
 

 

 

CRANFIELD UNIVERSITY 

 

 

 

 

Alex Matthew Hamer 

 

 

 

 

Mapping agricultural land in support of opium monitoring in 

Afghanistan with Convolutional Neural Networks (CNNs) 

 

 

 

 

School of Water, Energy and Environment 

PhD in Environment and Agrifood 

 

 

 

 

PhD 

Academic Year: 2017 - 2021 

 

 

 

 

Supervisor:  Dr Toby W. Waine 

Associate Supervisor: Dr Daniel M. Simms 

December 2021  

 

 





 

 

 

CRANFIELD UNIVERSITY 

 

 

 

School of Water, Energy and Environment 

PhD in Environment and Agrifood 

 

 

PhD 

 

 

Academic Year 2017 - 2021 

 

 

Alex Matthew Hamer 

 

 

Mapping agricultural land in support of opium monitoring in 

Afghanistan with Convolutional Neural Networks (CNNs) 

 

 

Supervisor:  Dr Toby W. Waine 

Associate Supervisor: Dr Daniel M. Simms 

December 2021 

 

 

  

 

 

 

 

© Cranfield University 2021. All rights reserved. No part of this 

publication may be reproduced without the written permission of the 

copyright owner. 





i 

Abstract 

This work investigates the use of advanced image classification techniques for 

improving the accuracy and efficiency in determining agricultural areas from 

satellite images. The United Nations Office on Drugs and Crime (UNODC) need 

to accurately delineate the potential area under opium cultivation as part of their 

opium monitoring programme in Afghanistan. They currently use unsupervised 

image classification, but this is unable to separate some areas of agriculture from 

natural vegetation and requires time-consuming manual editing. This is a 

significant task as each image must be classified and interpreted separately.  The 

aim of this research is to derive information about annual changes in land-use 

related to opium cultivation using convolutional neural networks with Earth 

observation data. 

Supervised machine learning techniques were investigated for agricultural land 

classification using training data from existing manual interpretations. Although 

pixel-based machine learning techniques achieved high overall classification 

accuracy (89%) they had difficulty separating between agriculture and natural 

vegetation at some locations.  

Convolutional Neural Networks (CNNs) have achieved ground-breaking 

performance in computer vision applications. They use localised image features 

and offer transfer learning to overcome the limitations of pixel-based methods. 

There are challenges related to training CNNs for land cover classification 

because of underlying radiometric and temporal variations in satellite image 

datasets. Optimisation of CNNs with a targeted sampling strategy focused on 

areas of known confusion (agricultural boundaries and natural vegetation). The 

results showed an improved overall classification accuracy of +6%.  Localised 

differences in agricultural mapping were identified using a new tool called 

‘localised intersection over union’. This provides greater insight than commonly 

used assessment techniques (overall accuracy and kappa statistic), that are not 

suitable for comparing smaller differences in mapping accuracy.  
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A generalised fully convolutional model (FCN) was developed and evaluated 

using six years of data and transfer learning. Image datasets were standardised 

across image dates and different sensors (DMC, Landsat, and Sentinel-2), 

achieving high classification accuracy (up to 95%) with no additional training. 

Further fine-tuning with minimal training data and a targeted training strategy 

further increased model performance between years (up to +5%). 

The annual changes in agricultural area from 2010 to 2019 were mapped using 

the generalised FCN model in Helmand Province, Afghanistan. This provided 

new insight into the expansion of agriculture into marginal areas in response to 

counter-narcotic and alternative livelihoods policy. New areas of cultivation were 

found to contribute to the expansion of opium cultivation in Helmand Province. 

The approach demonstrates the use of FCNs for fully automated land cover 

classification. They are fast and efficient, can be used to classify satellite imagery 

from different sensors and can be continually refined using transfer learning.    

The proposed method overcomes the manual effort associated with mapping 

agricultural areas within the opium survey while improving accuracy. These 

findings have wider implications for improving land cover classification using 

legacy data on scalable cloud-based platforms. 

Keywords: Fully convolutional networks, convolutional neural networks, transfer 

learning, remote sensing, image classification 
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1.1 Approaches for image classification in remote sensing 

Image classification is widely used in remote sensing to arrange data into groups 

based on spectral, textual and spatial properties to extract knowledge for the 

region of interest with applications ranging from flood detection mapping to land 

cover/land use mapping (Bellón et al., 2017; Clement, Kilsby and Moore, 2017). 

Change detection approaches often use image classification for identifying 

differences across the landscape using legacy data (Hansen et al., 2014). The 

two main forms of image classification are traditional statistical-based classifiers 

and machine learning classifiers. Maximum likelihood uses a statistical algorithm 

to evaluate the likelihood of a pixel belonging to each land cover class. The log 

likelihood function is commonly used, therefore the data requires a gaussian 

distribution (Otukei and Blaschke, 2010). Traditional statistical-based algorithms 

used for classification have been cited as inappropriate for using Earth 

observation data as they are designed to identify the relationships between 

variables first to inform the prediction. There has been a transition to machine 

learning techniques to efficiently utilise these large datasets and has been 

instigated from greater accessibility to the required computational resources to 

facilitate accurate prediction (DeFries & Chan, 2000; Gislason et al., 2006).  

Machine learning is an empirical approach for unsupervised and supervised 

classification of non-linear systems. Machine learning algorithms learn underlying 

patterns and trends from a set of training data and adapt to new data without 

human interaction. Machine learning has increased in popularity as these 

techniques can alter data into an appropriate feature space and have been found 

to be insensitive to noise within datasets unlike traditional statistical models (Su 

et al., 2017). The k-means algorithm is a popular technique used for unsupervised 

classification (Han, Champeaux and Roujean, 2004), where an arbitrary number 

of classes are selected for classification based on spectral, textural and spatial 

differences. The technique is more computationally efficient than supervised 

algorithms by negating the requirement for separation of training data. However, 
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the producer has no control over the classes selected by the algorithm and 

smaller land cover classes may be omitted (Keuchel et al., 2003). 

Random Forest is a supervised learning algorithm that builds multiple decision 

trees to identify the underlying trends from input data (Pal & Mather, 2003). 

Support Vector Machines (SVMs) fit a hyperplane into a 3D-feature space of the 

training data to separate land cover classes. SVMs outperform other machine 

learning algorithms with large training datasets (Huang et al., 2002). An Artificial 

Neural Network (ANN) is a machine learning algorithm that simulates the way a 

brain processes data and consists of hidden layers to identify patterns from input 

data. ANNs are often used because of their ability to generalise inputs whilst 

remaining robust to noisy incomplete datasets (Zulhaidi et al., 2007). Optimal 

performance has been found using between 5% and 10% of the training data 

(Zhuang et al., 1994). ANNs were found to train faster using less training data, 

although classification accuracy decreased with less training data (Verbeke, 

Vancoillie and De Wulf, 2004). ANNs have been found to be less accurate than 

other machine-learning classification algorithms, such as SVM, particularly with 

small training datasets by allowing superior generalisation (Shao & Lunetta, 

2012). Although, neural networks have previous outperformed tree-based 

classification machine-learning classifiers for land cover change detection 

(Rogan et al., 2008). 

Deep learning is a type of machine learning based on ANNs, where multiple 

layers are used to process input data to extract higher level features (e.g. objects 

formed from low level features, such as blobs and edges). These algorithms 

require large datasets to train the networks. The increase in the availability of 

satellite imagery with labelled datasets has provided the opportunity to use state-

of-the-art supervised classification techniques at various spatial scales. 

Convolutional Neural Networks (CNNs) are the most common form of deep 

learning and are becoming increasingly common among image processing, 

predominately due to their support and application for N-dimensions and high-

level feature extraction (Ball, Anderson and Chan, 2017). The CNN classifier 

utilises an image filter to extract common features using convolutions across an 
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image while preserving features with greater importance. State-of-the-art 

classification accuracies have been achieved with this deep-learning approach 

(Maggiori et al., 2017). However, they requires large volumes of training data for 

image classification (Nogueira, Penatti and dos Santos, 2017). The main 

constraint found with other machine learning approaches are their inability to 

generalise across image dates due to differences in the radiometry (Ball, 

Anderson and Chan, 2017). CNNs not only use individual pixels or objects for 

training, but image features in context from input data which are found across 

imagery regardless of image timing. 

The spatial scale for classification varies in remote sensing classification, with 

object-based and pixel-based classification. Object-based segmentation splits 

the image scene into groups of similar adjacent pixels based on edge 

identification, image gradients and spectral similarity (Laliberte et al., 2004). 

Object-based classifications have previously been found to be superior to pixel-

based approaches based on per-scene overall classification accuracy in medium 

resolution datasets (+2% overall accuracy for Landsat-5 TM (30 m)) (Geneletti 

and Gorte, 2003). The technique is useful for storing data into GIS databases 

unlike pixel-based approaches, although studies have found poor overall 

accuracy with minority classes and land cover types with small objects compared 

to pixel-based techniques, such as the maximum likelihood classifier (Dingle 

Robertson and King, 2011).  Objects use surrounding values to provide context 

to the classification, but have been found to generalise the landscape at object 

boundaries (Chen et al., 2012).  

1.2 Overview of land cover classification accuracy assessment 

1.2.1 Importance for accuracy assessment in image classification 

Land cover classifications are important for land management, habitat 

conservation, spatial planning, and monitoring ecosystem services. The quality 

of these classifications is vital to provide a good representation of the area for 

use as decision making tools (UNODC, 2018b). Two common types of error in 

mapping the spatial distribution of land cover are positional uncertainty and 

attribute uncertainty and estimating these errors is an important step to assess 
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the quality of the information derived from them and ensures they are fit for 

purpose (Foody, 2002). Within remote sensing there are other common methods 

used to determine the accuracy of image classifications (e.g. overall accuracy, 

kappa statistic) (Tateishi et al., 2011; Fu et al., 2017; Pouliot et al., 2019). These 

methods are often selected based on the type of classification approach selected 

and data-specific attributes (Olofsson et al., 2014). The size of the area used to 

train and evaluate classifications varies based on the classification technique 

selected (Pal, 2005; Lucas et al., 2011; Demir and Başayiğit, 2019), commonly 

these are either individual pixels or objects (Stehman and Wickham, 2011). 

Objects are often not uniform, unlike individual pixels which are of equal size, 

which make them unsuitable for comparison between classifications (Ye, Pontius 

Jr and Rakshit, 2018). Segmenting satellite imagery into homogenous groups 

also causes increased pixel mixing (Geneletti and Gorte, 2003) and can 

generalises the landscape and remove the subtle variation in land cover changes. 

Image classifications are evaluated using ground reference data and the 

evaluation is commonly conducted using the confusion matrix (Foody, 2002). 

Ground reference data are considered to be a true representation of the 

landscape, but there is potential uncertainty from their creation and have the 

potential to skew classification accuracy metrics. Quality control by trained 

interpreters is a common approach to mitigating uncertainty for reference data 

(Foody, 2009). The most common metrics include overall accuracy, user 

accuracy, producer accuracy and kappa statistic (Morales-Barquero et al., 2019). 

This increasing complexity in remote sensing image classification has given rise 

for the need to transition away from traditional pixel accuracy assessments to 

accommodate for these new workflows. Recently more studies are using other 

accuracy assessment metrics derived from machine learning applications, such 

as Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) 

(Maggiori et al., 2017), F1-score (Pouliot et al., 2019) and Intersection over Union 

(IoU) (Shelhamer, Long and Darrell, 2016), to provide further evaluation of their 

image classifications. 
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1.2.2 Validation sample selection 

Common practice across both machine learning and remote sensing applications 

is to use an independent set of hold-out validation ground data to perform 

accuracy assessments. The sampling strategy for validation sample selection is 

a highly influential factor for assessing the performance of land cover and poorly 

devised strategies may lead to misleading accuracy metrics (Foody, 2002). The 

most common approach used for land cover classification is stratified random 

sampling to provide examples across minority and majority classes (Olofsson et 

al., 2014). Stratification provides class accuracy across all land cover types and 

ensures there is sufficient representation across minority classes. The number of 

samples per strata is often dependant on the amount of reference data available 

for each stratum, therefore should be appropriate for the intended use (Stehman, 

2009). The number of unique samples is also dependant on the size of the area 

selected with individual pixels having more independent samples for selection 

than objects (although sometimes the centroid pixel or sub-samples of the object 

are used (Pouliot et al., 2019)). 

The main objective of stratification is to group homogenous areas of the 

landscape to identify distinctive regions within the image to aid classification. The 

data used for stratification has a substantial role in the ability to separate these 

distinctive areas. Data-driven stratification is common within remote sensing, 

where the grouping of similar spectral bands from an image is widely adopted. 

However, other forms of spatial data can be used to stratify an area, such as 

vegetation indices, elevation data and other forms on ancillary data (e.g. distance 

to water). Map-to-map comparisons are common in land cover classification 

tasks, especially when developing new classification approaches for comparison 

between classification outputs and reference data (Foody, 2002). The importance 

of accurate statistics for assessing change between areas is imperative, therefore 

time-series classifications require the appropriate accuracy assessments 

(Gómez, White and Wulder, 2016). Stratification based on map-derived reference 

data (e.g. from another image classification task) may introduce error based on 

the certainty the labels represent the truth, therefore confidence measures have 
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been suggested to minimise error introduced by the reference data (Foody, 

2002). 

The balancing of datasets for equal thematic class distribution is common 

practice to avoid under-representation of minority classes in the accuracy 

assessment (Olofsson et al., 2014; Colditz, 2015; Maxwell, Warner and Fang, 

2018). Balanced datasets for individual pixels are created by under-sampling the 

majority class to match the number of minority class samples (Douzas et al., 

2019). For samples with areas larger than a single pixel, augmentation of 

samples from the minority class can be carried out to increase the number of 

samples during training and are an advantage of object-based samples (Zeiler 

and Fergus, 2013). These augmented samples should not be used during 

validation to ensure no bias is introduced to the accuracy calculations. Studies 

that use highly unbalanced datasets are still able to carry out accuracy 

assessments but require weighted accuracy metrics to limit bias from the majority 

class. These weighted accuracy assessments are useful for proportional class 

distribution, which use a stratified sampling approach to collect samples based 

on their presence across the classification. The limitation of using this strategy is 

the need for dense labels of the study site prior to classification to select the 

correct proportions across the land cover types. This approach would also 

suppress the performance of minority classes, whilst favouring the majority 

classes for accuracy assessment. Stehman (2009) notes the importance of 

spatially balanced datasets, where samples are selected across the study extent 

or limited to the areas of interest to limit bias during accuracy assessment from 

the same sampling locations.  

1.2.3 Accuracy metrics from the confusion matrix 

The confusion matrix is the most widely used approach for accuracy assessment 

in remote sensing studies (Foody, 2002). The matrix visualises classification 

performance using an n x n matrix, where n is the number of classes assessed. 

Each column is used for each reference class and each row is used for each 

prediction class. An example of the confusion matrix is shown in Table 1-1 with a 

total sample size of 100 with 50 pixels of agriculture detected and 50 pixels of 
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non-agriculture detected. The diagonal numbers across the matrix are the 

number of cases that match in both the reference and prediction. These are 

known as true positives (TP) and true negatives (TN), where a correctly classified 

agriculture pixel is a true positive and a correctly classified non-agriculture pixel 

is a true negative (Table 1-1). A false positive (FP), also known as a type I error, 

is where the prediction has classified the presence of agriculture when there is 

not and a false negative (FN), also known as a type II error, is where the 

prediction has stated there is no presence of agriculture when there is. 

Table 1-1. Example of a confusion matrix for the presence of agriculture across 

100 validation samples (50 agriculture and 50 non-agriculture). TP = True Positive, 

FP = False Positive, FN = False Negative, TN = True Negative and OA = Overall 

accuracy. 

  Reference User accuracy 

  Agriculture Non-agriculture 

 
Prediction 

Agriculture 34 (TP) 24 (FP) 34/(34+24) = 59% 
Non-agriculture 16 (FN) 26 (TN) 26/(16+26) = 65% 

Producer accuracy 34/(34+16) = 
68% 

26/(24+26) = 52% (34+26)/100 = 
60% OA 

 

Many of the metrics used in remote sensing and machine learning literature are 

derived from this confusion matrix (Foody, 2002). The overall accuracy, also 

known as pixel accuracy, provides the number of correct predictions made by the 

model. Overall accuracy is the most widely used metric in remote sensing and 

machine learning literature, but all metrics derived from the confusion matrix 

require balanced validation samples between classes for a representative 

accuracy assessment (Stehman, 2009). A commonly cited target overall 

accuracy is 85% with no class less than 70% (Thomlinson, Bolstad and Cohen, 

1999), but acceptable target accuracy is often subjective and dependant on the 

purpose of the land cover classification. Many studies argue overall accuracy 

alone is not enough for evaluating the results of image classification (Foody, 

2002; Myint et al., 2008; Olofsson et al., 2014). Precision measures the proportion 

of predicted positives to the number of reference positives, also known as 

commissions, where high precision means low false positive rate. Precision is 

also used to derive user accuracy by subtracting the commission error from 100. 
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Recall measures the proportion of the number of reference positives and the 

number of true positives, also known as omissions, where high recall means low 

false negative rate. Producer’s accuracy is derived using recall by subtracting the 

omission error from 100. Precision and recall are important to identify confusion 

between classes based on common omissions and commissions and should be 

reported together for transparency of the classification’s error (Olofsson et al., 

2014).  

The F1-score calculates the weighted mean between precision and recall. The 

false positives and false negatives are crucial to this accuracy metric and unlike 

overall accuracy the F1-score can be used with class imbalance (Johnson and 

Khoshgoftaar, 2019). The main caveat to this metric is the limited use within the 

remote sensing community, therefore makes comparison between classifications 

difficult unlike overall accuracy (Morales-Barquero et al., 2019). The specificity 

and sensitivity, also referred to as the false positive and true positive rate, are 

used to the Receiver Operating Characteristics curve (ROC), which is a visual 

representation of these two metrics at different decision thresholds irrespective 

of class balance (Maggiori et al., 2017). Specificity measures the proportion of 

the number of reference negatives and the number of true negatives and 

sensitivity measures the proportion of the number of reference positives and the 

number of true positives. Specificity is often cited as the true positive and 1 - 

sensitivity is referred to as the false positive rate.  The ROC curve is also used 

to derive the Area Under the Curve (AUC) metric, which measures the 2-

dimensional area under the ROC curve. However, the AUC does not identify 

individual class performance unlike the metrics derived from the confusion matrix. 

The kappa coefficient (Cohen, 1960) is often cited in remote sensing literature 

and is used to evaluate how well the classification is performing compared to 

random values based on pixel agreement (Sexton et al., 2013; Dronova et al., 

2015; Y Zhai, Qu and Hao, 2018). Although it has been recommended kappa 

should no longer be used for accuracy assessment as the calculation is 

potentially based on incorrect assumptions and provides redundant information 

(Pontius and Millones, 2011; Delgado and Tibau, 2019). Pontius and Millones 
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(2011) suggested the use of quantity and allocation disagreement, which 

measures the overall level of disagreement from the confusion matrix, as a 

replacement of the kappa statistic. Quantity disagreement is the difference 

between the reference and prediction samples based on the differences in 

sample proportions, therefore can be used with unbalanced datasets. Allocation 

disagreement is the difference between the reference and prediction samples 

based on the spatial allocation, which is similar recall by identifying areas of 

commission using false negatives and false positives. By only focusing on the 

areas of disagreement they suggest it is a more effective metric than kappa which 

compares the total agreement to an arbitrary random baseline. This metric has 

been used by the remote sensing community (Moreno Navas, Telfer and Ross, 

2012; Pandey, Joshi and Seto, 2013; Aldwaik, Onsted and Pontius, 2015), 

although the uptake of these metrics is limited and the kappa statistic remains 

widely cited.  The main metrics used to summarise the performance of image 

classification in remote sensing are overall accuracy and the kappa statistic. 

The spatial distribution of error is not considered when using global accuracy 

assessment metrics derived from the confusion matrix, which is often bound by 

the size of the area used for accuracy assessment (Stehman and Wickham, 

2011). The advantage with using areas greater than a single pixel is the ability to 

assess the performance of pixels in context. Using objects and blocks of pixels 

provides the more spatial context to features during accuracy assessments. A 

common metric used in deep learning for semantic segmentation is known as 

Intersection over Union (IoU), shown in Figure 1-1 (Long, Shelhamer and Darrell, 

2015), which measures the agreement of a block of pixels between the reference 

and prediction based on the proportion of overlap between these areas. Mean 

and frequency-weighted are the two common forms of IoU. Mean IoU calculates 

IoU for each class and provides the mean average across the number of classes. 

Frequency-weighted IoU calculates IoU for each class and provides the weighted 

average based on classes present. Each class has its own IoU to assess the 

performance of individual classes with the common threshold for a ‘good’ IoU 

score being >0.5 (Li et al., 2018) (Table 1-2). The main disadvantage with using 

IoU in remote sensing is that very few studies have utilised this metric and it does 
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not give explicit information on the false positives or false negatives of the 

classification. Accuracy assessments are traditionally carried out at the pixel-

level, rather than at the level of an object or block of pixels, therefore is not 

applicable. This method is similar to the calculation for overall accuracy, where it 

looks at the total number of pixels in agreement compared to the overall number 

of pixels. The advantage of IoU, in comparison to overall accuracy, is the ability 

to add weighting to the metric to remove bias of the majority class. The increase 

in methods that require objects or image chips as sources of input and validation 

would provide more opportunity to use this metric in the field of remote sensing. 

 

Figure 1-1. Visual description of intersection over union using the bounding boxes 

of the reference and prediction 

 

The spatial representation of error and uncertainty is an important aspect that is 

being developed further due to the changes in classification approaches 

(Stehman and Wickham, 2011). Long, Shelhamer and Darrell (2015) explored 

the effect of spatial error caused through classification reconstruction of a Fully 

Convolutional Network (FCN) by altering the resampling rate by increasing the 

spacing between predictions of commercial photography (stride length). 

Generalisation of the prediction was found to increase with greater stride lengths 

during the resampling process (-7% pixel accuracy). They highlight the need for 
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error assessments over larger areas during the reconstruction of classifications 

and not only for isolated samples. The transition to larger areas for validation 

allows for further understanding of spatial error and provides visual interpretation 

of accuracy in context to the landscape. 

Most of the metrics currently used in remote sensing studies for image 

classification use those derived from the confusion matrix. The transition to 

feature-based classification techniques and size of the validation sample area 

has allowed other metrics outside of individual pixel accuracy assessments to be 

carried out. The importance of accuracy in a spatial context is advantageous for 

understanding the spatial distribution of error and provides the ability to visualise 

these errors spatially across the landscape. No single accuracy metric is 

applicable for every study; therefore, values and metrics should be interpreted 

based on the context of the study. A summary of all accuracy assessment metrics 

reviewed are presented in Table 1-2. 
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Table 1-2. Summary of common accuracy metrics used across remote sensing 

disciplines. AUC-ROC = Area Under Curve of Receiver Characteristic Operator and 

IoU = Intersection over Union 

Metric Advantages Disadvantages References 

Overall 
accuracy 

Most common metric cited in 
remote sensing 
 
Identifies correctly classified 
areas 

Only considers the rate of 
true positives 
 
Sensitive to class 
imbalance 

(Dronova et al., 2015; 
Parente and Ferreira, 
2018; Yadav and 
Congalton, 2018) 

Precision / 
user 
accuracy 

Identifies commission errors 
both overall and per-class 

Sensitive to class 
imbalance 

(Alatorre et al., 2011; 
Fu et al., 2017; Liu et 
al., 2018) 

Recall / 
producer 
accuracy 

Identifies omission errors both 
overall and per-class 

Sensitive to class 
imbalance 

(Alatorre et al., 2011; 
Fu et al., 2017; Liu et 
al., 2018) 

F1 score Works for uneven class 
distributions 

Not widely cited in remote 
sensing 

(Inglada et al., 2015; 
Pouliot et al., 2019) 

AUC-ROC Able to handle class 
imbalance 

Does not provide classes-
level statistics 

(Alatorre et al., 2011; 
Khatami, Mountrakis 
and Stehman, 2017; 
Maggiori et al., 2017) 

Kappa 
statistic 

Normalised metric widely cited 
in remote sensing literature 

Potential flaws in its 
calculation 

(Dronova et al., 2015; 
Fu et al., 2017; Y Zhai, 
Qu and Hao, 2018) 

Allocation 
disagreement 

Useful for only assessing 
disagreement  
 
Similar to recall by relying on 
false negatives and false 
positives 

Not widely cited in remote 
sensing literature 
 
Does not consider 
agreement of the samples 

(Moreno Navas, Telfer 
and Ross, 2012; 
Pandey, Joshi and 
Seto, 2013; Aldwaik, 
Onsted and Pontius, 
2015) 

Quantity 
disagreement 

Useful for highlighting 
disagreement based on 
proportions 

Does not consider 
agreement of the samples 
 
Able to use with 
unbalanced datasets 

(Moreno Navas, Telfer 
and Ross, 2012; 
Pandey, Joshi and 
Seto, 2013; Aldwaik, 
Onsted and Pontius, 
2015) 

Mean IoU Able to use it across areas 
greater than a single pixel 
 
Useful if background class is 
to be taken into consideration 

Requires dense reference 
labels 
 
Sensitive to unbalanced 
samples 
 
Unable to consider false 
negatives/positives 

(Long, Shelhamer and 
Darrell, 2015; Xu et al., 
2018; Weinstein et al., 
2020) 

Frequency 
weighted IoU 

Able to use it across areas 
greater than a single pixel 
 
Balanced metric and can be 
used with high sample 
variance 

Requires dense reference 
labels 
 
Can suppress problems 
with majority class 
 
Unable to consider false 
negatives/positives 

(Long, Shelhamer and 
Darrell, 2015) 

1.2.4 Remote sensing and uncertainty in area estimation 

Remote sensing data is a useful tool for extracting agricultural statistics across 

large areas or in remote and inaccessible locations. The most common approach 

is by quantifying the total area by measuring the absolute area for each crop type 
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and could provide an absolute value for under- or over-classification if reference 

data are available, also referred to as pixel counting. These are more common in 

regional and national studies (Lucas et al., 2011), but require large amounts of 

labelled data across all stratum to conduct. Traditional pixel-based accuracy 

assessments (e.g. overall accuracy) do not require large continuous areas of 

labelled data to be calculated. Comparison in absolute area would require large 

areas of labelled data to cross-reference with the predicted area but can be 

limited to smaller areas where continuous data are available. Pixel counting is 

also high dependant on the spatial resolution of the dataset with lower spatial 

resolutions having a greater impact on the estimate. The scale is also an 

important consideration if multiple spatial resolutions are used for area estimation 

where there will be more spectral mixing. 

Remote sensing data are often used in a regression estimator to estimate the 

presence of a crop within an area (Carfagna and Gallego, 2005). The primary 

reason for is the use of remote sensing data reduces the amount of ground data 

needed for estimation. Land cover classifications are commonly used within 

linear regression estimators by estimating the mean of an area of crop (y) with a 

known area (reference data) by using the number of pixels classified as the crop 

from the land cover classification (x) as the two populations should be correlated. 

The coefficient of the regression line (b) can have a fixed value for the regression 

estimator to avoid bias between y and x during the classification otherwise it is 

the least-squares estimate of the regression slope between y and x (Gallego, 

2004). 

Confidence intervals are often used with crop level area estimates to quantify the 

uncertainty of the estimate with 95% as the most common unit (Olofsson et al., 

2014). The range between the confidence intervals can often be explained from 

the error matrix. For example, a higher estimation than the crop area would refer 

to high omission error in the classification and lower estimation than the crop area 

refers to high commission error in the classification. Using these area estimation 

approaches avoids pixel counting bias and decreases the standard error within 

the estimated crop area. 
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1.3 Agricultural practices in Afghanistan 

Agriculture accounts for ~ 25% of Afghanistan’s GDP with crop agriculture 

producing the greatest income, where 12% of Afghanistan’s land area is arable 

(8 million ha) (The World Bank, 2014). Water shortages are the primary constraint 

for arable agricultural production with irrigated agriculture output up to three times 

greater than rainfed, where most cultivated land receives less than 400 mm of 

rain annually (Kawasaki et al., 2012; The World Bank, 2014). Irrigated arable land 

accounts for 25% of arable land and the remaining land is rainfed or fallow. 

The region has limited diversity in their growing practices with more than 65% of 

cultivated area dedicated to food crops and predominately concentrate on wheat 

production and accounts for 2.7 – 3 million ha of cultivated land (The World Bank, 

2014). Farm sizes in Afghanistan are small with 60% smaller than 1 ha (CSO, 

2018). The Ministry of Agriculture, Irrigation and Livestock (MAIL) undertake 

annual wheat cultivation surveys using visual interpretation of satellite imagery 

and ground sample data to estimate wheat production and manage food security 

in the country (Tiwari et al., 2020). Other major cereal crops include rice, maize 

and barley which account for 15% of the total cereal area. The crop calendar for 

these vary across Afghanistan with wheat and barley sown from October until 

December and harvested from April until July. Water shortages have resulted in 

high fluctuations in cereal production and has led to more importation of these 

crops to manage food security (The World Bank, 2018). 

