
Abstract 

The effects of surface irregularities and imperfections on the thermal resistance at a solid- 
liquid  interface  have  been  investigated  using  molecular  dynamics.  The  molecular  model 

comprises liquid argon confined between silver walls. The surface roughness was designed 

using fractal theory, introducing stochastic patterns of multiple scales that resemble realistic 

surface geometries. In agreement with most previous studies, we find that increasing the 

strength of the solid-liquid interactions, monotonically reduces the thermal resistance across 

smooth interfaces. Yet, the behaviour of the thermal resistance across rough surfaces is more 

complex. Following the initially anticipated decrease, the thermal resistance starts to increase 

once  the  strength  of  solid-liquid  interaction  increases  past  a  threshold.  We  attribute  the 

above behaviour to two competing phenomena, namely the area of the solid-liquid interface, 

and  the  introduction  of  vibrational  anharmonicities  and  localisation  of  phonons  resulting 

from the surface roughness. Finally, we demonstrate that, for the same fractal dimension and 

depth of surface roughness, different surfaces practically have the same thermal resistance, 

solid-liquid radial distribution function and liquid density profiles. We conclude that the above 

fractal parameters are useful in deriving reduced models for properties related to the surface 

geometry. 

Introduction 

The development of complex systems such as high performance computing and aerospace 

electronic equipment, have established thermal management as a key design consideration. 

Liquid  cooling  is  an  effective  way  to  release  excess  heat  from  the  systems.  As  the 

characteristic dimensions of the system decrease, the surface-to-volume ratio increases, and 

therefore the efficiency of liquid cooling should, in theory, increase as well. Yet at nanoscale 

dimensions,  a  common  bottleneck  is  the  thermal  resistance  at  the  solid-liquid  interface, 

which impedes the transfer of heat into the liquid. 

The  Interfacial  Thermal  Resistance  (ITR)  between  two  materials  can  be  described 

asymptotically  by  two  models:  the  Acoustic  Mismatch  Model  (AMM)  [1]  and  the  Diffuse 

Mismatch Model (DMM) [2]. The AMM treats phonons as planar waves with wavelengths 

significantly greater than the atomic spacing. Waves incident on the interface will either be 

transmitted (refraction) or reflected, depending on a transmission probability that is itself a 

function of the acoustic impedances of the two materials. A major assumption of AMM is that 

all reflections are specular. Interfaces exhibiting many scattering events—such as systems at 

high temperatures or surfaces that contain surface roughness—are inaccurately captured by 

the AMM. The DMM assumes that all incident phonons that are not transmitted, are reflected 

diffusively. Both theories are based on strong assumptions that do not generally hold.  
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The AMM and DMM also ignore significant molecular phenomena. Molecular interactions 
between the solid and liquid regulate the momentum transfer between the two materials. 
Furthermore, the liquid in the vicinity of a solid surface has different vibrational properties 
compared to the same liquid in its bulk form [3], which depend on the wetting properties of 
the solid [4]. Increasing the strength of the solid-liquid interactions exponentially decreases 
the ITR [5, 6, 7, 8], a fact that the AMM and DMM completely dismiss. The molecular mass of 
the solid wall also affects the thermal resistance, with an increase in molecular mass resulting 
in an increase of ITR [9]. The density of liquids in the vicinity of a smooth solid surface 
fluctuates due to the formation of structured liquid layers parallel to the surface, which is in 
turn a result of the solid-liquid interactions. A MD study found that the liquid density of the 
first such layer adjacent to a solid was strongly correlated to the thermal resistance [10]. A 
computational investigation has shown that the crystallographic orientation of silicon affects 
the thermal resistance at the silicon/water interface despite the fact that both orientations 
resulted in the same wetting properties for the solid.  

Many of the computational studies on ITR consider atomically flawless solid surfaces, an 
idealistic simplification considering that most realistic surfaces are inherently rough. Surface 
roughness exposes more surface area to the liquid, theoretically facilitating energy transfer 
across the interface. Additionally, surface roughness affects the solid’s wetting properties [11, 
12, 13, 14]; its effect on the wettability of the solid depends on the width and depth of the 
protrusions of the wall, as well as on the type of liquid at the interface. Surface roughness can 
also increase the number of phonon scattering events [2] which could potentially have an 
impact on ITR. 

Previous MD studies have investigated the effect of roughness on the ITR. Periodic, 
rectangular patterns on a solid surface reduce the thermal resistance, with the reduction 
being accentuated when increasing the depth and width of the rectangular protrusions [15]. 
A two-dimensional molecular model was proposed based on fractal Cantor sets to create 
rectangular protrusions of different frequency and height [16]. MD simulations using the 
above model showed that an increase of the average height of the protrusions and the level 
of surface irregularity reduces the ITR. Furthermore, the thermal resistance between liquid 
water and self-assembled monolayers—a combination of CF3 and OH groups—is also 
decreased on rough surfaces due to the larger surface area exposed to water [17]. But when 
normalised by the area of the rough surface, the intrinsic thermal resistance showed 
different, and subtler changes: the thermal resistance increased for the more irregular 
surfaces but decreased when a smooth sinusoidal surface was considered. A more recent 
study investigated the interfacial thermal conductance at the wall, considering rectangular 
protrusions of different depth and width, as well as different values for the strength of the 
solid-liquid interactions [18]. The conclusion of the paper was that, at hydrophobic surfaces, 
larger groves resulted in lower thermal conductance than smaller ones, since the liquid’s 
surface tension would prevent it from filling up the grooves, resulting in a smaller effective 
area for heat transfer, i.e. the Cassie regime [19]. At hydrophilic surfaces, i.e. the Wenzel 
regime [12], larger grooves resulted in greater conductance, and roughness seemed to 
increase conductance, relative to the smooth surface. 

