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Abstract

Missions that can visit multiple orbital targets represent the next cornerstone for space

travels, be it for science, exploration or even exploitation. The trajectory design of such

missions requires to solve a mixed-integer programming problem, on which the selection

of a proper sequence of targets depends upon the quality of the trajectory that links them,

where quality usually refers to propellant consumption or mission duration.

Two aspects are important when addressing these problems. The first one is to identify

optimal solutions with respect to critical mission parameters. Current approaches to solve

these problems require computing time that rises with the number of control parameters,

as the visiting objects sequence length, as well as rely on a-priori knowledge to define a

manageable design space (i.e., departing dates, presence of deep space manoeuvres, etc.).

Moreover, the more challenging multi-objective optimization needs to be tackled to ap-

propriately inform the mission design with full extent of launch opportunities. The second

aspect is that beyond the obvious complexity of such problems formulation, preliminary

mission design requires not only to locate the global optimum solutions but, also, to map

the ensemble of solutions that leads to feasible transfers.

This thesis describes a pipeline to transcribe the mixed-integer space into a discrete graph

made by grids of interconnected nodes for missions that visit multiple celestial objects,

like planets, asteroids, comets, or a combination thereof, by means of one single space-

craft. This allows to exploit optimal substructure of such problems, opening dynamic

programming to be conveniently applied. Dynamic programming principles are thus ex-

tended to multi-objective optimization of such trajectories and used to explore the tran-

v



scribed graph, guaranteeing Pareto optimality with efficient computational effort. A mod-

ified dynamic programming approach is also derived that allows to retain more and diverse

solutions in the final set compared to known standard approaches, while guaranteeing

global optimality on the transcribed space.

Numerous applications are presented where such pipeline is successfully applied. Tra-

jectories towards Jupiter and Saturn alongside novel transfers for comet sample return

missions are discussed, as well as trajectories that visit multiple asteroids in the main

belt. Such scenarios prove robustness and efficiency of proposed approaches in capturing

optimal solutions and wide Pareto fronts on search spaces of complex configuration.

Keywords
Mission analysis; Combinatorial optimization; Dynamic programming; Multiple Gravity
Assist; Main Asteroids Belt.
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Chapter 1

Introduction

In the past, designing spacecraft trajectories was limited to the definition of transfers to

single destinations in space. In the early decades of space exploration, spacecraft usu-

ally targeted single objects, from the Moon [1] to comets [2], to Solar System planets,

such as Venus [3], Mars [4] or even Jupiter [5]. New technologies, and a more daring

approach to space, present nowadays the challenge of missions that target multiple des-

tinations, i.e., the so-called multi-target missions, be it for science, exploration or even

exploitation.

Instances of mission design problems that target multiple orbital way-points, instead of

one single target 1, represent a growing trend. Some example of this include, but are

not limited to: (1) ESA’s JUICE mission [6], which will perform more than twenty close

passages with Jovian moons; (2) commercial concepts for On-orbit Servicing [7], among

which Active Debris Removal [8] is one of the most famous, considering to rendezvous

with multiple objects by means of one single platform to help restoring Earth orbital

environment; (3) missions that aim to pass by multiple asteroids in the main asteroid belt

(MAB), as proposed by CASTAway [9,10] in the context of ESA’s Medium Class mission

call, or as Lucy mission [11], that aims to pass-by 1 MAB object and 7 Trojan asteroids.

1In this thesis, the words targets and way-points are used interchangeably to refer to orbital positions
that a probe should visit along its mission.
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Figure 1.1 represents an example trajectory for a multi-target exploration of the MAB as

proposed for CASTAway mission. In this example, a spacecraft visits 12 orbital way-

points, that are a combination of two planetary encounters, one with Mars and one with

the Earth, and close passages with ten asteroids. The overall strategy assumes a launch

from the Earth on the 21st of January 2037 and the help of Mars and Earth gravity to

increase spacecraft apoapsis for in-depth study of different objects in the MAB.

Figure 1.1: Example of multi-target exploration of the MAB by means of planetary
fly-bys at Mars and Earth. Arrowed lines represent asteroids paths. Sun, planets and

asteroids are not in scale.

The present thesis deals with the mission analysis part of an overall space mission life

cycle, which is one of the first steps on the definition of the space mission itself. Par-

ticularly, this work addresses challenges and approaches associated to analysis of space

missions that aim to visit multiple orbital targets by means of one single spacecraft, as-

piring to provide design strategies that are efficient, scalable, and robust for addressing

preliminary steps of such space missions.

This Chapter serves as presentation of the overall work and introduces the context of the
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CHAPTER 1. INTRODUCTION

thesis. It is divided as follows: section 1.1 describes the main steps of current mission

design phases, presenting the overall mission operations life cycle, with an eye on the

preliminary definition of scientific goals and assessment of potential trajectories on the

preliminary phase of the design; section 1.2 defines the role of the mission analysis and

discusses its main ingredients; section 1.3 discusses the scientific potential and current

interests around multi-target missions; section 1.4, discusses the purposes of the present

thesis, highlighting its aim and objectives; section 1.5 finally presents the structure of the

present thesis alongside main research contributions.

1.1 Space Mission Design Overview

Space missions can be seen as the sum of so-called mission operations [12], which are all

the activities that define the way for a spacecraft to be designed, built and to accomplish

its scientific objectives. Particularly, mission operations include different functions, from

design to development, related to the spacecraft/launch vehicle, payload, ground opera-

tions and mission management, embracing all the activities that are needed to accomplish

the goal of the mission.

Modern approaches to space missions follow design phases of increasing complexity [12],

as shown in Table 1.1. Such phases are some of the most common ones used in space

missions design based on NASA and European Cooperation for Space Standardization

conventions.

Specifically, from Table 1.1, mission life cycle typically starts with a Phase 0, on which

the goals and preliminary mission analysis are assessed. In Phase A, the main mission

operations blocks (namely spacecraft and launch operations, payload operations, ground

operations and mission management) are formulated, describing the overall scenario for

satellite control. Before launch, Phases B, C and D deal with the detailed design and the

actual construction of the spacecraft. These include the detailed definition of spacecraft

subsystems and payload and their design, development, assembly, integration, and testing,
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1.1. SPACE MISSION DESIGN OVERVIEW

Table 1.1: Space mission life cycle.

Phase Definition Activities

0
Mission analysis and

identification
Definition of scientific goals and

assessment of potential orbits

A Feasibility study

Design, development, and testing
of mission operations

(spacecraft/launch, payload,
ground, mission management)

B Preliminary definition
Definition of systems requirements,

interfaces, instruments, mission
schedule and costs

C Detailed design
Building of spacecraft models and
tests (structural, thermal, acoustic)

D Production
Building of the final spacecraft and

tests (electrical systems and
navigation)

Launch
E Utilization Mission operations execution
F Disposal Termination of the mission

while still iterating the definition of the operations and ensuring all the commands work

appropriately. After launch, mission operations as preliminary defined in Phase A are

executed in Phase E. Last Phase F deals with the termination and disposal activities of the

whole mission.

Designing space missions that aim to visit multiple orbital way-points presents the com-

plication that the targets to be visited, namely their order and/or positions in space, are not

known a priori, but are part of the mission definition itself. This increases the complexity

of the first phases of the mission operations life cycle (i.e., Phase 0 and A from Table 1.1);

specifically, the mission analysis part and feasibility study of the whole mission from the

trajectory design point of view.
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1.2 Space Mission Analysis

Before going to the details of the design of trajectories that visit multiple orbital targets,

this section defines the concept of mission analysis. Space mission analysis usually refers

to the mathematical assessment and definition of spacecraft potential orbits and/or tra-

jectories that allow the scientific objectives of the mission to be best fulfilled [13].

Two aspects are important when addressing space mission analysis:

1. Multiple trajectory options are desirable at the preliminary stage of mission life

cycle to allow a correct trade-off analysis.

2. The best trajectory options according to specific mission-related criteria need to be

identified.

Therefore, the scope of mission analysis is to provide to successive design phases of mis-

sion life cycle a set of orbital and/or trajectory options that allow to realize the scientific

objectives, and, among those, possibly the best options with respect to some criteria. In

order to accomplish such scope, almost any space mission analysis problem can be de-

composed as a mixture of four different ingredients [14] that are reported in Table 1.2.

These are: (1) mathematical models, i.e., the sets of differential equations that affect the

spacecraft trajectory; (2) objectives and/or constraints, i.e., quantities that determine the

goodness of a mission; (3) design variables, i.e., parameters needed to model the space-

craft trajectory; (4) optimization strategies, i.e., those algorithms and approaches that

allow to obtain the desired transfer.

From Table 1.2, the first step for tackling the problem is the definition of a mathematical

model that defines the set of differential equations governing the motion of the spacecraft.

Among the existing different options (see also Chapter 2), the selection of the mathe-

matical model depends upon the specific mission profile, and it is always a compromise

between solution quality and computational effort (see also Chapters 4, 5 and 6). In

this sense, the mission analysis problem usually falls within the logic of a multi-fidelity

5
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Table 1.2: Main ingredients that form a mission analysis problem.

Ingredient Description Examples

Mathematical
models

Set of differential equations
that describe the motion of the

spacecraft and/or the events
that impact such motion

Two-body problem [15, 16],
circular restricted three-body

problem [16], impulsive thrust
model [15, 17], continuous

thrust model [18]

Objectives and/or
Constraints

Key quantities that determine
the goodness of a space

mission

Constraint
satisfaction [19, 20],
optimization [21, 22]

Design variables

Variables sets that describe
trajectories relevant for the

specific mission
objectives/constraints

Direct or indirect
methods [23, 24], shooting

methods [25, 26]

Optimization
strategy

Strategies and algorithms to
obtain values for the variables
selected in the transfer step to

fulfil mission
objectives/constraints

Non-linear programming [27],
meta-heuristics [28, 29]

process [30–32], on which mathematical models of different fidelities are employed in

different stages of the mission life cycle. As an example of the application of such in-

gredients, one can consider the design of a mission from Earth to Mars as a typical in-

terplanetary mission analysis problem. In is case, a common practice is to employ the

so-called patched conics approximation [15, 16, 25, 33] to model the spacecraft motion

(see also Chapter 3). In this example, no other manoeuvres are considered. This ap-

proach is proven to be accurate enough for preliminary design and useful for successive

refinement in higher-fidelity dynamical models [16].

To fulfill mission analysis’ aim , i.e., to provide sets of trajectory options which are com-

pliant with given constraints and optimum with respect to mission-specific criteria, the

second ingredient of mission analysis as from Table 1.2 consists in the definition of ob-

jectives and/or constraints. These represent key quantities that define the goodness of the

mission itself. The mission analysis problem can thus be formulated from two differ-
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ent, though related, formulations that are briefly introduced here and expanded in later

Chapters:

• The first one, and more popular within the space trajectory design sector [23, 24],

is the spacecraft trajectory optimization formulation [14, 34–36], whereby some

mission-specific objective functions are defined and minimized/maximized with re-

spect to some constraints.

• The second one is similar to the so-called constrained satisfaction problem (CSP)

formulation [19, 20], on which the aim is to find all the trajectory options that are

compliant with given mission-driven constraints.

In the Earth-Mars example, typical objectives to be minimized are the overall mass of the

spacecraft, to reduce costs at launch, or the overall mission duration, to reduce the cost

of operations. Constraints that are usually considered include departing date and trans-

fer time ranges, launcher performances, and spacecraft propulsion system capabilities. It

is very useful to solve an optimization problem in the context of a space mission analy-

sis to understand the minimum performances that one could expect from the spacecraft

to fulfill the objectives. Alongside the optimal performances with respect to the afore-

mentioned objectives, on an Earth-Mars transfer one might be interested in gaining more

understanding about the flexibility of the mission itself. For example, one might want to

identify how many transfer opportunities exist with respect to the given constraints, what

are the available launch dates, what are the objectives associated to each one of them, how

many trajectory options exist provided different launchers’ performances, if the distance

from the Sun along any of these options is compatible with power and/or thermal require-

ments, and so on. This is when the CSP becomes relevant, i.e., when not only optimal

trajectories are needed to identify minimum functional performance of the spacecraft, but

also when several mission parameters depend upon the trajectory itself, thus different op-

tions are needed at a very preliminary stage. In this sense, one should highlight that in this

sense the CSP is a feasibility problem that does not represent an alternative to trajectory
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optimization, but comes along with it to truthfully inform the preliminary mission design

with the extent of mission availability and performances.

(a) (b)

Figure 1.2: Impulses maps at Earth departure (a) and Mars arrival (b) for trajectories
departing in 2018 window.

The third ingredient from Table 1.2 is about the definition of the orbits themselves that

are relevant for the specific mission objectives and constraints identified as second ingre-

dient. It should be noted that this third ingredient does not solve the transfer but rather

sets the rules to solve it. In the case of the analysis of the Earth-Mars mission, the or-

bits relevant for the design (in the planet-to-planet interplanetary transfer) are those that

link the two planets (considered as point masses in the patched conics approximation)

in a given time of flight. This corresponds to the well-known orbital two-point bound-

ary value problem (TPBVP), commonly known as Lambert’s problem, whose solution in

two-body dynamics follows well-established procedures [37–40] (see also Appendix A).

In successive iterations of the mission analysis (from Phase A), more detailed analysis

on the transfers is needed, thus numerical integration within multi-body gravity fields are

performed [25].

The last ingredient identified in Table 1.2 to tackle a mission analysis problem consists in

the optimization strategies to obtain the solutions (i.e., trajectory options) regarding the

chosen design method (first and third ingredients) with respect to the objectives and/or
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(a) (b)

(c)

Figure 1.3: Map of minimum (a) and maximum (b) Sun-spacecraft distance, as well as
maximum Earth-spacecraft distance (c) for Earth-Mars trajectories departing in 2018

window.

constraints (second ingredient). Since the CSP is relevant for the Earth-Mars example,

one can decide to enumerate all the possible departure dates and transfer times (taken

within given boundaries) between the Earth and Mars, making them vary discretely on

grids, and then solve Lambert’s problems for each option identified. In this way, a grid

optimization [41] is set up to solve the problem in that it finds multiple trajectory options

(all the possible ones in this case) that satisfy mission constraints (on the launch date and

transfer times in this example).

A typical output for such a mission analysis problem is shown in Figure 1.2. Here, the

maps of impulses at Earth (Figure 1.2.a) and Mars (Figure 1.2.b) are plotted with re-

spect to the departing dates and transfer times, assuming a launch happening in 2018.
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Such maps can be used to infer launcher and spacecraft capabilities to arrive at (an orbit

around) Mars [15, 16]. Any point in the map represents a trajectory between the Earth

and Mars that departs at a given epoch and arrives after given transfer days. The third

dimension is completed with the impulses at the two planets (these are computed as ve-

locity changes to match spacecraft velocities with the planets’ ones). Since the overall

CSP has been solved, one can extrapolate any trajectory-related information that is rele-

vant for other mission design phases. As an example, Figure 1.3 represents the minimum

(Figure 1.3.a) and maximum (Figure 1.3.b) spacecraft distance from the Sun for any tra-

jectory option identified, which could be of interest, for example, for designing thermal

and power subsystems, alongside the maximum Earth-spacecraft distance (Figure 1.3.c)

that is useful for ground communication purposes.

1.3 Mission Analysis of Multi-Target Missions

The Earth-Mars preliminary mission analysis performed in section 1.2 is a typical exam-

ple of single-target mission. Let’s consider now the case of missions that aim to visit

multiple targets, which is the scope of the present thesis. Missions that can visit multiple

targets (e.g., planets, asteroids, space debris. . . ) by means of one single spacecraft repre-

sent the next cornerstone for space exploration and exploitation, as they generally allow

to reduce the average cost for visiting each target object.

Designing transfers that visit multiple targets is very similar to the well-known Traveling

Salesman Problem (TSP) [42], on which a salesperson must visit several cities, with the

aim of maximizing the overall length of the tour. This is one of the most studied problem

in combinatorial optimization, and motivated the development of a large class of solutions

methodologies in the field of global optimization, from deterministic branch and bound

strategies [43,44] to stochastic meta-heuristics [28]. In the classical version of the TSP, the

cities to be visited are considered as fixed points in space, and the salesperson must visit

each one of them once and return to the origin city, in an overall closed path. Translating
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the TSP analogy to multi-target missions [45], the cities are typically represented by the

objects to be visited. Two main differences can thus be spotted between the classic TSP

and the space mission analysis variant:

• The ‘cities’ are not fixed in space, as they are objects subject to forces in space

(mainly gravitational ones), thus their position is strictly related to the time at which

the spacecraft visits them. In this sense, a typical multi-target mission analysis

problem is mixed-integer in nature [46, 47], as it is represented by both integers’

variables, encoding the sequence of targets to be visited, and continuous-varying

parameters, i.e., that can vary in domains of real numbers and that usually model

mission-specific events such as the launch, transfer times between targets or thrust

arcs/manoeuvres.

• The path of visiting the objects usually does not require to return to the initial point,

thus the solution space is larger than the classic TSP.

Despite these differences, the analogy with the classic TSP is still informing, as one could

make use of the intense literature on the problem to tackle (a part of) the design of multi-

target missions (see also later section 1.3.1). In this sense, multi-target mission strategies

imply a considerably increase in the complexity of the space mission analysis part within

the mission analysis life cycle, as the selection of targets to be visited is part of the trajec-

tory planning itself. In other words, the sequence of targets to be visited is not known a

priori (as in the example of Earth-Mars example mission design from section 1.2), but it

becomes part of the design.

Such kind of problems has been generally formulated in the form of mixed-integer non-

linear programming (MINLP) [46, 47] also known in literature as hybrid optimal control

problem (HOCP) [48]. This is one of the most challenging optimization problems, as

it requires the solution of a combinatorial problem mixed with optimal control theory.

MINLP/HOCP can be seen as two nested optimization problems: (1) the combinatorial

problem, aiming at finding the optimal sequence of targets to be visited, and (2) continu-
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ous problem, aiming at identifying one or more locally optimal trajectories for a candidate

target sequence in terms of launch date, targets phasing and thrust arcs. The complexity

arises from the fact that these two components are generally highly coupled together, or,

in other words, while the goodness of a candidate sequence highly depends upon the so-

lution of the continuous optimization, a variation of even a single target will correspond

to a significantly different trajectory path, which requires a different set of continuous

variables to be optimized.

1.3.1 Exemplar Application: Global Trajectory Optimization Com-

petitions

Given the inherent complexity of multi-target mission design problems, they have been

a recurrent proposition in all the editions of the Global Trajectory Optimization Compe-

tition (GTOC). GTOCs are international competitions firstly proposed by the Advanced

Concept Team (ACT) at ESA in 2005 [49] with the aim of challenging the international

scientific community with ‘nearly impossible problems’ in the field of space trajectory

optimization. GTOC challenges usually attract diverse and outstanding teams that pro-

pose innovative problems and solutions in the context of complex multi-target missions,

making them an opportunity for research in the field of multi-target spacecraft trajectory

design and optimization techniques. The complexity of GTOC problems generally ad-

heres to the two following principles [50], in an effort to simulate the uncertainties in

preliminary mission design:

• The design space is large on the mixed-integer domain, such that multiple local

optima solutions exist. This implies large datasets of targets to be visited (integer

variables) with usually many thousands of objects, and, for example, large launch

windows, presence of thrust arcs or impulsive manoeuvres, or a combination of the

two (continuous variables).

• Objective functions and/or constraints are unusual, so that no canned methods or
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existing software can solve the problem as a black box.

A breakdown of all the GTOC competitions to date, with problems, winning teams and

methodologies are reported in Table 1.3 2.

From Table 3, one notices that typical solution methodologies for complex multi-target

problems usually involve three steps [60, 61]:

• Definition of subset of potential targets to be visited (usually done by a pruning

process), based on their orbits and scientific characteristics [52, 62].

• Employment of global optimization methods (such as enumerative, branch and

bound [52,57,58,63], genetic algorithms [64,65], ant colony optimization [57,58])

to scan the whole domain (usually to select promising sequences of objects).

• Employment of either direct [63] or indirect methods [51] and/or global optimiza-

tion methods (e.g., particle swarm [62]) for further refinement and improvement of

a sub-set of solutions (usually once the visiting sequence of targets is fixed).

The second step on an overall multi-target mission design, i.e., the global scan of the

search space in terms of targets’ sequences, is typically the most critical, as there are

always many options available that can potentially be considered. It is often impractical

to perform detailed analysis in terms of transfer modelling and solution achievement (see

third and fourth ingredients from Table 1.2) for each of the sequence options.

Let’s consider for example the case of GTOC9 problem. This particular edition of GTOC

challenges aimed to simulate the design of multi-target missions to restore Earth’s orbital

environment, in answer to the rapid increase of low-Earth orbit (LEO) debris and the

related collisions event triggered by the so-called Kessler’s syndrome [66, 67].

The purpose of the challenge [68] was to design N missions (N to be found by the op-

timization process) to cumulatively remove up to Nset = 123 debris objects. Along each

2For problems’ description, the interested reader is referred to https://sophia.estec.esa.int/

gtoc_portal/, last accessed September 2022
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Table 1.3: Summary of all GTOC competitions to date, with problem description,
winners and methodologies employed. No methodology description has been found for

winning solution of GTOC3, thus a ’−−’ has been included in the table.

GTOC Year Problem Description Winner Solution and Transfer

1 2005
Gravity assist

trajectory for asteroid
deflection

Jet Propulsion
Laboratory

Enumeration with
pruning +

gradient-based
optimization [49]

2 2006
Multiple rendezvous

with asteroids
Politecnico di

Torino

Manual selection +
indirect

optimization [51]

3 2007
Asteroid sample return

with Earth gravity
assist

Centre National
d’Etudes Spatiales

−−

4 2009
Multiple fly-bys with

asteroids
Moscow State

University
Branch and bound [52]

5 2010
Multiple fly-bys and

rendezvous with
asteroids

Jet Propulsion
Laboratory

Beam search + direct
method [53]

6 2012
Global mapping of

Galilean moons
Politecnico di

Torino
Enumeration + indirect

method [54]

7 2014
Multi-spacecraft

exploration of asteroid
belt with rendezvous

Jet Propulsion
Laboratory

Enumeration, particle
swarm optimization,

genetic algorithm, ant
colony optimization +
local optimizer [55]

8 2015
Multi-spacecraft
mapping of radio

sources in the universe

ESA’s ACT and
JAXA’s ISAS

Beam search +
non-linear

programming [56]

9 2017
Multi-mission removal

of sun-synchronous
debris

Jet Propulsion
Laboratory

Branch and bound with
ant colony optimization

+ non-linear
programming [57]

10 2019
Multi-spacecraft
exploration of the

Milky Way
NUDT-XSCC

Branch and bound with
ant colony optimization

+ non-linear
programming [58]

11 2021

Multi-spacecraft
exploration of asteroid
belt and generation of

Dyson ring

Tsinghua
University and

Shanghai Institute
of Satellite

Engineering

Beam search and
genetic algorithm +
indirect method [59]
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of the N missions, a spacecraft is assumed to be released by the launcher vehicle in ren-

dezvous conditions (i.e., matching position and velocity) with one of the pieces of debris

of the dataset. It then needs to perform successive rendezvous with as many debris as pos-

sible to deliver de-orbit kits to allow their re-entry. The motion of the spacecraft and debris

cloud is subject to the two-body gravitational field generated by the Earth, perturbed by

the oblateness effect. The objective is to minimize the cost to launch all the N missions

(the lower the spacecraft mass, the cheaper the mission). For a detailed description of the

challenge, the interested reader is referred to [68].

Figure 1.4: Different permutations of debris sequences with respect to the number of
debris per sequence. The y axis is in logarithmic scale.

Finding trajectories that link any sequence of debris is a difficult task on its own, involving

the solution of complex optimal control problems that are usually time consuming. Thus,

considering all the possible sequences of Ndebris targets imply an amount of:

Neval =
Nset!

(Nset−Ndebris)!
(1.1)

where Neval is the number of multi-target trajectories to be analysed. Figure 1.4 shows

the variation of Neval with respect to Ndebris. For any Ndebris = 5, the number of possible
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sequences is already approximately 2.59×1010. For reference, in the best solution found

by Jet Propulsion Laboratory (JPL) [57], among N = 10 missions designed, the shortest

sequence found has 9 objects (approximately 4.77×1016 permutations), while the longest

one has 14 (approximately 8.41× 1028). It is thus impractical to optimize in detail each

trajectory in preliminary design, and the key to solving this class of problems must lie in

managing this complexity efficiently.

A common way to handle such complexity is represented by multi-fidelity approaches

[30–32], on which approximate transfer analyses estimate crucial parameters for any

target-to-target transfer, such as the propellant consumption (through the ∆v) and/or the

time of flight (T ). These are typically analytical approaches that allow a quick assess-

ment of the goodness of a specific sequence. In this way, the multi-target mission design

problem is uncoupled in two steps:

• Usage of low-fidelity approximate formulas to quickly compute ∆v and T between

two targets.

• Reconstruction of the actual trajectory in high-fidelity model, using the low-fidelity

one as initial guess.

Moving the example of the GTOC9 further, one could, for example, consider approximate

∆v computations between two pieces of debris by evaluating the change of semi-major

axis, inclination, and right ascension of the ascending node. Once such approximation

has been performed, the problem of finding sequences of targets could be tackled by

means of any global optimization algorithm that come from the combinatorial optimiza-

tion field [28,43,44]. This approach has been followed by several top-level teams [69,70],

consistently resulting in high performance (i.e., low cost) ADR missions. However, the

strategy of the JPL team was still able to return better performances, as no approxima-

tion was employed, but rather a massive database of debris-to-debris trajectories already

optimized with non-linear programming methods was created by means of very high-

performance computers [57]. Then, branch and bound and ant colony optimization were
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used to construct sequences of debris and to assemble the final campaign of N=10 mis-

sions.

This suggests that care should be taken when tackling such problems with a multi-fidelity

paradigm, since one might want to use the low-fidelity step only when the solutions lie

close to the actual ground truth. Experience then suggests that approximate methods

[71]:

• Lead to sub-optimal solutions that may lie far to the ground truth (e.g., JPL solutions

performs worse when computed in low-fidelity models [71]).

• Using approximate methods to estimate ∆v and T that correspond closely to the

actual transfers within few percentage of error is a current open research field in the

context of multi-target missions [72, 73].

In conclusion, the usage of multi-fidelity framework is proven particularly useful as it

disregards the use of massive computer memory (that it is implied by JPL-like brute

force approaches) and it provides efficient approximations for a quick scan of the fea-

sible search space. However, one should carefully consider the amount of knowledge to

be transferred from one layer of fidelity to the next one. This work, and the related tool-

boxes (see section 1.5.1), aims at providing insight of the information that is relevant to be

passed between two different layers of fidelity, without both losing valuable or imposing

artificial/inaccurate knowledge (see Chapter 4 and 5).