The United Nations Office on Drugs and Crime (UNODC) (2020) estimates 

Afghanistan produced 84% of the world’s illicit opium over the last five years, 

despite the decline in cultivation over recent years. Opiates are psychoactive 

substances derived from the dried milky sap of unripe poppy seed capsules. Illicit 

drug use poses serious health risks to the global community and burdens 

healthcare systems for the prevention and treatment of drug use (UNODC, 2020). 

Opium cultivation occurs throughout Afghanistan with annual variation in the total 

area under cultivation and its spatial distribution, even though cultivation is illegal 

in the country. Opium poppy is typically sown between October and November 

and harvested between April and May (Tiwari et al., 2020). The main cultivating 
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provinces in 2019 were Helmand, Kandahar, Uruzgan, Badghis and Farah 

(Figure 1-2). Opium poppy is primarily grown as it has been more profitable in 

comparison with cereals such as wheat, especially for small farms with limited 

arable land and is more drought-resistant than most other crops (UNODC, 

2021a). 

 

Figure 1-2. Distribution of opium poppy cultivation across Afghanistan from the 

2019 annual survey (UNODC, 2021) 

1.4 Global opium monitoring using remote sensing 

The UNODC and Afghanistan’s National Statistic and Information Authority 

(NSIA) operate an annual survey to monitor opium cultivation in Afghanistan to 

aid counter-narcotic efforts. Remote sensing has been used to conduct the 

survey since 2002 because of difficulty in accessing areas under cultivation. 

Afghanistan is known for its poor infrastructure and variable terrain (Chabot and 

Dorosh, 2007), therefore remote sensing satellites provide a pragmatic approach 

for agricultural land and opium poppy discrimination. The main area estimation 
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method used for provinces with high opium cultivation (>1,000 ha) is a ratio-

based sampling approach using the agricultural mask and the proportion of poppy 

within the selected samples (Figure 1-2) (UNODC, 2018b). The agricultural mask 

refers to the agricultural area under cultivation, often referred to as the risk area. 

There are two types of agricultural mask for different purposes: 1) the active mask 

and 2) the potential mask. The active agricultural mask delineates only agriculture 

currently under cultivation and is useful for monitoring annual changes to the 

agricultural area. The potential mask delineates all agriculture areas previously 

under cultivation with new active agricultural areas added from Landsat-8 and 

Disaster Monitoring Constellation (DMC) imagery on an annual basis after each 

survey (UNODC, 2015). 

The agricultural area is important in the opium survey for targeting sample 

locations to delineate opium poppy cultivation. The potential mask is used by the 

UNODC to ensure no areas of agriculture are omitted in their calculation of opium 

cultivation estimates. Opium monitoring conducted by the UNODC favours over 

classification of the risk area to ensure no areas of opium poppy are missed from 

the survey. The potential mask is created by using an unsupervised ISODATA 

classification using medium resolution imagery to identify new areas of 

agriculture that were not in the previous year’s mask. These new areas undergo 

quality control by visual human interpretation as the security risks for surveyors 

to carry out ground truthing are too greater to conduct a systematic accuracy 

assessment (UNODC, 2018b). Human interpreters use true colour, false near-

infrared and short-wave infrared composites of satellite imagery to distinguish 

new areas of agriculture. Manual interpretation is needed as the unsupervised 

classification is unable to separate some areas of agriculture from natural 

vegetation, such as steppe and semi-desert vegetation which has been used for 

grazing livestock on a seasonal basis (FAO, 2019). Natural vegetation can be 

distinguished from arable agriculture in satellite imagery from differences in the 

association with other land covers (e.g. mountainous terrain), colour and shape. 

UNODC use area sampling frames to estimate opium poppy cultivation and are 

commonly used for conducting crop production estimates and to gather other 
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agricultural information (UNODC, 2015; Boryan et al., 2017). Each province is 

split into a 5 × 5 km grid to create individual samples and form the sampling frame. 

These sample locations are intersected with the potential agricultural area and 

samples with less than 0.25 km2 of potential agricultural area are removed. The 

number of samples selected for each province is determined based on the size 

of the agricultural area and the variability of poppy cultivation (UNODC, 2015). 

These 5 × 5 km samples are intersected with high resolution satellite imagery 

timed to coincide with peak opium biomass for trained human interpreters to 

delineate the area under poppy cultivation within the agricultural area for each 

sample. The mean ratio of opium poppy and agricultural land for each province 

is subsequently extrapolated across the potential mask outside the frame 

samples to quantify the opium estimate using (Equation 1-1): 

𝑌𝑘 = X
Σ𝑖=1

𝑛𝑘 𝑦𝑖

Σ𝑖=1
𝑛𝑘 𝑥𝑖

 
1-1 

where, Y𝑘 is the area of opium poppy cultivation, nk is the number of 5 × 5 km 

image locations selected from the frame sample across the province 𝑘, 𝑦𝑖  is the 

area of poppy cultivation in image 𝑖, 𝑥𝑖 is the potential agricultural land available 

for poppy cultivation (potential agricultural mask) in image 𝑖 and X is the total 

potential land available for poppy cultivation in province 𝑘 (UNODC, 2021a). 

District level estimations use only samples located within the district, and where 

there are no samples the agricultural area and poppy cultivation is accounted for 

in the neighbouring district (UNODC, 2018b). The other two types of estimation 

are a targeted approach and a village survey. The targeted approach is used for 

provinces with low levels of opium cultivation (<1,000 ha) (Figure 1-2) and 

estimates are derived from cultivation areas intersected with satellite imagery 

(UNODC, 2018b). Village surveys are only conducted in poppy-free status 

provinces. 

Outside of Afghanistan the two other main areas for illicit opium production are 

Myanmar and Mexico. The UNODC use similar monitoring methodologies for 

these areas. Myanmar is estimated to have grown 29,500 ha of opium poppy in 
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2020 with 84% grown in Shan State (UNODC, 2021c). The potential area for 

opium cultivation in Myanmar is identified annually from a land cover image 

classification of 22 m resolution DMC imagery from February 2011 as there is 

limited change in the agricultural area. Prior knowledge of opium free areas based 

on ground information are factored into defining the potential area for the frame 

sample selection.  Opium cultivation in Myanmar is only grown at altitudes higher 

than 600 m and the area is limited to these higher altitudes, especially in Shan 

State where opium poppy is grown to achieve favourable diurnal temperatures 

(Tian et al., 2011). Opium poppy fields are manually delineated using very high 

resolution imagery (Pleiades at 50 cm spatial resolution). Opium poppy fields in 

Myanmar are small and larger areas of agriculture are removed from the potential 

area as they are assumed to be poppy-free. The same ratio estimate for 

Afghanistan is used to estimate total opium cultivation by extrapolating the ratio 

of opium poppy to agricultural land to the risk area outside of the frame sample. 

Mexico is estimated to have grown 21,500 ha of opium poppy in 2019 with 

cultivation primarily in the states of Oaxaca, Guerrero and Nayarit (UNODC, 

2021b). Frame sampling is used by the UNODC for Mexico opium cultivation 

statistics by using the ratio estimate between agricultural area and opium poppy. 

The area under cultivation does not alter drastically between years therefore the 

same 300 frame samples have been used in previous years (UNODC, 2021b). 

Manual interpretation of opium poppy fields within the potential agricultural mask 

is carried out by human interpreters using several band combinations on medium 

and high-resolution imagery (SPOT-6 and 7, Geo Eye-1 and Worldview 2 and 3) 

to distinguish the difference between opium poppy and other arable agriculture. 

The main difference between opium monitoring in Afghanistan and other regions 

is the constantly changing arable agricultural area and requires annual 

delineation for estimating opium poppy cultivation. The constraint of the method 

used by the UNODC is this area is very large and would be time-consuming to 

visually inspect the active agricultural mask year-on-year, therefore they use the 

potential mask to only identify new agricultural areas. Agricultural areas out of 

rotation are not removed every year from the potential mask which leads to a 
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larger agricultural mask. The ratio-based estimation used for opium production 

estimates by the UNODC uses the potential agricultural mask as a multiplier to 

the proportion of opium poppy found within each frame sample, therefore opium 

production estimates are likely to be inflated as it does not include only active 

areas of agriculture. 

1.5 Research context 

The work the UNODC and NSIA do to accurately estimate opium poppy is 

essential for informing counter-narcotic policy. Satellite imagery is used to identify 

potential areas under agricultural cultivation and quantify the proportion related 

to illicit opium production. The current approach uses an automated unsupervised 

image classification with manual editing by human interpreters to determine the 

potential area of agriculture (UNODC, 2021a). The main challenge of this 

methodology is to produce an accurate agricultural area estimate. This is 

important as the area is used as a multiplier in the ratio-based poppy cultivation 

estimate (Equation 1-1). The agricultural area is also used for targeting the 

sample locations for manual interpretation of opium poppy fields to determine the 

ratio between opium poppy and available agricultural land for cultivation. These 

areas can be used to inform counter-narcotic eradication programmes to reduce 

opium cultivation. The automated classification is not able to separate between 

similar land cover types (e.g. agriculture and natural vegetation) and requires time 

consuming manual interpretation to remove these areas. The active agricultural 

mask can be difficult and time-consuming to manually edit because of the 

dynamic nature of crops, visual confusion with natural vegetation and inter-

seasonal variation. The current methodology implemented by the UNODC does 

not consider the spatial distribution of opium poppy and only provides an estimate 

of the area. Further understanding of the distribution of annual change within the 

active agricultural mask is important for supporting counter-narcotic policy by 

informing national and international stakeholders. New knowledge on land cover 

changes related to opium cultivation across Afghanistan can be achieved by 

utilising historical data to aid agricultural land classification. Outside of opium 

poppy estimates, crop production estimates are often used for agricultural 
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decision making (FAO, 2016); therefore, it is essential to provide both a practical 

and effective methodology to accurately quantify agricultural areas. 

The volume and variety of these Earth observation datasets provides 

opportunities for agricultural patterns to be extracted from legacy datasets across 

Afghanistan (Casu et al., 2017). Agricultural productivity has intra-seasonal 

variation (Simms et al., 2014), therefore agricultural monitoring requires timely 

data processing and dissemination. The lack of data-driven processing is limiting 

the full extent of data analytics within remote sensing to facilitate further 

understanding of vegetation dynamics (Guo and Mennis, 2009). Previously, 

remote sensing studies have primarily focused on single date image 

classifications to extract agricultural areas with multi-temporal analysis becoming 

increasingly common for image classification (Petitjean, Ketterlin and Gançarski, 

2011; Verbesselt, Zeileis and Herold, 2012; Yongguang Zhai, Qu and Hao, 2018). 

The main barrier for using these supervised techniques for land cover 

classification has been access to large labelled datasets of the landscape (e.g. 

agriculture and non-agriculture land cover classes) (Ball, Anderson and Chan, 

2017). These are scarce in the remote sensing community because their creation 

is labour intensive (Vali, Comai and Matteucci, 2020). Labelled datasets are 

required to train and validate data-driven classifiers and limited access to these 

emphasises the importance of developing methodologies to take full advantage 

of all available datasets. The restricted availability of the UNODC's labelled 

datasets of agricultural area for this thesis provide the opportunity to utilise data 

intensive machine learning techniques, such as Convolutional Neural Network 

(CNN) and Fully Convolutional Network (FCN), for image classification. The 

limited use of CNNs and FCNs for pixelwise classification within remote sensing 

provides an exciting opportunity to utilise, optimise and explore the use of this 

technique (Ball, Anderson and Chan, 2017). Traditionally labelled individual 

pixels or objects with associated satellite imagery are used to train machine 

learning classifiers, whereas image chips can only be used for implementation 

into the CNN and FCN models and is a unique approach to image classification. 
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This thesis critically evaluates cutting-edge technologies with historical data to 

classify and monitor active agricultural land to understand annual changes in 

cultivation practices and remove the need for human interpretation. The aim of 

this research is to derive information about annual changes in land-use related to 

opium poppy cultivation using convolutional neural networks with Earth 

observation data. 

The objectives of this study are to: 

1. Critically evaluate the use of CNNs for delineating Afghanistan’s active 

agricultural mask compared to human interpretation 

2. Develop generalised CNN models for classifying the agricultural mask and 

evaluate the uncertainty on measuring the active agricultural area 

3. Understand the annual changes in agricultural land use in relation to opium 

poppy in Helmand Province, Afghanistan between 2010 and 2019 

1.6 Thesis structure 

This thesis is made up of 3 separate analytical chapters followed by a discussion 

and summary of the findings for each thesis objective. This introduction provides 

a literature review of the current uses of remote sensing data with an emphasis 

on the use of image classification techniques and accuracy metrics for land cover 

mapping. Afghanistan is presented as a case study to utilise these image 

classification techniques with a background for monitoring opium poppy using 

remote sensing and the annual opium survey methodology currently used by the 

UNODC and the context of this research. 

Chapter 2 presents a strategy for training and evaluating CNNs for active 

agricultural mask classification in comparison to human interpretation (thesis 

objectives 1). Multiple images were critically evaluated between 2007 and 2009 

and highlighted the potential for transferring knowledge between different years. 

Chapter 3 provides a methodology for training generalised CNNs for automated 

agricultural land classification across image datasets (thesis objective 2). 

Understanding of how CNNs learn agricultural patterns using spectral, spatial, 

and textural data is presented. Further understanding on how transferable CNNs 
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are between different image datasets (DMC, Landsat, and Sentinel-2) using 

different standardisation procedures is presented. A localised accuracy 

assessment called ‘localised intersection over union’ is presented for assess local 

differences in classification accuracy to better understand the strengths and 

uncertainties of automated classification. 

Chapter 4 presents a case study for monitoring agricultural land in Helmand 

Province across different image datasets with generalised CNN models from 

Chapter 3 between 2010 and 2019 (thesis objective 3). 

Chapter 5 presents a discussion of the main findings for each thesis objective 

and the contributions to knowledge and wider impact of the research for opium 

monitoring and image classification are presented. 

Chapter 6 summarises the main conclusions from each thesis objective and 

recommendations are provided for using data-driven techniques to further 

understand landscape change related to opium cultivation in Afghanistan. 
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Chapter 2. Replacing human interpretation of 

agricultural land in Afghanistan with a deep 

convolutional neural network 

This chapter investigates the development of a Convolutional Neural Network 

(CNN) to automate the classification of agriculture from medium resolution 

satellite imagery as an alternative to manual interpretation agricultural delineation 

across Helmand and Kandahar, Afghanistan (thesis objective 1). The effect of 

input image chip size, training sampling strategy, elevation data and multi-

seasonal imagery are investigated to accurately delineate active agricultural land. 

 

Underlying data for this chapter is available at: 

https://doi.org/10.17862/cranfield.rd.13228634 

 

Published as: Hamer, A.M., Simms, D.M. and Waine, T.W. (2021) Replacing 

human interpretation of agricultural land in Afghanistan with a deep convolutional 

neural network. International Journal of Remote Sensing, 42 (8), pp. 3017-3038. 

doi: https://doi.org/10.1080/01431161.2020.1864059   
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2.1 Introduction 

The United Nations Office on Drugs and Crime (UNODC) and Government of 

Afghanistan conduct an annual survey to estimate the production of opium in 

Afghanistan, a country responsible for 82% of global production (UNODC, 

2019b). The opium trade fuels poverty, political instability and insurgency; 

hampering development efforts. The survey plays an important role in monitoring 

the extent and evolution of illicit opium production for the development of counter-

narcotic policy. Within the survey, the accurate mapping of agricultural land, 

known as the agricultural mask, is essential for robust statistical sample design 

and production estimates. The mask is reviewed each year because of the large 

variation in the annual distribution of agricultural land (UNODC, 2018b). The 

current method uses unsupervised classification of medium resolution satellite 

imagery, such as Land-Remote Sensing Satellite System (Landsat) 8 (30 m). This 

approach has difficulty separating natural vegetation from agriculture, so requires 

post-classification manual refinement. This is time-consuming and uses trained 

interpreters with knowledge of local agronomic practice in order to accurately map 

agricultural land. 

Machine learning techniques have been shown to increase the accuracy of image 

classification (Lecun, Bengio and Hinton, 2015; Belgiu and Drăgu, 2016; 

Yamashita et al., 2018; Pouliot et al., 2019). Of particular importance are 

Convolutional Neural Networks (CNNs), which can outperform other machine 

learning classifiers such as Support Vector Machines (about 19%) at image 

labelling (Russakovsky et al., 2015) and Random Forests (7%) on mapping from 

medium resolution imagery (Pouliot et al., 2019), and can match human 

performance in certain image related tasks (Haenssle et al., 2018). They are 

inspired by the connections between neurons in the cerebral cortex (Ball, 

Anderson and Chan, 2017) and are made up of convolutional layers that encode 

the spatial and spectral elements of image features from large training datasets. 

The rapid improvements in accuracy have been achieved through the 

development of new CNN architectures for image classification (Zeiler and 

Fergus, 2013; Simonyan and Zisserman, 2015). CNNs are able to capture 

complex contextual information in a similar way to manual image-interpretation, 
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where associated features and the spatial context of observations are used as 

interpretation keys (e.g. field patterns, irrigation canals and topography). This 

overcomes one of the limitations of pixel-based classification for mapping 

agricultural land in Afghanistan, where spectral separation alone is not able to 

discriminate between natural vegetation and agriculture. 

The aim of this study is to determine whether CNNs can perform the role of a 

human interpreter in delineating agricultural land from medium-resolution 

imagery. Access to densely labelled agricultural masks from opium surveys in 

Afghanistan provide the necessary data to develop an optimal CNN training 

strategy for agricultural delineation and evaluate its performance across multiple 

years. 

2.2 Convolutional neural networks 

CNNs are widely used in image classification because of their high performance 

and ability to accept multi-dimensional pixel arrays (Lecun, Bengio and Hinton, 

2015). These networks are designed to adaptively learn spatial features from a 

set of labelled examples through a backpropagation algorithm (Yamashita et al., 

2018). Each convolutional layer in the neural network runs a fixed-sized filter 

matrix across the image at a defined spacing, or stride, to generate a feature 

map, which forms the input to the next layer. A rectified linear unit (ReLU) 

activation function is used to introduce non-linearity and avoid saturation during 

learning (Nogueira, Penatti and dos Santos, 2017). Pooling layers are used to 

reduce the dimensionality of feature maps, using a maximum or average filter 

matrix, by downsampling the spatial resolution of the input layers. Fully connected 

layers join each node from the previous layer, flattening them out into one-

dimensional feature maps. The final layer is a fully connected layer that calculates 

class probabilities for each instance using a classification activation function, 

usually a Softmax (Goodfellow, Bengio and Courville, 2016). 

The network is trained using a gradient-based optimisation algorithm, most 

commonly Adam (Kingma and Ba, 2015), Stochastic Gradient Descent (SGD), 

Adaptive Gradient Algorithm (AdaGrad) (Duchi, Hazan and Singer, 2011) or Root 

Mean Square Propagation (RMSprop) (Tieleman and Hinton, 2012), and a loss 
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function that measures the agreement between the model predictions and the 

reference data labels. Normalisation is used as a data pre-processing step, 

usually z-score normalisation (Chollet, 2017), to scale input data to a common 

range. The optimisation algorithm minimises the loss by altering the layer weights 

for each batch of reference data fed into the CNN. Training stops once there is 

no longer any significant decrease in the loss, usually after many epochs, where 

an epoch represents one complete pass of the reference data through the 

network during training.  

There are two approaches for CNN training, known as end-to-end and transfer 

learning. End-to-end learning uses the input data alone to identify the target 

object's features from randomly initialised filter weights. Transfer learning uses 

pre-trained filter weights from a previous application. ImageNet, a dataset of 

commercial photographs used for visual object recognition, is commonly used for 

image transfer learning, particularly where training data are limited (Shin et al., 

2016). Transfer learning has been beneficial for classification as similar features 

often transcend individual image recognition tasks and reduce the requirement 

for large labelled datasets (Yosinski et al., 2014). 

Common CNN architectures include Visual Geometry Group (VGG) 16 and VGG 

19 that use small convolutional filters (3 × 3) across their 16 and 19 layer networks 

to achieve state-of-the-art classification accuracy on ImageNet (Simonyan and 

Zisserman, 2015). The residual network (ResNet50) architecture, a 50 layer 

network, found deeper networks were beneficial to classification accuracy and 

has outperformed VGG CNNs (He et al., 2016). 

Existing applications of CNNs for remote sensing data often use imagery 

benchmark datasets, including University of California (UC) Merced land use 

dataset (Yang and Newsam, 2010), Aerial Image Dataset (AID) (Xia et al., 2017) 

and Brazilian coffee scenes (Penatti, Nogueira and Santos, 2015; Nogueira, 

Penatti and dos Santos, 2017; Deng et al., 2018; Zhang, Tang and Zhao, 2019). 

These use a similar approach to photography-based object recognition and 

classify whole images, or image subsets known as chips, with a single label. 

Across these benchmark datasets there are differences in training sample sizes, 
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input image chip sizes and CNN model architectures. Image chip sizes vary 

greatly, with the UC Merced dataset (0.3 m) (Yang and Newsam, 2010) at 256 × 

256 pixels, AID dataset (0.5 to 0.8 m) (Xia et al., 2017) at 300 × 300 pixels and 

the Brazilian coffee scenes dataset (10 m) (Penatti, Nogueira and Santos, 2015) 

at 64 × 64 pixels. Sample sizes are constrained by the amount of labelled data 

available with samples ranging from 10s (Fu et al., 2017) to 100s (Deng et al., 

2018) to 1000s per class (Cheng, Han and Lu, 2017). CNN image categorisation 

is used outside of benchmark datasets (Koga, Miyazaki and Shibasaki, 2018; Liu 

et al., 2018; Feng et al., 2019), but is again constrained by the requirement for 

large datasets. These applications use the normalised spectral bands exclusively 

for prediction, while for other machine learning algorithms, ancillary data, such as 

distance to water, elevation and economic indicators (Gislason, Benediktsson 

and Sveinsson, 2006; Lucas et al., 2011) are used to improve classification 

performance. 

Land cover classifications are validated using hold-out samples to calculate 

accuracy metrics. Overall accuracy (OA) is the number of correctly classified 

pixels in comparison to the reference data and widely adopted within remote 

sensing (Foody, 2002) (Equation 2-1), 

OA =
𝛴𝑖𝑛𝑖,𝑖

𝛴𝑖𝑡𝑖
 

2-1 

where ni,i is number of pixels predicted as class i belonging to class i and ti is total 

number of pixels belonging to class i in the reference data. The Kappa coefficient 

(K) is used to quantify the statistical significance in comparison to random 

performance (Cohen, 1960) (Equation 2-2), 

𝐾 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 2-2 

where po is the empirical probability of correctly labelled samples and pe is the 

expected probability of correctly labelled samples by random chance. 

The Intersection over Union (IoU), also known as Jaccard index, gives the 

similarity between the predicted region and reference region by identifying 
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overlapping regions (Long, Shelhamer and Darrell, 2015). Two variations of IoU 

commonly used for deep learning applications are the mean IoU (mIoU) 

(Russakovsky et al., 2015) (Equation 2-3), 

mIoU =
1

𝑘
∑

𝑛𝑖,𝑖

𝑡𝑖 + ∑ 𝑛𝑗,𝑖𝑗 − 𝑛𝑖,𝑖
𝑖

 
2-3 

and frequency weighted IoU (fwIoU) (Equation 2-4), 

fwIoU =
1

∑ 𝑡𝑖𝑖
∑

𝑡𝑖𝑛𝑖,𝑖

𝑡𝑖 + ∑ 𝑛𝑗,𝑖𝑗 − 𝑛𝑖,𝑖
𝑖

 
2-4 

 

where nj,i is the number of pixels predicted as class j belonging to class i and k is 

the number of classes in the reference data. 

2.3 Materials and methods 

2.3.1 Study site 

The study area is the provinces of Helmand and Kandahar in the south of 

Afghanistan, covering an area of 81,383 km2 (Figure 2-1). These are the largest 

opium producing provinces in Afghanistan with an estimated 160,208 ha grown 

in 2018, accounting for 61% of national opium cultivation (UNODC, 2018b). They 

also contain the highest proportions of irrigated agricultural land in Afghanistan, 

342,172 ha and 312,465 ha respectively (FAO, 2016). The main area of 

cultivation is in the Helmand valley with large areas of natural vegetation in 

northern Kandahar (Figure 2-1). Helmand and Kandahar contain a wide range of 

agricultural landscapes, including rain-fed agriculture in lowland and highland 

areas, fruit trees, vineyards, marginal agriculture and natural needle leaved 

forests (FAO, 2016). Agriculture in Afghanistan is predominately reliant on 

snowpack melt to supply sufficient groundwater for irrigation. Water availability is 

vital for agricultural production and is the main driver for changes in agricultural 

area (Shahriar Pervez, Budde and Rowland, 2014; UNODC, 2019b). 
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Figure 2-1. Helmand (centre 31.3636° N, 63.9586° E) and Kandahar (centre 31.6289° 

N, 65.7372° E) provinces, Afghanistan showing the agricultural area in 2007. Insets 

show locations used for detailed evaluation with 2007 agriculture delineated in 

yellow; (a) and (b) show areas of intensive agriculture, (c) and (e) show areas with 

natural vegetation and (d) shows agriculture in the highlands of Kandahar. Inset 

background is a false colour DMC image (NIR, R, G at 32 m) from 27 April 2007. 

2.3.2 Image data and agricultural masks 

The agricultural masks and associated Disaster Monitoring Constellation (DMC) 

imagery from the 2007 to 2009 opium cultivation surveys were used as labelled 

reference datasets of agricultural land. These image years were used for analysis 

as they are the latest complete agricultural masks available for the study. These 

densely labelled data were originally created from an unsupervised classification 

of orthorectified multispectral DMC imagery, with near-infrared (NIR) (0.76 to 0.90 
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μm), red (R) (0.63 to 0.69 μm), and green (G) (0.52 to 0.62 μm) bands at 32 m 

spatial resolution. DMC imagery was used because its high temporal frequency 

(up to daily) and wide area coverage were well suited to target the peak of opium 

poppy biomass. Images were collected on: 27 April 2007, 24 March, 7 April and 

24 April 2008 and 25 March, 3 April, and 8 April 2009. The same area was used 

for analysis between 2007 and 2009 based on the provincial boundaries of 

Helmand and Kandahar and the DMC footprint from 2007 (Figure 2-1), which 

resulted in multiple images for 2008 and 2009. The unsupervised classification 

was performed using the Iterative Self-Organising Data Analysis Technique 

(ISODATA) by separating the imagery into 30 classes with each output cluster 

manually labelled as agriculture or non-agriculture. These classifications were 

then manually edited as some clusters contained pixels of both agriculture and 

natural vegetation. Editing was done by trained interpreters with access to 

ancillary information from high resolution commercial IKONOS imagery (Taylor 

et al., 2010). Finally, the masks were quality checked and compared with data 

from other years to ensure consistency of interpretation. 

2.3.3 Model selection 

The best performing CNN model for chip classification was selected from three 

CNN models with previously high performance in other image classification tasks 

(Simonyan and Zisserman, 2015; He et al., 2016): ResNet50, VGG16 and 

VGG19. Firstly, the input image from 27 April 2007 was split into pixel chips as 

CNN architectures require images rather than individual pixels to function. Pixel 

chips of size 33 × 33 pixels were created using a non-overlapping grid as this 

was the smallest input image size that can be used based on these model 

architectures. The class of the centre pixel was used as the label for each chip 

as the goal was to classify whole images pixel-by-pixel through reconstructing 

overlapping chips (Kampffmeyer, Salberg and Jenssen, 2016). All chips were z-

score normalised and a 75% random sub-sample was selected for each class for 

training and the remaining 25% were used for independent validation. The 

agriculture samples in the training datasets were augmented at 90°, 180° and 

270° angles (also known as horizontal and vertical flipping) to increase the 
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number of samples by a factor of 2. The training and validation datasets were 

balanced by under sampling the majority class (non-agriculture) to match the 

number of samples in the agriculture class. This resulted in a total of 11,664 

training samples and 1,944 validation samples across the two classes using the 

reference agricultural mask data. Each model was then trained end-to-end and 

using an ImageNet transfer learning model with an Adam optimizer and a learning 

rate of 0.0001. Model performance was assessed on the validation samples using 

overall accuracy and the Kappa coefficient. All experiments were undertaken 

using Keras (Chollet, 2015) with a TensorFlow (Abadi et al., 2015) backend on a 

workstation with a Intel Xeon E5-2687W v3 CPU, NVIDIA Quadro K2200 GPU 

and 64 GB of RAM. As a benchmark the CNNs were compared to a Random 

Forest, a pixel-based machine learning classifier, to provide comparison between 

a pixel-based and chip-based classifier. The number of trees (100), tree-depth 

(2) and maximum features used to split each internal node (10) were determined 

as the optimal hyper-parameters by grid search using a stratified 3 fold cross 

validation on the training data. More information on this experiment can be found 

in Appendix A. 

