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Abstract:  10 

Numerical weather modelling has gained considerable attention in the field of hydrology 11 
especially in un-gauged catchments and in conjunction with distributed models. As a 12 
consequence, the accuracy with which these models represent precipitation, sub-grid-scale 13 
processes and exceptional events has become of considerable concern to the hydrological 14 
community. This paper presents sensitivity analyses for the Weather Research Forecast 15 
(WRF) model with respect to the choice of physical parameterization schemes [both cumulus 16 
parameterisation (CPSs) and microphysics parameterization schemes (MPSs)] used to 17 
represent the ‘1999 York Flood’ event, which occurred over North Yorkshire, UK, 1st -14th 18 
March 1999. The study assessed four CPSs [Kain–Fritsch (KF2); Betts–Miller–Janjic (BMJ); 19 
Grell–Devenyi ensemble (GD) and the old Kain–Fritsch (KF1)] and four MPSs [Kessler, Lin 20 
et al., WRF Single-Moment 3-class (WSM3) and WRF Single-Moment 5-class (WSM5)] 21 
with respect to their influence on modelled rainfall. The study suggests that the BMJ scheme 22 
may be a better cumulus parameterization choice for the study region, giving a consistently 23 
better performance than other three CPSs, though there are suggestions of underestimation. 24 
The WSM3 was identified as the best microphysics scheme and a combined WSM3/BMJ 25 
model setup produced realistic estimates of precipitation quantities for this exceptional flood 26 
event. This study analysed spatial variability in WRF performance through categorical 27 
indices including: POD, FBI, FAR and CSI during ‘York Flood -1999’ under various model 28 
settings.  Moreover, the WRF model was good at predicting high intensity rare events over 29 
the Yorkshire region, suggesting it has potential for operational use.  30 
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 39 

1. Introduction:  40 
 41 

Precipitation intensity, timing (onset timing and duration), spatial distribution of precipitation 42 

in basin etc. have great importance in state-of-art operational hydrology, integrated flood 43 

management approaches and advanced techniques to predict extreme hydrological events. 44 

Climate variability and its implications on water resources and extreme flood events have 45 

direct impacts on agriculture, road traffic, manufacturing and construction activities. Owing 46 

to climate change and its possible effects on water resources, hydrologists are seeking 47 

downscaling methods that can link atmospheric and hydrological models for hydrological 48 

simulations with reliable accuracy (Kite and Haberlandt., 1999; Wood et al., 2004). High-49 

resolution global assimilated weather data from models such as the Weather Research and 50 

Forecasting (WRF) mesoscale model are very important sources of information capable of 51 

providing credible input data to modern regional hydrological models. Tang and Dennis 52 

(2014) evaluated the capability of WRF with the Variable Infiltration Capacity (VIC) 53 

hydrological model and highlighted good agreement in the simulation of monthly and daily 54 

soil moisture, and monthly evaporation in the Upper Mississippi River Basin (UMRB) from 55 

1980 to 2010. This study highlighted that results from offline linkage of model could be used 56 

to reproduce certain climate variables and hydrological variables like soil moisture. Another 57 

reanalysis data driven WRF study by Wenhua and Chung-Hsiung (2013) reproduced the 58 

spatial distributions of daily mean precipitation and rainy days similar to that of Tropical 59 

Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product data 60 

in Western North Pacific. TRMM data are a widely acceptable global gridded data set among 61 

the hydrological community.  Such WRF success stories in various environmental and 62 

geographic circumstances have accumulated knowledge and confidence in the hydrological 63 

community to directly use high resolution WRF outputs in their hydrological models (e.g. 64 

Liong et al 2013). In the meantime hydrologists are also interested in the sensitiveness in 65 

precipitation and other meteorological variables with WRF model structure. One can fine 66 

several studies of two-way coupling of the operational mesoscale weather prediction model 67 

with land surface hydrological models (Seuffert et al., 2002).  Givati et al (2012) employed 68 

the WRF model to provide precipitation forecasts to run an operational streamflow forecast 69 

system for the Jordan River. Bugaets  and  Gonchukov (2014) have coupled WRF with Soil 70 



and Water Assessment Tool (SWAT 2012) using OpenMI 2.0 and web-service technologies 71 

and this integrated structure was used for real time hydrological modelling and forecasting 72 

 73 

However, many publications have highlighted precipitation as one of the most difficult 74 

variables to simulate in numerical weather models and regional climate models (Giorgi et al., 75 

1993; Zhang et al., 2003).  A study by Pall and Eltahir (2001) has pointed out the difficulties 76 

of explicitly simulating local variability of atmospheric variables like precipitation rates at 77 

sub-grid scales in weather models. Therefore, many cumulus parameterization schemes 78 

(CPSs) and micro physical schemes have been developed and implemented in numerical 79 

weather prediction models to represent  convective processes more effectively(e.g., Kuo 80 

1974; Grell 1993). In a model, micro physical schemes mechanise processes controlling 81 

formation of cloud droplets and ice crystals, their growth and fallout as precipitation; 82 

whereas, the Cumulus convection plays a major role in the energetics and dynamics of 83 

atmospheric circulation systems (Kuo, 1974). Most of these schemes are developed in 84 

specific convective environments, so a systematic evaluation for the local climate of interest 85 

here is essential to yield useful information that can assist hydrological modellers who are 86 

specially working in catchment level (Ishak et. al., 2012). Seeing  that many real-time floods 87 

forecasting and river level warning systems use high resolution data from mesoscale 88 

numerical models and couple these with state-of art- hydrological models, it is essential to 89 

assess the prediction sensitivity of the various meteorological variables obtained from various 90 

model configurations, scheme settings and diverse modelling resolutions.  Many studies have 91 

identified that the selection of parameterization and microphysical schemes is the main 92 

reason for inconsistency of modelling and accuracy of predicted weather variables under 93 

various convective environments (Kerkhoven et al. 2006).  94 

The WRF model is a next-generation mesoscale numerical weather prediction system 95 

designed in collaborative partnership, principally among the National Center for Atmospheric 96 

Research (NCAR) and the National Oceanic and Atmospheric Administration. It is one of the 97 

most sophisticated and widely accepted dynamic downscaling models in the literature for 98 

precipitation prediction. Fowle and Roebber (2003) and Fritsch and Carbone (2004) have 99 

highlighted the significance of cloud microphysics parameterizations in performance of the 100 

WRF model in rainfall modelling.  Krishnamurti et al. (1999) suggested that there appears to 101 

be no single model that consistently gives best results, due not only to the chaotic nature of 102 

the atmosphere but also due to limitations in the  initial conditions of the model and 103 



parameterisations. Ruiz and Saulo (2010) have used WRF over South America in different 104 

configurations to identify the best configuration which gives reliable estimates of observed 105 

surface variables. A number of sensitivity studies have considered the effects of different 106 

parameterization schemes including Cumulus Parameterization Schemes (CPSs) and 107 

microphysics parameterizations schemes (MPSs) (Hu et al 2010; Salimun et al 2010). Fovell 108 

and Su (2007) show how cloud microphysical parameterization and convection details 109 

significantly affect hurricane track forecasts at operational resolutions (30 and 12 km). They 110 

compared the effects of the Kessler, Lin et al, and the three class WRF single moment 111 

(WFR3) schemes, coupled with the effects of Kain-Fritsch (KF1), Grell-Devenyi (GD), and 112 

Betts-Miller-Janjic (BMJ) convective parameterization schemes. 113 

This paper considers the evaluation and optimisation of different CPSs and MPSs of the WRF 114 

model with respect to the prediction of high intensity extreme events happening in the United 115 

Kingdom.  The study focused on the Yorkshire Upper Derwent catchment located in the 116 

north east of England, which is consistently under flood risk. The Yorkshire Derwent 117 