1.3.2 Multi-Target Missions and Constrained Satisfaction Problem

Similarly, to the Earth-Mars mission analysis problem in section 1.2, a proper mission

feasibility study in the context of multi-target mission design is not only interested in

tackling the global optimization problem (on a GTOC-like manner), but also in identifying

multiple trajectory options, i.e., in solving the CSP. This is particularly relevant for multi-

target missions, and it is again because of the uncertainties of the preliminary design

phases. However, the constraint satisfaction problem, alongside the optimization one as
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discussed in section 1.2, is amplified due to the mixed-integer nature of such missions. In

fact, one should consider:

• Given the sequence of targets, to perform a sensitivity analysis on the continuous-

varying parameters (similarly to the Earth-Mars case of section 1.2).

• Not knowing the sequence of targets, to retain as many sequence options as possible

(i.e., acting on the integer domain) to allow successive design phases a correct trade

off.

The relevance of having multiple sequence options could be explained with the following

example. Consider the analysis for CASTAway mission [9, 10], on which the author col-

laborated with a large consortium of scientists around Europe, by supporting the mission

analysis part (see section 1.5.5). The aim of CASTAway is to pass-by asteroids with the

aim of maximizing the scientific return of a thorough exploration of the MAB. One should

notice that such an objective is rather difficult to define, and no clear measurable objective

function can be formulated (see also Chapter 2 for more details on typical formulation of

objective functions). This is because it is generally complex to set up a cost function that

considers crucial (measurable) parameters (like the ∆v or the mission duration) with sci-

entific relevance of the targets, alongside observability conditions (e.g., the camera field

of view). Therefore, the approach was to identify the largest set possible of different as-

teroids sequences that fulfill some constraints and that minimize some objectives (i.e., the

overall ∆v consumption). This is precisely a constraint satisfaction problem.

To conclude, the study of multi-target missions remains partially unexplored and thorough

analysis is still required. Such missions would not only have a positive economic impact

but would also add remarkable value from a more general space-exploration and scientific

perspectives.
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1.4 Research Purpose

1.4.1 Aim

As identified in the present Chapter, as well as in Chapter 2, there is a need for the initial

design of multi-target missions from the two different, though related, formulations of a

typical mission analysis problem, i.e., the global optimization problem and the constraint

satisfaction problem, in an answer to the uncertainties arising during the preliminary mis-

sion design phases.

To do so, this thesis tackles typical interplanetary trajectory design problems, namely tra-

jectories with multiple gravity assists (Chapter 5) and visiting multiple asteroids (Chapter

6). However, it should be noted that approaches developed in this work are extendable to

any other multi-target mission (not necessarily related to interplanetary travels).

As such, the aim of the present thesis can be summarized as follows:

To establish an efficient and robust pipeline to tackle both the global optimization prob-

lem and the constraint satisfaction problem for space missions that aim to visit multiple

targets.

1.4.2 Objectives

To fulfil the declared aim, the following objectives are identified:

i. To review the current trends for space mission analysis in the context of multi-target

trajectory design, and relate such context to optimization and constraint satisfaction

fields.

ii. To assess the feasibility of different model types on an overall multi-fidelity design

of multi-target trajectories.

iii. To propose efficient strategies for the global exploration of the search space for

multi-target missions.
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iv. To tackle the constraint satisfaction problem for multi-target missions.

v. To demonstrate the efficiency and robustness of such approaches with relevant and

practical test cases.

Section 1.5.1 contextualizes the defined objectives within the present thesis and relates to

the proposed novelties and outcomes.

1.5 Research Contribution and Thesis Structure

The research contained in the present work has been distributed in the form of different

conference papers, presentations, and journal publications. Moreover, relevant toolboxes

(encoded in MATLAB) have been developed. One should notice that all the work that is

presented in this thesis was carried out and developed entirely by the main author, while

the supervisors contributed to the work with their priceless guidance and advice.

The following sub-sections describe the thesis structure, alongside the main outcomes and

novelties produced with the present research (section 1.5.1), alongside the main toolboxes

developed to carry on the research (section 1.5.2), as well as the relevant conference

papers, presentations, journal articles (sections 1.5.3 and 1.5.4) and technical reports for

several mission proposals in collaboration with large consortium of scientists (section

1.5.5). The author also helped in the supervision of several theses in the context of the

Space and Astronautical Engineering M.Sc. at Cranfield University (section 1.5.6).

1.5.1 Outcomes, Novelties and Structure of the Thesis

The literature review discussed in Chapter 2 shows clear research interests in the defini-

tion of a proper framework for tackling multi-target mission designs, that is robust and

efficient within the context of interplanetary trajectories. In fact, the present thesis mainly

deals with the mission analysis of multi-target trajectories that aim to visit either multi-

ple planets, on overall multiple-gravity assist (MGA) transfers, or multiple asteroids, or a
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combination thereof.

One has thus identified the main original contributions to literature:

• The global optimization problem both from the single-objectives and the multi-

objective point of view have been tackled with an efficient and robust procedure

based on exploitation of graph theory and dynamic programming principles (Chap-

ter 5).

• A CSP-like approach for missions that visit multiple asteroids is tackled alongside

the global optimization problem by extending the dynamic programming principles

exploited for previous points. The paradigm of dynamic programming as described

in Appendix B is modified allowing the selection of multiple paths at each decision

step to provide large set of sequences that fulfil mission-specific constraints (Chap-

ter 6). In this way, more and diverse solutions are retained in the final solutions set

compared to standard approaches (like BS and standard dynamic programming).

Table 1.4 describes the thesis structure and its relationship with the objectives fulfilled,

and the identified outcomes and novelties.
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Table 1.4: Breakdown of the present thesis with respect to chapters, objectives fulfilled and outcomes/novelties.

Chapter Objectives Fulfilled Description Outcomes and Novelties

2: Trajectory Design
Approaches for

Multi-Target Missions
i

Understand the existing literature
and identify the gaps. The pipeline

for tackling multi-target
interplanetary missions is

presented.

The literature gaps are identified. A taxonomy
on mission analysis problems is also presented.

3: Modelling
Interplanetary MGA

Trajectories
ii

Set the mathematical model used in
the thesis.

Extend the theory on existing mathematical
models for MGA trajectories and apply to

complex test cases.

4: MGA Sequences via
Tisserand Graph

ii, iii
Describe how to exploit a

Tisserand graph for designing
MGA trajectories.

The relationship between different mathematical
models is assessed (from circular-coplanar to
inclined-eccentric planetary orbits). Tisserand

graphs are exploited for constructing
high-inclination orbits.

5: Multi-Objective
MGA Design via

Dynamic Programming
ii, iii, v

Graph theory is exploited to
efficiently explore the search space
in the context of MGA trajectory

design.

Concepts of dynamic programming are
extended and applied to the single-objective and

multi-objective optimization of MGA
trajectories. The relationship between different
mathematical models is assessed. The design of

highly inclined trajectories is also discussed.

6: Modified Dynamic
Programming for MAB

Exploration
ii, iii, iv, v

The problem of visiting multiple
asteroids while using MGA with

planets is tackled.

Concepts of dynamic programming are
extended and applied to the constraint

satisfaction problem for asteroids exploration.

7: Conclusions −−
Summary of the work is presented,

alongside final remarks, current
limitations, and future work.

−−
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1.5.2 Toolboxes and Applications

Alongside the novel contribution to the existing literature, an important outcome of the

present research is the production of codes and toolboxes that could be ideal for the design

of interplanetary multi-target missions (both MGA and exploration of asteroid tours).

These are deliverable for one of the sponsors of the present research project, namely

Airbus Defence and Space 3.

The functioning of such toolboxes alongside practical examples are discussed in detail

in Appendix C. The toolboxes can be found at [74]. This section provides an overview

of the main blocks that are developed within the rest of the present work. Table 1.5

presents the main blocks of the developed codes, also contextualizing them within the

present thesis, while Figure 1.5 shows the relations between such blocks, also providing

a practical description.

Table 1.5: Breakdown of the present thesis with respect to chapters, objectives fulfilled
and outcomes/novelties.

Toolbox Definition Chapter

AUTOMATE
AUTOmatic Multiple-gravity Assist with Tisserand

Exploration
4

ASTRA Automatic Swing-by TRAjectories 5
RESTOUR RESonances TOUR 4, 5
DYNAMIS DYNamic programming for Asteroid MISsions 6

As it can be seen from Figure 1.5, the toolboxes follow the same logic of multi-fidelity

paradigm that is usually employed for designing multi-target missions. For example, one

could consider CASTAway [9, 10], Dolphin [75] or Icarus [76] mission design problems.

The author provided actual support (see also section 1.5.5) for Phase 0 proposals’ prepara-

tion of such missions in the context of ESA’s M7 and F2 [77] mission call. In particular:

CASTAway focuses on the exploration of the MAB region with the aim of passing-by

10 asteroids; Dolphin aims at maximising the heliocentric inclination to analyse the inter-

planetary and interstellar dust particles; Icarus goal is to rendezvous with a low-perihelion

3This work was supported by Airbus Defence and Space through the Cranfield University Industrial
Partnership Framework (MITnTargets: Mixed-Integer Trajectory Design for Large Number of Targets)
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asteroids to observe the disruption mechanisms when passing-by the Sun. Each tool from

Table 1.5 has been used to support the mission analysis and their relevance is highlighted

with the following discussion.

Figure 1.5: Summary of developed toolboxes with respect to input/output relations and
multi-fidelity framework.

The preliminary mission analysis usually starts with the definition of the space mission in

terms of objectives and constraints to be fulfilled. At a first level of fidelity, AUTOMATE

is used to quickly assess the feasibility of different planetary sequences of reaching the

desired orbital region, without explicitly solving the phasing problem, but rather providing

energetic viability. In the case of CASTAway, Dolphin, and Icarus these are the MAB

region, high-inclination orbits, and low-perihelion orbits, respectively.

The core of the software is ASTRA, that takes the planetary sequences (and the encounter

conditions with the planets) from AUTOMATE and tries to find suitable trajectories in

terms of planetary phasing and approximate ∆v by exploiting dynamic programming prin-

ciples (both single-objective and multi-objective optimization could be performed).

Using the trajectories found by ASTRA, DYNAMIS is then used to check the accessibility

of asteroid encounters, by solving both the global optimization and the constraint satis-
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faction problems (if requested). This is particularly useful for CASTAway-like missions,

on which multiple asteroid fly-bys are to be designed.

Also taking input from ASTRA, RESTOUR is useful to solve the combinatorial problem

associated with MGA resonant tours (Chapter 4 and 5). This toolbox was developed and

used by the author when working on the mission analysis for Dolphin proposal, aiming

at maximizing the heliocentric inclination to observe interstellar and interplanetary dust

particles. Finally, trajectories coming from ASTRA, DYNAMIS and RESTOUR can be

refined in more detailed models taking into account, for example, of the presence of mid-

course manoeuvres, i.e., the so-called Deep Space Manoeuvres (DSMs), or low-thrust

arcs.

The final output is a set of trajectories that fulfill the declared objectives and constraints,

and related crucial information, like the launch window, propellant consumption, transfer

times, magnitude of thrust and so on.

1.5.3 Conference Papers and Presentations

I. AFSA, H., Bellome, A., Sánchez, J.P., Kemble, S., ‘Automatic Multi-Gravity Assist

Trajectory Design with Modified Tisserand Graphs Exploration’, conference pa-

per and interactive presentation at 73rd International Astronautical Congress, Paris,

France, (September 2022)

II. Sánchez, J.P., Bellome, A., Del Ser, J., Carrillo, M., ‘Deterministic and stochastic

exploration of long asteroid fly-by sequences exploiting tree-graph and optimal sub-

structure properties’, conference paper and oral presentation at 73rd International

Astronautical Congress, Paris, France, (September 2022)

III. Bellome, A., Sánchez, J.P., Rico Alvarez, J.I., AFSA, H., Kemble, S., Felicetti, L.,

‘An Automatic Process for Sample Return Missions Based on Dynamic Program-

ming Optimization’, conference paper and oral presentation at AIAA SciTech 2022

Forum, San Diego, California, United States of America, (January 2022)
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IV. Bellome, A., Carrillo, M., Sánchez, J.P., Del Ser, J., Kemble, S., Felicetti, L., ‘Ef-

ficiency of Tree-Search like Heuristics to Solve Complex Mixed-Integer Program-

ming Problems Applied to the Design of Optimal Space Trajectories’, conference

paper and oral presentation at 72nd International Astronautical Congress, Dubai,

United Arab Emirates, (October 2021)

V. Bellome, A., Sánchez, J.P., Kemble, S., Felicetti, L., ‘A Multi-Fidelity Optimization

Process for Complex Multiple Gravity Assist Trajectory Design’, conference paper

and oral presentation at 8th International Conference on Astrodynamics Tools and

Techniques, Virtual Event, (June 2021)

VI. Bellome, A., Nakhaee-Zadeh, A., Zaragoza Prous, G., Leng, L., Coyle, M., D’Souza,

S., Mummigatti, S., Serfontein, Z., ‘Applications of Nanosatellites for Lunar Mis-

sions’, conference paper and oral presentation at IEEE Aerospace Conference (Ae-

roConf2021), Big Sky, Montana, United States of America, (March 2021)

VII. Bellome, A., Sánchez, J.P., Felicetti, L., Kemble, S., ‘Modified Tisserand Map Ex-

ploration for Preliminary Multiple Gravity-Assist Trajectory Design’, conference

paper and oral presentation at 71st International Astronautical Congress, The Cy-

berspace Edition, Virtual Event, (October 2020)

1.5.4 Journal Publications

I. Bellome, A., Sánchez, J.P., Felicetti, L., Kemble, S., ’Design of Asteroids Tours

with Modified Dynamic Programming’, Acta Astronautica (manuscript in prepara-

tion)

II. Bellome, A., Sánchez, J.P., Felicetti, L., Kemble, S., ‘Multi-Objective Design of

Gravity Assist Trajectories via Graph Transcription and Dynamic Programming’,

Journal of Spacecraft and Rockets, 1-19, 2023, https://doi.org/10.2514/1.

A35472
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III. Armellin, R., Beauregard, L., Bellome, A., Bernardini, N., Fossà, A., Fu, X., Pa-

rigini, C., Pirovano, L., Wijayatunga, M., ‘Team theAntipodes: Solution Method-

ology for GTOC11’, Acta Astronautica 201, 142-151, 2022, https://doi.org/

10.1016/j.actaastro.2022.08.034

IV. Lehtinen, T., Granvik, M., Bellome, A., Sánchez, J.P., ‘Icarus: In-Situ Monitoring

of the Surface Degradation on a Near-Sun Asteroid’, Acta Astronautica 186, 98-

108, 2021, https://doi.org/10.1016/j.actaastro.2021.05.028

1.5.5 Technical Reports

I. Howett, C., Nowicki, K., Calcutt, S., Sánchez, J.P., Bellome, A., Bewick, C., Rühl,

T., Bowles, N., Antti, N., Kohout, T., Pommerol, A., Thomas, N., Jørgensen, J. L.,

Preston, L., Snodgrass, C., Rivkin, A., Jones, G., King, A., ‘CASTAway - Mapping

the Evolution of our Solar System: A Candidate for the ESA M7 Mission’

II. Sterken, V., Agarwal, J., Baalmann, L. R., Bellome, A., Briois, C., Della Corte,

V., Dialynas, K., Guidi, G., Horanyi, M., Huybrighs, H., Herbst, K., Hunziker,

S., Krüger, H., Lasue, J., Li, A., May, B., Richardson, J., Rowan-Robinson, M.,

Sánchez, J.P., Schönbächler, M., Srama, R., Trieloff, M., ‘DOLPHIN - The Dust

Observatory to study the LIC, interPlanetary dust, and Heliospheric Interactions in

our Neighborhood: An F-class mission proposal to ESA’

III. Barabash, S., Bolin, B., Britt, D., Futaana, Y., Hagermann, A., Holt, C., Karatekin,

Ö., Kero, J., Laufer, R., Mann, I., Michel, P., Molaro, J., Muinonen, K., Norberg,

O., Palomba, E., Pokorny, P., Richardson, D., Shimoyama, M., Srama, R., Szalay, J.

R., Trieloff, M., Virkki, A., Walsh, K., Wiegert, P., Ye, Q., Bellome, A., Bottke, W.

F., Brown, P. G., Granvik, M., Herdrich, G., Jedicke, R., Kastinen, D., Knight, M.,
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Chapter 2

Trajectory Design Approaches for

Multi-Target Missions

This Chapter provides an overview of background theory and methods for mission anal-

ysis in the context of multi-target missions. Section 2.1 of this Chapter first presents the

main building blocks that are needed for any mission analysis problem. Two main re-

search areas are then analyzed that are relevant for the next Chapters: multiple-gravity

assist (MGA) trajectory design, which is discussed in section 2.2, and multiple asteroids

tours, assessed in section 2.3.

The purpose of the present Chapter is thus: (1) to contextualize this thesis within the

current literature, (2) to identify existing methodologies and trends for designing multi-

target missions, (3) to identify the main research gaps that motivate the present work and

(4) to introduce the novelties presented to fill these gaps.

2.1 Ingredients for Mission Analysis

In this section, the main building blocks are described that allow to tackle any mission

analysis problem, expanding from Chapter 1 and highlighting those that are significant
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for this thesis. The ingredients follow the same logic presented in [14, 23, 24, 36] and

build on these, especially in the discussion provided in section 2.1.4, that presents typical

ways of solving mixed-integer trajectory design problems.

2.1.1 Mathematical Models

The first ingredient to tackle any mission analysis problem consists in defining the math-

ematical models. These correspond to a set of differential equations that describe the

motion of the spacecraft and all the events that affect such motion. The equations of

spacecraft motion can generally be written as [21]:

˙⃗x(t) = f (⃗x(t), u⃗(t), t) (2.1)

where t is the elapsed time since epoch, e.g., the launch date, x⃗ is is the time history of

the spacecraft state vector, ˙⃗x is its first-time derivative, and u⃗ is the time history of the

control vector. The state x⃗ typically encodes the position and velocity vectors [⃗r, v⃗] of the

spacecraft alongside its mass m(t). The control u⃗ usually defines the action of a thrust

system, characterized by the exhaust velocity of the propellant mass ve and by a thrust

vector T⃗ (t).

The choice of a mathematical model depends upon the specific mission application, and

usually it is a compromise between computational effort and solution quality. Neverthe-

less, a mathematical model that is relevant for spacecraft trajectory design usually comes

with the definition of the following steps:

• List of celestial objects that affect the spacecraft motion

• Environmental effects such as solar radiation pressure or atmospheric drag

• Representation of the state variables

• Thrust model employed
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A very general representation of the system from Eq. 2.1 could be:



˙⃗r = v⃗

˙⃗v = ¨⃗r = a⃗g + a⃗p +
T⃗ (t)

m

ṁ =− T⃗ (t)
ve

(2.2)

Eq. 2.2 describes the spacecraft motion under the effect of different actions:

• Gravitational acceleration a⃗g due to the presence of n celestial bodies (e.g., Sun,

planets, moons, asteroids) with masses mi and positions r⃗i∀i = 1, ...,n, in the form

of a⃗g =−G∑
n
i=1

mi(⃗r−⃗ri)
|⃗r−⃗ri|3

.

• Perturbative accelerations a⃗p due to, for example, irregular gravity fields of the

close-by celestial objects, radiation pressures, electro-magnetic actions.

• Acceleration T⃗ (t)
m due to the propulsive system mounted on board.

Typically, at preliminary stages of mission analysis, it suffices to consider approximate

models for the dynamics. A very useful model is the well-known restricted two-body

problem, that considers just two dimensionless masses, one being much more massive

than the other, that are affected by their mutual gravitational attraction [15]. More detailed

models take into consideration orbital perturbations such as the non-sphericity of the grav-

itational field, presence of other bodies, radiation pressure, or even magnetic fields. These

can be relevant to describe specific mission applications, for example missions around the

Earth [78], or other irregular bodies, such as moons [79] or asteroids [80], or interplane-

tary transfers [81].

A very useful extension of the two-body approximation is represented by the circular-

restricted three-body problem [16], on which two main attracting bodies, having circular

co-planar paths, are assumed to affect the spacecraft motion at the same time (e.g., the

Earth and the Moon). This has been extensively used to design missions that take ad-

vantage of the presence of the secondary body to achieve the mission objectives, such
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as [82–86]. Nevertheless, as as anticipated in Chapter 1, a complete study, that goes be-

yond the preliminary mission analysis, considers relatively soon in the design phases a

full-force gravitational model with n bodies.

Within the definition of the mathematical models, one should define the spacecraft state

representation. It should be noted that the system presented in Eq. 2.2 assumes the space-

craft state representation x⃗(t) as composed by the position and velocity vectors and mass

of the spacecraft varying over time. Such vectors (with three components each) are gen-

erally referred to an inertial reference frame that depends upon the mission application.

For example, for interplanetary missions it is useful to refer the spacecraft state to a

frame centered in the Solar System barycentre and axes pointing towards ‘fixed stars’,

or, for Earth-centered missions, the so-called Earth Centered Inertial (ECI) frame could

be used [16]. Besides inertial coordinates, many other representations of the state vec-

tor can be found in literature [87], such as classical or equinoctial orbit elements, fast

or slow variables or canonical variables. The reason for employing one representation

with respect to another one might vary from the specific mission application, level of de-

tails required for the study, physical meaning, or singularities. For example, some models

might benefit from state and control representation that consider classical orbital elements

(COEs) that are derived from the position and velocity vectors. COEs are a list of param-

eters (a,e, i,Ω,ω,θ) that describe the spacecraft orbit through the semi-major axis (a),

eccentricity (e), inclination (i), right ascension of the ascending node (Ω), argument of

periapsis (ω) and the position of the spacecraft in such orbit through the true anomaly

(θ ). The main advantage of modelling the state with COEs is that a physical interpre-

tation of the time-variation of dimension, size and orientation of the spacecraft orbit is

directly available, and consequently the effect of the thrust (expressed in terms of radial,

tangential, and normal components) on the COEs is apparent. The differential equations

that describe the time evolution of the COEs are the so-called Gauss Variational Equations

(GVEs) [16]. The main limitation of GVEs is that it is affected by singularities at zero

inclination, at which the right ascension of the ascending node is not defined, and at zero
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eccentricity, at which the argument of perigee and the true anomaly are indistinguishable.

Therefore, other elements might be useful, such as the so-called modified equinoctial or-

bital elements, that do not suffer from singularities and are robust to uncertainties, but

their physical meaning is not immediately evident. An example of the time variation of

the modified equinoctial elements can be found in [34].

Finally, mathematical models should describe the type of thrust models that is employed

for the mission analysis (if any). The thrust is generally applied by means of a propulsive

system that ejects a propellant from the spacecraft causing an equal and opposite force

to the spacecraft, and thus an acceleration. The dynamical system as from Eq. 2.1 can

assume different forms if the thrust is applied as:

• Impulsive manoeuvres, or

• Continuous manoeuvres

A manoeuvre can be seen as a modification of the spacecraft state vector by means of

an event that occurs along the trajectory (e.g., switching on the propulsion system). In

the case of impulsive manoeuvres, one assumes that the spacecraft modifies its velocity

instantaneously, through a velocity increment ∆⃗v, leaving the position unchanged. This

model is usually sufficiently accurate for many practical mission options that employ en-

gines with relatively low ve and high-thrust, and it has been studied extensively for many

different space trajectory design problems, such as [88–91]. The added simplification im-

plied by the impulsive model is that the controls are zero u⃗(t) = 0. Thus, the spacecraft is

only subject to natural external forces except for the time instants at which the manoeuvre

is performed to change the spacecraft velocity. On the other hand, continuous manoeu-

vres are usually suitable for missions that require high ve and low thrust, thus making the

transfer time much larger than the impulsive case. In this case, the control input is not

zero u⃗(t) ̸= 0 and therefore the equations of motion as from Eq. 2.2 should consider the

thrust term as well.

For the purposes of the present thesis, the mathematical models employed are based on

33



2.1. INGREDIENTS FOR MISSION ANALYSIS

restricted two-body dynamics, inertial coordinates, i.e., position and velocity, for defining

the spacecraft state and impulsive thrust approximation.

2.1.2 Objectives and Constraints

The second building block of mission analysis is the definition of mission objectives and

constraints. These help identifying mission performances and requirements that define the

feasibility and success of the mission itself. Both objectives and constraints are provided

in the form of some functions of the state, control, and time (⃗x(t), u⃗(t), t) and usually

relate to (piecewise) continuous-varying quantifiable properties of the mission (like the

propellant consumption, transfer time, state errors, and so on).

One should define the following points to be considered in the analysis when addressing

the second building block of a general mission analysis problem:

• The type of objective/constraints functions. These are usually mission-related func-

tions that help defining the minimum functional performances that the trajectory

must fulfil for the mission to be successful.

• The number of objective functions. The goodness of a mission analysis usually

depends upon different criteria, that are typically conflicting one to the other. The

problem should be set up in a way that at least the minimum set of performances is

considered when designing a mission (typically, this relates to the control effort, or

the time required to accomplish the mission [24]).

• The type of problem to be assessed. Generally, mission analysis problems can

be formulated as trajectory optimization problems [14, 23, 24, 35, 36], on which

the mission designer wants to find one or more trajectories that minimize or max-

imise specific objective function(s). However, one might want to identify possibly

multiple options that satisfy given mission-related constraints, thus addressing the

so-called constraint satisfaction problem (CSP) [20].
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A general representation of objective functions is given in the Bolza form [92]:

J = Φ(⃗x(t0), x⃗(t f ), t0, t f )+
∫ t f

t0
L(⃗x(t), u⃗(t), t)dt (2.3)

where t0 and t f are the initial and final time, respectively. Eq. 2.3 highlights the two types

of functions that can be considered when analysing space missions. The first function

Φ(⃗x(t0), x⃗(t f ), t0, t f ) is the so-called Mayer term that identifies the objective function ei-

ther at the initial state or final state, or both, thus it does not depend upon the history of the

trajectory itself. The second function L(⃗x(t), u⃗(t), t) is the so-called Lagrange term that

traces objectives as function of the states and controls throughout their time history.

Examples of objective functions that are in the form of the only Mayer term are the total

transfer time [93, 94]:

J = t f − t0 (2.4)

the total velocity increment expressed as the sum of the number nman of ∆⃗v needed along

the transfer [17, 95–98] 1:

J =
nman

∑
i=1
|∆⃗vi| (2.5)

or even initial/final conditions [99, 100]. The objective function in Eq. 2.5 is very useful

in mission analysis as it is related to the propellant consumption through the well-known

rocket equation [16], and thus it has an impact on the mass of the spacecraft.

On the other hand, Lagrange-type functions are integrals of states and controls. Among

the most popular functions one has for example the propellant consumption within the

so-called fuel-optimal problem in the context of low-thrust trajectory optimization [101–

1Note that each ∆⃗vi is a function of the state variables
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103]:

J =
∫ t f

t0
−|T⃗ (t)|

ve
dt (2.6)

Other kinds of objectives can be considered that are specific to the mission application,

like spacecraft constellations design [104] (Meyer type), MGA trajectories [95] (Meyer

type) or Earth-observation missions [105] (Lagrange type). A typical example of Meyer-

type cost function that is used in the present work for MGA trajectories (similarly to Eq.