All CNN models were able to classify agricultural chips better than the Random 

Forest classifier with up to a 9% improvement. The ResNet50 architecture 

achieved the highest overall accuracy and Kappa coefficient using transfer 

learning, 99.02% and 0.98 respectively (Table 2-1) and  was used for all further 

experiments. 
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Table 2-1. Summary of ResNet50, VGG16 and VGG19 CNN model performance for 

end-to-end (EE) and transfer learning (TL) training parameters for 10 epochs using 

33 × 33 pixel image chips from DMC (NIR, R, G) imagery for 27 April 2007 across 

Helmand and Kandahar. The best performing model and metrics are highlighted 

in bold. 

CNN model Training approach Model performance (10 epochs) (%) 

Overall accuracy K 

ResNet50 EE 96.81 0.94 
 TL 99.02 0.98 
VGG16 EE 98.82 0.98 
 TL 97.48 0.95 
VGG19 EE 98.30 0.97 
 TL 96.40 0.93 
Random Forest N/A 89.22 0.88 

 

2.3.4 Experiment 1: Image chip size and CNN training strategy 

Image chipping is an important pre-processing step for CNNs with fully connected 

layers. Three sets of fixed non-overlapping grids at small, medium and large scale 

with a centre pixel (33 × 33 pixels, 65 × 65 pixels, and 129 × 129 pixels) were 

created to provide model input data at different spatial scales to investigate the 

effect of chip size. The chips were z-score normalised and the reference data 

label for each chip was assigned based on the centre pixel. 

The agriculture class is heavily under-represented in the data and accounts for 

only 5% of samples for all image chip sizes (Table 2-2). Data augmentation was 

used for all experiments to increase the number of agriculture samples by a factor 

of 2. Datasets for all experiments were balanced in number between non-

agriculture and augmented agriculture samples using a stratified random sample 

from the non-agriculture group. Sub-stratification was carried out within the non-

agriculture group to select chips at the boundary of agricultural land and areas of 

natural vegetation, which are known confusion areas for agricultural mapping 

(Simms et al., 2016). Non-agriculture chips with natural vegetation were selected 

using an Otsu threshold (Otsu, 1979) on a Normalised Difference Vegetation 

Index (NDVI) image of the study extent with the reference agricultural mask 

applied. Masking agricultural land forces the NDVI threshold to focus on selecting 

samples located in areas of natural vegetation. 
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Figure 2-2. The ResNet50 model architecture used for agricultural mask 

production 

Three separate strategies were used to identify how best to train the ResNet50 

CNN (Figure 2-2). These were: (1) random sampling of agriculture and non-

agriculture; (2) sampling from boundary cases; and (3) targeted sampling from 

non-agriculture chips containing natural vegetation and boundary cases. 

Boundary cases are defined as chips with a non-agriculture label that contain 

agriculture within the chip. These samples have been introduced to provide more 

difficult interpretation cases to train and validate the model. 

The number of selected training and validation samples (from the total number in 

Table 2-2) for each chip size remained consistent, regardless of training strategy. 

Chip size 33 × 33 used 11,664 training and 1,944 validation samples, 2,868 

training and 478 validation samples were used for chip size 65 × 65 and 724 

training and 120 validation samples were used for chip size 129 × 129. 

Table 2-2. Total number of chips (n) in the study area for agriculture, non-

agriculture, and boundary samples (non-agriculture chip label, but with 

agriculture present) for each size of image chip for 2007 data with the percentage 

of total area 

Input image 
chips size 
(pixels) 

Agriculture Boundary Non-agriculture 

n Percentage 
area (%) 

n Percentage 
area (%) 

n Percentage 
area (%) 

33 × 33 3,899 5.4 10,699 14.8 57,556 79.8 
65 × 65 1,012 5.5 4,414 24.0 12,961 70.5 
129 × 129 250 5.5 1,599 35.1 2,711 59.5 

A separate ResNet50 CNN model was also trained to include Shuttle Radar 

Topography Mission (SRTM) elevation data (resampled to 32 m and min-max 

normalised) to investigate the effect of ancillary data. The raw SRTM elevation 

values are provided rather than other representations (e.g. slope or aspect). 

Aspect is not considered in these experiments as augmentation of training 
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samples has removed directionality from model learning. Slope is not provided 

as the CNN uses kernel operations to identify underlying patterns, which slope is 

a kernel function therefore does not need to be explicitly encoded. Most CNN 

architectures are developed for photographs, with input channels restricted to 

three. The green band was substituted for elevation as the NIR and R spectral 

bands were considered to be of higher importance for monitoring of vegetation 

(Panda, Ames and Panigrahi, 2010). 

The CNN outputs a single prediction for each image chip, so reconstruction is 

required to classify a whole image pixel-by-pixel. The reconstruction process 

used in this study applies the trained CNN model to each pixel in the image using 

an overlapping sliding window the same dimensions as the image chip used 

during training. This achieves a pixelwise classification by labelling the centre 

pixel of each sliding window with the model prediction for the chip (Figure 2-3). 

 

Figure 2-3. The process for pixelwise agricultural mask prediction using a sliding 

window with a trained CNN model. (a) 3 band satellite image chip, (b) sliding 

window applying CNN model e.g. 3 × 3 and (c) pixelwise agricultural mask 

production 

2.3.5 Experiment 2: Transfer learning across multiple seasons 

The ability to retrain CNN models with new data is a desirable attribute for image 

classification. The transferability of agricultural features for continual refinement 

of a multi-seasonal classifier was explored using 2007, 2008 and 2009 data. 

Transfer learning was used to update the model previously trained on 2007 data 
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with data from 2008, the combined model was then updated with 2009 data. The 

best performing training strategy from experiment 1 was used to create the 2008 

and 2009 input data, which were balanced using the same image augmentation 

as the 2007 dataset. The total number of training samples used for 2008 and 

2009 were 11,960 and 12,032 with 1,994 and 2,006 validation samples, 

respectively. The proportion of training data was varied (25%, 50%, 75% and 

100%) to identify the number of samples required to update each year's model to 

a similar level of accuracy. 

2.4 Results 

The CNN model outputs for agricultural delineation were found to consistently 

achieve higher accuracy with ImageNet transfer learning across all chip sizes 

than end-to-end learning (Figure 2-4). The major difference between transfer and 

end-to-end learning is shown during the initial 5 epochs with higher initial training 

and overall accuracy, where the training accuracy is the overall accuracy of the 

training data. Training accuracies for all image chip sizes were found to achieve 

a similar accuracy after 50 epochs, unlike validation accuracies. The 129 × 129 

chips were found to plateau faster than the other chip sizes across all training 

strategies and 65 × 65 chips took the longest to train in both transfer and end-to-
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end learning. End-to-end CNN models across all training strategies were also 

found to require more epochs of training than transfer learning. 

Figure 2-4. Evaluation of training and validation overall accuracy for three different 

training strategies for different image chips sizes (33 × 33, 65 × 65 and 129 × 129 

pixels) using transfer (TL) and end-to-end learning (EE): (a) strategy 1: random 

agriculture and non-agriculture classes; (b) strategy 2: random agriculture and 

boundary classes; and (c) strategy 3: random agriculture class, boundary cases 

and NDVI targeted non-agriculture class 

Smaller chips were found to be less generalised than larger chips across various 

agricultural landscapes after image reconstruction (Figure 2-5). The 129 × 129 

chip classification delineates the overall agricultural boundary extent but performs 

poorly on smaller non-agricultural areas and edge cases. This can be seen as a 

buffering effect along agricultural boundaries. Boundaries between the 
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agriculture and non-agriculture class were found to be well-defined for the 33 × 

33 chip size. High visual agreement with the reference agricultural mask was 

achieved, particularly for strong edge cases such as the river valley. 

 

Figure 2-5. False colour DMC imagery (NIR, R, G at 32 m) from 27 April 2007 (i) for 

an (a) agriculture dominated area and (b) non-agriculture dominated area with 

corresponding agriculture delineation for three image chip sizes ((ii) 33 × 33, (iii) 

65 × 65 and (iv) 129 × 129) using the best-performing ResNet50 CNN (strategy 3, 

random agriculture, boundary cases and NDVI targeted non-agriculture class with 

transfer learning) 

The ResNet50 CNN model performance summarised in Table 2-3 shows the 

overall accuracy, Kappa coefficient, mean IoU and frequency weighted IoU, for 

the three different chip sizes, two model training methods (end-to-end and 

transfer learning) and the three different training strategies. Overall accuracy is 

highest for 33 × 33 chip size, with transfer learning outperforming all end-to-end 

training strategies (Figure 2-4). The best performing model was transfer-trained 

using data from strategy 3 and 33 × 33 chips, with an overall accuracy of 94.01%, 

Kappa coefficient of 88.02% and mean and weighted IoU of 50.33 and 67.61 

respectively (Table 2-3). Strategy 3 produced the best performing models with 

the exception of the 65 × 65 size chips, which achieved marginally higher overall 
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accuracy (+0.5% improvement using transfer learning), Kappa coefficient, mIoU 

and fwIoU for both end-to-end and transfer learning with strategy 2. 

Table 2-3. Evaluation of input chip sizes (129 × 129, 65 × 65 and 33 × 33 pixels) and 

strategies for CNN models trained using both end-to-end (EE) and transfer 

learning (TL) across Helmand and Kandahar provinces on DMC (NIR, R, G) imagery 

in April 2007. Strategy 1: random sampling of agriculture and non-agriculture 

classes; strategy 2: random sampling of agriculture and boundary classes; 

strategy 3: random agriculture, boundary cases and NDVI targeted non-agriculture 

class. The best performing validation metrics for each training strategy are 

highlighted in bold 

Training 
strategy 

Validation 
metric (50 
epochs) 

(%) 

Training approach 

EE (pixels) TL (pixels) 

129 65 33 129 65 33 

Strategy 1        
 OA 79.17 87.45 88.53 82.50 89.75 91.94 
 K 58.33 74.90 77.07 65.00 79.50 83.88 
 mIoU 30.31 34.80 47.75 30.04 40.32 49.03 
 fwIoU 34.56 41.73 63.70 33.86 52.04 65.35 
Strategy 2        
 OA 81.15 89.04 91.72 83.61 90.24 93.47 
 K 62.30 78.09 83.44 67.21 80.48 86.93 
 mIoU 32.05 37.36 48.56 28.31 41.66 49.18 
 fwIoU 36.96 45.40 63.79 31.89 52.95 65.42 
Strategy 3        
 OA 82.50 88.49 91.79 85.83 89.33 94.01 
 K 65.00 76.10 83.57 71.67 78.66 88.02 
 mIoU 28.13 36.33 48.57 29.63 38.17 50.33 
 fwIoU 31.78 44.43 64.63 33.29 47.58 67.61 

 

Table 2-4. Best performing CNN training strategies based on overall accuracy for 

each image chip size with prediction times using DMC (NIR, R, G at 32 m) imagery 

samples across Helmand and Kandahar provinces in April 2007. Strategy 2: 

random sampling agriculture and boundary classes and strategy 3: random 

agriculture, boundary cases and NDVI targeted non-agriculture class 

Input image chip size (pixels) Best performing training 
strategy 

Prediction time (s) (n = 
250,000) 

33 × 33 Strategy 3: transfer learning 384 
65 × 65 Strategy 2: transfer learning 677 
129 × 129 Strategy 3: transfer learning 1,677 
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The fastest prediction times were found using smaller image chips for the same area 

extent (800 ha). The shortest time was achieved using 33 × 33 chips (384 seconds for 

250,000 samples), as opposed to 1677 seconds for 129 × 129 chips (Table 2-4). 

Visual evaluation of the Helmand and Kandahar agricultural mask for April 2007 

found most complex agricultural areas and highland vegetation were well 

delineated (Figure 2-6). The CNN identified the distinct difference between 

features of the background class and agriculture. Large extents of natural 

vegetation were found to be correctly classified, with small areas of over-

classification of agriculture (also referred to as a commission error) (Figure 2-6 

(a)). There are also regions of high commission in low lying areas surrounding 

highland regions in Kandahar (Figure 2-6 (c)). 
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Figure 2-6. Visual interpretation of (i) DMC imagery for the best performing CNN 

classification model (training strategy 3: random agriculture, boundary cases and 

NDVI targeted non-agriculture class with transfer learning) with input image chip 

size 33 × 33 pixels for (ii) spectral and (iii) SRTM elevation data (resampled to 32 

m).  Image extents have been selected based on prior knowledge of confusion 

areas for interpretation. (a) Large extent of natural vegetation, (b) well-delineated 

agriculture in highland areas and (c) commission of agriculture surrounding 

highland areas in Kandahar, Afghanistan. False colour DMC imagery (NIR, R, G at 

32 m) for 27 April 2007. 
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Substituting elevation data (SRTM) with the green spectral band (Table 2-5) and 

training with the best performing strategy resulted in marginally lower 

performance than using only spectral data (-0.63% overall accuracy). The visual 

comparison of spectral and elevation CNNs for 2007 (Figure 2-6) show little 

difference between natural vegetation in highland areas and an increase in the 

commission error of agriculture in the mountains of Kandahar province (Figure 

2-6 (c)). 

Table 2-5. Evaluation of using elevation data (SRTM) and DMC imagery (NIR, R, G 

at 32 m) across Helmand and Kandahar provinces in April 2007 for agricultural 

delineation using transfer learning, targeted background sampling (training 

strategy 3) and image chip size 33 × 33 pixels 

Training data Model performance (50 epochs) (%) 

Overall accuracy K mIoU fwIoU 

NIR, R, G 94.01 88.02 50.33 67.61 
NIR, R, SRTM 93.38 86.78 49.43 65.47 

 

2.4.1 Multi-seasonal CNN application 

A multi-season model was trained starting with the best performing 2007 CNN 

(Table 2-5). The black dotted line in Figure 2-7 (a) shows the overall accuracy of 

the 2007 model on classifying the 2008 validation data (80.16%). The 2007 model 

trained faster over the first 10 epochs when updated with 75% (977 ha) of the 

available 2008 data than the other proportions (25%, 50%, and 100%) and 

achieved a similar overall accuracy to a single-season 2008 model (92.83% and 

91.78% green line and red dotted line respectively in Figure 2-7 (a)). Adding data 

from 2008 increased the overall accuracy of the 2007 model by +12.67% to 

92.83% and the Kappa coefficient, mean and weighted IoU also increases by 

24.04%, 7.29 and 11.46, respectively (Table 2-6). 
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Figure 2-7. Evaluation of updating the best performing 2007 model using multiple 

training sample proportions (25%, 50%, 75% and 100% of total training data 

available) from 2008 and 2009 training data. (a) Transfer learning of 2008 training 

data using the 2007 model and (b) transfer learning of 2009 training data using the 

2007 model updated with 75% of 2008 training data. Previous year's model with no 

additional training is shown by the black dashed line. Target year's model trained 

from the ImageNet dataset using 100% of available training data is shown by the 

red dashed line 

The analysis was repeated for the 2009 agriculture mask classification (Figure 

2-7 (b)). The CNN was trained using only 2009 data to provide a single-year 

model with and overall accuracy of 91.23% (the red dotted line in Figure 2-7 (b)). 

The previous years' combined model (trained on 2007 and 75% of 2008 data) 

with no training from 2009 achieved an overall accuracy of 89.23% (the black 

dotted line in Figure 2-7 (b)). This was an increase of +9.07% compared with 

using the 2007 model on 2008 imagery, showing a year-on-year improvement 

with additional data across seasons. The differences in the agricultural extent 

between image dates may affect year-on-year accuracy, but using the same 

validation locations aims to reduce this influence. Updating the previous years' 

model with 25% (317 ha) of available data trained faster than other sample 

proportions, improving the overall accuracy by 5.34% with the Kappa coefficient, 

mean and weighted IoU increasing by 10.68, 9.86 and 16.18, respectively (Figure 

2-7 (b) and Table 2-6). 
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Table 2-6. Evaluation of transfer learning (TL) using a CNN trained on DMC imagery 

(NIR, R, G at 32 m) from 2007, 2008 and 2009 for Helmand and Kandahar provinces. 

Retrain uses the optimal percentage of available training samples with CNN TL 

from the previous year. The retrained 2008 model uses the 2007 model as a starting 

point and the retrained 2009 model uses the retrained 2007 model with 2008 data 

(75%) 

Training year & 
model 

Model performance (50 epochs) (%) 

Overall accuracy K mIoU fwIoU 

2008     
2007 TL only 80.16 61.62 39.39 48.63 
Retrain (75%) 92.83 85.66 46.68 60.09 
2009     
2008 TL only 89.23 78.44 41.05 52.23 
Retrain (25%) 94.57 89.12 50.91 68.41 

 

Visual inspection of the multi-seasonal classifications in areas of known 

confusion between agriculture and natural vegetation show differences between 

years (see Figure 2-6, Figure 2-8 and Figure 2-9). In 2008 there are fewer 

agriculture commission errors than in 2009, despite the higher overall accuracy 

of the 2009 model. There are noticeable seasonal differences in natural 

vegetation between all three years. Larger areas of natural vegetation are found 

in 2007 (Figure 2-6 (a) and (c)) and 2009 (Figure 2-9 (a) and (c)), but little natural 

vegetation is found across the same area for 2008 (Figure 2-8 (a) and (c)). 
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Figure 2-8. Visual interpretation of the 2008 CNN model with 75% of available 

training data using training strategy 3 (random agriculture, boundary cases and 

NDVI targeted non-agriculture classes with transfer learning) with input image 

chip size 33 × 33 pixels. Image extents have been selected based on prior 

knowledge of confusion areas for interpretation. (a) Large extent of natural 

vegetation, (b) well-delineated agriculture in highland areas and (c) commission 

of agriculture in highland areas in Kandahar, Afghanistan. False colour DMC 

imagery (32 m) for April 2008 
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Figure 2-9. Visual interpretation of the 2009 CNN model with 25% of available 

training data using training strategy 3 (random agriculture, boundary cases and 

NDVI targeted non-agriculture classes with transfer learning) with input image 

chip size 33 × 33 pixels. Image extents have been selected based on prior 

knowledge of confusion areas for interpretation. (a) Large extent of natural 

vegetation, (b) well-delineated agriculture in highland areas and (c) commission 

of agriculture in highland areas in Kandahar, Afghanistan. False colour DMC 

imagery (32 m) for April 2009 
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2.5 Discussion 

2.5.1 Importance of contextual information 

In the operational opium survey, image interpreters manually refine the 

agricultural area defined by an unsupervised classification to adjust boundaries 

and remove areas of confusion, using contextual information to support their 

decisions (UNODC, 2018b). Contextual information includes field boundaries 

contrasting with desert and rock, buildings, and river channels. The CNN 

overcomes the limitations of pixel-based unsupervised classification by encoding 

the surrounding landscape features within each chip, with the scale of features 

dependent on the chip size. For example, in Figure 2-10 there are local field 

parcels and texture visible in the 33 × 33 chip (Figure 2-10 (a)), many more fields 

and the surrounding desert in the 65 × 65 chip (Figure 2-10 (b)) and a much 

greater proportion of desert and lower proportion of local information (relative to 

the centre pixel) within the 129 × 129 chip (Figure 2-10 (c)). Smaller chip sizes 

result in a set of more localised features in the CNN and larger chip sizes have 

greater generalisation, which is analogous to how a human interpreter will use 

local context (using a larger mapping scale) to refine a boundary. 

In the CNN output each prediction is based on a single chip, with pixel-by-pixel 

classification achieved by sliding a chip-sized window across the input image, 

assigning the prediction to the centre pixel. A one pixel shift of a small chip results 

in a more substantial change to the surrounding contextual information than 

larger chips, explaining why smaller chips are more sensitive to localised change 

and result in increased classification accuracy (Kroupi et al., 2019). Also, 

classification for the whole image is much more efficient with smaller chips as 

prediction for each sliding window is faster, despite the longer training times. A 

limitation of the fixed sampling grid is that a different number of samples are 

created for each chip size. An equal number of samples for each chip scale could 

be produced by introducing an overlapping sampling grid with the same centre 

pixel but would result in non-independent samples. Non-independent samples 

would introduce bias during the accuracy assessment process by validating on 

areas the classifier has already seen. 



 

65 

Making the image chip smaller might further improve the accuracy of the 

agricultural mask but there is likely to be a trade-off as the amount of contextual 

information decreases. The ResNet50 architecture limits the smallest chip size to 

32 × 32 (33 × 33 was used here to accommodate a centre pixel), but to investigate 

smaller chips would require changing the network architecture. Alternatively, 

Fully Convolutional Networks (FCNs) could be used to extract agricultural 

features from arbitrary chip sizes as the model architecture allows for dynamic 

image chip scales for training and inference unlike the ResNet50 architecture 

which requires the same size. FCNs also provide pixel-by-pixel predictions and 

overcome the limitation of the centre pixel and improve the speed of image 

classification (Paisitkriangkrai et al., 2015). 

 

Figure 2-10. Examples of the sliding window sizes (a) 33 × 33, (b) 65 × 65 and (c) 

129 × 129 pixels using the same centre pixel for agriculture. False colour DMC 

imagery (NIR, R, G at 32 m) for 27 April 2007 

The influence of the centre pixel is an important consideration for pixel-by-pixel 

classification (Zhang and Lu, 2019) as it is used to label training and validation 

samples into agriculture and non-agriculture classes. As an experiment into pixel 

bias, the centre pixels for agriculture validation samples for each chip size were 

altered to the mean average of non-agriculture chips for each input channel (NIR, 

R, G). There was a negligible difference in overall pixel accuracy (-0.36%) for the 

smallest chip (33 × 33), and no differences were found with the other chip sizes. 

This shows the centre pixel plays no individual role in prediction and why pixel-

level classification using image chips generalises as chip size increases. 
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Human interpreters have other sources of information at their disposal to help in 

the delineation of agricultural land. In our study area, using elevation data with 

the CNN model made little difference to classification accuracy (-0.63%).  

Highland and lowland areas are visually different, and it is likely that the spatial 

and spectral information in the chip is not improved further by adding explicit 

height information. In future work, other image sensors (e.g. hyperspectral 

(Dell’Acqua et al., 2006) and Synthetic Aperture Radar (SAR) (Liu, He and Li, 

2017), more ancillary data, and new deep learning architectures with an 

increased number of input channels could be investigated to improve agricultural 

land classification. 

2.5.2 Year-on-year transfer learning for agricultural mask production 

Transfer learning has similarities in the way a trained interpreter gains experience 

as they are both able to build upon existing knowledge. Whereas end-to-end 

learning is similar to an inexperienced interpreter with no prior knowledge of 

image classification. Transfer learning was consistently faster than end-to-end 

learning demonstrating some similarity between the underlying features across 

years. Transfer learning is unique to CNNs and other machine learning 

approaches, such as Random Forest, are unable to take advantage of faster 

training. The accuracy for CNN models trained by transfer learning were also 

generally higher than their end-to-end counterparts, which is consistent with 

previous studies of transfer learning for remote sensing data (UC Merced land 

use, RS19 and Brazilian coffee scenes) (Nogueira, Penatti and dos Santos, 

2017). 

Transfer learning increases the total number of samples used to train the CNN. 

However, sampling of the inter-annual changes between 2007 and 2009 was still 

required to refine the model. Even with very little (25%), or no training data from 

the target year, the model's performance increases. Fewer samples are required 

each year for training as multiple years’ worth of different landscapes and 

examples of agricultural features adequately extract and predict common 

features. This alleviates the burden for complete labelled datasets for CNN 

classification, which remains a challenge in remote sensing. Transfer learning 
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from remote sensing data provides the opportunity to provide timely initial 

predictions without the need for additional labelled datasets. Updating the model 

for subsequent years may only require 25% or less of the total sample fraction. 

Targeted sampling using boundary samples and an NDVI threshold (strategy 3) 

to identify samples containing natural vegetation was the optimal training 

strategy. By directing the training to areas of known confusion in the background 

class the CNN was better able to separate edge cases, which supports other 

studies reporting a decrease in CNN performance with random sampling 

compared to a selective strategy (Van Grinsven et al., 2016). A human interpreter 

would also improve their delineations with more experience of difficult 

interpretation cases. Future CNN applications could include additional samples 

using post-classification refinement to further improve classification performance. 

Using historical information to inform predictions of agricultural land has the 

potential to substantially decrease the manual effort associated with current 

agricultural mask production by the UNODC. Change detection techniques could 

be used by interpreters to focus manual editing on those areas identified as 

having changed. Misclassified areas could then be used as training samples to 

improve the model for the next year's agricultural mask. The outlined rationale 

could be used to develop a data-driven classification based solely on historical 

knowledge of agricultural land within Afghanistan. Utilising existing knowledge to 

derive upcoming agricultural masks without the need for additional data is an 

exciting prospect for timely image classification. 

2.6 Conclusions 

The overall accuracy for the ResNet50 CNN was >94% for agricultural land 

classification in all years (2007 to 2009). The best results were achieved using a 

chip size of 33 × 33 pixels and a NDVI-based sampling strategy, which targeted 

the main source of confusion between natural and agricultural vegetation. 

Transfer learning using a pre-trained model (ImageNet) was found to achieve 

higher overall accuracy than end-to-end learning (+2.2%). Substitution of the 

green spectral band for elevation data achieved marginally lower performance (-

0.6%). 
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When considering transfer learning of the CNN model year-on-year, the 

classification of 2008 imagery using the 2007 ResNet50 model, with no additional 

training, resulted in an accuracy of 80.2%, improving to 89.3% for 2009 imagery 

using a combined 2007 and 2008 model. Using only 25% of the 2009 data to 

update the combined model further improved classification accuracy to 94.6%. 

High classification performance coupled with continual model refinement from 

additional data shows the potential for CNNs to replace human interpreters for 

the UNODC's agricultural mask production. Reducing the manual effort in the 

production of the mask to a small proportion of the total area would improve the 

speed and efficiency of the survey, reducing the overall cost. Deep transfer 

learning across multiple years presents an exciting opportunity for timely and 

efficient land cover classification. 
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Chapter 3. Understanding and developing 

generalised FCNs for agricultural land mapping in 

Afghanistan 

This chapter presents a method for developing a generalised Fully Convolutional 

Network (FCN) for agricultural land classification across medium-resolution 

imagery datasets in Helmand, Afghanistan (thesis objectives 1 and 2). The 

influence of different image features (spatial, textural, and spectral) on an FCN's 

ability to learn representations of agricultural land is shown to understand how 

these networks learn. Standardisation of spectral image features is presented to 

transfer knowledge across image datasets between 2007 and 2017. A new 

method called localised intersection over union is presented for assessing 

localised error in land cover classification. 

 

Underlying data for this chapter is available at: 

https://doi.org/10.17862/cranfield.rd.14447400 

 

  

https://doi.org/10.17862/cranfield.rd.14447400
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3.1 Introduction 

In Chapter 2, Convolutional Neural Networks (CNNs) were used to classify 

agricultural land and outperformed other pixel-based machine learning 

approaches (Random Forest). They demonstrated the potential for replacing 

manual approaches. The ResNet50 CNN used achieved high classification 

performance across three training years (>94% overall accuracy). The CNN 

outperformed other supervised classifiers as it is able to encode the surrounding 

contextual information into fixed sized image chips as inputs. However, 

classification of whole images using a sliding window is time-consuming and 

caused generalisation at difficult interpretation cases (e.g. boundaries between 

natural vegetation and agriculture). The CNN models with fully connected layers 

are not well suited for pixel-level classification because of the difficulties in 

allocating a pixel-level label from a chip-level prediction. 

Fully Convolutional Networks (FCNs) are a type of CNN which are able to 

produce pixel-level predictions by upsampling outputs from consecutive 

convolutional layers back to the native resolution of the input image. High 

performance among image classification tasks suggests these models may be 

more appropriate for pixel-level land cover classification (Fu et al., 2017; Simms, 

2020). A limitation of CNNs and FCNs is the requirement for large amounts of 

labelled data to train accurate models (Vali, Comai and Matteucci, 2020) with up 

to 20% improvement using larger datasets with ResNet (Brigato and Iocchi, 

2021). In Chapter 2, agricultural land classification improved with more training 

data and with transfer learning from multiple years. This amount of training data 

is uncommon, or only available as legacy data from historical studies. Building 

general models for these data are advantageous for training CNN and FCN 

models, especially as access to these data are limited. 

Developing general models for agricultural land classification that can be trained 

and used across a range of image sensors is complicated because of the 

differences in their radiometric, spectral, spatial, and temporal resolutions. 

Imagery from different sensors generally require different analysis and models, 
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especially for supervised classification (Talukdar et al., 2020). Standardised 

imagery datasets would provide consistent data for training and classification of 

agricultural land between sensors and through time. In Chapter 2, Z-score 

normalisation was previously used to successfully standardise imagery from the 

same sensor (DMC) between 2007 and 2009, which transforms input data into a 

gaussian distribution for classification. This approach, from the field of computer 

vision, may not be appropriate for use of image datasets from different sources 

because of their radiometric, temporal and spectral differences. 

Understanding the image features that are important for CNNs to identify 

agriculture would help in the development of a general model. This would identify 

which features require standardisation to train general models across image 

datasets. However, the underlying patterns in data extracted by CNNs are often 

difficult for humans to interpret. These types of techniques are commonly referred 

to as black-box approaches. Previously, visualising heat maps has been used 

(Park et al., 2020), but intermediary layers are often uninterpretable due to their 

high number of output channels. Separating the spatial information from input 

data is difficult for binary image processing tasks, as multiple classes cannot be 

combined to create a background class (e.g. the agricultural mask). A binary 

mask was previously used with outlines of multi-class target objects of 

commercial photography at the pixel-level (Shelhamer, Long and Darrell, 2016). 