MD models previously used to study the effects of roughness on thermal resistance are either 
two-dimensional models, or model surface roughness as simple oscillations of a certain 
wavenumber and amplitude. The authors have shown that a more realistic, three-
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dimensional fractal model predicts different thermodynamic properties [20] and flow 
dynamics [21] than 2D models. 

Using fractal theory to design roughness that mimics the multiple scales of realistic surfaces 
and performing MD simulations for such surfaces can shed light on interfacial phenomena 
and parameters that affect the ITR; this is the overall aim of this study. The multivariate 
Weierstrass-Mandelbrot (W-M) fractal function has been employed for generating two 
symmetric rough walls. Non-equilibrium molecular dynamics (NEMD) has been employed to 
study ITR for different strength values of the solid-liquid interaction.  

Methodology 

The model consists of liquid argon between two silver walls. Rough wall geometries have been 
generated using the multivariate W-M function [22]: 

𝑦(𝑥, 𝑧) = 𝐶 ∑ ∑ 𝛾(𝐷𝑠−3) {cos 𝛷𝑚,𝑛 − cos [2𝜋𝛾𝑛√(𝑥2+𝑧2)𝐿𝑀𝐴𝑋 . cos (𝑡𝑎𝑛−1 (𝑧𝑥) −𝑛𝑚𝑎𝑥𝑛=0𝑀𝑚=1 𝜋𝑚𝑀 ) + 𝛷𝑚,𝑛]}. 
(1) 

W-M embeds 𝑀 surfaces and each one of them is a superposition of nmax different 
frequencies. The frequencies on each surface are indexed by the integers 𝑛 and 𝑚 
respectively and are offset by a random phase 𝛷𝑚,𝑛. The parameter 𝛾 is the frequency density 
and  𝐿𝑀𝐴𝑋 is the size of the sample; in the present study 𝐿𝑀𝐴𝑋 =   𝐿𝑥 = 𝐿𝑧. The parameter 𝐷𝑠 
is the fractal dimension, an indication of the fractal’s ability to fill up space. For a three-
dimensional fractal, 2 < 𝐷𝑠 < 3. Finally, 𝐶 is a scaling factor determining the average 
amplitude of the waves:  

𝐶 = 𝐿𝑀𝐴𝑋 ( 𝐺𝐿𝑀𝐴𝑋)𝐷𝑠−2 (𝑙𝑛𝛾𝑀 )1 2⁄ , (2) 

where 𝐺 is the roughness parameter that can be adjusted to obtain different depths of 
roughness.  

In the theoretical limit, a perfect fractal corresponds to an infinite number of frequencies, i.e. 𝑛𝑚𝑎𝑥 → ∞. However, a more practical value can be selected by using  𝑛𝑚𝑎𝑥 = [𝑙𝑜𝑔(𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛⁄ )𝑙𝑜𝑔 𝛾 ], (3) 

where 𝐿𝑚𝑖𝑛 is the smallest wavelength in the system. Equation (3) ensures that the 
wavelengths span from 𝐿𝑚𝑖𝑛 to 𝐿𝑚𝑎𝑥. In general, the frequency density can take any value 
greater than one and in this paper 𝛾 = 1.5, which does not result in repeated wavelengths; 
another commonly used value is 𝛾 = 5.  

The dimensions of the simulation box in the 𝑥, 𝑧 and 𝑦 directions were set equal to 𝐿𝑥 = 𝐿𝑧 = 
7.4 𝑛𝑚, and 𝐿𝑦 = 14.4 𝑛𝑚, respectively (Figure 1). Each geometry starts as a single smooth 
solid block, corresponding to the lower wall. This initial solid block consists of 22 layers of 
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particles located perpendicular to the y direction. We then use the middle of this wall, i.e. the 

11th  layer,  as  a  reference  point,  henceforth  refer  to  as  the  centreline.  Starting  from  this 

centreline we compute the W-M function for different values of G, and delete all atoms that 

are located above this function. For the smooth wall we delete all layers above the centreline, 

i.e. the smooth wall consists of 11 layers. We obtain the upper wall through reflection.  