Catchment Flood Management Plan (CFMP) has undertaken significant work to reduce the 118 

risk of flooding from the river especially following the March 1999 floods in the region. We 119 

will refer to this flood event as the York Flood – 1999. Reliable hydro-atmospheric 120 

conjunctive modelling systems play a significant role in the delivery of effective flood 121 

forecasting, flood warning and emergency response services during extreme high intensity 122 

precipitation events. The purpose of this study is to investigate the impact of WRF model 123 

settings in cumulus and microphysics parameterization schemes and to provide insight into 124 

the capabilities of modelling to reproduce rare storm events such as York flood - 1999.  For 125 

this purpose, we have conducted high resolution WRF model simulations of the 126 

unprecedented rainfall events that occurred over the Yorkshire-Humber side region during 127 

first half of March-1999, using ECMWF ERA – 40 data as boundary conditions.   We 128 

conducted rainfall simulations using several cumulus parameterization and microphysical 129 

schemes at different resolutions and compared the results with available ground based data. 130 

In this study, CPS sensitivity analysis was conducted using four schemes: Kain–Fritsch, KF2 131 

(Kain 2004), Betts–Miller–Janjic, BMJ (Janjic 1994, 2000); Grell–Devenyi ensemble, GD 132 

(Grell and Devenyi 2002); old Kain–Fritsch, KF1 (Kain and Fritsch 1990). Four 133 

microphysics parameterization schemes (MPSs) were considered: Kessler (Kessler 1969); 134 

Lin et al. (Lin et al. 1983), WRF Single-Moment 3-class, WSM3 (Hong et.al. 2004); WRF 135 

Single-Moment 5-class, WSM5 (Hong et al., 2006). The study aimed to identify the best 136 



schemes and WRF model settings to represent individual transient rare weather systems for 137 

the Yorkshire-Humberside region and to reproduce the observed spatial variability and 138 

statistics of precipitation extremes.  139 

In the subsequent sections of this paper, the land based observed precipitation data sets from 140 

the Yorkshire-Humberside region during York Flood -1999 and the WRF model setup are 141 

summarized. A detailed statistical analysis of the model performance under different settings 142 

of CPSs and MPSs against observations is presented in the results section. Finally, the 143 

discussions and conclusions are given in the fourth section of the paper.  144 

2. Materials and Methods  145 

2.1 Derwent and York Flood 1999 146 

Yorkshire-Humberside region has a wide network of Rivers like Aire, Don, Esk (and coastal 147 

streams), Hull (and coastal streams), Ouse, Ribble and Tees alongside the River Derwent. 148 

The Yorkshire-Humber region is a winter flood prone part of England due to interactions of 149 

the major river network, significant storm rainfall in the catchments and substantial amount 150 

of snowmelt contributions to the rivers. This study focussed on the upper Derwent catchment 151 

extending over 1586 km², draining to Buttercrambe (UK Ordnance Survey Grid Reference 152 

SE 731587) in North Yorkshire. At the source and in the upper regions, the major river and 153 

its tributaries run over the Corallian limestone formation.  The average annual rainfall in the 154 

region is 779 mm, out of which approximately 59% is accounted for by evapotranspiration. 155 

Annual rainfall over the northern half of the catchment (North York Moor) exceeds 1,000 156 

mm in some years (Remesan, et al., 2013). 157 

The Derwent catchment has a long history of flooding with recorded evidence dating back to 158 

1892. Prior to the heavy flooding in 1999, the previously highest recorded flood was in 1947 159 

(Environment Agency, 2007). The catchment was particularly badly affected by flooding in 160 

1927, 1930, 1931, 1932, 1947 and 1960 and in more recent times, during March 1999. In this 161 

study we are focusing on the capabilities of WRF to predict the rainfall which occurred 162 

during first two weeks of March which lead to the York flood - 1999. A low pressure fronts 163 

moved east to west between February 28th and March 9th, bringing first snow, then rain, so 164 

that melting snow added to the run-off. During 4-5th March 1999, exceptional levels of 165 

rainfall were experienced in the Derwent catchment area, reaching 125 millimetres (4.9 in) 166 

inside a 24 hour period. The situation was worsened by melting snow which had earlier 167 



accumulated on the North York Moors. Church Houses in Farndale had over 302 mm (11.89 168 

inches) of rain between 28th February and 11th March, and other stations recorded similar 169 

figures (RNHS, 2013). In this study, simulated results obtained from WRF under different 170 

model settings were compared with observed data during 1st – 14th March of 1999 from 22 171 

selected stations in the region. Details of those stations are given in the Table 1. The rainfall 172 

data observed at different points in the Derwent catchment are shown in Figure 2 and in a 173 

cumulative form in the Figure 3. 174 

2.2 Weather Research and Forecasting (WRF) Model and Design of Experiments 175 

The Advanced Research WRF version 3.3 (WRF, cited 2013) is a new-generation mesoscale 176 

modelling system (Skamarock et al., 2005) and successor of the well regarded MM5 model 177 

that serves both operational and research communities.  WRF is a nonhydrostatic, primitive-178 

equation, mesoscale meteorological model with advanced dynamics, physics and numerical 179 

schemes. The current WRF software framework (WSF) supports two dynamical solvers: the 180 

Advanced Research WRF (ARW) and the nonhydrostatic Mesoscale Model (NMM). These 181 

two solvers accompany a dynamic core which includes mostly advection, pressure-gradients, 182 

coriolis, buoyancy, filters, diffusion, and time-stepping. WRF possesses a number of 183 

outstanding features including: 1. Incorporation of advanced numerics and data assimilation 184 

techniques, 2. Multiple relocatable nesting capability, 3. Enhanced physics in treatment of 185 

convection and mesoscale precipitation, 4. Better handling of topography than the Eta model, 186 

5. Much less diffusive, larger effective resolution, permits longer time steps. 6. Allows real 187 

data and idealized simulations in same framework, 7. Plug-in architecture, moving nests and 188 

nudging. These capabilities enable the model for a wide range of applications, from idealized 189 

research to operational forecasting, with priority given to horizontal grids of 1–10 kilometers. 190 

The WRF model uses terrain-following, hydrostatic-pressure vertical coordinates with the top 191 

of the model being a constant pressure surface. There are numerous physics options in the 192 

WRF model, the major details about its configuration in this study is shown in the Table 2. 193 

As shown in the Table 2, different physical parameterisations (e.g.: boundary layer, the 194 

convection and radiation schemes) including the Yonsei University scheme for the planetary 195 

boundary layer (Hong et al., 2006), the Dudhia shortwave radiation scheme (Dudhia, 1989), 196 

the rapid radiative transfer model for long-wave radiation scheme and Pleim-Xiu Land 197 

Surface Model have been used. 198 



WRF is a mesoscale regional model that requires climatic data, generated by any global 199 

model, at its lateral boundaries to drive the model. In this study, the European Centre for 200 

Medium-Range Weather Forecasts (ECMWF), ERA-40 data set was used to drive it. Many 201 

sources of meteorological observations were used, including radiosondes, balloons, aircraft, 202 

buoys, satellites, and scatterometers over more than 40-years. The model initial and lateral 203 

boundary conditions are derived from the ECMWF 40-year reanalysis (ERA-40) data with 204 

the improved resolution of 10 x 10 and updated every 6 hour. The four nested domain 205 

dimensions of the WRF simulations for the Yorkshire-Humberside region are shown in 206 

Figure 1. The simulations of all selections of CPSs and MPSs were performed on a nested 207 

domain with the child domains [d02 (9 km), d03 (3km) and d04 (1km)] and parent domain 208 