The best results were found by only masking the foreground whilst maintaining 

the background spectral values to suggest the network can learn spatial patterns. 

Another approach isolates the global shape of their commercial photography data 

using the outline of the target object and filling it with the spectral values of a 

different photograph (Baker et al., 2018). The study found the texture was more 

important than the global shape for chip-level CNN classification as a CNN is able 

to encode the local shape features from texture unlike the global shape. Further 

investigation of these image features could help optimise CNN performance. 

Assessing the performance of CNNs is essential for establishing whether the 

model is optimally trained to classify agricultural land. Global accuracy metrics, 

such as overall accuracy (Foody, 2009), are commonly used to quantify how well 
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a model is performing. In Chapter 2, there were only marginal improvements in 

overall accuracy whilst the mapped agricultural area in difficult interpretation 

areas (e.g. boundary locations) had improved delineation. Global metrics do not 

provide enough information on the distribution of error during classification. 

Intersection over Union (IoU) (Russakovsky et al., 2015) was found to be a more 

sensitive global accuracy metric for assessing global performance of CNN 

models in Chapter 2. A method for mapping the distribution of local error across 

different agricultural areas would be useful for identifying strengths and 

weaknesses of the general models. 

The aim of this chapter is to develop a generalised model for classifying 

agricultural areas from features across different datasets. The research questions 

are: (1) What are the respective spatial, textural, temporal, and spectral features 

used by the CNN for agricultural land prediction?, (2) Can these features be 

standardised across image sensors for transfer learning from one imagery source 

to another? and (3) Can the local differences in agricultural land classification 

performance be assessed? 

This chapter begins by evaluating an FCN-8 and ResNet50 architecture for 

agricultural land classification using the same training and validation datasets to 

select the best-performing CNN architecture. A new method for evaluating local 

classification performance is presented as localised IoU to map the spatial 

distribution of IoU. The subsequent sections conduct a series of experiments to 

identify the influences of different image features on CNN training. Spectral 

features are standardised for training and evaluating a generalised model for 

agricultural land classification across image datasets. 

3.2 Fully convolutional network 

The FCN-8 architecture (Long, Shelhamer and Darrell, 2015) is used in this 

chapter because of its high performance on pixel-based image processing tasks. 

The architecture is modelled on VGG-16 (Simonyan and Zisserman, 2015) and 

built up of convolutional layers to extract distinctive features from progressive 

layers based on sets of filter weights of shape m × n × c (Figure 3-1). These filters 

act as kernel operations for individual images, where m and n are the vertical and 
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horizontal dimensions of the image and c is the number of input features or 

spectral bands. Kernels operate on local spatial information at the defined stride 

length, also known as the receptive field, to perform convolution and pooling 

operations. Pooling uses downsampling to learn more complex spatial patterns 

by reducing the number of parameters. Upsampling of these layers rebuilds a 

dense spatial prediction. The FCN is able to produce a pixel-by-pixel output of 

classes (k) by replacing the fully connected layer of the VGG-16 architecture with 

a bilinear upsampling convolutional layer, also known as a deconvolutional layer. 

Lower layers are summed with the upsampled layers using skip connections to 

encode finer spatial structures and improve pixel-level predictions.  

 

Figure 3-1 The FCN-8 model architecture used for agricultural land classification 

using 256 × 256 pixel image chips. m × n are the vertical and horizontal 

dimensions, c is the number of input features (three for DMC imagery (NIR, R, G)) 

and k is the number of classes (Adapted from Piramanayagam et al. (2018)) 

The upsampling layers in the FCN-8 architecture overcomes the constraint for 

reconstruing the agricultural mask in Chapter 2 by creating a dense labelled 

prediction at the native resolution of the input image, rather than a single 

prediction for each image chip. The FCN-8 model configuration implemented in 

Simms (2020) is used in this chapter and was trained end-to-end using 0.0001 

learning rate with an Adam optimiser (Kingma and Ba, 2015) across 50 epochs. 
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All experiments were conducted on a NVIDIA Quadro K2200 GPU and the 

TensorFlow library (Abadi et al., 2015). 

The FCN-8 and ResNet50 architectures were compared for agricultural land 

classification to evaluate their performance using overall accuracy, kappa statistic 

(K) and frequency-weighted intersection over union (fwIoU) (§2.2). The same 

training dataset from Level-1A DMC data (NIR, R, G at 32 m) between 2007 and 

2009 across Helmand and Kandahar Province, Afghanistan were used to train 

both models. The same validation dataset from Level-1A DMC data from 2009 

was used to validate both models. The targeted training strategy outlined in 

Chapter 2 using 33 × 33 pixel chips was implemented for sample selection. The 

FCN-8 outperformed the ResNet50 for agricultural land classification (+3.34% 

overall accuracy) with higher frequency weighted IoU (+13.36%) (Table 3-1). The 

boundaries between agriculture and non-agriculture were the main areas of 

difference between the ResNet50 and FCN-8 classification, where the FCN had 

less generalisation (Figure 3-2). The smaller areas of agriculture were also better 

delineated in the FCN-8 classification and smaller variations within larger 

agricultural fields have improved to reduce agriculture over-classification. The 

FCN-8 is used in all subsequent experiments based on its superior classification 

of agricultural land. 

Table 3-1. Comparison between using the ResNet50 and FCN-8 architectures for 

classification of agricultural land using a DMC-trained model on 2007, 2008 and 

2009 data and validated on DMC imagery from 2009 (NIR, R, G at 32m) 

Model training data  
(n = 11,624) 

Validation metrics (%) (n = 1,936) 

Overall accuracy K fwIoU 

ResNet50 91.31 82.68 67.61 
FCN-8 94.65 88.51 80.97 
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Figure 3-2. Visual evaluation of agricultural delineation in Helmand between CNN 

and FCN classification in 2009 using models trained on the same image data from 

2007 and 2009. Image (31.4643° N, 64.4414° E): False colour (NIR, R, G) DMC 

imagery from 2009 

3.3 Materials and methods 

3.3.1 Image data and agricultural masks 

The study area was Helmand and Kandahar Province, Afghanistan which 

accounts for 61% of national opium cultivation with an estimated 160,208 ha 

grown in 2018 (UNODC, 2018b) (Figure 3-3). Cloud-free scenes from satellite 

imagery were selected to target timing for peak opium poppy biomass to coincide 

with the maximum active agricultural area (Table 3-2) and identified from MODIS 

Normalised Difference Vegetation Index (NDVI) temporal profiles (Simms et al., 

2014). The North-South cutlines were also used to select cloud-free imagery for 
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active agricultural mask production based on known differences in peak opium 

biomass (approximately 1-2 weeks) (Taylor et al., 2010). Four different image 

sensors are used to evaluate the interoperability of FCN models for agricultural 

land classification (DMC, Landsat-5, Landsat-8, and Sentinel-2). 

Table 3-2 Image specifications of near-infrared (NIR), red (R) and green (G) spectral 

bands for DMC, Landsat-5, Landsat-8 and Sentinel-2 imagery. North (N) or South 

(S) imagery are defined by the cutline in Figure 3-3. Some footprints overlap in 

North and South areas and the same cloud-free images were used for the analysis. 

Imagery Year Peak image 
dates 

Spatial 
resolution 
(m) 

Central 
wavelength 
(µm) 

Revisit time 

DMC 2007 27 Apr (N & S) 32 0.83 (NIR) 
0.66 (R) 
0.57 (G) 

Up to daily 

2008 24 Mar (S) 
7 Apr (S) 
24 Apr (N) 

2009 25 Mar (S) 
3 Apr (N) 
8 Apr (S) 

      

Landsat-5 2009 28 Mar (N & S) 
30 Mar (N)  
5 Apr (N & S) 

30 0.83 (NIR) 
0.66 (R) 
0.56 (G) 

16 days 

      
Landsat-8 2015 7 Apr (N & S) 

16 Apr (N & S) 
30 0.87 (NIR) 

0.66 (R) 
0.56 (G) 

16 days 

2016 24 Mar (N & S) 
18 Apr (N & S) 

2017 27 Mar (N & S) 
5 Apr (N & S) 

      

Sentinel-2 2017 8 Apr (N & S) 
15 Apr (N & S) 

10 (resampled 
to 30 m for 
comparison) 

0.84 (NIR) 
0.67 (R) 
0.56 (G) 

10 days 
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Figure 3-3. Helmand (centre 31.3636° N, 63.9586° E) and Kandahar (centre 31.6289° 

N, 65.7372° E) Province, Afghanistan showing the active agricultural area from 

2009 DMC imagery with the image cutline for selecting optimally timed imagery 

Annual active agricultural masks (§1.4) from Helmand and Kandahar were used 

for training and validating FCN models between 2007 and 2009, for further 

information on their production see §2.3.2. Sample locations for 2015, 2016, and 

2017 were selected from previous UNODC surveys in Helmand Province and 

manually interpreted using medium resolution imagery coinciding with peak 

vegetation to be consistent with the 2007-2009 datasets. 
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3.3.2 FCN sampling strategy for agricultural land 

The targeted training strategy outlined in Chapter 2 was used to train the general 

models. Input imagery from each year was split into a non-overlapping 256 x 256 

pixel grid to create input image chips to be fed to the model. This pixel grid size 

was selected as it was the largest image size that could be stored in the system’s 

graphic card memory during training (NVIDIA Quadro K2200 4GB), but larger 

image chips could be used. The samples were subsequently stratified into three 

groups using the reference agricultural mask for each target training year: (1) 

chips containing agriculture, (2) chips containing only non-agriculture (the 

background class) and (3) chips containing only non-agriculture with high NDVI, 

as defined by the Otsu threshold (Otsu, 1979), to introduce samples with natural 

vegetation. In Chapter 2, optimised CNN models were found to distinguish the 

difference between agriculture and non-agriculture using only samples with 

agriculture present because of the abundance of the background non-agriculture 

class across Helmand. Samples containing agriculture were first ordered based 

on their respective proportion of agriculture. Then training and validation datasets 

were created by using a 75%/25% split of these samples and selecting the first 

three samples for training and the fourth sample for validation to ensure 

representative sets of labelled data.  

3.3.3 Experiment 1: Image features for agricultural land 

classification 

FCNs can encode localised information into their convolutional filters to provide 

high image classification performance. Individual satellite imagery scenes have 

three main features for these techniques to learn from: (1) spatial, (2) textural and 

(3) spectral. These individual features were extracted from level-1A DMC data in 

2009 across Helmand and Kandahar Province to understand how important each 

feature is for training an FCN to delineate agricultural land. Time-series of satellite 

imagery would also provide the temporal differences, which have been 

successful in land cover classification (Rußwurm and Körner, 2018), but this 

experiment focuses on extracting features from individual scenes using pre-

trained FCN models which do not allow for temporal signatures. A total of 415 
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training samples and 137 validation samples from 2009 imagery (Figure 3-4) 

were used for this experiment. 

 

Figure 3-4 Histograms for the NIR (0.76 - 0.90 µm), R (0.63 – 0.69 µm) and G (0.52 – 

0.62 µm) spectral bands of the 2009 training and validation image chips (n = 552) 

The approach used to separate the spatial component for the agricultural mask 

uses a method where the spectral values are filled with the opposite class (Baker 

et al., 2018). The assumption is by replacing the spectral values with the opposite 

class the FCN is relying solely on the encoded spatial information to learn 

features of agricultural land. In this experiment, the training data were ordered 

based on the proportion of agriculture. Then, every other sample had their 

agricultural area filled with spectral values from samples with 100% non-

agriculture spectral values. The sample’s non-agricultural area was filled with 

spectral values from samples with 100% agriculture proportion spectral values 

(Figure 3-5). A combination of synthetic and original Level-1A data were used to 

train the FCN-8 model and validated on the original Level-1A validation samples. 
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Figure 3-5 Example 256 x 256 training chips after spatial pre-processing (i) labels, 

(ii) Level-1A image, and (iii) synthetic image, both (ii) and (iii) are used as training 

samples. Agriculture is denoted in white and non-agriculture in black in the labels 

image. 

Textural components were extracted by applying a grey-level occurrence matrix 

(GLCM) on DMC imagery from 2009. The grey-level co-occurrence matrix 

(GLCM) extracts textural features based on the spatial and spectral relationship 

of each pixel (Haralick, Shanmugan and Dinstein, 1973). The three textural 

metrics with the greatest variance were used as inputs to the FCN model to 

investigate texture, which are homogeneity (Equation 3-1), entropy (Equation 
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3-2), and correlation (Equation 3-3) (Figure 3-6), where Pi,j is the probability of 

column (i) and row (j) labels occurring in adjacent pixels using the fixed kernel 

window of the GLCM, µ is the mean and σ is the standard deviation (Hall-Beyer, 

2017). 

Homogeneity = ∑ (
𝑃𝑖,𝑗

1 + (𝑖 −  𝑗)2
)

𝑁−1

𝑖,𝑗=0

 
3-1 

 

Entropy = ∑ 𝑃𝑖,𝑗(− ln 𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 
3-2 

 

Correlation = ∑ 𝑃𝑖,𝑗

[
 
 
 (𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 𝑁−1

𝑖,𝑗=0
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Figure 3-6 Example 256 x 256 training chips after textural pre-processing. i) labels, 

ii) homogeneity, iii) entropy, and iv) correlation. Agriculture is denoted in white 

and non-agriculture in black in the labels image. 
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Figure 3-7 Example 256 x 256 training chips after spectral pre-processing. i) labels, 

ii) near-infrared, iii) red, and iv) green. Agriculture is denoted in white and non-

agriculture in black in the labels image. 

The spectral components were separated using the individual spectral bands 

from the DMC imagery (NIR, R, G) (Figure 3-7). Texture is encoded within these 

components based on the land cover therefore, it is not possible to exclude the 

influence from the texture in these spectral components. When referring to the 

spectral component for FCN model training in this study it also encompasses the 

textural component. 

3.3.4 Experiment 2: Standardisation of image data 

Standardisation is required for image data to reduce the influence of radiometric 

differences caused by the atmosphere, illumination, or sensor specifications to 

ensure differences between images are actual changes on the Earth’s surface. 

This experiment aims to understand how standardisation of spectral data affects 
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agricultural land delineation between image sensors using FCNs. A total of 820 

training samples were used from DMC data across two training years (2007 and 

2008) and the model was validated using 137 validation samples from DMC data 

in 2009. Landsat-5 imagery (NIR,R,G at 30m) was used to validate the between 

sensor performance of the trained FCN by selecting overlapping cloud-free 

imagery at similar dates to DMC imagery (Table 3-2). Landsat-5 underwent 

nearest neighbour resampling to match the spatial grid of the validation data (32 

m) to allow validation using the labels derived from the DMC data. The same 

DMC validation sample locations from 2009 data were selected to compare the 

performance of the classifier between the two satellite sensors. 

Four different types of standardisation are used to assess their interoperability 

with the spectral data between satellite sensors for FCN training: (1) Top of 

Atmosphere (TOA) reflectance calibration (Level-1A), (2) Iteratively Reweighted 

Multivariate Alteration Detection (IR-MAD) of Level-1A images, (3) pixel intensity 

and (4) Normalised Difference Vegetation Index (NDVI). Level-1A imagery, also 

known as TOA reflectance, is a common radiometric calibrated product which 

removes the radiation scattered and emitted by the atmosphere to estimate 

surface reflectance. In order to convert to TOA reflectance, Equation 3-4 is used 

where, 𝐿λ is at sensor radiance, 𝑑𝑑 is Earth-Sun distance in astronomical units, 

𝐸𝑆𝑈𝑁λ is the solar exo-atmospheric irradiance and θ is the solar zenith angle. 

𝜌 =  
𝜋 𝐿λ 𝑑

𝑑

𝐸𝑆𝑈𝑁λ Cos(θ)
 

3-4 

 

IR-MAD is a radiometric normalisation technique for bi-temporal analysis (Canty 

and Nielsen, 2008), which maximises the differences related to land cover 

changes. IR-MAD uses invariant features between images to match the 

radiometry using orthogonal regression. Invariant features from the scalar 

difference image (Equation 3-5) are determined using canonical correlation 

analysis to subtract the canonical components from each pixel position between 

the target image (𝑇) and reference image (𝑅) across each spectral band (𝑁) 

(Equation 3-6). The probability of change is calculated using the chi-square 
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distribution for each pixel from the sum of the squares of the MAD variates (𝑀𝑖) 

(Equation 3-7). The observations are iteratively reweighted using the probability 

of no-change until the threshold of change falls below the defined threshold 

(>0.95). 

 

𝑈 = 𝑎𝑇𝑅 − 𝑏𝑇𝑇 3-5 

 

𝑀𝑖 = 𝑈𝑁−𝑖+1 − 𝑉𝑁−𝑖+1, 𝑖 = 1,… ,𝑁 3-6 

 

𝑍 = ∑(
𝑀𝑖

𝜎𝑀𝑖

)

𝑁

𝑖−1

 
3-7 

 

The experiment used Level-1A DMC and Landsat-5 imagery from 2007 to 2009 

across Helmand and Kandahar Province to run the IR-MAD analysis from code 

available from Canty (2014). The reference image used during IR-MAD 

radiometric calibration is a single cloud free DMC image across Helmand and 

Kandahar Province acquired on 27 April 2007, as this is the oldest image in the 

analysis. All target imagery (DMC, Landsat, and Sentinel-2) can be 

radiometrically matched to this single image across the same image extent 

(Figure 3-8). 
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Figure 3-8 Orthogonal regressions for spectral bands NIR, red and green on Level-

1A a) DMC imagery on 25 March 2009 and b) Landsat-5 imagery on 5 April 2009 

before and after IR-MAD normalisation. Only unchanged pixels are plotted. 

Pixel intensity is used to assess whether a single grey-level band derived from 

the NIR, R and G bands can separate agriculture and derived by calculating the 

weighted sum of the spectral bands. The NDVI (Equation 3-8) is a commonly 

used vegetation index to separate agriculture using the near-infrared (NIR) and 
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red (R) spectral bands and is used in the operational methodology by the UNODC 

to perform their unsupervised agricultural mask classifications. 

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
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3.3.5 Generalised FCN model training with few labels 

The workflow presented in Figure 3-9 applies the proposed methodology for 

updating the FCN with only new areas of agriculture in Chapter 2. These new 

agricultural areas are areas of expansion between the target year and the 

previous year’s agricultural mask. Updating the model with a smaller subset of 

labelled data creates a sparse dataset, therefore the FCN-8 model needs to be 

altered to reflect this change. The FCN-8 network masks existing areas of 

agriculture between the two target years by providing a weighting layer during 

each epoch to only take into account predictions of new agricultural areas to fine-

tune the model, in a similar approach used to ensure class balance (Long, 

Shelhamer and Darrell, 2015). 
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Figure 3-9. Workflow for active agricultural mask production using sparse data by 

fine-tuning an existing FCN model with only new areas of agriculture between 

agricultural masks 

The best-performing FCN model trained with data from 2007 to 2009 for between-

sensor performance used IR-MAD normalisation and is used to fine-tune with 

new data between 2015 and 2017. All imagery were standardised using IR-MAD 

radiometric normalisation of Level-1A satellite imagery (Figure 3-10). The 

reference image used for all normalisation is the same DMC image from 27 April 

2007 across Helmand Province. Standardised imagery (NIR, R, G) and active 

masks are split into a non-overlapping grid of 256 x 256 pixels, where these 

samples are subsequently stratified using the same approach outlined in §3.3.2. 

The 2015 dataset had a total of 273 available training samples and 91 validation 

samples. From Chapter 2, it was found not all training data was required to fine-

tune the model between years, therefore only 25% of the training dataset is used 

to fine-tune 2015 (69 samples). 
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Figure 3-10. Orthogonal regressions for spectral bands NIR, red and green on 

Level-1A calibrated Landsat-8 imagery on 18 April 2016 a) before IR-MAD 

normalisation and b) after IR-MAD normalisation. Only unchanged pixels are 

plotted 

The training sampling approach used for updating the model only includes 

samples where new areas of agriculture are above 1% of its proportion. The 2016 

dataset has 54 samples for updating the 2015 model and the 2017 dataset has 

34 samples for updating the 2016 model. The same validation sample locations 

are used for 2015, 2016 and 2017 to assess the performance of the generalised 

model. Uncertainty of the generalised model is expressed using the 95% 

prediction intervals using the total reference and prediction areas of the 2009, 

2015, 2016 and 2017 validation samples (Equation 3-9) where, 𝑥𝑘 is the predicted 

value, 𝑦̂ℎ is the response value, 𝑡
(
𝛼

2
,   𝑛−2)

 is the critical t-value (1.96) with multiplier 

and √𝑀𝑆𝐸 × (1 +
1

𝑛
+

(𝑥𝑘− 𝑥̅)2

Σ(𝑥𝑖− 𝑥̅ )2
) is the standard error of prediction. 

 

𝑦̂ℎ ± 𝑡
(
𝛼
2
,   𝑛−2)

× √𝑀𝑆𝐸 × (1 +
1

𝑛
+

(𝑥𝑘 − 𝑥̅)2

Σ(𝑥𝑖 − 𝑥̅ )2
) 

3-9 
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Accurate agricultural area estimates are essential for the annual opium cultivation 

estimates as it is used in the ratio-based sampling approach (Equation 1-1). The 

use of different imagery resolutions is an important consideration for comparison 

between area estimates as the influence of generalisation in agricultural mask 

production is detrimental to cultivation estimates (Simms, Waine and Taylor, 

2017). The influence of spatial resolution on FCN-8 performance are also 

investigated using localised IoU with Sentinel-2 imagery from 2017 at 10 m and 

30 m resolution across Helmand Province.  

3.3.6 Experiment 3: Influence of image timing for active agriculture 

classification 

Understanding how early in the crop season agricultural land can be delineated 

is important for opium survey planning, particularly for new areas of agriculture 

and understanding growing intentions. The fine-tuned 2015 FCN-8 model from 

§3.3.5 was run across all available Landsat-8 imagery between 18 February and 

25 May 2015 to understand the differences in image timing and its impact on 

imagery selection across Helmand Province. All images have undergone IR-MAD 

normalisation and the same validation samples are used for comparison between 

the predictions and the maximum area of active agriculture for 2015 (n=91). 

Cloud cover has restricted the number of validation samples used in these 

assessments with the limited subset for each image date presented in Table 3-3. 

Table 3-3. Suitable validation samples for each image date between 18 February 

and 25 May 2015 in Helmand, Afghanistan 

Image date  Available validation samples Scene cloud cover (%) 

18 February 11 50.32 
27 February 45 28.01 
6 March 32 3.79 
15 March 44 29.67 
22 March 17 27.85 
31 March 27 22.59 
7 April (Peak - South) 32 0.23 
16 April (Peak - North) 79 1.41 
23 April 28 0.02 
2 May 82 0.26 
9 May 10 63.99 
18 May 58 4.54 
25 May 35 0.34 
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3.3.7 Localised intersection over union 

A new method called localised Intersection over Union (IoU) is presented to 

further understand the distribution of spatial error in agricultural land 

classification. IoU is often determined at the global image level, as there is often 

only a single object of interest. For the application of agricultural mask production, 

the end user is interested in the spatial variation of accuracy across the 

classification at varying spatial scales. This method labels connected regions of 

pixels with the same class into separate individual objects (e.g. agriculture), 

where an object is defined as a connected area greater than 1 pixel (Figure 3-11). 

The objects are subset from the reference agricultural mask (Figure 3-11 (a)) and 

the predicted agricultural mask (Figure 3-11 (c)). 

 

Figure 3-11. Overview of calculating localised intersection over union (IoU) 

between the reference and predicted agricultural masks for each area of 

agriculture. a) reference agricultural mask for 2009, b) isolated object (ID 1) in the 

reference agricultural mask, c) FCN-8 prediction, d) isolated object (ID 1) in the 

predicted agricultural mask and e) visualisation of all IoU values for each object 

in (a). 
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Larger blocks of agriculture intersect with other smaller blocks of agriculture. The 

same technique is used on these objects to remove other objects in the same 

area. This is carried out to avoid introducing multiple objects into the IoU 

calculation. If more than a single object is identified, the object with the highest 

pixel count is counted as the primary object and all other objects are removed 

from the image subset in the reference agricultural mask (Figure 3-11 (b)). 

The reference object is subsequently used to isolate the same objects in the 

prediction (Figure 3-11 (d)). If multiple objects are present in the prediction, only 

those that intersect the reference object are selected to ensure only objects 

related to the reference object are counted. These two sets of objects can be 

used to calculate frequency-weighted IoU (Equation 3-10) at different spatial 

scales of agriculture, where: 

fwIoU =
1

∑ 𝑡𝑖𝑖
∑

𝑡𝑖𝑛𝑖,𝑖

𝑡𝑖 + ∑ 𝑛𝑗,𝑖𝑗 − 𝑛𝑖,𝑖
𝑖
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nj,i is the number of pixels predicted as class j belonging to class i, ni,i is number 

of pixels predicted as class i belonging to class i and ti is total number of pixels 

belonging to class i in the reference data. This method provides local variations 

in IoU when mapped back to each agricultural area (Figure 3-11 (e)). 

3.4 Results 

3.4.1 Experiment 1: Image features for FCN model training  

The underlying spatial, textural, and spectral properties were explored using 2009 

DMC imagery to investigate the influence of each image feature for FCN learning. 

Using modified training samples, the shape of agricultural land was unable to 

separate agriculture with poor segmentation accuracy with an IoU of 12.84 and 

53% overall accuracy (Table 3-4). The textural features alone achieved an 

accuracy of 73%. The red and green spectral information increased texture-only 

accuracy by up to 14% and both performed similarly with only 1% difference in 

their IoU and accuracy. The addition of spectral information of the NIR band 

provided negligible additional contribution to the textural component by 
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increasing both accuracy and IoU by less than 1%. The combination of all spectral 

and textural features achieved an accuracy of 94% and 66% IoU. 

Table 3-4. Summary of experiments used to isolate the spectral, textural, and 

spatial features of DMC imagery (NIR, R, G at 32m) for Fully Convolutional Network 

(FCN) classification of agricultural land using 2009 data 

Model training data 
(n = 415) 

Validation metrics (%) (n = 137) 

Overall accuracy fwIoU 

Level-1A (benchmark) 93.74 65.51 

Spatial   
Shape of agriculture area 53.20 12.84 
Textural   
Homogeneity, entropy, and 
correlation 

72.87 55.27 

Spectral & textural   
NIR 73.65 56.25 
R 87.77 62.78 
G 86.77 61.84 
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Figure 3-12. Validation of an example 256 x 256 pixel chip with the global shape 

FCN model trained using 2009 data. i) Level-1A image chip (original (a and c) and 

synthetic (b and d)), ii) image labels and iii) prediction with Level-1A chip and 

inverted Level-1A chip. Imagery: 2009 DMC (NIR,R,G) at 32m. Agriculture is 

denoted in white and non-agriculture in black in the labels and prediction image. 
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Figure 3-13. Validation of example chips with the texture FCN model trained using 

2009 data of homogeneity, entropy, and correlation. i) Image data, ii) labels and iii) 

prediction. Imagery: 2009 DMC (NIR, R, G) at 32 m. Agriculture is denoted in white 

and non-agriculture in black in the labels and prediction image. 

The visual delineation for classification using the spatial component was found to 

perform very poorly with no consistent delineation patterns using the unaltered 

validation sample (Figure 3-12). An inverted version of the chip was also found 

to perform poorly and only isolated a thin block of agriculture in the south which 

is generalised at the boundaries. The textural model successfully separated the 

distinct boundaries across agricultural areas of different sizes and shapes (Figure 
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3-13). The noticeable difference between the textural classification and the Level-

1A benchmark classification is the increased generalisation at the boundaries, 

especially in larger blocks of agriculture. 

 

Figure 3-14 Validation of example chips with the spectral FCN models trained 

using 2009 data of the near-infrared (NIR), red (R), green (G) spectral bands. i) 

labels, ii) NIR spectral band prediction, iii) R spectral band prediction and iv) G 

spectral band prediction. Imagery: 2009 DMC (NIR, R, G) at 32 m. Agriculture is 

denoted in white and non-agriculture in black in the labels and prediction images. 

The spectral features of satellite imagery are more important for FCN learning 

from this experiment (87.77% overall accuracy for the red spectral band). The 

NIR band is able to classify large continuous areas of agriculture (Figure 3-14), 

but has difficulty separating edge cases and those with greater spectral confusion 

(Figure 3-7). The red and green bands have similar classification results, but the 

green band omits areas of agriculture in boundary areas. The red band has tighter 

classification, but still has generalisation in these areas. The importance of the 
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spectral information for FCN learning emphasises the need for standardisation to 

evaluate transfer learning across image datasets. 