The  fractal  dimension  considered  here  is  𝐷𝑠 = 2.5  corresponding  to  a  highly  irregular 

topography. For this study we have considered three different roughness amplitudes, 𝐺 = 0, 𝐺 = 0.4 and 𝐺 = 0.8, where 𝐺 = 0 corresponds to a smooth, atomically flawless wall and 𝐺 = 

0.8 corresponds to a surface with large fluctuations (Figure 1). To quantify the uncertainty 

related to the stochastic nature of the fractal model, we generated three different geometries 

for each non-zero value of G (i.e. G=0.4 and G=0.8) by adjusting the random phase 𝛷𝑚,𝑛. Thus 

we consider seven geometries in total: one for G = 0, three for G=0.4, and three for G=0.8.  

All simulations were carried out using the open-source MD simulator LAMMPS [23]. The wall- 
fluid and fluid-fluid interactions were modelled using the 12-6 Lennard-Jones (LJ) potential: 

𝑣𝑖𝑗𝐿𝐽 = 4𝜀 [( 𝜎𝑟𝑖𝑗)12 − ( 𝜎𝑟𝑖𝑗)6], (4) 

where 𝜀 is the depth of the potential well and quantifies the strength of the interaction, 𝜎 is 
the van der Waals radius and 𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗. For the fluid-fluid 

interactions we used the parameters 𝜀𝑓𝑓 = 0.0104 𝑒𝑉 and 𝜎𝑓𝑓 = 3.405 Å. The strength of 

the solid-liquid interaction is a parameter of interest. Thus we have considered six different 
values: 𝜀𝑤𝑓 = 0.002 𝑒𝑉,  𝜀𝑤𝑓 = 0.008 𝑒𝑉, 𝜀𝑤𝑓 = 0.020 𝑒𝑉, 𝜀𝑤𝑓 = 0.040 𝑒𝑉, 𝜀𝑤𝑓 =0.060 𝑒𝑉, and 𝜀𝑤𝑓 = 0.080 𝑒𝑉.  

The wall atoms were modelled using the EAM potential: 𝑣𝑖𝐸𝐴𝑀 = ∑ 𝑣(𝑟𝑖𝑗) + 𝑓 (𝜌(𝑟𝑖𝑗))𝑗≠1 , (5) 

where 𝑣𝑖𝑗 is a pair potential interaction, 𝜌(𝑟𝑖𝑗) is the local electron density and 𝑓(𝜌) is an 

embedding function. The three parameters for Eq. 5 are read from a large file [24]; we used 
the file from the National Institute of Standards and Technology web site, at 
https://www.ctcms.nist.gov/potentials. The lattice constant was set equal to 4.086 Å which 
corresponds to silver.  

 

https://www.ctcms.nist.gov/potentials
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Figure 1:  Left: MD model illustrating liquid argon (cyan) confined by two silver walls 

(grey). Right: Surfaces of different depth of roughness. 

The cutoff distance is 7.495 Å and the silver and argon masses were 𝑚𝐴𝑔  =  107.9 𝑔/𝑚𝑜𝑙 

and 𝑚𝐴𝑟  =  39.948 𝑔/𝑚𝑜𝑙, respectively. Due to the complex nature of the wall geometry, 
the dynamic Voronoi tessellation on the position of the atoms was employed to calculate the 
volume of the channel. The number of liquid atoms varied between cases to retain a constant 
density of  1.4 𝑔/𝑐𝑚3. 

To control the temperature of the system the Langevin thermostats were applied in the first 
four outmost layers of the silver walls, which were also attached onto their initial lattice sites 
by springs [25]. A temperature difference between the lower and the upper wall was induced 
by setting 𝑇𝑙𝑜𝑤−𝑤𝑎𝑙𝑙 = 90 𝐾 and 𝑇ℎ𝑖𝑔ℎ−𝑤𝑎𝑙𝑙 = 140 𝐾.  

Time integration was performed using the Verlet algorithm, with a timestep equal to 5 × 10−3 𝑝𝑠. An initialisation period of 106 timesteps was used to ensure a linear 
temperature profile across the channel height, and a converged pressure. Following the 
initialisation phase, the system was sampled for a further2 × 106 timesteps for the 
calculation of the thermal resistance.  

To measure the temperature across the nanochannel the equipartition theorem was used: 

 𝑇 = 23𝑁𝑘𝑏 ∙ 〈𝐸𝑘𝑖𝑛〉, (6) 

where 〈𝐸𝑘𝑖𝑛〉 is the total kinetic energy, 𝑁 the total number of atoms and 𝑘𝑏 = 1.38 ∙10−23 𝑚2𝑘𝑔𝑠−2𝐾−1 the Boltzmann constant. ITR can be estimated according to:  
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 𝑅𝑘 = 𝛥𝑇𝑞 = 𝛥𝑇𝑄 𝐴⁄ ,  (7) 

where 𝛥𝑇 = 𝑇𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑇𝑤𝑎𝑙𝑙 is the temperature jump at the interface and 𝑞 is the heat flux. 

The heat flux is calculated by the heat 𝑄 generated by the Langevin thermostats divided by 
the surface area 𝐴 of the thermostat.  

To  calculate  the  temperature  jump  we  used  linear  regression  to  compute  continuous 
temperature profiles for the liquid and wall. We then calculated the temperature jump as the 
difference between the two profiles at the location of the centreline. As described earlier, 
this corresponds to the location of the surface of the smooth wall.  