2.5) is the following:

J = v∞,dep +
nman

∑
i=1
|∆⃗vi|+ v∞,arr (2.7)

which represents the overall ∆v consumption. Eq. 2.7 also accounts for the excess ve-

locities at launch and arrival planets (v∞,dep and v∞,arr, respectively) and intermediate

manoeuvres (|∆⃗vi|).

Regarding the type of problem to be solved, mission analysis typically addresses it as a

trajectory optimization problem, in the form of:

Minimize: J = Φ(⃗x(t0), x⃗(t f ), t0, t f )+
∫ t f

t0
L(⃗x(t), u⃗(t), t)dt (objective function)

Subject to: ˙⃗x(t) = f (⃗x(t), u⃗(t), t) (dynamics equation)

x⃗(t0) = x⃗0 (initial conditions)

gi(⃗x(t), u⃗(t), t) = 0,∀i = 1, ...,meq (equality constraints)

gi(⃗x(t), u⃗(t), t)≥ 0,∀i = meq +1, ...,min (inequality constraints)
(2.8)

where the functions gi(⃗x(t), u⃗(t), t) represent the constraints of the problem at hand (e.g.,

overall mission duration or ∆v), and and are the cardinalities for equality and inequality

36



CHAPTER 2. TRAJECTORY DESIGN APPROACHES FOR MULTI-TARGET
MISSIONS

constraints respectively. Such functions gi(⃗x(t), u⃗(t), t) are generally of the following two

types [25, 106]:

• Terminal or event-type constraints. These are functions evaluated either at a given

event time te:

g(⃗x(te), u⃗(te), te)≥ 0 (2.9)

Or functions evaluated over the trajectory, similarly to the representation in Eq. 2.3:

g1(⃗x(t f ), u⃗(t f ), t f )+
∫ t f

t0
g2(⃗x(t), u⃗(t), t)dt (2.10)

• Path constraints, specifying the states and controls over regions of the trajectory. A

typical path constraint as from Eq. 2.8 is ˙⃗x(t) = f (⃗x(t), u⃗(t), t), that expresses the

fact that the spacecraft needs to follow the dynamics equations.

Regarding the number of objective functions, the optimization problem can be either

single-objective or multi-objective.

• In single-objective optimization, the goal is to find a set (⃗x(t)∗, u⃗(t)∗, t∗) that satis-

fies the constraints, and it is such that:

J(⃗x(t)∗, u⃗(t)∗, t∗)≤ J(⃗x(t), u⃗(t), t) (2.11)

for any choice of (⃗x(t), u⃗(t), t).

• In multi-objective optimization [107], the aim is minimize/maximize a vector func-

tion F (⃗x(t), u⃗(t), t)) = [J1, ...,Jnob j ] with nob j being the number of objective func-

tions all in the form of Eq. 2.3, usually representing conflicting criteria (e.g., the

mission lifetime from Eq. 2.4 and the overall ∆v consumption from Eq. 2.5). The

solution to the multi-objective optimization problem is the definition of an (nob j−

1)-dimensional hyper-surface [108] that is the Pareto-optimal set, also known as

Pareto front, Pareto frontier or non-dominated front [109]. A solution (⃗x(t)∗, u⃗(t)∗, t∗)
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belongs to the Pareto front if there is no other solution that improves all the objec-

tives simultaneously, i.e., it is such that:

Ji(⃗x(t)∗, u⃗(t)∗, t∗)≤ Ji(⃗x(t), u⃗(t), t) (2.12)

for any choice of (⃗x(t), u⃗(t), t). The multi-objective formulation of a mission analy-

sis problem is very helpful in identifying trade-off between mission critical parame-

ters. An example of Pareto front is shown in Figure 2.1 for a multiple-gravity assist

mission from Earth to Jupiter and passing-by Venus, Earth, Mars, and Earth, like

the JUICE mission [6]. Two objectives are minimized at the same time, namely the

total ∆v, representing the manoeuvres required during the mission (also accounting

for the spacecraft-planet relative velocities at the Earth launch and Jupiter arrival)

and the overall transfer time. A Pareto front like the one in Figure 2.1 is very in-

formative for the mission analysis, showing that trajectory options from Earth to

Jupiter exist for relatively short transfer times (≈ 4− 5 years) but at substantially

higher total ∆v, with respect to the minimum ∆v= 8.948 km/s requiring 6.450 years.

Figure 2.1: Pareto front of ∆v and time of flight for a multiple gravity assist mission like
JUICE.

Beyond the challenge of finding optimal solutions to mission analysis problems, one is
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also interested in understanding the flexibility that a given mission has with respect to

different parameters, like the launch date, encounter conditions with respect to celestial

objects, scientific interest in visiting different celestial targets, maximum ∆v allowable

for a given manoeuvre, and so on. Therefore, a realistic mission study may be more akin

to a Constraint Satisfaction Problem (CSP) in conjunction with the global optimization

problem. In the CSP formulation, one wants to find solutions that are compliant with

given mission-driven constraints.

A general definition of the CSP is provided in the following [20]. In the CSP one needs

to specify a set of variables, e.g., (⃗x(t), u⃗(t), t) and for each variable a finite set of possible

values, namely its domain, and a set of constraints, similarly to any optimization problem.

A solution to the CSP is called feasible if an assignment of a value from its domain to

every value exists such that all the constraints are satisfied. Therefore, one has:

For a variables set: (⃗x(t), u⃗(t), t) (states, controls and time)

Subject to: ˙⃗x(t) = f (⃗x(t), u⃗(t), t) (dynamics equation)

x⃗(t0) = x⃗0 (initial conditions)

gi(⃗x(t), u⃗(t), t) = 0,∀i = 1, ...,meq (equality constraints)

gi(⃗x(t), u⃗(t), t)≥ 0,∀i = meq +1, ...,min (inequality constraints)

Find all, or as many as possible, assignments of a value for each variable such that

all the constraints are satisfied.
(2.13)

It should be noted that in this case there is no need for an objective function to be explic-

itly specified. In other words, no minimization/maximization is (necessarily) performed.

However, the problem could be easily set up in a way that a solution is found such that

some objectives are minimum/maximum (see also Chapter 6).

Regarding the set of assignments to the variables that constitutes the solution of the CSP,
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one might be interested surely in finding at least one assignment (such that the problem is

satisfiable), but one could set up the problem to obtain:

• Just one solution, with no specific preference regarding objective functions.

• All the solutions. This is analogous to an exhaustive search presented in Chapter

1 for the Earth-Mars mission, on which pork-chop plots in Figures 1.2 and 1.3

illustrate all the possible trajectories that satisfy mission-specific constraints.

• An optimal solution with respect to some objective functions (i.e., same as solving

a constrained optimization problem like in Eq. 2.8) alongside multiple sub-optimal

solutions such that science objectives can be adequately studied and traded-off, as

well as the design flexibility can be analyzed (see also Chapter 6).

Following the example of the Earth-Mars mission from Chapter 1, one is clearly interested

in finding the minimum spacecraft performances in terms of launch mass for a launch date

between two dates. That would be to solve an optimization problem. On the other hand, a

constraint satisfaction problem would be to identify the launch window to deliver a given

dry mass spacecraft to Mars within the same launch window. As an example, a multi-start

(MS) search [110] could be seen as a way of addressing a CSP for mission analysis while

looking for the optimal solution. This in fact uses several local minimizations in differ-

ent points of the search space. A MS search generally employs two steps: (1) the first

is determining the starting points for the minimization, (2) the second is the minimiza-

tion themselves. One could for example discretise the departing date of the Earth-Mars

mission and set up an optimization problem to look for the minimum spacecraft mass

available for each departing date. Other examples involving continuous-varying variables

can be the assessment of the launch declination range to inject a certain mass into space-

craft for a range of dates or the thrust profile that must be below a given maximum thrust

threshold. From this example it is clear that the CSP formulation is similar to a feasibility

problem that is not an alternative to trajectory optimization, but it rather completes the

mission analysis with additional information and trade-off.
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In the context of multi-target space missions, a CSP is relevant not only for the continuous-

varying parameters, but also regarding the integer part of the problem, i.e., finding feasible

sequences of celestial objects to be visited. This is because in preliminary mission design

one might be interested in providing sequences of different targets, such that a correct

trade off analysis between different sequences considers, for example, the scientific in-

terest of a specific sequence of objects or the encounter conditions with them. This is

because addressing the specific science interest of a given sequence of targets is usually

a difficult task, and any attempt to define a science function to be maximized would be

rather arbitrary and always mission dependent. This is the case of the CASTAway mission

proposal [9, 111] and of missions that visit multiple celestial objects in general and are

discussed in more detail in Chapter 6.

For the purposes of the present work, the aim is to solve the optimization problem, both

in its single- and multi-objective formulation, and the constraint satisfaction problem on

the integer component of the mixed-integer design of multi-target mission design.

2.1.3 Design variables

The third building block when designing space missions is to specify the design variables

to be employed, that define the specific spacecraft transfer. This step is crucial as it

does not solve the problem itself, but rather sets the parameters to solve it. In literature,

this building block is also referred to as approaches [14, 25] in the context of spacecraft

trajectory optimization.

A first distinction between different approaches is:

• Analytical approaches. These are closed-form solutions to find spacecraft trajecto-

ries, that usually work for special cases, not always representing appropriately real-

world mission scenarios. An example of analytical approach is the well-known

Hohmann transfer [15, 16] for velocity increment minimization between circular-

coplanar orbits. Nevertheless, using analytical approaches for orbital transfers is
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still informative and very useful for a fast preliminary estimation of mission costs

and transfer times [112–114].

• Numerical approaches. These become valuable over analytical ones in many prac-

tical situations, when the model complexity increases, and closed-form solutions

to dynamics equations are no longer available. Among numerical approaches,

three methods are identified that are indirect, direct [115], and dynamic program-

ming [116] methods. Main techniques are shooting ones (i.e., single-shooting or

multiple-shooting) or collocation.

Indirect methods are based upon calculus of variation that define necessary conditions

for an optimal trajectory, i.e. the Euler-Lagrange equations. The dynamics equations are

‘adjoined’ to the Lagrange term L(⃗x(t), u⃗(t), t) from Eq. 2.3 by means of the Hamilto-

nian:

H(p⃗(t), x⃗(t), u⃗(t), t) = p⃗(t) · ˙⃗x(t)+L(⃗x(t), u⃗(t), t) (2.14)

where the components of vector p⃗(t) are the co-states (or adjoint variables, or Lagrange

multipliers) with number equal to the dimension of the state x⃗(t). Therefore, the necessary

conditions for optimality become:

˙⃗p(t) =−∂H
∂ x⃗

(2.15)

with boundary conditions:

p⃗(t) =
(

∂Φ

∂ x⃗

)
t f

(2.16)

If the final time is to be optimized, the transversality condition should be specified:
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(
∂Φ

∂ t
+ v⃗ · ∂Ψ

∂ t
+

(
∂Φ

∂ x⃗
+ v⃗ · ∂Ψ

∂ x⃗

)
· ˙⃗x+L

)
t f

= 0 (2.17)

where Ψ(⃗x(t f ), t f ) = 0 is a user-defined terminal boundary function. The system in Eq.

2.15 to 2.17 is a two-point boundary-value problem. The optimal control is then chosen

according to the Pontryagin minimum principle (PMP) [117] stating that the Hamiltonian

should be minimum (or maximum) with respect to each element of the control vector.

The main advantage of using indirect methods is that the optimal control is determined by

analytical differentiation, and local optimality is assured. However, the dimension of the

system increases due to the presence of the co-states dynamics equations and the associ-

ated two-point boundary-value problem is generally difficult to be solved without proper

initial guesses on the states and co-states, due to the high non-linearity of the system.

Moreover, knowledge of variational calculus is required, and the partial derivatives of the

Hamiltonian with respect to the control variables might be non-trivial to derive.

On the other hand, direct methods require a parametrization of the problem through a

vector of unknown variables that are used as optimizable parameters. The problem is thus

converted into a non-linear programming problem [27], on which the objective function is

to be optimized with respect to the specified parameters set subject to the constraints. The

independent variables (e.g., the time) are discretized and states and controls are computed

only at time instants and not in the continuous time domain as for indirect methods. The

dynamics equations are enforced by numerical integration between each time instants of

the discretization. The main advantages of direct methods are that no differentiation is

needed (i.e., no optimal control theory knowledge is required) and constraints are easily

included. Nevertheless, the knowledge of the gradients (if available) could potentially be

used in non-linear programming algorithms (see also later section 2.1.4) to speed up the

optimization process, with respect to, for example, finite differences. The main drawback

is that states and controls are only known at discrete points and not continuously.

The third method considered here is dynamic programming that is based upon the Bell-
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man’s principle of optimality [116, 118]. According to such principle, the problem is

divided into a series of sub-problems that are linked together by a recurrence relation. Al-

though dynamic programming was originally developed for discrete problems (see also

Appendix B and later Chapter 5), an equivalent formulation for continuous-time prob-

lems has been developed in the form of the Hamilton-Jacobi-Bellman theorem [119]. The

main advantage of dynamic programming is that the Bellman’s principle of optimality is

a necessary and sufficient condition for a solution to be optimal [120], the search space

is entirely scanned thus an optimal solution is also a globally optimal solution. However,

the main limitation is associated to the exponential increase in the dimension of the state

space, an issue commonly known as ‘curse of dimensionality’ [121]. Some attempts to

overcome this issue are found in literature [122–124] that make use of the so-called dif-

ferential dynamic programming [125, 126]. In this case, the cost function is replaced by

a linear-quadratic approximation in the vicinity of a reference solution, thus sacrificing

global optimality. The reference solution is usually found on a reduced set of parameters

for the problem at hand (e.g., assuming the thrust vector aligned with spacecraft veloc-

ity [122] on a low-thrust trajectory design) and employing meta-heuristics as black-box

optimizers to solve the reduced problem.

Among the most popular techniques usually involved to solve optimization problems one

has either single- or multiple-shooting techniques or collocation. In single-shooting tech-

niques, a guess is made on the initial states and control values (or co-states). The trajec-

tory is then propagated from t0 to t f and the constraints on the final states are evaluated at

t f . The process should then determine the initial conditions on states and controls (or co-

states) and impose the constraints at the end of the propagation. In multiple-shooting tech-

niques, the interval [t0, t f ] is divided into N segments to reduce the sensitivity to guesses on

the initial conditions. The trajectory is propagated along each interval by guessing initial

states and controls (or co-states), that are determined by the optimization process. Conti-

nuity between different segments is enforced by means of linear constraints (generally it

is a difference between position vectors). The number of constraints is thus significantly
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higher than in single-shooting techniques. Finally, collocation techniques [127] make use

of time grids at which the states and their time derivatives are defined. Quadrature rules or

interpolation are then used to find the values of the states and their derivative at interme-

diate points, which is the main advantage of such techniques. The interpolating function

is forced to satisfy the system equations at the center of each interval (i.e., at the so-called

collocation points). This forms a constraint set that should be satisfied during the opti-

mization procedure. The main drawback is that the number of controls and constraints

depends upon the density of the grid, that can become prohibitive from the computational

effort point of view when accurate trajectory representation is required, although the spar-

sity of the Jacobian matrix can allow large computational speed up.

In the present thesis, a direct approach is used to model interplanetary trajectories. This

assumes that the states and controls are replaced by an appropriate set of variables that

represent spacecraft trajectories that encounter celestial objects and perform deep space

manoeuvres. This model, also referred to as MGA-DSM [128–131], is described in detail

in Chapter 3. One of the contributions of this work is the extension of the MGA-DSM

model to multiple manoeuvres on each planet-to-planet leg, so that complex transfer sce-

narios like missions towards Mercury [132, 133] can be planned with the pipeline pre-

sented through Chapters 4 and 5.

2.1.4 Optimization strategy

The last ingredient consists in selecting an optimization strategy to achieve a solution to

the problem as from section 2.1.2 based on the approach selected in section 2.1.3.

It is important to notice that, as anticipated in Chapter 1, in multi-target mission analysis

one has also integer variables that affect the cost of the mission, namely the orbital way-

points to be visited. In this sense, the objective functions and the constraints become also

functions of integer variables, i.e., J = J(X , x⃗(t), u⃗(t), t), X being the vector of the orbital

points to be visited. This makes the problem more complex since many different trajec-
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tory options exist for a single choice of vector X(as discussed in Chapter 1) that satisfy

the constraints and that minimize some objective function.

Therefore, one might want to distinguish between two areas:

• The first one is about the solution of the trajectory for a given sequence X of target

points in space.

• The second one is about the solution of the full mission analysis problem. This

concerns the selection of X becoming part of the problem itself, and the solution of

a trajectory for the given choice of X .

If the sequence X is known, one has typically two main options for achieving a solution,

that are non-linear programming (NLP) or meta-heuristics.

NLP is a gradient-based method that allows to compute increments in the vector of de-

sign parameters in the direction of the minimum (or maximum) of the objective function.

Therefore, being y a generic vector of design parameters such that the objective function

can be written as:

J = f (y) (2.18)

one has the following update rule from iteration k to k+1:

yk+1 = yk +
n

∑
i=1

αi

(
pi +

n

∑
j=1

α jqi j

)
(2.19)

where pi and qi j are the search directions provided by first- and second-order gradients

information, respectively, of both objective function and constraints (n being the dimen-

sion of the problem), while αi and α j are the steps length. It is not necessary to provide

both first and second-order gradients information. For example, only first-order gradients

available, one could find the steepest ascent (or descent) direction and a hill-climbing
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method [134] to assess the optimality. Many commercial NLP solvers are available,

among which the most popular are the SNOPT [135], IPOPT [136], KNITRO [137] or

WORHP [138]. The main advantages of NLP solvers are their quick convergence (due

to the information provided by gradients) and robustness. However, their main disadvan-

tages are that, as stated, gradients information needs to be provided and initial guesses of

all the parameters set y are needed, which is not always straightforward, making them ‘by

nature’ local trajectory optimization methods.

The other main branch of solutions’ methods is represented by meta-heuristics. The main

difference from the NLP solvers is that the solution update rule as from Eq. 2.19 is not

given deterministically (i.e., based upon gradient information), but rather stochastically.

Typical classifications [28, 139] divide the meta-heuristics in single-solution algorithms,

i.e., that improve a single solution iteratively, or population-based algorithms, i.e., that

improve a population of solutions (also called individuals) at each iteration. Among

single-solution algorithms one finds simulated annealing [140], tabu search [141], iter-

ated local search [142]. Population-based algorithms are also very popular in spacecraft

trajectory optimization field, and among them one finds genetic algorithms [143, 144],

particle swarm optimization [145, 146], differential evolution [147] and ant colony opti-

mization [148]. A general update rule of the solution vector y from iteration k to k+ 1

is:

yi,k+1 = Π(yi,k) (2.20)

with i = 1, ...,n (n being the number of individuals in the population) and Π(yi,k) being

an algorithm-specific probability function of y at iteration k. The main advantage of using

meta-heuristics is that they do not require initial guesses on the solution (the initialization

on yi is usually done via a randomization generator) and no information about gradients

are needed. This makes meta-heuristics global trajectory optimization methods, as the

stochasticity processes from Eq. 2.20 can allow the algorithms to escape local minimum
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funnels. However, meta-heuristics usually depend upon several user-defined parameters,

and there is no guaranty that a specific set up of such parameters (whose selection is

usually made by a trial-and-error tuning process) would converge to a global minimum

consistently, due to, again, their intrinsic stochastic nature. Moreover, including con-

straints in the search is not trivial, and typically penalty methods are required [143, 144]

and usually only a limited number of them can be efficiently handled.

Regarding MINLP/HOCP problems, a general objective function can be written as:

J = f (X ,y) (2.21)

Where both the target points X and the vector y representing set of variables encoding

the trajectory states and controls are part of the design. Two options are usually to be

considered for solution construction of such problems that are integrated approaches and

multi-level approaches [31].

On the one hand, integrated approaches usually define a mixed-integer non-linear pro-

gramming (MINLP) problem [46, 47], also known as hybrid optimal control problem

(HOCP) [48], on which the objective function as in Eq. 2.21 is optimized with respect

to a formulation like Eq. 2.8. The key aspect of integrated approaches is that the choice

of the mathematical models, objectives/constraints, and transfer strategies (sections 2.1.1,

2.1.2 and 2.1.3) is made once for all and the whole problem’s solution is obtained ap-

plying some NLP methods or meta-heuristics, or a combination thereof, as black box.

A typical example is nested-loop optimization [149], on which an outer loop selects the

targets X to be visited, and then an inner loop finds one or more trajectories (i.e., vec-

tor y) that visit the given points in X that meet the mission objectives as from Eq. 2.8.

Typically, evolutionary algorithms are employed both as outer loop optimizers and inner-

loop optimizers [149–152], while NLP methods are sometimes used for the inner loop

optimization [153]. The main advantage of using integrated approaches is that a single
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model/objectives/constraints/transfers are employed in the design, thus a single optimiza-

tion is required on a set up that is made of a single fidelity. The primary drawback of

such approaches is that optimizing even a single choice of targets X is already a complex

global optimization problem on its own, and a variation of a single variable in X results in

a completely different set of trajectories. Moreover, in most practical scenarios even the

dimension of X , i.e., the number of targets to be visited, is not known and any integrated

approach should make use of variable-length vectors in the optimization; particularly,

adding even a single target to X might result in a considerably increase in the y vector.

Such approaches are thus useful for relatively small problems in terms of X domain (i.e.,

short sequences of targets), or when the knowledge on y is somewhat assumed (e.g., for

interplanetary trajectories, on the launch date, manoeuvres location and so on).

On the other hand, opposed to integrated approaches, there are multi-level approaches.

These assess the design of multi-target missions in successive stages on an overall multi-

fidelity framework [30]. As anticipated in Chapter 1, multi-level approaches are particu-

larly useful in large search domains as those proposed in GTOCs [62,68,69]. The scope of

using multi-level approaches is to quickly assess the feasibility of different sequences of

targets X with approximated models and then to refine one (or more) promising trajecto-

ries for a fixed choice of X . On a first level of fidelity, the transfer between successive tar-

gets in X are thus modelled by means of some approximations to estimate critical mission-

related parameters like the propellant consumption or the mission lifetime. Examples

include the use of energetic considerations to reach different celestial objects [154], re-

placement of continuous-thrust arcs with impulsive manoeuvres [17, 155, 156], or even

deep-neural networks [72, 157–159]. The problem then becomes very similar to the clas-

sic TSP [160], that is a combinatorial problem on which the visiting order of celestial

targets is to be decided according to some objective function and/or constraints. The main

drawback of multi-level approaches is that the fidelity of any model employed should be

taken with care as optimal solutions might be discarded in the approximation stage (see

Chapter 4).

49



2.1. INGREDIENTS FOR MISSION ANALYSIS

A typical way of solving the spaceflight TSP-variant is by modelling the search space as

a tree-graph [161] that is made by successive levels, each having an increasing number

of nodes representing the targets to be visited. The connections between the nodes, i.e.,

the so-called branches, define the cost of adding one target to the mission. The process

of adding successive levels to the tree is called branching. Branching thus involves the

usage of the approximate models/objectives/constraints/transfers as anticipated. A full

exploration of the tree computes all the possible branches and store all the sequence of

nodes. Depth First (DF) or Breadth First (BF) [162] are typical ways to fully explore a

tree-graph. The difference between the two lays on the way they perform the branching:

DF explores as far as possible along each branch, while BF explores all nodes at the given

tree depth prior to moving on to nodes at the next level.

Figure 2.2: Comparison of exhaustive tree-search strategies: DF (left) and BF (right).
Dotted nodes are not explored yet.

Figure 2.2 gives a comparison between the two. However, while DF/BF guarantees the

global optimality of the solution, these strategies usually become impractical for problems

involving visiting many orbital waypoints, as the design space might be too large so that

exhaustive searches require an infeasible computational time.

Branch and bound (BB) [163] represents a very useful alternative to obtain globally op-

timal solutions to the TSP variant of multi-target missions. In BB searches, the cost of

reaching any sequence of X targets are progressively bounded with the knowledge of the

current best sequence. This defines a threshold, or bound, on the cost function. During

the tree expansion, any partial branch that is over the bound is discarded. The major draw-

back of BB is that if no solutions (i.e., sequences) are found that can lower the bound, BB
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needs to compute all the possible sequences that compose the search space.

An efficient alternative to avoid enumerating all the possible solutions is dynamic pro-

gramming [116]. In dynamic programming, if different sequences happen to arrive at the

same node for a given tree level, then only one is saved (e.g., the one with the lowest

objective function value at the given tree level). This is because any other node attached

to the given one would make the cost function vary of a constant value (i.e., the branching

cost) for all the available nodes at the next tree level. The main drawback of dynamic

programming is that all the possible branches need to be computed to achieve the global

optimality and the number of options to be saved at each level of the tree exploration

might become too intensive when increasing the number of possible targets to be visited

(see also later Chapter 5).

Incomplete strategies are thus relevant that sacrifice the global optimality saving compu-

tational effort, i.e., avoiding (1) to expand all the possible branches and (2) to compute

all the possible solutions (i.e., sequences) of the problem. Starting from DF and BF,

incomplete strategies can be divided in searches that perform the branching either deter-

ministically or stochastically. As paradigms for these two groups, beam search (BS) [44]

and ant colony optimization (ACO) [148] are the most famous. In BS the computational

effort is bounded by employing heuristics that prevent the exploration of non-promising

branches. From Figure 2.3, BS is executed as a variant of BF strategy, on which the

exploration of possible trajectory options is performed one depth-level at a time.

Figure 2.3: Representation of BS algorithm. Dotted nodes are not explored yet, while
crossed nodes do not fall within the BW.
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From all the branches generated in one level, only a limited set of it, i.e., the beam, is

selected to be expanded in successive nodes. The beam selection is performed deter-

ministically, meaning that nodes at each depth-level of the tree are sorted with respect

to a heuristic criterion and only those with the highest heuristic are selected for further

consideration. The size of the beam is called beam width (BW). BS is one of the most

extensively used algorithms to construct solutions for complex multi-target missions like

those proposed by GTOCs (see also later section 2.3).

On the other hand, ACO uses stochastic branching based upon a probability function

Pi j that defines the likelihood to select the node j starting from node i. The probability

depends upon: (1) the so-called pheromone τi j, representing the goodness of solutions

computed in previous iteration that contained the branch i j, and (2) the heuristic infor-

mation ηi j that represent the goodness of the branch ij with respect to the other branches

available at the current tree level. The Pi j is thus given by:

Pi j =
τα

i j η
β

i j

∑
n
i=1,i ̸= j τα

i j η
β

i j

(2.22)

where α and β are user-defined weights to τi j and ηi j, respectively. As already discussed,

the main advantage of using deterministic strategies is that the set-up of optimization

parameters is known that eventually leads to guaranteed global optimality. For example,

one can consider the case of the BS, where the tuning of a single parameter is needed, i.e.,

the BW. The set-up of BS algorithm that leads to the global optimum is known a priori,

since having a BW = ∞ 2 corresponds to have a DF/BF search that eventually return all

the solutions, and thus also the globally optimal one. Being the algorithm deterministic,

repeated runs with the same set-up always return the same solutions. On the other hand,

when using stochastic meta-heuristics, one does not know a priori the set up that leads to

global optimality (or even feasible solutions) consistently. Since the algorithm employs

2In this case, ∞ corresponds to select all the available options at each tree-level to be kept for further
expansion.
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stochastic node selection, repeated runs with the same parameters set-up is not guaranteed

to converge to the same solutions. Nevertheless, some applications of ACO to multi-target

missions can be found in [57, 98, 164].