3.4.2 Experiment 2: Image standardisation and model transferability 

between image sensors (2007-2009) 

The agricultural features learnt from DMC images were transferable to Landsat-

5 classification and achieved >89% overall accuracy across all standardisation 

techniques (Table 3-4). The best-performing model for DMC imagery used IR-

MAD image matching to achieve 94.49% overall accuracy. The IR-MAD 

marginally outperformed Level-1A by 0.10% for DMC imagery and outperformed 

Level-1A for Landsat-5 imagery by 1.97%. Level-1A corrected imagery marginally 

outperformed NDVI for agricultural mask delineation of both DMC and Landsat-

5, +0.95% and +0.34% respectively. Pixel intensity performed well by achieving 

90% accuracy for agriculture delineation using Landsat-5. The intersection over 

union was also greater for IR-MAD normalisation with the highest performance 

for DMC imagery and Landsat-5 imagery. The IoU segmentation results of the 

two sensors were more comparable between intensity with -4.66 difference 

between the two sensors. Level-1A and NDVI had greater intersection over union, 

but have greater difference between DMC and Landsat, -9.57 and -10.77 

respectively. 

Table 3-5. Summary of experiments using a Fully Convolutional Network (FCN) 

classification of agricultural land to transfer knowledge between DMC and 

Landsat-5 by using a DMC-trained model on 2007 and 2008 data and validated on 

DMC and Landsat-5 2009 data (NIR, R, G at 32 m) 

Model training data 
(2007 and 2008: n = 
830) 

 
2009 imagery 

Validation metrics (%) (2009: n=137) 

Overall accuracy fwIoU 

IR-MAD DMC 94.49 67.96 
 Landsat-5 93.98 62.84 
Level-1A DMC 94.39 67.21 
 Landsat-5 92.01 57.64 
NDVI DMC 93.44 65.89 
 Landsat-5 91.67 55.12 
Intensity DMC 91.87 57.81 
 Landsat-5 89.96 53.15 

The delineations for DMC imagery are visually similar in (Figure 3-15), although 

the IR-MAD is able to separate the difficult boundaries between larger agricultural 
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fields better than Level-1A. The IR-MAD has a similar delineation along the 

distinct agricultural boundaries with desert to Level-1A, but had difficulty in 

separating the spectrally mixed responses within the agricultural area (e.g. 

missing part of the agricultural area in the south-east of Figure 3-15). Both 

classifications have omitted smaller areas of agriculture in the north-west of the 

image extent, whilst delineating the larger blocks of agriculture surrounding these 

areas. 

 

Figure 3-15. Visual evaluation of agricultural delineation in the main Helmand 

valley using Level-1A and IR-MAD radiometric calibration techniques for DMC 

imagery. Image (32.0904° N, 64.4758° E): False colour (NIR, R, G) DMC imagery (25 

March 2009) 
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Figure 3-16. Visual evaluation of agricultural delineation in the main Helmand 

valley using Level-1A and IR-MAD radiometric calibration techniques for Landsat-

5 imagery. Image (32.0904° N, 64.4758° E): False colour (NIR, R, G) Landsat-5 

imagery (5 April 2009) 

The delineation using IR-MAD normalisation for Landsat-5 imagery was found to 

be similar to DMC imagery with good delineation at distinctive boundaries 

between agriculture and desert (Figure 3-16). The IR-MAD’s performance is 

greater between blocks of agriculture with less generalisation, which is found in 

the Level-1A imagery and has difficulty in delineating complicated areas with 

spectral confusion between non-agriculture and agriculture. In the DMC imagery 
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there were more areas of agriculture commission in these complicated areas, but 

in the DMC imagery the IR-MAD is more conservative in its delineation and 

resulted in more areas of omission on the boundaries of agricultural areas. 

 

Figure 3-17. Comparison of the FCN-8 predictions using Level-1A (a) and IR-MAD 

normalisation with the reference agricultural mask for 2009. Image (32.2228° N, 

64.3931° E): False colour composite of DMC imagery for 3 April 2009 (NIR, R, G at 

32m). 
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Figure 3-18 Comparison between the size of agricultural area and localised 

intersection over union using a) Level-1A and b) IR-MAD normalisation for 2009 

DMC imagery (NIR, R, G at 32 m) 

Using the new localised IoU method, the variation in IoU between the reference 

agricultural mask and Level-1A (Figure 3-17 (a)) and IR-MAD (Figure 3-17 (b)) 

FCN-8 predictions for DMC imagery can be visualised. Larger areas of agriculture 

have tight classification at their boundaries in Level-1A and IR-MAD resulting in 

high IoU. Smaller agricultural areas are generally better classified in the IR-MAD. 

These areas are shown in the north-west corner of the image subsets, where the 

tighter classification from IR-MAD has resulted in higher localised IoU across 

these areas of agriculture. Using localised IoU provides further understanding of 

the best-performing classification (IR-MAD) at different spatial scales of 

agriculture (see Appendix B). Smaller agricultural areas were found to be more 

affected by generalisation because the pixel population count for agriculture is 

smaller (Figure 3-18). Smaller differences over larger areas are reduced in the 

localised IoU calculation, even when using the frequency-weighted IoU because 

there is a higher population count. Level-1A (Figure 3-18 (a)) and IR-MAD (Figure 

3-18 (b)) had similarities in their localised IoU distribution with greater variation 

for samples less than 200 pixels. The IR-MAD model was able to improve IoU for 

both large and small objects. 
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3.4.3 Generalised model evaluation using transfer learning between 

image sensors (2007-2017) 

The 2009 FCN-8 model trained on DMC imagery was fine-tuned using 2015 data 

from Landsat-8 to achieve an overall accuracy of 93.01% on the validation 

samples (Table 3-6). Without any additional  training the 2009 FCN-8 model 

achieved 90.99%. The 2015 model was further updated with only new areas of 

agriculture from differences between the 2015 and 2016 agricultural mask to 

achieve an overall accuracy of 93.01%. The 2016 model was further updated with 

new areas of agriculture from 2017 to achieve an overall accuracy of 95.98% on 

Landsat-8 imagery. Sentinel-2 imagery was available over the study area for 

2017 and achieved 95.58% overall accuracy (-0.40%) from the same validation 

samples using resampled 30 m resolution imagery. 

Table 3-6. Summary of classification performance using IR-MAD radiometric 

normalisation for agriculture area delineation in Helmand, Afghanistan for the 

2009 FCN model, 2015 model, 2016 model and 2017 model on Landsat-8 data (2015, 

2016 and 2017) and Sentinel-2 data (2017). Image dates for these datasets can be 

found in Table 3-2. UA is user accuracy and PA is producer accuracy. 

Classified 
image 
(30 m) 

FCN-8 
model 
name 

Model 
transfer 
learning 

Additional 
training 

Number 
of 

training 
years 

Accuracy metrics (%) (n=91) 

Overall 
accuracy 

Agriculture 
UA 

Agriculture 
PA 

2015 
Landsat-8 

2009 2007, 2008, 
2009 (DMC) 

None 3 90.99 89.32 83.81 

2015 
Landsat-8 

2015 2009 FCN-8 2015 
(Landsat-8) 

4 93.01 91.76 87.54 

2016 
Landsat-8 

2015 2015 FCN-8 None 4 95.12 91.34 89.11 

2016 
Landsat-8 

2016 2015 FCN-8 2016 
(Landsat-8) 

5 96.11 92.01 89.55 

2017 
Landsat-8 

2016 2016 FCN-8 None 5 95.01 91.26 85.71 

2017 
Landsat-8 

2017 2016 FCN-8 2017 
(Landsat-8) 

6 95.98 91.91 89.03 

2017 
Sentinel-2 

2017 2017 FCN-8 None 6 95.58 91.23 88.81 

The generalised model performance for each FCN-8 model was evaluated using 

95% prediction intervals on the total agricultural area across validation samples 

for 2009, 2015, 2016 and 2017 (Figure 3-19). Evaluating the performance of the 

model on total agricultural area shows the uncertainty of area estimates using 

this approach. Orthogonal regression between each validation sample’s 
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agricultural area across all image years had high correlation (0.99 r2) with fewer 

samples in large agricultural areas. The total agricultural area is overestimated 

by +3.2% in comparison with the reference data using the generalised FCN-8 

model (Table 3-7). The overestimation of agricultural area is prominent in larger 

areas of sparse agriculture which the model has difficulty separating between 

(Figure 3-20 (a)). Strong boundary edges do not experience the same 

generalisation and have tight classification (Figure 3-20 (b)).  

 

Figure 3-19 95% prediction intervals for the generalised FCN-8 model using the 

reference and predicted agricultural area in 2009, 2015, 2016 and 2017 validation 

samples 
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Table 3-7 Total agriculture area of the reference data and FCN-8 prediction across 

validation datasets (2009, 2015, 2016 and 2017) with 95% prediction intervals. 

 
Validation data Total agriculture area (ha) (n = 364) 

Reference Prediction 95% prediction 
interval range 

2009, 2015, 2016 and 
2017 

12,057 12,455 12,343 – 12,668 

 

Figure 3-20 Comparison between a (a) sparse agriculture dominated area and (b) 

dense agriculture dominated area. Image (31.3333° N, 64.901° E): False colour 

Sentinel-2 imagery (NIR, R, G at 30 m) from 8 April 2017 

3.4.4 Impact of spatial resolution on area estimates 

Variations in spatial resolution between image sensors may present differences 

in the total agricultural area classified by generalised FCN-8 models. The 

differences in the classified agricultural area for central Helmand is shown in 

Figure 3-21. The main difference between the two resolutions is the tighter 

agricultural delineation at field boundaries in the 10 m resolution imagery (Figure 

3-21 (a and d)). The generalisation in the 30 m resolution caused by the 

complexity in the agricultural area results in a lower IoU as there is more 

agricultural area detected in comparison to the 10 m resolution. 

Higher IoU is found in dense areas of agriculture with limited complexity between 

field boundaries, especially along the Helmand river (Figure 3-21 (b and c). The 

higher spatial resolution also detects smaller areas of agriculture which are 

missing from the 30 m classification, as found in Figure 3-21 (c) with a large area 
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of dispersed agriculture with low IoU. Spectral confusion between non-agriculture 

and agriculture is reduced with higher spatial resolution and forms a more 

representative classification of the agricultural land (Figure 3-21 (a)). Figure 3-21 

(d) shows poor quality crops have been classified in the middle of the large block 

of agriculture in the 10 m imagery. The 30 m has omitted these areas which is 

likely due to the spectral confusion from the low spectral response. 

 

Figure 3-21. Comparison between 10 m and 30 m agricultural land classification 

from the 2017 generalised FCN-8 model using localised IoU. Sentinel-2 at 10 m is 

displayed as the coloured base map and resampled Sentinel-2 at 30 m is displayed 

as the black outline in the insets across central Helmand, Afghanistan. Inset 

images: False colour (NIR, R, G) Sentinel-2 on 8 April 2017 
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Tighter agricultural delineations within larger areas of sparse agriculture in the 

high resolution and overestimation in the lower resolution are the differences 

between classifications. Variations in agricultural area caused by differences in 

the spatial resolution would also occur with human interpretation of agricultural 

land where the trained interpreter would produce tighter agriculture delineations 

with higher resolution imagery. Differences in agricultural area would alter the 

opium cultivation estimates using the sample mean ratio methodology (UNODC, 

2017b), where an overestimation within the opium frame samples would inflate 

the production estimates. In Nad Ali, the district with the largest agricultural area 

and opium cultivation, the area for 10 m resolution classification in 2017 was 

64,564 ha and is 14,263 ha lower in comparison with the 30 m resolution. Using 

higher resolution imagery would reduce the overestimation caused at weak edge 

cases within areas of sparse agriculture. 

3.4.5 Experiment 3: Performance of generalised models through 

time (2015) 

Standardisation provides comparable values not only between image sensors, but 

also through time. Deploying generalised models on multiple dates from the same 

year provides information on agricultural practices before agricultural areas achieved 

their peak extent. The variation in NDVI derived from Landsat-8 shows the 

differences in the average NDVI profiles and its relationship with user accuracy of 

validation samples between the north and south of Helmand (Figure 3-22). A subset 

of the validation samples with the same sample locations from the 2015 image timing 

analysis have been separated into north and south Helmand to investigate the 

differences in agricultural land delineation. The south of Helmand reaches around ¾ 

biomass in early March based on the NDVI profile. The north of Helmand shows a 

later peak on 15 April, therefore the variation in peak NDVI timing in the north may 

require a later image date to identify these agriculture areas (after 6 March).  
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Figure 3-22. Comparison between average agriculture user accuracy and Landsat-

8 NDVI between first crop cycle image dates across the whole of Helmand in 2015 

(North: n=5 and South: n=8*). Dotted line shows agriculture user accuracy and 

solid line shows the average NDVI for the samples. * Fewer samples have been 

used to ensure all validation samples selected have the same image date range 

for accuracy assessment 
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Figure 3-23 Classification of Landsat-8 images between 18 February and 25 May 

2015 across Reg district, central Helmand (30.5333° N, 64.776° E). a) 18 February, 

b) 6 March, c) 22 March, d) 7 April (peak), e) 23 April and f) 25 May 
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The effect of the variation in the timing for agricultural land delineation is an important 

consideration when selecting the optimal date for agriculture land classification or 

inferring early agricultural land estimates (Taylor et al., 2010). The early Landsat-8 

can identify the overall agricultural area in Reg district from mid-February (Figure 

3-23 (a)), but as the image dates approach the peak date in the South (7 April 2015) 

the agricultural land reaches its maximum extent (Figure 3-23 (d)). Between these 

two dates the classification has an increasing ability to distinguish agriculture as the 

spectral response increases. After the peak the agricultural land reduces as it is 

harvested and areas within the main body of the agricultural area are removed and 

the spectral response reduces (Figure 3-23 (f)).  

3.5 Discussion 

3.5.1 Standardisation of multispectral images for agricultural land 

classification with FCNs 

Understanding the relative importance of image features aids the training strategy 

used for agricultural land classification between image sensors with FCNs. The 

shape of agriculture was defined by the landscape and management practices of 

arable land (e.g. the field parcels and their size) and was found to have negligible 

influence on the FCN's ability to train the network for agricultural mask delineation 

(53% overall accuracy). Using the synthetically altered chips to train the model 

did not perform well with the validation data (12.84% IoU). The edges of the 

training data are very different to those found in the validation dataset, where 

there is a sudden transition between non-agriculture and agriculture without the 

spectral mixing between classes. The original validation dataset would have the 

natural transition between the two classes, which the FCN is able to identify from 

prior experiments using the original samples as training data and having seen 

these boundary cases before. The shape was also found not to be a main 

contributing factor for Baker et al. (2018), where texture was the main contributing 

factor and not the global shape using their CNN model at the image level. 

Shelhamer, Long and Darrell (2016) found shape was a minor contributing factor 

in their multi-class FCN model with a mean IoU of 29.1% at the pixel-level, in 

comparison with 84.8% using all imagery features for training. The binary 
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application of this experiment may be attributed to the cause of little contribution 

from the global shape of agriculture. The visual human interpreted differences 

between agriculture and non-agriculture are distinct (e.g. desert in comparison to 

agricultural land), but there is not a consistent shape for agriculture (e.g. ribbon 

valleys, dense agriculture, and sparse agriculture). Whereas in multi-class 

classification with commercial image datasets (e.g. ImageNet), there are 

consistencies between shapes (e.g. the outlines of a cat or dog). 

The textural component was influential in agricultural mask delineation (72% 

overall accuracy). The spectral components are dependent on similar values in 

specific parts of the electromagnetic spectrum to identify the differences between 

agriculture and non-agriculture. Surprisingly, the NIR band had the lowest 

performance (73%) in comparison with the other spectral bands across this 

landscape (e.g. 87% and 86% for red and green bands, respectively) (Table 3-4). 

Although NIR wavelengths are synonymous with agriculture detection, due to 

their high reflectance of this portion of the electromagnetic spectrum, it was found 

not to be as important as the red or green bands. Further investigation found the 

NIR band had lower standard deviation than the other spectral bands for 2009 

DMC imagery in areas with high proportions of desert (Figure 3-24). Desert areas 

have high reflectance in the NIR spectrum, similar to agricultural land, and is 

difficult to separate because of the limited spectral contrast (Figure 3-7). The 

greatest standard deviation was found in the red band, which provides greater 

spectral contrast, and is also the best-performing of the spectral bands. Texture 

relies on spectral contrast or backscatter differences; therefore, this component 

can be derived in both optical and passive imagery. Further studies could 

investigate the transfer of knowledge using textural features between optical and 

passive imagery, which could provide further synergy between these two types 

of imagery for classification tasks. 
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Figure 3-24 Image histograms of example Level-1A DMC validation chips with 

standard deviations for each spectral band (NIR (0.76 – 0.90 µm), R (0.63 – 0.69 

µm) and G (0.52 – 0.62 µm) at 32 m) from Figure 3-24 

The importance of the spectral data emphasises the importance of standardising 

imagery data for interoperable classification techniques, where consistent values 

are required for classification. IR-MAD normalisation outperformed Level-1A data 

primarily at boundary locations where consistency amongst the spectral values 

is essential for correct classification. The use of localised intersection over union 

aided classification evaluation by providing a localised evaluation of the 
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classification on individual blocks of agriculture. This localised evaluation method 

was useful in determining the strengths and weaknesses of each model. Global 

accuracy metrics are useful as an initial benchmark for classification 

performance, but visualising differences locally is advantageous for identifying 

well- and poorly-delineated areas. The localised IoU provided information not 

available in the global accuracy metrics used. Larger areas of agriculture without 

irrigation canals or gaps in crop cultivation had high IoU. Larger areas with breaks 

in crop distribution resulted in lower IoU because of the boundary generalisation. 

The FCN was proven to be interoperable between imagery datasets by 

radiometrically normalising Level-1A imagery using the IR-MAD technique. High 

classification performance was maintained across DMC and Landsat-5 at the 

same resolution with tighter agricultural land delineations. This overcomes the 

main disadvantage of traditional techniques, which is their inability to be 

transferred between datasets (Vali, Comai and Matteucci, 2020). The localised 

IoU found the greatest differences between the IR-MAD and Level-1A 

classifications (Figure 3-17) were at edge cases where there is greater spectral 

confusion. Level-1A calibration provides a similar visual result on larger areas of 

dense agriculture and global accuracy metrics to IR-MAD and is a common 

radiometrically calibrated product from imagery providers (Dwyer et al., 2018). 

Level-1A may be more appropriate for initial deployment over long time-series 

imagery where precise classification is not required. Where end users require 

accurate delineations of agricultural land the additional IR-MAD pre-processing 

is appropriate. 

3.5.2 Continuous improvement of a generalised model using transfer 

learning 

The FCN-8 model outperformed ResNet50 in agricultural land classification 

across Helmand Province with tighter delineations at boundary locations (Figure 

3-2). The reconstruction of pixelwise land cover classifications was found to be 

more efficient for FCNs as the removal of the fully connected layer in a traditional 

CNN provided predictions at the native resolution of the image sensor and did 

not require a sliding window to achieve the same result (Chapter 2). The trained 
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FCN model can also be fed images of different sizes to those used to train the 

model to increase efficiency further. CNNs use a fully connected layer requiring 

inputs to be the same size during training and inference. Computer memory was 

found to be the only limiting factor when scaling the FCN over larger areas but 

can be overcome by decreasing the input image size during inference. The main 

constraint of training an FCN from scratch is the requirement for dense labelled 

datasets, which for Afghanistan involved time-consuming manual interpretation 

of image classifications. 

Classification performance improved year-on-year when more data was used to 

train the FCN-8 model. The generalised model was able to be updated using 

sparsely labelled data of observations in new areas of agriculture and led to 

incremental improvements (+1%), in comparison to using the previous year’s 

model. Updating with only new areas of agriculture from subsequent years’ 

agricultural delineations further reduces the manual effort required to maintain 

the model. Over the five years of transfer learning, the accuracy of the FCN 

models improved when introducing more training samples from additional years. 

Further work is required to understand how many years of data are required 

before the model no longer improves. Updating the model may only be required 

if substantial changes occur (e.g. introduction of new crops). The generalised 

model was found to overestimate agricultural land at boundary edges between 

complex field parcels in medium resolution imagery (Figure 3-20 (a)). The 

generalised FCN model can be deployed on any size image across different 

spatial resolutions provided standardisation is used with higher resolutions 

resulting in tighter agricultural land classification. The overestimation in difficult 

areas can be mitigated by using high resolution imagery, where 10 m Sentinel-2 

separated field boundaries in sparse agricultural areas which were not present in 

the resampled 30 m dataset. Peak opium biomass was different between 

northern and southern Helmand, but using generalised models allowed for 

classification of agricultural land at any time in the season. Generalised models 

are under-utilised in remote sensing and would allow for a wider range of legacy 

datasets, regardless of image timing, resolution or sensor, to be used to derive 

new knowledge on monitoring land cover change. 
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3.6 Conclusions and recommendations 

An FCN-8 model achieved 94.65% overall accuracy to outperform the ResNet50 

CNN for agriculture classification across Helmand and Kandahar by +3% using 

DMC imagery between 2007 and 2009. Upsampling during FCN classification is 

more efficient than a chip-level sliding window required for pixel-level CNN 

classification. FCN architectures are recommended for pixel-level land cover 

classification based on their superior performance and ease of prediction. 

Localised IoU was developed as a new method to quantify and visualise the 

spatial distribution of classification error across agricultural land at different 

scales. Use of local accuracy methods provides further insight into the strengths 

and weaknesses of the classification at the object level. The FCN-8 performs well 

in dense agricultural areas with strong edges between the desert, but has 

difficulty classifying weak edges in sparse and small areas of agriculture. 

Classification of weak edge cases improves with increased spatial resolution, 

where the spectral confusion is reduced. Future studies are encouraged to use 

localised IoU to provide an evaluation of the spatial distribution of classification 

error beyond global accuracy metrics. 

Textural and spectral properties are important for agricultural land classification 

with FCN-8 (72% and 87%, respectively). Whereas, the shape of agriculture was 

not an important cue for FCN learning (53%). The importance of the spectral 

image features emphasised the requirement for standardisation between image 

datasets for generalised FCN-8 training. Matching image datasets using IR-MAD 

marginally improved classification accuracy (94.49%) in comparison to Level-1A 

(+0.10%). The additional pre-processing required for IR-MAD is appropriate for 

accurate agricultural area estimates, especially for use between image sensors, 

with tighter classification for higher resolution imagery. Standardisation of time-

series data allows for classification of agricultural land at any time in the opium 

growth season and provides early indication of total agricultural area. 

Without any additional training data, the generalised FCN-8 model trained on six 

years of IR-MAD data achieved high classification performance (>95%) for 

agricultural land discrimination on Sentinel-2 imagery. Further fine-tuning with 
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either dense or sparsely labelled datasets targeting new agricultural areas 

improved classification accuracy between image years (2016-2017) by up to 3%. 

This demonstrates the potential for reducing the effort required for updating these 

models and would increase the efficiency of agricultural mask production. 

Transferring knowledge between image sensors and across years opens up an 

exciting opportunity to automate monitoring agricultural change from new and 

long-term Earth observation programmes. 
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Chapter 4. Exploiting generalised FCNs to 

understand agricultural land change related to opium 

cultivation in Helmand, Afghanistan 

This chapter presents a case study for using generalised FCNs trained on 

historical data from Chapter 3 to monitor changes in agricultural land in Helmand, 

Afghanistan between 2010 and 2019 across image datasets (Landsat and 

Sentinel-2). This work demonstrates the potential of using these models to 

understand the relationship between expansion in agricultural land and opium 

cultivation (thesis objective 3). 

 

Underlying data for this chapter is available at: 

https://doi.org/10.17862/cranfield.rd.14447400 
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4.1 Introduction 

Opium cultivation in Afghanistan increased by 33% between 2010 and 2019 

leading to increased instability, insurgency, environmental damage from 

overexploitation of land and funding to terrorist organisations (UNODC, 2021a). 

The main drivers of recent opium cultivation include the introduction of new 

technologies for agricultural practice, high opium yields, lack of government 

control and poor security (Mansfield, 2019; UNODC, 2021a). Farmers illegally 

cultivate opium poppy because it is a lucrative cash crop, in comparison to other 

alternative crop production (e.g. wheat, onion and vegetables) (UNODC, 2019a). 

The higher farm-gate price of opium poppy provides farmers with the ability to 

purchase new technology to increase agricultural expansion (e.g. solar-powered 

pumps and fertiliser) (Mansfield, 2019). Technical support has been given to 

farmers through the World Bank’s National Horticulture and Livestock 

Productivity Project (2013-2020) (The World Bank, 2018) and has inadvertently 

promoted adoption for use in opium cultivation. 

Helmand is the largest opium producing province in Afghanistan and was 

responsible for 73% of opium cultivation in 2019 (UNODC, 2021a). Counter-

narcotic programmes were introduced into the province to reduce cultivation, 

such as the Helmand Food Zone (HFZ) (2008-2012) which highlighted the 

existing ban on opium cultivation and encouraged farmers to grow alternative 

crops (Mansfield, 2018). Despite these efforts, cultivation in Helmand continued 

to increase, reaching a record high of 144,019 ha in 2017. Since then cultivation 

has decreased to 136,798 ha in 2018 and 90,727 ha in 2019 (UNODC, 2021a). 

The relationship between the area of agricultural land and opium cultivation are 

important for understanding trends in agricultural expansion and reduction across 

Helmand Province. There are disagreements in the drivers for opium cultivation 

expansion in relation to the total agricultural land. UNODC (2018b) suggested the 

increase in opium cultivation was attributed to farmers shifting arable land to 

poppy, as agricultural area remained consistent whilst opium cultivation 

increased. Mansfield (2019) has suggested new areas of agricultural land was 
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the driving cause of cultivation increase in southern Afghanistan. Primarily, low 

opium yields are driving farmers to relocate from canal-irrigated areas to former 

desert areas for higher opium yields (Mansfield, 2017), especially surrounding 

the Boghra canal (Mansfield, 2019). Monitoring these shifts in active agricultural 

land with generalised FCN-8 classifications would provide further understanding 

of opium cultivation and its drivers for expansion. 

The aim of this chapter is to investigate the change in agricultural land using 

generalised models (described in Chapter 3) to understand the relationship 

between new areas of agriculture outside the main Helmand valley and opium 

cultivation. The main objectives of this chapter are to: (1) demonstrate the use of 

trained FCN-8 models for automating agricultural mask production across time-

series datasets, (2) identify trends in agricultural area change between 2010 and 

2019 in Helmand and (3) evaluate how land use change is driven by opium poppy 

cultivation throughout Helmand Province. 

4.2 Materials and methods 

The generalised FCN-8 models from Chapter 3 were used to classify agricultural 

land in Helmand between 2010 and 2019 to assess changes in the agricultural 

extent at the province and district level (Figure 4-1). These models have been 

trained using transfer learning across image datasets between 2009 and 2017 

(Disaster Monitoring Constellation (DMC) and Landsat-8) (Table 4-1). The same 

methodology found in §3.3.5 was followed to identify and standardise cloud-free 

imagery across Helmand province. No suitable imagery was available over 

Helmand for 2012 because of the limited acquisitions during the decommission 

period of Landsat-5, therefore is omitted from agricultural land estimation. 

Sentinel-2 imagery was resampled to the same resolution as Landsat imagery 

(30 m) for consistency in reporting total agricultural area and comparison over the 

time-series. 
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Figure 4-1 Location of districts in Helmand Province, Afghanistan with the active 

agricultural mask for 2019 

Table 4-1. Image collections for assessing land cover change across Helmand 

between 2010 and 2019 with training data used for transfer learning FCN-8 models 

from Chapter 4 for active agricultural mask classification 

Year Image source Image dates FCN-8 
model 

Training data 

2010 Landsat-5 8 Mar & 2 Apr 2009 2007-2009 DMC 
2011 Landsat-5 20 Mar & 12 Apr 2009 2007-2009 DMC 
2013 Landsat-8 10 Apr & 26 Apr 2009 2007-2009 DMC 
2014 Landsat-8 3 Mar & 28 Mar 2009 2007-2009 DMC 
2015 Landsat-8 7 Apr & 16 Apr 2015 2007-2009 DMC, 2015 Landsat-8 
2016 Landsat-8 24 Mar & 18 Apr 2016 2007-2009 DMC, 2015-2016 Landsat-8 
2017 Sentinel-2 8 Apr & 15 Apr 2017 2007-2009 DMC, 2015-2017 Landsat-8 
2018 Sentinel-2 31 Mar & 3 Apr 2017 2007-2009 DMC, 2015-2017 Landsat-8 
2019 Sentinel-2 29 Mar & 5 Apr 2017 2007-2009 DMC, 2015-2017 Landsat-8 
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4.3 Results 

4.3.1 Changes in agricultural land across Helmand Province 

between 2010 and 2019 

Using generalised FCN-8 models for automated agricultural land classification, 

Helmand Province has seen an increase in agricultural area between 2010 and 

2019 with the largest agricultural area in 2019 (460,735 ha) (Figure 4-2). The 

districts with the highest agricultural area from 2019 are Nad Ali (85,928 ha), 

Nahri Sarraj (73,396 ha) and Naw Zad (65,643 ha) (Table 4-2). Total agricultural 

area reduced in 2011 and can be attributed to both the enforcement of the HFZ, 

which also lead to a reduction in opium cultivated (UNODC, 2011), and low yields 

from the main cash crop wheat (Mansfield, 2011).  

