12 kg/s and 𝑐𝑝𝑐 as 1005 J/kg.C. Further thermodynamic analysis 

involving parameters such as oil viscosity and temperature loss through connecting pipes 

were out of scope for the framework application. The uncertainty contributed by these 

factors was factored into the pedigree matrix. 
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Step 2a: Calculate quantitative uncertainties. A summary of the seven quantitative 

parameters is given in Table 4.4. Summary statistics from the logged data for T1, T2 and 

P1 are given by the boxplots in Figure 4.3. Outliers are values greater than 𝑞3 +

 𝑤ሺ𝑞3 – 𝑞1ሻ or less than 𝑞1 –  𝑤ሺ𝑞3 – 𝑞1ሻ, where 𝑤 is the maximum whisker length, 1.5 

times the interquartile range, and 𝑞1 & 𝑞3 are the 25th  and 75th  quartiles of the respective 

dataset [49]. 

The three digitally recorded parameters were split into 65 homogeneous sub-arrays over 

the 5590 data points. The overlaid boxplots are shown in Figure 4.4, plotted over the time 

series of the logged data. Owing to the multimodal shape of the data, the sub-array 

standard deviation for T1 is low to negligible at the peaks and troughs and high for 

temperature increases or decreases. The temperature at T2 is more constant respective to 

T1 showing a step change over time owing to the heat transfer coefficient of the heat 

exchanger. 

The greater the sub-array size (𝑆𝑖) the greater the uncertainty in the measurement. This is 

illustrated in Appendix D (Figure D.1) for all possible factors (left), with a focus on 𝑆𝑖 

values of 0-130 and the automatically selected value, 86, highlighted (right). This 

procedure enables a mean uncertainty estimate to be obtained where the recorded data is 

not able to meet the criterion for steady-state readings. 

 

Figure 4.3. Heat exchanger test rig: Boxplots for T1, T2 and P1  
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As 𝑆𝑖 increases, the number of sub-arrays decreases, resulting in greater uncertainty. This 

is considered by the ‘basis of estimate’ factor in the pedigree matrix. 

The four remaining quantitative parameters were acquired by analogue dials with varying 

reading intervals (Table 4.2). These were taken every 30mins over the recording period, 

resulting in limited data in comparison to the automated recording. Using Monte Carlo 

simulation, the readings were propagated to match the array size of the three digital 

parameters according to their statistical range and rounded to their corresponding reading 

intervals.  

 

 

Figure 4.4. Heat exchanger test rig: Sub-array boxplots over time-series data 
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Step 2b: Calculate qualitative uncertainties. The 5 qualitative factors were scored by 

defined pedigree criteria detailed in Table 4.3. These were based on adjusted examples 

from literature to apply to the case study [10,51,52]. Uncertainty indicators for each factor 

for increasing pedigree scores corresponding to the criteria are illustrated in Figure 4.5. 

For this case study, the uncertainty indicators were obtained from a single source (the 

authors opinion) and applied to the full dataset. 

 

Table 4.3. Heat exchanger test rig: Pedigree criteria 

Score 1 2 3 4 5 

Reliability of 

data 

Data is < 2 

months old 

and/or 

recorded by 

fully 

calibrated 

sensor or fully 

qualified 

person 

Data is < 6 

months old 

and/or 

recorded by 

fully qualified 

person but 

sensor 

requires 

recalibration 

Data is < 12 

months old 

and/or 

recorded by 

experienced 

person but 

sensor 

requires 

recalibration 

Data is > 12 

months old 

and/or 

recorded by 

experienced 

person, sensor 

accuracy 

unknown 

Age or source 

of data 

unknown or > 

12 months old 

Basis of 

estimate 

Best possible 

data, use of 

historical field 

data, validated 

tools and 

independently 

verified data, 

given by fully 

qualified 

person 

Smaller 

sample of 

historic data, 

parametric 

estimates, 

internally 

verified data, 

some 

experience in 

the area 

Limited 

available data, 

unverified, 

inexperienced 

opinions 

Incomplete 

data, small 

sample, 

educated 

guesses, 

indirect 

approximate 

rule of thumb 

estimate 

No experience 

in the data 

Reading 

accuracy 

Measurements 

taken using 

fully 

calibrated and 

accurate 

equipment:  

±0.01°C, ±0.1 

bar 

Measurements 

taken using 

recently 

calibrated but 

less accurate 

equipment: 

±0.1°C, ±0.5 

bar 

Measurements 

taken using 

recently 

calibrated but 

less accurate 

equipment: 

>±1°C, >±2 

bar 

Measurements 

taken using 

accurate 

equipment that 

may need 

recalibrating 

Measurements 

taken using 

un-calibrated 

and inaccurate 

equipment 

Environmental 

conditions 

Data recorded 

under specific 

consistent 

conditions or a 

specified 

range of 

conditions 

from area 

under study 

Data recorded 

in generally 

consistent 

conditions 

with 

fluctuations 

specified 

Data recorded 

in generally 

consistent 

conditions, 

changes not 

specified 

Data recorded 

in a range of 

unspecified 

conditions 

Data from 

unknown or 

distinctly 

different areas 

Mean sample 

size 

> 1000 > 100 > 50 < 50 Unknown 
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Their GSD is therefore given as the square root of the uncertainty indicator. These scores 

will not remain fixed over time and are therefore pseudo-randomly applied ±1 of the 

defined score circled in Figure 4.5 for each sub-array. 

The resulting CV calculated in Step 4 was significantly greater than that of the lognormal 

recorded data. This is most likely due to the small number of data points in the sub-arrays. 

To give a closer comparison of the uncertainty, the pedigree factors were rescaled by Eq. 

4-9. The following results up to Step 6 illustrate an example for the first sub-array time 

unit. 

 𝑈𝑖_𝑠𝑐𝑎𝑙𝑒𝑑 =  
ሺ𝑈𝑖  −  1ሻ

10
+ 1 (4-9) 

Where 𝑈𝑖 = uncertainty indicator 

Step 3: Assess correlations between parameters. The ideal limit of 𝜌 was set to 0.5, 

with a cut-off at 0.2. Naturally, significant positive correlation was identified between T1 

and T2, highlighted in red (Figure 4.6). The negative correlation to P1 reflects the pressure 

drop due to oil viscosity with increasing temperature. This shows the effectiveness of 

selecting the desired 𝜌 limit to remove minor correlations from the analysis. 

  

Figure 4.5. Heat exchanger test rig: Uncertainty indicators for increasing pedigree scores 
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Step 4: Calculate respective CVs. The summary tables with calculated CV for each 

input are given in Table 4.4 and Table 4.5 for the quantitative and qualitative factors 

respectively. 

 

 

Figure 4.6. Heat exchanger test rig: Significant correlations for which |𝝆| ≥ 𝟎. 𝟓 

Table 4.4. Heat exchanger test rig: Recorded data and calculated parameters 

Parameter Reading 

interval 

Reading 

error 

Dist.  Mean Standard 

deviation         

Min  Max    CV   

T1 (°C) 0.1°C ± 0.1°C Ln 80.8654 1.0209 77.9628 84.6012 0.0207 

T2 (°C) 0.1°C ± 0.1°C N 27.3305 0.3351 26.7000 27.8581 0.0123 

T3 (°C) 5.0°C ±2.0°C Ln 24.6000 2.8810 20.0000 28.0000 0.1171 

T4 (°C) 2.0°C ±0.5°C U 21.6000 0.8944 20.0000 22.0000 0.0000 

P1 (bar) 0.5 bar ±1.0 bar N 1.8436 0.0088 1.8252 1.8612 0.0048 

P2 (bar) 0.5 bar ±0.3 bar U 0.9000 0.2236 0.5000 1.0000 0.0000 

Flow 

(L/min) 
5 L/min ± 2 L/min U 4.9575 0.0253 4.9343 4.9865 0.0000 
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Step 5: Combine CVs. The combined CV of each PDF is calculated by Eq. 4-3 and 

summarised in Table 4.6, aggregated for symmetric and asymmetric distributions and 

total CV with correlation between T1 and T2 – given in the table as 2(𝜌𝑇1,𝑇2
∙ 𝐶𝑉𝑇1

∙ 𝐶𝑉𝑇2
).  

 

The visualisation in Figure 4.7 illustrates the relative CV of each quantitative (blue), 

qualitative (orange) and correlated (purple) input against the aggregated total (cream) for 

one of the 86 sub-array time units. When calculated for only the quantitative parameters, 

the aggregated CV fell to 0.1293; a percentage decrease of 50.1% for the example time 

unit. This illustrates the significance of accounting for qualitative factors alongside 

quantitative parameters – providing a holistic view of factors that manifest uncertainty in 

the system. While the depiction of these factors is subjective, the compound consideration 

reduces the risk of underestimating the aggregated uncertainty, which can occur if only 

accounting for quantitative parameters [32]. Individual uncertainties are then expressed 

as variances by the square of Eq. 4-4 to feed into Step 6. The change in individual and 

aggregated CV over all time units for 𝑆𝑖 = 65 (86 sub-arrays) is given in Figure 4.8a and 

compared with 𝑆𝑖 = 215 (26 sub-arrays) in Figure 4.8b. This demonstrates the effect of 

sub-array size on the resulting uncertainty estimate. 

Table 4.5. Heat exchanger test rig: Pedigree factors with relating GSD and CV 

Factor Distribution Pedigree 

score 

Uncertainty 

indicator 

GSD CV 

Meas. Relbl. Lognormal 2 1.1 1.0488 0.0477 

Basis of Est. Lognormal 2 1.2 1.0954 0.0914 

Read Accuracy Lognormal 1 1.0 1.0000 0.0000 

Envir. Cond. Lognormal 2 1.1 1.0488 0.0477 

Sample Size Lognormal 3 1.4 1.1832 0.1694 

 

Table 4.6. Heat exchanger test rig: CV aggregation results 

PDF CV comb. CV agg. Corr. CVT 

Ln recorded 0.0207 0.2256 0.0001 0.2593 

Ln pedigree 0.2050  0.0011  

Norm. recorded 0.1179 0.1179   

Uni. recorded 0.0000    

 



 

80 

 

 

Calculating the heat load parameters from Eqs. 4-5 to 4-8 gives [43]: Qh = 366.2MW, UQh 

= 16.31MW, Qc = 4.52kW, UQc = 97.56W and resulting Q = 4.52kW. The heat balance 

error (HBE) = 99.98% and composite load uncertainty UHBE = 311%. This passes the 

validity test given by as |𝐻𝐵𝐸| < |𝑈𝐻𝐵𝐸|, indicating the measurements are valid. 

 

 

Figure 4.7. Heat exchanger test rig: Aggregated total CV against individual factors for one time 

unit 

 

Figure 4.8. Heat exchanger test rig: Aggregated total CV against individual factors over all time 

units for 𝑺𝒊 = 𝟔𝟓 (a) and 𝑺𝒊 = 𝟐𝟏𝟓 (b) 
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Step 6: GSA and visualisation. The relative influence of individual uncertainties on the 

aggregated total is plotted in Figure 4.9a. The uncertainty in T3, the oil temperature after 

being cooled by the heat exchanger, has an overwhelmingly greater effect (76%) on the 

aggregated uncertainty than any other parameter. This is due to the large error margin of 

± 2°C given by the reading interval on the dial. If T3 is discounted, along with parameters 

with an impact below 5% (uniformly distributed), the basis of the estimate was deemed 

to have the greatest effect at 56% (Figure 4.9b). The influence of T1 and T2 is minimal 

due to the comparatively equal deviation for each sub-array time unit. 

 

Altering the pedigree score allocation of the qualitative factors impacts the degree of 

uncertainty each factor will contribute to the aggregated total, according to the defined 

uncertainty indicators in Figure 4.5. Applying higher pedigree scores will apply a higher 

representative level of uncertainty. The difference between one uncertainty indicator to 

another will influence the respective factor’s sensitivity index owing to the pseudorandom 

score allocation. Increasing the degree of allocation (e.g., from ±1 to ±2) will also 

influence the respective sensitivity indices, though this was not deemed necessary in this 

study for the score range of 1-5. While the uncertainty indicator scores are subjective, 

they are expected to increase linearly or exponentially. Therefore, lower scores will have 

less influence on the aggregated total. 

 

Figure 4.9. Heat exchanger test rig: Sensitivity effects of individual to aggregated uncertainty 

over all time units for all factors (a) and most influential parameters (b) 
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4.3.2 Case study 2: Turbofan engine degradation 

The framework was applied to a turbofan engine degradation dataset simulated from the 

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) tool, developed 

by NASA [55,57]. This publicly available dataset has been widely applied in prognostics 

and health management (PHM) [57,59,61,63,65]. The C-MAPSS data consists of four 

datasets simulated under different operating conditions. The FD001 training dataset, 

simulating degradation of the high-pressure compressor (HPC), was applied to the CUQA 

framework to analyse the aggregated uncertainty in the measurements over time: 

Step 1: Outline system setup & uncertainty sources. The FD001 dataset consisted of 

21 sensors measuring temperature, pressure and speed for 100 engine units, each with a 

random start time and normal operating level, running to failure. For this study, one 

engine unit was selected with 192 cycles to failure. The system design is illustrated in 

Figure 4.10.  

 

Previous work using this dataset focused on remaining useful life (RUL) prediction 

[59,65]. In these studies, sensor data was divided into three categories according to the 

data trend; ascending, descending and irregular/constant. Data that does not exhibit an 

ascending or descending trend over time (uniform) is not viable for RUL prediction and 

was therefore discounted from the dataset. The previous case study showed that constant, 

uniform parameters do not contribute to the uncertainty. Therefore, the same approach is 

applied here. A description of the 14 included sensors is given in Table 4.7. 

Step 2a: Calculate quantitative uncertainties. The sensor data was indexed and divided 

into 16 sub-arrays consisting of 12 rows by Eq. 4-1. The mean and deviation of each array 

 

Figure 4.10. C-MAPSS turbofan engine: System design as simulated in C-MAPSS [55] 
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were calculated up to the point of failure. This is illustrated for 4 of the 14 inputs in Figure 

D.2. A comparison of sub-array size to the mean deviation is given in Figure D.3. Other 

than for the derivation of pedigree factors in Step 2b, the illustrated results up to Step 6 

give an example for the first sub-array unit. A summary of the quantitative sensor data 

for this example is given in Table 4.9.  

 

Step 2b: Calculate qualitative uncertainties. Random noise models were used to 

propagate qualitative factors associated with the simulated data with a mix of distributions 

to give realistic results [55,59]. This was given as a combination of three core factors 

applied to all sensors: manufacturing and assembly variations (resulting in varying 

degrees of initial wear), process noise (factors not taken into account in modelling) and 

measurement noise. More in-depth factors concerning maintenance between flights and 

environmental operating conditions could be considered in practice. For this study, they 

are incorporated in the three core factors for the simulated data, scored against the 

pedigree criteria detailed in Table 4.8 [55]. Uncertainty indicators for each factor are 

illustrated in Figure 4.11, with GSD given as the square root of the uncertainty indicator. 

Table 4.7. C-MAPSS turbofan engine: Detailed description of sensors [55] 

Sensor 

number Notation Description Unit 

2 T24 Total temperature at LPC inlet °R (Rankine scale) 

3 T30 Total temperature at HPC inlet °R 

4 T50 Total temperature at LPT inlet °R 

7 P30 Total pressure at HPC outlet psi abs. (pounds per square inch, abs.) 

8 Nf Physical fan speed rpm (revolutions per minute) 

9 Nc Physical core speed rpm 

11 Ps30 Static pressure at HPC outlet psi abs. 

12 Phi Ratio of fuel flow to Ps30 psi 

13 NRf Corrected fan speed rpm 

14 NRc Corrected core speed rpm 

15 BPR Bypass ratio – 

17 htBleed Bleed enthalpy – 

20 W31 HPT coolant bleed lbm/s (pound mass per second) 

21 W32 LPT coolant bleed lbm/s 
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As for the previous study, the scores are pseudo-randomly applied ±1 of the defined score 

circled in Figure 4.11 for each sub-array, scaled by Eq. 4-9. 

Step 3: Assess correlations between parameters. Each sub-array consists of 12 data 

points. The ideal limit of 𝜌 therefore needed to be set to a high level of 0.8, with a cut-off 

at 0.6. No significant correlations were present above 0.8, so the value was reduced 

incrementally to 0.78, for which significant correlation was detected between the pressure 

at the HPC outlet and turbine core speed (Figure 4.12a). While it is logical to expect a 

positive relationship between these parameters, notable in the plot, it was not maintained 

through the other 15 sub-arrays. This does not mean the relationship was not present, but 

that other dependencies were more prevalent below the limit of 0.8. When run for all data 

points, a positive trend was identified between the physical and corrected core speed of 

the engine (Figure 4.12b). 