Hybrid strategies are also available that make use of a combination of deterministic

branching and stochastic meta-heuristics. For example, a possible hybridization between

ACO and BS [155, 165] uses the function from Eq. 2.22 to compute the probability to

reach any node j from the current tree level (as the standard ACO) and then selects a

number BW of them to be kept for further expansion based on their Pi j values. In [95],

an evolutionary programming algorithm is used to provide lower bound information on

the cost function for a deterministic BB to be performed to solve numerous problems in

space mission design.

As anticipated in Chapter 1, in the present thesis, a multi-level approach is adopted. On

a first fidelity level, the combinatorial problem of visiting different targets is solved by

employing deterministic tree-searches based upon dynamic programming principles to

guarantee global optimality within limited computational effort. Then, on a successive

level of fidelity, candidate solutions are refined by means of global optimization evolu-

tionary algorithms.

2.2 MGA State-of-the-Art

This section focuses on solution approaches employed for MGA trajectory design. One

highlights the main gaps in the literature and presents the novelties that are introduced

with the present thesis.

In interplanetary missions, MGA transfers make use of successive close passages, also

called swing-bys or fly-bys, with planets or other celestial objects to change the spacecraft

heliocentric velocity [166] (or planetocentric as in the case of moon tours [167–169]).

This permits to gain or lose energy with no propellant expenditure, thus allowing to ex-
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plore regions in the Solar System that would be otherwise demanding to reach. The design

of such missions falls within the multi-target design, as one wants to visit multiple orbital

way-points, i.e. planets or planetary moons, to achieve scientific objectives. For exam-

ple, Galileo [170], Cassini [171] and the more recent BepiColombo [133], Parker Solar

Probe [172], Solar Orbiter [173] and JUICE [6] required or will require multiple fly-bys

with Venus, Earth or even Jupiter to reach the desired science orbits.

The design of such missions falls within the within the class of MINLP/HOCP prob-

lems, as one needs to tackle (1) the combinatorial part, aiming at choosing the optimal

sequence of planetary fly-bys, and (2) the continuous part, aiming at identifying one or

more locally optimal trajectories for a candidate planetary sequence in terms of planetary

phasing, swing-bys and thrust arcs. Following taxonomy presented in section 2.1.4, solu-

tion approaches can be either (1) multi-level, or (2) integrated [31]. These are discussed

in sections 2.2.1 and 2.2.2 respectively. Section 2.2.3 then summarizes the main gaps and

novelties.

2.2.1 Multi-Level MGA Design

As in section 2.1.4, multi-level approaches divide the MGA design problem into several

steps. The first one is the generation of the vector X , i.e., the planetary sequence (section

2.2.1.1), while the second one is the generation of optimal trajectories for the sequences

identified 2.2.1.2.

2.2.1.1 Tisserand Graphs

A Tisserand graph is a graphical tool which makes uses of energetic consideration to

quickly assess the feasibility of different gravity-assist sequences [154, 174]. It has been

used over the past decades for trajectory analysis and design of interplanetary missions.

Some examples include the Galileo Orbiter’s trajectory design [175], as well as Europa

Orbiter design [167–169], or even winning trajectory design of the 6th edition of the

Global Trajectory Optimization Competition (GTOC) [54]. Several modified versions
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were developed to adapt it to specific purposes, as the Saturn moon tours [176–178],

the case of circular-restricted 3-body problem (CR3BP) [179], and low-thrust propulsion

trajectories [180].

The main issue with Tisserand graphs is that they contain no explicit information about

planetary phasing and transfer times between consecutive swing-bys. Therefore, any

information derived from Tisserand graphs on such critical parameters [154] should be

taken with care as it might not correctly map in higher fidelity models [181]. However,

useful information about the final MGA trajectory can still be inferred from Tisserand

graph analysis, mainly about planetary encounter conditions, MGA sequence length and

globally optimal paths in terms of ∆v consumption (see also section 4.3.1). Moreover,

most of such approaches imply simplified dynamical models for both the swing-by ob-

jects and spacecraft motion, assuming circular-coplanar paths for swing-by objects and

zero-inclination orbits for spacecraft transfer between two successive encounters.

Although this is a generally good approximation for most interplanetary missions, one

can envisage mission options that might benefit from inclined orbits for specific scientific

purposes, that are not usually addressed in literature. For example, two of the latest ESA

interplanetary missions, namely Solar Orbiter [173] and JUICE [6, 182], aim to achieve

high orbital inclination to observe never-explored latitudes in the near-Sun and Jupiter

regions, respectively. Moreover, novel mission concepts like Dolphin [75] also explore

the possibility of using inclined heliocentric orbits to reveal the nature of interstellar and

interplanetary dust particles [75].

2.2.1.2 Optimization of MGA Sequences

If the MGA sequence is known, one needs to find one or more trajectories that visit

the selected planets while satisfying constraints and possibly minimising some objective

functions.

A very useful option in terms of solution strategies is represented by (deterministic) grid
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approaches. These make use of systematic scan of the search domain, in terms of launch

window and transfer times between consecutive planetary encounters, usually coupled

with incremental pruning techniques, to reduce the dimensions of the search space. These

have generally been used to design ballistic MGA trajectories when virtually null thrust

is required. In fact, approximated ∆v manoeuvres at planetary swing-bys are gener-

ally assumed and the optimization routine, usually single-objective, looks for trajectories

that minimize such ∆v to a trivially small number. For example, NASA’s STOUR pro-

gram [183–185], assuming the overall MGA sequence to be known, considers the differ-

ence between incoming and outgoing planet-spacecraft relative velocities at the planetary

encounter as a measure of the ∆v cost for a given planet-to-planet phase. Methods that

consider DSMs while in the search for optimal trajectories in STOUR have been studied

in [186, 187], resulting in a huge number of trajectories that STOUR had to analyse, thus

leading to long computational time required. ESA’s GASP program [188], also assum-

ing the knowledge of MGA sequences, employs the so-called powered swing-by model

to link successive legs of the overall MGA mission at planetary encounter, assuming a

∆v manoeuvre occurring at the moment of closest passage with a planetary swing-by.

GASP solutions are then used to inform successive optimization with genetic algorithm,

particle swarm optimization or differential evolution. ESA’s SOURCE algorithm [189]

uses ∆v manoeuvres applied immediately after the planetary encounters or ∆v of a fixed

magnitude for legs involving the same planet for consecutive swing-bys for estimating

the cost of a planet-to-planet phase, with the knowledge of planetary sequence. A simi-

lar approach was employed by DEIMOS team in the context of GTOC1 problem [190],

which is based on a systematic ballistic search of MGA trajectory options with manual

selection of best-suited options, fully refined by means of a low-thrust optimizer. An-

other tool called PAMSIT has been presented in [191] which solves the ballistic MGA

trajectory design, also accounting for aero-gravity assist manoeuvres, without knowing a

priori the planetary sequence. PAMSIT uses an energy-based criterion to find planetary

sequences without accounting for the planetary phasing, that are then used in a successive
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search for actual trajectories in a simplified circular-coplanar dynamics for the planetary

motion. However, having simplified dynamical model can lead to non-precise solutions

in a successive higher-fidelity model, as discussed in Chapter 4.

The main attractive feature of deterministic solution strategies is that the set-up that guar-

antees global optimum solutions is known. However, the described approaches all require

approximated ∆v manoeuvres at planetary swing-bys that do not necessarily correspond

to actual Deep Space Manoeuvres (DSMs) in real-world mission scenario. In order to

assess the efficiency of such transcription process, one needs to analyse the relationship

between different different manoeuvre models types, that is not generally reported in lit-

erature.

Moreover, number of routes to be evaluated and stored usually represents an issue in

terms of memory storage. This depends upon the coarseness of employed grids, that is

always a compromise between number and quality of solutions (see also Chapter 5). The

issue is best described by the following example. Consider a mission from Earth (E) to

Mars (M) with intermediate fly-by at Venus (V), i.e., the sequence is EVM. The launch

window can happen anytime in a 2-years range. The transfer durations on the EV and VM

phases are bounded in [50,550] days and [50,850] days, respectively. If one discretizes the

departure dates and transfer durations ranges into grids with step size of 2 days each, the

total number of bins are 365, 250 and 400, respectively. Therefore, for the EV phase, one

needs to store 365×250 = 91250 routes. At the next VM phase, for each route identified,

one has 400 more routes, thus 91250×400 = 36.5 million routes to be sorted and ranked

by objective in selected mission duration bins, in order to obtain optimal solutions. It is

clear that adding more planets to the sequence makes the problem cumbersome. Although

this can be partially mitigated by using filtering criteria (e.g., on the departing velocity, or

∆v at fly-bys), it can be shown (Chapter 5) that the memory issue still represents the crux

of such approaches. The issue is amplified if DSMs are considered on each planet-to-

planet phase, as these imply an increased number of variables to be described [31].
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Therefore one might want to consider the application of stochastic meta-heuristic strate-

gies to solve the issue of finding optimal trajectories for a fixed MGA sequence. In this

way, one does not need to manage massive grids, but rather a population of solutions

(whose number is fixed by the user) that are progressively improved by means of adaptive

processes to manage the exploration of the search space.

For example, in [131], the authors solve the single-objective optimization of different

MGA sequences using several meta-heuristics, like differential evolution, particle swarm

optimization, genetic algorithm and simulated annealing. Such approaches are stochastic

in nature and thus do not guarantee the convergence to optimal solutions. In fact, the au-

thors note that the simple application of such solvers ’is not enough to find good solutions

and more elaborated approach is desirable’. Moreover, performances of such solvers usu-

ally depend upon a number of user-defined parameters that need to be properly tuned, and

such tuning is problem-specific. For example, in [192] the problem of tuning a differential

evolution algorithm is assessed on single-objective optimization MGA problems, assum-

ing the knowledge of the sequence and the presence of DSMs on user-defined phases of

the transfer.

To mitigate such issues (i.e., memory and stochasticity), an incremental pruning algorithm

is presented in [193], in an effort to extend the results obtained with GASP to MGA

transfers with DSMs, optimizing with respect to the overall ∆v consumption. The MGA

problem is decomposed into simpler sub-problems and tackled incrementally. The main

limitation of the proposed approach is that user-defined partial objective functions need to

be defined at each incremental layer, that are optimized by means of a modified monotonic

basin hopping algorithm, also assuming the knowledge of the number of revolutions about

the Sun.
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2.2.2 Integrated MGA Design

To deal with MGA design with integrated approaches, stochastic meta-heuristic strategies

are generally employed.

Moreover, they can require quite intense computational effort to handle the mixed-integer

complexity of MGA trajectory design. To mitigate such drawbacks, stochastic meta-

heuristic strategies are usually employed on very narrow search spaces in terms of launch

dates, transfer times and DSMs location and/or magnitude. Due to the mixed-integer na-

ture of the problem at hand, an approach based of nested loop optimization was presented

in [149–152]. In nested optimization, integer GA is used on an outer loop to search for

the optimal MGA sequence. The goodness of such sequence is assessed in the inner loop

looking for single-objective optimal continuous design variables by means of a combina-

tion between particle swarm and differential, with computing time rising steeply with the

dimensions of the search space, in the order of multiple days in parallel computing [149].

A similar approach is employed in [153], where a gradient-based single-objective opti-

mization is used for the inner loop strategy, but with no guarantee on a consistent con-

vergence to optimal solutions, which is a typical issue of meta-heuristic strategies. Ant

colony optimization has also been employed in [98,164] to construct MGA sequences that

are ∆v-optimal exploiting DSMs at the apses of planet-to-planet transfer arcs, assuming

the knowledge of the departing date and a simplified dynamical model for planetary or-

bits. ACO has also been used in [47] knowing the number of planetary swing-bys and the

position of one DSM on a pre-defined leg of the transfer. The concept of hidden-genes GA

has also been exploited in [194, 195], assuming the launch happening anytime in a win-

dow spanning on a 30-days range and assuming maximum one DSM per interplanetary

leg.

Hybrid approaches can be used that exploit deterministic techniques to check the available

planetary swing-bys alongside evolutionary programming to solve the continuous opti-

mization problem. This is the main scheme of EPIC software as presented in [95, 196],
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where single-objective optimization was used to build ballistic transfer and low-thrust arcs

from Earth to Mars, as well as a MGA from Earth to Pluto with maximum two swing-

by manoeuvres. To account for manoeuvres along the trajectory, the tool IMAGO [128]

implements an MGA model with DSMs together with EPIC, that it is tested on missions

to Jupiter assuming maximum three planetary swing-bys. An hybridization between in-

cremental tree-graph exploration and bio-inspired probabilistic algorithm has also been

proposed in [197] to find optimal solutions with respect to propellant consumption for

missions towards asteroids, Jupiter and Mercury.

Most of the above approaches use single-objective optimization, minimizing the overall

∆v consumption. However, beyond the challenge to find the global optimum, practi-

cal studies for MGA trajectory design usually require a multi-objective optimization, on

which multiple objectives that are competing one to each other need to be optimized at

the same time.

For the multi-objective formulation of the MGA problem, primarily stochastic meta-

heuristics have been employed. Non-dominated-sorting GA (NSGA-II) has been em-

ployed in [198], assuming a maximum of three swing-bys and no DSMs during the trans-

fer. NSGA-II has also been used in [199] in conjunction with parametric spreading, and as

the outer loop optimizer in [200] with MBH and sparse non-linear optimizer as inner loop

optimizer, with quite intense computational effort spread on massive parallel computa-

tions. The concept of hidden-genes GA for multi-objective optimization is used in [201],

constraining the bounds of the launch date in a one-month range and assuming maxi-

mum three fly-bys for missions towards Mercury and Jupiter, and maximum four fly-bys

for missions towards Saturn. A multi-objective variants of both ACO [202] and parti-

cle swarm optimization [203] have been employed to optimize MGA transfers with the

knowledge of the planetary sequence. An agent-based mimetic algorithm has also been

introduced [204] for multi-objective optimization assuming a priori the MGA sequence

towards Saturn, and considering no DSMs during the transfer.
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2.2.3 Gaps and Novelties on MGA Trajectory Design

From the discussion above, one can highlight the following limitations of existing method-

ologies for designing MGA transfers. These are here summarized:

1. When considering deterministic approaches, the knowledge of MGA sequences is

usually assumed. The presence of DSMs is not generally considered, and when

they are included in the search, computing times rise steeply, and intensive par-

allel computing is required. Moreover, even when approximated ∆v models are

considered, the relationship between manoeuvres model types is rarely discussed,

although it is crucial to understand the goodness of a given approach. If Tisserand-

based approaches are used to generate MGA sequences, the information that can be

derived from Tisserand graphs is only rarely discussed and the exploitation of three-

dimensional graphs is not usually reported. Moreover, typically single-objective

optimization is addressed.

2. When considering stochastic or hybrid approaches, the main limitations lie on the

uncertainty of convergence to global optimality. To mitigate this, search spaces

of narrow dimensions are usually employed, assuming fixed number of swing-bys,

small launch windows and constrained transfer times between encounters, or pres-

ence and/or location of DSMs. Again, mostly single-objective optimization is tack-

led. When considering multi-objective optimization, either the knowledge of the

sequence is assumed a priori, or small search spaces are considered.

Thus, one identifies that there is a gap in literature in exploiting the advantages of de-

terministic strategies to handle the multi-objective optimization of MGA trajectories in

a robust and efficient manner, while mitigating the main issue of meta-heuristic strate-

gies, primarily related to the dimensions of the search space, computing time and a priori

knowledge of the trajectory sequence or DSMs positions. To fill the gaps, the novelties in-

troduced in this thesis with regards to MGA trajectory design are thus the following:

1. Multi-objective optimization of MGA transfers with DSMs is performed on a de-
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terministic manner. The MGA trajectory design problem is transcribed into a graph

of interconnected nodes that are linked by approximated ∆v occurring at each plan-

etary swing-by. To mitigate one of the issues related to such approach (i.e., the

high number of routes to be considered), dynamic programming principles [116]

are extended to such transfers to handle the multi-objective optimization. In this

way, efficiency in automatically exploring the meaningful search space is guaran-

teed, with the minimum computational effort possible. An energy-based criterion

based on Tisserand parameter [154] is employed during the search for trajectories

to select achievable planets.

2. When assessing the feasibility of different MGA trajectories by means of Tisserand-

based analysis, inclined orbital loci are exploited to build MGA sequences for high-

inclination orbits. Such transfers are analysed in the context of practical mission

design of the recent Dolphin proposal to the 2022 ESA F/M-class call [77].

3. An analytic procedure based on approximated ∆v removal using position constraints

is used to assess the relationship between manoeuvres model types and a key issue

of deterministic approaches, i.e., the correspondence between the grid optimization

and actual DSMs. In this way, the robustness of the process is assured, allowing

good representation of any manoeuvre required during the mission. It is shown that

such an approach could potentially be included in the search step at the price of

relatively small increase of computing time.

4. Very large search spaces in terms of launch widows and transfer times are con-

sidered in the optimization of long MGA sequences, without assuming a priori

any information of the final solution set, namely on planetary encounter, presence,

number and location of DSMs and number of revolutions about the main attracting

body.
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2.3 Approaches from Literature to Asteroids Tours Tra-

jectory Design

Instances of missions that target multiple asteroids and/or cometary objects also represent

a growing trend. Examples of this include, but are not limited to, MANTIS [205], pro-

posed in NASA’s Discovery Program 3, CASTAway [9, 10], proposed both in 2018 and

2022 for ESA’s M-class call (M5 [206] and M7 [77], respectively), or Lucy [11], launched

on October 2021 towards the Trojan asteroids clouds. Moreover, missions that can per-

form either rendezvous of fly-by with main belt cometary objects [207], such as Castalia

mission [111] proposed to ESA’s M5, extinct/dormant comets [208] or Centaurs [32,209]

are also of paramount importance for future Solar System exploration. As such, they have

received attention from scientific community in the context of ESA Cosmic Vision 2050

for future missions [210]. There is thus a clear scientific interest in exploring such objects,

to better understand the composition and evolution of early stages of Solar System.

This section first contextualizes the problem of designing such missions within the cur-

rent literature (section 2.3.1) and then presents the gaps identified and proposed novelties

introduced with the present thesis (section 2.3.2).

2.3.1 Multi-Level Approaches on Asteroid Tours Design

As anticipated, the overarching scheme adopted for designing these missions is the multi-

level one [60]. On the overall multi-level strategy, two aspects are important: (1) the

transcription process and (2) the solution strategy.

2.3.1.1 Transcription Processes

The transcription process allows to transform the mixed-integer problem into a combi-

natorial one (i.e., on a TSP variant). Such process plays a key role in the efficiency

of proposed searches and quality of the solutions, understanding feasible transfers as
3https://www.nasa.gov/planetarymissions/discovery.html last accessed May 2022
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quickly as possible without losing information on the trajectory shape itself. For ex-

ample, in [211] the distance between the spacecraft trajectory and all the asteroids in the

set was used to identify feasible encounters, assumed to occur at the epoch of closest

distance. In [155, 165] an approach based upon linear approximation of spacecraft mo-

tion and clustering techniques is employed to estimate transfer times and costs between

two consecutive asteroid. Although linear approximations are quite helpful in GTOC-

like competitions, as the transfer time between asteroids is usually small compared to

the overall mission duration, practical mission studies may suffer of inaccuracies due to

increased transfer times, number of revolutions about the Sun and presence of planetary

MGA. In [62], the time of flight between two consecutive asteroids is considered fixed

and derived from a GA-based optimization. In [61], the asteroids fly-by are assumed

to occur at their nodal points, after a pre-pruning step of the whole asteroids dataset by

means of Minimum Orbital Interception Distance (MOID) between the orbits of the as-

teroids and the initial orbit of the spacecraft traversing the belt. In [212], a deep neural

network [213, 214] is trained on a massive database of Earth-asteroid-Earth trajectory

blocks. This scheme (i.e., machine learning + tree exploration) is receiving deeper atten-

tion in recent literature [72, 157–159] and possibly represents interesting future research

direction.

In the present work, a MOID-informed transcription is used. In this way, the time at which

the asteroids can be visited is fixed by the MOID crossing point with respect to a reference

trajectory. Although this is a similar approach of GTOC-related approaches [61], on

which nodal points are used, one notices that this modified MOID application is useful

if planetary fly-bys are not included in the search, since nodes are not optimal points for

asteroids fly-bys when MGA trajectories are considered.

2.3.1.2 Solution Strategies

A solution strategy should then be chosen to tackle the transcribed problem (see also

section 2.1.4). This is done by setting up a global optimization problem, similarly to a
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TSP variant.

Typically deterministic strategies are employed on such variant of GTOC-like trajectory

optimization. In fact, a common practice is to apply BB with pruning criteria (also re-

ferred to as branch and prune [61]) to limit the number of sub-trees to be expanded. Such

criteria are mission-dependent and are usually related to the ∆v cost of given branches.

In many GTOC-like applications, the dimension of the tree usually becomes cumber-

some, thus heuristics that prevent the expansion of non-promising branches are usually

employed, at the price of no guaranty in finding global optimality. This is the scheme

of the BS as presented in section 2.1.4, which emerged as standard approach to tackle

the combinatorial optimization problems in presented GTOC competitions. BS-based ap-

proaches have been employed in the winning solutions of GTOC4 [52], GTOC5 [53],

GTOC8 [56] and GTOC11 [59], as well as in the third-ranked solution of GTOC5 [63],

the second-ranked solution of GTOC7 [155], as well as in the first-, second- and third-

ranked solutions of GTOC11 [62, 215]. Apart from GTOC-related literature, a BB ap-

proach has been employed [61] to explore the main asteroid belt with a direct launch

from Earth, without considering planetary swing-bys. BS is also used in [212] for design-

ing sample-return trajectories, aiming at passing by multiple asteroids and return back to

Earth, allowing one Earth swing-by between two asteroids encounter on an overall Earth-

asteroid-Earth strategy. The use of stochastic meta-heuristic strategies have been em-

ployed as an alternative to tackle asteroid tours trajectory design. Hidden-genes GA has

been employed [64,65] to mutate chromosomes encoding sequences of asteroids. Integer

GA has been used in [9, 10] to construct sequences of asteroids from the main belt once

the fly-by epoch is known from MOID-based information, assuming also the presence of

a Mars fly-by to reach the main belt. In [216], GA is used to study trajectories to sample

return missions with Earth fly-bys considering a maximum of three asteroids to be vis-

ited. Particle swarm optimization is used as main optimization block for building transfers

in [217], targeting one single asteroid per sequence, also allowing a single Mars gravity

assist, as well as in [218], considering one near-Earth asteroid and one main-belt aster-
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oid either with one or two Mars gravity assists, and in [219], considering either Earth or

Mars gravity assists to reach maximum two near-Earth objects and the region of the main

asteroid belt. An ACO algorithm with backtracking scheme is presented in [220, 221] to

overcome the main difficulties of stochastic strategies in solving the combinatorial part of

asteroids missions. These approaches are however generally outperformed by tree-based

approaches, because of the high non-linearities in the integer domain of such trajecto-

ries [220]. Approaches that employ hybrid strategies between deterministic branching

and stochastic node selection are also relevant. For example, in [165] a population-based

ACO [222–224] is hybridized with a BS [225], on which non-dominated sorting [226] is

applied at each depth level of the tree graph to rank branched options. The setup assumes

a single root node and does not consider planetary gravity assists. In [62], a nested-loop

optimization is employed: single-objective BS is used as inner-loop scheme to build as-

teroid trajectories without gravity assist manoeuvres, while GA is employed as outer loop

algorithm to identify optimal asteroids-to-asteroids transfer times.

In the present thesis, a modified dynamic programming approach is applied. Compared to

the presented literature, this guarantees to obtain globally optimal paths on the transcribed

space with reasonable computational effort, while obtaining wide sets of trajectory op-

tions that are relevant in preliminary mission designs (see also later section 2.3.2).

2.3.2 Gaps and Novelties on Asteroids Missions

From the above discussion, most of the mentioned optimization problems tackle the

MINLP problem of asteroid tour trajectories from a global optimization point of view,

usually employing the overall ∆v consumption as performance parameter. However, be-

yond the challenge to find the global optimum of a complex MINLP, practical mission

feasibility studies for asteroid tour missions, also require a description of the topology of

the feasible search space, rather than only the identification of a global optimum. Hence,

a realistic mission study may be more akin to a CSP [20] rather than to a global opti-

mization problem. In the CSP formulation, one wants to find (one or more) solutions
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that are compliant with given mission-driven constraints, and among those an optimal,

or at least good, solution with respect to an objective function (see again section 2.1.2).

Typical solution strategies to tackle the CSP problem on TSP-like applications are again

BB-based [227], usually employing some backtracking scheme [19, 228–230] to correct

non-useful expansions in early stages of tree exploration.

In the context of asteroids tours, a CSP is interesting because the range of different pos-

sible asteroid tours is relevant for scientists within an indicative spacecraft design limit

(e.g., ∆v related). Moreover, in the case of an asteroid tour mission such as CASTAway,

obtaining the CSP solutions is based on a set of integer variables describing the asteroid

tour all of which result in a broadly similar spacecraft operational environment. There-

fore, there are clearly two needs that should be addressed when designing such missions.

The first one is to find the actual global optimum of the MINLP problem at hand. The

second one is to solve a CSP to provide adequate extent of mission design options usually

required in preliminary design. It should be noted that for the purposes of the present

thesis the CSP is tackled on the combinatorial problem (i.e., on the TSP-variant).

From the discussion above, one can highlight the following gaps in existing methodolo-

gies for designing multiple asteroid tours. These are here summarized:

• When addressing asteroid related MINLP/HOCP problems with long (> 5 aster-

oids) sequences of encountered objects, usually the use of MGA trajectories is not

considered. For example, in all of the GTOC-related competitions either no gravity

assist manoeuvres were allowed [211,231–236] or only the Earth was considered as

available planet [237]. This is mainly because of the intrinsic challenges posed by

such missions. When MGA trajectories are taken into consideration, usually short

asteroid sequences are considered, or only the accessibility of the main-asteroid belt

region is assessed. Moreover, limited number of gravity assist strategies are con-

sidered, usually employing Earth and Mars, while strategies with Venus and Earth

fly-bys are also competitive.
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• Usually a single-optimization problem is formulated when designing mission that

visit multiple asteroid, generally with ∆v as cost function, or with some hybrid cost

functions encoding some mission-specific criteria (this is the general scheme of

GTOC competitions).