 

Figure 4-2. Annual active agricultural area derived from FCN classifications and 

UNODC opium cultivation estimates from annual UNODC opium cultivation 

reports for Helmand province, Afghanistan between 2010 and 2019. The vertical 

lines represent the upper and lower bounds of the 95% prediction intervals 
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Table 4-2. Annual agricultural area for Helmand province, Afghanistan between 

2010 and 2019.  

District Agricultural area (ha) 

2010 2011 2013 2014 2015 2016 2017 2018 2019 

Baghran 10,890 7,649 10,180 10,837 12,082 11,821 9,691 8,694 8,773 
Dishu 1,322 2,758 5,840 5,201 5,855 5,977 7,166 5,824 5,624 
Garmser 22,921 18,509 25,412 20,223 27,633 27,203 28,121 26,148 24,214 
Kajaki 16,666 12,686 13,430 29,314 29,870 29,971 35,204 34,286 37,245 
Lashkar 
Gah 

14,468 10,668 15,122 13,061 20,172 16,123 19,853 18,427 19,671 

Musa 
Qala 

22,378 15,317 24,029 27,453 31,089 33,450 39,015 41,107 46,550 

Nad Ali 49,522 42,599 48,809 43,391 69,421 68,783 78,827 77,891 85,928 
Nahri 
Sarraj 

44,631 33,872 45,395 50,748 63,416 59,978 69,751 68,867 73,396 

Nawzad 25,133 14,939 28,169 28,421 34,209 43,454 56,074 59,856 65,643 
Naway-i-
Barakzai 

36,148 30,703 32,531 31,423 43,170 39,431 42,992 39,597 36,390 

Reg 20,523 18,204 24,678 15,960 32,039 30,201 33,875 31,817 18,631 
Sangin 8,677 7,097 7,883 10,780 11,024 11,804 13,972 13,503 14,463 
Washer 4,373 3,792 6,133 6,474 8,843 10,053 15,846 20,462 24,207 
Helmand 277,652 218,793 287,611 293,286 388,823 388,249 450,387 446,479 460,735 

The overall opium cultivation reported by UNODC between the same time period 

saw a steady increase overall, but a small reduction occurred between 2014 and 

2015 (-16%) (UNODC, 2021a). There was an increase in opium poppy cultivation 

between 2016 and 2017 (+79%), where there is also an increase in the amount 

of agricultural land across the province. UNODC (2018a) attributed the rise to an 

increase in the overall area under cultivation and high opium yield. Opium 

cultivation has begun to decline from after 2017 to similar levels found in 2016, 

whilst the agricultural area has continued to rise. 

4.3.2 Changes in available agricultural land for districts across 

Helmand Province 

The individual districts within Helmand province are presented as groups based 

on their geographic location. The total agricultural area derived from the 

classification and opium cultivation from the UNODC statistics decrease between 

2010 and 2019 in Baghran (Figure 4-3) with limited expansion of agriculture into 

new areas from 2010 (Figure 4-4). The agricultural area and opium cultivation 

has increased in Kajaki and Musa Qala (Figure 4-3), predominately surrounding 

the Kajaki reservoir and Helmand river (Figure 4-4 (b)) and into desert areas after 

2017 in south-west Musa Qala (Figure 4-4 (a)). 
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Figure 4-3 Annual agricultural area and UNODC opium cultivation estimates for 

northern districts a) Baghran, b) Kajaki and c) Musa Qala. Agricultural area 

estimates are derived from FCN-8 classifications of active agricultural masks 

across Helmand, Afghanistan 

The total agricultural area has increased substantially in Naw Zad and Washer, 

particularly from 2017 (Figure 4-5), whilst opium cultivation has increased over 

the same period the increase in available land is greater. The areas of expansion 

are predominately expansion from existing areas of agriculture in Naw Zad with 

additional areas in desert locations (Figure 4-6 (a)). The expansion is also in 

existing areas of agriculture in Washer, but larger areas of new agriculture have 

been identified in desert areas in the south-east (Figure 4-6 (b)). 
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Figure 4-4.  Annual areas of active agriculture in Baghran, Kajaki and Musa Qala 

between 2010 and 2019. Newer areas are denoted as darker colours. False colour 

imagery (NIR, R, G): a) 2018 and 2019 Sentinel-2 imagery (10 m) and b) 2015 and 

2018 pan-sharpened Pleiades imagery (0.5 m) 

 

Figure 4-5 Annual agricultural area and UNODC opium cultivation estimates for 

north-western districts a) Naw Zad and b) Washer. Agricultural area estimates are 

derived from FCN-8 classifications of active agricultural masks across Helmand, 

Afghanistan 
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Figure 4-6. Annual areas of active agriculture in Naw Zad and Washer between 

2010 and 2019. Newer areas are denoted as darker colours. False colour imagery 

(NIR, R, G at 10 m): a) 2019 Sentinel-2 and b) 2018 Sentinel-2 

The total agricultural area in Nad Ali has increased over the study period, 

particularly from 2015 onwards (Figure 4-7 (a)), whilst opium cultivation also 

steadily increased. The main areas of expansion are from existing areas of 

agriculture (Figure 4-8 (b)) and in desert areas surrounding the Boghra canal and 

away from the Helmand river (Figure 4-8 (a) and (c)). Naway-i-Barakzai has low 

opium cultivation compared to other districts in Helmand with little expansion over 

the study period (Figure 4-7 (b)). There has been little expansion in the 

agricultural area identified for Naway-i-Barakzai with these areas of expansion 

extending off the main area of agriculture surrounding the Helmand river (Figure 

4-8). 
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Figure 4-7 Annual agricultural area and UNODC opium cultivation estimates for 

central districts a) Nad Ali and b) Naway-i-Barakzai. Agricultural area estimates 

are derived from FCN-8 classifications of active agricultural masks across 

Helmand, Afghanistan 

 

Figure 4-8. Annual areas of active agriculture in Nad Ali and Naway-i-Barakzai 

between 2010 and 2019. Newer areas are denoted as darker colours. False colour 

imagery (NIR, R, G): a) 2017 and 2018 Sentinel-2 (10 m), b) 2013 Landsat-8 (30 m) 

and 2017 Sentinel-2 (10 m) and c) 2019 Pleaides imagery (0.5 m) 

The agricultural areas in Lashkar Gah, Nahri Sarraj and Sangin have steadily 

increased between 2010 and 2019 with opium cultivation comprising a low 
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proportion of the available agricultural land (Figure 4-9). The primary areas of 

expansion are off the main agricultural block surrounding the Helmand river 

(Figure 4-10 (a) and (c)) and the majority of new areas are cultivated on the 

southern boundary with Naw Zad (Figure 4-10 (b)).  

 

Figure 4-9 Annual agricultural area and UNODC opium cultivation estimates for 

eastern districts a) Lashkar Gah, b) Nahri Sarraj and c) Sangin. Agricultural area 

estimates are derived from FCN-8 classifications of active agricultural masks 

across Helmand, Afghanistan 
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Figure 4-10. Annual areas of active agriculture in Lashkar Gah, Nahri Sarraj and 

Sangin between 2010 and 2019. Newer areas are denoted as darker colours. False 

colour imagery (NIR, R, G at 10 m): a) 2017 Sentinel-2 and b) 2019 Sentinel-2 and 

c) 2019 Sentinel-2 
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Figure 4-11 Annual agricultural area and UNODC opium cultivation estimates for 

southern districts a) Dishu, b) Garmser and c) Reg. Agricultural area estimates are 

derived from FCN-8 classifications of active agricultural masks across Helmand, 

Afghanistan 

Between 2010 and 2019 there has been an increase in the total agricultural area 

and opium cultivation in Dishu, Garmser and Reg (Figure 4-11). The proportion 

of opium cultivation to available agricultural land identified is high in Dishu in 

comparison to the other southern districts. The main areas of expansion are from 

the existing continuous area of agriculture surrounding the Helmand river (Figure 

4-12 (a)), predominately in between Reg and Dishu (Figure 4-12 (b)), with smaller 

areas detected in marginal desert areas (Figure 4-12 (c)). 
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Figure 4-12. Annual areas of active agriculture in Dishu, Garmser and Reg between 

2010 and 2019. Newer areas are denoted as darker colours. False colour imagery 

(NIR, R, G at 10 m): a) 2017 Sentinel-2 and b) 2018 Sentinel-2 and c) 2017 Sentinel-

2 

4.4 Discussion 

4.4.1 Ability to monitor agricultural land changes with an active 

mask  

In 2016, 21% of agricultural land was used for opium cultivation in Helmand and 

increases further to 32% in 2017, which are similarly reported by UNODC, 20% 

and 33% respectively (UNODC, 2018a). However, the total agricultural land in 

Helmand remains unchanged across Helmand in UNODC estimates between 

2015 and 2018 (401,300 ha) (UNODC, 2015, 2016, 2017b, 2018b). This analysis 

has identified year-on-year expansion of arable land during the same time period 

(Figure 4-2). The limitation of UNODC using the potential mask for their survey is 

only new areas of agriculture will be added to their area under potential cultivation 
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and omit annual rotations of agricultural areas between years. Using the potential 

mask will overestimate agricultural land as it is not identifying only active 

agriculture from each target year, but ensures no areas are omitted from the 

sampling frame in the opium survey. The ability to train generalised models for 

application on any imagery provides further insight into the expansion of 

agricultural land, which the UN estimates currently are unable to do. 

4.4.2 Security and enforcement driving agricultural land change in 

Helmand 

Political instability and enforcement across opium producing villages are cited as 

a primary driver for opium cultivation expansion (UNODC, 2021a). The main 

driver for low opium production over 2011 was the successful counter-narcotic 

efforts of the HFZ, which was cited as the main reason for farmers not cultivating 

opium (UNODC, 2011), and resulted in a decrease in agricultural area across 

Helmand. The HFZ programme stopped at the end of the 2012 season 

(Mansfield, 2018), which led to an increase in opium cultivation and total 

agricultural area in 2013. These increases are reflected in a rise of the total 

agricultural area in Helmand, particularly in southern districts such as Dishu 

(Figure 4-11) where the proportion used for opium cultivation is high from 2013 

suggesting expansion is driven by opium cultivation after the enforcement of the 

HFZ. 

The increase in agricultural area has previously been attributed to farmers 

relocating away from canal areas to former desert areas as counter-narcotic 

activities had reduced in these area (Mansfield, 2018). The main drivers for this 

decision are these areas are more difficult to access and control and are attractive 

to opium farmers. FCN-8 classifications have provided further insight into 

expansion above the Boghra canal in Nad Ali (see Appendix C), which saw a 

dramatic increase in agricultural area after the enforcement of the HFZ had 

ceased. 



 

132 

4.4.3 Water availability and increasing access to technology driving 

agricultural land expansion in Helmand 

UNODC (2017) stated opium cultivation increases across Helmand have largely 

been driven from converting existing agricultural area to opium poppy and 

increased yield, particularly the increase between 2016-2017 (Figure 4-2). 

Approximately one third of all available agricultural land had been used for opium 

cultivation in 2017 (UNODC, 2018a).  The FCN-8 classifications found increases 

in agricultural land is primarily found away from larger blocks of existing 

agriculture after 2013 and 2014, which would be unsuitable without access to 

additional means of irrigation. This is providing additional insight into agricultural 

change in Helmand Province and supports findings in Mansfield (2019) for using 

new technologies to convert desert areas into arable land through increasing 

access to irrigation. 

The main year of agricultural area increase for most districts was in 2015 (+32%), 

which occurred during the widespread adoption of solar powered deep wells for 

crop irrigation because of falling water tables and the increased use of fertilisers 

and pesticides (Mansfield, 2019). The World Bank Afghanistan Horticulture and 

Livestock Productivity Product supported farmers to improve their uptake of these 

new technologies to increase agricultural productivity (The World Bank, 2018). 

Opium cultivation did not increase at the same rate as the introduction of new 

areas of agriculture for all districts and suggests these new areas are used for 

other agricultural purposes. The increase in agricultural land across Helmand in 

2017 and 2018 has also been attributed to the adoption of solar power for 

irrigation and use of fertilisers to convert desert areas to arable land (UNODC, 

2017b, 2018b), in addition to the high yields of opium which increased farm-gate 

prices. 

Rapid expansion in opium cultivation in Nad Ali has been driven by better 

irrigation practices by using water from the canal system and utilising pumped 

water from deep wells (UNODC, 2017a). The success of the wider adoption of 

utilising new technologies for increasing water security was attributed to 

alleviating the impact of 2018’s widespread drought in Afghanistan to Helmand 
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Province in comparison to other southern provinces (e.g. Nimroz) (UNODC, 

2019a). However, the increasing adoption of irrigation from deep wells has 

increased concerns over the future impact to agricultural practices caused by 

further lowering of the water table (Mansfield, 2019). Districts surrounded by the 

Helmand river or in areas unsuitable for agricultural expansion have no need for 

access to these technologies and have resulted in consistent agricultural areas 

and opium cultivation estimates. All districts in Helmand Province had an increase 

in total agricultural area over the study period, apart from Baghran, which can be 

attributed to its limited access to water and areas for new agricultural areas 

because of its mountainous terrain. Naway-i-Barakzai is surrounded by the 

Helmand river and is another example of not needing access to these new 

technologies because of the limited available areas for agricultural expansion.  

4.4.4 Socio-economic drivers for agricultural land change in 

Helmand  

Opium cultivation fell in 2019 across many districts in Helmand whilst the 

agricultural area increased (Table 4-2), particularly in Dishu (Figure 4-11), 

suggesting a transition to other crops. Opium production had been high between 

2017-2019 which saturated the market for opium and led to falling prices and 

impacted farmers cropping decisions with some transitioning to licit crops such 

as wheat (UNODC, 2021a). An increase in wheat production led to a surplus in 

Helmand Province because of increases in wheat’s farm-gate pricing, even 

despite low rainfall (NSIA, 2019). Farmers were found to not cultivate every year 

and the decrease in farm-gate prices for opium would have discouraged 

impoverished farmers from cultivating opium. Non-poppy farmers cultivating 

cannabis earned four times more than poppy farmers (UNODC, 2021a) and rapid 

increases in these price changes since 2018 resulted in an increase in cannabis 

cultivation in 2019 (Bradford and Mansfield, 2019). 

4.5 Conclusions and recommendations 

Automated agricultural land classification from generalised FCN-8 models, 

trained on legacy data, demonstrates the potential for utilising these models for 

monitoring land cover changes across image datasets. The main advantage in 
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comparison to other techniques is the ability to classify image datasets that were 

different to those used during training. The agricultural area has increased year-

on-year whilst the proportion of opium cultivation has remained static between 

2010 and 2016. The increase in agricultural land from 2017 and 2018 increased 

opium cultivation, but cultivation decreased to prior levels in 2019 suggesting a 

shift to alternative agricultural crops. 

Trends in the changes to agricultural land alongside existing literature provided 

an insight into the main drivers of agricultural land expansion and its relationship 

with opium cultivation. Agricultural expansion in Helmand Province has been 

largely driven by shifting agricultural practices from canal-irrigated areas and 

areas away from the main Helmand valley to marginally desert areas to increase 

the potential land available for opium cultivation (e.g. Nad Ali, Naw Zad and 

Washer). The adoption of new technologies for increasing water security was one 

of the main drivers for agricultural expansion into otherwise inarable land, 

including solar-powered deep wells, fertilisers, and pesticides. Districts along the 

main Helmand valley have witnessed less agricultural expansion because of 

limited areas for expansion and better access and control by counter-narcotic 

efforts. The case study presented exemplifies the ease of utilising FCNs across 

large volumes of image datasets to derive new information about past and on-

going changes to agricultural practices to support national and international 

stakeholders. 
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Chapter 5. Discussion 

This chapter contains the discussion of the research on convolutional neural 

networks for automated agricultural land classification in the preceding chapters. 

The main findings from this thesis are discussed and consider the contributions 

to knowledge and wider impact of the research. 
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5.1 Introduction 

The increasing volume, velocity, veracity, and variety of satellite imagery requires 

new data-driven methodologies to derive new knowledge. This thesis has 

developed generalised models for agricultural land classification using Fully 

Convolutional Networks (FCNs) trained with historical datasets. The FCN models 

were used across images from different years and different sensors to map 

agricultural land change across Helmand Province, Afghanistan. 

5.2 Utilising generalised CNNs to advance land cover 

classification 

Convolutional Neural Networks (CNNs) outperformed other machine learning 

techniques (Artificial Neural Networks and Random Forest) in separating 

agricultural land by encoding the surrounding landscape from each image during 

model training. Similarities can be drawn to the human interpreter who manually 

edits the agricultural area from unsupervised classification using contextual 

information (UNODC, 2018b). In pixel-based approaches elevation data is 

recommended to improve overall accuracy (Khatami, Mountrakis and Stehman, 

2016). The importance of contextual spectral information was demonstrated 

when adding height information had negligible difference to the overall accuracy 

(-0.63%). The highland and lowland areas are visually different, and the CNN is 

able to understand this from the spatial and spectral information encoded in each 

chip, whereas pixel observations require explicit height information. The limitation 

of using CNN architectures with fully-connected layers (e.g. ResNet50) for 

pixelwise classification is the need for a sliding window, which caused 

generalisation at edge cases caused by too much global contextual information. 

The FCN-8 architecture is recommended for future implementation in remote 

sensing studies, which is able to retain the native resolution of inputs during 

classification by upsampling convolutional layers. 

The main limitation with using CNNs are without labelled datasets from manually 

edited classifications of agricultural land training these models would not have 
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been possible. Real-world labelled datasets are scarce in the remote sensing 

discipline and CNN models are commonly evaluated on benchmark datasets 

(e.g. UC Merced (Yang and Newsam, 2010) and AID (Xia et al., 2017)). Limited 

access to real world datasets stresses the need for appropriate training strategies 

to best utilise all available data. The optimal training strategy for agricultural land 

classification with CNNs used samples containing edge cases and natural 

vegetation. The targeted strategy outperformed other random sampling 

strategies because it forces the CNN to learn from the most difficult cases rather 

than continuous areas of agriculture or desert areas. The limiting factor is legacy 

labelled datasets may not have the necessary data to sample from difficult 

interpretation locations if it is outside of their sampling frame (e.g. natural 

vegetation). Models performed better when trained with samples in areas of 

known confusion caused by natural vegetation and boundary areas. These 

locations would also be difficult for untrained human interpreters, but their 

interpretations would improve with more exposure to these areas. 

Transfer learning alleviates the need for large amounts of labelled data by using 

previous knowledge of image features from trained CNNs during model 

initialisation. Transfer learning, which is unique to deep learning, is essential for 

continual improvement of CNN models and speeds up learning compared to 

random model initialisation (Nogueira, Penatti and dos Santos, 2017). Transfer 

training models on ImageNet, an unrelated image dataset, achieved higher 

performance than training from scratch with remote sensing data (Figure 2-4). 

Future studies are recommended to use previous model initialisations to improve 

classification performance, especially with limited access to training data and 

enhance the generalisation of models. CNNs are already noted for their ability to 

generalise well, even for applications they were not originally trained for (Penatti, 

Nogueira and Santos, 2015). Improved year-on-year performance was also 

achieved using transfer learning from previous years’ models on sparse datasets 

targeting new areas of agriculture (Table 3-6). Over time less data are needed 

(e.g. 25% of the total dataset) to update CNN models, which demonstrates image 

features are transferable between images with fewer training samples needed for 

fine-tuning. FCNs have demonstrated with transfer learning they can train on 
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sparsely labelled datasets and further improve classification performance. This is 

important in the remote sensing discipline, where limited labelled datasets have 

previously been a barrier for using deep learning techniques (Ball, Anderson and 

Chan, 2017). 

The lack of labelled data for training supervised classification models emphasises 

the importance of training models across sensors to use a wider range of legacy 

datasets. Training across image datasets is difficult because of the temporal, 

atmospheric, radiometric, and spatial differences and are a barrier for supervised 

learning (Song et al., 2019). Ensemble models have previously been used to 

overcome the differences between image sensors (Lei et al., 2020). An FCN 

model has demonstrated high classification performance across image years by 

encoding localised features during training without the need for complex 

ensemble models. 

FCNs encode spatial, spectral, and textural features during training and 

understanding the importance of these features aids the sampling design for 

training between image sensors. Isolating image features is difficult for the FCN 

model as they use convolutional filters rather than isolated observations. Artificial 

samples were used to invert the spectral information between agriculture and 

non-agriculture classes to force the FCN to rely on the shape of agricultural area. 

The spectral information cannot be separated from texture because of the 

encoded localised patterns from convolutional filters. Investigation into the 

isolated image features found that textural and spectral features were important 

for agricultural land classification, 55% and 62% IoU respectively. The shape of 

blocks of agricultural land was not useful in the classification of agriculture (12% 

IoU). This is different to findings that found shape to be an important predictor for 

pixel-level classification using CNNs (Shelhamer, Long and Darrell, 2016). 

However, these studies use commercial photographs where the classes of 

objects are consistent (e.g. a cat or dog) unlike patterns in agricultural land, which 

do not have a recognisable shape. Texture is an important feature for both 

agricultural land classification and multi-class chip-level classification of 

commercial photography using CNNs (Baker et al., 2018). Textural and spectral 



 

139 

image features are used to separate agriculture from natural vegetation and 

desert within the FCN. Understanding the important features of agricultural land 

to a FCN provides further insight into how best to train these model across image 

sensors for greater generalisation. 

5.3 Agricultural mapping across Helmand province 

Automated unsupervised classification of satellite imagery is unable to separate 

agriculture and non-agriculture from satellite imagery across Afghanistan (Taylor 

et al., 2010). Time-consuming manual editing is required in areas of confusion 

(e.g. natural vegetation) to accurately map agricultural land. Generalised FCN 

models, trained using standardised image datasets, were used to successfully 

map agricultural land in Helmand Province between 2010 and 2019 (see 

Appendix C). These models, trained on legacy datasets, were used to classify 

image data for years where there are no training data available. The latest model 

for each image year was used for a simulated real-world application. FCNs have 

proven their ability to classify agricultural land by outperforming machine learning 

techniques and showing potential for replacing human interpreters for the 

UNODC’s agricultural mask production. Sources of error occur predominately at 

weak edge cases (e.g. smaller agricultural areas and in larger areas of sparse 

agriculture) and achieved only +3.2% increase in total agricultural area on 

validation samples across image years. The only requirement to use these 

models was IR-MAD normalisation of input imagery, regardless of image sensor 

or image timing. IR-MAD normalisation introduces an additional pre-processing 

step but improves classification at difficult locations to minimise sources of error 

(e.g. edge cases).  

UNODC (2017) stated increases in opium cultivation across Helmand have 

largely been driven by farmers converting existing agricultural area to opium 

poppy. UNODC use the potential mask for their survey where only new areas of 

agriculture are added annually, therefore retain areas out of rotation between 

years. Investigating annual changes in active agricultural land is now possible by 

comparing the automated year-on-year classifications from generalised models. 

The total agricultural land in Helmand remained static in UNODC estimates 
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between 2015 and 2018 (UNODC, 2015, 2016, 2017b, 2018b), but the automated 

classifications identified year-on-year expansion. No change in the UNODC 

estimates in agricultural land between 2015 and 2018 whilst opium cultivation 

increases suggests either no new areas outside of previous delineations have 

been added or the density of cultivation has increased.  

The variation in agricultural land between 2010 and 2017 found the decreases in 

agricultural area across Helmand during 2011 are related to the enforcement of 

the Helmand Food Zone (HFZ). Opium cultivation and agricultural area began to 

increase after the counter-narcotic programme ceased at the end of 2012 (Figure 

4-2). The main areas of expansion were found outside the main Helmand valley. 

This finding confirms that enforcement of the HFZ led farmers to cultivate in 

marginal areas with less counter-narcotic activities (Mansfield, 2019). Widening 

access to new technologies have been cited as a driving factor for the agricultural 

expansion outside of the main Helmand valley (Mansfield, 2019). The main area 

of expansion was found above the Boghra canal in Nad Ali (Figure 4-8), where 

increases are caused by farmers relocating during the HFZ enforcement to use 

canal irrigation and utilise solar powered deep wells and fertiliser (Mansfield, 

2018). 

Opium cultivation increases over the study period, but not at the same rate as the 

introduction of new areas of agriculture identified from classifications and 

suggests a proportion of these new areas are used for other agricultural 

purposes. In 2019, opium cultivation reduced across districts in Helmand whilst 

the agricultural area continued to increase suggesting more farmers transitioning 

to alternative crop production. Falling farm gate prices for opium caused by a 

saturated market from previous years of high yield are suggested as another 

reason for farmers switching to other crops (UNODC, 2021a). 

Generalised models developed in this thesis demonstrate their potential 

scalability for real-world applications across remote sensing disciplines. They can 

classify up-to-date imagery in near-real time to understand changes in land cover 

without any manual editing and minimal fine-tuning. Without generalised models, 

classification between image sensors, whilst maintaining high accuracy (>95%), 
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would not be possible and all available legacy and future image datasets cannot 

be utilised. 

The agricultural area increases during the season until peak opium biomass is 

reached, where agricultural land is at its maximum extent. Generalised FCN 

models were trained using imagery coinciding with the maximum agricultural 

extent, but standardisation allowed for classification at any point in the season 

(Figure 3-23). Differences between unstandardised image datasets have been 

cited as a major limitation for applying models across image datasets, which often 

only use few images to demonstrate their application (Cheng, Han and Lu, 2017; 

Song et al., 2019). Northern Helmand had a later maximum agricultural extent 

than southern Helmand (Figure 3-22), as previously noted in Taylor et al. (2010). 

This thesis developed models that can classify at any point in the season to 

monitoring changes irrespective of image timing and provides an early indication 

of growing intentions before the maximum agricultural extent is reached. Training 

generalised models across image datasets is also more efficient than training 

multiple models for each image sensor which require large volumes of labelled 

data. Future studies are recommended to focus on image standardisation when 

combining labelled datasets across image sensors to improve classification 

performance. 

5.4 Uncertainty from classification to area estimation 

Global accuracy metrics are used across all remote sensing image classification 

because they provide common metrics to assess classification performance. The 

main limitation is the uncertainty of the labelled data as they are generated from 

another classification. However, these data have been manually inspected by 

trained interpreters to ensure they are representative to minimise error from 

incorrect label allocation. The evaluation of agricultural land classifications is 

difficult because of high global accuracy caused by the imbalance of labelled data 

(Douzas et al., 2019; Feng et al., 2019).  For example, in Helmand and Kandahar 

only 5% of the total area is agriculture. Targeted sampling in areas of confusion 

(e.g. edge cases and natural vegetation) still had high overall accuracy as larger 

areas of agriculture are well-classified. The difficult areas of classification are 
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supressed in global metrics (e.g. edge cases and areas of confusion between 

agriculture and natural vegetation) because they are only a small proportion of 

the total area. 

Localised IoU was developed to map the spatial distribution of error in agricultural 

land classification and provided further insight into model performance beyond 

global accuracy statistics. Separating the landscape based on each area of 

agriculture gives more information than other techniques to visualise local 

differences e.g. image differencing, which provides areas of omission and 

commission. The scale of the agricultural area is omitted in this technique, but 

localised IoU provides the end user with a corresponding IoU value for each 

agricultural area. This information can be used to identify common classification 

trends and further understand the limitations and uncertainties of the FCN. 

The localised IoU found large blocks of agriculture in areas of high contrast had 

tight classification. Smaller and large blocks of agriculture with poor contrast were 

shown to have poor localised IoU. The limitation of the localised IoU method is 

its inability to consider the population of agriculture pixels for each object during 

calculation and  leads to greater differences in IoU for smaller areas. Smaller 

areas have greater sensitivity to subtle differences between the reference and 

prediction values than larger objects. More differences are found in smaller areas 

as these relate to the strong contrasting edge cases contributing to high IoU and 

weaker contrasts contributing to lower IoU. Localised IoU is scalable over larger 

mapping areas (e.g. see Helmand Province in Appendix B) and aids existing 

techniques for visualising local variation in classification performance (e.g. image 

differencing). These techniques will only be further exasperated as the 

community utilise remote sensing data to map over larger areas. Mapping the 

distribution of error with localised IoU is recommended with global metrics for 

providing further evaluation of classification accuracy across landscapes at 

varying scales. 

The agricultural area estimation from classification was found to consistently 

overestimate the active agricultural area. The overestimation would lead to an 

overestimation of opium poppy using the UN’s ratio-based estimation approach. 
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However, the current approach uses the potential agricultural area which would 

still be greater than the active mask therefore using the active mask would still 

provide a more representative estimate. The main reason the potential mask is 

used is to ensure no potential areas under cultivation are missed during the 

survey. The classification found more commission for agriculture and it is unlikely 

using the active mask will omit potential areas under opium cultivation. 

5.5 Analysis ready data and automated agricultural land 

classification 

The contribution of the spectral image features during FCN training emphasises 

the need for standardising spectral values between image datasets for analysis 

ready data. Standardisation is common in remote sensing to minimise the 

variation in measured surface reflectance caused by atmospheric, topographic 

and illumination differences (Rußwurm and Körner, 2018; Zhang et al., 2018). 