[d01 (27 km)] as shown in figure 1.  The four domains are centred over the Upper Derwent 209 

catchment with domain sizes of 918 x 756 km2, 495 x 522 km2, 246 x 255 km2 and 103 x 94 210 

km2 for d04, d03, d02 and d01 respectively. Details of the grid spacing, grid number and the 211 

downscaling ratio of the experiments are given in Table 3.  This study has performed 212 

simulations for each selection of CPSs and MPSs for 1176 hours (2 weeks) starting at 00.00 213 

UTC 01st March 1999 and finishing at 00.00 UTC 15th March 1999. A total of 8 simulations 214 

were conducted using four different CPSs of the WRF model [KF1, KF2, BMJ and GD] and 215 

another four MPSs [Kessler, Lin et al scheme, WSM3 and WSM5]. Some details of different 216 

CPSs are given in Table 4. The resolution of the innermost domain was fixed with a 217 

horizontal grid spacing of 1 km. The time steps of the four domains, which also govern the 218 

time intervals of the output rainfall series, are set to 3 hrs, 1 hr, 1 hr and 1hr, respectively 219 

from the outermost to the innermost domain. However, here we have presented a comparison 220 

of daily temporal and spatial simulation results because of availability of good quality land 221 

based daily data from 22 weather stations.  222 

 223 

2.3 Verification Methods for WRF Simulations    224 

Both categorical and the continuous indices have been employed as statistical measures for 225 

the spatial and temporal verification of meteorological model outputs against land-based 226 

rainguage data (Stanski et al., 1989; Jolliffe and Stephenson, 2003; Wilks, 2006; Liu et al., 227 

2012). The most commonly used categorical verification indices are the probability of 228 

detection (POD), frequency bias index (FBI), false alarm ratio (FAR) and the critical success 229 

index (CSI). The POD index gives an idea of the fraction of the observed precipitation that is 230 



correctly predicted by the model; this index ranges from 0 to 1, with 1 being a perfect score, 231 

and it is sensitive to the frequency of rainfall occurrence during the event. FBI gives an 232 

indication of overestimation or underestimation but it is also sensitive to how well 233 

precipitation simulations match observed values. The FBI ranges from 0 to ∞ with 1 234 

indicating a perfect match.  CSI ranges between 0 and 1 and this index specifies how the 235 

simulated precipitation corresponds to the observed precipitation. This index is a popular 236 

categorical verification index in numerical weather modelling. It is sensitive to ‘hits’ and 237 

penalises both ‘misses’ and ‘false alarms’ but does not distinguish sources of simulation 238 

error. FAR quantifies the fraction of the simulated rainfall that did not actually occur. This 239 

indictor ignores ‘misses’ and it is also sensitive to the frequency of precipitation occurrence 240 

during the event. The equations for these categorical indices are given below: 241 
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245 

The above equations take values from a rain/no-rain contingency table relating modelled and 246 

observed precipitation. PP counts simulated precipitation/observed precipitation (hits) PN 247 

simulated precipitation/observed no precipitation (false alarms), NP simulated no 248 

precipitation /observed precipitation (misses) and NN simulated no precipitation / observed 249 

no precipitation (correct negatives).  When comparing the spatial performance of the 250 

simulations, the results of the WRF model were compared with rain-gauge observations at 251 

each time step i, and then the values of the categorical indices at all the time steps are 252 

averaged. In the case of temporal comparisons, the indices are calculated using simulated and 253 

observed time series data at each rain gauge i, then averaged to yield a single index value for 254 

all  rain gauges.  255 

 256 
This study additionally employed the following continuous statistical indices: Nash–Sutcliffe 257 

model efficiency coefficient (NS), Correlation Coefficient (CORR), coefficient of 258 

determination (R2), Slope (S), root mean square error (RMSE) and mean bias error (MBE) 259 

(see equations below). 260 
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 272 
Where n is the number of observations; ri = simulated precipitation, pi = simulated 273 

precipitation variables from WRF under particular parameterization scheme and ip  is mean 274 

observed precipitation. These indices can give an idea of spatial variation of WRF modelled 275 

results, comparing it with observed rainfall values from each weather station site. CORR 276 

value can give a measure of the strength and the direction of a linear relationship between 277 

observed and simulated precipitation time series.  The coefficient of determination is useful 278 

as it gives a proportional measure of the variance of one variable that is predictable from 279 

another variable.  280 

 281 

 282 



3. Results and Discussions  283 

The performance of several CPSs and MPSs configurations of the WRF model was evaluated 284 

for the ‘York flood- 1999’ event precipitation covering 0000 UTC 01st March 1999 to 0000 285 

UTC 15th March 1999. The main aim was to select the best parameterization design for 286 

operational weather prediction and climate downscaling over the region during exceptionally 287 

high precipitation. Both frontal and convective storms are common in the study area; the 288 

frontal storms normally produce precipitation over large areas, whereas convective storms 289 

produce precipitation over smaller areas. The daily precipitation values during the study 290 

period exhibited varying temporal trends, which are the stations, were spatially 291 

heterogeneous. The temporal and spatial variation of daily precipitation is shown in the 292 

Figure 4 as obtained by Krigging interpolation of daily values from 22 nearby stations in the 293 

Upper Derwent catchment. In this figure it is evident that there is considerably high 294 

precipitation on 4- 6th of March in the upper Derwent River catchment with value of 67.7 mm 295 

at DANBY MOOR CENTRE (54.46, -0.89) on 6th of March 1999.  Similar high values were 296 

observed at KILDALE: EAST GREEN BECK   (54.48  -1.04 ), SCALING RESR NO 3 297 

  (54.51  -0.84 ), RANDY MERE RESR (54.41  -0.75 ), IRTON P STA    (54.24  -0.46 ) and  298 

RAVENSWICK   (54.28  -0.92 ) with values of 40.2 mm/day, 48.2 mm/day, 47.8 mm/day, 299 

40.2 mm/day and 42.5 mm/day respectively. The stations with higher values are 300 

predominantly in the northern part of the Derwent Basin. As explained earlier a four domain 301 

configuration setups were used in this study with the inner domain dimension of 103 x 94 302 

km2 [1 km resolution, downscaling ratio of 1:3 and modelling time step 1 hr.]. The WRF 303 

model with this set up downscaled the ERA-40 Reanalysis data for 14 days using different 304 

CPSs and MPSs scenarios. Apart from the identification of a useful model setup for the 305 

region, it is also important to evaluate variability in spatial and temporal distribution of these 306 

downscaled precipitation outcomes from the WRF. This is because these values could 307 

directly be applied to distributed hydrological models while WRF outcomes (areal average) 308 

could be directly used in lumped, semi-distributed and distributed hydrological models for 309 

flood forecasting and modelling. This section describes results of the sensitivity analyses of 310 

various CPSs [Kain–Fritsch (KF2) Betts–Miller–Janjic (BMJ), Grell–Devenyi ensemble 311 

(GD) and the old Kain–Fritsch (KF1)] and their spatial and temporal comparisons with 22 312 

land based gauging stations. The corresponding temporal and spatial comparison results of 313 

MPSs  [Kessler, Lin et al, WRF Single-Moment 3-class (WSM3) and WRF Single-Moment 314 

5-class (WSM5)] using various categorical and the continuous indices are given below.  315 

 316 



3.1 Spatial and Temporal Sensitivity of WRF to Cumulus Parameterization Schemes 317 

(CPS) Selection 318 

The optimum cumulus parameterizations for precipitation are strongly dependent on the sub 319 

region (Mooney et al., 2013) of the study domain. Many studies have demonstrated the need to 320 

carefully select parameterization combinations when attempting to use WRF as a regional 321 

climate model especially when linked to regional hydrological models. In this study we have 322 

used WRF outputs from the 3rd domain for comparison with land based precipitation values.  323 