 

Table 4.8. C-MAPSS turbofan engine: Pedigree criteria 

Score 1 2 3 4 5 

Manufacturing 

and assembly 

variations 

Negligible 

range of initial 

wear on 

components, 

not 

contributing to 

engine 

efficiency 

Minimal range 

in initial wear 

on engine 

components  

Notable range 

in initial wear 

on engine 

components, 

occasional 

reduction in 

engine 

efficiency 

Notable range 

in initial wear 

on engine 

components, 

regular 

reduction in 

engine 

efficiency 

High range in 

initial wear on 

engine 

components, 

high variance 

in engine 

efficiency 

Process noise Negligible 

trend in 

degradation 

trajectory, no 

noise 

Minor trend in 

degradation 

trajectory, 

minimal noise 

Minor trend in 

degradation 

trajectory, 

manageable 

noise 

Significant 

trend in 

degradation 

trajectory, 

variable noise 

Highly 

contaminated 

degradation 

trajectory 

Measurement 

noise 

Negligible 

sensor noise, 

no impact 

Minimal 

sensor noise, 

minor impact, 

predictable 

trend 

Notable 

random 

complex 

sensor noise, 

measurable 

impact 

Significant 

random 

complex 

sensor noise, 

inaccurate 

impact 

measurement 

High random 

complex 

sensor noise, 

tangible point 

estimate 

unobtainable 
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Step 4: Calculate respective CVs. Summary tables with calculated CV for each input 

are given in Table 4.9 and Table 4.10 for the quantitative and qualitative factors 

respectively. The majority of factors here are lognormally distributed by the goodness of 

fit tests. 

 

Figure 4.11. C-MAPSS turbofan engine: Uncertainty indicators for increasing pedigree scores 

 

Figure 4.12. C-MAPSS turbofan engine: Significant correlations for which |𝝆| ≥ 𝟎. 𝟔 
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Step 5: Combine CVs. The combined CV is summarised in Table 4.11, aggregated for 

symmetric and asymmetric distributions and total CV with correlation. The visualisation 

in Figure 4.13 illustrates the relative CV of each input against the aggregated total for the 

example time unit. 

 

Table 4.9. C-MAPSS turbofan engine: Recorded data and calculated parameters 

Parameter Distribution Mean Deviation Min Max CV 

S2 (T24) Ln 642.20 1.0004 641.71 642.56 0.0004 

S3 (T30) Ln 1586.85 1.0026 1581.75 1592.32 0.0026 

S4 (T50) Ln 1400.76 1.0021 1394.80 1406.22 0.0021 

S7 (P30) Ln 554.17 1.0007 553.59 554.67 0.0007 

S8 (Nf) Ln 2388.05 1.0000 2388.00 2388.11 0.0000 

S9 (Nc) N 9049.55 4.9243 9040.80 9059.13 0.0005 

S11 (Ps30) Ln 47.25 1.0029 47.03 47.49 0.0029 

S12 (Phi) Ln 522.05 1.0008 521.40 522.86 0.0008 

S13 (NRf) Ln 2388.04 1.0000 2388.01 2388.08 0.0000 

S14 (NRc) Ln 8133.09 1.0005 8125.69 8140.58 0.0005 

S15 (BPR) Ln 8.41 1.0027 8.37 8.43 0.0027 

S17 (htBleed) Ln 391.75 1.0022 390.00 393.00 0.0022 

S20 (W31) Ln 38.99 1.0018 38.88 39.10 0.0018 

S21 (W32) Ln 23.40 1.0021 23.31 23.48 0.0021 

 
Table 4.10. C-MAPSS turbofan engine: Pedigree factors with related GSD and CV 

Factor Distribution Pedigree 

score 

Uncertainty 

indicator 

GSD CV 

ManufVariations Lognormal 2 1.01 1.0488 0.0477 

ProcssNoise Lognormal 3 1.06 1.0954 0.0914 

MeasurmntNoise Lognormal 4 1.05 1.3038 0.2701 

 

Table 4.11. C-MAPSS turbofan engine: CV aggregation results 

PDF CV comb. CV agg. Corr. CVT 

Ln recorded 0.00639 0.29049 2.7168e-07 0.2905 

Ln pedigree 0.29042    

Norm. recorded 0.000544 0.000544   

Uni. recorded 0    
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For the example time unit, the measured data has minimal uncertainty compared to the 

qualitative factors. Discounting the qualitative factors here resulted in a 97.8% decrease 

in the aggregated CV from 0.2905 to 0.0065. The minimal quantitative uncertainty is due 

to the spread of the 12 data points in the sub-array.  Increasing the number of data points 

increases the mean uncertainty depending on the variability in the dataset, but reduces the 

number of sub-arrays (Figure D.3). The change in individual and aggregated CV over all 

time units for 𝑆𝑖 = 12 (16 sub-arrays) is given in Figure 4.14a and compared with 𝑆𝑖 = 3 

(64 sub-arrays) in Figure 4.14b.  

 

 

Figure 4.13. C-MAPSS turbofan engine: Aggregated total CV against individual factors for one 

time unit 

 

Figure 4.14. C-MAPSS turbofan engine: Aggregated total CV against individual factors over all 

time units for 𝑺𝒊 = 𝟏𝟐 (a) and 𝑺𝒊 = 𝟑 (b) 
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Step 6: GSA and visualisation. The relative influence of individual uncertainties on the 

aggregated total is plotted in Figure 4.15a and results after discounting the less influential 

parameters factors (Figure 4.15b). The quantitative parameters have a greater influence 

than the qualitative factors, despite them having a lower CV for all sub-array units. The 

most influential parameter uncertainty was T50 (temperature at LPT inlet) at 37%. 

Discounting parameters with an impact < 5% results in Nc (turbine core speed) having a 

dominating influence, while T50 dropped to 9%. This is again due to the variation in the 

data points of each sub-array. 

As for case study 1, the difference between one uncertainty indicator to another, defined 

in Figure 4.11, will influence the respective factor’s sensitivity index owing to the 

pseudorandom score allocation. 

 

 

The CUQA framework presented in this chapter was designed to enhance system 

reliability measurement in a manner applicable to complex and non-complex engineering 

systems through quantification and aggregation of compound uncertainties. These 

develop as a result of recording methods and assumptions made about the system and are 

modelled by different distribution types. The framework builds on existing literature to 

aggregate compound uncertainty considering dependant variables in the analysis, as well 

 

Figure 4.15. C-MAPSS turbofan engine: Sensitivity effects of individual to aggregated 

uncertainty over all time units for all factors (a) and most influential parameters (b) 
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as identification of the greatest contributing factors through GSA. Benefits of this 

framework include enhancements to performance assessment and corresponding 

maintenance planning for complex and non-complex engineering systems and respective 

subsystems. 

The framework was first applied to a bespoke heat exchanger test rig, which contributed 

a range of uncertainties that impacted measurement quality and accuracy. Three 

distributions were considered: lognormal, normal and uniform. All qualitative factors 

were lognormal [32]. The measured parameters were deemed valid, though true steady-

state was not obtainable owing to the heating system [43]. The second case study 

implemented a simulated engine degradation dataset [55]. The majority of the selected 

sensors exhibited a lognormal distribution up to failure. The following paragraphs critique 

the effectiveness of the framework through the results of the two case studies, concluding 

with a summary of the contributions and recommendations for future work. 

The CUQA framework is capable of assessing uncertainty for nonhomogeneous input 

data. The user can view and select the best-suited distribution for each input via 

‘goodness-of-fit’ tests. While effective for a small number of inputs, an automated 

method would prove more efficient for more complex systems. Monte Carlo simulation 

was used in Step 2a to give a homogeneous array size, enabling level consideration of 

each input. Monte Carlo was selected due to its flexibility with multiple distributions [9]. 

The inherently random nature of the simulation, though within respective distribution 

parameters, causes different results each time the experiment is run, which may impact 

the accuracy of parameter values. Other techniques such as Latin Hypercube Sampling 

(LHS) and Taylor series expansion may provide samples tighter to the respective mean, 

but do not show the same flexibility as Monte Carlo for multiple distribution types.  

Splitting the input data into sub-arrays enabled uncertainty in the measured values to be 

determined over time. The greater the number of rows in each sub-array, the fewer arrays 

are allocated over the time series. The more arrays allocated, the more loops are 

performed between Steps 2 to 5, increasing execution time. It is therefore necessary to 

find a balance with optimum values in each sub-array, which was the purpose of the 

automatic selection by Eq. 4-1 (comparisons of mean deviation with increasing sub-array 

size are illustrated in Appendix D for the two case studies). Input parameters that do not 
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maintain a positive or negative trend require more sub-arrays to account for their 

variation. The framework allocates the same number of sub-arrays to each input to 

maintain equal consideration throughout the analysis. Flexible size allocation by 

individual input trend or average variance rather than sample size warrants further 

investigation.  

Step 2b defined uncertainty indicators associated with qualitative inputs. These are ideally 

defined by multiple sources such as surveys, interviews and historical trends. The mean 

indicator is taken to calculate the geometric standard deviation (GSD). Naturally, high 

uncertainty reflects low confidence in the measured parameter. While the use of GSD 

overcomes scale dependency in measured data, the resulting coefficient of variation (CV) 

was found to be considerably lower than that of normally distributed data and the 

qualitative factors attributed by the pedigree matrix. This is due to the number of data 

points in the sub-array unit. Uncertainty indicators for the qualitative factors were initially 

assigned on a scale between 1 and 2, and the square root calculated to give the GSD [32]. 

These were rescaled by Eq. 4-9 to give a more equal comparison to the quantitative data. 

This would however artificially reduce the aggregated total, and saw normally distributed 

parameters such as T3 in case study 1 attributing the greatest influence over the aggregated 

total. 

Significant correlations between input variables are defined via Spearman’s rank 

coefficient in Step 3. The ability to define the ideal coefficient limit allows the user to 

define the desired level of detail of dependant variables. This can have a significant 

impact on the resulting estimate. The dependencies identified between parameter values 

did not impact the aggregated total of the two case studies in Step 5. However, the 

influence attributed by individual CVs to the aggregated total in Step 6 was shown to 

exhibit dependencies that warrant further investigation. Stronger dependencies between 

parameter values will have a greater influence on emergent behaviour in more complex 

systems. 

The CV was adopted as the uncertainty measure in Step 4 to allow inputs of varying 

distribution types to be represented on an equal scale, enabling effective uncertainty 

quantification. Representing uncertainty by the CV proved effective to aggregate 

uncertainties represented by different distributions in Step 5, but further research is 
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required into the scaling of geometric against arithmetic standard deviations. Acceptable 

levels of uncertainty are user-defined according to the application and visualised by the 

colour scale. Conversion of further distribution types such as Weibull and non-parametric 

derivations will allow for the consideration of more complex datasets. Aggregating the 

individual CVs by a combination of the propagation of error method for symmetric CVs 

and the product of asymmetric CVs allowed an aggregated total estimate to be obtained. 

This can be used to determine how the aggregated uncertainty changes over time, which 

is converted back to the standard deviation and used as the response vector in Step 6.  

Global sensitivity analysis (GSA) was employed to identify which individual 

uncertainties contribute the greatest influence to the aggregated total. The sampling 

method was applied by Groen [40] using matrix-based LCA. It was applied in this study 

using the individual uncertainties of each sub-array as the inputs and the aggregated 

uncertainty at each point as the response. It was deemed the best suited GSA method for 

the CUQA framework because it can be implemented with relatively small datasets and 

illustrates the influence of correlated and uncorrelated uncertainties against the total 

effects. While the sub-array derivation in Step 2a is more accurate with a greater number 

of rows in each sub-array, the number of sub-arrays affects the quality of the GSA over 

each unit. The removal of factors that do not contribute to the aggregated total (uniformly 

distributed or negligible for each iteration) allowed for a focused analysis on influential 

parameters in a second pass through the feedback loop. The risks formed as a result of 

these uncertainties can then be mitigated. More in-depth GSA at each time unit using 

methods such as Sobol indices would require derivation of model process equations for 

the system application, which is out of scope for this study. 

Compared to complex engineering systems used in operational environments, case study 

1 represented a relatively simple laboratory system set-up but served to prove the 

functionality of the CUQA framework as it exhibited uncertainties akin to those faced in 

such environments and presents comparable challenges to UQ. While the coefficients of 

correlated parameters fell between negligible error margins for both case studies with 

minimal risk, they may have a significant impact in real-world environments where 

operating conditions such as atmospheric temperatures or wind speeds will impact the 

accuracy of recorded data or subjective opinion. 
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The core contributions of the CUQA framework are: 

1. Use of CV to enable effective quantification and aggregation of compound 

uncertainties represented by different distribution types 

2. Assessment of correlation between compound parameters 

3. GSA for dependant compound parameters 

4. Intuitive visualisation of results – most significant parameters, greatest effects 

The authors propose future work to derive uncertainty from non-parametric and stochastic 

distributions through clustering techniques. Further assessment of aggregated compound 

uncertainty is necessary, incorporating additional distribution types and improving the 

rigour of the GSA approach in variance decomposition for each sub-array time unit. The 

emergent behaviour of uncertainties should be forecast through the in-service life to 

determine when and where further mitigation may be required. 
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 UNCERTAINTY PREDICTION UNDER 

LIMITED DATA 
 

 

Abstract 

Engineering systems are growing in complexity, requiring increasingly intelligent and flexible methods to 

account for and predict uncertainties in service. Increasing complexity manifests varying degrees of 

quantitative and qualitative uncertainty over time, driven by the quality and availability of data, experience 

and knowledge of system performance. Under limited available data, existing approaches seldom consider 

how the resulting uncertainty may change over time, leading to under or over estimation of factors including 

maintenance costs, equipment availability and failure rates. To that end, this chapter presents a framework 

for dynamic uncertainty prediction under limited data (UPLD). The theory of spatial geometry is 

incorporated with LSTM networks to enable multistep prediction. This provides an element of self-

validation with uncertainty given in real-time by the symmetry of the geometric shape area, given in vector 

space. The framework was tested and validated through two case studies: US SAR cost uncertainty data 

and simulated degradation of a turbofan engine. Results demonstrate robust prediction of trends in limited 

and dynamic uncertainty data with parallel determination of geometric symmetry at each point in time. 

Immersive visualisation of dynamic uncertainty is presented. Future work is recommended to explore 

alternative network architectures suited to limited data and development for applications of visualisation in 

augmented reality. 
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The growing complexity in engineering systems manifests a range of uncertainty 

surrounding in-service maintenance. Such systems are comprised of various equipment 

units, many of which are maintained on a corrective or time-based basis. Unexpected 

failures outside planned maintenance periods require reactive maintenance to repair or 

replace units. Sampling rates of maintenance data in this context are often sporadic due 

to manual recording methods and disjointed signals from equipment units. The resulting 

quality and availability of data, as well as the influence of expert experience, assumptions, 

and environmental operating conditions, drive uncertainty that increases the likelihood of 

under or overestimating factors such as turnaround times, equipment availability and 

resulting costs [13,194,195]. This can lead to increased failure rates or, more often, 

unnecessary maintenance carried out. Accommodating for uncertainty requires the 

determination of key contributors, their influence on interconnected units how this might 

change over time. 

Limited available or poor-quality data directly hinders forecast accuracy and robustness. 

Once quantified, predictions of the uncertainty in such data and assumptions made 

surrounding it can enhance decision-making capabilities for the maintenance of 

increasingly complex systems and equipment units. This sets the motivation of the 

chapter, which presents a framework to predict dynamic uncertainty under limited 

available time-series data. The framework is designed to be embedded in a range of 

systems such as engines, radar, and heating systems as well as uncertainty in associated 

maintenance costs. The aim is not to mitigate or reduce the uncertainty, but to provide a 

holistic view as to which factors require mitigation or may become an issue in the future. 

The framework structure is detailed in Section 5.2, along with key mathematical formulae 

and assumptions made. Section 5.3 applies the framework to two use cases: US SAR cost 

uncertainty data and simulated turbofan engine degradation. Results of each step are given 

to illustrate the multistep prediction for each long-short term memory (LSTM) network 

allocation. Section 5.4 discusses the strengths and limitations of each step of the 

framework, while Section 5.5 summarises the study along with future work in this area.  
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This chapter contributes a framework for dynamic uncertainty prediction under limited 

data (UPLD). Spatial geometry is combined with LSTMs to enable covariant analysis of 

dynamic variables within state space, whereby a change in one variable will affect 

another. For each time step of the input sequence, the network learns to predict the value 

of the next time step. This work builds on a conceptual model presented in Grenyer et al. 