A  final  note,  due  to  the  irregular  nature  of  the  geometry  under  consideration,  the  local 
thermal  conductance  changes  across  the  solid  surface.  The  calculated  thermal  resistance 
corresponds to the inverse of the conductance averaged across the entire rough surface. 

To  investigate  the  liquid  structure  next  to  the  solid  wall,  we  calculate  the  liquid  density 
profiles. Specifically, we used a scheme very similar to that proposed by Willard and Chandler 
[26]. In brief, the density profiles are calculated by measuring the minimum distance between 
each liquid atom and the wall. These distances are segregated into a histogram of bin size 0.05Å. The number of atoms in each bin is then normalised by the product of the dimensions 
of the simulation box parallel to the mean orientation of the surface (i.e. 𝐿𝑥, 𝐿𝑧), and the bin 

size, i.e.  74 × 74 × 0.05Å = 273.8 Å3 . A slight discrepancy between the method used here 
and that by  Willard and Chandler [26] is that in their approach, they identified the interface 
using density iso-surfaces; subsequently the distances considered were those between the 
liquid atoms and these iso-surfaces. The complex structure of our geometries results in pretty 
discontinuous iso-surfaces [20, 21]. Instead, we identified the interface as the solid atoms 

that are within a distance of 4Å from liquid atoms (the value of 4Å was obtained from the 
Radial  Distribution  Functions  (RDF)  and  is  the  distance  that  includes  the  first  peak).  Also, 
Willard and Chandler distinguish between a mean and instantaneous interface; here the two 
coincide as the surface remains constant with time.  

To better understand the underlying physical mechanisms behind the thermal resistance, we 
study  the  phonon  behaviour  in  the  solid  walls.  We  do  this  by  considering  the  Vibrational 
Density  of  States (VDOS) of  the solid walls. This is calculated  by  Fourier transforming the 
velocity  autocorrelation  function  of  the  wall  atoms.  Specifically,  we  sample  the  atomic 
velocities  every  15  timesteps,  for  a  total  of  10500  timesteps.  We  then  calculate  the 
autocorrelation function of the velocities. The VDOS are obtained by calculating the spectra 
of the velocity autocorrelation function, which we obtain through the Welch method with a 
50% overlapping window [27, 28]. To reduce statistical noise, we averaged the VDOS over 10 
different samples, i.e. simulations with the same macrostate but starting from a different 
microstate.  We  also  normalise  the  VDOS  by  the  number  of  solid  atoms  used  for  the 
calculation, as this differs between different cases.  

Finally, to gain insight into the dynamic behaviour of the phonons, we consider the Heat Flux 
Autocorrelation Function (HFACF) within the solid. This is calculated as the autocorrelation 
function of the microscopic heat flux, the latter of which is defined as: 
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 𝑱 =  1𝑉 (∑ 𝐸𝑖𝒗𝑖𝑖 + 12 ∑ (𝒇𝑖𝑗 . 𝒗𝑗)𝑟𝑖𝑗𝑖<𝑗 ),  (8) 

where the subscripts 𝑖 and 𝑗 denote two arbitrary atoms; 𝐸𝑖 and 𝒗𝑖 are the total energy and 

velocity, respectively, of atom 𝑖; and 𝒇𝑖𝑗 and 𝑟𝑖𝑗 are the interatomic force, and interatomic distance, 

respectively, between atoms 𝑖 and 𝑗.   For the calculation of the HFACF we used a correlation 
length of 104. Furthermore, to minimise statistical noise we averaged the HFACF over 30 
samples for each case.  Finally, Eq. 8 only considers the solid atoms at the cold wall, and 
excludes atoms in the four initial layers that are attached by springs, i.e. the indices 𝑖 and 𝑗 
only run through these atoms.  

The integral of the HFACF is proportional to the thermal conductivity, as described by the 
Green-Kubo relations. Note that the correlation length of 104 timesteps is not long enough 
for the HFACF to converge to zero, as required by the Green-Kubo. In this study, however, we 
are only interested in the qualitative differences of the function between the different cases. 
To that end, our choice of correlation length provides the information that we require, while 
managing computational resources.    

Results 

For  the  majority of  this  study  we  focus  on  the  cold  wall  as  the  behaviour  of  the thermal 
resistance  at  the  hot  and  cold  wall  is  qualitatively  the  same.  Some  minor  quantitative 
differences are discussed at the end of this section. 

The ITR distributions for different depths of surface roughness and strengths of the solid- 
liquid  interactions  are  shown  in  Figure  2a.    For  smooth  surfaces,  the  ITR  decreases 
monotonically with increasing strength of solid-liquid interaction, which agrees with most 
published results [5, 6, 7, 8]. The above behaviour is related to better coupling between the 
two materials. Thus for very low values of 𝜀𝑤𝑓, the solid and liquid atoms practically vibrate 

independently  of  each  other,  while  increasing  𝜀𝑤𝑓  increases  the  probability  of  phonon 

transmission across the interface.  