This is because in many studies it is assumed that the convective rainfall generation is 324 

explicitly resolved in the inner domain without cumulus parameterisation (Liu et al., 2012). 325 

The sensitivity analysis and variations in WRF simulation of the rainfall distribution in space 326 

and time are detailed in the Tables 5 and 6. The categorical indices (POD, FBI, FAR and 327 

CSI) together with the continuous indices (NS, R2, R, RMSE, MBE and S) that are calculated 328 

for a 1 hour duration in both spatial and temporal dimensions are shown in these two tables. 329 

Statistically one can say that the best WRF model gives higher values of POD, CSI NS, and 330 

R2 and lower values of FBI, FAR and continuous indices like RMSE and MBE. Table 5 331 

shows the spatial variation of WRF simulations corresponding to the different CPS selections 332 

in the form of continuous indices [NS, R2, R, RMSE, MBE and S (these are averaged values 333 

for the simulated 14 days period)] in comparison to the selected 22 weather stations. 334 

Whereas, Table 6 shows the temporal variations of WRF simulations corresponding to 335 

different CPS selection in the form of above mentioned continuous indices (spatially 336 

averaged). We have used several indices for this sensitivity analysis considering the chaotic 337 

nature of the convective environment. The chaotic nature of the atmosphere suggests that 338 

analyses of only one type of error (e.g. biases) are not sufficient to rate model forecasts and 339 

thus sensitivity analysis of different parameterizations, since errors in one variable may 340 

propagate to others and quickly degrade forecasts. 341 

 342 

3.1.1 Spatial Comparison:  343 

In this study we adopt a sensitivity analysis using the categorical indices for first instance and 344 

a second level verification employing continuous indices. The categorical indices can give a 345 

measure of the correctness of the model’s precipitation occurrence or non-occurrence, but are 346 

less reliable when considering the quantity of precipitation thus not decisive in comparison to 347 

continuous indices in identifying the best CPSs/ MPSs. POD assesses what fraction of the 348 

actual rainfall events were detected by the model, and FAR gives the fraction of ‘false 349 

alarms’ in rainfall occurrences. Thus, in order to quantify the differences between 350 



precipitation produced by simulations with different CPSs the different categorical spatial 351 

statistics are calculated for the ‘York Flood – 1999’ period and are shown in Figure 5 along 352 

with corresponding values associated with changes of MPSs. The evaluations of these 353 

statistical indices provide information about the model’s effectiveness in simulating a range 354 

of precipitation events. The catchment area average values of probability of detection (POD) 355 

and false alarm rate (FAR) are the major categorical indices, which range from 0.64–0.76 and 356 

0.27–0.32, respectively. The highest values are associated with KF2 (POD= 0.69, FAR= 357 

0.27) and the lowest are associated with GD  (POD= 0.64, FAR= 0.29). An FBI values less 358 

than one implies under estimation in all four CPSs based simulations. From figure 5 one can 359 

note that, after spatial comparison of four CPSs based simulation results, the higher values of 360 

precipitation underestimation occurred for GD based simulations with lower values  for BMJ 361 

based simulations. The higher CSI value is associated with KF1 based simulation but the 362 

numerical value of CSI of BMJ based simulation is very close with value of 0.65. Although it 363 

is difficult to reach a conclusion on the performance of different CPSs from the Figure 5, the 364 

lower average value of FAR and higher FBI, CSI and POD scores indicate better model 365 

performance for heavier precipitation events with the KF2 and BMJ cumulus schemes. 366 

 367 

Table 5 summarizes the effect of different cumulus parameterizations on spatial estimates of 368 

precipitation. Considering the spatial variation of continuous indices for KF1-based 369 

simulations, it can be seen that overall poor performance of the model is associated with 370 

weather station IDs 19 and 20 (i.e. KELD HEAD and KIRBY MISPERTON) with low values 371 

of NS efficiency, R2, R and negative values of Slope. These trends were similar in 372 

simulations with the other three CPSs (KF2, BMJ and GD). The weather station locations 373 

associated with poor performance are towards the middle of the River Derwent catchment. It 374 

is interesting to note that only these two stations have shown negative or near zero slope 375 

values in all four CPSs simulations with spatial comparison. This study also focused on 376 

continuous statistical indices (e.g. RMSE, NS) that include both systematic and non-377 

systematic errors. This measure of total error might be more relevant to evaluating model 378 

performance and its ability to simulate atmospheric physics. An index like NS can give an 379 

assessment of the predictive power and efficiency of the WRF model as long as there is 380 

observed data to compare with the modelled results. If an NS value is less than zero, then the 381 

observed mean is a better predictor than the model. The NS value ranges between −∞ to 1 382 

and if model efficiency is close to 1, model reliability and accuracy will be close to the 383 

maximum. Out of 22 stations higher modelling efficiencies were associated with stations 384 



such as KILDALE: EAST GREEN BECK   (ID = 4) and WHITBY COASTGUARD 385 

(ID=11) during KF1 and KF2 simulations. Both in BMJ and GD based simulations, 386 

KILDALE station exhibited higher efficiencies with values of 0.42 and 0.35 respectively. 387 

This station is one of those situated north of Derwent catchment which experienced high 388 

precipitation rates during the York Flood 1999 period. The bias and RMSE values didn’t 389 

show any fixed pattern within the study area. Over the south east corner of the catchment 390 

(5400’0’’ N - 54010’0’’ N to 0030’00’’W - 0040’00’’W), there is a strong positive bias in 391 

predicted WRF precipitation at all times of day and integration times.  For a detailed 392 

comparison, the rainfall simulated by WRF with different CPSs is shown in Figure 6 for 393 

selected weather stations (along with different MPSs selection). Figure 6 shows daily 394 

averaged values of modelled precipitation during 1st -14th March 1999. One can clearly note 395 

from the Table 5, Table 6 and Figure 5 (a-d) that there is clear underestimation and 396 

overestimation within the basin corresponding to different weather station positions. Though 397 

there is overestimation in certain stations during certain time steps, the average value of MBE 398 

is always negative in all CPSs suggesting a high tendency towards underestimation. A 399 

comparison with a spatial average of the WRF precipitation output with that of observed 400 

output shows that BMJ scheme is superior to the other three when we consider indices like 401 

NS, R2, R and Slope with values of -0.41, 0.38, 0.19 and 0.49 respectively. The Bias values 402 

were smaller in the case of the KF1 scheme with a value of -0.77 mm/day, which is closer to 403 

that of BMJ scheme. Though a bit higher, RMSE values of the BMJ scheme were closer to 404 

that KF2 scheme during spatial evaluation. In general one can say that the schemes have 405 

followed a performance trend of BMJ > KF1 > GD > KF2 during CPSs simulations. During 406 

these four simulations, the microphysics was fixed as WRF Single-Moment 5-class scheme.  407 

One can note from Figure 6 that BMJ modelled precipitation is largest in the majority of the 408 

weather stations, but KF1 over performed the BMJ cumulus scheme in stations like IRTON P 409 

STA, HOVINGHAM HALL, KELD HEAD and KIRBY MISPERTON when we considered 410 

daily average modelled precipitation during ‘York Flood- 1999’ period. 411 

 412 

3.1.2 Temporal Comparison:  413 

Figure 7 presents the temporal average skill scores for the 14 days studied during the ‘York 414 

Flood -1999’ based on different CPS simulations. The temporal spread of the CPS based 415 

predictions by WRF has been evaluated through statistical verification against the available 416 

land based observation datasets. The temporal average categorical indices have shown that all 417 