[196]. Here it is further developed and validated through two case studies. This chapter 

has been submitted as a manuscript and is under peer review at the time of writing. The 

steps were developed from emerging studies in literature utilising LSTM networks to 

forecast time-series data, extended to consider the geometric symmetry between input 

variances to improve prediction robustness under limited data. This addresses the third 

research gap from Chapter 2 and is achieved through a 5-step framework developed in 

MATLAB, described below and illustrated in Figure 5.1.  

Step 1. Evaluate input topology. To examine interactions, uncertainties and knock-on 

effects within the system, its topology must first be defined. Input uncertainty data is 

given as a time series of changing variance, formatted as row vectors where each column 

represents one time unit. The number of rows gives the number of input dimensions. The 

variance data is scaled according to the range of each input dimension 𝑖 over each time 

slice 𝑗 by Eq. 5-1, where 𝑛 is the number of input dimensions. Under limited data a robust 

standard deviation cannot be applied, making traditional standardisation methods with 

mean and standard deviation undesirable [28]. 

𝑑𝑆𝑐𝑎𝑙𝑒𝑑𝑖,𝑗 =  
𝑑𝑎𝑡𝑎𝑖.𝑗 − 𝑑𝑀𝑖𝑛𝑖

𝑑𝑅𝑎𝑛𝑔𝑒𝑖

 ∙ ൬1 −
1

𝑛
൰ +

1

𝑛
 (5-1) 

Where: 𝑑𝑆𝑐𝑎𝑙𝑒𝑑 = scaled dataset; 𝑑𝑎𝑡𝑎 = initial dataset; 𝑑𝑀𝑖𝑛 = minimum value of each input over the time series; 𝑑𝑅𝑎𝑛𝑔𝑒 = 

range of each input over the time series 

The scaled variance data is split into training and test data according to a defined partition. 

The default partition is set to 60% to allow for a comparable proportion of observed and 

predicted values to determine prediction accuracy and robustness with varying input 

dimensions. The number of training steps is given by Eq. 5-2. 
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𝑛𝑆𝑡𝑒𝑝𝑠𝑇𝑟𝑎𝑖𝑛 = ⌊𝑃 ∙ 𝑛𝑆𝑡𝑒𝑝𝑠𝑇𝑜𝑡𝑎𝑙⌋ (5-2) 

Where: 𝑃 = Partition; 𝑛𝑆𝑡𝑒𝑝𝑠𝑇𝑟𝑎𝑖𝑛 = Number of training steps; 𝑛𝑆𝑡𝑒𝑝𝑠𝑇𝑜𝑡𝑎𝑙 = Total number of time steps 

 

Figure 5.1. UPLD Framework overview 
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The input to be forecast is the scaled training data. The forecast data is then compared 

against the test data to determine prediction error. In parallel, the symmetry and aggregate 

vectors are calculated for the training, test and predicted data, detailed in the next step, 

and compared in the same manner. The LSTM networks then take the next time step, 

update the network state and corresponding prediction. 

Step 2. Calculate input geometry, symmetry, and aggregate vectors. Spatial geometry 

determines an uncertainty range based on the geometric symmetry between input 

variances for each available time unit via polar force-field analysis in vector space. The 

procedures in this step to calculate symmetry and vector coordinates are based on 

previous work by Schwabe et al. [28].  

Symmetry is defined as the relationship between the actual shape area of the evaluated 

time slice and the maximum possible area from the created geometry, illustrated in Figure 

5.2 by an example time slice with six input dimensions [28]. For each calculation in this 

step, the radial degree between each input vector and their input order (dimensional 

sequence) is kept constant [131]. 

 

Coordinate data points for vertices of the actual area shape are given by the scaled input 

variances for each time slice. The space between each vector dimension (D) out from the 

origin is a triangle (six in Figure 5.2). The sum of each triangle’s area gives the full actual 

shape area. This is calculated by Eq. 5-3, where 𝑎𝑖 and 𝑏𝑖 are the respective magnitudes 

of each vector that make up the triangle sides and 𝑟𝑎𝑑 is the radial degree. The sum of 

the outer face lengths then gives the shape perimeter, calculated by Eq. 5-4. 

 

Figure 5.2. Spatial geometry actual vs. reference shape area example 
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𝐴𝑟𝑒𝑎𝐴𝑐𝑡 = ∑ ൬
1

2
∙ 𝑎𝑖 ∙ 𝑏𝑖 ∙ sinሺ𝑟𝑎𝑑ሻ൰

𝑛

𝑖=1

 

 

(5-3) 

 
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐴𝑐𝑡 = ∑ ට𝑎𝑖

2 + 𝑏𝑖
2 − 2ሺ𝑎𝑖 ∙ 𝑏𝑖ሻ ∙ cosሺ𝑟𝑎𝑑ሻ

𝑛

𝑖=1

 

 

(5-4) 

 

The reference shape perimeter is calculated by the mean of the outer face lengths 

multiplied by the number of input dimensions. This creates a regular polygon, for which 

the apothem (line from centre to midpoint of each side) is given by Eq. 5-5. This is then 

used to calculate the reference shape vertex magnitude (Eq. 5-6), which in turn is used to 

calculate the reference shape area (Eq. 5-7). The symmetry between the actual and 

reference shape areas is then calculated by Eq. 5-8 [28]. Spatial geometry uses a ring 

topology, analysing the linear progression of symmetry. There is a positive correlation 

between the percent change in the cumulative increase of actual area and symmetry. The 

correlation factor for each time slice can be used to determine an uncertainty metric 

against the baseline estimate. This is the most likely or best guess value of the data point 

from which the input variance is obtained, explored further in Section 5.3. 

  

𝐴𝑝𝑜𝑡ℎ𝑒𝑚𝑅𝑒𝑓 = √𝐹𝑎𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ𝑅𝑒𝑓
2 − (

𝐹𝑎𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ𝑅𝑒𝑓
2

4
) 

 

(5-5) 

 

𝑉𝑒𝑟𝑡𝑒𝑥𝑅𝑒𝑓 = √𝐴𝑝𝑜𝑡ℎ𝑒𝑚𝑅𝑒𝑓
2 + (

𝐹𝑎𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ𝑅𝑒𝑓

2
)

2

 

 

(5-6) 

 

 
𝐴𝑟𝑒𝑎𝑅𝑒𝑓 =

1

2
∙  𝑛 ∙  𝑉𝑒𝑟𝑡𝑒𝑥𝑅𝑒𝑓

2 ∙ 𝑠𝑖𝑛 ሺ𝑟𝑎𝑑ሻ 

 

(5-7) 

 

 
𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =

𝐴𝑟𝑒𝑎𝐴𝑐𝑡

𝐴𝑟𝑒𝑎𝑅𝑒𝑓

 

 

(5-8) 

 

To plot the change in shape geometry over time, X and Y end vector coordinates for each 

dimension, i over the time period, j are obtained by Eq. 5-9, iterated through each radial 

degree around the unit circle [196]. The sum of these points identifies the aggregate vector 

(Eq. 5-10), whose magnitude is given by Eq. 5-11.  
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𝑎𝑏𝑠𝐸𝑛𝑑𝑋𝑖,𝑗 = 𝑐𝑜𝑠ሺ𝑟𝑎𝑑ሻ ∙ 𝑑𝑆𝑐𝑎𝑙𝑒𝑑𝑖,𝑗 

𝑎𝑏𝑠𝐸𝑛𝑑𝑌𝑖,𝑗 = 𝑠𝑖𝑛ሺ𝑟𝑎𝑑ሻ ∙ 𝑑𝑆𝑐𝑎𝑙𝑒𝑑𝑖,𝑗 

 

(5-9) 

 

 𝑎𝑔𝑔𝑉𝑒𝑐𝑡𝑋𝑗 =  ∑ 𝑎𝑏𝑠𝐸𝑛𝑑𝑋𝑖
𝑛
𝑖=1   

𝑎𝑔𝑔𝑉𝑒𝑐𝑡𝑌𝑗 =  ∑ 𝑎𝑏𝑠𝐸𝑛𝑑𝑌𝑖
𝑛
𝑖=1   

 

(5-10) 

 

 
𝑎𝑔𝑔𝑉𝑒𝑐𝑡𝑀𝑎𝑔𝑗 = ට𝑎𝑔𝑔𝑉𝑒𝑐𝑡𝑋𝑗

2 + 𝑎𝑔𝑔𝑉𝑒𝑐𝑡𝑌𝑗
2 

 

(5-11) 

The aggregate vector magnitude and degree are assumed to represent the source of 

greatest uncertainty for each time slice. The resulting plots for each time unit are stacked 

to illustrate a dynamic change in the uncertainty of each input and aggregated vectors 

over time. An example illustration is given in Figure 5.3 for six input dimensions, with 

aggregate vectors removed for illustrative purposes. 

 

Step 3. Allocate inputs to respective networks and train with optimal initial 

architecture. While some inputs are relatively constant, others can vary significantly 

over the time series.  The mix of dynamic and comparatively constant trends on a single 

network limits that network’s ability to accurately and robustly forecast future time steps. 

To reduce under or over estimation, training is split across three networks with different 

architectures and initial training options. 

Different parameters are applied for different ranges of data according to the relation of 

the coefficient of variation (CV) of the scaled data to the first and second quantiles of 

 

Figure 5.3. Stacked plot example [196] 



 

100 

each input dimension. CV is a dimensionless measure of relative variability, given by the 

ratio of the standard deviation to the mean [30,34]. This is illustrated in Figure 5.4, with 

the networks hence referred to as “LSTM networks”.  

 

Each network has a variable structure and range of training options to best suit the 

variability in the data applied to it. The best of these, i.e., the combination that gives the 

lowest prediction error, is determined through hyperparameter tuning according to the 

mean absolute percentage error (MAPE), discussed further in Step 5. 

As shown in Figure 5.5, the variable structure for each network consists of 1-3 LSTM 

layers, each with 100-250 hidden units, a rectified linear unit (ReLU) layer, dropout layer 

(50-90%) and a regression output layer. Increasing the number of LSTM layers can make 

predictions more robust but also increases computation time [168]. The ReLU layer 

simply sets any value less than zero to zero, avoiding the vanishing gradient problem 

found in tanh and sigmoid functions [163,164]. The dropout layer then sets input 

sequences below a defined probability to zero to prevent overfitting [158,163]. The fully 

connected layers compile all neurons in the previous layer to a defined output size. The 

final regression output layer computes the half-mean-squared-error loss of the output.  

 

Figure 5.4. LSTM network allocation according to input parameters 
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The range of training options compared by hyperparameter tuning is denoted in Table 

5.1. Three solvers are compared: Adaptive moment estimation (Adam), Stochastic 

gradient descent with momentum (SGDM) and root mean square propagation (RMS 

prop). Each of these are variations of gradient descent algorithms that update network 

parameters (weights and biases) to minimize prediction error by taking steps towards the 

negative gradient of the loss function [59,160,163]. The number of epochs is the number 

of full passes over the training data. The learning rate controls the changes made to the 

model for every epoch.  

 

The optimal network structure and training options can be found by two methods: an 

exhaustive grid search, comparing every possible combination with set interval ranges for 

the parameters, or by Bayesian optimisation, where the software selectively alters a 

specified range of hyperparameters to minimise or maximise a selected evaluation metric. 

The three LSTM networks are then trained sequentially using the optimal 

hyperparameters.  

Step 4. Forecast uncertainties over specified time period. The scaled variance data is 

forecast using the trained networks from the partition to the end of the initial dataset. 

Initial predictions are made using the last time step of the training response. When making 

 

Figure 5.5. Hyperparameter setup metrics: Network structure 

Table 5.1. Hyperparameter setup metrics: Training options 

Training options Value range 

Solver Adam, SGDM, RMS prop 

Max. Epochs 150-250 

Initial learn rate 0.005-0.01 

Learn rate drop factor 0.1-0.5 
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predictions using standardised data (according to mean and deviation) the same training 

data parameters are used for the test (observed) data [59,196]. Therefore, this approach 

uses the same range and minimum parameters from the training data to compare observed 

data against predicted data. The corresponding symmetry and aggregate vectors are 

calculated in parallel by Step 2 and compared in the same manner. The network state is 

updated to use observed values at each step in place of the predicted values to increase 

robustness [196]. The observed and predicted data is then plotted in vector space, stacked 

for each time slice. 

Step 5. Evaluate model performance. Prediction error between the observed 𝑂𝑖 and 

predicted 𝑃𝑖 uncertainty can be attributed to the model parameters, unexpected changes 

in the inputs (causing no clear trend) and the amount of data available. Prior to 

performance evaluation, all variables are rescaled up to their original values by 

rearranging Eq. 5-1, using the initial range and min. parameters, given by Eq. 5-12.  

Common evaluation metrics are root-mean-square error (RMSE) (Eq. 5-13), mean 

absolute percentage error (MAPE) (Eq. 5-14) and custom score functions. RMSE is 

widely used in RUL prediction and regression problems. MAPE is a widely applied 

evaluation metric to determine forecast accuracy and robustness, providing a distinct 

percentage evaluation. As new data is recorded, the framework loops back to Step 1 to 

reassess the input topology and feeds through to performance evaluation.  

  

𝑑𝑎𝑡𝑎𝑖,𝑗 =  
𝑑𝑆𝑐𝑎𝑙𝑒𝑑𝑖,𝑗 −

1
𝑛

(1 −
1
𝑛

)
 ∙ 𝑑𝑅𝑎𝑛𝑔𝑒𝑖 + 𝑑𝑀𝑖𝑛𝑖 

 

(5-12) 

 

𝑅𝑆𝑀𝐸 =  √
∑ ሺ𝑃𝑖 − 𝑂𝑖ሻ2𝑛

𝑖=1

𝑛
 

 

(5-13 

) 

 
𝑀𝐴𝑃𝐸 =

1

n
∙ ∑ |

𝑂𝑖 − 𝑃𝑖

𝑂𝑖

|

𝑛

𝑖=1

 

 

(5-14) 

 



 

103 

 

5.3.1 Case study 1: US SAR data 

The initial spatial geometry approach utilised US Department of Defense Air Force 

Selected Acquisition Report (SAR) summary tables to test and validate the method 

[28,131]. This is made up of a mixture of summary cost data over various phases of 

product life cycles in aerospace, land and sea sectors. Cost variances used were 

considered significant enough to require monitoring by stakeholders [28]. The same 

dataset is applied here to provide comparable consistency in the application and 

demonstrate the wide applicability of the framework. 

Step 1. Evaluate input topology. Annual cost variances in US $ Mil are given over the 

life cycle of a range of US Air Force military platforms for a 28-year period from 1986-

2013. Further detail is given by Schwabe et al. [28,131]. The data is categorized into 6 

cost variance factors and formatted as absolute integers as [196]: 

• Quantity: Change in the number of units of an end item of equipment. 

• Schedule: Change in procurement or delivery schedule, completion date, 

development, or production milestone. 

• Engineering: Alterations to physical or functional characteristics of a system. 

• Estimating: Correction of previous estimating errors or refinements of current 

estimates. 

• Other: Unforeseeable events not covered in any other category (e.g., natural 

disaster or strike). 

• Support: Cost changes for support equipment of major hardware items not 

included in other costs. 

Step 2. Calculate input geometry, symmetry, and vector coordinates. Following Eqs. 

5-2 to 5-8, the resulting change in the actual area, reference area and symmetry over time 

is illustrated in Figure 5.6. Initial observations can be made here to highlight the reduction 

in symmetry through to 2005, indicating an increase in the amount of information 

required to describe the shape. From here, the symmetry fluctuates up to the end of the 

observed period. 
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The cumulative increase of actual area and symmetry gave a linear trend for the observed 

period. The percent change for this increase between each unit is plotted in Figure 5.7a. 

This displays a negative exponential trend with a correlation coefficient of 0.95 (Figure 

5.7b). 

 

The gradient and intercept values from the actual area and symmetry trend line equations 

were plugged in for 100 time units. Their correlation factor, given by the 

𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑟𝑒𝑎/𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 is illustrated in Figure 5.8 with an R2 value of 1. The shaded 

area shows the region of available data given by the 28 time units. 

 

Figure 5.6. SAR data: (a) Change in actual and reference shape area over time and (b) change in 

symmetry 

(a) (b)

 

Figure 5.7. SAR data: (a) Percent change for cumulative increase and (b) correlation matrix 
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An interesting phenomenon occurs when taking a linear trend line from Figure 5.7a and 

calculating the correlation factor in the same manner (Figure 5.9) where a lognormal 

relationship is displayed. The asymptote where Y=1 appears to meet the x-axis just prior 

to where the available data ends. The reasons for this warrant further investigation but are 

out of scope for this study. 