In the presence of surface roughness, increasing 𝜀𝑤𝑓 initially results in a similar decay in ITR. 

As the solid-liquid interaction increases further the ITR starts to increase slightly (Figure 2a). 
Furthermore, the effect of surface roughness seems to be more prominent at lower values of  𝜀𝑤𝑓,  where  increasing  the  depth  of  surface  roughness  results  in  a  decrease  in  thermal 

resistance(Figure  2b).  For  higher  values  of  𝜀𝑤𝑓,  introducing  and  increasing  the  depth  of 

surface roughness results in very little change and for 𝜀𝑤𝑓 = 0.06 𝑒𝑉 and 𝜀𝑤𝑓 = 0.08 𝑒𝑉, we 

even observe a slight increase in the thermal resistance. This finding is partly in disagreement 
with previous studies that usually show a strictly decreasing trend of the thermal resistance 
with roughness [15, 16, 17].  

For G > 0, the error bars in Figure 2 show the standard deviation of the thermal resistance for 
the three different geometries that share the same fractal parameters, G and 𝐷𝑠, for each 
case. For G=0, where there is only one possible geometry, the error bars correspond to the 
standard deviation of the thermal resistance for three cases of identical macrostates, starting, 
however, from a different microstate.  
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The atomic configuration of the randomly generated geometries is significantly different from 
each other. Yet we observe only small deviations for each case (i.e. for each combination of 𝜀𝑤𝑓 and G). Furthermore, the deviation arising from the different geometries for G=0.4 and 

G=0.8 are of the same order as the statistical noise observed at G=0. The constancy of the ITR 
for different geometries that share the same fractal parameters, suggests that fractal theory 
can  be  used  toward  a  more  universal  characterisation  of  topography-related  properties. 
Specifically, the fractal dimension and average depth of surface roughness (Eqs. 1 and 2), 
seem to be sufficient to capture the effect of surface geometry on the thermal resistance 
without  explicit  consideration  of  the  molecular  details.  This  finding  is  in  agreement  with 
previous studies on nanoscale grinding [29]. 

 
Figure 2 Thermal resistance as a function of (a) the strength of the solid-liquid interactions and (b) the depth of surface 

roughness 

The decrease of the thermal resistance with surface roughness is, at least partly, due to the 

increase in interfacial area. Surface roughness, however, also affects the wetting properties 

of the solid, subsequently influencing the thermal resistance. For the same strength of solid-

liquid interactions, the RDF of the liquid in the vicinity of the solid atoms increases with the 

introduction of surface roughness, suggesting better wetting properties (Figure 3a).  

Figure 3b presents the liquid density profiles, obtained using the method proposed by Willard 

and Chandler [26] (see methodology). For cases with smooth walls, the density profiles show 

the usual sharp and well-separated peaks, indicative of the layered nature of the liquid in the 

vicinity of the wall. In the presence of roughness, the first peak consistently has a greater 

amplitude  compared  to  the  equivalent  smooth  case.  Yet  past  the  first  peak,  the  density 

profiles gradually decrease and converge to their bulk value, showing only minor and smooth 

fluctuations.  

We  expect  that  the  fractal  dimension  of  the  rough  wall  will  have  an  effect  on  the  liquid 

density. Previous studies have shown that the RDF of a solvent around a solute depends on 

the  size  of  the  solute  [30].    Smaller  solutes  result  in  better  wetting  properties  dueto  the 

intermolecular  forces  between  the  solvent  molecules.  As  the  size of  the  solute  increases, 

these forces weaken, thus resulting in a less wettable surface. Extrapolating from their results, 

we believe that a different fractal dimension, leading to less irregular geometries will result 
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in  different  wetting  properties  and  RDFs.  The  effect  of  fractal  dimension  on  the  wetting 
properties of a surface will be investigated in a future study.   

 

Figure 3 (a) RDF of the liquid atoms with respect to the solid atoms and (b) the number density, using the scheme proposed 

by  Willard  and  Chandler  [26],  for  different  values  of  the  strength  of  the  solid-liquid  interactions  and  depth  of  surface 

roughness. For G=0.8 the width of each band indicates the variations in the results obtained by different geometries which 

share the same fractal dimension (the individual cases are shown as black lines within each band). For G = 0, where there is 

only one possible geometry, the width corresponds to differences between cases that start at a different microstate.  



 
1 The number of atoms at the interface can be obtained from the Figure Error! Main Document Only.b, by 
multiplying the values of the graph by the normalizing factor (see methodology) and then summing the resulting 

values, corresponding to the number of particles at a distance from the wall, from 0Å to 4Å.  
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Increasing 𝜀𝑤𝑓 also increases the RDF and density of the first peak, as more liquid atoms are 

attracted  to  the  solid  surface.  Previous  MD  simulations  have  shown  that  the  thermal 
resistance is inversely proportional to the maximum density of the liquid layer adjacent to a 
smooth  surface  [10].  Yet  for  strong  solid-liquid  interactions,  our  results  show  that  the 
introduction  of  surface  roughness  can  potentially  result  in  a  similar  thermal  resistance, 
despite the larger value of the RDF. 