• Linked to the previous point, combinatorial problem formulation of different aster-

oid sequences as tackled in literature does not consider the exploration of mean-

ingful search space as a fitness criterion (in a CSP-like manner), while practical

mission studies should aim for providing as many trajectory options as possible, to

maximize the extent of transfer opportunities from a scientific point of view, thus

appropriately informing preliminary designs.

To fill the aforementioned gaps, the following novelties are introduced with the present

thesis:

• Inspired by the challenges posed by asteroid exploration missions such as CAST-

Away [9, 10] and MANTIS [205], MGA trajectories are considered while looking

for long sequences of asteroid fly-bys, on larger dataset of asteroids compared to

GTOC-related competitions and other mission design studies. The study has sup-

ported CASTAway proposal to the 2022 ESA’s M-class mission call, enabling a

comprehensive main-belt exploration opportunities for 2030-2040 launch window.

• Similarly to section 2.2, a modified dynamic programming approach has been de-

veloped to efficiently build long asteroids sequences alongside MGA manoeuvres.

The concept of dynamic programming is here extended to account for multiple so-

lutions with the aim of maximizing the number of visitable asteroid when exploring

the search space, due to the scientific interest of having multiple asteroids tours in

preliminary design phases.
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Chapter 3

Modelling Interplanetary MGA

Trajectories

This Chapter presents the mathematical framework used to design interplanetary missions

in the present thesis. The function of this Chapter is to provide fundamental background

theory to understand the basic models used in the thesis. Such models, as explained in

Chapter 1, define the dynamics of the spacecraft and describe the set of variables that char-

acterize interplanetary multi-target missions with deep space manoeuvres (DSMs).

The Chapter is divided as follows: section 3.1 introduces the mathematical models and

assumptions used in the context of the present thesis, namely the patched-conics and

linked-conics. These are useful to model critical mission phases like the launch of an

interplanetary probe and the fly-by with celestial objects. Section 3.2 describes the main

manoeuvres that modify the interplanetary trajectory, i.e., fly-bys and DSMs. Section 3.2

then wraps the content of the previous section and defines the main steps that are needed

to find trajectories in the context of MGA missions with DSMs. Section 3.4 presents the

conclusions.

These models, i.e., linked-conics MGA with linked conics and DSMs, are encoded in

ASTRA toolbox (see Chapter 1) and used in successive Chapter 4, 5 and 6 to compute
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trajectories (namely, spacecraft position and velocity history with respect to time) as part

of the multi-target mission design process.

3.1 Patched-Conics and Linked-Conics

A very useful model employed in the preliminary design of interplanetary MGA trajecto-

ries is the so-called patched-conics approximation [16]. This assumes that the motion of a

point with negligible mass that is subject to the gravitational action of different bodies can

be described by the union of a number of arcs on which only one gravitational action is

active, and the others are null. The patched conic assumption works well for MGA trajec-

tories, as it is able to reproduce a wide range of missions [16,25], and it can be shown that

it is sufficiently accurate for preliminary design of interplanetary missions [16]. In the

patched-conic approximation, the massless point represents the spacecraft, moving under

the attraction of a main body, like the Sun for interplanetary trajectories in the Solar Sys-

tem, or planets, and it performs fly-bys with celestial objects (like other planets, moons,

or asteroids) every time it flies within their sphere of influence (SOI) [16]. This is a region

centered on an object (e.g., planet) on which the gravitational force of the object prevails

those of all the other bodies. Thus, within the SOI, the spacecraft motion is assumed to

be affected by the planet gravity only. The radius of the SOI is given by [16]:

rSOI ≈ a(
m
M
)2/5 (3.1)

where a and m are semi-major axis and mass of the smaller object (e.g., planet), and M is

the mass of the main attracting object (e.g., the Sun).

The arcs are solutions of a set of differential equations that could be generally written

as [16] (similarly to Eq. 2.2):

¨⃗r =− µ

r3 r⃗ (3.2)
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Eq. 3.2 describes the well-known two-body dynamics, for which a closed-form analytical

solution exists, and defines the motion of a point that is moving under the acceleration

due to the gravity field of a main attracting body with gravitational parameter µ = GM

(M being the mass of the main body). In Eq. 3.2, r⃗ is the position vector of the point with

respect to the active gravitational body, ¨⃗r is its second time derivative (i.e., the accelera-

tion). It can be shown that solutions to Eq. 3.2 are conic sections (i.e., circles, ellipses,

hyperbolas, and parabolas). Eq. 3.2 describes an ideal situation in which only two bod-

ies (a massless point and a main attractor) interact due to the gravitational force between

them, and no other forces affect the motion of the point. In higher fidelity models, the

presence of other bodies (like planets, asteroids, comets, moons) modify the path of the

point through some perturbative effects.

Let’s consider again the Earth-Mars example from Chapter 1. In patched conics approx-

imation, the spacecraft is launched from the Earth and travels on a hyperbolic path with

respect to the planet until it reaches the edges of the SOI of the Earth. When inside the

SOI, the spacecraft is too close to the Earth to be considerably affected by other gravi-

tational forces, thus only the Earth’s gravity is accounted. Once at the edge of the SOI,

the gravity pull of the Earth is too small to have a significant effect if compared with the

one of the Sun, thus the Earth gravity effect is neglected and only the one of the Sun

is considered along the travel towards Mars. The spacecraft finally arrives at the edge

of the SOI of Mars, where the Mars gravity is ‘switched on’ and the one of the Sun is

‘switched off’. Analogously to the launch phase, the spacecraft then follows a hyperbolic

path with respect to Mars to perform, for example, an orbit insertion around the planet, or

a fly-by.

A limit case of the patched conic model is represented by the so-called linked-conics

model. Under this approximation, the SOI of gravity-assist bodies degenerates to a point

in space. This is a good approximation if the mass of the main attracting body is several

orders of magnitude bigger than the masses of the other bodies, which is not far from
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reality for most practical cases (e.g., MGA trajectories with planetary fly-bys in the Solar

System, with the Sun as main attracting body). The added simplification is that the point

at which the spacecraft enters the SOI of the gravity-assist body is not defined. Therefore,

in order to encounter an object in space, the spacecraft only needs to match its position

with that of the object. The linked-conics model is the one employed in this work as

it is deemed sufficient to represent a wide range of mission options. Major violations

to such models could be experienced when larger planets are considered, like Jupiter or

Saturn, for which the gravity effects become relevant way before the planets’ positions

are matched, or if the spacecraft relative speed to the target planet is low (e.g., as a result

of a manoeuvre/low-thrust arc to decelerate). In other words, the accuracy of the model

reduces with respect to the distance to the fly-by planet and the planet-spacecraft relative

velocity, or infinity velocity, such that inaccuracies arise when the probe is close to the

planet and relatively slow (e.g., about 1 or 2 km/s). However, these are in general small

and can be corrected in successive stages of the design of a space mission. Such models

have also limited accuracy when the spacecraft travels within strong gravity fields (e.g.,

the one of Jupiter or Saturn) in moon tours, as non-crossing orbits for moon capture (e.g.,

with Ganymede) [25] are not identified.

Therefore, the arcs resulting from Eq. 3.2 can be further classified in two additional

types [31]:

• coast (or ballistic) arcs, along which the spacecraft is subject only to natural forces

(like the gravity or other perturbative effects like the solar pressure)

• thrust arcs, along which the spacecraft is also subject to an action coming from the

propulsion system .

In the present thesis, only coast arcs are relevant, as different arcs can be connected suc-

cessively by means of instantaneous events that may represent the effect of a fly-by with

a celestial object or the action of the propulsive system through DSMs.
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3.2 Events along the Trajectory

Following the discussion from [31], events that are very short in time with respect to the

duration of the overall trajectory can be approximated as instantaneous, i.e., occurring

at a given time instant and having zero duration. The main implication is that, as an

approximation, only the spacecraft velocity (magnitude and direction) is affected by such

events, while its position remains unchanged. Examples of instantaneous events that are

relevant for MGA trajectory design are the launch of an interplanetary probe, the fly-by,

rendezvous, orbital corrections or orbit insertion.

In the following, two main instantaneous events are considered since these are the main

ones used in the present thesis:

• fly-bys, which exploit the gravity field of celestial objects to change the spacecraft

velocity, and the launch from the departing body

• DSMs that make use of a high-thrust propulsive system to rapidly achieve the re-

quired velocity change

3.2.1 Fly-by and Launch

When a spacecraft passes close to a body (e.g., a planet), i.e., within its SOI, the effect of

such body’s gravity is to modify the motion of the spacecraft. This event can be consid-

ered instantaneous in the patched-conics approximation because the spacecraft travels at

high speeds with respect to the fly -by body. Therefore, the time spent within the SOI is

relatively small compared to the overall interplanetary transfer (in the order of a few days

compared to years of travel). Thus, the variation in the spacecraft/object position with

respect to the main attracting body (e.g., the Sun) can be considered null, and only the

spacecraft velocity is affected by the close passage to the given body.

It can be demonstrated, as shown in Chapter 4, that a fly-by does not modify the magnitude

of the spacecraft velocity vector relative to the fly-by body (i.e., the so-called infinity
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velocity v⃗∞), but only its orientation. The effect of a fly-by with a celestial object (e.g., a

planet) is depicted in Figure 3.1. The vector diagram in Figure 3.1 represents the effect of

a close passage with a generic planet with velocity v⃗pl . The spacecraft velocities before

and after the fly-by are v⃗− and v⃗+, respectively. The turning angle δ determines the orbit

of the spacecraft after the fly-by , rotating the infinity velocity vector from v⃗−∞ to v⃗+∞ . The

angle α measures the direction of v⃗∞ with respect to v⃗pl and it is useful to graphically map

the effect of the fly-by for different v∞ as done in Chapter 4.

Figure 3.1: Vector diagram representing the effect of the fly-by in front (left image) and
behind (right image) a given gravity assist body. Left and right cases result in

minimizing and maximizing the energy after the swing-by, respectively.

The turning angle δ , governing the fly-by, depends upon the gravity of the fly-by body

(via the gravitational parameter µ), the minimum distance of the spacecraft to the fly-by

body (i.e., the periapsis rp of the hyperbolic passage) and the infinity velocity magnitude

v∞. The relation between δ , µ , rp and v∞ is the following:

sin
(

δ

2

)
=

(
1+

rpv2
∞

µ

)−1

(3.3)

Specifically, the bending increases as close the spacecraft passes to the body and as much

the body is massive. On the other hand, the effect of the fly-by decreases as fast the

spacecraft passes with respect to the planet. Figure 3.2 represents the geometry of the fly-

by and illustrates the relation between δ , rp and v∞. The angle δ ultimately corresponds

to the angle between the asymptotes of the fly-by hyperbola.

Since this work employs the linked-conics approximation, the point at the edge of the

SOI of the planet (i.e., at the ‘infinity’ with respect to the planet) is not defined, since

in the heliocentric reference frame the SOI has null radius. This implies that there is a
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Figure 3.2: Geometry of a fly-by.

degree of freedom that is left free. This is the angle describing the orientation of the fly-by

plane, which is the plane that contains the hyperbola, i.e., the one containing the incoming

relative velocity vector and the centre of mass of the planet.

To define the plane attitude, the choice of the additional angular parameter for the fly-by

is rather arbitrary. In this work, we employ the angle ζ defined as [131]:

v⃗+∞ = v∞

(
cos(δ )b̂1 + sin(ζ )sin(δ )b̂2 + cos(ζ )sin(δ )b̂3

)
(3.4)

where:


b̂1 =

v⃗−∞
v∞

b̂2 =
b̂1×⃗rpl

|b̂1×⃗rpl |

b̂3 = b̂1× b̂2

(3.5)

where r⃗pl is the heliocentric position vector of the planet at the time of fly-by. From

Figure 3.3 angle ζ is the inclination between the plane generated by v⃗−∞ and v⃗+∞ and the

plane generated by b̂3 and b̂1.
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Figure 3.3: Three-dimensional geometry of a fly-by.

To sum up, for a given incoming relative velocity vector (⃗v−∞) at a planet in position r⃗pl ,

the parameters that define the fly-by, i.e., those that allow computing v⃗+∞ in the heliocentric

reference frame, are the periapsis of the fly-by hyperbola (rp) and the fly-by plane angle

(ζ ). In fact, through the periapsis rp one uses Eq. 3.3 to compute the angle δ (having

v∞ = |⃗v−∞ | and the gravitational parameter of the planet µ), and then one employs Eq. 3.4

and 3.5 to compute v⃗+∞ .

The same linked-conics approximation can be used to model the launch of the spacecraft

from a body . The spacecraft is assumed to be injected into a hyperbolic path with respect

to the departing planet and leaves the SOI with a given relative velocity magnitude v∞,dep

and directions θ and φ that are defined as follows [131]:


θ = 2πu

φ = arccos(2ν−1)−π/2

v⃗∞,dep = v∞,dep(cos(θ)cos(φ)î+ sin(θ)cos(φ) ĵ+ sin(φ)k̂)

(3.6)

where u,ν ∈ [0,1] define the heliocentric direction of the departing hyperbolic velocity

v⃗∞,dep and (î, ĵ, k̂) are defined as:
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î = v⃗pl

vpl

ĵ = r⃗pl×⃗vpl
r⃗pl×⃗vpl

k̂ = î× k̂

(3.7)

Therefore, to model the launch of a spacecraft, the three parameters v∞,dep, u and ν are

needed, through which the departing relative velocity vector v⃗∞,dep can be computed using

Eq. 3.6 and 3.7.

3.2.2 Deep Space Manoeuvres

A DSM is a change in the velocity vector of the spacecraft that is achieved by switching

on the spacecraft propulsion system. If the thrust is sufficiently high, then the propellant

burning time is relatively short to achieve the required velocity change. In this sense, a

DSM can be considered as an instantaneous event, and the related velocity change ∆⃗v

is:

∆⃗v = v⃗+− v⃗− (3.8)

where v⃗− and v⃗+ are the spacecraft velocity vectors before and after the manoeuvre, re-

spectively. The magnitude of the manoeuvre is simply the modulus ∆⃗v = |∆⃗v| that is

useful to compute the propellant needed to perform the manoeuvre via the well-known

rocket equation:

m+ = m−e−∆v/ve (3.9)

where m− and m+ are the spacecraft mass before and after the manoeuvre, respectively,

and ve is the exhaust velocity of the propellant mass. Therefore, minimizing the over-

all change in velocity ∆v required by the spacecraft during its mission corresponds to

77



3.3. GRAVITY ASSIST MODELS WITH DEEP SPACE MANOEUVRES

minimizing the propellant consumption, and consequently the overall mass of the space-

craft.

The approximation of impulsive manoeuvres is sufficiently accurate if high-thrust propul-

sive systems are considered. If low thrust has to be considered, the equations of motion

from Eq. 3.2 should be completed with the acceleration provided by the engine and the

mass-flow rate of the propellant, as in Eq. 2.2. However, the impulsive approximation

can still be a very informative model even in the cases on which the spacecraft is required

to use low-thrust, since one can approximate low-thrust arcs by a succession of coast arcs

linked together by DSMs if the acceleration required (i.e., the ∆v over the transfer time) is

sustainable by the low-thrust engine [155]. This is similar to the so-called Sims-Flanagan

transcription [17], which has proven very effective in representing MGA trajectories with

low-thrust as first guess [238].

3.3 Gravity Assist Models with Deep Space Manoeuvres

The MGA trajectory with DSMs can be seen as the union of different bits that are (1) the

launch, (2) coast arcs, (3) DSMs that link coast arcs on the same leg and (4) fly-bys with

celestial objects that link different legs.

Different models are used in the present thesis for modelling MGA trajectories with

DSMs, depending upon the number and position of the DSMs. In particular, section

3.3.1 describes a model where each DSM on a planet-to-planet leg is applied at each fly-

by encounter; section 3.3.2 then describes MGA transfers with one single DSM applied

in between a planet-to-planet leg; section 3.3.3 finally expands the single-DSM model by

considering multiple manoeuvres on a planet-to-planet leg.
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3.3.1 MGA with Manoeuvres Applied at Planetary Encounters

The idea is to consider for any given planet-to-planet leg a DSM occurring right at each

planetary encounter. In this way, each planet-to-planet leg can be modelled as a Lambert

arc linking two successive planetary encounters. The cost of the given leg is the velocity

discontinuity ∆v occurring at the fly-by epoch between incoming and outgoing spacecraft

relative velocities with respect to the planet, which are solutions of Lambert problem for

the given leg. These ∆v can be considered as infinity velocity defects, which represent

impulsive manoeuvres applied after each planetary encounter. The defects are computed

as:

∆v =


||⃗v+∞ |− |⃗v−∞ || if δ ≤ δmax√
|⃗v+∞ |2 + |⃗v−∞ |2−2|⃗v+∞ ||⃗v−∞ |cos(δmax−δ ) otherwise

(3.10)

where v⃗−∞ and v⃗+∞ are again the spacecraft velocities relative to the swing-by planet before

and after the encounter, respectively; δ is the angle between v⃗−∞ and v⃗+∞ (positive in the

180 deg-range counter-clockwise) and represents the change of direction between the

incoming and outgoing legs of the fly-by; δmax is the maximum possible deflection at the

fly-by for the incoming relative velocity v⃗−∞ and, using Eq. 3.3, reads as:

δmax = 2arcsin

((
1+

rp,min|⃗v−∞ |2

µpl

)−1)
(3.11)

with rp,min being the minimum periapsis of the fly-by hyperbola as in [154] and µpl the

gravitational constant of the fly-by planet.

It should be noted that v⃗−∞ and v⃗+∞ are solutions of the Lambert problem between two

consecutive swing-bys for a given time of flight Ti, and they have different direction and

magnitude. Thus, the overall ∆v consumption accumulated along MGA mission ulti-

mately depends on the ephemerides of the objects, through their heliocentric velocities at

the encounter epochs which define v⃗−∞ and v⃗+∞ . In this way, the y vector from Eq. 5.1 and

79



3.3. GRAVITY ASSIST MODELS WITH DEEP SPACE MANOEUVRES

Table 5.1 only encodes the departing date from the first object (t1) and the transfer times

between successive objects (Ti), i.e., y = [t0,T1, ...,Tnint−1], and the dimension of the prob-

lem is thus d = nint planets in a sequence X . For example, assume the spacecraft needs

to follow a Cassini-like sequence, launching from Earth (E) and arriving at Saturn (S),

after flying-by Venus (V) twice, the Earth again and Jupiter (J), on an overall EVVEJS

sequence, like the Cassini mission [171]. In this case, d = nint = 5.

The main advantage of modeling the problem using defects is that each planet-to-planet

leg depends only upon the previously visited object through the vector v⃗−∞ . In this way,

one exploits the underling graph structure of the search space (see [239] and Chapter

5) to usefully apply graph-traversing techniques based on dynamic programming, allow-

ing efficient exploration of the search space [239]. In this way, one approximates any

manoeuvre required during the transfer without much loss of search space information

of more complex models (see later sections 3.3.2 and 3.3.3). By employing a dynamic

programming-based optimization as described in [239] and in Chapter 5, one has the fol-

lowing solution vector for a Cassini-like EVVEJS trajectory:

y = [−769.5,211,374,50,500,1252] (3.12)

where the departing date t0 is in MJD2000 and the time of flights Ti are in days. The

corresponding trajectory is depicted in Figure 3.4.

One should note that such a solution in the ∆v defect model is also a solution in more com-

plex models (as those described in later section 3.3.2 and 3.3.3), and therefore a simple

refinement process allows to reoptimize a sequence into the full MGA-DSM dynamical

model (as from later section 3.3.2), which may obtain at most some ∆v reduction (gener-

ally small) [239].
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Figure 3.4: EVVEJS Cassini-like transfer within the ∆v-defects model.

3.3.2 MGA with one Deep Space Manoeuvre

A very useful model to describe MGA trajectories with DSMs is the so-called MGA-

DSM model [128–131]. Solutions to this problem are helpful to preliminary assess real

space missions. The MGA-DSM model assumes that only one DSM can occur in each

interplanetary leg. The manoeuvre is assumed to occur at a fraction η ∈ [0,1] of the trans-

fer time T within a given leg. Therefore, the variables that describe the overall trajectory

MGA trajectory with nint planets in a sequence X can be encoded in a vector as:

y =[t0,v∞,dep,u,ν ,T1,η1,

rp,2,ζ2,T2,η2

...

rp,nint−1,ζnint−1,Tnint−1,ηnint−1]

(3.13)

where t0 is the launch date. The dimension of the problem is then d = 6+ 4(nint − 2).

Moving the EVVEJS Cassini-like example forward, nint = 5, and thus d = 6+4(6−2) =

22 variables are needed to fully describe the trajectory in the MGA-DSM model, which

are:
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• The launch epoch (t0)

• The launch event (v∞,dep,u,ν)

• The transfer time on each planet-to-planet leg (T1,T2, ...,Tnint−1) and the fraction at

which the DSM is performed (η1,η2, ...,ηnint−1). In this example, the number of

legs is nint−1 = 6−1 = 5.

• The fly-by parameters ([rp,2,ζ2], ..., [rp,nint−1,ζnint−1]) for each planetary encounter

before arriving at Saturn. In this example, the number of fly-bys is nint−2= 6−2=

4.

In particular, the steps to compute spacecraft position and velocity with respect to time in

the MGA-DSM model are the following:

i. The departing planet position and velocity in the heliocentric reference frame (e.g.,

ecliptic-J2000) are known at the launch epoch t0 through the ephemerides [240],

say [⃗rpl,1(t0), v⃗pl,1(t0)]. The spacecraft position at the departure corresponds to the

one of the departing planet in the linked-conics approximation, i.e., r⃗(t0) = r⃗pl,1(t0).

The spacecraft velocity v⃗ is known from v∞,dep,u,ν by applying Eq. 3.6 and 3.7,

thus finding v⃗∞,dep. Then, from the velocity triangle as from Figure 3.1, v⃗(t0) =

v⃗pl,1(t0)+ v⃗∞,dep.

ii. The spacecraft initial state is then (analytically) propagated by integrating Eq. 3.2

from t0 to t0 +η1T1, i.e., until the instant at which the first DSM is performed. At

this point, the spacecraft has state [⃗r(t0 +η1T1), v⃗−(t0 +η1T1)]. The superscript ‘-‘

indicates again that the velocity is intended before the DSM.

iii. A Lambert arc [38] (orbital two-points boundary value problem) is then used to

compute the velocity v⃗+(t0 +η1T1) that brings the spacecraft from r⃗(t0 +η1T1) to

the position of the next planet in the sequence that is r⃗pl,2(t0 +T1) in the transfer

time T1(1−η1). The planet state [⃗rpl,2(t0 +T1), v⃗pl,2(t0 +T1)] is again known from

ephemerides. A DSM is thus computed as v⃗−(t0 + η1T1)− v⃗+(t0 + η1T1). The
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arrival state of the spacecraft at the planet is [⃗r(t0 +T1), v⃗−(t0 +T1)], where r⃗(t0 +

T1) = r⃗pl,2(t0 +T1).

iv. At the encounter with the next planet, the incoming relative velocity v⃗−∞ = v⃗−(t0 +

T1)− v⃗pl,2(t0 +T1) is computed and by means of rp,2,ζ2 and v⃗+∞ is found using Eq.

3.5 and 3.5. The state of the spacecraft after the fly-by is then [⃗r(t0 +T1), v⃗+(t0 +

T1)], where v⃗+(t0 +T1) = v⃗pl,2(t0 +T1)+ v⃗+∞ .

v. For each successive leg in the transfer, steps (ii) to (iv) are repeated until the last

planet is reached.

As a simplification, one could consider a different way of departure, if the first leg of the

MGA trajectory has no DSM. In this case, a simple Lambert arc between r⃗pl,1(t0) and

r⃗pl,2(t0 +T1) in the transfer time T1 is solved (thus v⃗(t0) is computed) and the departing

infinity velocity is v⃗∞,dep = v⃗(t0)− v⃗pl,1(t0). This allows a reduction of the number of

variables needed to describe the MGA trajectory, which are now:

y =[t0,T1,

rp,2,ζ2,T2,η2

...

rp,nint−1,ζnint−1,Tnint−1,ηnint−1]

(3.14)

The dimension of y is now d = 2 + 4(nint − 2). In the example of EVVEJS, d = 18

if no DSM are included in the first leg. The solution vector for Cassini-like EVVEJS

trajectory [171] (no DSM on the first leg) is:
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y =[−806.4,193.4,

1.334.1,4.659,420.9,0.4926

1.219,4.295,55.67,0.02451,

1.082,4.739,502.6,0.02429,

160.9,4.717,1255,0.04327]

(3.15)

The departing date t0 is in MJD2000, the time of flights Ti are in days, the periapsis of

the fly-by hyperbola r(p,i) are divided by the radius of the corresponding fly-by planet,

and the fly-by angles ζi are in radians (∀i = 1, ...,nint−1). This vector is the result of the

application of dynamic programming optimization on the ∆v defects model and successive

refinement in MGA-DSM model as from [239] and Chapter 5.

Figure 3.5: EVVEJS Cassini-like transfer within the MGA-DSM model (no DSM on
the first leg).

Figure 3.5 shows the corresponding trajectory in the ecliptic plane. This mission requires

one large DSM on the VV leg of about 0.4358 km/s, to increase the infinity velocity at

the next Venus encounter. In all the other legs, the DSMs are in the order of 1× 10−5

to 2× 10−5 km/s (i.e., virtually null). The infinity velocities at the Earth departure and

Saturn arrival are 4.103 km/s and 5.453 km/s, respectively.
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It can be shown that having a manoeuvre in the first leg of the transfer is not essential

unless the following fly-by is resonant [31,241]. In fact, having a DSM on a same-planet-

to-same-planet leg allows for a variation in the infinity velocity at the next planetary en-

counter, which is usually important for specific mission applications (e.g., Juno mission).

If this is not the case, then the DSM can be ‘included’ in the launch without compromis-

ing the representation of good trajectories. This holds when the first legs has less than one

revolution, however there can be cases on which a large DSM might be needed to allow

proper phasing with the second planet in the sequence. This is, for example, the case of

Messenger, that is also found experimentally in later section 3.3.3.

3.3.3 MGA with multiple Deep Space Manoeuvres

The main limitation of the MGA-DSM model is that only one DSM is assumed on each

interplanetary leg. Although many practical missions are captured within this model,

missions might still require multiple impulses on a single leg, especially if multiple revo-

lutions are involved in the transfer. For example, designing missions to Mercury similar to

Messenger [132] or BepiColombo [133] might benefit from a model that takes into con-

sideration multiple DSMs between consecutive swing-bys. This could be particularly use-

ful in the last phases of the transfer, when multiple swing-bys with Mercury are expected

in conjunction with multiple DSMs to leverage the infinity velocity at the planet, thus al-

lowing a lighter orbiter injection. Different strategies can be found in literature to model

multiple DSMs, like multiple-shooting algorithms [25] or primer-vector-based optimiza-

tion [242]. These manoeuvres are useful to perform plane change, alongside changes in

the argument of periapsis, or even to approximate low-thrust transfers [17]. In the follow-

ing, a model that builds upon the presented MGA-DSM model is described. This model,

called thereafter MGA-nDSM, assumes that a user-defined number n of DSMs can oc-

cur in each leg of the MGA trajectory. A good choice for n can be to assume a number

of DSMs equal to the number of revolutions that the spacecraft performs on a planet-to-

planet transfer. Thus, if the spacecraft does Nrev < 2 revolutions, then 1 DSM is included,
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if 2≤ Nrev < 3 then 2 DSMs are included, and so on.