 

Next, the X and Y end vector coordinates are calculated for each input dimension over 

the 28-year time period. The resulting endpoints and aggregated vectors for each input 

dimension are stacked and plotted in Figure 5.10. The dynamic shape area is shown in 

 

Figure 5.8. SAR data: Actual vs. symmetry correlation factor for exponential trend 

 

Figure 5.9. SAR data: Actual vs. symmetry correlation factor if assuming linear trend in 

cumulative % increase 
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Figure 5.10a by the white lines and blue fill between each vector coordinate. The 

aggregate vector magnitude in Figure 5.10b is visualised by the end marker, scaled up 

40x for illustration. It can be seen here that the estimating factor prompts the greatest 

variance over the analysed period. 

 

It should also be noted that the radial degree between each input dimension is kept 

constant – in this case 1.0472 radians (60°). The apparent difference between e.g., 

Quantity-Schedule and Schedule-Engineering is due to the scaling of the figure produced 

in MATLAB. 

Step 3. Allocate inputs to respective networks and train with optimal initial 

architecture. The range and deviation of each input used to train the network varies 

significantly. Using the CV as the deterministic parameter allows inputs with higher 

variation to be trained separately from those with lower deviation. Summary statistics are 

illustrated in Figure 5.11 and categorised into the relevant LSTM networks according to 

Figure 5.4.  For the training data, this fits the Engineering factor into the first network, 

Quantity, Schedule, Estimating and Support into the second and Other into the third. 

   

Figure 5.10. SAR data: (a) Stacked vector 3D plot and (b) face-on with aggregated vectors over 

28-year period 
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Hyperparameters were filtered through Bayesian optimisation to minimize the resulting 

average MAPE between inputs for the respective networks, using defined ranges (e.g., 

100-250 hidden units). A maximum sweep time of 2hrs was set, which gave 

approximately 200 runs. The resulting initial network structure is illustrated in Figure 

5.12. The optimal initial network training options are given in Table 5.2. For all three 

networks, the learning rate schedule was set to ‘Piecewise’ and gradient threshold to 1. 

 

Figure 5.11. SAR data: Summary statistics for each input and corresponding LSTM network 

allocation 

1

2

3

2

2

2
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Step 4. Forecast uncertainties over specified time period. Initial predictions made 

using the trained networks are shown in Figure 5.13a, where the solid lines are the training 

data for each input dimension (partitioned at 60% of the full dataset), the dashed lines are 

the predictions, and the thin dotted lines are the actual (observed) data for the test period. 

After resetting the network state, predictions were updated for each time step accounting 

for the previous step in Figure 5.13b. Following the updated prediction, it was observed 

that values for the Estimating factor now lie within the observed range. More detail in the 

prediction error can be seen in Figure 5.15. 

 

Figure 5.12. SAR data: LSTM network input allocation and structure following hyperparameter 

tuning 

Table 5.2. SAR data: Defined training options following hyperparameter tuning 

Training options LSTM 1 LSTM 2 LSTM 3 

Solver SGDM Adam Adam 

Max. Epochs 235 200 130 

Initial Learn Rate 0.003 0.002 0.002 

Learn rate drop 

factor 

0.14 0.11 0.10 
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The corresponding symmetry, aggregate vectors and stacked vector plot built in Step 2 

were calculated and updated in Table 5.3 and Figure 5.14. The percentage difference 

between the observed and predicted symmetry and aggregate vector magnitudes over the 

test period is directly influenced by the prediction error for each input dimension. 

 

 

   

Figure 5.13. SAR data: Observed vs. predicted uncertainty for (a) initial forecast and (b) updated 

forecast 

(a) (b)

YearYear

Table 5.3. SAR data: Observed vs. predicted symmetry and aggregate vectors 

 Symmetry Aggregate vector magnitude 

Time Observed Predicted Diff. % Diff. Observed Predicted Diff. % Diff. 

18 81.44 87.71 6.27 7% 0.51 0.65 0.14 24% 

19 76.35 71.30 5.05 7% 0.34 0.65 0.31 62% 

20 64.47 60.25 4.23 7% 0.59 0.66 0.07 11% 

21 53.23 60.66 7.43 13% 0.67 0.65 0.03 4% 

22 62.47 65.30 2.82 4% 0.38 0.61 0.23 47% 

23 55.55 74.49 18.94 29% 0.45 0.55 0.10 21% 

24 71.55 88.60 17.05 21% 0.30 0.49 0.20 50% 

25 76.11 97.51 21.40 25% 0.03 0.48 0.45 177% 

26 80.37 80.68 0.31 0% 0.02 0.55 0.53 185% 

27 54.18 42.64 11.54 24% 0.49 0.66 0.17 29% 

28 72.53 27.33 45.20 91% 0.34 0.77 0.43 78% 
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Significant percentage difference in the aggregate vector magnitude for years 25 and 26 

is due to the change in shape area, illustrated in the stacked 3D plot. Initial training data 

was removed for the illustration. Due to the significant difference in variance magnitude 

of the Estimating factor to all other factors, the aggregate vector direction is relatively 

unchanged other than in years 25 and 26. Further evaluation is made in the final step. 

 

Step 5. Evaluate model performance. The difference in the observed and predicted data 

is illustrated in Figure 5.15, scaled back up to the original variances, with corresponding 

line and stem plots for each input dimension. The stem plots show the difference in the 

observed to predicted data. Prediction error is noticeably variable over the time period for 

each of the six input dimensions. This is due to the quantity of data on which the networks 

were trained and the unpredictable peaks and troughs in the observed data. 

 

Figure 5.14. SAR data: Stacked 3D vector plot including observed and predicted data  
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For example, the Schedule factor (Figure 5.15b) is underestimated but the overall 

downward trend is picked up in the prediction. The observed data of the Engineering and 

Estimating factors (Figure 5.15c-d) is scaled to 1.0x104 US $Mil. The relatively constant 

variance from year 20 to year 23 is accurately predicted, but the sudden increase was not 

predictable in the training data. As the model updated the multistep prediction, the 

increasing trend was identified up to year 28. Similarly, the Estimating factor (Figure 

5.15d) was able to predict the overall downward trend in the test data period but not the 

sudden changes in variance.  

The MAPE and RMSE are calculated in Table 5.4. The lowest MAPE was observed in 

the Engineering factor due to low prediction error in year 20 to year 23 and the following 

positive trend. While the estimating factor appears to hold the trend of the observed data, 

the scale of the variance means it has the highest MAPE and RMSE. The Other factor 

holds constant up to year 23 before an unexpected dive, which the network was not able 

to account for in the prediction. 

 

Figure 5.15. SAR data: Observed vs. predicted variance over the test period for each input 

dimension (a-f) 
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These sudden changes and the scale in the observed variance data directly impact the 

mean prediction error, causing the high variation in MAPE and RMSE over the test 

period. While the predictions cannot be considered accurate, the ability to reflect the 

observed trends despite outliers in the observed data allows predictions to be deemed 

robust [197]. 

5.3.2 Case study 2: Turbofan engine degradation 

As discussed in Section 2.4.4, a number of studies have applied a turbofan engine 

degradation dataset to forecast RUL using LSTMs, as well as other areas of prognostics 

and health management (PHM) [55,57,59,61,63,65]. Simulated using the Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) tool, this publicly available 

dataset consists of four degradation scenarios. The FD001 training set was selected for 

this study because it consists of a range of quantitative data measured by sensors and 

qualitative factors given as noise. Uncertainties in the data and assumptions made were 

calculated by splitting the data into sub-arrays in Section 4.3.2. The resulting uncertainty 

data over 16 time cycles was applied to the framework to further demonstrate the 

capability to predict uncertainty under limited data. 

Step 1. Evaluate input topology. The initial dataset consisted of 21 sensors measuring 

temperature, pressure and speed for 100 engine units, each with a random start time and 

normal operating level, running to failure. Previous studies using this dataset discounted 

any uniform sensor data as these will not change in any forecasts made or contribute to 

the uncertainty. The same approach is applied here, as well as discounting parameters 

whose individual uncertainty has a minimal impact on the aggregated uncertainty or 

Table 5.4. SAR data: MAPE and RMSE of observed vs. predicted values over the test period 

Input MAPE RMSE 

Quantity 140% 2003 

Schedule 92% 3834 

Engineering 64% 8363 

Estimating 867% 17110 

Other 381% 208 

Support 248% 4200 
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overall forecast. A description of the resulting 10 input dimensions forecast is given in 

Table 4.7. As for the SAR data case study, a partition of 60% was applied to split the 

training and test data, which was then scaled according to the range of the training data. 

The C-MAPSS dataset does consist of defined training and test sensor data for RUL 

prediction. The focus of this study is to forecast the uncertainty of that data, where there 

is limited previous data on which to base predictions. Using the training set from the 

database was therefore deemed sufficient. 

 

Step 2. Calculate input geometry, symmetry, and vector coordinates. The actual and 

reference shape areas and resulting symmetry over time are illustrated in Figure 5.16, 

given by Eqs. 5-2 to 5-8. For the 16 cycles observed, a trend cannot be identified for the 

shape areas or symmetry.  

As for the SAR data, the percent change for the cumulative increase in actual area and 

symmetry shows a negative exponential trend (Figure 5.17a) with a highly significant 

correlation coefficient of 0.97 (Figure 5.17b). 

Table 5.5. C-MAPSS data: Description of input dimensions to be forecast [55] 

Sensor number Notation Description 

3 T30 Total temperature at HPC inlet 

4 T50 Total temperature at LPT inlet 

7 P30 Total pressure at HPC outlet 

9 Nc Physical core speed 

11 Ps30 Static pressure at HPC outlet 

12 Phi Ratio of fuel flow to Ps30 

14 NRc Corrected core speed 

15 BPR Bypass ratio 

20 W31 HPT coolant bleed 

- - Process noise 
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Following the line equations given by the actual area and symmetry, the correlation factor 

over 100 units given by the 𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑟𝑒𝑎/𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 is illustrated in Figure 5.18 with an 

R2 value of 1. The same asymptote trait occurred as for the SAR data when calculating 

the correlation factor assuming a linear trend line, occurring where the available data 

ends. The 16 time units signify uncertainty in the data up to engine failure. This plot is 

purely illustrative to expand the decreasing correlation factor. A key difference here to 

the SAR data is the opposite (negative) trend. As the variation and corresponding 

 

Figure 5.16. C-MAPSS data: (a) Change in actual and reference shape area over time and 

(b) change in symmetry 

(a) (b)

 

Figure 5.17. C-MAPSS data: (a) Percent change for cumulative increase and (b) correlation 

matrix 
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uncertainty in the sensor data increases up to failure, the relation of the geometric shape 

area to its symmetry reduces.  

 

The coordinate endpoints and aggregated vectors over the 16 time cycles for each input 

dimension are stacked and plotted in Figure 5.19. The shape area is starkly different here 

compared to the SAR data. This is due not only to the four additional input dimensions 

but also the contrast in variability between the dimensions about the radial degree (0.63 

radians, 36°). The aggregate vector magnitude in Figure 5.10b is scaled up 10x for 

illustration and tend towards the low-pressure turbine inlet temperature (S4). 

 

 

Figure 5.18. C-MAPSS data: Actual vs. symmetry correlation factor for exponential trend 

 

Figure 5.19. C-MAPSS data: Stacked vector 3D plot and face-on with aggregated vectors over 

16 time units 
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Step 3. Allocate inputs to respective networks and train with optimal initial 

architecture. The variation in the uncertainty data is illustrated in the summary statistics 

in Figure 5.20. Categorised by Figure 5.4 according to the respective CV, the majority of 

dimensions fell into LSTM network 3. The turbine core speed (S9) was placed in LSTM 

1 and the high-pressure turbine coolant bleed (S20) in LSTM 2. 

 

The hyperparameter ranges applied to identify the optimal initial network structure are 

the same limits as for the SAR data, trained using Bayesian optimisation for the same 

maximum of 2hrs. The resulting structure is summarised by Figure 5.21 and training 

options in Table 5.6. For all three networks, the learning rate schedule was set to 

Piecewise and gradient threshold to 1. 

 

Figure 5.20. C-MAPSS data: Summary statistics for each input and corresponding LSTM 

network allocation 

1

2

3 3

3

3

3 3 3 3
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Step 4. Forecast uncertainties over specified time period. Initial predictions made 

using the trained networks are shown in Figure 5.22a. As for the SAR data, the solid lines 

are the training data, dashed lines are the predictions and thin dotted lines are the observed 

data for the test period. Figure 5.22b shows the predictions after updating for each time 

step to account for the previous step. Changes in the predicted values are examined in 

Step 5. While not immediately noticeable in the plots, a reduction is noted in S3 (blue) 

from time cycle 12, a reduction in the negative gradient in S20 (orange) and a constant 

period in S7 between cycles 13 and 14.  

 

Figure 5.21. C-MAPSS data: LSTM network input allocation and structure following 

hyperparameter tuning 

Table 5.6. C-MAPSS data: Defined training options following hyperparameter tuning 

Training options LSTM 1 LSTM 2 LSTM 3 

Solver Adam Adam Adam 

Max. Epochs 220 180 120 

Initial Learn Rate 0.009 0.009 0.021 

Learn rate drop 

factor 

0.23 0.061 0.138 
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The corresponding symmetry and aggregate vectors from Step 2 are compared in Table 

5.7 for each time step and through the stacked vector plot in Figure 5.23. The large 

difference in symmetry for time cycles 13 and 14 is due to the exploding gradients within 

the networks, which a higher dropout percentage could avoid. However, when tested at 

80% rather than 50% the networks were found to give a constant line as the prediction. 

Further testing of combinations and degrees of dropout layers may alleviate the errors 

within the LSTM. 

 

 

Figure 5.22. C-MAPSS data: Observed vs. predicted uncertainty for (a) initial forecast and (b) 

updated forecast 

Table 5.7. C-MAPSS data: Observed vs. predicted symmetry and aggregate vector magnitude 

 Symmetry Aggregate vector magnitude 

Time Observed Predicted Diff. % Diff. Observed Predicted Diff. % Diff. 

11 141.67 149.23 7.56 5% 1.28 0.33 0.95 118% 

12 155.55 196.87 41.32 23% 0.83 0.40 0.42 69% 

13 98.38 165.01 66.63 51% 0.75 0.56 0.19 29% 

14 53.42 124.97 71.56 80% 1.10 0.78 0.32 34% 

15 103.93 101.93 2.01 2% 1.27 0.87 0.40 37% 

16 191.93 149.66 42.27 25% 0.74 0.86 0.12 15% 
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The stacked vector plot demonstrates this further (initial training data was removed for 

the illustration). Notable differences in the observed and predicted data can be seen where 

the grey shape area (observed) is not covered by the red area (predicted). Caused mainly 

by S4, S9 and S14, these errors alter the resulting symmetry and corresponding aggregate 

vector magnitude and direction towards different factors.  

Step 5. Evaluate model performance. The difference in the rescaled observed and 

predicted data is illustrated in Figure 5.24 in the line and stem plots for each input 

dimension. The significant prediction error for a number of factors is most likely due to 

the very limited number of steps on which it was trained and the lack of defined trends. 

Development of the network allocation methodology or inclusion of additional networks 

to train further variabilities in the data may improve robustness in the prediction. As for 

the previous case study, the multistep prediction was not able to pick up sudden changes 

in the variance data. Variances considered here are magnitudes smaller than those used 

in the previous case study and propagated over a smaller time period. 

The tracing of overall positive or negative trends in the test data where they are apparent, 

such as for S7 (Figure 5.24c), S14 (g) and S15 (h), and predicting within the range 

boundaries of the observed data is therefore considered a satisfactory result. This case 

study illustrates the pitfalls of making predictions based on very limited data. 

 

Figure 5.23. C-MAPSS data: Stacked 3D vector plot for observed and predicted data  
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Figure 5.24. C-MAPSS data: Observed vs. predicted variance over test period for each input 

dimension (a-j) 
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The MAPE and RMSE over the observed period for each input dimension are given in 

Table 5.8. The range and scale of variances are comparatively small against the SAR data 

in Section 5.3.1, which is where the MAPE demonstrates the ability to better compare the 

prediction errors. Large variation in prediction error is due to unpredictable changes in 

the data. This naturally drives up the prediction error, as seen in time cycle 14 in S4 

(Figure 5.24b). Even if the remainder of the test period has a very low prediction error, 

that increased error will increase the overall MAPE. As for Section 5.3.1, predictions are 

robust as they reflect observed trends despite outliers and limited data on which to train 

[197]. 