In search of alternative physical mechanisms that give rise to these discrepancies, the intrinsic 
thermal  resistance  is  calculated.  Previous  investigations  normalised  the  total  thermal 
conductance by the interfacial area [17]. Due to the complexity of the solid surface of the 
present model, the interfacial area is not well defined, thus we consider the product of the 
thermal resistance with the number of liquid atoms at the interface for each.  

We consider liquid atoms to be part of the interface if they are within a cut off distance of 4Å 
from a solid atom1 (Figure 4a and Figure 4b). Even at low values of 𝜀𝑤𝑓, the number of liquid 

atoms at the interface is significantly greater for rough surfaces, suggesting a greater effective 
area (Figure 4b). As the strength of the solid-liquid interaction increases, the number of liquid 
particles increases continuously. This behaviour is quite different from previous studies that 
observed a sudden jump in the effective area [18]. This jump corresponds to the transition 
between the Cassie and Wenzel regimes, i.e. when the solid-liquid interaction overcomes the 
surface  tension  of  the  liquid  resulting  in  the  wetting  of  the  grooves.    Our  geometries, 
however,  are  a  superposition  of  a  large  spectrum  of  wavenumbers.  The  smallest 
wavenumbers correspond to smooth peaks and troughs that are wetted even at low values 
of  𝜀𝑤𝑓.  Yet  the  roughness  corresponding  to  higher  wavenumber  roughness  remains 

unwetted. As the solid-liquid interaction strengthens, the liquid atoms start to wet these high 
wavenumber protrusions. This results in a greater rate of increase of the number of interfacial 
liquid atoms for the rough surfaces (as observed by the slope of the curves in Figure 4b).  
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Figure 4 The top row shows (a) a schematic of the liquid particles in the vicinity of the solid interface, and (b) the number of 

particles at the solid liquid interface, as a function of the strength of the solid-liquid interaction, for different depths of surface 

roughness. The bottom row shows the thermal resistance multiplied by the number of liquid atoms at the solid-liquid interface 

for each case, as a function of (c) the strength of the solid-liquid interactions and (d) the average depth of surface roughness.  

The normalised thermal resistance (Figure 4c Figure 4d) shows trends similar to those 
observed in Figure 2: the ITR on smooth surfaces decreases monotonically with increasing 𝜀𝑤𝑓, while for rough surfaces we observe a sharp decrease up to 𝜀𝑤𝑓 = 0.04 𝑒𝑉 followed by 

a minor increase. Unlike the original data, however, the ITR between the different surfaces 
coincides for weak solid-liquid interactions, i.e. 𝜀𝑤𝑓 < 0.01 𝑒𝑉. This suggests that the initially 

observed differences in thermal resistance were due to the increased effective area exposed 
by the rough surfaces. For 0.01 < 𝜀𝑤𝑓 < 0.04 𝑒𝑉, the ITR of the rough surfaces decreases 

below that of the smooth surface. Nevertheless, the thermal resistance for the geometries 
with G=0.4 and G=0.8 coincides. Past 𝜀𝑤𝑓 > 0.04 𝑒𝑉, the ITR for the smooth surface starts to 

converge, while for G=0.4 and G=0.8 it starts to increase. Furthermore, the rate of increase is 
higher for G=0.8 than for the shallower roughness. Finally, at 𝜀𝑤𝑓 = 0.08 𝑒𝑉, the geometry 

with the deepest roughness has a thermal resistance that is almost twice that observed on 
the flat and less rough geometries, the latter two of which have the same value. 

Studying the vibrational properties of the solid should also shed light on how the 
heterogeneities at the solid-liquid interface affect the thermal resistance. We first consider 
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the vibrational properties of a wall with a free surface, i.e. in the absence of a liquid. Due to 
the lack of a second medium, there is no heat transfer across the free surface. We thus use 
these free-surface cases as a baseline against which the remaining cases can be compared.  

 
Figure 5 Vibrational Density of States of the silver wall with a free surface, i.e. no liquid next to it, for (a) a smooth and (b) a 

rough surface. We consider a single plane of atoms at the center (red) of the wall, and a group of atoms at the interface 

(blue), for various cases. The overlapping region is shaded in purple. The inset in (a) shows the entire range of VDOS for the 

specific case, while the main figure zooms in on the higher-frequencies, which are common to the remaining cases. 

Figure 5 shows a single solid layer at the centre of the wall (red colour), which is considered 

to be similar to the bulk behaviour of the material, and the solid atoms at a free surface (blue 

colour). In the absence of surface roughness (Figure 5a), we observe a sharp peak at very low 

frequencies, i.e. approximately 0.5 THz. This low frequency peak corresponds to the elastic 

scattering of phonons against the boundaries of the wall. This is shown by the y-component 

of the HFACF (blue curve in Figure 6a) that oscillates about zero with very little damping. 