CPS members do well in terms of POD and FAR particularly during 4th -6th March 1999, but 418 



the scores of POD drop off rapidly towards the end of the simulation dates and false alarm 419 

ratios increased during those days.  The numerical values of CSI are lower than those of   420 

spatial indices [the lower value is associated with GD value of 0.34]. The bias index has a 421 

similar tendency to that of the spatial comparisons but with a better value of 0.85 for the KF2 422 

scheme. In the case of KF2 and BMJ the probability of detection values are almost same but 423 

the false alarm index is less in the case of KF2 scheme than the BMJ one. Considering all 424 

four categorical indices, one can say that the performance of cumulus schemes follow this 425 

pattern, KF2 > BMJ > KF1 > GD.  426 

The NS values are negative for all four simulations which indicate that, this criterion is very 427 

sensitive to the quantification of systematic under-prediction errors. The simulated 428 

precipitation values from the model that included different CPSs schemes inadequately 429 

captured the measured rainfall responses in terms of low RMSE, high bias, lower regression 430 

coefficient and Nash efficiency index.  The lower (better) MBE and NS indices were 431 

associated with the KF1 scheme. The continuous statistical values have shown better 432 

performance on 4th of March and poorer performance on 6th of March with high values of 433 

MBE and RMSE. It can be seen from the time averaged continuous statistical indices 434 

(excluding MBE), that the results of WRF model with KF2 are superior to that of other WRF 435 

models with CPSs. Although, it is difficult to reach a conclusion, it appears that the KF2 436 

scheme performed better than the BMJ scheme (which was better during spatial comparison 437 

of CPSs) when making temporal comparisons.  Apart from these statistical analyses, 438 

variations in cumulative precipitation during 1st -14th March 1999 as predicted by different 439 

CPSs in the study region were plotted and are given in Figure 8. This shows the higher 440 

capability of the BMJ and lower performance of GD schemes in this case study. 441 

 442 

3.2 Spatial and Temporal Sensitivity of WRF to Microphysics parameterization 443 

schemes (MPS) Selection 444 

State-of-art microphysical parameterization schemes are commonly used to predict 445 

precipitation distribution within convective systems and many studies have shown that these 446 

can make a considerable difference in the resultant simulation (Luo et al. 2010; Cohen and 447 

McCaul 2006). Thus, to assess impact of the parameterization of microphysical processes on 448 

the development of convective systems in Northern Yorkshire region during first two weeks 449 

of March -1999, we have performed simulations using four microphysics parameterizations 450 

with varying complexity as explained in previous sections. These simulation results were 451 

comprehensively compared in both spatial and temporal scales using traditional categorical 452 



verification statistics and continuous statistics to check the accuracy of precipitation 453 

forecasts.  Four simulations of four MPSs were performed with identical configurations, 454 

except for differences in the cloud microphysics parameterizations. The BMJ scheme was 455 

used as it has proved to be the best cumulus scheme. 456 

 457 

3.2.1 Spatial Comparison:  458 

Figure 5 shows the spatial average categorical verification results for FBI, FAR, POD, and 459 

CSI in MPSs for the Upper River Derwent highlighted for the period 1st March -14th March. 460 

The categorical results in Figure 5 show that the changes in MPSs which are used to initialize 461 

the WRF model do not greatly affect the numerical values and fluctuating nature of the CSI. 462 

The highest CSI value was associated with WSM5 (0.62) and lowest with WSM3 (0.43). It is 463 

interesting to note that the categorical bias index value increased to 0.88 showing least bias 464 

for the WSM5 scheme based simulation in comparison to all other simulation scenarios. Over 465 

BIRDSALL HOUSE and HIGH MOWTHORPE station regions, both Kessler and the Lin et 466 

al scheme detect almost the same frequency of rain events during low rainfall periods and the 467 

bias index was above 0.95 showing low bias during that period. In the case of all four MPSs, 468 

both FBI and CSI have a similar trend to that of POD with slight disparity in the case of FAR.  469 

The combination of WSM5 and BMJ gave highest value of both POD and FBI; together with 470 

the lowest value of FAR. In the south east  and north west corners of the basin (in positions 471 

like BIRDSALL HOUSE, HIGH MOWTHORPE, MONK END FARM, and KILDALE: 472 

EAST GREEN BECK) there are lower FAR scores in the case of all four MPSs scenarios. 473 

These results suggest that the best MPS selections based on categorical thresholds are WSM5 474 

> Lin et. al. > WSM3 > Kessler for this study region.  475 

 476 

The NS index, Correlation Coefficient, Coefficient of Regression and slope values all 477 

increased in the combination of BMJ scheme with WSM5, Lin.et al and WSM3 micro 478 

physics schemes. The best WRF model setting for a given strategy was selected in such a 479 

way that its performance is satisfactory with the selection of given CPSs and MPSs. This 480 

resulted in the spatial average of RMSE being reduced to 6.40 mm, 4.54 mm and 5.34 mm 481 

for MPS sections of Lin et al., WSM3 and WSM5 respectively. These values are an 482 

improvement of   -30.20%, -50.49%, -41.76% over the combination with Kessler 483 

microphysics with KF1 cumulus scheme (Note: Kessler micro physics scheme was fixed 484 

when we e made comparative simulations for different CPSs in the earlier section). The MBE 485 

values have decreased by 28.78 %, 39.79 % and 51.98 % for the Lin et al; WSM3 and WSM5 486 



micro physics schemes respectively.  Considering both types of index the best model 487 

configuration for our study basin occurs when the WSM5 is combined with BMJ cumulus 488 

scheme. However, the performance of WSM3 combined with BMJ gives a similar value. 489 

 490 

 491 

3.2.2 Temporal Comparison:  492 

When categorical indices for whole simulation period are compared (Figure 7), POD results 493 

in both WSM5 and WSM3 microphysics are better but the highest value of the critical 494 

success index was associated with the Kessler scheme followed by WSM5 and WSM3. There 495 

was little difference in the bias index; however the WSM3 combination with BMJ was 496 

slightly better. The critical success index (CSI) is more stable and differs by only 2%-3% 497 

from the previous highest values. Statistical indicators show reasonably acceptable values for 498 

POD (0.69), FBI (0.88) and FAR (0.31), with a corresponding CSI value of 0.49, indicating a 499 

high level of success for the WSM3 in detecting rare events in this region. The corresponding 500 

values associated with WSM3 are 0.69, 0.88, 0.31 and 0.49, suggesting a comparable 501 

performance.  The higher values of POD than that of FAR show the potential for WRF 502 

models to model convective precipitation in better way. However, in the case of the   503 

temporal comparison of Lin et. al. Scheme, the FAR value was shown to be slightly higher 504 

than POD.  505 

 506 

In comparison to temporal values for CPSs schemes, better NS and MBE have been 507 

identified in both WSM3 and WSM5 micro physics schemes; but lower ones in Lin. et. al. 508 

scheme with NS values of -0.25, -0.25 and -1.85 respectively. On the other hand, the 509 

coefficient of regression and correlation coefficient values increased only in the case of the 510 

WSM3 scheme. So considering both categorical and continuous indices it is possible to say 511 

the better microphysics is found in WSM3 followed by WSM5 when used in conjunction 512 

with the BMJ cumulus scheme. The cumulative variation of precipitation simulated using 513 

different microphysics schemes are shown in the Figure 9 which shows clearly the better 514 

performance of WSM3 in conjunction with BMJ cumulus scheme. To get a better idea of the 515 

variation of the WRF simulated precipitation (WSM3 in conjunction with BMJ) during the 516 

simulation time period, total precipitations at various time scales are shown in the form of 2D 517 

maps in Figure 10.  518 

 519 



In this study convective and stratiform precipitation with the BMJ scheme is in more 520 

agreement with the land based observations in comparison to the other Cumulus schemes 521 

during the simulation scheme. Similar convective parameterization schemes are identified in 522 

a recent WRF sensitivity analysis to downscale summer rainfall over South Africa (Ratna  et 523 

al., 2014).   The lowest track error of cyclones simulated in a recent study by Chandrasekar 524 

and Balaji (2012) with numerical experiments for different cumulus schemes were associated 525 

with the experiment with the BMJ scheme for a 24-hr forecast time. WSM3 usually generates 526 

the shallowest storm and slowest deepening rate (Li and Pu, 2008). The differences in 527 

performance of WSM3 and WSM4 depend on the inclusion and exclusion of mixed-phase 528 

microphysical processes and the method of representing melting-freezing processes. Li and 529 