The variables that define the launch event (v∞,dep,u,ν) and the fly-bys (rp,ζ ) are the same

of the MGA-DSM model. On each leg i of the transfer, of time duration Ti, the following

variables are needed to model n DSMs:

• ηi,1, ...,ηi,n that are the fractions of time Ti at which the 1st ,2nd, ...,nth DSM are

performed (analogously to the MGA-DSM case).

• ∆⃗vi,1 = [∆vx,∆vy,∆vz]
T
i,1, ..., ∆⃗vi,n−1 = [∆vx,∆vy,∆vz]

T
i,n−1 that are the components of

the n−1 DSMs needed on the leg. Each manoeuvre is separated by a propagation

arc that brings the spacecraft from one manoeuvre to the next one. A Lambert arc is

solved from the position of the last manoeuvres up to the next planetary encounter,

and the nth DSM is computed as velocity difference analogously to the MGA-DSM

model.

The dimension of the problem is much higher than the MGA-DSM model, as this is

d = 6+∑
nint−1
i=1 (4ni− 3)+ 2(nint − 2) where ni are the number of manoeuvres on each

leg i of the transfer. If it is assumed that no manoeuvres occur in the first leg, then

d = 2+∑
nint−1
i=1 (4ni−3)+2(nint−2).

Figure 3.6: Illustration of the MGA-nDSM model.

Figure 3.6 shows a representation of an EMJ transfer with 2 DSMs on the first leg and 1

DSM on the second leg. In particular, the process to compute an MGA-nDSM trajectory

is the following:
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i. The step (i) is the same as the MGA-DSM model, thus it is not repeated. The initial

state of the spacecraft is therefore known: [⃗r(t0), v⃗(t0)].

ii. This state is then (analytically) propagated by integrating Eq. 3.2 from t0 to η1,1T1,

i.e., until the point of the first manoeuvre is the leg. The state is now: [⃗r(t0 +

η1,1T1), v⃗−(t0 +η1,1T1)]. If multiple manoeuvres are present in this leg, then:

a. one applies the ∆⃗v1,1 = [∆vx,∆vy,∆vz]
T
1,1 , thus the state becomes [⃗r(t0+η1,1T1), v⃗+

−(t0 + η1T1)], where v⃗+−(t0 + η1,1T1) = v⃗−(t0 + η1,1T1) + ∆⃗v1,1. This is

propagated by an amount η2,1T1−η1,1T1 until the next manoeuvre. This pro-

cedure is repeated until the last manoeuvre in the given leg.

iii. If the spacecraft has reached the point at which the last DSM is performed, the state

is [⃗r(t0 +η1,nT1), v⃗−(t0 +η1,nT1)]. Now, similarly to the MGA-DSM case, a Lam-

bert arc is computed to find the velocity v⃗+(t0 +η1,nT1) that brings the spacecraft

from r⃗(t0 +η1,nT1) to the position of the next planet in the sequence that is r⃗pl(t0 +

T1). The last DSM on the leg is thus computed as v⃗+(t0+η1,nT1)− v⃗−(t0+η1,nT1).

The arrival state of the spacecraft at the planet is [⃗r(t0 + T1), v⃗−(t0 + T1)], where

r⃗(t0 +T1) = r⃗pl(t0 +T1).

iv. The fly-by is computed as in the MGA-DSM model (see step (iv)).

v. For each successive leg in the transfer, steps (ii) to (iv) are repeated until the last

planet is reached.

In the EMJ example, the length of the y vector would be d = 6+(5+1)+2 = 14.

A mission towards Mercury similar to Messenger [132] or BepiColombo [133] can be

designed. Inspired by the challenges posed by the so-called Messenger full mission pro-

posed in the ESA GTOP database 1, an optimization of the sequence EVVYYYY (Y being

Mercury) has been performed (nint = 7). First, a grid-based optimization (see Chapter 5)

is employed to quickly scan the launch window (the whole year 2005 is considered, i.e.,

1https://www.esa.int/gsp/ACT/projects/gtop/messenger_full, last accessed August 2022
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the same of Messenger), trying to minimize the sum of infinity velocities at the departure

and arrival plus any DSM needed in the mission. In the grid-based optimization, only 1

DSM is assumed on each leg occurring right after each fly-by. Subsequently, solutions

coming from the grid-based method are used to bound a particle swarm optimization to

reconstruct all the parameters needed to model the trajectory in the MGA-nDSM model.

Figure 3.7.a shows the guess from the grid optimization, while Figure 3.7.b illustrates the

fully optimized trajectory (black crosses in the image represent DSMs, and DSMs below

0.01 km/s are not shown). It can be seen that the fully optimized solution does not lie

far from the guess, as a first proof of the goodness of the pipeline presented in Chapter

5 and expanded in successive Chapters. As a result of a dynamic programming-based

optimization using defects model as from [239] and Chapter 5, the number of revolutions

on each leg of the transfer are 1,3,2,2,1 and 3, thus the same number of manoeuvres are

included in each leg (i.e., 1 DSM on the first leg, 3 DSMs on the second leg, and so on),

for a total of 12 DSMs. Therefore, the dimension of the vector y is d=46. Details of the

trajectory as from the MGA-nDSM model are reported in Table 3.1.

(a) (b)

Figure 3.7: EVVYYYY Messenger-like mission as from the dynamic
programming-based optimization using defects model (a) and in the MGA-nDSM model.
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Table 3.1: Results for Messenger-like mission compared to solutions from defect model
and refinement. When a manoeuvre is not present between two planetary encounters, a

’−−’ is included.

Event Defects solution Refined solution
Earth departure Jul. 31, 2005 Aug. 06, 2005

v∞,dep 3.77 km/s 3.00 km/s
∆v1 −− 1.52 km/s

Venus fly-by Oct. 16, 2006 Oct. 31, 2006
∆v2 1.239 km/s 0.567 km/s
∆v3 −− 0.00294 km/s
∆v4 −− 0.163 km/s

Venus fly-by Jan. 31, 2008 Jan. 28, 2008
∆v5 0.395 km/s 0.000649 km/s
∆v6 −− 0.0431 km/s

Mercury fly-by Dec. 30, 2008 Dec. 30, 2008
∆v7 1.094 km/s 0.152 km/s
∆v8 −− 0.0168 km/s

Mercury fly-by Sep. 24, 2009 Oct. 1, 2009
∆v9 0.193 km/s 0.219 km/s

Mercury fly-by Jun. 13, 2010 Jun. 19, 2010
∆v10 0.898 km/s 0.00136 km/s
∆v11 −− 0.000299 km/s
∆v12 −− 0.285 km/s

Mercury arrival Jun. 6, 2011 Jun. 1, 2011
v∞,arr 3.81 km/s 3.73 km/s

3.4 Conclusions

This Chapter described in detail the mathematical framework and variables’ set that will

be employed in the rest of the thesis. These correspond to the first and third building

blocks as from Table 1.2. In particular, the well-known MGA-DSM model is described

that allows for computing many real-world mission scenarios.

A model that extends the MGA-DSM is also presented to allow multiple DSM on each

planet-to-planet leg. This is called MGA-nDSM, and it has been shown how it can be

employed to design complex mission scenarios as a Messenger-like transfer to Mercury.

The main difficulty associated to such transfers is that multiple spacecraft revolutions are

needed in conjunction with DSMs to leverage the infinity velocity at the target planet, to
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enable a lighter approach.
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Chapter 4

MGA Sequences via Tisserand

Graph

The first step of the solution of MGA trajectory design, i.e., the combinatorial optimiza-

tion of feasible sequences, usually enters within the logic of multi-fidelity process [30],

which can be either explicit or implicit. One should in fact notice that the combinatorial

optimization of MGA sequences can either be made a priori, i.e., before the search of the

launch date and transfer times, or within the same logic of the search space exploration

(see Chapter 5), with neither conceptual nor computational difference. Here, an explicit

exploration is presented for the sake of simplicity when describing the framework, al-

though an implicit variant is also discussed in Chapter 5.

As discussed in Chapter 2, Tisserand graph [154] represents a valid option to quickly

assess the feasibility of different sequences connecting two celestial objects. Most of

the approaches to Tisserand graphs make use of simplified dynamical model for swing-

by objects, assuming circular-coplanar orbits around the main body attractor, as well as

zero-inclination orbits for the spacecraft transfer arcs. Therefore, compared to existing

literature, while presenting the Tisserand graphs and their usage to generate viable MGA

sequences, this Chapter also discusses their exploitation to achieve highly inclined he-
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liocentric orbits. The work has been developed in support to the Dolphin mission [75],

proposed to the 2022 ESA F/M-class call.

This Chapter articulates as follows: section 4.1 presents the mathematical steps to gener-

ate Tisserand graphs, illuminating the relationship between different model types (namely

patched conics and CR3BP). This section also shows the exploitation of resonant orbits

to change spacecraft energy connecting orbits that are not reachable with a single fly-by

at a given planet. Section 4.2 describes the steps necessary for an automatic exploration

of the Tisserand graph, also accounting for DSMs that allow to leverage the infinity ve-

locity at planetary encounters. Section 4.3 provides practical applications of Tisserand

graph exploration illustrating the capability of identifying globally optimal paths as well

as reaching high-inclination orbits exploiting Venus and Earth successive fly-bys. Sec-

tion 4.4 discusses main benefits and limitations of Tisserand graphs. Finally, section 4.5

derives the conclusions.

4.1 Generation of the Tisserand Graph

Tisserand graph has its roots in the Tisserand criterion [243], originally employed to iden-

tify variations on comets’ orbital parameters induced by Jupiter’s gravity when passing

by the planet. It can be shown [244] that the following function of comets’ semi-major

axis (a), eccentricity (e) and inclination (i) remains constant before and after the fly-by

with the planet:

T =
rpl

a
+2cos(i)

√
a

rpl
(1− e2) (4.1)

where rpl is the planet distance from the Sun. In other words, two comets observed at

different epochs sharing the same value of T , known as the Tisserand invariant, are in

fact the same comet observed before and after the fly-by with a planet. When designing

spacecraft MGA trajectories, this process is reversed, as one is interested in identifying all
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the possible spacecraft orbits, in terms of (a,e, i) that can be achieved through a swing-by

with a given planet. One should highlight that Eq. 4.1 is obtained within the CR3BP

model [244], on which the following assumptions hold:

1. The planetary orbit is assumed circular about the centre of the main-attracting body

(e.g., the Sun).

2. The masses of the Sun and planet, with mass m1 and m2, respectively, dominate the

gravity field when compared to comet’s mass.

On the one hand, although the first hypothesis might sound rather strong (see section

4.4), in most practical applications (section 4.3) the swing-by objects are characterized

by relatively low orbital eccentricities, allowing (idealized) relation in Eq. 4.1 to be still

very useful when employed in conjunction with higher-fidelity force models (see Chapter

5 and Chapter 6). On the other hand, also the second hypothesis is reasonable as typical

masses of objects (comets or spacecraft) are several order of magnitudes lower than large

bodies (planets or planetary moons) employed for swing-bys.

One notices that Eq. 4.1 is a remarkable result, describing a relationship between the

CR3BP and the patched-conic model employed in this work. This relationship is illumi-

nated by the following discussion in section 4.1.1. Eq. 4.1 is in fact obtained from the

definition of the Jacobi constant of the CR3BP that is (in non-dimensional units 1):

JC = 2
(

1− r1

ρ1
+

r1

ρ2
−1
)
+

1
a
+2cos(i)

√
a

rpl
(1− e2) (4.2)

where r1 is the distance of m1 from the centre of mass of the system M = m1+m2, and ρ1

and ρ2 are the distances of the satellite from m1 and m2, respectively. If m1 >> m2 (as in

most practical applications), then r1 ≈ 0, and ρ1 ≈ 1, i.e., the satellite and planet positions

coincide at the moment of fly-by, then one has that:

1The non-dimensional units are obtained considering: r1 + r2 = 1 and m1 +m2 = 1
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JC ≈
1
a
+2cos(i)

√
a

rpl
(1− e2) (4.3)

that is the non-dimensional form of Eq. 4.1.

One also highlights here that the application of Tisserand graphs is broader than the

patched conics approach, and it spans from the analysis of orbital evolution of small

celestial objects (e.g., asteroids), study of resonant orbits with planetary moons (e.g., at

Jupiter or Saturn), or study of ballistic orbital injection at moons (e.g, Ganymede or Cal-

listo).

4.1.1 Derivation of Tisserand Graph Equations

To assess the effect on spacecraft orbital parameters induced by a close passage with a

large object, one wants to find the relationship between the parameters (v∞,α,k) describ-

ing the encounter with a planet (see also Figure 4.1) with the spacecraft orbital elements

(a,e, i). Three equations are searched for this purpose. These are obtained following

the procedure adapted from [244]. This analysis assumes a crossing orbit from which

the relative velocity (or v∞) may be derived. Tisserand’s equation also applies for non-

crossing orbits, where crossing refers to orbits that either intersect a planet’s orbit or pass

through its SOI – in which case the v∞ based formulation may not be used as v∞ is then

undefined.

Figure 4.1 illustrates the anatomy of a planetary encounter and the relationship between

spacecraft and planet velocities, i.e. v⃗ and v⃗pl , respectively, that is the spacecraft velocity

relative to the planet v⃗∞, also known as infinity velocity. The angle α measures the tilt

between v⃗pl and v⃗∞, ranging between 0 to 180 degrees. The angle k, defined from -90 to

90 degrees, measures the rotation of the plane described by the triangle of v⃗, v⃗pl and v⃗∞

with respect to the plane of the gravity-assist body, identified by planetary position r⃗pl and

velocity v⃗pl . From Figure 4.1, k = arccos(p̂3 · ĉ3), where ĉ3 = v⃗pl× v⃗/||⃗vpl× v⃗||.
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Figure 4.1: Velocity triangle for a planetary encounter and reference frames.

The reference frame P = (p̂1, p̂2, p̂3) is then defined as 2:


p̂1 = r̂pl

p̂2 = v̂pl

p̂3 = p̂1× p̂2

(4.4)

where r̂pl = r⃗pl/||⃗rpl|| and v̂pl = v⃗pl/||⃗vpl|| are unitary vectors in the direction of planetary

position and velocity, respectively (recall that p̂1 and p̂2 are orthogonal because it is as-

sumed circular planetary orbit). The angle k thus defines a reference frame C = (ĉ1, ĉ2, ĉ3)

such that:


ĉ3 = v⃗pl× v⃗/||⃗vpl× v⃗||= sin(k)p̂1 + cos(k)p̂3

ĉ2 = p̂2

ĉ1 = ĉ2× ĉ3 = cos(k)p̂1− sin(k)p̂3

(4.5)

on which the vector is conveniently written as:

v⃗∞ =−v∞ sin(α)ĉ1 + v∞ cos(α)ĉ2 (4.6)

2Quantities without vector sign represent the magnitude, i.e. ||(⃗·)||= (·)
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A clockwise rotation of P = (p̂1, p̂2, p̂3) about p̂1 of an angle i, i.e., the spacecraft or-

bital inclination, allows to identify the spacecraft orbital plane that defines the frame

S = (ŝ1, ŝ2, ŝ3) such that:


ŝ1 = p̂1

ŝ2 = cos(i)p̂2 + sin(i)p̂3

ŝ3 =−sin(i)p̂2 + cos(i)p̂3

(4.7)

In such frame, the spacecraft velocity vector v⃗ is conveniently written as:

v⃗ = vsin(γ)ŝ1 + vcos(γ)ŝ2 (4.8)

where γ is the spacecraft flight-path angle measured between ŝ2 and v⃗. Combining Eq.

4.5 and 4.6, one has:

v⃗∞ =−v∞ sin(α)cos(k)p̂1 + v∞ cos(α)p̂2 + v∞ sin(α)sin(k)p̂3 (4.9)

And using Eq. 4.7 and 4.8:

v⃗ = vsin(γ)p̂1 + vcos(γ)cos(i)p̂2 + vcos(γ)sin(i)p̂3 (4.10)

Moreover, since v⃗∞ = v⃗− v⃗pl and v⃗pl = vpl p̂2 as in Eq. 4.4, substituting Eq. 4.10, one

finds that:

v⃗∞ = vsin(γ)p̂1 +(vcos(γ)cos(i)− vpl)p̂2 + vcos(γ)sin(i)p̂3 (4.11)

Therefore, combining Eq. 4.9 and 4.11:

96



CHAPTER 4. MGA SEQUENCES VIA TISSERAND GRAPH


−v∞ sin(α)cos(k) = vsin(γ)

v∞ cos(α) = vcos(γ)cos(i)− vpl

v∞ sin(α)sin(k) = vcos(γ)sin(i)

(4.12)

Rewriting the second equation as v∞(cos(α)+
vpl
v∞
), and dividing by the third one, one

finds:

sin(k) = tan(i)

(
cos(α)+

vpl
v∞

sin(α)

)
(4.13)

Which is the first relation needed to assess the effect of a gravity assist with the spacecraft

orbit at the planetary encounter, as it links fly-by parameters (v∞,α,k) with the spacecraft

inclination i.

The second relation can be obtained by considering the cosine-law between v⃗, v⃗pl and

v⃗∞:

v2 = v2
∞ + v2

pl +2v∞vpl cos(α) (4.14)

Through the vis-viva equation, it is possible to relate v with the spacecraft semi-major

axis a, v2 = 2µ

r −
µ

a , where µ is the gravitational parameter of the Sun and r is the Sun-

spacecraft distance which coincides with rpl in patched-conic approximation. Under the

assumption of circular planetary obits around the Sun, one uses the circular velocity vpl =√
µ/rpl to find the following relation:

(
v

vpl

)2

=
(

2−
rpl

a

)
(4.15)

Then, combining Eq. 4.14 and 4.15, one has:
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rpl

a
= 2− 1

v2
pl
(v2

∞ + v2
pl +2v∞vpl cos(α)) (4.16)

that is the second relation needed to assess the effect of a gravity assist on spacecraft

orbital elements (a,e, i). In fact, Eq. 4.16 relates the semi-major axis a with parameters

(v∞,α).

The third relation can be obtained by squaring Eq. 4.11 and by recalling that
√

µa(1− e2)=

rvcos(γ) through the definition of the specific angular momentum of spacecraft orbit

h⃗ = r⃗× v⃗. In this way, one has:

(
v∞

vpl

)2

=

(
v

vpl

)2

+1−2cos(i)
√

a
rpl

(1− e2) (4.17)

Where r = rpl and vpl =
√

µ/rpl have been suitably employed. Combining Eq. 4.15 and

4.17, one finally has:

3−
(

v∞

vpl

)2

=
rpl

a
+2cos(i)

√
a

rpl
(1− e2) (4.18)

which is the third relation needed. Right-hand side of Eq. 4.18 coincides with the Tis-

serand invariant T defined in Eq. 4.1, thus one has that T = 3−
(

v∞

vpl

)2
, or in terms of

the Jacobi constant from Eq. 4.3 JC ≈ 3−
(

v∞

vpl

)2
, illustrating the relationship between

CR3BP and patched-conic model and showing that the infinity velocity magnitude re-

mains constant during a close passage with a planetary swing-by.

To sum up, Eq. 4.13, 4.16 and 4.18 are the searched relations and are here reported:



sin(k) = tan(i)
(

cos(α)+
vpl
v∞

sin(α)

)
rpl
a = 2− 1

v2
pl
(v2

∞ + v2
pl +2v∞vpl cos(α))

3−
(

v∞

vpl

)2
=

rpl
a +2cos(i)

√
a

rpl
(1− e2)

(4.19)
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These permit to visualize spacecraft orbit in terms of (a,e, i) parametrized with respect

to (v∞,α,k). For a given v∞, any fly-by with a planet moves the spacecraft orbit along

the constant v∞ rotating the vector v⃗∞ of an amount δ and ∆k = k+− k− 3. One recalls

from Chapter 3 that the angle δ represents the rotation of vector v⃗∞ around v⃗pl and it is

governed by v∞ and the hyperbola periapsis during the fly-by (see again Chapter 2). Figure

4.2 shows the spherical relationship between these three angles, governed by vectors v⃗pl ,

v⃗−∞ and v⃗+∞ .

Figure 4.2: Spherical relationship between v⃗pl , v⃗−∞ and v⃗+∞ (vectors pointing out of the
plane).

Spherical cosine-law solved for ∆k yields to the following relationship:

cos(∆k) =
cos(δ )− cos(α+)cos(α−)

sin(α+)sin(α−)
(4.20)

which highlights the dependency of ∆k from α+ and α−. For different values of (v∞,α,k),

from Eq. 4.19 one then obtains different spacecraft orbital loci, that can be represented in

a map as in Figure 4.3. Specifically, Figure 4.3a shows the relationship between spacecraft

apoapsis ra = a(1+ e), periapsis rp = a(1− e) and inclination i for different encounter

options at the Earth in terms of (α,k) for fixed infinity velocity v∞ = 5 km/s. On the one

hand, if α = 0 deg, then the spacecraft velocity is aligned with the planet one, correspond-

ing to the highest orbital energy for a given v∞ magnitude; if α = 180 deg, the spacecraft

3Superscripts ’+’ and ’-’ refer to quantities before and after the fly-by
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velocity is anti-parallel to the planet’s one, resulting in the lowest orbital energy for the

given v∞. On the other hand, a planetary encounter with k = 0 deg corresponds to an

i = 0 deg, while the maximum inclination is achieved at k = 90 deg in correspondence of

α = 90 deg.

(a) (b)

Figure 4.3: Relationship between apoapsis, periapsis and inclination for a fixed v∞ = 5
km/s at the Earth (a). Plot (b) represents infinity velocity contours of 5 km/s at Venus

and Earth on the plane k = 0 deg.

This is a very important consideration, as one notices from the first relation in Eq. 4.19

that the maximum achievable inclination with a planetary swing-by is limited by the

spacecraft relative velocity to the planet, i.e., v∞, no matter how many swing-bys the

spacecraft performs with the given planet. Therefore, if the aim of the mission is to maxi-

mize the spacecraft orbital inclination, according to Eq. 4.19 one should maximize the v∞

at the planetary encounter and perform a fly-by such that k+ = k−+∆k = 90 deg. Later

section 4.3.2 discusses such mission options in detail. From Figure 4.3.b, intersections be-

tween contours associated to different planetary encounters correspond to transfer orbits

between the two planets, i.e., to orbits that cross two planets at the same time. However,

this opportunity only exists from an energetic point of view, since Eq. 4.19 contains no

explicit information regarding planetary phase and transfer times. This is in fact the main

limitation of Tisserand graphs, as it is discussed in later section 4.4. An MGA sequence on

the Tisserand graph would thus look like as a sequence of intersections between contours
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(see also section 4.2), i.e., as a sequence of orbits that connects two planetary orbits.

(a) (b)

Figure 4.4: Earth-Venus-Mars (a) and Earth-Venus-Earth-Earth-Jupiter (b) paths on the
Tisserand graph. The v∞ have discrete values of 3,3.3,3.6. . . km/s (increasing

downwards).

Moving along the Tisserand graph thus consists in linking different intersections through

planetary fly-bys. This implies a variation in the angle α along a given planetary contour

that is induced by the fly-by with that planet. Figure 4.4a shows an Earth-Venus-Mars

(EVM) path that starts at the intersection between Earth and Venus contours at infinity

velocity equal to 3.3 km/s and 6 km/s, respectively, moves along Venus contour at 6 km/s,

i.e., performing the fly-by with Venus, and ends at the next intersection with Mars at 6

km/s. The maximum variation of α along any contour is limited by the minimum fly-by

altitude admissible for the given planet as in Eq. 3.3. Thus, two consecutive intersections

can by linked with a single fly-by only if δ = α+−α− does not exceed its maximum

value, occurring at the minimum swing-by altitude for a given v∞ as in Eq. 3.3. If this

condition is not satisfied, multiple swing-bys with the same planet can be used to progres-

sively modify α allowing distant intersections to be linked. This is shown in Figure 4.4b,

where the sequence EVEEJ exploits a mid-course fly-by with the Earth at v∞ = 9 km/s

that connects the intersection between the EV contours to the one at EJ.
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4.1.2 Resonant Loci on Tisserand Graph

Since the change of the orbit induced by a single fly-by is limited by the minimum altitude

the spacecraft can have during the manoeuvre, a single fly-by may be insufficient to reach

the next planet. Table 4.1 reports minimum altitudes that are typically employed for Solar

System planets [154, 174].

Table 4.1: Minimum gravity-assist altitudes and periapsis for Solar System planets (until
Saturn).

Planet hmin (km)
Mercury 200
Venus 200
Earth 200
Mars 200

Jupiter 349555
Saturn 116464

One thus needs to find intermediate orbits that are reachable on the contour, as with res-

onant transfers. These transfers allow the spacecraft to perform a 360 degrees revolution

(or multiples) around the Sun on a same planet-to-planet transfer, hence re-encountering

the planet for a consecutive gravity assist. On resonant transfers, a ratio of integers exists

between the planet and the spacecraft orbit periods. The ratio is expressed as N:M, where

N and M are the number of planet and spacecraft revolutions, respectively.

For Solar System planets, the most common resonances are listed in Table 4.2, alongside

with practical examples of actual space missions making use of specific resonant ratios.

As an example, missions towards Jupiter, like Galileo [170], can usefully exploit the

2:1 resonance on consecutive Earth fly-bys to increase the apoapsis on an overall EVEEJ

strategy. Resonances could be also used in conjunction with DSMs to increase or decrease

the infinity velocity magnitude with respect to a given planet [187]. This could be useful

to leverage the planet-spacecraft relative velocity (see also section 4.2.2), to allow for a

more convenient spacecraft capture around a given planet or even planetary moon, such

as Europa [167–169] or Enceladus [176–178].
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Table 4.2: Common resonances for innermost Solar System planets.