 

 

The following paragraphs critique the framework steps through the results of the two case 

studies, concluding with an examination of industrial applications. Input uncertainty data 

for both case studies were given as a time series of variances, formatted as row vectors. 

The use of case studies in distinct domains demonstrated the framework’s flexibility to 

be embedded in different systems. 

The data was scaled according to the range of each input dimension. As stated in Section 

5.2, the number of time steps available under limited data is unlikely to provide a robust 

deviation measure required for traditional standardisation methods. The scaling equation 

Table 5.8. C-MAPSS data: MAPE and RMSE of observed vs. predicted values over test period 

Input MAPE RMSE 

S3 (T30) 23% 12.52 

S4 (T50) 70% 0.00 

S7 (P30) 30% 2.43 

S9 (Nc) 46% 0.01 

S11 (Ps30) 26% 7.25 

S12 (Phi) 20% 0.09 

S14 (NRc) 40% 0.01 

S15 (BPR) 16% 0.02 

S20 (W31) 20% 3.30 

ProcssNoise 314% 0.12 
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(Eq. 5-1) can theoretically be applied to any format of data such as standard deviation or 

raw sensor data. The useability and results of using such formats in the framework have 

not been explored and may warrant further investigation. The scaled data was split into 

training and test data according to a defined partition, set to 60% to provide a comparable 

proportion of observed and predicted values to determine robustness of predictions. A 

lower partition would reduce the amount of data on which to train the networks, leading 

to reduced robustness, while an increased partition would reduce the data on which to test 

and update the networks and make predictions beyond the available time period. 

Comparisons with a varying partition would be beneficial for cases with a larger 

forecastable period, though up to a point the available data may no longer be considered 

“limited” and more traditional statistical approaches can come into play. Schwabe et al. 

[131] highlighted that at least 42 discrete time units are required for each parameter to 

make forecasts with statistical certainty under Kolmogorov complexity theory. Even 

when working with “big data”, parametrics and statistics must be treated with caution 

prior to validation when significant correlations are unknown. 

Spatial geometry was used as the uncertainty descriptor because of its ability to propagate 

interdependent cost uncertainties under limited data. Connecting outlying data points in 

vector space formed geometric shapes for each time slice, the area of which was used to 

determine the symmetrical relationship between inputs. This enabled a simplification of 

what may otherwise be complex conclusions [28,171]. The greater the symmetry, the 

greater the information entropy and therefore representative uncertainty for a given time 

slice. Symmetry and respective vector coordinates were calculated in Step 2 of the 

framework and run in parallel with Step 4 as uncertainties were predicted through the 

LSTM. The aggregated vectors for each time slice illustrated the greatest source of 

uncertainty and gave an indication of shape change for the next time interval, stacked in 

a point cloud in 3D space.  

The visualisation provided an immersive view of shape change over time as well as the 

source of greatest uncertainty via the aggregated vector. These uncertainties require the 

most attention; be it mitigation, exploitation or simply increased awareness [196]. 

Employment of the ‘shape’ of data through spatial geometry for forecasting against the 

correlation of individual data points is a significant novelty in the developing field of big 
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data analysis. Live and continuous forecasts are beneficial to industry in several areas 

including maintenance planning and digital twins in the face of mounting increases in 

technological complexity. 

To calculate the symmetry and aggregate vectors and build the 3D visualisation, defined 

parameters had to be fixed while others were allowed to change over time. Summarised 

in Table 5.9, key fixed parameters were the radial degree and dimensional sequence of 

inputs, while changeable parameters included the vector coordinates of each dimension 

over time. Altering the sequence of input dimensions would change the magnitude and 

direction of the aggregate vector but should maintain the shape area. Adding a new input 

dimension part-way into the space will alter the radial degree and require rescaling of the 

full dataset. Repercussions and allowances for altering fixed parameters warrant further 

research for spatial geometry.  

 

The third step allocated the scaled inputs to one of three networks according to their 

coefficient of variation (CV) over the time period, then used hyperparameter tuning to 

define the optimal initial network structure and training options to yield robust 

predictions. The CV was used as the deterministic measure for network allocation because 

it provides a dimensionless measure of relative variability. Alternative measures such as 

the mean are affected by outliers, while the mode and standard deviation are not suitable 

for small sets of data. Other methods to define bins in which to allocate input dimensions 

should be explored, such as interquartile range, and variable allocation methods based on 

the amount of available data and respective variability. The allocation of input dimensions 

Table 5.9. Spatial geometry taxonomy for fixed and changeable parameters 

Fixed parameters Translation space Changeable parameters 

(over time) 

• Scaling equation for all 

input dimensions 

• Shape area calculation 

• Symmetry calculation 

• Radial degree between 

inputs 

• Dimensional sequence of 

inputs 

• Origin location 

• Layout/plotting functions 

for visualisation 

• Computational complexity 

• Input dimension vector 

coordinates 

• Shape area 

• Symmetry 

• Aggregate vector direction 

and magnitude 

• Forecast most likely 

variance 
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to the three networks has a significant effect on the robustness of resulting predictions, 

making this one of the most important steps of the framework. 

Initial parameters for the adaptable network architecture were defined through 

hyperparameter tuning. For both case studies, Bayesian optimisation was used to 

minimise the MAPE by comparing a defined range of parameters. Experiments were run 

for a maximum of 2hrs for each network. This computation time is not viable for regular 

updates when new data becomes available so was only used to gain an optimal initial 

setup. This does not necessarily give the best possible initial setup as not every 

combination can be tested with the time frame. An exhaustive grid search comparing each 

parameter iteration would not be viable without extensive computing power. 

The allocation approach is similar to the semi-double-loop learning concept proposed by 

Putnik et al. [198]. This was used to select the best learning models for predictive 

maintenance scenarios. This method could prove effective in further development of the 

UPLD framework, where the application of double-loop learning principles in 

reinforcement learning would be used to help allocate input parameters and define initial 

network architecture. 

The defined ranges for training options and network structure are detailed in Section 5.2. 

Different combinations will generate different results. Additional LSTM layers will 

typically improve prediction accuracy but take longer to train. The hidden units of each 

LSTM layer are equal. Comparisons of different sizes in each layer and additional training 

options such as mini-batch size may improve results with reduced computation time.  

The final output layer of each network was a regression layer. Regression typically relies 

on statistical data sufficient to fulfil the Central Limit Theorem. Under limited data 

scenarios, this is not the case without artificial propagation through Monte Carlo 

simulation [83,145,196]. This may therefore lead to reduced robustness in predictions 

based on the available training data. Alternative, custom output layers should be explored 

to provide more robust predictions. 

Uncertainty was predicted in Step 4 using the trained networks. The symmetry and 

individual and aggregate vectors were calculated for the predicted data via Step 2 running 

in parallel with the LSTMs. It is important to note the distinction of the forecast direction 
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where the LSTMs forecast through the time axis, while the symmetry and aggregate 

vectors are calculated for each predicted time unit. Predictions were rescaled to the 

original input variances and plotted to illustrate the difference in the observed and forecast 

uncertainty. The dropout layer prevented overfitting for each input parameter, but when 

set too high resulted in near-constant predicted values and reduced accuracy. The 

multistep model updated predictions as new data was fed in. 

The initial, observed and predicted data were plotted in the stacked 3D vector space. 

These plots provided an immersive view of the shape area through time as well the 

aggregate vector magnitude and direction. However, the visualisation can become chaotic 

when too many parameters are visualised at once. Further developments detailed in 

Appendix F therefore allow selected parameters to be visualised and removed, as well as 

value labels and altering the shape area fill transparency. 

The fifth and final step of the framework evaluated model performance via the MAPE 

and RMSE. Other evaluation metrics such as custom scoring functions should be 

developed to gauge the quality of uncertainty prediction and develop a methodology to 

identify areas where more data is required to allow comprehensive decisions to be made 

concerning equipment availability, turnaround time and unforeseen costs through the 

system life cycle. 

The pertinence of the framework was discussed with key personnel from a leading 

defence company in four hours of semi-structured interviews. These included some 

participants from the initial studies detailed in Chapter 3. The questions posed are given 

in Appendix E. A large degree of uncertainty is portioned to numerous data repositories, 

maintenance formats and failure modes for different platforms. Sampling rates of 

maintenance data from different systems can have unpredictable gaps and varying 

sampling rates. The quality of signal reconstruction and determination of operational 

defects is used to determine when maintenance will be required. Rates of degradation or 

identification of other failure modes it is not always achievable. It was agreed that 

continuous forecasting of uncertainties resulting from these traits is vital to facilitate 

dependable maintenance costing and ensure equipment availability. Further work towards 

implementation is discussed at the end of the next section. 
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A direct comparison of the UPLD framework with traditional, probabilistic forecasting 

methods such as regression is not suitable because they are designed for large volumes of 

data that fulfil the Central Limit Theorem (as discussed above and in Chapter 2). Such 

models aim to forecast statistical data, not the uncertainty in that data and surrounding 

qualitative factors. They are therefore not appropriate under limited data scenarios. 

A comparison of the percentage difference in symmetry given by predicted variables over 

the test period of case study 2 against that observed is therefore plotted in Figure 5.25. 

The results from Table 5.7 and Table 5.8 using UPLD are plotted against predictions 

made by linear regression and exponential smoothing, using the training data from case 

study 2. Predictions were also updated (upd) as per the UPLD framework by including 

the data of the previous time step for each iteration. The symmetry for the resulting 

predictions was calculated according to Step 2 of the UPLD framework to provide 

comparative data. The UPLD LSTM gives the lowest percentage difference to the 

observed symmetry, thus outperforming the other methods. 

 

Further validation of the UPLD framework was made by testing its effectiveness with 

non-limited data. A simulated time series dataset was applied, consisting of 12 parameters 

over 50 time steps to provide enough points to consider statistical analysis under 

Kolmogorov complexity theory [6]. The percentage difference of the observed symmetry 

to the symmetry of data predicted by the UPLD LSTM is plotted in Figure 5.26 and 

compared against the same methods as in Figure 5.25. Plots of symmetry and correlation 

factor are available in the online supplementary data.  The UPLD LSTM demonstrates an 

 

Figure 5.25. Forecast method comparison – percentage difference of observed and predicted 

symmetry 
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overall similar performance to the other methods up to time unit 47, where the other 

methods see an increased percentage difference to the observed symmetry. This further 

demonstrates the capabilities of the LSTM to make robust predictions of time series data. 

Larger time series would not be considered ‘limited data’ and are therefore out of scope 

for the application of the UPLD framework. 

 

 

This chapter presented a framework to predict dynamic uncertainty exhibited under 

limited data (UPLD) for the maintenance of increasingly complex engineering systems. 

These uncertainties arise as a result of data quality and availability, operating conditions 

and assumptions made surrounding maintenance. Coded in MATLAB, the framework 

was designed to be embedded in a variety of systems, building on supporting literature to 

develop a flexible forecasting model capable of making predictions under limited data 

from complex and non-complex factors without the need to develop precise models of 

physical systems. LSTMs were applied in parallel with spatial geometry to predict 

uncertainty in time-series data through the geometric symmetry between input 

dimensions. Additional benefits include the ability to update uncertainty predictions as 

new data becomes available by comparing initial predictions against the observed data 

and projecting forecasts through the visualisation of polar force fields in 3D vector space. 

This allows factors that may require future mitigation to be identified, which can, in turn, 

 

Figure 5.26. Forecast method comparison for extended time series data – percentage difference 

of observed and predicted symmetry 
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reduce under or over estimation of turnaround times, equipment availability and resulting 

costs. 

The framework was applied to two case studies in different contexts: Annual cost 

variances for a range of US Air Force military platforms (SAR data) [28,131] and 

precalculated uncertainties from a turbofan engine degradation simulation (C-MAPSS 

data) [55,57]. The SAR data consisted of six input dimensions with a widespread of 

variances over a 28-year period. The C-MAPSS data consisted of 10 dimensions made 

up of sensor data and process noise, with variances precalculated for 16 time cycles, 

determined initially from raw sensor data for RUL prediction [55]. Section 2.4.4 

highlighted the wide use of LSTMs for RUL prediction, for which many studies use the 

C-MAPSS dataset. While the study does not use the dataset directly, findings on 

uncertainty in sensor and noise data will impact the determination of the acceptable range 

on which decisions are made when planning maintenance for related systems. 

Key findings of this research are: 

• Employment of the ‘shape’ of data to describe uncertainty by the geometric 

symmetry between inputs for each point in time provided discernible information 

to determine and predict equipment health under limited data. 

• Allocation of inputs to one of three networks according to their variation enabled 

improved definition of initial network architecture and more robust predictions. 

• As technological complexity grows, live and continuous forecasts of uncertainty 

manifested by data quality and availability are of great benefit to industry. 

The core contributions of the UPLD framework are: 

1. Robust prediction of uncertainty under limited data 

2. Adaptable allocation of inputs to networks with variable structure and training options 

3. Initial technique for immersive visualisation of dynamic uncertainties and shape 

change with an indication of magnitude and direction of the greatest contributing 

factor 

The authors propose future work to simulate and interpolate input data to fill gaps in 

signal data. Implications of altering fixed parameters within spatial geometry merit 

further research. The impact of changing the dimensional sequence of inputs (input order 
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around the origin) for each time unit to a variable rather than a constant parameter is being 

investigated. Prediction robustness of the LSTM networks may be improved by exploring 

alternatives to the regression output layer. Alternative evaluation metrics such as custom 

scoring functions should be developed to gauge prediction quality and identify where 

additional data is required. 

In terms of implementation, the framework enables forecasting under limited data, though 

prediction robustness is highly dependent on the LSTM network architecture each 

respective input dimension is assigned to. Further development of the approach should 

explore implementation in real-time applications to receive live equipment data to update 

predictions to ultimately provide uncertainty predictions on factors such as RUL. The 

interoperability of such implementation will depend on data sampling rates, 

computational processing times and varying environmental and human factors 

[97,138,140]. Development of the visualisation for applications in AR will enhance 

useability and allow the user to access additional state information for a given point in 

time. In addition, suitable approaches to mitigate, tolerate or exploit uncertainty through 

deep learning according to the magnitude should be explored.



 

130 

 

 

 OVERALL DISCUSSION 
 

 

 

This chapter discusses the core research findings by revisiting the research context and 

initial research gaps identified in Chapter 2 as well as the elaborated gaps addressed in 

subsequent chapters. The methodology selection approach and research findings are 

evaluated along with a critique of the contributions to knowledge. Finally, the benefits to 

industry are discussed with the composition of a MATLAB-based application tool 

applying the two frameworks to quantify, aggregate and forecast uncertainty.  

 

The overall aim of the research was to develop a modelling approach capable of learning 

from a combination of historic equipment data and qualitative estimates to allow the user 

to quantify, aggregate and forecast uncertainty through the in-service life of engineering 

systems. 

Engineering systems are expected to function effectively whilst maintaining reliability in 

service. These systems consist of various equipment units, many of which are maintained 

on a corrective or time-based basis. Challenges to confidently and accurately plan 

maintenance, accounting for turnaround times, equipment availability and resulting costs, 

manifest varying degrees of uncertainty stemming from multiple quantitative and 

qualitative sources throughout the in-service life. 

Under or overestimating this uncertainty can ultimately lead to increased failure rates or, 

more often, unnecessary maintenance carried out. As well as the quality and availability 

of data, uncertainty is driven by the influence of expert experience or assumptions and 

environmental operating conditions. Accommodating for uncertainty requires the 

determination of key contributors, their influence on interconnected units and how this 
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might change over time. In addition, sporadic sampling rates of maintenance data owing 

to manual recordings manifest increased uncertainty in equipment and system 

performance. 

 

Chapter 2 presented a systematic review of multivariate uncertainty quantification for 

engineering systems. This contributed an identification and assessment of scientific 

methodologies to (1) quantify uncertainty manifested by purely quantitative, purely 

qualitative and compound factors, and (2) forecast that uncertainty for the in-service 

phase with the application of emerging deep learning techniques. 

The review identified three core research gaps: 

1. Approaches to quantify and aggregate compound uncertainties represented by 

different distributions, considering dependencies between them, applicable to 

increasingly complex engineering systems. 

2. Application of GSA to determine the impact of individual uncertainties on the 

aggregated total, accounting for compound parameters and significant correlation. 

3. Limited approaches to predict uncertainty in engineering systems with complex 

and non-complex entities under limited data, and to do this without the need to 

produce complicated and expensive models of physical systems.  

An integrated combination of identified approaches was seen to enhance rigour in 

uncertainty assessment and forecasting to better understand the impact on cost and 

availability, which will aid decision-making throughout the in-service phase. 