Pu (2008) showed that WSM3 could predict type 1 hurricanes whereas the WSM5 produced 530 

a storm value 12 hPa deeper than that in WSM3. Evans et al (2012) suggests WSM3 is a 531 

simpler but robust scheme than other more complex schemes that include other classes 532 

(cloud water, cloud ice, rain,snow, vapour). The analysis of Evans et al (2012) of the overall 533 

bias reveals that the precipitation is sensitive to BMJ generally producing lower bias in 534 

comparison to other cumulus scheme. A recent study by Alam (2014) has shown better 535 

performance of WSM3 in heavy rainfall generation over Bangladesh. The study showed that 536 

the WSM3 and Kessler schemes coupling with KF1 and BMJ schemes simulated significant 537 

amounts of rain water mixing ratio between 500 and 100 hPa, but WSM3 simulated a much 538 

higher rain water mixing ratio than that of the Kessler scheme. But in general Lin–KF1 539 

combination gave better performance in this region. It indicates that the performance of 540 

BMJ or WSM3 schemes based on scores cannot be generalised in the study region, and it 541 

varies with the event’s physical processes.  542 

 543 

4. Conclusions: 544 

This study investigated the sensitivity of the WRF mesoscale numeric weather model to the 545 

selection of CPS and MPS to model the Yorkshire – Humberside region (Upper River 546 

Derwent) during the ‘York flood -1999’ event. This analysis of convection permitting 547 

simulations was aimed at increasing the understanding of the role of parameterized cloud 548 

microphysics and cumulus schemes in the simulation of rare events in Northern Yorkshire 549 

focusing on the land based data from the Upper Derwent catchment. The results were 550 

compared with land based precipitation data from 22 rain gauges scattered around region. 551 



This analysis demonstrates that the WRF simulation is very sensitive to the parameterization 552 

of cumulus and microphysical processes. The study has clearly indicated that all CPSs and 553 

MPSs schemes underestimated in describing the average quantity of daily precipitation 554 

during the ‘York Flood – 1999’ in all experiments, though there were few overestimations at 555 

certain locations for specific time steps. While statistical analysis using categorical and 556 

continuous indices gave slightly different results, we selected the best model setup by 557 

considering the superior categorical temporal indices, high values of R, R2, RMSE and lower 558 

values of MBE. In general, the BMJ scheme successfully simulated the spatial and temporal 559 

features of the York flood-1999 although it produced underestimations in both spatial and 560 

temporal scales. The GD cumulus schemes performed poorly with persistent location bias, 561 

and failed to simulate the relevant features in both temporal and spatial scales. The 562 

performance of KF2 and KF1 was comparable but both schemes gave results with higher 563 

values of negative bias. The spatial comparison results were surprising as the relatively 564 

simple KF1 value outperformed the more complex KF2 and GD schemes which would 565 

normally be expected to produce superior results. 566 

 567 

Relatively poor verification results suggest that it is also important to consider the 568 

interactions between various model physical parameterizations in order to find better overall 569 

combinations. For this reason, the study tested different microphysics configuration, fixing 570 

the cumulus scheme to BMJ. As for the BMJ convective schemes in the earlier case, better 571 

values of continuous indices were observed in the case of the WSM3 microphysics scheme 572 

which has outperformed all other three microphysics schemes in both spatial and temporal 573 

scales. There was slight disparity in the case of values obtained from categorical indices. 574 

WSM5 had more favourable categorical index values than WSM3 during temporal 575 

comparison, whereas in the spatial comparison, the WSM3 has outperformed WSM5. Unlike 576 

all other combinations tested in the Derwent basin during the ‘York Flood – 1999’ period, the 577 

model setup employing a combination of WSM5 and BMJ schemes produced superior results 578 

over all the other seven model set-ups. This study has highlighted the influence of explicit 579 

moisture schemes and microphysics on rainfall intensity prediction using WRF. 580 

 581 

Properly parameterized mesoscale numerical model outputs can provide inputs for spatially 582 

explicit distributed hydrologic models that use grid cells as a primary hydrologic unit. For 583 

example, integrated systems like WRF-Hydro can be successfully applied to any region 584 

considering atmospheric, land surface and hydrological processes on grid scale (Gochis et al., 585 



2014).  A study by Nicholas et al (2013) highlighted the use of mescoscale model 586 

meteorological data in stream flow and snowpack response modelling in significantly data 587 

limited mountainous region. WRF could also be integrated with urban modelling systems to 588 

tackle related issues and to bridge the gaps between mesoscle and microscale modelling 589 

(Chen et al., 2011). Fowler (2005) noted that Yorkshire floods are a product of complex 590 

interaction of the spatial-temporal rainfall pattern and hydrological connectivity of ungauged 591 

catchments. This study has presented a case study at a catchment scale focusing on flood 592 

events that occurred in a certain year. As it looked at a single event in detail the results may 593 

not be generalizable to all forms of convection occurring in Yorkshire-Humberside region. 594 

The primary contribution of this study is to provide some insight into how critical is the 595 

choice of cumulus and microphysics parameterization in regional scale. However it has 596 

highlighted how choice of parameterization can influence model results and has indicated 597 

how this can be very important in predicting high intensity rainfall events.  Accurate 598 

prediction depends on horizontal/vertical resolutions, coupling with ocean, data assimilation, 599 

model initialization etc. The choice of the downscaling ratios also would have an influence of 600 

downscaled precipitation. 601 

 602 
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790 



Table 1: Details of different stations in Yorkshire –Humber region used for comparison 791 

of WRF results  792 

Number  Site  LAT LONG 

1 BIRDSALL HOUSE  54.076 -0.748 

2 HIGH MOWTHORPE  54.105 -0.641 

3 MONK END FARM     54.480 -0.963 

4 KILDALE: EAST GREEN BECK    54.480 -1.043 

5 CRATHORNE HOUSE  54.464 -1.322 

6 SCALING RESR NO 3    54.505 -0.845 

7 MULGRAVE CASTLE  54.501 -0.694 

8 DANBY MOOR CENTRE  ) 54.466 -0.895 

9 RANDY MERE RESR 54.409 -0.752 

10 WHITBY    54.481 -0.624 

11 WHITBY COASTGUARD  54.490 -0.604 

12 SCARBOROUGH  54.273 -0.421 

13 HIGH MOWTHORPE  54.105 -0.641 

14 COXWOLD STORES  54.187 -1.182 

15 IRTON P STA     54.242 -0.458 

16 GANTON: GOLF CLUB  54.190 -0.494 

17 RAVENSWICK    54.277 -0.916 

18 HOVINGHAM HALL  54.173 -0.980 

19 KELD HEAD  54.245 -0.806 

20 KIRBY MISPERTON     54.198 -0.790 

21 BIRDSALL HOUSE  54.076 -0.749 

22 ELVINGTON W WKS     53.927 -0.927 

Source: British Atmospheric Data Centre (badc.nerc.ac.uk) 793 
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 804 