Planet Resonance Examples

Mercury

0.5:0.5 BepiColombo phasing with Mercury
1:1 BepiColombo and Messenger energy reduction [25]
6:5 BepiColombo energy reduction and v∞ leveraging [25]
5:4 BepiColombo energy reduction and v∞ leveraging [25]
4:3 BepiColombo energy reduction and v∞ leveraging [25]
3:2 BepiColombo and Messenger energy reduction [25]

Venus

1:1
BepiColombo energy reduction and Solar Orbiter energy

modification [25, 173]

2:1
Cassini like transfer for energy increase and v∞ leveraging

manoeuvre with DSM [171]

3:4
BepiColombo energy reduction and Solar Orbiter plane changing

and energy reduction [25, 173]
2:3 Solar Orbiter plane changing [25, 173]
1:2 Solar Orbiter plane changing [25, 173]

Earth

1:1 JUICE plane change [182] and v∞ leveraging
2:1 Galileo energy increase [170] and v∞ leveraging
3:1 Uranus Pathfinder energy increase [245] and v∞ leveraging
2:3 Solar Orbiter option for energy modification [173]
3:2 Potential use for plane change manoeuvre

Mars
1:1 Potential use for asteroid/comet rendezvous
2:1 Potential use for asteroid/comet rendezvous

3:1
Potential use for asteroid/comet rendezvous and energy increase

for low-v∞ Jupiter approaches

The N:M ratio defines a strong relation between the planet and spacecraft revolutions

around the Sun:

Tres =
N
M

Tpl (4.21)

where Tres is the orbital period of the spacecraft resonant orbit and Tpl is the planetary

period around the Sun. It is thus possible to compute the spacecraft semi-major axis ares

by inverting Tres = 2π
√

a3
res/µ . For any given v∞ one can then use the second equation

of 4.19 to find the corresponding α . The searched relation is thus:
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αres = arccos

(
vpl

2v∞

(
1−
(

v∞

vpl

)2

−
rpl

ares

))
(4.22)

Not all the resonant orbits defined by the N:M ratio are always possible. In fact, from Eq.

4.22 a resonant orbit is achievable for a given v∞ only if the argument of the arc-cosine is

between -1 and 1, i.e., only if:

∣∣∣∣∣ vpl

2v∞

(
1−
(

v∞

vpl

)2

−
rpl

ares

)∣∣∣∣∣≤ 1 (4.23)

One can finally use Eq. 4.19 to find all the relevant orbital parameters for a given resonant

ratio, e.g., (ra,rp, i) , by parametrizing with respect to v∞ and k. Figure 4.5 represents a

Tisserand graph (k=0) with defined resonant orbits at Venus, Earth, and Mars.

Figure 4.5: Orbits at different v∞ at Venus, Earth, Mars, and Jupiter. Some resonant
orbits are also represented for Venus, Earth, and Mars. The v∞ have discrete values of

3,4,5. . . km/s (increasing downwards).

Figure 4.6 shows an example of the exploitation of resonant transfers to connect Venus

contour at 5 km/s and Mars contour at 5 km/s. Assuming a minimum fly-by altitude of

10000 km at the Earth (v∞=5 km/s), a single fly-by is not sufficient to reach the next

intersection. The 1:1 resonance is thus used so that Mars can now be reached.
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(a) (b)

Figure 4.6: Exploitation of 1:1 resonance at Earth (v∞=5 km/s) to connect Venus (v∞=5
km/s) and Mars contours (v∞=5 km/s). [181]

4.2 Exploration of the Tisserand Graph

This section deals with the exploration of the Tisserand graph to construct planetary se-

quences. This is the core of the AUTOMATE toolbox [181], as defined in Chapter 1.

Exploring a Tisserand graph consist in evaluating the effect of all the possible sequences

of planetary swing-bys in the parameters of the Tisserand invariant. It is thus possible to

identify all the planetary sequences and excess velocities which are energetically feasi-

ble to reach the desired target orbit by connecting contours of two different planets when

intersections occur. Three steps are necessary and are tackled in the following: (1) the

generation of all the intersections between different planetary contours, (2) the infinity

leveraging manoeuvres to change the v∞ with respect to a planet, and (3) the generation

of MGA sequences linking successive intersections along a given contour.

4.2.1 Constructing the Intersections

As stated, the aim is to connect the intersections between infinity velocity contours of

different planets by means of successive ‘jumps’ induced by the planetary gravity along

each line that modify the α angle (according to the minimum fly-by altitude constraint).

Intersections between contours on the Tisserand graph are determined by solving the non-
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linear problem:

rp1(E)− rp2(E) = 0 (4.24)

where rp1 and rp2 are the periapsis radii on the two contours, expressed as functions of

the orbital energy E. These are obtained through rp = a(1− e) from Eq. 4.19 for any v∞

and vpl (provided k = 0 deg⇒ i = 0 deg). One recalls that the orbital energy E is related

to the semi-major axis a through E = −µ/(2a). Eq. 4.24 has been explicitly written as

function of the orbital energy E to stress the fact that the intersections on Tisserand map,

i.e., transfers orbits between two planets, only exist from an energetic point of view, with

no explicit consideration of transfer time or planetary phasing.

Algorithm 1 Pseudo-code for computing all the intersections between any infinity
velocity contour of different planets.

1: Select the planets for fly-bys (ordered by their distance from the Sun 4), and a set of
infinity velocities:

2: for each planet Pi do
3: for each infinity velocity v∞ in the set do
4: Generate the v∞ contour for Pi (Eq. 4.19)
5: for each planet Pj such that j > i do
6: for each infinity velocity v∞ in the set do
7: Generate the v∞ contour for Pj (Eq. 4.19)
8: Solve Eq. 4.24 with Newton-Raphson method to find intersections
9: Compute and store the orbits (Eq. 4.19)

10: end for
11: end for
12: end for
13: end for

It is now possible to compute all the intersections between different contours for any

planet and for any v∞, as shown in Algorithm 1. As it can be seen, one needs to define a

set of infinity velocities at which the spacecraft encounters any planet. In theory, any set

would contain infinite values for v∞ (since it is a continuous-varying variable), however a

4For example, if V, E and M are selected, one has an ordered vector: [P1,P2,P3] = [V,E,M].
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common practice is to discretise the values that v∞ can assume between a minimum and a

maximum. The choice of such extremal values, alongside the step size, is rather arbitrary

and depends upon the application. A typical way of proceeding would be to assign ex-

tremal values that are ample enough to account for a variety of encounters (say between 1

to 20 km/s) and step sizes of at least one order of magnitude less than the corresponding

planet orbital velocity (e.g., 0.5-1 km/s for innermost planets like Mercury, Venus, and

Earth, and 0.5 km/s for slower planets like Jupiter, Saturn, Uranus and Neptune). Such

values are enough to represent a wide variety of planetary sequences, also finding refer-

ences solutions and globally optimal paths (see section 4.3). Figure 4.7 highlights all the

possible intersections between Earth and Mars computed by means of Algorithm 1.

Figure 4.7: Intersections between Earth and Mars contours. The v∞ have discrete values
explicitly reported in the plot.

4.2.2 Changing the Relative Velocity at a Planetary Encounter

A fly-by with a given planet does not change the infinity velocity at the encounter, which

remains constant (in magnitude) as demonstrated by Eq. 4.19. However, some mis-

sions might still benefit of infinity velocity changes with respect to a given planet mainly

to:

107



4.2. EXPLORATION OF THE TISSERAND GRAPH

• Reduce the relative speed to lower the magnitude of the orbit insertion manoeuvre

at the target planet (e.g., Messenger [132], BepiColombo [133], Europa orbiter

studies [167–169])

• Increase the relative speed to escape innermost regions of the system (e.g., Juno

[246], Cassini [171])

In order to change the relative velocity with a given planet a DSM is needed, which allow

to perform a so-called v-infinity leveraging transfer (VILT) [178,187]. It is assumed that:

(1) the DSM is performed at one of the two apses of the transfer orbit, and that it is

aligned with the orbital velocity, (2) the VILTs are applied on resonant orbits in between

consecutive fly-bys with the same object. The anatomy of the VILT is represented in

Figure 4.8 5.

Figure 4.8: Anatomy of interior and exterior VILTs. Note that multiple revolutions can
happen.

The problem is connecting two intersections on the Tisserand map, namely (α ,v∞) and

(α ′′′,v′′′∞ ), such that v∞ ̸= v′′′∞ . The idea is that the spacecraft encounters a planet at given

conditions (α ,v∞), it executes a fly-by and reaches the orbit (α ′,v′∞), with v∞=v′∞. The

spacecraft then performs a DSM either at the apoapsis (exterior VILT) or at the periapsis

(interior VILT) that allows to jump from (α ′,v′∞) to (α ′′,v′′∞). A fly-by is then performed

5Figure 4.8 is for representation only: multiple revolutions can occur on VILT manoeuvres.
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such that (α ′′′,v′′′∞ ) is achieved, implying v′′∞ = v′′′∞ , that is only if |α ′′′−α ′′| ≤ δmax, where

δmax is a function of v′′∞.

The parameters defining the DSM are thus v∞ = v′∞, v′′∞ (fixed parameters), α ′ and kei

(free parameters), the latter being kei =−1 or kei =+1 if the DSM is interior or exterior,

respectively. The parameter α ′, i.e., the post-fly-by angle, is free as the VILT is considered

phase-free, i.e., the planet is not assured to be re-encountered after the manoeuvre. If one

wants to include the phasing constraint, and thus to fix the post-fly-by orbit, the procedure

presented in [178] should be followed. This assumes that the spacecraft is injected into a

quasi-resonant orbit N:M after the first fly-by and waits a number of revolutions L < M

before performing the manoeuvre, such that the next encounter with the planet is enforced.

In any case, the α ′ must still obey to the maximum-deflection rule, i.e., |α ′−α| ≤ δmax =

f (v∞). An example of VILT manoeuvre is shown in Figure 4.9, on which a ∆v manoeuvre

(applied at the apoapsis in this case) changes the periapsis around the 2:1 resonant locus

with Venus, to jump from 7 km/s to 9 km/s with respect to the planet. This allows to

connect the Earth contours at 4 km/s and 9 km/s.

Figure 4.9: Example of a DSM to change the infinity velocity at Venus from 7 km/s to 9
km/s. A quasi-resonant 2:1 orbit is exploited for this purpose.

The point at which the spacecraft performs the manoeuvre is the leveraging apse, and its
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distance from the central body is:

rla = a(1+ keie) (4.25)

Solving for e and substituting into the third equation of 4.19, one gets the following

quadratic equation:

4ar2
la

r3
pl
− 8a2rla

r3
pl

+
a2T 2

r2
pl
− 2aT

rpl
= 0 (4.26)

where T = 3− (v∞/vpl)
2 is the Tisserand parameter. Therefore, one starts with a given

(α ,v∞) in the Tisserand map, e.g., at an intersection between two contours, which implies

v∞ = v′∞. The leveraging apse rla can be computed from Eq. 4.25 as a function of a′ (or

α ′ using Eq. 4.19), for a given kei. For the post-manoeuvre orbit, rla remains constant,

thus one can use Eq. 4.26 to solve for a′′, i.e., the semi-major axis of the post-manoeuvre

orbit, for a given T ′′ = 3− (v′′∞/vpl)
2.

The resulting ∆v is given by the velocity difference of the two orbits (before and after the

manoeuvre, i.e., (α ′,v′∞) and (α ′′,v′′∞), respectively) at the leveraging apse:

∆v =

∣∣∣∣∣
√

2µ

rla
− µ

a′
−

√
2µ

rla
− µ

a′′

∣∣∣∣∣ (4.27)

As stated, the ∆v would be a function of a′ (or α ′ using Eq. 4.19) since no planetary

phasing is enforced for the transfer. Thus, two options are available:

• Either one selects the minimum ∆v provided that is below a tolerance ∆vtol (e.g.,

0.5 km/s)

• Or one solves the phasing problem for a′ (or α ′) [178]

Algorithm 2 presents the procedure for computing the VILT manoeuvres that are useful

to link two intersections on the Tisserand map that do not share the same infinity velocity
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with a given planet.

Algorithm 2 Pseudo-code for computing VILT transfers.

1: Select the starting point (α ,v∞), arrival point (α ′′′,v′′′∞ ), a set of target infinity veloci-
ties (after the DSM) and ∆vtol

2: for each v′′∞ in the set do
3: for α ′ ∈ [0,180] deg do
4: if |α ′−α| ≤ δmax(v∞) then
5: Find (a′,e′) from (α ′,v′∞ = v∞) (Eq. 4.19)
6: for kei =+1,−1 do
7: Compute rla (Eq. 4.25)
8: Find a′′ (Eq. 4.26)
9: Compute minimum ∆v (Eq. 4.27)

10: if ∆v≤ ∆vtol then
11: Compute α ′′ from (a′′,e′′) (Eq. 4.25 and 4.19)
12: if |α ′′′−α ′′| ≤ δmax(v′′∞) then
13: Save (α ′,v′∞), (α

′′,v′′∞) and ∆v
14: end if
15: end if
16: end for
17: end if
18: end for
19: end for

A typical example for the use of VILTs is the exploration of moons’ systems around the

gas giants, namely Jupiter and Saturn. Figure 4.10 shows an example of a tour in the

Jovian system obtained on Tisserand graph. The aim is to rendezvous with the moon

Europa at the lowest v∞ possible, as this impacts the ∆v for inserting a spacecraft around

the moon. The tour departs at a high eccentric orbit at Ganymede at approximately 7

km/s of relative velocity with the moon [25]. Figure 4.10.a shows the approach at Europa

using successive resonant fly-bys at Ganymede in 8:1, 4:1 and 5:2 resonant ratios. Then

fly-bys at Europa and Ganymede allows for gradual reduction of the infinity velocity at

Europa up until 3 km/s. The leveraging tour is then computed using Algorithm 2, such

that successive pseudo-resonant transfers with Europa at 5:3, 3:2, 5:4 and 11:10 are built

in conjunction with DSMs that allow the infinity velocity jumps. This is shown in Figure

4.10.b. This phase allows to reach 0.5 km/s of relative velocity at Europa, with a total ∆v

of 452 m/s.
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(a) (b)

Figure 4.10: Figure (a) shows a possible tour with Ganymede and Europa fly-bys to
reduce the infinity velocity at Europa up until 3 km/s. The infinity velocity contours go

from 1 km/s to 7 km/ with step size of 1 km/s. Figure (b) shows the VILT tour at Europa.
Red arrows represent DSMs. The infinity velocity contours go from 0.5 km/s to 3 km/

with step size of 0.5 km/s. Axes are normalized with respect to Jupiter radius RJ .

In Appendix D, a more complex scenario with 49 fly-bys with Saturn moons is also pre-

sented. To prevent factorial explosion of trajectory options in terms of sequences of fly-

bys and DSMs, dynamic programming (see also Chapter 5) is used to find optimal solu-

tions (either single- or multi-objective) while mitigating computer memory issue.

4.2.3 Finding MGA Sequences

The last step of the exploration of a Tisserand graph consists in connecting intersections

along a given planetary infinity velocity contour, i.e., by performing either a fly-by with

the given planet or a DSM exploiting existing resonances. As it can be seen from Figure

4.7, a given infinity velocity contour associated to a planet might intersect with multiple

contours of another planet. This suggests that a tree representation of the possible inter-

sections might be beneficial in order to conveniently explore the graph. Let’s consider

a planetary sequence that is ABC. On a tree-like Tisserand graph, each node encodes

the minimum set of variables that define an intersection, which are [(α,v∞)A,(α,v∞)B],

namely α and v∞ for the two different planets A and B that are being connected. Each
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edge of the tree-like Tisserand graph connects two intersections by means of a fly-by,

namely [(α,v∞)A,(α
−,v∞)B]→ [(α+,v∞)B,(α,v∞)C].

Figure 4.11: Tree structure for Tisserand graph. [181]

Figure 4.11 shows the tree-like structure of Tisserand graph. In this case, the planets

considered are Mercury (Y), Venus (V), Earth (E), and Mars (M). The infinity levels grid,

for the sake of simplicity, is only made by 3, 5 and 7 km/s contours at each planet. One

wants to reach Mercury after an Earth departure set at v∞ =5 km/s, namely E5 in the

image. All the contours that intersect E5 are those with Mars at 3, 5 and 7 km/s (i.e.,

M3, M5 and M7 in Figure 4.11) and Venus at 5 and 7 km/s (i.e., V5 and V7). This set

of intersections (namely M3, M5, M7, V5, V7) corresponds to the first depth-level of the

tree. Starting from all the intersections found, another depth-level can be constructed by

finding all the intersections with the ones at the previous level. One proceeds by adding

levels until a maximum depth is reached. If the maximum depth is set to 4, all the paths

finishing with the nodes represented in green will be saved in the output. The paths

finishing in with a red node are not, as the depth of these nodes is greater than 4 (more

layers are shown in Figure 4.11 for representation purposes). In this case, six paths are

found with four different sequences: EMEVY, EMVY, EVEVY and EVY. In this case,

one does not optimize mission analysis metrics, but simply lists all the feasible MGA

sequences that reach Mercury with the given set up.

The number of combinations to be explored is usually manageable by a complete enu-

meration strategy [162] for interplanetary flights, since a maximum of 4-5 swing-bys is

sufficient to reach any object in the Solar System, and it is also an ample enough range

resulting in transfer times in the order of 5 to more than 20 years (see also Chapter 5). A
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breadth-first exploration [162] is used here. One can envisage mission options for which

incomplete approaches might be needed (see [167–169] or Appendix D).

Algorithm 3 Pseudo-code for planetary sequences generation on Tisserand map.
1: Select the departing planet, departing conditions, planets for fly-bys, set of infinity

velocities, maximum tree depth and ∆vtol
2: Compute all the resonances using Eq. 4.21-4.23
3: Compute all the intersections between planets (Algorithm 1)
4: Compute all the resonant orbits (see Table 4.2 and Eq. 4.21-4.22)
5: for all the intersections that satisfy the departing conditions do
6: while the maximum tree depth is not reached do
7: Extract intersections reachable from current ones along the given v∞ contours
8: for those that cannot be reached with a single fly-by do
9: if resonances are available then

10: Perform fly-bys exploiting the resonant transfer
11: Save the transfers
12: end if
13: Perform as many fly-bys as needed to achieve the next intersection
14: end for
15: for intersections that do not share the same infinity velocity contour do
16: Connect the intersections by means of DSMs (Algorithm 2)
17: end for
18: end while
19: end for

Algorithm 3 summarizes the main steps of the generation of sequences from Tisserand

graphs. It starts by defining the departing planet, with desired departing conditions (e.g.,

v∞ ≤ 5 km/s), the desired arrival planet, the maximum number of legs of the overall

MGA sequences, and the v∞-levels set-up (minimum and maximum value, and step size).

Algorithm 1 is to compute all the intersections for the given set up. The tree is then

built, only saving those intersections that can be reached within the maximum deflection

allowed for the given fly-by condition. If this condition is not met, intermediate fly-

bys between two intersections are included (both exploiting resonances and performing

as many maximum-deflection fly-bys as needed). If a resonance is to be exploited, the

algorithm checks if DSM can be performed to change the infinity velocity at the planet,

and to reach another intersection (Algorithm 2).
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4.3 Practical Applications

In this section, several mission scenarios are discussed by means of the processes de-

scribed in this Chapter. In particular, sequences towards Jupiter are analysed in section

4.3.1 to assess the efficiency of proposed algorithms to replicate referenced transfers, as

well as to identify sequences that well correspond to the theoretical ∆v-minimum so-

lutions. Sections 4.3.2 and 4.3.3 show how Tisserand graphs can be helpful to design

complex MGA sequences that allow access to high-inclination orbits.

4.3.1 Earth-Jupiter Missions

Tisserand graphs are very convenient obtain a wide range of planetary encounters which

are feasible from an energetic point of view, and one finds transfers that approximate

global optimality for a given transfer scenario. An exemplar application is the Earth

(E) – Jupiter (J) scenario, where an automatic exploration of the Tisserand map finds 27

sequences with 3 to 5 fly-bys for an infinity velocity range of 3 to 5 km/s at the Earth

and up to 6 km/s at Jupiter with step sizes of 1 km/s between different contour lines. Few

seconds are needed to scan the Tisserand map and list the MGA sequences on standard

laptop (i.e., 4 GHz single core).

(a) (b)

Figure 4.12: EVEMMMJ sequence compared to EVEEJ (a) and EVEMEJ (b).
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Despite the relatively high number of trajectory options to be analyzed in successive op-

timization steps, the convenient search space transcription in conjunction with dynamic

programming approach (see Chapter 5) leads to manageable computational effort (see

again Chapter 5) so that a robust and efficient exploration of the whole search space can

be performed neither with a priori knowledge on the solution nor the need of stochastic

meta-heuristic strategies.

Among all the trajectory options, Figure 4.12 shows that sequences like EVEMMMJ well

approximate the theoretical global optimum from Hohmann-like transfers for a mission

from Earth to Jupiter, when compared to well-known transfers such as EVEEJ, as in Fig-

ure 4.12.a, and EVEMEJ, as in Figure 4.12.b, i.e., sequences considered, for example,

for Galileo mission [170] or JUICE [6]. In fact, having successive Mars fly-bys, in res-

onance with the planet on a 2:1 and 3:1 resonant ratio on each consecutive MM legs,

allows to approximate the theoretical Hohmann transfer model, with a near-half ellipse

transfer from Earth to Venus on the first leg and a near-half ellipse from Mars to Jupiter

on the last leg. Such global optimum solution can be analyzed intuitively from the fact

that a typical cost function that considers the sum of all the manoeuvres in the transfer

(similar to the later Eq. 4.29, see also Chapter 5) 6 is dominated by departing and arrival

infinity velocities (v∞,dep and v∞,arr, respectively). In each transfer, the lowest v∞,dep to

reach Venus ranges between 2.9 and 3.5 km/s depending on launch date. For the EVEEJ

and EVEMEJ cases, the lowest v∞,arr at Jupiter estimated from a Hohmann transfer from

Earth to Jupiter is approximately 5.6 km/s. However, for the EVEMMMJ case, the Mars

gravity assist raise the perihelion of the spacecraft trajectory so that the final leg lies close

to a Hohmann transfer between Mars and Jupiter, where the lowest possible v∞,arr is now

4.3 km/s, which minimizes the ∆v required for the mission, at the price of an extended

transfer time of about 17.7 years. The trajectory in such case is shown in Figure 4.13

where the 2:1 and 3:1 resonances intervene on the successive Mars-Mars transfers.

6accounting for infinity velocities at departing and arrival planet
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Figure 4.13: EVEMMMJ transfer exploiting 2:1 and 3:1 resonant transfers on the
successive MM legs.

4.3.2 High-Inclination Orbits via Resonant Loci

Some missions might benefit from high-inclined orbits (e.g.,≥ 10 deg) to achieve specific

objectives. This is the case of ESA’s Solar Orbiter mission [173], or JUICE mission [6], or

even Dolphin mission proposal [75]. Tisserand graphs can then be used to analyze differ-

ent planetary sequences that allow for plane-change manoeuvres by means of successive

swing-bys.

The maximum inclination imax achievable after a planetary fly-by can be deduced from

the first relation of Eq. 4.19:

imax = arctan
(

v∞ sinα

vpl + v∞ cosα

)
(4.28)

In this way, it is possible to map the maximum inclination achievable with a fly-by for

different Solar System planets for any given relative velocity v∞, as in Figure 4.14. As

it can be seen from Figure 4.14, the maximum reachable inclinations increase with the

distance of the objects from the Sun (Mercury being the closest and Saturn the farthest

among the ones considered here), as this depends inversely upon the planetary velocity
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as from Eq. 4.28 (i.e., for a given relative velocity, the farther the planet, the lower its

velocity with respect to the Sun, the higher the maximum inclination achievable). Figure

4.14 also shows that, in order to maximize the inclination after a planetary swing-by, the

planet-spacecraft relative velocity should be the maximum possible.

Figure 4.14: Maximum inclination achievable for different Solar System planets with
respect to the spacecraft relative velocity.

It should be noted that the maximum deflection rule expressed as in Eq. 3.3 imposes a

limit on the maximum achievable plane change (in terms of ∆k) for a given planetary

encounter. Moreover, provided a planetary encounter condition in terms of (v∞,α), in

order to maximize the ∆k (i.e., to maximize the variation of inclination ∆i as from the first

relation in Eq. 4.1), one should maximize the deflection δ , that is inversely proportional

to v∞. Therefore, it is likely that the maximum inclination would not be achievable with a

single planetary fly-by. In addition, from Eq. 4.20, the gravity of the planet influences the

∆i, as the lower the gravity field, the lower the deflection δ , thus the lower the inclination

change ∆i. In this sense, planets like Mercury or Mars are not particularly useful to max-

imize inclination change ∆i, due to their relatively weak gravity field (i.e., approximately

one order of magnitude lower than Venus and Earth, and three with respect to Jupiter and

Saturn).
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4.3.3 Possible Strategies Exploiting Resonant Orbits

A possible strategy to achieve high-inclination orbits would be to increase spacecraft rel-

ative velocity with respect to a given planet (e.g., Solar Orbiter used Venus [173], NASA’s

Ulysses mission used Jupiter [247]), and then to perform as many fly-bys as possible with

the same planet. This phase would likely be performed by means of successive resonant

transfers with the planet. However, reaching relatively high values of infinity velocity

(e.g., 15 to 20 km/s from Figure 4.14), is only possible by means of MGA sequences,

mainly due to propellant limitations. As stated, strategies with Mercury and Mars, while

potentially providing good inclinations, are not considered here mainly because of two

reasons:

• The relative velocity required to reach such orbits is high, thus MGA sequences are

likely to require high propellant consumption due to the rare synchronicity between

Venus/Earth and the given planets.

• The gravity field of Mercury and Mars is at least one order of magnitude weaker

than the other planets. This means that multiple fly-bys with those planets are

required, increasing substantially the overall mission duration.

Since the aim of the paragraph is to study the accessibility of high-inclination orbits by

means of resonant transfers, strategies with outer planets (Jupiter, Saturn, etc.) are not

considered here due to the long mission duration implications.

4.3.3.1 Strategies with Venus: Solar Orbiter Mission

One should notice that strategies with Venus are particularly effective because of the rela-

tively high gravity of the planet, especially if relatively extended transfer times are avail-

able. For example, Solar Orbiter [173], launched in February 2020, is expected to reach

approximately 33 deg of inclination after 9 years of flight exploiting successive resonant

fly-bys with Venus, trying to maximize the inclination with respect to the Solar equator,

while gradually reducing its perihelion to observe the regions close to the Sun.
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Figure 4.15: Resonant loci for an encounter with Venus at v∞=20 km/s. Red curve is the
(v∞,α,k = 0) contour. Green points separate maximum deflection fly-bys on the k ̸= 0

plane.

The strategy adopted aims at maximizing the infinity velocity at Venus and then to per-

form successive resonant fly-bys with the planet to gradually increase the inclination. The

required infinity velocity at Venus is approximately 20 km/s as from Figure 4.14. A quick

analysis of the Tisserand graph as from section 4.2, allows to identify EVEV or its variant

EVVEV as possible strategies to reach the desired v∞ at Venus. After the last Venus en-

counter, the resonant tour can begin. Since one of the aim of Solar orbiter is to reduce the

perihelion, resonant ratios that are lower than 1 are necessary. A possible strategy is rep-

resented in Figure 4.15. After first reaching Venus with the relative velocity considered

here, the lower periapsis solution (i.e., 2:3) may not be reachable after the first fly-by, so

the sequence identified by the pink arrows uses a step along the 4:5 resonance locus that

allows an increase to be made in inclination. At the next fly-by, a resonance change is

targeted at 3:4, whilst still increasing the inclination. A further increase in inclination can

be achieved by maintaining the 3:4 resonance, however, this will increase the periapsis.