Consistency across imagery is advantageous to train generalised models for 

agricultural land classification. Standardisation using IR-MAD normalisation 

provided consistency between image datasets (DMC, Landsat and Sentinel-2) 

compared to TOA reflectance. Matching imagery with IR-MAD is able to remove 

the differences in the atmosphere between imagery, but Level-1A is the 

reflectance without atmospheric correction. The subtle differences in atmosphere 

between the IR-MAD matched imagery and Level-1A are the cause for little 

difference in localised IoU generally (Figure 3-18). Improvements in classification 

accuracy were seen in the localised IoU in areas of known confusion (e.g. edge 

cases and smaller field parcels) (Figure 3-17), where subtle differences in 

spectral values have the most influence during classification. Further 

improvements were found for weak edge cases in areas of sparse agriculture by 

increasing the spatial resolution using the same generalised model (Figure 3-21). 

By implementing the IR-MAD standardisation it is possible to have analysis ready 

data for use with the generalised model, but requires intersecting imagery over 

the same area to calculate the invariant features. The standardisation also 

requires additional time to process the imagery to be analysis ready data, but is 

beneficial for consistent classification. 
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The ease of using FCNs with analysis ready data for classifying agricultural land 

is advantageous for operational use. Encoding localised image features 

outperforms other machine learning techniques for agricultural land classification. 

Generalised models can be used to classify any image without any manual effort, 

regardless of image timing or image sensor. These models can be fine-tuned 

faster with transfer learning and updating models with less data and sparse 

datasets alleviates the need for large labelled datasets for continual 

improvement. 

Using these models at scale requires suitable infrastructure to collect, store, 

process and classify across image datasets. Automated classification is possible 

by utilising cloud services with FCNs, such as Amazon Web Services (AWS) or 

Google Earth Engine (GEE) (Patel et al., 2015). Cloud services provide access 

to large volumes of image datasets without the need to store or process them 

locally. Automated classification of image datasets would be possible when the 

trained model is hosted on the platform. Researchers can take advantage of the 

increased processing power available on cloud services by automating 

classification. For example, an automated workflow could be setup for new image 

datasets where the latest generalised FCN model for agricultural land would 

automatically classify near-real time without the need for manual input. 

UNODC currently use a potential agricultural mask for their annual opium survey, 

while the FCN models developed in this thesis classify active areas of agriculture. 

However, active agricultural masks classified using the generalised model could 

be used to create potential masks by combining multiple years of these active 

masks. The cloud platform could be used to update the generalised model with 

newly classified areas of agriculture using the methodology from §3.3.5 and 

would only require manual inspection of these new areas for quality control. 

Localised IoU can also be used to monitor land cover changes by comparing the 

latest and previous year’s active mask, where greater change is expressed as a 

lower IoU score. 

Automated classification is advantageous for UNODC because generalised 

models can classify any image date with >80% user accuracy in southern Helmand 
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almost two months before the peak agricultural extent. Monitoring agricultural land 

before peak opium biomass will provide an early indication of new areas of 

agriculture to aid survey design, sample selection for the opium survey and 

identify new areas under opium cultivation. A fully automated workflow for 

agricultural land classification using FCNs would increase efficiency in the opium 

survey and allow for continual model improvement through fine-tuning on 

sparsely labelled datasets. 
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Chapter 6. Conclusions 

This chapter contains the conclusions of the research on automated agricultural 

land classification and monitoring of land cover change presented in the 

preceding chapters and recommendations for future work. 
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6.1 Key findings from objective 1: critically evaluate the use of 

CNNs for delineating Afghanistan’s active agricultural mask 

compared to human interpretation 

Convolutional Neural Networks (CNNs) were able to separate between natural 

vegetation and agriculture. The improved classification accuracy was obtained by 

encoding local information using convolutional filters to separate between these 

areas of confusion (Chapter 2). 

A targeted strategy was used to focus training the CNN on difficult classification 

areas (e.g. natural vegetation and edge cases between agriculture and non-

agriculture) and improved classification accuracy (>94%) (Chapter 2).  

Transfer learning using a pre-trained model on an unrelated image dataset 

(ImageNet) achieved higher overall accuracy than training from scratch (+2.2%) 

and training was faster. Updating the model between image years using transfer 

learning required only 25% of available labelled data with similar classification 

performance. Without additional training, models were able to classify imagery 

across sensors and years to achieve high classification accuracy (>95%) 

(Chapter 2 and Chapter 3).  

A Fully Convolutional Network (FCN) outperformed the CNN and improved 

classification further by replacing the fully connected layer with an upsampling 

convolutional layer (+3%) (Chapter 3). A method was developed to fine-tune FCN 

models with sparsely labelled data for new areas of agricultural land and 

improved classification accuracy (+1%) (Chapter 3). FCNs can replace human 

interpretation of agricultural land. 

6.2 Key findings from objective 2: develop generalised CNN 

models for classifying the agricultural mask and evaluate the 

uncertainty on measuring the active agricultural area 

Further understanding of the underlying importance of the contextual information 

resulting in superior performance in agricultural land classification enabled 

generalised models to be trained. The textural and spectral image features were 
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more important than shape for separating agricultural land (Chapter 3). 

Generalised FCN models were successfully trained on legacy datasets across 

image sensors by standardising spectral image features with image matching (IR-

MAD) (Chapter 3). These models classified agricultural land across image 

datasets (DMC, Landsat and Sentinel-2), even for image sensors not used during 

training and maintained high classification accuracy (>95%). 

Localised intersection over union was developed as a new tool to assess the 

localised differences in classification and provided greater insight for comparing 

small differences in mapping accuracy (Chapter 3). Improvements to agricultural 

land classification from standardisation were identified using localised IoU at 

edges in mixed areas of agriculture and desert, where small differences in the 

spectral values have the largest effect during classification. Increased spatial 

resolution improved classification in these areas without the need for fine-tuning 

the generalised models. 

These models can classify image datasets at any point within the season to 

monitor agricultural changes whilst maintaining high accuracy almost two months 

before peak opium biomass (>80%) (Chapter 3). Generalised FCN models are 

the best approach for utilising legacy data to understand changes in land-use 

across image sensors. 

6.3 Key findings from objective 3: understand the annual 

changes in agricultural land use in relation to opium poppy in 

Helmand Province, Afghanistan between 2010 and 2019 

Generalised models, trained on legacy data, were used to classify agricultural 

land from different image datasets and sensors to understand agricultural land 

change in Helmand Province between 2010 and 2019 (Chapter 4). All districts in 

Helmand Province were found to have year-on-year expansion of agricultural 

land and opium cultivation between 2010 and 2017. The UNODC opium 

estimates found opium cultivation began to decline after the peak in 2017, whilst 

agricultural area classified by the FCN continued to increase, suggesting a shift 

in agricultural practice. Helmand Province has undergone rapid agricultural 

expansion away from canal irrigated areas in the main Helmand valley between 



 

150 

2013 and 2019 into marginal desert areas with less control and security, 

predominately in Nad Ali, Naw Zad, and Washer. Increases in new agricultural 

land available are attributed to the introduction of new agricultural technologies 

(e.g. solar-powered deep wells and fertilisers) across the province to increase 

access to adequate irrigation. Agricultural expansion into marginal desert areas 

are associated with increased opium cultivation in Helmand Province. These 

technologies would otherwise be too expensive if not for the higher farm-gate 

price for opium than other cash crops (e.g. wheat). Districts located in the main 

Helmand valley had less agricultural expansion and opium cultivation remained 

static over the study period (e.g. Lashkar Gah, Nahri Sarraj, and Sangin). 

Southern districts were found to have less agricultural expansion, but opium 

cultivation rose suggesting intensification or improved yields (e.g. Dishu, 

Garmser, and Reg).  

The models used in the analysis required no additional training for years without 

labelled data and demonstrate the potential for applying these models across 

large volumes of image data to derive new knowledge from legacy datasets. 

Improved and timely classification of agricultural land from satellite imagery can 

be used to gain further insight into land-use change associated with opium 

cultivation to inform national and international counter-narcotic strategy. 

 

6.4 Implications of research for opium monitoring in 

Afghanistan 

High classification performance coupled with continual model refinement from 

additional standardised data shows the potential for FCNs to aid human 

interpreters for UNODC's agricultural mask production. Utilising data-driven 

models from previous agricultural land delineation will improve the speed and 

efficiency of the survey and reduce the overall cost. Deep transfer learning across 

multiple years presents an exciting opportunity for timely and efficient 

classification and retraining existing models with only new areas of agriculture 

(sparse datasets) will further reduce the effort required to improve agricultural 

land delineation year-on-year. The ability to utilise generalised models on all 
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optical imagery types regardless of spatial resolution and timing is advantageous 

for monitoring the potential area under opium cultivation. Although acceptable 

classification accuracy (>80%) in comparison to peak agricultural extent is 

achieved from ¾ opium biomass, the active agricultural area can be classified 

earlier. Identifying the frame sampling locations early would increase the 

efficiently in conducting the ratio-based estimates for opium production. Utilising 

cloud imagery platforms, such as Google Earth Engine (GEE) and Amazon Web 

Services (AWS), with the most recently updated FCN model provides the 

opportunity for an automated agricultural mask production workflow. This would 

provide near real-time monitoring of the active agricultural area across image 

datasets by classifying each new image uploaded onto the platform. 

6.5 Recommendations for future research 

The potential for generalised FCN models to classify agricultural land across 

image datasets is an exciting prospect for land cover classification. Future 

research should focus on further understanding the use of fine-tuning existing 

FCN models with sparsely labelled data to reduce the requirements for large 

training datasets. The experiments conducted in Chapter 2 and Chapter 3 found 

classification performance increased year-on-year with more data from 

subsequent years, but is there a point where the model can no longer improve? 

The best performing FCN models are commonly limited to only three input 

channels for use with conventional photography (Red, Green, Blue), but satellite 

imagery often has more than three spectral bands (e.g. Landsat-8 (9 bands) and 

Sentinel-2 (13 bands)). Remote sensing applications calls for more model 

architectures to be built with more than three channels to fully utilise these image 

datasets. The success of using transfer learning from existing architectures with 

unrelated datasets (e.g. ImageNet) to train models more efficiently also calls for 

researchers to share their trained models with the wider community, especially 

for architectures built with more than three channels. 

The FCN models trained in this thesis were focused on the southern provinces of 

Helmand and Kandahar, the two main opium producing provinces in Afghanistan. 

In the context of illicit crop monitoring in Afghanistan, further research could 



 

152 

investigate how well these models generalise across all provinces to map 

agricultural land, especially in northern provinces with different agricultural 

patterns. Utilising cloud imagery platforms with generalised FCN models would 

be advantageous for further understanding of crop dynamics across both the first 

and second crop cycle and aid near real-time monitoring of land cover change.



 

153 

References 

  



 

154 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. 

S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, 

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, 

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, 

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, 

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. 

(2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous 

Distributed Systems. 

Alatorre, L. C., Sánchez-Andrés, R., Cirujano, S., Beguería, S. and Sánchez-

Carrillo, S. (2011) ‘Identification of mangrove areas by remote sensing: The ROC 

curve technique applied to the northwestern Mexico coastal zone using Landsat 

imagery’, Remote Sensing, 3(8), pp. 1568–1583. doi: 10.3390/rs3081568. 

Aldwaik, S. Z., Onsted, J. A. and Pontius, R. G. (2015) ‘Behavior-based 

aggregation of land categories for temporal change analysis’, International 

Journal of Applied Earth Observation and Geoinformation, 35, pp. 229–238. doi: 

10.1016/j.jag.2014.09.007. 

Baker, N., Lu, H., Erlikhman, G. and Kellman, P. J. (2018) ‘Deep convolutional 

networks do not classify based on global object shape’, PLoS Computational 

Biology, 14(12), p. e1006613. doi: 10.1371/journal.pcbi.1006613. 

Ball, J. E., Anderson, D. T. and Chan, C. S. (2017) ‘A Comprehensive Survey of 

Deep Learning in Remote Sensing: Theories, Tools and Challenges for the 

Community’, Journal of Applied Remote Sensing, 11(4), p. 042609. doi: 

10.1117/1.JRS.11.042609. 

Belgiu, M. and Drăgu, L. (2016) ‘Random forest in remote sensing: A review of 

applications and future directions’, ISPRS Journal of Photogrammetry and 

Remote Sensing, 114, pp. 24–31. doi: 10.1016/j.isprsjprs.2016.01.011. 

Bellón, B., Bégué, A., Lo Seen, D., de Almeida, C. and Simões, M. (2017) ‘A 

remote sensing approach for regional-scale mapping of agricultural land-use 

systems based on NDVI time series’, Remote Sensing, 9(6), p. 600. doi: 

10.3390/rs9060600. 



 

155 

Boryan, C. G., Yang, Z., Willis, P. and Di, L. (2017) ‘Developing crop specific area 

frame stratifications based on geospatial crop frequency and cultivation data 

layers’, Journal of Integrative Agriculture, 16(2), pp. 312–323. doi: 

10.1016/S2095-3119(16)61396-5. 

Bradford, J. and Mansfield, D. (2019) ‘Known unknowns and unknown knows: 

what we know about the cannabis and Hashish trade in Afghanistan’, EchoGéo, 

48. doi: 10.4000/echogeo.17626. 

Brigato, L. and Iocchi, L. (2021) ‘A Close Look at Deep Learning with Small Data’, 

in 25th International Conference on Pattern Recognition, pp. 2490–2497. doi: 

10.1109/ICPR48806.2021.9412492. 

Canty, M. J. (2014) Image analysis, classification and change detection in remote 

sensing: with algorithms for ENVI/IDL and Python. Third Revi. Taylor and Francis 

CRC Press. 

Canty, M. J. and Nielsen, A. A. (2008) ‘Automatic radiometric normalization of 

multitemporal satellite imagery with the iteratively re-weighted MAD 

transformation’, Remote Sensing of Environment, 112(3), pp. 1025–1036. doi: 

10.1016/j.rse.2007.07.013. 

Carfagna, E. and Gallego, F. J. (2005) ‘Using Remote Sensing for Agricultural 

Statistics’, International Statistical Review, 73(3), pp. 389–404. doi: 

10.1111/j.1751-5823.2005.tb00155.x. 

Casu, F., Manunta, M., Agram, P. S. and Crippen, R. E. (2017) ‘Big remotely 

sensed data: tools, applications and experiences’, Remote Sensing of 

Environment, 202, pp. 1–2. doi: 10.1016/j.rse.2017.09.013. 

Chen, G., Hay, G. J., Carvalho, L. M. T. and Wulder, M. A. (2012) ‘Object-based 

change detection’, International Journal of Remote Sensing, 33(14), pp. 4434–

4457. doi: 10.1080/01431161.2011.648285. 

Cheng, G., Han, J. and Lu, X. (2017) ‘Remote sensing image scene classification: 

benchmark and state of the art’, Proceedings of the IEEE, 105, pp. 1865–1883. 

doi: 10.1109/JPROC.2017.2675998. 



 

156 

Chollet, F. (2015) Keras. Available at: https://github.com/keras-team/keras. 

Chollet, F. (2017) Deep learning with Python. New York: Manning Publications. 

Clement, M. A., Kilsby, C. G. and Moore, P. (2017) ‘Multi-temporal synthetic 

aperture radar flood mapping using change detection’, Journal of Flood Risk 

Management. doi: 10.1111/jfr3.12303. 

Cohen, J. (1960) ‘A coefficient of agreement for nominal scales’, Educational and 

Psychological Measurement, 20(1), pp. 37–46. doi: 

10.1177/001316446002000104. 

Colditz, R. R. (2015) ‘An evaluation of different training sample allocation 

schemes for discrete and continuous land cover classification using decision tree-

based algorithms’, Remote Sensing, 7(8), pp. 9655–9681. doi: 

10.3390/rs70809655. 

CSO (2018) Afghanistan Living Conditions Survey 2016-2017. Kabul. 

DeFries, R. S. and Chan, J. C. W. (2000) ‘Multiple criteria for evaluating machine 

learning algorithms for land cover classification from satellite data’, Remote 

Sensing of Environment, 74(3), pp. 503–515. 

Delgado, R. and Tibau, X. A. (2019) ‘Why Cohen’s Kappa should be avoided as 

performance measure in classification’, PLoS ONE, 14(9), p. e0222916. doi: 

10.1371/journal.pone.0222916. 

Dell’Acqua, F., Gamba, P., Casella, V., Zucca, F., Benediktsson, J. A., Wilkinson, 

G., Galli, A., Malinverni, E. S., Jones, G., Greenhill, D. and Ripke, L. (2006) 

‘HySenS data exploitation for urban land cover analysis’, Annals of Geophysics, 

49(1), pp. 311–318. doi: 10.4401/ag-3160. 

Demir, S. and Başayiğit, L. (2019) ‘Determination of Opium Poppy (Papaver 

Somniferum) Parcels Using High-Resolution Satellite Imagery’, Journal of the 

Indian Society of Remote Sensing. doi: 10.1007/s12524-019-00955-1. 

 

 



 

157 

Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L. and Zou, H. (2018) ‘Multi-scale object 

detection in remote sensing imagery with convolutional neural networks’, IPRS 

Journal of Photogrammetry and Remote Sensing, 145, pp. 3–22. doi: 

10.1016/j.isprsjprs.2018.04.003. 

Dingle Robertson, L. and King, D. J. (2011) ‘Comparison of pixel- and object-

based classification in land cover change mapping’, International Journal of 

Remote Sensing, 32(6), pp. 1505–1529. doi: 10.1080/01431160903571791. 

Douzas, G., Bacao, F., Fonseca, J. and Khudinyan, M. (2019) ‘Imbalanced 

learning in land cover classification: Improving minority classes’ prediction 

accuracy using the geometric SMOTE algorithm’, Remote Sensing, 11(24). doi: 

10.3390/rs11243040. 

Dronova, I., Gong, P., Wang, L. and Zhong, L. (2015) ‘Mapping dynamic cover 

types in a large seasonally flooded wetland using extended principal component 

analysis and object-based classification’, Remote Sensing of Environment, 158, 

pp. 193–206. doi: 10.1016/j.rse.2014.10.027. 

Duchi, J., Hazan, E. and Singer, Y. (2011) ‘Adaptive Subgradient Methods for 

Online Learning and Stochastic Optimization’, Journal of Machine Learning 

Research, 12, pp. 2121–2159. 

Dwyer, J., Roy, D., Sauer, B., Jenkerson, C., Zhang, H. and Lymburner, L. (2018) 

‘Analysis Ready Data: Enabling Analysis of the Landsat Archive’, Remote 

Sensing, 10(9), pp. 1–24. doi: 10.20944/PREPRINTS201808.0029.V1. 

FAO (2016) The Islamic Republic of Afghanistan: Land cover atlas. 

FAO (2019) The state of Afghanistan’s biodiversity for food and agriculture. 

Available at: https://www.fao.org/3/CA3482EN/ca3482en.pdf. 

Feng, Y., Diao, W., Sun, X., Yan, M. and Gao, X. (2019) ‘Towards automated 

ship detection and category recognition from high-resolution aerial images’, 

Remote Sensing, 11(1901). doi: 10.3390/rs11161901. 

 



 

158 

Foody, G. M. (2002) ‘Status of land cover classification accuracy assessment’, 

Remote Sensing of Environment, 80(1), pp. 185–201. doi: 10.1016/S0034-

4257(01)00295-4. 

Foody, G. M. (2009) ‘Sample size determination for image classification accuracy 

assessment and comparison’, International Journal of Remote Sensing, 30(20), 

pp. 5273–5291. doi: 10.1080/01431160903130937. 

Fu, G., Liu, C., Zhou, R., Sun, T. and Zhang, Q. (2017) ‘Classification for high 

resolution remote sensing imagery using a fully convolutional network’, Remote 

Sensing, 9(5), pp. 1–21. doi: 10.3390/rs9050498. 

Gallego, F. J. (2004) ‘Remote sensing and land cover area estimation’, 

International Journal of Remote Sensing, 25(15), pp. 3019–3047. doi: 

10.1080/01431160310001619607. 

Geneletti, D. and Gorte, B. G. H. (2003) ‘A method for object-oriented land cover 

classification combining Landsat TM data and aerial photographs’, International 

Journal of Remote Sensing, 24(6), pp. 1273–1286. doi: 

10.1080/01431160210144499. 

Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R. (2006) ‘Random forests 

for land cover classification’, Pattern Recognition Letters, 27(4), pp. 294–300. doi: 

10.1016/j.patrec.2005.08.011. 

Gómez, C., White, J. C. and Wulder, M. A. (2016) ‘Optical remotely sensed time 

series data for land cover classification: A review’, ISPRS Journal of 

Photogrammetry and Remote Sensing, 116, pp. 55–72. doi: 

10.1016/j.isprsjprs.2016.03.008. 

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. Cambridge, 

MA, USA: MIT Press. 

 

 

 



 

159 

Van Grinsven, M. J. J. P., Van Ginneken, B., Hoyng, C. B., Theelen, T. and 

Sánchez, C. I. (2016) ‘Fast Convolutional Neural Network Training Using 

Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus 

Images’, IEEE Transactions on Medical Imaging, 35(5), pp. 1273–1284. doi: 

10.1109/TMI.2016.2526689. 

Guo, D. and Mennis, J. (2009) ‘Spatial data mining and geographic knowledge 

discovery - An introduction’, Computers, Environment and Urban Systems, 33, 

pp. 403–408. doi: 10.1016/j.compenvurbsys.2009.11.001. 

Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., 

Kalloo, A., Ben Hadj Hassen, A., Thomas, L., Enk, A. and Uhlmann, L. (2018) 

‘Man against Machine: Diagnostic performance of a deep learning convolutional 

neural network for dermoscopic melanoma recognition in comparison to 58 

dermatologists’, Annals of Oncology, 29(8), pp. 1836–1842. doi: 

10.1093/annonc/mdy166. 

Hall-Beyer, M. (2017) ‘Practical guidelines for choosing GLCM textures to use in 

landscape classification tasks over a range of moderate spatial scales’, 

International Journal of Remote Sensing, 38(5), pp. 1312–1338. doi: 

10.1080/01431161.2016.1278314. 

Han, K. S., Champeaux, J. L. and Roujean, J. L. (2004) ‘A land cover 

classification product over France at 1 km resolution using SPOT4/VEGETATION 

data’, Remote Sensing of Environment, 92(1), pp. 52–66. doi: 

10.1016/j.rse.2004.05.005. 

Hansen, M. C., Egorov, A., Potapov, P. V, Stehman, S. V, Tyukavina, A., 

Turubanova, S. A., Roy, D. P., Goetz, S. J., Loveland, T. R., Ju, J., Kommareddy, 

A., Kovalskyy, V., Forsyth, C. and Bents, T. (2014) ‘Monitoring conterminous 

United States (CONUS) land cover change with Web-Enabled Landsat Data 

(WELD)’, Remote Sensing of Environment, 140, pp. 466–484. doi: 

10.1016/J.RSE.2013.08.014. 

 



 

160 

Haralick, R. M., Shanmugan, K. and Dinstein, I. H. (1973) ‘Textural features for 

image classification’, IEEE Transactions on Systems, Man, and Cybernetics, 3, 

pp. 610–621. 

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep Residual Learning for Image 

Recognition’, in IEEE Conference on Computer Vision and Pattern Recognition, 

pp. 770–778. doi: 10.1109/CVPR.2016.90. 

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., 

Sepulcre, G., Bontemps, S., Defourny, P. and Koetz, B. (2015) ‘Assessment of 

an operational system for crop type map production using high temporal and 

spatial resolution satellite optical imagery’, Remote Sensing, 7(9), pp. 12356–

12379. doi: 10.3390/rs70912356. 

Johnson, J. M. and Khoshgoftaar, T. M. (2019) ‘Survey on deep learning with 

class imbalance’, Journal of Big Data, 6(1). doi: 10.1186/s40537-019-0192-5. 

Kampffmeyer, M., Salberg, A. B. and Jenssen, R. (2016) ‘Semantic segmentation 

of small objects and modeling of uncertainty in urban remote sensing images 

using deep convolutional neural networks’, in IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition Workshops. Las 

Vegas, USA. doi: 10.1109/CVPRW.2016.90. 

Kawasaki, S., Watanabe, F., Suzuki, S., Nishimaki, R. and Takahashi, S. (2012) 

‘Current Situation and Issues on Agriculture of Afghanistan’, ournal of arid land 

studies, 22(1), pp. 345–348. 

Keuchel, J., Naumann, S., Heiler, M. and Siegmund, A. (2003) ‘Automatic land 

cover analysis for Tenerife by supervised classification using remotely sensed 

data’, Remote Sensing of Environment, 86(4), pp. 530–541. doi: 10.1016/S0034-

4257(03)00130-5. 

Khatami, R., Mountrakis, G. and Stehman, S. V (2016) ‘A meta-analysis of remote 

sensing research on supervised pixel-based land-cover image classification 

processes: General guidelines for practitioners and future research’, Remote 

Sensing of Environment, 177, pp. 89–100. doi: 10.1016/j.rse.2016.02.028. 



 

161 

Khatami, R., Mountrakis, G. and Stehman, S. V (2017) ‘Mapping per-pixel 

predicted accuracy of classified remote sensing images’, Remote Sensing of 

Environment, 191, pp. 156–167. doi: 10.1016/j.rse.2017.01.025. 

Kingma, D. P. and Ba, J. L. (2015) ‘Adam: A method for stochastic optimization’, 

in 3rd International Conference on Learning Representations. 

Koga, Y., Miyazaki, H. and Shibasaki, R. (2018) ‘A CNN-based method of vehicle 

detection from aerial images using hard example mining’, Remote Sensing, 

10(124). doi: 10.3390/rs10010124. 

Kroupi, E., Kesa, M., Navarro-Sánchez, V. D., Saeed, S., Pelloquin, C., 

Alhaddad, B., Moreno, L., Soria-Frisch, A. and Ruffini, G. (2019) ‘Deep 

convolutional neural networks for land-cover classification with Sentinel-2 

images’, Journal of Applied Remote Sensing, 13(2), p. 024525. doi: 

10.1117/1.jrs.13.024525. 

Laliberte, A. S., Rango, A., Havstad, K. M., Paris, J. F., Beck, R. F., McNeely, R. 

and Gonzalez, A. L. (2004) ‘Object-oriented image analysis for mapping shrub 

encroachment from 1937 to 2003 in southern New Mexico’, Remote Sensing of 

Environment, 93(1–2), pp. 198–210. doi: 10.1016/j.rse.2004.07.011. 

Lecun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521, pp. 

436–444. doi: 10.1038/nature14539. 

Lei, T. C., Wan, S., Wu, S. C. and Wang, H. P. (2020) ‘A new approach of 

ensemble learning technique to resolve the uncertainties of paddy area through 

image classification’, Remote Sensing, 12, p. 3666. doi: 10.3390/rs12213666. 

Li, Y., Huang, H., Xie, Q., Yao, L. and Chen, Q. (2018) ‘Research on a surface 

defect detection algorithm based on MobileNet-SSD’, Applied Sciences, 8(9). doi: 

10.3390/app8091678. 

Liu, H., He, L. and Li, J. (2017) ‘Remote sensing image classification based on 

convolutional neural networks with two-fold sparse regularization’, in IEEE 

International Geoscience and Remote Sensing Symposium. Texas, USA, pp. 

992–995. doi: 10.1109/IGARSS.2017.8127121. 



 

162 

Liu, X., Tian, Y., Yuan, C., Zhang, F. and Yang, G. (2018) ‘Opium Poppy 

Detection Using Deep Learning’, Remote Sensing, 10(12), p. 1886. doi: 

10.3390/rs10121886. 

Lobell, D. B., Thau, D., Seifert, C., Engle, E. and Little, B. (2015) ‘A scalable 

satellite-based crop yield mapper’, Remote Sensing of Environment, 164, pp. 

324–333. doi: 10.1016/j.rse.2015.04.021. 

Long, J., Shelhamer, E. and Darrell, T. (2015) ‘Fully convolutional networks for 

semantic segmentation’, in IEEE Conference on Computer Vision and Pattern 

Recognition. Boston, USA, pp. 3431–3440. doi: 10.1109/CVPR.2015.7298965. 

Lucas, R., Medcalf, K., Brown, A., Bunting, P., Breyer, J., Clewley, D., Keyworth, 

S. and Blackmore, P. (2011) ‘Updating the Phase 1 habitat map of Wales, UK, 

using satellite sensor data’, ISPRS Journal of Photogrammetry and Remote 

Sensing, 66(1), pp. 81–102. doi: 10.1016/j.isprsjprs.2010.09.004. 

Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, P. (2017) ‘Convolutional 

neural networks for large-scale remote-sensing image classification’, IEEE 

Transactions on Geoscience and Remote Sensing, 55(2), pp. 645–657. doi: 

10.1109/TGRS.2016.2612821. 

Mansfield, D. (2011) Managing concurrent and repeated risks: Explaining the 

reductions in opium production in Central Helmand between 2008 and 2011. 

Kabul. 

Mansfield, D. (2017) Understanding control and influence: what opium poppy and 

tax reveal about the writ of the Afghan state. Kabul. 

Mansfield, D. (2018) ‘Turning deserts into flowers: settlement and poppy 

cultivation in southwest Afghanistan’, Third World Quarterly, 39(2), pp. 331–349. 

doi: 10.1080/01436597.2017.1396535. 