Negative  values  of  the  HFACF  indicate  an  inverse  correlation,  corresponding  to  phonons 

propagating  in  the  opposite  direction.  To  verify  this,  note  that  the  period  of  the  HFACF 

oscillations  (approximately  400∆𝑡 = 2𝑝𝑠)  matches  the  time  required  for  a  phonon  to 

propagate a across the distance of 50 Å, i.e. twice of the wall thickness, when moving at the 

speed  of  sound  in  silver  (approximately  2600 𝑚/𝑠).  Furthermore,  a  period  of  2𝑝𝑠 

corresponds to a frequency of 0.5 𝑇𝐻𝑧, the location of the largest peaks in Figure 5a. Thus in 

the  absence  of  surface  roughness,  phonons  travel  ballistically  and  bounce  of  the  solid 

boundaries with little loss of energy.  

In the interfacial layer we observe frequency bands that are slightly red-shifted and have a 

larger amplitude than the central plane, e.g., at 2.5 THz in Figure 5a. This suggests localisation 

of phonons, i.e. phonons that are spatially localised in the vicinity of heterogeneities, which 

impede the flow of heat [31, 32].  

The morphology of a solid can alter its vibrational properties [33]. As we introduce surface 

roughness (Figure 5b), the low frequency band observed in the smooth surface practically 

vanishes. On the rough surface, we also observe a wider band between 1 THz and 2.5 THz, 

indicative of anharmonic scattering [34, 35]. This behaviour can also be seen by the HFACF 

(blue  curve  in  Figure  6b),  where  the  oscillatory  pattern  is  short-lived  and  very  irregular, 

suggesting a destructive superposition of different frequencies. Finally, the introduction of 
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surface roughness seems to significantly reduce the VDOS of the longitudinal branch at the 
interface.  

 

 
Figure 6 The y-component of the Heat Flux Autocorrelation Function (HFACF) plotted against time for (a) G = 0 and (b) G = 

0.8  

In the presence of liquid and weak solid-liquid interactions (i.e. 𝜀𝑤𝑓 = 0.002 𝑒𝑉), the VODS 

look pretty similar to the free-surface cases for both the smooth and rough walls (cf. Figure 
7a and Figure 7b to Figure 5a and Figure 5b). The main difference is that on smooth surfaces 
with 𝜀𝑤𝑓 = 0.002 𝑒𝑉 we also observe localisation of longitudinal phonons (see blue peak at ≈ 5.2 𝑇𝐻𝑧 in Figure 7a). The similar nature with the VDOS on free surfaces suggests that the 
solid and liquid atoms oscillate independently of each other, and explains the high thermal 
resistance at 𝜀𝑤𝑓 = 0.002 𝑒𝑉. 

As the strength of the solid-liquid interaction increases, the vibrational bands at the interface 
of both the smooth and rough walls, start to match the amplitudes and frequencies of the 
central layer; cf. Figure 7a, c, and e for smooth surface, and  Figure 7b, d and f for rough 
surfaces. This delocalisation of phonons suggests better vibrational coupling at the interface 
[28, 27, 36], and the reason behind the decrease of the thermal resistance when increasing 𝜀𝑤𝑓, even after the interfacial liquid atoms are accounted for (Figure 4). This is also shown by 

the HFACF, where  with increasing 𝜀𝑤𝑓, the oscillatory patterns dissipate faster (Figure 6a and 

b), as phonons percolate into the liquid. 

Finally, at 𝜀𝑤𝑓 = 0.04 𝑒𝑉, the smooth wall shows localised phonon modes at approximately 

1.8 THz, which are absent on VODS of the rough wall. This could explain the marginally lower 
thermal  resistance  in  the  presence  of  roughness.  On  the  contrary,  we  believe  that  the 
increase of the thermal resistance for cases with rough walls and values of 𝜀𝑤𝑓 > 0.04 𝑒𝑉 is 

due to a minor increase in phonon localisation. Specifically, for 𝜀𝑤𝑓 = 0.08 𝑒𝑉 we observe 

two small peaks, one at approximately 1.9 THz and one at approximately 2.5 THz, that are 
absent at 𝜀𝑤𝑓 = 0.04 𝑒𝑉. 
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Figure 7 Vibrational Density of States of a single plane of atoms at the center (red) of the wall, and a group of atoms at the 

interface (blue), for various cases. The overlapping region is shaded in purple. We present the VDOS for different cases: (a) 𝜀𝑤𝑓 = 0.002 𝑒𝑉 and 𝐺 = 0, (b) 𝜀𝑤𝑓 = 0.002 𝑒𝑉 and 𝐺 = 0.8, (c) 𝜀𝑤𝑓 = 0.04 𝑒𝑉 and 𝐺 = 0, (d)  𝜀𝑤𝑓 = 0.04 𝑒𝑉 and 𝐺 =0.8, (e) 𝜀𝑤𝑓 = 0.08 𝑒𝑉 and 𝐺 = 0, and (f) 𝜀𝑤𝑓 = 0.08 𝑒𝑉 and 𝐺 = 0.8. 