Table 2: A brief summary WRF model configuration in Yorkshire-Humberside 805 

Number  Features  Details  

1 Nesting option 4 nests with 1 km inner and 27 
km outer dimensions 

2 Vertical coordinate Terrain following σp 

3 Horizontal grid Arakawa-C 

4 Projection  Lambert 

5 Time integration scheme Third-order Runga–Kutta 
scheme 

6 Microphysics Kessler scheme, Lin et.al. 
Scheme, WSM3, WSM5,  

7 Convection GD, BMJ, KF1, KF2 

8 Radiation Dudhia shortwave radiation 
scheme (Dudhia, 1989) and the 
rapid radiative transfer model 
long-wave radiation scheme 

(Mlawer et al., 1997) 

9 Planetary boundary layer (PBL) Yonsei University planetary 
scheme 



10 Land surface model Pleim-Xiu Land Surface Model 
(Xiu and Pleim, 2001) 

 806 

 807 

 808 

 809 

 810 

Table 3: Details of nested domains, grid spacing and downscaling ratio used in 811 
Yorkshire-Humberside WRF modelling  812 

Domain  Time step 
(hour) 

Grid (km) Number of 
grids 

Domain size 
(km2) 

Downscaling 
ratio 

Domain 1 3 27 34 x 28 918 x 756 - 

Domain 2 1 9 55 x 58 495 x 522 1:3 

Domain 3 1 3 82 x 85 246 x 255 1:3 

Domain 4 1 1 103 x 94 103 x 94 1:3 
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 815 

 816 

 817 

 818 

Table 4: Comparison of the four WRF cumulus parameterization schemes used in this 819 
study 820 

CPSs Trigger function Precipitation 
scheme 

Closure 
assumption 

Changes from 
predecessor 
and other 

details  

KF1 CAPE-based 
Cloud depth >4km 

CAPE is 
removed from 
grid in 
convective 

1D mass 
conservative 

cloud model 

 

Nil  



time scale No Shallow- 

convection 

No Momentum- 

tendencies 

 

Moisture 
tendencies: Qc 
Qr Qi Qs 

 

Cores: ARW 

KF2 CAPE-based 
Cloud depth >3km 

 

 

- Do - 

 

 

- Do - 

Cloud radius 
and cloud depth 

threshold for 
deep 

convection can 
vary 

 

The effects of 
shallow 

convection is 
also included 

 

No Momentum- 

tendencies 

 

Moisture 
tendencies: Qc 
Qr Qi Qs 

 

Cores: ARW 



NMM 

BMJ Based on an 
instability Cloud 
depth >200 hPa 
Sufficient 
moisture above 
cloud base 

An adjustment 
towards an 
equilibrium 
reference 
profile 

Adjustment 
scheme 

 

 No cloud model 

Reference 
profile and 

relaxation time 
depends on 

parameters that 
characterize 

the environment 

 

Trigger function 
to account 

for higher 
resolution 

No Momentum- 

tendencies 

 

 

Cores: ARW 
NMM 

 

GD Trigger function 
varies for each 
member but are 
commonly based 
on:  

CAPE 

CAPE trend 
Moisture 
convergence 

Multi-closure, 
can be based 
on: 

 CAPE 
Moisture 
convergence 
Low-level 
vertical 
velocity 

Cloud model 
with updraft and 
downdraft fluxes 

 

No lateral 
entrainment and 
detrainment 

 

Changes in 
moisture is 

averaged over 

Combines the 
strength 

of different 
closure 

assumptions in 
one scheme 

No Shallow- 

convection 

No Momentum- 

tendencies 



all 

members 

 

Moisture 
tendencies: Qc 
Qi  

 

Cores: ARW 
NMM 
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 825 

 826 



Table 5: Spatial comparison (in terms of different continuous statistical indices) of different CPSs based WRF results with 
corresponding weather stations 

CPSs Indices  Weather station number 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

KF1 NS 0.11 -0.05 0.03 0.44 0.25 0.20 0.26 -0.30 0.16 0.29 0.19 -1.43 -0.05 -0.57 -2.32 -0.70 -2.53 -0.21 -2.55 -0.85 0.11 0.25 

R2 0.35 0.25 0.20 0.73 0.55 0.62 0.59 0.68 0.69 0.60 0.50 0.28 0.25 0.26 0.26 0.28 0.16 0.22 -0.10 -0.06 0.35 0.52 

R 0.12 0.06 0.04 0.53 0.31 0.39 0.34 0.46 0.48 0.36 0.25 0.08 0.06 0.07 0.07 0.08 0.02 0.05 0.01 0.00 0.12 0.28 

MBE 0.73 0.42 8.54 -1.83 -0.41 -0.89 1.66 -7.02 -2.73 2.77 5.55 -1.75 0.42 -2.25 -3.92 -1.57 -6.76 -0.93 -6.17 -0.94 0.73 -0.55 

RMSE 6.32 6.55 16.96 12.22 6.16 11.56 8.82 16.60 9.97 9.59 10.17 8.71 6.55 5.14 11.94 6.52 15.52 5.30 15.22 7.36 6.32 4.12 

S 0.80 0.43 0.83 0.71 0.70 0.59 0.68 0.42 0.55 0.73 1.03 0.18 0.43 0.21 0.12 0.23 0.05 0.30 -0.04 -0.06 0.80 0.76 

KF2 NS 0.19 -0.07 0.02 0.09 0.14 -0.10 -0.05 -0.59 -0.31 -0.21 0.29 -0.67 -0.07 -0.55 -1.60 -0.85 -2.54 -0.45 -2.24 -0.94 0.19 0.24 

R2 0.44 0.28 0.18 0.68 0.50 0.54 0.50 0.57 0.48 0.52 0.57 0.44 0.28 0.18 0.37 0.21 0.13 0.15 -0.05 0.03 0.44 0.50 

R 0.19 0.08 0.03 0.46 0.25 0.29 0.25 0.32 0.23 0.27 0.32 0.19 0.08 0.03 0.14 0.04 0.02 0.02 0.00 0.00 0.19 0.25 

MBE 0.25 0.18 6.17 -5.00 -1.30 -3.71 -1.48 -8.81 -4.02 -1.63 1.82 -1.94 0.18 -2.44 -4.24 -1.70 -6.90 -1.96 -6.89 -2.00 0.25 -0.08 

RMSE 5.34 5.87 14.13 13.21 6.40 12.82 8.70 18.95 12.94 8.43 6.32 8.04 5.87 5.62 11.56 6.80 15.70 5.18 15.19 6.55 5.34 4.63 

S 0.90 0.42 0.65 0.53 0.61 0.46 0.48 0.34 0.39 0.42 0.86 0.31 0.42 0.16 0.19 0.17 0.04 0.16 -0.02 0.03 0.90 0.83 

BMJ NS 0.15 0.00 0.03 0.42 0.27 0.21 0.30 -0.20 0.07 0.31 0.13 -1.33 0.00 -0.53 -2.27 -0.81 -2.63 -0.24 -2.39 -0.81 0.15 0.26 



R2 0.40 0.29 0.19 0.73 0.57 0.61 0.61 0.68 0.64 0.62 0.42 0.41 0.29 0.28 0.28 0.22 0.12 0.23 -0.08 0.00 0.40 0.52 

R 0.16 0.08 0.04 0.53 0.32 0.37 0.37 0.46 0.41 0.38 0.17 0.17 0.08 0.08 0.08 0.05 0.01 0.05 0.01 0.00 0.16 0.27 

MBE 1.02 0.95 8.51 -2.33 -0.45 -1.12 0.79 -7.08 -2.86 1.74 4.42 -2.55 0.95 -2.40 -4.24 -1.46 -6.65 -1.29 -6.57 -1.53 1.02 -0.32 

RMSE 6.32 6.60 17.05 12.23 5.97 11.98 8.44 16.54 10.75 8.78 9.58 8.08 6.60 5.12 11.94 6.76 15.63 5.14 15.25 7.03 6.32 4.28 