Mansfield, D. (2019) ‘On the Frontiers of Development : Illicit Poppy and the 

Transformation of the Deserts of Southwest Afghanistan’, Journal of Illicit 

Economies and Development, 1(3), pp. 330–345. doi: 10.31389/jied.46. 



 

163 

Maxwell, A. E., Warner, T. A. and Fang, F. (2018) ‘Implementation of machine-

learning classification in remote sensing: an applied review’, International Journal 

of Remote Sensing, 39(9), pp. 2784–2817. doi: 

10.1080/01431161.2018.1433343. 

Memarsadeghi, N., Mount, D. M., Netanyahu, N. S. and Moigne, J. L. (2007) ‘A 

fast implementation of the ISODATA clustering algorithm’, International Journal 

of Computational Geometry and Applications, 17(1), pp. 71–103. 

Morales-Barquero, L., Lyons, M. B., Phinn, S. R. and Roelfsema, C. M. (2019) 

‘Trends in remote sensing accuracy assessment approaches in the context of 

natural resources’, Remote Sensing, 11(19), pp. 1–16. doi: 10.3390/rs11192305. 

Moreno Navas, J., Telfer, T. C. and Ross, L. G. (2012) ‘Separability indexes and 

accuracy of neuro-fuzzy classification in Geographic Information Systems for 

assessment of coastal environmental vulnerability’, Ecological Informatics, 12, 

pp. 43–49. doi: 10.1016/j.ecoinf.2012.06.006. 

Mulla, D. J. (2013) ‘Twenty five years of remote sensing in precision agriculture: 

Key advances and remaining knowledge gaps’, Biosystems Engineering, 114, 

pp. 358–371. doi: 10.1016/j.biosystemseng.2012.08.009. 

Myint, S. W., Yuan, M., Cerveny, R. S. and Giri, C. P. (2008) ‘Comparison of 

remote sensing image processing techniques to identify tornado damage areas 

from Landsat TM data’, Sensors, 8(2), pp. 1128–1156. doi: 10.3390/s8021128. 

Nogueira, K., Penatti, O. A. B. and dos Santos, J. A. (2017) ‘Towards better 

exploiting convolutional neural networks for remote sensing scene classification’, 

Pattern Recognition, 61, pp. 539–556. doi: 10.1016/j.patcog.2016.07.001. 

NSIA (2019) Agricultural Prospective Report. Available at: 

https://www.nsia.gov.af:8080/wp-content/uploads/2019/07/Agricultural-

prospective-Report.pdf. 

 

 



 

164 

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V, Woodcock, C. E. and 

Wulder, M. A. (2014) ‘Good practices for estimating area and assessing accuracy 

of land change’, Remote Sensing of Environment, 148, pp. 42–57. doi: 

10.1016/j.rse.2014.02.015. 

Otsu, N. (1979) ‘A threshold selection method from gray-level histograms’, IEEE 

Transactions on Systems, Man, and Cybernetics, 9(1), pp. 62–66. doi: 

10.1109/TSMC.1979.4310076. 

Otukei, J. R. and Blaschke, T. (2010) ‘Land cover change assessment using 

decision trees, support vector machines and maximum likelihood classification 

algorithms’, International Journal of Applied Earth Observation and 

Geoinformation, 12(1), pp. 27–31. doi: 10.1016/j.jag.2009.11.002. 

Paisitkriangkrai, S., Sherrah, J., Janney, P. and Van-Den Hengel, A. (2015) 

‘Effective semantic pixel labelling with convolutional networks and Conditional 

Random Fields’, in IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition Workshops. Boston, USA. doi: 

10.1109/CVPRW.2015.7301381. 

Pal, M. (2005) ‘Random forest classifier for remote sensing classification’, 

International Journal of Remote Sensing, 26(1), pp. 217–222. doi: 

10.1080/01431160412331269698. 

Panda, S. S., Ames, D. P. and Panigrahi, S. (2010) ‘Application of vegetation 

indices for agricultural crop yield prediction using neural network techniques’, 

Remote Sensing, 2(3), pp. 673–696. doi: 10.3390/rs2030673. 

Pandey, B., Joshi, P. K. and Seto, K. C. (2013) ‘Monitoring urbanization dynamics 

in india using DMSP/OLS night time lights and SPOT-VGT data’, International 

Journal of Applied Earth Observation and Geoinformation, 23, pp. 49–61. doi: 

10.1016/j.jag.2012.11.005. 

 

 



 

165 

Parente, L. and Ferreira, L. (2018) ‘Assessing the spatial and occupation 

dynamics of the Brazilian pasturelands based on the automated classification of 

MODIS images from 2000 to 2016’, Remote Sensing, 10(4), p. 606. doi: 

10.3390/rs10040606. 

Park, J., Kim, D. I., Choi, B., Kang, W. and Kwon, H. W. (2020) ‘Morphological 

Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks’, 

Scientific Reports, 10(1012). doi: 10.1038/s41598-020-57875-1. 

Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., 

Tatem, A. J. and Trianni, G. (2015) ‘Multitemporal settlement and population 

mapping from Landsat using Google Earth Engine’, International Journal of 

Applied Earth Observation and Geoinformation, 35, pp. 199–208. doi: 

10.1016/j.jag.2014.09.005. 

Penatti, A. B., Nogueira, K. and Santos, J. A. (2015) ‘Do deep features generalize 

from everyday objects to remote sensing and aerial scenes domains?’, in IEEE 

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 

pp. 44–51. doi: 10.1109/CVPRW.2015.7301382. 

Petitjean, F., Ketterlin, A. and Gançarski, P. (2011) ‘A global averaging method 

for dynamic time warping, with applications to clustering’, Pattern Recognition, 

44(3), pp. 678–693. doi: 10.1016/j.patcog.2010.09.013. 

Piramanayagam, S., Saber, E., Schwartzkopf, W. and Koehler, F. W. (2018) 

‘Supervised classification of multisensor remotely sensed images using a deep 

learning framework’, Remote Sensing, 10(1429). doi: 10.3390/rs10091429. 

Pontius, R. G. and Millones, M. (2011) ‘Death to Kappa: Birth of quantity 

disagreement and allocation disagreement for accuracy assessment’, 

International Journal of Remote Sensing, 32(15), pp. 4407–4429. doi: 

10.1080/01431161.2011.552923. 

 

 



 

166 

Pouliot, D., Latifovic, R., Pasher, J. and Duffe, J. (2019) ‘Assessment of 

Convolution Neural Networks for Wetland Mapping with Landsat in the Central 

Canadian Boreal Forest Region’, Remote Sensing, 11(7), p. 772. doi: 

10.3390/rs11070772. 

Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. and Roberts, D. (2008) 

‘Mapping land-cover modifications over large areas: A comparison of machine 

learning algorithms’, Remote Sensing of Environment, 112(5), pp. 2272–2283. 

doi: 10.1016/j.rse.2007.10.004. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., 

Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. and Fei-Fei, L. (2015) 

‘ImageNet Large Scale Visual Recognition Challenge’, International Journal of 

Computer Vision, 115(3), pp. 211–252. doi: 10.1007/s11263-015-0816-y. 

Rußwurm, M. and Körner, M. (2018) ‘Multi-temporal land cover classification with 

sequential recurrent encoders’, ISPRS International Journal of Geo-Information, 

7(4), p. 129. doi: 10.3390/ijgi7040129. 

Sexton, J. O., Urban, D. L., Donohue, M. J. and Song, C. (2013) ‘Long-term land 

cover dynamics by multi-temporal classification across the Landsat-5 record’, 

Remote Sensing of Environment, 128, pp. 246–258. doi: 

10.1016/j.rse.2012.10.010. 

Shahriar Pervez, M., Budde, M. and Rowland, J. (2014) ‘Mapping irrigated areas 

in Afghanistan over the past decade using MODIS NDVI’, Remote Sensing of 

Environment, 149, pp. 155–165. doi: 10.1016/j.rse.2014.04.008. 

Shao, Y. and Lunetta, R. S. (2012) ‘Comparison of support vector machine, 

neural network, and CART algorithms for the land-cover classification using 

limited training data points’, ISPRS Journal of Photogrammetry and Remote 

Sensing, 70(1), pp. 78–87. doi: 10.1016/j.isprsjprs.2012.04.001. 

Shelhamer, E., Long, J. and Darrell, T. (2016) ‘Fully Convolutional Networks for 

Semantic Segmentation’, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 39(4). doi: 10.1109/TPAMI.2016.2572683. 



 

167 

Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D. 

and Summers, R. M. (2016) ‘Deep Convolutional Neural Networks for Computer-

Aided Detection: CNN Architectures, Dataset Characteristics and Transfer 

Learning.’, IEEE Transactions on Medical Imaging, 35(5), pp. 1285–98. doi: 

10.1109/TMI.2016.2528162. 

Simms, D. M. (2020) ‘Fully convolutional neural nets in-the-wild’, Remote Sensing 

Letters, 11(12), pp. 1080–1089. doi: 10.1080/2150704X.2020.1821120. 

Simms, D. M., Waine, T. W. and Taylor, J. C. (2017) ‘Improved estimates of 

opium cultivation in Afghanistan using imagery-based stratification’, International 

Journal of Remote Sensing, 38(13), pp. 3785–3799. doi: 

10.1080/01431161.2017.1303219. 

Simms, D. M., Waine, T. W., Taylor, J. C. and Brewer, T. R. (2016) ‘Image 

segmentation for improved consistency in image-interpretation of opium poppy’, 

International Journal of Remote Sensing, 37(6), pp. 1243–1256. doi: 

10.1080/01431161.2016.1148290. 

Simms, D. M., Waine, T. W., Taylor, J. C. and Juniper, G. R. (2014) ‘The 

application of time-series MODIS NDVI profiles for the acquisition of crop 

information across Afghanistan’, International Journal of Remote Sensing, 

35(16), pp. 6234–6254. doi: 10.1080/01431161.2014.951099. 

Simonyan, K. and Zisserman, A. (2015) ‘Very Deep Convolutional Networks for 

Large-Scale Image Recognition’, in International Conference on Learning 

Representations 2015. 

Song, J., Gao, S., Zhu, Y. and Ma, C. (2019) ‘A survey of remote sensing image 

classification based on CNNs’, Big Earth Data, 3(3), pp. 232–254. doi: 

10.1080/20964471.2019.1657720. 

Stehman, S. V (2009) ‘Sampling designs for accuracy assessment of land cover’, 

International Journal of Remote Sensing, 30(20), pp. 5243–5272. doi: 

10.1080/01431160903131000. 

 



 

168 

Stehman, S. V and Wickham, J. D. (2011) ‘Pixels, blocks of pixels, and polygons: 

Choosing a spatial unit for thematic accuracy assessment’, Remote Sensing of 

Environment, 115(12), pp. 3044–3055. doi: 10.1016/j.rse.2011.06.007. 

Su, L., Gong, M., Zhang, P., Zhang, M., Liu, J. and Yang, H. (2017) ‘Deep learning 

and mapping based ternary change detection for information unbalanced 

images’, Pattern Recognition, 66, pp. 213–228. doi: 

10.1016/j.patcog.2017.01.002. 

Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, A. and Rahman, A. (2020) 

‘Land-use land-cover classification by machine learning classifiers for satellite 

observations-A review’, Remote Sensing, 12(7), p. 1135. doi: 

10.3390/rs12071135. 

Tateishi, R., Uriyangqai, B., Al-Bilbisi, H., Ghar, M. A., Tsend-Ayush, J., 

Kobayashi, T., Kasimu, A., Hoan, N. T., Shalaby, A., Alsaaideh, B., Enkhzaya, 

T., Tana, G. and Sato, H. P. (2011) ‘Production of global land cover data – 

GLCNMO’, International Journal of Digital Earth, 4(1), pp. 22–49. doi: 

10.1080/17538941003777521. 

Taylor, J. C., Waine, T. W., Juniper, G. R., Simms, D. M. and Brewer, T. R. (2010) 

‘Survey and monitoring of opium poppy and wheat in Afghanistan: 2003-2009’, 

Remote Sensing Letters, 1(3), pp. 179–185. doi: 10.1080/01431161003713028. 

The World Bank (2014) Islamic Republic of Afghanistan Agriculture Sector 

review. Available at: 

https://documents1.worldbank.org/curated/en/245541467973233146/pdf/AUS97

79-REVISED-WP-PUBLIC-Box391431B-Final-Afghanistan-ASR-web-October-

31-2014.pdf. 

The World Bank (2018) The World Bank Afghanistan : National Horticulture and 

Livestock Productivity Project (P143841) Implementation Status and Key 

Decisions. Available at: 

http://documents1.worldbank.org/curated/en/926371536341361243/pdf/Disclos

able-Version-of-the-ISR-Afghanistan-National-Horticulture-and-Livestock-

Productivity-Project-P143841-Sequence-No-11.pdf. 



 

169 

Thomlinson, J. R., Bolstad, P. V and Cohen, W. B. (1999) ‘Coordinating 

Methodologies for Scaling Landcover Classifications from Site-Specific to Global: 

Steps toward Validating Global Map Products’, Remote Sensing of Environment, 

70(1), pp. 16–28. doi: 10.1016/S0034-4257(99)00055-3. 

Tian, Y., Wu, B., Zhang, L., Li, Q., Jia, K. and Wen, M. (2011) ‘Opium poppy 

monitoring with remote sensing in North Myanmar’, International Journal of Drug 

Policy, 22(4), pp. 278–284. doi: 10.1016/j.drugpo.2011.02.001. 

Tieleman, T. and Hinton, G. (2012) Lecture 6.5 - RMSProp. 

Tiwari, V., Matin, M. A., Qamer, F. M., Ellenburg, W. L., Bajracharya, B., Vadrevu, 

K., Rushi, B. R. and Yusafi, W. (2020) ‘Wheat Area Mapping in Afghanistan 

Based on Optical and SAR Time-Series Images in Google Earth Engine Cloud 

Environment’, Frontiers in Environmental Science, 8(77). doi: 

10.3389/fenvs.2020.00077. 

Tucker, C. J. (1979) ‘Red and photographic infrared linear combinations for 

monitoring vegetation’, Remote Sensing of Environment, 8, pp. 127–150. 

UNODC (2011) Afghanistan Opium Survey 2011. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghanistan_opium_survey_2011_web.pdf. 

UNODC (2015) Afghanistan Opium Survey 2015 - Cultivation and Practice. 

Available at: https://www.unodc.org/documents/crop-

monitoring/Afghanistan/_Afghan_opium_survey_2015_web.pdf. 

UNODC (2016) Afghanistan Opium Survey 2016: Cultivation and Production. 

Available at: https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghanistan_opium_survey_2016_cultivation_productio

n.pdf (Accessed: 15 February 2017). 

UNODC (2017a) Afghanistan Opium Survey 2016: Sustainable development in 

an opium production environment. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghanistan_sustainable_development_for_web.pdf. 



 

170 

UNODC (2017b) Afghanistan Opium survey 2017. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghan_opium_survey_2017_cult_prod_web.pdf. 

UNODC (2018a) Afghanistan opium survey 2017: Challenges to sustainable 

development, peace and security. Available at: 

https://www.unodc.org/documents/crop-monitoring/Opium-survey-peace-

security-web.pdf. 

UNODC (2018b) Afghanistan Opium Survey 2018. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghanistan_opium_survey_2018.pdf. 

UNODC (2019a) Afghanistan Opium Survey 2018: Challenges to sustainable 

development, peace and security. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/Afghanistan_opium_survey_2018_socioeconomic_repor

t.pdf. 

UNODC (2019b) World Drug Report 2019: Depressants. Available at: 

https://wdr.unodc.org/wdr2019/. 

UNODC (2020) Word Drug Report 2020. Available at: 

https://wdr.unodc.org/wdr2020/index.html. 

UNODC (2021a) Afghanistan Opium Survey 2019, socio-economic survey report: 

Drivers, causes and consequences of opium poppy cultivation. Available at: 

https://www.unodc.org/documents/crop-

monitoring/Afghanistan/20210217_report_with_cover_for_web_small.pdf. 

UNODC (2021b) México Monitoreo de Plantíos de Amapola 2018 - 2019. 

Available at: https://www.unodc.org/documents/crop-

monitoring/Mexico/Mexico_Monitoreo_Plantios_Amapola_2018-2019.pdf. 

UNODC (2021c) Myanmar Opium Survey 2020: Cultivation, Production, and 

Implications. Available at: https://www.unodc.org/documents/crop-

monitoring/Myanmar/Myanmar_Opium_survey_2020.pdf. 



 

171 

Vali, A., Comai, S. and Matteucci, M. (2020) ‘Deep learning for land use and land 

cover classification based on hyperspectral and multispectral earth observation 

data: A review’, Remote Sensing, 12(15), p. 2495. doi: 10.3390/RS12152495. 

Verbeke, L. P. C., Vancoillie, F. M. B. and De Wulf, R. R. (2004) ‘Reusing back-

propagation artificial neural networks for land cover classification in tropical 

savannahs’, International Journal of Remote Sensing, 25(14), pp. 2747–2771. 

doi: 10.1080/01431160310001652385. 

Verbesselt, J., Zeileis, A. and Herold, M. (2012) ‘Near real-time disturbance 

detection using satellite image time series’, Remote Sensing of Environment, 

123, pp. 98–108. doi: 10.1016/j.rse.2012.02.022. 

Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A. and White, E. P. (2020) 

‘Cross-site learning in deep learning RGB tree crown detection’, Ecological 

Informatics, 56(101061). doi: 10.1016/j.ecoinf.2020.101061. 

Xia, G., Hu, J., Hu, F., Shi, B., Bai, X. and Zhong, Y. (2017) ‘AID: a benchmark 

data set for performance evaluation of aerial scene classification’, IEEE 

Transactions on Geoscience and Remote Sensing, 55(7), pp. 3965–3981. doi: 

10.1109/TGRS.2017.2685945. 

Xu, Y., Zhu, M., Li, S., Feng, H., Ma, S. and Che, J. (2018) ‘End-to-end airport 

detection in remote sensing images combining cascade region proposal networks 

and multi-threshold detection networks’, Remote Sensing, 10(10), pp. 1–17. doi: 

10.3390/rs10101516. 

Yadav, K. and Congalton, R. G. (2018) ‘Accuracy assessment of Global Food 

Security-Support Analysis Data (GFSAD) cropland extent maps produced at 

three different spatial resolutions’, Remote Sensing, 10(11), p. 1800. doi: 

10.3390/rs10111800. 

Yamashita, R., Nishio, M., Kinh, R., Do, G. and Togashi, K. (2018) ‘Convolutional 

neural networks: an overview and application in radiology’, Insights into Imaging, 

9, pp. 611–629. doi: 10.1007/2Fs13244-018-0639-9. 

 



 

172 

Yang, Y. and Newsam, S. (2010) ‘Bag-of-visual-words and spatial extensions for 

land-use classification’, in Proceedings of the 18th SIGSPATIAL International 

Conference on Advances in Geographic Information Systems. California, USA, 

pp. 270–279. doi: 10.1145/1869790.1869829. 

Ye, S., Pontius Jr, R. G. and Rakshit, R. (2018) ‘A review of accuracy assessment 

for object-based image analysis: From per-pixel to per-polygon approaches’, 

ISPRS Journal of Photogrammetry and Remote Sensing, 141, pp. 137–147. doi: 

10.1016/j.isprsjprs.2018.04.002. 

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. (2014) ‘How transferable are 

features in deep neural networks?’, Advances in Neural Information Processing 

Systems, 27, pp. 3320–3328. 

Zeiler, M. D. and Fergus, R. (2013) Stochastic Pooling for Regularization of Deep 

Convolutional Neural Networks. 

Zhai, Y, Qu, Z. and Hao, L. (2018) ‘Land cover classification using integrated 

spectral, temporal, and spatial features derived from remotely sensed images’, 

Remote Sensing, 10(3). doi: 10.3390/rs10030383. 

Zhai, Yongguang, Qu, Z. and Hao, L. (2018) ‘Land cover classification using 

integrated spectral, temporal, and spatial features derived from remotely sensed 

images’, Remote Sensing, 10(3). doi: 10.3390/rs10030383. 

Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S. and 

Roger, J. C. (2018) ‘Characterization of Sentinel-2A and Landsat-8 top of 

atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI 

differences’, Remote Sensing of Environment, 215, pp. 482–494. doi: 

10.1016/j.rse.2018.04.031. 

Zhang, W. and Lu, X. (2019) ‘The spectral-spatial joint learning for change 

detection in multispectral imagery’, Remote Sensing, 11(240), pp. 1–17. doi: 

10.3390/rs11030240. 

 



 

173 

Zhang, W., Tang, P. and Zhao, L. (2019) ‘Remote Sensing Image Scene 

Classification Using CNN-CapsNet’, Remote Sensing, 11(5), p. 494. doi: 

10.3390/rs11050494. 

Zhuang, X., Engel, B. A., Lozano-Garcia, D. F., Fernández, R. N. and Johannsen, 

C. J. (1994) ‘Optimization of training data required for neuro-classification’, 

International Journal of Remote Sensing, 15(16), pp. 3271–3277. doi: 

10.1080/01431169408954326. 

Zulhaidi, H., Shafri, M., Suhaili, A. and Mansor, S. (2007) ‘The Performance of 

Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree 

Classifiers in Hyperspectral Image Analysis’, Journal of Computer Science, 3(6), 

pp. 419–423. 

 

  



 

174 

Appendices  



 

175 

Appendix A Classification of the agricultural mask 

using machine learning techniques 

A.1 Overview of the agricultural mask and machine learning 

classification 

Crop production estimates are often used for agricultural decision making (FAO, 

2016); therefore, it is essential to provide both a practical and effective 

methodology to accurately quantify agricultural areas. These provide vital 

information on the variation of cultivated area, crop stress and yield estimation 

(Mulla, 2013; Lobell et al., 2015). In Afghanistan, UNODC extract arable 

agricultural area, also known as the agricultural mask, using an unsupervised 

image classification followed by manual post-refinement (UNODC, 2021a). This 

has resulted in over a decade's worth of accurate labelled agricultural image 

classifications. These classifications undergo quality control by visual human 

interpretation as the security risks for surveyors to carry out ground truthing are 

too greater to conduct a systematic accuracy assessment (UNODC, 2018b). 

There are two forms of agricultural mask: the active mask and the potential mask. 

The active mask delineates the area of agricultural land currently under arable 

cultivation for all crops in the target year (e.g. wheat, barley and opium poppy) 

(Taylor et al., 2010). The potential mask is the delineation of agricultural land 

derived by adding new areas of agriculture into a single dataset from multiple 

years, hence the area has potential to grow crops in that season. The potential 

mask is used by UNODC to define the area-frame for sampling for their annual 

opium survey. Areas of long-term land-use change (e.g. agriculture to urban) are 

removed, and unused agricultural areas are removed after approximately five 

years (UNODC, personal communication). An annual active mask is useful for 

monitoring annual changes in agricultural land in relation to opium cultivation. 

This experiment aims to classify the active agricultural mask using data-driven 

machine learning approaches across Helmand and Kandahar Province, 

Afghanistan. The objective is to assess the performance of Random Forest and 

Artificial Neural Networks for agricultural land delineation in comparison to human 

interpretation. 
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A.2 Methods 

The agricultural mask data used are derived from medium resolution Disaster 

Monitoring Constellation (DMC) satellite imagery (NIR,R,G at 32 m) acquired 

during peak opium biomass of the first cycle. The single date image used to 

derive the active agricultural mask is from 27 April 2007 (Figure A-). In the original 

Cranfield University study (Taylor et al., 2010), the delineation of agricultural 

areas was conducted using an unsupervised Iterative Self Organising Data 

Technique (ISODATA) (Memarsadeghi et al., 2007) classification with 

Normalised Difference Vegetation Index (NDVI) imagery (Tucker, 1979) 

(Equation C-1). 

 

NDVI =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

C-1 

ISODATA was used to cluster a composite of NIR, R, G and NDVI values into a 

pre-defined number of classes. These clusters were manually labelled by trained 

interpreters into agriculture and non-agriculture classes. These were manually 

edited in areas of spectral confusion between classes, such as between 

agriculture and natural vegetation. Masks were quality checked using high 

resolution data (e.g. IKONOS) by comparing the resulting delineation with data 

from previous years to ensure consistent interpretation.  
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Figure A-1. Study extent based on the provincial boundaries of Helmand and 

Kandahar Province, Afghanistan and overlapping DMC imagery for 27 April 2007 

The availability of large labelled datasets from previous agricultural masks allows 

supervised machine learning techniques to be used. The 2007 agricultural mask 

with associated DMC imagery (NIR, R, G) was used to assess the classification 

performance of active agricultural land using Random Forest and Artificial Neural 

Network. Stratified random sampling of agriculture and non-agriculture was 

carried out to create an equal number of training and validation samples of each 

class resulting in a total of 20,000 samples for training and 5,000 samples for 

validation. The hyper-parameters for both machine learning approaches were 

selected using a grid search approach. Random Forest used 100 trees with a 

maximum depth of 2 and Artificial Neural Network used 250 hidden layers with a 

learning rate of 0.01. The study site used for assessing the classification 

performance of the machine learning techniques is the image footprint of DMC 

imagery for 27 April 2007 across Helmand and Kandahar Province in Afghanistan 

(Figure A-1). These provinces are the highest opium producing provinces in 
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Afghanistan (UNODC, 2018b), therefore are ideal candidates to evaluate 

classification performance. 

A.2.1 Results 

The full comparison between the classifiers implemented on Helmand and 

Kandahar Province can be found in Table A-1. Random Forest has shown 

encouraging classification accuracy for Helmand and Kandahar with 96.73% 

overall accuracy and a kappa statistic of 91.32. Artificial Neural Network 

performed well with an overall accuracy of 92.88%, was outperformed by 

Random Forest (+3.85%).  Additionally, Artificial Neural Network has achieved a 

moderate kappa statistic of 87.60 compared to Random Forest (91.32), which 

highlights the neural network classification is less robust when considering the 

probability of high overall accuracy occurring by chance. Random Forest 

outperforms Artificial Neural Network for agricultural land delineation for user and 

producer accuracy, +1.48% and +6.29% respectively. 

Table A-1. Summary of Random Forest and Artificial Neural Network classification 

performance using DMC (NIR, R, G) imagery for 27 April 2007 across Helmand and 

Kandahar 

Classification 
technique (n = 
20,000 samples) 

Accuracy metrics (%) (n = 5,000 samples) 

Overall 
accuracy 

User accuracy Producer 
accuracy 

Kappa Difference in 
total area 

Random Forest 96.73 97.12 95.01 91.32 +4.01 
Artificial Neural 
Network 

92.88 95.64 88.72 87.60 +10.09 
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Figure A-2. False colour DMC imagery (NIR, R, G at 32 m) from 27 April 2007 for an 

(left) natural vegetation dominated area and (right) main block of agricultural area 

in the Helmand valley with corresponding agriculture delineation using Random 

Forest and Artificial Neural Network (ANN) approaches. 

The accuracy has remained above 88% for all metrics used across both machine 

learning techniques, but the agricultural area estimate is up to 10% greater than 

the reference 2007 agricultural mask. The visual agricultural land delineation 

shown in Figure A-2 provides further understanding on where the classification 

approaches have worked well and performed poorly. Both classifications have 

performed well in well-defined agricultural areas (Figure A-2), where there is little 

difference between the reference data and predicted area. The main source of 

confusion to both classifications is the presence of natural vegetation, which is a 

known source of confusion for unsupervised classification approaches caused by 

the spectral similarity between agriculture and natural vegetation (Simms et al., 

2014). Human interpreters can easily separate between agriculture and natural 

vegetation because of visual differences in the structures of both land cover 

types.  

A.3 Summary 

The use of data-driven machine learning algorithms for agricultural land 

delineation have shown promising results with high classification accuracy for 
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Random Forest and Artificial Neural Network (>92%). Well-defined agricultural 

areas have tight delineations close to the reference data, but these approaches 

are unable to separate difficult interpretation cases (e.g. natural vegetation) from 

visual inspection. Human interpreters can separate these confusion locations by 

observing the areas in context, as natural vegetation displays different landscape 

characteristics than agriculture. Providing contextual information of these 

agricultural features to data-driven approaches may remove the confusion 

between these two land cover types. Convolutional Neural Networks use 

convolutional filters to extract encoded features from input imagery (e.g. field 

boundaries and structures) and have the potential to improve agricultural 

delineation. Validation metrics often only present global accuracy and ignore the 

spatial distribution of these errors across the classification. The size of the area 

used to validate image classifications needs to be further explored to further 

evaluate other data-driven image classification methodologies. Accurate 

agricultural land delineation is essential for monitoring opium cultivation and 

further investigation is required to overcome these sources of classification error 

from machine learning algorithms to perform as well as a human interpreter. 
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Appendix B Localised intersection over union for 

Helmand Province in 2009 

 

Figure B-1. Localised Intersection over Union for IR-MAD normalised DMC imagery 

in 2009 across the Helmand Province, Afghanistan extent used in Chapter 3 
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Appendix C Agricultural expansion in Helmand 

Province between 2010 and 2019 

 

Figure C-1. Agricultural land expansion between 2010 and 2019 in Helmand 

Province, Afghanistan in Chapter 4 