A previous investigation has also found an optimal value for 𝜀𝑤𝑓 beyond which the thermal 

resistance increases [37]. They attributed the phenomenon to the thermal resistance 
between parallel liquid layers, which become more distinct and further apart. While we did 
not observe this increase on smooth channels, we also believe that the increase in ITR past 𝜀𝑤𝑓 = 0.04 𝑒𝑉 is due to an adaptation of the liquid structure.  

The Kapitza resistance has previously been calculated as a function of the maximum value of 
the first density peak next to the solid walls [10]. Through a regression analysis of our results, 
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we found the thermal resistance to behave similar to the square root of  
1𝑔1(𝑟)2×𝜀𝑤𝑓, where  𝑔1(𝑟) is the RDF of the first density peak (see Figure 8). Specifically: 

 𝑅𝑘,𝑚𝑒𝑎𝑛 = 1.3 × 10−10√ 1𝑔1(𝑟)2 × 𝜀𝑤𝑓 + (300𝜀𝑤𝑓𝐺), (8) 

The first term of the regression tries to capture the rapid decay in the thermal resistance 
observed at each surface, as the value of  𝜀𝑤𝑓 (and subsequently  𝑔1(𝑟)) increases. The second 

term attempts to capture the smaller effects of roughness, that seem to depend on the 
strength of the solid-liquid interactions. The regression seems to capture the large-scale 
features and trends of the data. Yet it doesn’t always capture small variations, particularly at 
the lower values of the x-axis in Figure 8. 

 
Figure 8 Thermal resistance as a function of the height of the first peak of the RDF, the strength of the solid-liquid interaction, 

and the depth of surface roughness. The markers correspond to the MD data while the straight line is a regression line. 

As a final remark, the thermal resistance between the “hot” and “cold” surfaces generally 
differs (Figure 9). A maximum of approximately 6% difference is observed between the hot 
and cold wall for the case of a smooth wall with 𝜀𝑤𝑓 = 0.002 𝑒𝑉. The temperature 

dependence has been previously observed by others, but with contradicting conclusions. 
Some studies show a higher thermal resistance on the “cold” wall [1, 10], while others show 
a higher thermal resistance on the “hot” wall [2, 38, 5]. These discrepancies have been 
credited to the type of liquid molecules considered, with monatomic molecules 
encompassing a higher thermal resistance on the cold wall ,while polar molecules give a 
higher thermal resistance on the cold wall [10]. In the present study, both behaviours have 
been observed depending on the strength of the solid-liquid interaction. For low values of 𝜀𝑤𝑓 the thermal resistance is greater at the cold wall. At the higher values of 𝜀𝑤𝑓 considered 

here, the thermal resistance seems to be the same between the hot and cold wall and, in 
some cases, even marginally greater (see 𝜀𝑤𝑓 = 0.002 𝑒𝑉 at 𝐺 = 0). Finally, the difference in 



16 
 

thermal resistance between the hot and cold walls seems to quickly diminish as we introduce 
and increase the depth of surface roughness.  

 
Figure 9 Comparison of the thermal resistance between the hot (solid line) and cold (dashed line) wall as a function of (a) 

the strength of the solid-liquid interactions and (b) the depth of surface roughness 

Conclusions 

The effects of the depth of surface roughness and strength of the solid-liquid interaction on 
ITR were investigated using MD. The main findings are summarised below: 

1. On smooth surfaces, the ITR decreases as the strength of the solid-liquid interaction 
increases. Similar trends have been observed in the literature for different liquids and 
solids.  

2. On rough surfaces, the ITR initially decreases in a fashion similar to the decrease 
observed in the smooth cases. As the strength of the solid-liquid interaction increases 
further the thermal resistance starts to increase slightly.  

3. The effect of surface roughness on ITR depends on the strength of the solid-liquid 
interaction. For weak interactions, increasing surface roughness results in a significant 
decrease in ITR. For strong interactions, increasing the surface roughness doesn’t 
affect the thermal resistance as much, and in some cases results in a minor increase. 

4. The inconsistent effect of surface roughness is due to two separate phenomena. 
Firstly, the increasing depth of surface roughness implies an increase in the area of 
the solid surface that is in contact with the liquid, thus reducing ITR. Secondly, surface 
roughness and the strength of the solid-liquid interaction alters vibrational properties 
of materials, introducing anharmonic effects and phonon localization, thus affecting 
ITR.  

5. Using regression analysis, an empirical formula for the ITR as a function of the average 
depth of surface roughness and the strength of the solid-liquid interaction, has been 
proposed. 

6. The ITR has minor differences between the hot and cold wall. While most previous 
studies consistently observe either larger or lower thermal resistance on the cold wall, 
we observe both behaviours, depending on the strength of the solid-liquid interaction. 
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For weak interactions, the cold wall has a larger ITR while for strong interactions, the 
cold wall has a marginally lower ITR.  

7. As we introduce and increase the depth of surface roughness, the differences 
between the hot and cold wall diminish. 

8.  Completely  different  geometries  sharing  the  same  fractal  dimension  and  depth  of 
surface roughness result in practically the same ITR and RDF. This suggests that these 
parameters are sufficient to describe correlations between ITR and surface geometry, 
regardless of the precise molecular configuration.  
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