S 0.94 0.50 0.80 0.70 0.71 0.60 0.70 0.44 0.53 0.71 0.80 0.23 0.50 0.23 0.12 0.18 0.04 0.29 -0.03 0.00 0.94 0.80 

GD NS 0.08 -0.03 0.03 0.35 0.25 0.13 0.31 -0.33 0.01 0.31 0.19 -1.19 -0.03 -0.68 -1.91 -0.84 -2.54 -0.41 -2.33 -0.90 0.19 0.24 

R2 0.31 0.27 0.21 0.69 0.55 0.58 0.61 0.64 0.63 0.61 0.48 0.36 0.27 0.21 0.34 0.21 0.12 0.18 -0.06 0.07 0.44 0.50 

R 0.10 0.07 0.04 0.48 0.31 0.33 0.37 0.41 0.40 0.37 0.23 0.13 0.07 0.04 0.11 0.04 0.02 0.03 0.00 0.00 0.19 0.25 

MBE 0.39 0.25 8.78 -1.95 -0.46 -0.47 0.95 -6.50 -2.85 2.04 4.95 -1.96 0.25 -2.43 -4.22 -1.66 -6.85 -1.88 -6.75 -1.88 0.29 0.01 

RMSE 6.58 6.67 16.99 12.81 6.18 12.40 8.52 16.97 10.76 9.15 9.86 8.33 6.67 5.25 11.67 6.82 15.70 5.05 15.13 6.42 5.38 4.68 

S 0.74 0.46 0.85 0.66 0.71 0.56 0.71 0.41 0.50 0.73 0.98 0.23 0.46 0.17 0.16 0.17 0.04 0.20 -0.02 0.06 0.91 0.83 

 

Table 6: Temporal comparison (in terms of different continuous statistical indices) of different CPSs based WRF results with 
corresponding weather stations 

CPSs Indices  WRF Simulation days 

1-Mar-
99 

2-Mar-
99 

3-Mar-
99 

4-Mar-
99 

5-Mar-
99 

6-Mar-
99 

7-Mar-
99 

8-Mar-
99 

9-Mar-
99 

10-Mar-
99 

11-Mar-
99 

12-Mar-
99 

13-Mar-
99 

14-Mar-
99 

KF1 NS -0.50 0.02 -0.17 0.28 0.02 -0.52 0.18 -1.21 0.02 -0.75 -0.13 -0.44 0.02 -0.07 



R2 0.09 0.57 0.46 0.69 0.51 0.49 0.51 0.66 0.33 0.33 0.08 0.54 0.30 0.10 

R 0.01 0.32 0.21 0.48 0.26 0.24 0.26 0.44 0.11 0.11 0.01 0.29 0.09 0.01 

MBE -9.10 12.75 -3.02 5.43 -4.99 -14.57 9.57 -6.58 4.56 -3.68 0.00 -2.83 1.60 0.07 

RMSE 11.22 13.38 3.58 7.19 14.28 20.47 15.74 11.19 6.58 5.13 0.31 3.44 2.27 0.13 

S 0.01 2.33 0.30 1.01 0.51 0.24 0.92 0.22 0.57 0.11 0.18 0.10 0.59 0.22 

KF2 NS -0.51 0.03 -0.26 0.35 -0.07 -0.67 0.29 -1.32 0.22 -0.57 -0.24 -0.44 0.02 -3.05 

R2 0.04 0.69 -0.13 0.76 0.54 0.37 0.61 0.71 0.71 0.42 0.13 0.59 0.30 -0.08 

R 0.00 0.48 0.02 0.58 0.29 0.14 0.37 0.50 0.51 0.18 0.02 0.35 0.09 0.01 

MBE -9.17 11.95 -3.10 4.73 -6.56 -17.99 6.64 -7.33 -1.70 -4.62 -0.04 -3.02 1.43 0.00 

RMSE 11.29 12.32 5.78 6.09 13.67 23.73 11.85 11.89 2.64 5.84 0.23 3.63 2.08 0.05 

S 0.00 2.28 -0.25 1.00 0.47 0.08 0.94 0.17 0.63 0.06 0.20 0.06 0.56 -0.05 

BMJ NS -0.50 0.02 -0.52 0.32 0.07 -0.52 0.18 -1.30 0.20 -0.71 -0.14 -0.46 -0.17 -0.16 

R2 0.09 0.57 -0.07 0.72 0.53 0.46 0.51 0.65 0.55 0.33 0.13 0.39 0.08 0.08 

R 0.01 0.33 0.00 0.52 0.28 0.21 0.26 0.43 0.30 0.11 0.02 0.15 0.01 0.01 

MBE -9.10 12.69 -1.38 5.23 -5.05 -15.19 9.55 -6.54 2.23 -4.07 -0.01 -2.92 0.89 0.04 

RMSE 11.22 13.26 3.96 6.93 13.92 21.11 15.79 11.26 3.97 5.44 0.27 3.55 1.82 0.10 

S 0.01 2.24 -0.09 1.06 0.54 0.22 0.91 0.21 0.75 0.07 0.25 0.06 0.14 0.14 



GD NS -0.50 0.02 -0.10 0.30 0.05 -0.59 0.19 -1.34 0.18 -0.73 -0.11 -0.46 0.02 -0.50 

R2 0.06 0.54 0.19 0.71 0.54 0.46 0.52 0.67 0.47 0.40 0.12 0.36 0.35 -0.09 

R 0.00 0.29 0.03 0.50 0.29 0.22 0.27 0.45 0.22 0.16 0.01 0.13 0.12 0.01 

MBE -9.17 12.95 -3.18 5.48 -5.46 -14.92 9.26 -6.30 3.33 -3.81 -0.01 -2.93 0.77 0.03 

RMSE 11.29 13.51 4.70 7.19 13.76 20.88 15.67 11.06 7.01 5.18 0.30 3.56 1.47 0.09 

S 0.01 2.11 0.28 1.04 0.53 0.20 0.95 0.21 1.18 0.10 0.25 0.06 0.52 -0.12 

 

 



 



Figure 1 Dimensions of the nested domains for different model settings which are centred over the River Derwent catchment, Yorkshire-

Humberside. d01, d02, d03 and d04 refer to the four domains (refer table 4 for details) 

 

 

 



Figure 2: The observed rainfall during 1st March- 14th March 1999 from different stations at Derwent, Yorkshire [N.B. refer table 2 and 

figure 4 to for the locations of stations] 

 

 



Figure 3: The accumulated rainfall during 1st March- 14th March 1999 from different stations at Derwent, Yorkshire [N.B. refer table 2 

and figure 4 to for the locations of stations] 

 







 









 



 

Figure 4: The spatial and temporal variation of precipitation during ‘York Flood – 1999’ period [N.B: the numbers are corresponding 

weather stations as mentioned in the table 2] 

 

 



 

Figure 5: Spatial variation of categorical indices with selection of different CPSs and MPSs during York Flood - 1999 

 



 

 

 

Figure 6: WRF simulated precipitation under different CPSs /MPSs and observed catchment precipitations during ‘York Flood -1999’ 

corresponding to different weather stations [daily average of 1st March- 14th March 1999] 



 

 

Figure 7: Temporal variation of categorical indices with selection of different CPSs and MPSs during York Flood- 1999 



 

Figure 8: Cumulative variation of WRF predicted precipitation during ‘York Flood – 1999’ using different CPSs 

 

 



 

 

Figure 9: Cumulative variation of WRF predicted precipitation during ‘York Flood – 1999’ using different MPSs 

 



 

 









 

Figure 10: The accumulated precipitation results obtained from WRF with WRF SM3 and BMJ schemes from 1st March to 14th march 

1999 

 



 