Chapter 3 sought to establish the current practice and challenges in industrial maintenance 

concerning uncertainty. Six core challenges were identified and verified with 

practitioners from various industrial backgrounds. These supported the findings of the 

systematic review concerning the second research question. Three challenges were 

deemed in scope of the research: maintainer performance (or skill), quality of information 

and stakeholder communication. A holistic view of quantitative and qualitative attributes 

ultimately allowed for more accomplished decision-making. However, trade-offs 
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between quality and cost of implementation over the asset’s life cycle play a significant 

role in the applicability of such considerations [10].  

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method 

was applied to identify the best-suited methodologies to address the research gaps, 

detailed in Appendix B [182–184]. The research gaps identified in Chapter 2 and findings 

from Chapter 3 were addressed through the development of two frameworks. These used 

an amalgamation of the methods highlighted in the TOPSIS approach, explored by further 

review of emerging literature in the above chapters. 

6.3.1 Compound uncertainty quantification and aggregation 

The Compound Uncertainty Quantification and Aggregation (CUQA) framework 

(Chapter 4) sought to aggregate compound uncertainties given by quantitative data and 

qualitative estimates, each represented by different PDFs [30]. This addressed the first 

and second research questions from Chapter 2. Benefits of the framework included 

enhancements to performance assessment and corresponding maintenance planning for 

complex and non-complex engineering systems and respective subsystems. 

Further review of emerging literature and development of the framework unveiled two 

elaborated research gaps: 

1. Approaches to quantify and aggregate compound uncertainties represented by 

different distributions, considering dependencies between them, applicable to 

increasingly complex engineering systems. 

2. Application of global sensitivity analysis (GSA) to determine the impact of 

individual uncertainties on the aggregated total, accounting for compound 

parameters and significant correlation. 

To resolve these gaps, the CUQA framework made four key academic contributions: 

1. Use of coefficient of variation (CV) to enable effective quantification and 

aggregation of compound uncertainties represented by different distribution types. 

2. Assessment of correlation between compound parameters. 

3. GSA for dependant compound parameters. 

4. Intuitive visualisation of results – most significant parameters, greatest effects. 
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Deriving the uncertainty measure as the CV proved effective for aggregation of 

uncertainties represented by different PDFs, but further research into the scaling of 

geometric against arithmetic standard deviations is required. Aggregating the individual 

CVs by a combination of the propagation of error method for symmetric CVs and the 

product of asymmetric CVs allowed an aggregated total estimate to be obtained. This can 

be used to determine how the aggregated uncertainty changes over time. 

Dependencies between compound parameters were not found to impact the aggregated 

total for the two case studies. However, the influence attributed by individual CVs to the 

aggregated total was shown to exhibit dependencies that warrant further investigation. 

Such dependencies may have a significant impact in real-world environments where 

operating conditions such as atmospheric temperatures or wind speeds impact the 

accuracy of recorded data or subjective opinion. As discussed in Section 4.4, the case 

studies served to prove the functionality of the CUQA framework, exhibiting 

uncertainties akin to those faced in operational environments and comparable challenges 

to UQ. User-defined ideal limits to identify significant correlations between compound 

parameters enabled the definition of desired levels of detail for dependant variables. 

Stronger dependencies between parameter values will have a greater influence on 

emergent behaviour in more complex systems.  

The GSA method applied by Groen [40] was deemed the best-suited approach for the 

CUQA framework because it can be implemented with relatively small datasets and 

illustrated the influence of dependant and independent uncertainties against the 

aggregated total. Intuitive visualisation of the results at each stage further boosted 

framework useability and enabled rapid identification of uncertainties outside of 

acceptable levels and where mitigation is required. 

6.3.2 Uncertainty prediction under limited data 

The second framework (Chapter 5) – uncertainty prediction under limited data (UPLD) – 

addressed the third initial research question and the third gap from Chapter 2 [97]. The 

critical research gaps were a lack of approaches to predict uncertainty in engineering 

systems with complex and non-complex entities under limited data, and to do this without 

the need to produce complicated and expensive models of physical systems. 
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The utilisation of spatial geometry in parallel with LSTMs enabled multistep prediction 

of dynamic uncertainty under limited data. Further benefits of the UPLD framework 

include forecast projection through the visualisation of polar force fields in 3D vector 

space. Factors that may require future mitigation can then be identified, ultimately leading 

to reduction of under or over estimation of turnaround times, equipment availability and 

resulting costs. 

The UPLD framework made three contributions to knowledge: 

1. Robust prediction of uncertainty under limited data 

2. Adaptable allocation of inputs to networks with variable structure and training 

options 

3. Initial technique for immersive visualisation of dynamic uncertainties and shape 

change, with an indication of magnitude and direction of the greatest contributing 

factor 

Employment of the ‘shape’ of data to describe uncertainty by the geometric symmetry 

between inputs for each point in time provided discernible information to determine and 

predict equipment health under limited data. This enabled a simplification of what may 

otherwise be complex conclusions [28,171].  

The framework was designed to be embedded in a variety of existing applications, 

demonstrated by the use of two case studies from distinct domains. Allocation of inputs 

to one of three networks according to their variation enabled a more robust definition of 

initial network architecture and more robust predictions. 

The immersive visualisation in vector space enabled interactive depiction of dynamic 

shape area and the source of greatest uncertainty. As technological complexity grows, 

live and continuous forecasts of uncertainty manifested by data quality and availability 

are of great benefit to industry. 

 

The two frameworks have been brought together to produce the Multistep Compound 

Dynamic Uncertainty Quantification (MCDUQ) application tool, detailed in Appendix F. 

This has been developed in MATLAB using the app designer platform to boost useability. 

Methodologies were adapted and expanded from those identified in literature 
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[2,24,26,28,34,52,149,158] and interviews within the defence sector. This makes a key 

contribution to optimise uncertainty management capabilities for real-world industrial 

applications. 

A summary presentation was held with the industrial sponsor to present the MCDUQ tool 

via the developed app, discuss application benefits and areas where further development 

was required. The eight attendees included maintenance managers present in the 

interviews detailed in Chapter 3, as well as data scientists and modellers from the 

company. The respondents first gauged two statements on a 7-point scale according to 

whether they agreed or disagreed: 

1. The approach and visualisation of results is intuitive and points to where 

mitigation may be needed in the future 

2. The approach will improve decision-making for maintenance practices 

The results in Figure 6.1 show both statements scored a mean of 4.4 out of 7 with a wide 

distribution, indicating a mix of opinions between respondents. This is due to different 

respondents having different priorities concerning the contextual application and their 

previous experience with the approaches, such as participation in the interviews in 

Chapter 3 and Chapter 5. 

 

These results were further explored through two open-ended questions. The first was 

“What do you think the benefits of the approach would be?”. The MCDUQ tool was 

labelled as part of the journey to true condition-based maintenance, allowing greater 

assurance of platform availability. Higher confidence in estimates concerning specific 

equipment will allow action priorities to be assigned to tasks. The application tool could 

also help identify the likelihood of equipment failures between maintenance periods. For 

 

Figure 6.1. Validation: Mentimeter survey 
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the industrial sponsor, maintenance is usually focused within planned ‘docked’ periods, 

with only low-level tasks completed otherwise. 

The second question was “Are there any additions or amendments that could be made to 

improve the approach before applying it?”. The main concerns were in the qualification 

of the novel approaches used in the tool to real-world instances and how to build trust in 

their application. ‘Real’ data from the company should be fed into the model to better 

demonstrate its capabilities. As discussed in previous chapters, the confidentiality of such 

data renders this a ‘catch 22’ situation.  

An aggregated and individual picture of uncertainty at a given point in time, 

determination of greatest or most undesirable sources of uncertainty and forecasts of how 

these may change through the in-service phase are of great benefit to assess system 

performance. However, a key element raised was how uncertainty in measured 

parameters and assumptions can be linked to uncertainty prediction of factors such as 

equipment availability. As discussed in Chapter 5, data sampling rates and gaps in data 

play a key role in determining uncertainty. Reliable remaining useful life (RUL) 

estimation is a major goal for maintenance planning. A holistic picture of the uncertainty 

surrounding it will be of great benefit. 

While the model implements a novel combination of methodologies to consider 

increasingly complex data, outputs should be displayed in as simple a manner as possible 

so they can be easily actionable by maintainers. The colour bar given in the CUQA model 

in both the CV aggregation and sensitivity plot does this well, though parameter ranges 

that determine colour bounds of ‘good’ and ‘bad’ should have a rigorous determination 

procedure for each application. The 3D visualisation for the UPLD model provides useful 

information for data analysts and planners that would see greater usability in AR. 

Further discussions held with the company’s data science team explored data integration 

and comparison with current practice to assess and forecast uncertainty for maintenance. 

One of the greatest challenges here is the quality and availability of data [10,74,84]. Even 

if big data is available, parametrics and statistical assessments must be treated with 

caution without validation and established correlations. While it was agreed to be an area 

of interest that requires attention for increasingly complex systems, the cost of 

implementation and ways to interpolate gaps in data raise barriers to the development of 
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a fully integrated model. As systems grow in complexity and variability, methodologies 

to quantify, aggregate and forecast uncertainty must be flexible to accommodate a range 

of input dimensions, scaling and sampling rates. 

The verification and validation approach through these sessions was considered suitable 

under the circumstances as they had to be held virtually [37]. In addition, the 

implementation capabilities of the CQUA and UPLD frameworks are demonstrated 

through case studies in their respective chapters. Further assessment to consider usability 

in practice will require further development of the application tool to simplify the process 

of adding new datasets that currently require manual coding and formatting. The 

approaches used were deemed robust and beneficial to fulfil the academic requirements. 

However, further development is required ahead of implementation. 

Overall, a combined understanding of the impact of compound uncertainty on system 

performance will provide a holistic picture allowing for more informed and effective 

decisions. The ability to forecast such uncertainty given by limited and sporadic data will 

improve decision-making capabilities, though the level of confidence and the range of 

uncertainty must be taken into consideration to increase awareness of under or over 

estimation. Alternative approaches involve simulating maintenance data, whether by 

Monte Carlo techniques for individual parameters or agent-based modelling of 

maintenance scenarios. Developing models that are representative of increasingly 

complex systems requires significant computing power and cost. Acting upon forecast 

uncertainty over time creates a trade-off between the cost of corresponding risk mitigation 

and acceptance of the possibility of delays and increased maintenance costs through 

unexpected failures or unnecessary work carried out.
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 CONCLUSIONS AND FUTURE WORK 
 

 

 

The overall findings of this thesis deliver a novel combination of approaches to (1) 

quantify and aggregate uncertainty contributed by quantitative and qualitative sources, 

then (2) predict how that uncertainty may change over time under limited data scenarios. 

The presented frameworks are designed to be applicable for increasingly complex 

engineering systems. The initial hypothesis that this approach can improve uncertainty 

management at the equipment-type level for real-world industrial maintenance is proven 

by the fulfilment of the research objectives as follows: 

Objective 1: Map current practice to identify core challenges and resulting uncertainties 

around equipment cost and availability and how these differ from forecast behaviour 

within complex engineering systems. 

• Methodologies to quantify and aggregate purely quantitative uncertainty is well 

versed in literature and applied in practice. Uncertainty attributed by qualitative, 

subjective opinions is seldom taken into consideration alongside quantitative data. 

This can lead to under or over estimation of uncertainty and determinate factors 

for a given system (Chapter 2 and Chapter 3) 

• Key challenges in the maintenance of increasingly complex systems that manifest 

uncertainty include intellectual property rights (IPR), maintainer performance, 

quality of information, resistance to change, stakeholder communication and 

technology integration – with quality of information being the greatest driver 

(Chapter 3). Since IPR, resistance to change and technology integration are 

largely tied into other themes such as supply chain management, they were 

considered out of scope for this thesis. 
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• A variety of support systems and data repositories are used to report failures and 

track corrective actions. Many are not linked, resulting in duplicate entries, gaps 

in historic data and further assumptions having to be made (Chapter 3) 

• The resulting limited data scenario prohibits traditional forecasting methods as 

associated systems grow in complexity, calling for greater flexibility in methods 

used to assess and forecast uncertainty for maintenance planning (Chapter 2) 

• A holistic picture of the impact of qualitative and quantitative uncertainty on 

system performance can enable more informed and effective decision-making, but 

a trade-off is required with implementation costs under a ‘spend to save’ approach 

or set aside lump sums for unforeseen circumstances (Chapter 3) 

Objective 2: Develop a framework to aggregate uncertainty from quantitative and 

qualitative sources represented through different probability distributions with an 

identification of the source of greatest uncertainty. 

• Existing methodologies to quantify and aggregate uncertainty from purely 

quantitative, purely qualitative and compound perspectives were identified and 

ranked using TOPSIS (Chapter 2 and Appendix B)  

• The compound uncertainty quantification and aggregation (CUQA) framework 

was developed, incorporating the top-ranked approaches (Chapter 4): 

o Uncertainty identification from a component to system level 

o Improved rigour in uncertainty assessment for industrial maintenance 

o Consideration of different probability distributions through use of coefficient 

of variation (CV)  

o Derivation of dependencies between parameters and identification of greatest 

contributing factors through global sensitivity analysis (GSA) 

• Limitations of the CUQA framework that prompt future work in Section 7.2 are: 

o Input data distributions are defined manually 

o Number of data points in sub-array units can result in disproportionately low 

CV for lognormally distributed parameters compared to qualitative factors 

o Only tested for normal, lognormal and uniform distributions 
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Objective 3: Develop an approach to predict uncertainty given by limited available data 

and qualitative factors to relate to equipment cost and availability over the in-service 

phase. 

• Existing methodologies were identified to forecast uncertainties in maintenance 

that influence equipment cost and availability (largely in the product-service 

systems (PSS) context), ranked using TOPSIS (Chapter 2 and Appendix B) 

• Methodologies to predict uncertainty and remaining useful life (RUL) were 

assessed for use with limited maintenance data in increasingly complex 

engineering systems (Chapter 2) 

• The framework for uncertainty prediction under limited data (UPLD) was 

developed, incorporating the top-ranked approaches (Chapter 5): 

o Robust prediction of trends in limited and dynamic uncertainty data given by 

compound attributes 

o Parallel determination of geometric symmetry at each point in time 

o Immersive visualisation of dynamic uncertainties and shape change with an 

indication of magnitude and direction of the greatest contributing factor 

• The model can be embedded in a range of applications, including uncertainty in 

equipment availability and costs, but a direct connection is not made between 

these and compound uncertainty in the presented work 

• Limitations of the UPLD framework that prompt future work in Section 7.2 are: 

o Partition of training/observed to test/predicted data is fixed to 60%. This is 

variable within the developed application, but not examined in the presented 

work 

o Number and order of input parameters is fixed for all predictions – new inputs 

cannot be added over time 

o Methodology to allocate input dimensions to LSTM networks has a significant 

effect on the robustness of resulting predictions, making this one of the most 

important steps of the framework 

o Use of MAPE and RMSE as evaluation metrics resulted in significant 

prediction errors. This was due to sudden changes in the observed data for 

which predictions could not account 
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Objective 4. Validate the final model to assess implementation effectiveness and 

usability in context 

• Development of the MCDUQ app boosts framework usability, allowing results 

and forecasts to be viewed in an intuitive manner. 

• Surveys held with industrial practitioners deemed the methodologies applied in 

the model of great benefit to assess system performance. However, to be truly 

implemented the app would likely require recoding in alternative programming 

languages such as Python and in C# for AR applications. 

• A key subject was the application and qualification of the novel approach to real-

world scenarios and establish trust in the methodology. The use of ‘real’ data 

would provide a better demonstration of the MCDUQ app’s capabilities. This was 

not possible for this thesis owing to confidentiality restrictions. 

• A holistic picture of uncertainty surrounding RUL prediction is of great benefit, 

taking qualitative factors, data sampling rates and gaps in data into consideration. 

• The next major step highlighted in the surveys was the linking of uncertainties 

calculated and predicted via the MCDUQ app with factors such as equipment 

availability, turnaround times and costing. 

 

Recommendations for future research as a result of the studies undertaken in the above 

chapters are listed below:  

Uncertainty quantification and aggregation 

• Further assessment of aggregated compound uncertainty, incorporating additional 

distribution types such as Weibull, Gamma and Beta. These may allow for greater 

flexibility in highly variable time series data but require additional points to shape 

and scale accurately.  

• Use of clustering techniques to derive and classify uncertainty from non-

parametric and stochastic distributions. While elements of the CUQA framework 

are automated in the MCDUQ app, intelligent learning techniques to identify the 

most appropriate sub-array size allocation or representative distributions are not 

featured. These can enhance usability and robustness of the aggregated 

uncertainty for more complex inputs. 
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• Improved rigour of the GSA approach in variance decomposition for each sub-

array time unit. The GSA approach applied in the CUQA framework can be 

implemented with relatively small datasets and illustrate dependencies of 

individual uncertainties against the total effects. A more rigorous depiction of the 

greatest contributing factors may be achieved through derivation of Sobol indices. 

However, this would require additional derivation of model/system process 

equations for each application (such as heat transfer and energy loss). While out 

of scope for this research, the model can be further developed to incorporate such 

equations in the first step of the CUQA framework. 

Uncertainty prediction under limited data 

• Simulate and interpolate input data to fill gaps in signal data. While the UPLD 

framework is able to predict uncertainty for small datasets, it has not been applied 

where data may be missing for certain time units. Gaps in data can be filled by 

interpolation. 

• Explore implications of altering fixed parameters within spatial geometry. 

Determination of shape area and symmetry relies on fixed parameters such as the 

radial sequence between input dimensions. The impact of changing the input order 

around the origin for each time unit to a variable rather than a constant parameter 

is under investigation. Optimum input orders are not yet defined. Derivation may 

be possible through testing the results of every possible order and taking the mean 

result, though this would become cumbersome with an increasing number of 

inputs.   

• Explore alternatives to regression output layers for the LSTM networks to 

improve robustness in predictions. Regression output layers were used to provide 

the prediction results. Typically, these would be based on sufficient data to fulfil 

the Central Limit Theorem. Under limited data, the use of regression contributes 

to prediction errors. Alternative, custom output layers should be explored to 

provide greater robustness. 

• Develop the 3D visualisation for applications in AR. This will allow further detail 

to be provided on each input node through time in an intuitive manner. The 

uncertainty range can be illustrated via fan plots, as well as proposals for 

mitigation and correlated factors. 
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Overall 

• Test the frameworks with more complex inputs. The case studies applied in this 

thesis to test and validate the CUQA and UPLD frameworks may be considered 

comparatively simple in terms of the nature of inputs and qualitative factors such 

as operational environments and assumptions grouped under 5-point scoring in 

the pedigree approach. While the uncertainties exhibited are akin to those faced 

in various environments and present comparable challenges to quantification and 

forecasting, further testing in real-world scenarios will allow for further 

development. 

• Integration of strategies to mitigate, tolerate or exploit uncertainty with 

suggestions of how to manage different levels for each factor. Where the 

quantified, aggregated or forecast uncertainties lie outside of an acceptable level, 

approaches to manage them should be made available to the user. These 

approaches could be predefined for different boundaries in the initial 

identification of inputs. Visualisation of such approaches could be integrated as 

part of the AR interface. 

• Simulate maintenance processes through surrogate models to replicate challenges 

identified in Chapter 3. Data collected from simulations can then be incorporated 

to train developed frameworks to aggregate and forecast compound uncertainty 

with greater confidence where real-world data is not obtainable. 

• Uncertainties calculated and predicted using the amalgamation of methods 

presented in this thesis need to be connected to their impact on factors such as 

equipment availability, turnaround times and costing to enhance decision-making 

capabilities in maintenance planning. 
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APPENDICES 

Appendix A. Literature review methodology: Search, appraisal, and 

synthesis 

A.1 Literature search 

The literature search detailed the formulation of the search string entered in online 

databases with applied filters (article type and publication year), inclusion of previously 

cited and recommended papers (hand search), along with publications cited in highly 

relevant sources [94]. The resulting string and search results are illustrated below and in 

Table A.1:  

Search string: ("Uncertainty quantification" AND (“aggregation” OR "industrial 

maintenance" OR “forecasting” OR "challenges" OR "complex engineering systems”)) 

 

From the database search, 148 files were downloaded on a basis of accessibility, format, 

title and date. The hand search sourced 119 papers, while 24 were sourced from citations 

within sourced papers. This resulted in a pool of documentation to assess in the appraisal 

phase. Inclusion and exclusion criteria are required to refine the results, as well as a 

structured data extraction methodology, defined in the following sections.  

A.2 Appraisal of identified literature 

A.2.1 Quality assessment 

It is necessary to refine the number of publications obtained to appropriately satisfy the 

RQs and assess the evidence base. To do this, a critical assessment of relevance and 

Table A.1. Database search results 

Database Search fields Date Documents 

found 

Google Scholar Title 07/07/2020 59 

IEEE Xplore Title-Abs-Key 07/07/2020 79 

Science Direct Title-Abs-Key 07/07/2020 275 

Scopus (open access) Title-Abs-Key 07/07/2020 218 

  Total 631 
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quality was conducted. The broad selection process in Figure A.1, adapted from Booth 

[53], was implemented considering the PICOC framework in Section 2.3, as well as other 

review examples and author experience. Specific inclusion and exclusion criteria, based 

on the PICOC framework, are identified in Table A.2 [53,54,199]. 

 

  

A.2.2 Data extraction 

A data extraction table was composed in MS Excel (Appendix A.2) to manage the 

literature and assess the evidence base, allowing different studies to be appraised in a 

consistent manner [53]. This included a record of: 

• Publication details: Source folder, filename, publication title, author, year, type 

(journal, book, etc.), source method (database search, citation search, recommended) 

and author keywords 

 

Figure A.1. Appraisal: Publication selection process [53,201] 

Table A.2. Appraisal: Inclusion and exclusion criteria 

Inclusion Exclusion 

• UQ theory, uncertainty prediction and 

analysis, contextual application, compound 

uncertainty 

• Uncertainty propagation and forecasting 

• Industrial maintenance applications 

• Clear techniques & referred sources for 

validity & additional searching 

• Full source not accessible 

• Not written in English 

• Limited in-text citations or references to 

verify findings  
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• Study details: Context, aims/objectives, methodologies/theory adopted, data collection 

strategies 

• Results: Author’s conclusions, outcome / findings, strengths, limitations 

Publication details were recorded for all sources that passed the screening stage in Figure 

A.1. Eligibility was established in four main sifting stages: title, abstract, 

introduction/conclusion and full-text reading. If deemed eligible based on title, a 

preliminary understanding of study details and results was obtained from the abstract to 

gain familiarity and identify key information. Publications considered relevant were then 

looked over in more detail to gain a comprehensive understanding in the next two stages. 

This allowed papers to be summarised into categories and identify relationships for 

synthesis [200]. Cited publications within papers that could enhance the research picture 

were searched for directly and fed back into the start of the process. A total of 185 papers 

were eliminated in the process, based on the sifting stages illustrated in Figure A.1 and 

Figure A.2. 

 

A.3 Synthesis of extracted data 

The synthesis phase of the SALSA framework overlaps with the search and analysis 

phases to produce a breakdown of extracted data, comparing similarities and differences 

within each category [53]. This phase will identify what the literature says. The analysis 

identifies what it means. 

Data extracted from the papers was categorised through a thematic synthesis. This is a 

well-validated method for synthesising qualitative data [53,54,56,58,201]. Key themes 

were established according to the research scope defined in the PICOC framework (Table 

  

Figure A.2. Appraisal: Quality assessment – Publication eliminations 

Format, 12, 6%

Duplicates, 

18, 10%

Title, 31, 

17%

Abstract, 

28, 15%
Outdated, 

29, 16%

Intro/conc, 

36, 19%

Full text, 31, 

17%

Publication

eliminations
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2.3), RQs, discussions with academic supervisors and the author’s understanding of the 

topic. The thematic categorisation involved the generation of several categories for each 

established theme. This was achieved through a repetitive word counting process whereby 

the most frequently used words in the full text of each included paper were cross-

referenced with the proposed category names using VLOOKUP functions in Excel 

(snapshot in Figure A.4). The most recurring words were more likely to be identified as 

categories that could be applied to the themes. Variations of words e.g., ‘predict’ and 

‘prediction’ were included to account for word stemming and acronyms. This process 

required several iterations to combine and refine categories within a larger area and 

eliminate less frequent or irrelevant words; identified by the same method as key themes. 

The category term most frequently recurring for each paper was highlighted. For each 

category, the number of highlighted cells over the 107 papers was added to the number 

of papers that contain that category term. The resulting ‘score’ was then used to identify 

the most relevant categories in each theme, combining similar terms. The resulting themes 

and categories are defined in Table A.3. Where applicable, the pros and cons of these 

categories are discussed in the Analysis phase. Theme and category definitions were 

determined through the author’s interpretation of occurrences in literature as well as 

dictionary definitions. An example of the thematic synthesis data extraction for 3 papers 

is illustrated in Table A.4.  
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Table A.3. Synthesis: Definition of data extraction themes and categories 

Theme Definition Category Definition 

Contextual 

application 

The field in which the 

proposed framework or 

study is applied 

Aerospace & 

defence 

Includes defence and commercial or 

military aerospace sectors 

Emissions, 

energy & 

environment 

Includes oil & gas, energy & power and 

greenhouse gas cases 

Manufacturing 

& maintenance 

Includes general maintenance and 

manufacturing processes in 

miscellaneous applications 

Theory Qualitative or quantitative theory and 

frameworks with no applied context 

Analysis type Type of analysis 

carried out according to 

the nature of 

uncertainty sources 

Quantitative Type A, considering purely statistical 

data sources 

Qualitative Type B, considering purely heuristic 

data sources 

Compound Combination of Type A and B data 

sources 

Propagation & 

simulation 

techniques 

Most prominent 

techniques used to 

propagate uncertainty 

in the analysis process 

Bayesian Expresses the probability of an event 

occurring given that a prior event has 

occurred 

Confidence Probability that true parameter value lies 

within a specified range 

Correlation Level of interdependence between 2 or 

more variables 

Degrees of 

freedom 

Amount of information in a sample 

relevant to the estimation of a parameter 

 

Expertise / 

assumption 

Derivation of a parameter through 

opinion-based, non-statistical means 

Fuzzy set theory Function assigns a grade between 0 and 

1 to each input parameter of a set, as 

opposed to Boolean which is 0 or 1 

Monte Carlo Highly effective and flexible simulation 

technique to generate random variables 

about specified input parameters for 

multiple distribution types 

Neural network Network of cooperating processing 

elements to give an output. This is 

applied to a model and ‘trained’ to give 

an optimum output 

Pedigree matrix Scores results of qualitative expert 

judgement or assumptions according to 

predefined criteria to allow for 

quantitative assessment 

Sensitivity 

analysis 

Identifies key input parameters for 

uncertainty analysis. Quantifies how 
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changes in input value alter that of the 

outcome 

Survey / 

interview 

Qualitative data collection method for 

expert or general population opinion on 

a given topic 

Other Methods not used in many papers 

Probability 

distributions 

Type of distribution 

function (PDF) used to 

represent uncertainty 

about a given range in 

the analysis process 
 

Beta (See Table 2.7) 

Lognormal “ 

Normal “ 

Poisson “ 

Triangular “ 

Uniform “ 

Weibull “ 

Uncertainty 

assessment and 

forecasting 

Most prominent terms 

and qualities used to 

predict and forecast 

uncertainty 

Challenges Hinders, adds complexity or prevents 

action towards a given entity 

Deep learning Use of artificial networks to learn from 

existing data to predict or optimise 

future results 

Forecasting Predicting future trends based on past 

and present data 

Life cycle A series of stages or developments that 

take place over the useful lifetime of a 

given product or service 

Optimisation Finding the best or most effective use of 

a situation or resource 

Over time Measurable progress of past, present, 

and future events 

Prediction Estimate that something will happen or 

will be a consequence of something else 

– Synonym for forecasting 
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Table A.4. Synthesis: Thematic data extraction example for 3 papers 

Theme Simmons et al. [167]  Baek et al. [103]  Erkoyuncu et al. [13] 

Contextual 

application 

Emissions, energy & 

environment 

Emissions, energy & 

environment 

Manufacturing & 

maintenance  

Analysis type Quantitative Compound Compound 

Propagation & 

simulation 

techniques 

Bayesian, Confidence, 

Monte Carlo, Sensitivity 

analysis 

Confidence, Correlation. 

Monte Carlo, Pedigree 

matrix, Sensitivity 

analysis, Survey / 

interview 

Confidence, Sensitivity 

analysis 

Probability 

distributions 

Normal, Uniform Normal, Uniform, 

Triangular 

Normal, Triangular, 

Poisson, Weibull 

Uncertainty 

assessment and 

forecasting 

Estimation, Optimisation, 

Prediction  

Estimation, Life cycle Estimation, Life cycle, 

Prediction 
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Figure A.3. Snapshot of data extraction table for publication details, study details and results of 

selected papers 
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Figure A.3 (cont’d). Snapshot of data extraction table for publication details, study details and 

results of selected papers 
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Figure A.4. Snapshot of word frequency count matrix for the thematic synthesis using Excel 

VLOOKUP functions 
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A.4 Review timeline 

 

Figure A.5. Review timeline 
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A.5 Research methods validity and neutrality 

The validity of research methods is distinguished here as the extent to which they achieve 

the objectives. Neutrality is the measure to avoid bias and increase transparency and 

replicability of the research. The following points examine these traits for the frameworks 

and methods adopted in this review.  

• Systematic review procedure: The SALSA framework was adopted to carry out the 

review procedure due to its contextual flexibility and validity, as well as its successful 

implementation in other systematic reviews [53,54,56,58] 

• Scoping framework: The PICOC framework (Table 2.3) was adopted to scope the 

research and define the aim, objectives and research questions as it provides a 

transparent and duplicable identification of key concepts to be implemented in the 

SALSA framework.  

• Literature search: The PICOC framework was used to construct, refine and enhance 

the search string (Table A.1). Literature deemed to encapsulate the scope of the 

research criteria was selected to assess in the appraisal phase. 

• Appraisal: Inclusion and exclusion criteria were defined through the research scope 

and PICOC framework, as well as examples in literature [53,54,199]. Publications 

were eliminated on a basis of format (accessibility), duplication, title, abstract, date, 

introduction/conclusion and full-text reading (Figure A.1) according to these criteria 

via the author’s interpretation of their relevance. The remaining papers were deemed 

most relevant to answer the research questions. Data management was upheld using 

the data extraction table described in Appendix A.2.2. 

• Synthesis: Themes and categories were established through the repetitive word 

counting process described in Appendix A.3. This reproducible process was validated 

and refined by comparison with other reviews and academic feedback [56,58,200,201] 

• Analysis: A combination of thematic, narrative, tabular and graphical approaches were 

adopted to examine the literature and answer the research questions. Types of 

uncertainty were discussed in Section 2.2 to provide context for the research scope. 
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Appendix B. Methodology selection – TOPSIS 

B.1 TOPSIS process 

The six steps of the TOPSIS process are as follows:  

Step 1: Define decision matrix, 𝐷 and criteria weights, 𝑊 for each criterion, 𝐶𝑖 compared 

to the approaches, 𝐴𝑗 

 

          𝐶1        𝐶2       …      𝐶𝑖 

𝐷 =

𝐴1

𝐴2

⋮
𝐴𝑗

[

𝑋1 1 𝑋1 2 ⋯ 𝑋1 𝑖

𝑋2 1 𝑋2 2 ⋯ 𝑋2 𝑖

⋮ ⋮ ⋱ ⋮
𝑋𝑗 1 𝑋𝑗 2 ⋯ 𝑋𝑗 𝑖

] 

     𝑊 = [𝑊1       𝑊2      …      𝑊𝑖] 

 

Step 2: Calculate normalised decision matrix, 𝑋̅𝑖𝑗 

 
𝑋̅𝑖𝑗 =

𝑋𝑖𝑗

ට∑ 𝑋𝑖𝑗
2𝑛

𝑖=1

 
(B-1) 

Step 3: Calculate weighted normalised matrix, 𝑉𝑖𝑗 

 𝑉𝑖𝑗 = 𝑋̅𝑖𝑗 × 𝑊𝑗 (B-2) 

Step 4: Calculate ideal best, 𝑉+ and worst, 𝑉− value 

 
𝑉+ = ሺ𝑉̃1

+, 𝑉̃2
+, … , 𝑉̃𝑗

+) 

𝑉− = ሺ𝑉̃1
−, 𝑉̃2

−, … , 𝑉̃𝑗
−) 

(B-3) 

Step 5: Calculate Euclidean distance from ideal best, 𝑆𝑖
+ and worst, 𝑆𝑖

− value 

 

𝑆𝑖
+ = ට∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)
2𝑚

𝑗=1   

𝑆𝑖
− = ට∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)
2𝑚

𝑗=1   

(B-4) 

Step 6: Calculate performance score, 𝑃𝑖 

 𝑃𝑖 =  
𝑆𝑖

−

𝑆𝑖
+ + 𝑆𝑖

− (B-5) 
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B.2 TOPSIS application 

Scoring criteria for the identified approaches are adapted from inclusion and exclusion 

criteria used in the systematic review in Chapter 2 [97] and challenges recognised from 

interviews with industry in Chapter 3 [10]. These are shown in Table B.1 along with an 

indication of whether they are a benefit or cost to the ranking process. 

 

The decision matrix for each criterion, scored on a 5-point Likert scale defined in Table 

B.2, against the identified approaches in Table B.3. The criteria are numbered in the table 

heading. These scores are based on the author’s understanding of the approaches 

following the systematic review, summarised by contrasting matrices in Appendix B.3, 

and conclusions drawn by the authors that presented the approaches in literature. 

 

Table B.1. Criteria definition with cost or benefit clarification 

Number Criteria Cost or benefit 

1 Applications in industrial maintenance for CES or PSS Benefit  

2 Presents flexible approach to quantify qualitative uncertainties Benefit 

3 Allows for consideration of human and environmental factors Benefit 

4 Demonstrates methods to combine uncertainties Benefit 

5 Considers methods for multiple types of PDF Benefit 

6 Enables interpolation of gaps in data Benefit 

7 Capability to forecast uncertainty Benefit 

8 Complexity of method Cost 

9 Referred sources for validity Benefit 

 

Table B.2. 5-point Likert scale definition for scoring 

Score Definition 

5 Fulfils criterion fully to solve problem with implementation examples and is well cited/validated  

4 Fulfils criterion in theory but is not widely validated 

3 Fulfils criterion but is challenged by other sources in its accuracy and rigour 

2 Does not satisfactorily fulfil criterion 

1 Not related to criterion 
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The comparison matrices are scored on a 1-3 scale according to whether one method 

improves on, is neutral to, or not improved by the other. The sum product of these scores 

gives an initial indication of the best method, shown in Table B.4 and Table B.5. 

 

  

Table B.3. Decision matrix for defined criteria against identified approaches, scored on 5-point 

Likert scale 

Criteria 1 2 3 4 5 6 7 8 9 

GUM 3 2 3 4 4 1 1 3 5 

NUSAP 4 5 5 4 2 1 1 2 4 

Muller 3 5 5 5 5 1 1 2 3 

Willink 2 4 3 4 3 1 1 4 3 

Nordtest 3 3 3 3 2 1 1 3 4 

BPN 4 1 1 1 2 5 4 3 5 

DUQ 4 3 1 3 2 4 5 3 3 

Dropout 3 2 1 1 2 4 5 4 3 

Spatial geo 5 3 1 2 3 4 5 4 4 

 

Table B.4. Sum-product of scoring for RQ1 and RQ2 

 GUM 

method 

NUSAP Muller 

method 

Willink 

method 

Nordtest 

approach 

Green (3) 0 3 2 2 0 

Orange (2) 1 1 2 1 1 

Red (1) 3 0 0 1 3 

Total 5 10 10 9 5 

 

Table B.5. Sum-product of scoring for RQ3 

 BPN DUQ Dropout Spatial 

geometry 

Green (3) 0 2 0 1 

Orange (2) 3 1 2 2 

Red (1) 0 0 1 0 

Total 6 8 5 7 
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The subjective weights applied for the level of importance of each criterion to RQ1-3 are 

given in Table B.6. These were determined by the author on an interval of 0.2 between 0 

and 1. Criteria that are not applicable to a problem are given a 0 weighting. These weights, 

as well as the scores in Table B.2, are subjective and naturally have a direct influence on 

the resulting rankings from the TOPSIS method. For a larger decision problem, additional 

insights from decision-makers would be necessary to take a mean or mode of each 

criterion and relative weight [183,184]. However, for this application, the scores are 

deemed sufficient. 

 

The resulting rankings for each method to RQ1-3 are shown in Table B.7 (1 is ranked top, 

5 is ranked last). Muller’s [34] semi-quantitative approach is deemed the most suitable 

for RQ1 and 2,  using the coefficient of variation to combine quantitative and qualitative 

inputs represented by different PDFs. Qualitative inputs are defined through the Pedigree 

method, as they are for NUSAP [52,128]. These two approaches may be amalgamated to 

optimise the use of Pedigree for RQ2. 

 

Schwabe’s [28] spatial geometry is ranked best of the identified approaches for RQ3. 

While focused on cost uncertainty, the approach to determine geometric symmetry of data 

variance for a given point may be extended to consider uncertainties from a range of 

Table B.6. Problem weightings for defined criteria 

Criteria  1 2 3 4 5 6 7 8 9 

RQ1 weight 0.6 0.4 0.2 1.0 1.0 0.0 0.0 0.6 0.6 

RQ2 weight 0.6 1.0 1.0 0.4 0.4 0.0 0.0 0.6 0.6 

RQ3 weight 0.6 0.2 0.0 0.4 0.4 0.8 1.0 0.8 0.6 

 

Table B.7. Ranking of identified approaches 

Rank Methods for RQ1 Methods for RQ2 Methods for RQ3 

1 Muller Muller Spatial geometry 

2 GUM NUSAP DUQ 

3 NUSAP Willink BPN 

4 Willink GUM Dropout 

5 Nordtest Nordtest  
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inputs. Once qualitative inputs are converted through the pedigree approach, combined 

with quantitative types and equated through the coefficient of variation, Schwabe’s 

approach can be applied to forecast how they may change over time. As with Wang’s 

[149] and Gal’s [15] approaches, spatial geometry can make use of dropout training to 

approximate Bayesian inference in Gaussian processes to update probability as more 

evidence becomes available.  
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B.3 Contrasting matrices of identified approaches 
 

3 Left method improves on or is favourable to top 

2 Methods can benefit each other / no clear positive or negative of using either 

1 left method has been improved on by top 

Approaches suited to RQ1 & RQ2: 

 



 

181 

Approaches suited to RQ3: 
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Appendix C. Current practice and challenges 

C.1 Interview questions and discussion points 

Part 1 – Influencing factors  

• Discuss and highlight important factors from questionnaire results – Which ones can 

be filtered out? 

• General discussion of scores given for each section – Mean score, highest effect on 

quality of maintenance 

• How can this impact maintenance times/costs?  

o E.g. having to redo a task because it wasn’t carried out effectively 

• What can be improved? 

Part 2 – Current practice  

• Maintenance regimes – contractor vs client – effect on measurement accuracy  

• Equipment quality 

• Complex system context – change in one system maintained by another shareholder 

has an unknown impact on another, increasing uncertainty 

• Discussion of scores given in survey 

Methods or systems used to record maintenance data 

• Are systems effective and fully utilised? 

• If not, how could they be improved? 

• How well is recorded data used to assess maintenance? 

• How is data from previous projects used to influence decisions on new projects? 

Risk and Uncertainty 

• Key points that influence uncertainties in their field? 

• How are these mitigated to reduce uncertainty? 

• Are methods in place to measure changes in uncertainty over time? 

• Are uncertainties categorised? (E.g. people, processes, equipment) 

Summary of discussions 

  



 

183 

Appendix D. Compound uncertainty quantification and aggregation 

D.1 Heat exchanger test rig 

 

D.2 C-MAPSS turbofan engine 

 

 

Figure D.1. Heat exchanger test rig: Increasing deviation (uncertainty) with sub-array size 

 

Figure D.2. C-MAPSS turbofan engine: Sub-array boxplots over time-series data (example for 

six input parameters) 
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Figure D.3. C-MAPSS turbofan engine: Increasing deviation (uncertainty) with sub-array size 
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Appendix E. UPLD framework interview questions 

Semi-structured interviews were held with key personnel from a leading defence 

company. This included data analysts and modellers, some of whom participated in the 

initial studies in Chapter 3. The interview questions and summary of answers is given 

below: 

1. What methods are used? 

• LSTMs in prognostics and health management (PHM) – autoencoders used to 

reconstruct signals from assets 

• This is used to produce a health index – subject of patent, cannot discuss 

• Knowledge of reconstruction quality and operational defects is used to predict 

when maintenance will be needed 

• Question of how long components have been failing for 

• Scoring is a big issue – which method is best for different failure modes? 

2. What time scales are forecasts made on and what factors are forecast or predicted? 

(Costs, turnaround times, required equipment, measured data) 

• There is a time window in which maintenance could be performed 

• An anomaly score is assigned for measured data 

• Depends on quality of reconstruction – if error is constant that’s ok 

3. How much data is typically available on which to base forecasts? 

• Highly variable on number of signals and sampling rate 

• Can have unpredictable gaps in the data 

• Uncertain if all failure modes are being captured 

4. For what level are forecasts made? (Whole system units or individual components) 

• Binary classification if it’s healthy or not – system level 

• Work on the level of a machine, not e.g., a faulty pipe 

• There is not enough data to define a specific fingerprint for specific faults 
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Appendix F. Implementations of the work: Perspectives on the 

effectiveness of the final framework 

The first stage of the CUQA app is to load in the data and split it into sub-arrays to 

quantify the uncertainty. The automatic sub-array size is used as default (as defined in 

Chapter 4) along with the corresponding number of boxes, controlled by the left-hand 

panel in Figure F.1. When switched to manual, the user can select any other possible size 

using the ‘Sub array size’ drop-down component and view the corresponding plots. 

 

The displayed input data is changed using the ‘Data’ drop-down component. The 

examples in the figures use the C-MAPSS turbofan engine degradation dataset as 

described in Chapter 4 and Chapter 5. 

 

Figure F.1. MCDUQ app: CUQA sub-array tab 
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The corresponding pedigree factors are plotted in the second tab shown in Figure F.2. The 

user can define uncertainty factors for increasing pedigree scores, displayed in the line 

plot, as well as the defined score for each factor. 

When the ‘factor score type’ is set to ‘Random’, the app plots scores over the sub-array 

time period ±1 of the set score in individual bar charts. When set to ‘Constant’, the defined 

scores are held constant over the time period. This mirrors the CUQA framework defined 

in Chapter 4. 

 

The summarised quantitative, qualitative and correlation data is plotted in the summary 

tables tab (Figure F.3). The correlation matrices are plotted in a separate app window for 

all factors or only significant factors. The ‘Time unit’ drop-down component in the left 

panel controls the time unit for which data is summarised. The individual and aggregated 

 

Figure F.2. MCDUQ app: CUQA pedigree factors tab 
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uncertainty of the selected time unit is then plotted along with the breakdown of 

distribution types in Figure F.4. 

 

 

Figure F.3. MCDUQ app: CUQA summary tables tab 
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The 3D bar plots for the results of the global sensitivity analysis are plotted in the 

sensitivity tab (Figure F.5) [40]. This is given for all variables along with a table denoting 

the sensitivity indices. Factors within the 95% significance are highlighted red, while non-

significant factors are grey. Using the panel in the bottom left, the CUQA assessment is 

looped for all time units and results saved in a structure array. The most significant factors 

(95%) are then reassessed, as in Chapter 4, and plotted in the right figure for comparison. 

These results are saved in a separate structure array, both of which can be optionally saved 

to a defined file path location using the ‘Save results’ check box. 

 

Figure F.4. MCDUQ app: CUQA combine CV tab 
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Once the uncertainty is quantified, aggregated and the most influential inputs and 

dependencies are identified, the most significant uncertainties are forecast according to 

the framework denoted in Chapter 5. The UPLD application tool also features a fixed 

panel on the left side and a range of tabs displaying different plots and information on the 

right side. The fixed panel allows the user to: 

• Select different datasets 

• Adjust the partition split between training and test data 

• Train the networks 

• View how many input dimensions are allocated to each network 

• Open separate apps to view the 3D visualisation and run hyperparameter tests for 

the network architecture 

 

Figure F.5. MCDUQ app: CUQA sensitivity tab 
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The tabs on the right side are described in Table F.1. To aid usability, red and green lamps 

were added next to each button to indicate when changes are being processed and plots 

updated. 

 

The ‘Input data’ tab is shown in Figure F.6. Three plots are displayed: the full-scaled 

dataset, initial forecast given by the trained networks and the updated multistep 

prediction. The partition slider is directly linked to the live partition line in the three plots 

to visualise the training and test split. The forecasts are automatically updated using the 

trained networks and given training data. Predicted data is plotted as dashed coloured 

lines (matching the colour of the training data) against the dashed grey observed (test) 

data. Prediction error is given by individual plots of predicted against observed data. 

These plots also update when the partition slider value is changed. 

Table F.1. MCDUQ app: UPLD tabs description 

Tab name Description 

Input data Plots for initial and updated forecasts with live-updating partition 

line 

Input data summary Displays summary statistics as bar charts for each input and has an 

option to use alternative deterministic measures for network 

allocation 

LSTM architecture Allows the user to adjust the initial structure and training options for 

each network 

Initial and updated forecasts Plots respective individual forecasts against observed data 

Initial and updated error Plots respective individual forecast errors as MAPE or RMSE 

SG: Symmetry • Summary table for shape areas, symmetry and cumulative 

variables for each time unit 

• Plot of symmetry over time 

• Plot actual and reference areas over time 

• Plot cumulative variables 

SG: Shape comparison Plots reference shape dimensions and compares actual and reference 

shape areas over time 

SG: Correlation factor Plots percent change of cumulative actual area and symmetry over 

time with comparison of correlation factors using linear, lognormal 

and exponential trend line equations 

SG: Linear regression Compares relationships between all input dimensions, displays 

summary table with linear trend line equations and R2 correlation, 

plots top 5 strongest relationships 
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The ‘SG: symmetry’ tab is shown in Figure F.7. This is the main page for the results of 

the spatial geometry calculations. The table summarises the areas, symmetry and 

cumulative values for each time unit, which are then visualised in the three plots. Before 

the networks are trained, only the values for the initial dataset are displayed. Once trained, 

the ‘Use predicted data’ button is enabled. This recalculates the areas and symmetry using 

the predicted data in place of the observed data. When active, the same partition lines are 

layered over the plots to show the initial and predicted data split. This also updates then 

the partition slider value is changed. 

 

Figure F.6. MCDUQ app: UPLD input data tab 



 

193 

 

The ‘SG: Linear regression’ tab in Figure F.8 displays the relationships between all input 

dimensions. The table gives linear trend line equations and R2 correlation, sorted to show 

the strongest correlation first. This indicates dependencies between variables. The top 5 

strongest relationships are plotted below the table.  

The ‘Plot 3D vectors’ button calls a separate app that displays the 3D plotting 

functionality, shown in Figure F.9. This is linked directly into the forecasting app so that 

when the partition slider value is changed, the subsequent training and test data split and 

updated prediction are reflected in the 3D plot. The app has two additional tabs for a 2D 

plot with each web overlayed on a single axis and the uncertainty range given by a 3D 

bar plot and line plot of the triangular distribution. 

 

Figure F.7. MCDUQ app: UPLD spatial geometry symmetry tab 
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The ‘3D vectors’ tab has a series of checkboxes on the left side that allow the user to 

switch on and off each element within the plot. The web shape fill transparency can also 

be adjusted by a slider for the initial, observed and predicted data individually. The 

colours of the end vector coordinate points are given by default. The predicted (dashed) 

lines match the colour of the initial (solid) lines over time. the observed lines are shown 

in grey. For the visualisation in Figure F.9, only the predicted lines are shown. To boost 

visibility through the web fill and against the colours of the initial and predicted data 

lines, the colour and scale of the aggregate vector end markers can be adjusted by the 

user. Colours can be given as a 3-element RGB vector or by single letters as set by 

MATLAB. Linking lines between the observed and predicted data points and aggregate 

 

Figure F.8. MCDUQ app: UPLD spatial geometry regression tab 
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vectors can also be shown to visualise the prediction error, as well as a text box 

annotation. The figure has the links between the aggregate vectors switched on. The plot 

legend automatically updates to allow identification of each selected element. 

These features cover some of the issues highlighted in Chapter 5 for the useability of the 

3D visualisation. Further developments may see these functionalities translated to a truly 

immersive AR visualisation. The user would then be able to expand on each data point 

and see additional information surrounding it, such as mitigation strategies and highly 

correlated variables. 

The schematics in Figure F.10 and Figure F.11 illustrate the model flow and links between 

functions for the two phases of the MCDUQ app. The green diamond represents the 

linking point for the resulting uncertainty data from the CUQA phase to the input 

topology evaluation in the UPLD phase. Precalculated variance data can also be fed 

directly into the UPLD phase. 

 

 

Figure F.9. MCDUQ app: UPLD 3D visualisation plot with optional perspectives 
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Figure F.10. MCDUQ app: Schematic for CUQA phase 
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Figure F.11. MCDUQ app: Schematic for UPLD phase 