Thus, at the next fly-by the 2:3 resonance is targeted twice to achieve a further inclination

increase up to the required 33 deg while maintaining the periapsis at about 0.3 AU.
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4.3.3.2 Strategies with Earth: Dolphin Mission

As from Figure 4.15, exploiting the Earth for planning plane-change resonant tours al-

lows for higher inclinations with lower infinity velocity required compared to the Venus

case. Moreover, the Earth has stronger gravity field than Venus, plus closer fly-by dis-

tances are allowed due to the increasing accuracy of the navigation, thus the plane change

manoeuvre is likely to be more effective. However, the periapsis reachable with Earth

successive resonant orbits is substantially higher than those reachable with Venus, which

is why Venus still is the optimal choice for missions like Solar Orbiter. This can be seen

from Figure 4.16, where the 2:3 contour allows for a minimum periapsis higher than 0.4

AU.

Figure 4.16: Resonant loci for an encounter with Earth at v∞=15 km/s. Red curve is the
(v∞,α,k = 0) contour. Green points separate maximum deflection fly-bys on the k ̸= 0

plane.

In any case, the Earth still represents a valid option to increase the orbital inclination if

the periapsis is not a constraint. This is the case of Dolphin mission proposal [75], on

which the heliocentric inclination should be maximized to study the differences between

interstellar and interplanetary dust particles. The strategy is similar to the one considered

in section 4.3.3.1, on which the aim is to arrive at the Earth with the required infinity
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velocity (14 km/s for the example considered here). Tisserand graph exploration as from

section 4.2 allows to identify EVE or EVEVE as possible strategies to reach the required

velocity at the Earth, although for the EVE option the departing infinity velocity might be

relatively high, i.e., in the order of 5 km/s.

Figure 4.17: EVEEEE sequence with 1:1, 1:1, and 2:3 resonant orbits on successive EE
legs. The red orbit is achieved after the last fly-by with the Earth.

Successive 1:1 resonant transfers allow to gradually increase the inclination up to about 24

degrees. Although successive 1:1 resonant orbits are available, the asymptote of the reso-

nant locus at 1:1 is approaching, thus one recognizes that higher inclinations are achiev-

able if the 2:3 locus is exploited. Finally, performing a last fly-by with the Earth at 15 km/s

should allow for a maximum inclination of approximately 33 degrees (see Figure 4.14).

Therefore, a final fly-by of the Earth is performed to maximize the final inclination. This

strategy allows to reach approximately 33.34 degrees (similar value of the Solar Orbiter

scientific orbit). Figure 4.17 shows the trajectory that the spacecraft would follow for the

specified Dolphin-like mission option (departure in May 2031) with successive Earth res-

onant fly-bys, on which, the 1:1, 1:1 and 2:3 resonant transfers intervene. Such strategy

allows for a relatively fast mission (5 years from launch to the last Earth encounter).
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4.4 Benefits and Limitations of Tisserand Graphs

As already stated, the main benefit of Tisserand graphs is the quick analysis of possible

planetary sequences to reach specific orbital regions at a very first level of fidelity, i.e., by

exploiting only energetic considerations. The key part of any multi-fidelity process is thus

to select the information to be passed to the next level of fidelity (discussed in Chapter

5). This section deals with this problem, particularly focusing on: (a) the infinity veloc-

ity information derivable from the Tisserand graphs (section 4.4.1) and (b) the phasing

problem to estimate transfer times between two successive planets in the MGA sequence

(section 4.4.2). It is shown in these sections that the information on the infinity veloci-

ties at planetary encounters is useful in successive stages to reduce the size of the search

space, while the information on the phasing is not accurate due to the circular-coplanar

approximation.

4.4.1 Infinity Velocity Information from Tisserand Graph

The infinity velocity information derived from the Tisserand graph is particularly useful

to constraint the search for trajectories. Missions towards Jupiter and Saturn are taken as

example. The setup for the Tisserand exploration problem is reported in Table 4.3.

Table 4.3: Setup for Tisserand graph exploration for missions towards Jupiter and
Saturn.

Planets considered Venus, Earth, Mars, Jupiter, Saturn
Departing planet Earth

Arrival planet Jupiter or Saturn
Maximum number of planets 6

Minimum v∞ range 3 km/s
Maximum v∞ range 17 km/s

Step size 1 km/s
Departing v∞ range [3,5] km/s

Arrival v∞ range [0,9] km/s

Algorithm 3 is then used to construct sequences on the map. Among the sequences,

one identifies well-known trajectories like EVEMEJ and EVVEJS, similar to JUICE [6]
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and Cassini [171], respectively. The values for the maximum infinity velocities at each

planetary encounter are reported in Table 4.4. A multi-objective dynamic programming

(MODP) optimization as from [239] and Chapter 5 is then used to validate the results

obtained. This considers ∆v defects manoeuvres at each planetary fly-by as described in

Chapter 3 as a result of incoming and outgoing Lambert arcs at any planetary encounter.

The functions to be minimized are:


f1 = v∞,dep +

nint−1

∑
i=1

∆vi + v∞,arr

f2 =
nint−1

∑
i=1

Ti

(4.29)

where nint is the number of planets in the sequence. The functions f1 and represent

overall f2 consumption and transfer duration, respectively. The optimization scenario for

Jupiter missions is reported in Table 4.5. The optimization scenario used for optimizing

EVVEJS is reported in Table 4.6 (note that is is similar to Table 5.2 of Chapter 5, but with

the additional constrain on the infinity velocities at the encounters).

Table 4.4: Maximum values for infinity velocities required to reach Jupiter and Saturn
with EVEMEJ and EVVEJS.

Planet: Earth Venus Earth Mars Earth Jupiter
v∞: 5 km/s 10 km/s 14 km/s 17 km/s 17 km/s 9 km/s

Planet: Earth Venus Venus Earth Jupiter Saturn
v∞: 5 km/s 10 km/s 10 km/s 16 km/s 14 km/s 9 km/s

Table 4.5: Optimization scenario for EVEMEJ sequence for a launch in 2023.

Design variables Values and bounds
Sequence Known: EVEMEJ

Departure velocity magnitude v∞,dep ∈ [3,5] km/s
Maximum defect at each fly-by ∆v ∈ [0,2] km/s

v∞ constraints at fly-bys See Table 4.4
Launch window t0 ∈ [8400.5,8765.75] MJD2000

Number of revolutions about the Sun Nrev = 0

Transfer times between planets T1,2 ∈ [50,750] days T3,4 ∈ [50,850] days
T5 ∈ [500,2500] days
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Table 4.6: Optimization scenario for EVVEJS sequence for a launch in 1997.

Design variables Values and bounds
Sequence Known: EVVEJS

Departure velocity magnitude v∞,dep ∈ [3,5] km/s
Maximum defect at each fly-by ∆v ∈ [0,2] km/s

v∞ constraints at fly-bys See Table 4.4
Launch window t0 ∈ [−1095.5,−730.25] MJD2000

Number of revolutions about the Sun Nrev = 0

Transfer times between planets
T1 ∈ [30,400] days T2 ∈ [100,470] days
T3 ∈ [30,400] days T4 ∈ [400,2000] days

T5 ∈ [1000,6000] days

Table 4.7 summarizes the computational effort in terms of number of Lambert arcs (Nl),

number of defects (Nd) to be computed, and number of routes to be stored for the MODP

approach (Nr,MODP) for the cases considered (note that the information for EVVEJS is

found also in Table 5.7 of Chapter 5). Including the constraint on infinity velocities as

from Table 4.4 reduces considerably the number of Lambert arcs, defects, and solutions

to be stored without losing information on the globally optimum path or the Pareto front

information, providing a much more efficient exploration of the search space (see also

later Chapter 5).

Table 4.7: Performances for EVEMEJ and EVVEJS without and with the information
on infinity velocities at planetary encounters as from Tisserand graph exploration. No

defects are computed on the first leg of the transfer, thus a ’−−’ is included.

EVEMEJ – without Tisserand information on infinity velocities
NL Nd Nr,MODP

EV 28548 −− 1192
VE 14040 278298 10365
EM 41919 4516520 29247
ME 71556 862143 13450
EJ 37408 693384 25583

Totals 193471 6350345 25583

Number of points in Pareto front 190
Optimum for f 8.836 km/s

EVEMEJ – with Tisserand information on infinity velocities
NL Nd Nr,MODP

EV 28548 −− 1169
VE 13338 273546 9375
EM 23763 345765 28014
ME 53133 774834 11789

Continued on next page
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Table 4.7 – Continued from previous page
EJ 26270 55104 25518

Totals 145052 144924945 25518

Number of points in Pareto front 190
Optimum for f1 8.836 km/s

EVVEJS – without Tisserand information on infinity velocities
NL Nd Nr,MODP

EV 15128 −− 995
VV 6572 123380 3403
VE 5208 79732 20302
EJ 28035 562035 8479
JS 292734 650520 1754661

Totals 347677 1415667 1754661

Number of points in Pareto front 333
Optimum for f1 9.494 km/s km/s

EVVEJS – with Tisserand information on infinity velocities
NL Nd Nr,MODP

EV 15128 −− 995
VV 6572 123380 3400
VE 5208 79360 20264
EJ 28035 558831 8260
JS 291066 648018 1747463

Totals 346009 1409589 1747463

Number of points in Pareto front 325
Optimum for f1 9.494 km/s

In fact, the optimal transfers and Pareto fronts well corresponds to the actual JUICE and

Cassini missions, as confirmed by Table 4.8 and Chapter 5), respectively, as an additional

proof of the goodness of the whole pipeline of Chapter 4 and 5. Moreover, there is no

difference in the EVEMEJ Pareto fronts, as also shown in Figure 4.18.a, while the degra-

dation for the EVVEJS case is only appreciable for high f1 values, as from Figure 4.18.b,

that most likely do not correspond to feasible mission scenarios.

Table 4.8: Results for JUICE solution in the given mission scenario compared to
solutions from defect model.

Event JUICE Defects solution
Earth departure May 27, 2023 May 29, 2023

v∞,dep 3.18 km/s 3.18 km/s
∆v1 −− −−

Venus fly-by Oct. 20, 2023 Oct. 22, 2023
Continued on next page
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Table 4.8 – Continued from previous page
∆v2 −− −−

Earth fly-by Aug. 30, 2024 Aug. 30, 2024
∆v3 −− 0.0115 km/s

Mars fly-by Feb. 10, 2025 Feb. 12, 2025
∆v4 −− −−

Earth fly-by Nov. 23, 2026 Nov. 23, 2026
∆v5 −− −−

Jupiter arrival Nov. 06, 2029 Jan. 14, 2030
v∞,arr 5.54 km/s 5.62 km/s

f1 8.72 km/s 8.81 km/s
f2 6.44 years 6.63 years

(a) (b)

Figure 4.18: Comparison of EVEMEJ (a) and EVVEJS (b) multi-objective optimization
without and with Tisserand graph information on infinity velocities at the encounters.

4.4.2 Phasing Problem

The use of circular co-planar approximation implied by Tisserand graphs results in differ-

ences in velocity and position with respect to the nominal planetary ephemerides [240].

Such differences make difficult to estimate the transfer time of an MGA sequence directly

in the Tisserand map exploration.

One could consider the case of the EVEMEJ mission, similar to the one selected for

JUICE [6]. One possibility to account for the planetary phasing is to solve the Kepler’s

problem for the orbit that connects Earth and Venus on the first leg [154]. However, at

the next leg, i.e., Venus-Earth, one should consider the position of the previously visited
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planet (Earth) updated accordingly to the circular co-planar model. However, this might

result in errors on the Earth position needed for next fly-by to happen, which are in the

order of 20 degrees in longitude [181]. To overcome such error, a large manoeuvre on the

Venus-Earth leg should be included.

Similar effects arise from significant radial velocity differences in the encounter with

Mars, having the highest orbital eccentricity among the planets considered. The sequence

from Tisserand graph exploration (Algorithm 3) that has the closest infinity velocities

to the solution obtained with nominal planetary ephemerides is shown in Table 4.9. A

sensitivity analysis of the transfer orbits on the Mars-Earth leg is performed. The transfer

starts at Mars with an infinity velocity of 10 km/s, and ends on Earth with an infinity

velocity of 11 km/s. The closest time of flight on the Mars-Earth leg from a circular

co-planar model is 508 days, that is far from the actual value of 649 from the nominal

planetary ephemerides solution.

The orbital eccentricity of Mars is then restored (0.0934) and assumed to be coplanar to

the one of the Earth. The information about this transfer orbit is known from Eq. 4.19,

in terms of (α,v∞). Small variations are applied to (α,v∞) that range between -0.5 km/s

and +0.5 km/s for the infinity velocity and -0.1 rad and +0.1 rad for α . Different transfer

orbits are thus computed using Eq. 4.19. The time of flight between Mars and Earth is

then computed. This process is repeated for different values of the argument of periapsis

at Mars. Figure 4.19 shows Earth-Mars transfers for different argument of periapsis at

Mars.

Table 4.9: Closest EVEMEJ sequence on Tisserand graph compared to the nominal
planetary model solution.

Planet: Earth Venus Earth Mars Earth Jupiter
v∞: 3 km/s 5 km/s 9 km/s 10 km/s 11 km/s 6 km/s

Applying such small variations on the information of the Tisserand graph corrects the

values obtained from a circular and coplanar model by finding different orbits that can

have the same departure condition on Mars. Modifying the argument of periapsis of
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(a) (b)

(c)

Figure 4.19: Representation of Mars-Earth transfers for different argument of periapsis,
namely 0 rad (a), π/2 rad (b) and π rad (c). [181]

Mars’ orbit highlights the impact of its eccentricity. As a result, a list of different and

possible transfer times is obtained. The range of transfer time is between 419 days and

662 days, for the values mentioned above.

It should be noted that, while the variations of the infinity velocity and turn angle generate

different values of time of flight, this is mostly the change in the argument of periapsis

that broadens the range of possible time of flight. Figure 4.20 shows the evolution of the

range of time of flight (due to the variations mentioned) with the argument of periapsis.

The values obtained for the time of flight are within the interval. This proves that the

difference in the transfer time observed is due to the differences between the model used

for the Tisserand graphs and the reality.
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Figure 4.20: Evolution of the ranges of transfer time with the argument of periapsis of
Mars. [181]

4.5 Conclusions

This Chapter presented the derivation of equations that fully describe the Tisserand graphs,

assuming circular co-planar motion of the planets around the Sun. It has been shown how

to exploit such graphs to construct MGA sequences that are useful for successive re-

finement in higher-fidelity models, also accounting for DSMs that allow infinity velocity

leveraging at given bodies. The procedure allows to identify globally optimal paths for

primary missions of interest.

Moreover, compared to existing literature on the subject, the exploitation of resonant loci

has been applied to the preliminary assessment of high-inclination MGA tours, that are

ideal for specific mission options such as the Jovian moon tour of JUICE, Solar Orbiter

and Dolphin mission.

The benefits and limitations of Tisserand graphs have also been discussed. One can sum-

marize the following points:

• Tisserand graphs provide very important information about the planetary sequences

and infinity velocities required to reach specific orbital regions.
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• Such information can be used in successive stages of design to substantially reduce

the effort in the exploration of the search space, without losing information about

global optimality and Pareto front structure, as proven in section 4.4.1.

• The information on the planetary phasing should be taken with care, as some solu-

tions might be discarded in one model (e.g., circular coplanar) because large ma-

noeuvres might be needed to achieve the correct phasing, as discussed in section

4.4.2.
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Chapter 5

Multi-Objective MGA Design via

Dynamic Programming

The second step of the overall framework consists in exploring the search space in terms

of planets phasing and DSMs for sequences of planets that come from the Tisserand map

analysis. The efficiency of this step lies in finding globally optimal Pareto fronts for any

sequence identified. This is achieved by means of a multi-objective dynamic program-

ming (MODP) algorithm that solves this task. However, to apply dynamic programming

principles, the MGA problem needs to be transcribed into a multi-stage decision pro-

cess, on which the optimization of a given sequence is performed sequentially, i.e., one

planet-to-planet leg at a time.

This Chapter, after recalling the mathematical models employed (section 5.1), deals with

this transcription process (section 5.2) and the way to efficiently explore the transcribed

space (section 5.2.1). It also provides mathematical proof (section 5.4) on the connection

to the full MGA-DSM model as from Chapter 3. Section 5.5 then provides relevant test

cases and numerical examples to demonstrate the effectiveness of the proposed solution

method. Section 5.6 then expands on the theory about resonant transfers from Chapter 4,

by computing high-inclination MGA tours exploiting resonances at planetary encounters.

133



5.1. PROBLEM DEFINITION

Finally, section 5.7 discusses the main achievements and conclusions.

5.1 Problem Definition

The MGA trajectory design is a global optimization problem in its nature. For a given

planetary sequence, there exist several locally optimal trajectories in terms of planets

phasing, thrusting arcs and fly-by parameters constituting a search space of complex con-

figuration. Solving the MGA problem automatically, i.e., finding the planetary sequence

and a trajectory that are optimal with respect to some mission-related criteria, corresponds

to solve a MINLP/HOCP problem. In this case, planets are considered as ’targets’ in the

sense that visiting one planet or another enables to reach specific orbits or Solar System

objects, that is one needs to target specific planets to make that orbit/object reachable. In

such problems, there is a function F(X ,y) to be minimized, depending on both integer

(X) and continuous-varying variables (y) (see also Chapter 2). The function F(X ,y) can

either encode one single objective or a number nob j of competing objectives to be opti-

mized simultaneously. Following the definition of multi-objective optimization problem

from Chapter 2, a general multi-objective MINLP presents the following structure:

Minimize: F(X ,y) = f1(X ,y), ..., fnob j(X ,y)

Subject to: gi(X ,y) = 0,∀i = 1, ...,meq

gi(X ,y)≥ 0,∀i = meq +1, ...,min

Xlb ≤ X ≤ Xub

ylb ≤ y≤ yub

(5.1)

where gi(X ,y) represents the constraints of the problem at hand (e.g., overall mission

duration or ∆v), where meq and min are the cardinalities for equality and inequality con-

straints, respectively; (Xlb,ylb) and (Xub,yub) represent box constraints, i.e., lower and

upper bounds for (X,y), respectively.
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In the case of MGA trajectory optimization, the design variables include the sequence of

planets to be visited, which is encoded in the integer vector set X , as well as the visiting

epochs and other continuous variables which describe spacecraft manoeuvres, such as the

fly-bys or DSMs, all of which will be encoded in the continuous-varying vector y. The

functions F(X ,y) and gi(X ,y) would then represent mission critical parameters such as

the common ∆v cost of the entire transfer and mission duration, but also other mission-

specific objectives.

Figure 5.1: Example of an EVM trajectory with DSMs on both EV and VM legs.

Figure 5.1 shows an example trajectory which follows an Earth (E) – Venus (V) – Mars

(M) sequence (EVM) with DSMs on both EV and EM legs. Table 5.1 provides a de-

scription of the integer and continuous variables involved in the problem at hand. In such

example, vector X encodes a total of 3 objects (i.e., the planets), and vector y encodes

10 variables, defining all the events necessary to characterize the trajectories followed

by the spacecraft between each planet. The model used here is the so-called MGA-

DSM [128–131] that is also presented in Chapter 3, on which a DSM is assumed be-

tween two consecutive planetary encounters. In this model, a propagated arc in restricted

two-body dynamics is assumed after each object encounter (either departing or swing-by

planet) until the DSM position, followed by a Lambert arc between the DSM location and
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the next planetary encounter.

Table 5.1: Integer and continuous variables for the MINLP instance of the MGA
problem with DSMs.

Integer variables (X) Description

Xi,∀i = 1, . . . ,nint
Objects in the sequence (nint is the number of

integer variables)

Continuous variables (y) Description

[t0,v∞,dep,u,v,T,η ]1

For the first planet-to-planet leg: t0 is the launch
date; v∞,dep is the spacecraft velocity relative to
the departing body; (u,v) define the heliocentric
direction of the spacecraft launch as per Chapter
3; T is the transfer time between two bodies; η is
the time fraction at which a DSM is performed.

[rp,ζ ,T,η ]i,∀i = 2, ...,nint−1
For all the successive planet-to-planet legs: rp and

ζ are periapsis and inclination of the fly-by
hyperbola, respectively.

One should notice that if either more complex transfer options or more complex dynam-

ical frameworks are implemented, such as low thrust and ephemeris model, the number

of optimizable parameters would rise sharply. Other strategies are also found in literature

to model the transfers between two planetary encounters, such as multiple-shooting algo-

rithm [25], primer vector theory [242], or the newly derived MGA-nDSM model (Chapter

3), used to mitigate some of the difficulties associated to the MGA-DSM model, mainly

on the number of manoeuvres between two planetary encounters. However, for the pur-

poses of the present Chapter, the MGA-DSM model is deemed sufficient to provide good

representative trajectories of the MGA problem.

In this Chapter, we consider F(X ,y) being a function of two objectives to be optimized,

i.e., F(X ,y) = ( f1(X ,y), f2(X ,y)), on which (similarly to Eq. 4.29):


f1 = v∞,dep +

nint−1

∑
i=1

∆vi + v∞,arr

f2 =
nint−1

∑
i=1

Ti

(5.2)
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where v∞,dep and v∞,arr are the spacecraft velocities relative to the departing and arrival

body, respectively, representing the manoeuvre to escape from the gravity of the first

planet and the one to be captured within the last planet SOI [16], and ∆vi are the DSMs

magnitude on each planet-to-planet leg of the transfer.

Solving the multi-objective optimization of MGA sequences as formulated in Eq. 5.1

and 5.2 with no a priori knowledge of the problem would only be feasible for formula-

tions with very small search domains for both integer variable X and continuous-varying

vector y, namely, either small fly-by sequences and/or launch windows, transfer times,

etc. Hence, it is evident that solving the mixed-integer formulation of the MGA problem

requires a process of refinement to manage this complexity efficiently.

To do so, the following pipeline is used, which is briefly assessed here:

• A criterion to select successive planetary encounters is conveniently used (this has

been tackled in Chapter 4), mainly to assess the feasibility of different sequences in

designing the mission at hand.

• A transcription of the problem from a mixed-integer formulation to a discrete opti-

mization is useful (section 5.2) to explore the search space in an efficient manner.

In this way, one exploits search space properties of the problem at hand and applies

suitable graph-traversing techniques (sections 5.2.1 and 5.3).

• A refinement step is finally implemented (section 5.4) which takes each worthy

solution identified with previous steps and finds all the relevant parameters of the

original problem.

5.2 Transcription Using Defects

The ∆v-defects model as described in Chapter 3 is here employed. This can be seen as

an MGA-DSM model with ηi = 0 ∀ i = 1, ...,nint as from Table 5.1, i.e., on which the

DSM occurs at each planetary encounter, i.e., at the fly-by epoch. Such model considers
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only a Lambert arc transfer for each object-to-object transfer in the sequence, thus only the

times at each object are necessary. Velocity discontinuities between arriving and departing

arcs, at a given object, are assumed equivalent to a DSM occurring at the encounter, see

schematic in Figure 5.2. In other words, the magnitude of v⃗−∞ is different from v⃗+∞ , and

this difference is compensated by a ∆v defect.

Figure 5.2: Sketch of spacecraft trajectory and ∆v between point Pj and Pk.The
spacecraft is moving from point Pj and Pk on the red track, having visited previously

object Pi.

The point to highlight here is that the ∆v-defects model allows to transcribe efficiently the

complex search space of the MGA-DSM model as: (1) each planet-to-planet leg depends

only upon the previously visited object through the vector v⃗−∞ ; (2) the decision variables

(i.e., the times at which each encounter occurs) are discretized and made varying over

grids.

The problem is thus transcribed into a discrete optimization problem of finding the assign-

ment of planetary visiting epochs that minimizes some user-defined functions (as the ones

in Eq. 5.2). For example, considering a transfer from object a to d, with fly-bys at objects

b and c, the optimization of the overall [a,b,c,d] sequence is performed in successive

stages:

1. Lambert problems are solved over a grid of departure dates and transfer durations

for the first leg, i.e., [a,b] 1.

1Izzo’s algorithm is implemented for solving Lambert’s problem. The interested reader is referred to
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2. At the start of next leg, namely [b,c], departure dates are updated using the arrival

epochs at b from previous leg, plus range of duration for the current leg towards c.

This step is repeated for all consecutive legs.

3. For each fly-by in the sequence, for all the incoming routes to a planet, that corre-

spond to the different start and transfer times from the previous leg, the incoming

relative velocity v⃗−∞ is compared with the outgoing relative velocity v⃗+∞ or routes to

the next flyby (for matching arrival and departure times) and the defect is computed

as from Eq. 3.10.

Tisserand-based information as from Chapter 4 also allows to identify the need for reso-

nant orbits on legs that visit the same planet consecutively. These can occur when the time

of flight is such that the spacecraft encounters the same point for two encounters. Such

transfers are thus characterized by a ratio of integers between the planet and spacecraft

orbit periods. The details of resonant orbits can be obtained analytically via derivation of

post-fly-by relative velocity vector characteristics [153], thus solution of Lambert’s prob-

lem is not required. For a given approach vector v⃗−∞ then an infinite number of post fly-by

resonant solutions exist, for the defined resonance, which differ in the inclination of the

resonant orbit. This range of different inclination solutions can be retained for consider-

ation at the next fly-by, or a baseline assumption of minimal inclination change can be

assumed, leading to a simplification of the problem structure. More information on how

to use resonant orbits to construct high-inclination tours can be found in section 5.6.

5.2.1 Graph Structure of the Search Space

This section describes the characteristics of the search space associated to the transcribed

MGA problem described in previous section. Discrete problems are usually modeled with

a search space made by grids of connected nodes. A common example is the Traveling

Salesman Problem (TSP), where a salesman needs to visit a given number of cities, each

representing a search node, which are connected by paths of a fixed length. As an op-
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timization problem, the shortest path or tour around all cities is sought. Translating the

TSP example to MGA missions, a spacecraft needs to fly-by several planets and each

combination of planets will have an associated cost, usually ∆v-driven. It should be noted

that this analogy is only relevant for the transcribed MGA problem, which define visiting

epochs that can vary discretely on grids.

As described in previous section and in Chapter 3, the cost of the path connecting two

objects is associated with the Lambert arc connecting both objects at their respective

encounter epochs. Figure 5.2 illustrates the spacecraft trajectory between two points Pj

and Pk. Since Pj and Pk have each an associated encounter epochs tenc
(.) , the time of flight

between the two is uniquely defined (i.e., T = tenc
k − tenc

j ) and, consequently, also the

Lambert arc between these two points, for a given number of revolutions and energy

solution. The spacecraft cost of connecting planet j and k at their respective visiting

epochs is given by the impulsive manoeuvre ∆v as from Eq. 3.10. Consequently, the cost

of a given leg is not unique but depends upon the point prior to Pj, which will define

the v⃗−
∞, j. Thus, to uniquely define the cost of a given leg between Pj and Pk, one needs

to consider also the previously visited one, say Pi, so for the triplet (Pi,Pj,Pk), one has

a unique cost. One should note that this optimal substructure property in the form of a

triplet of individual nodes is common to all problems where fly-bys are to be considered

(see also Chapter 6).

Because of this substructure of unique triplets, the search space can be modeled as a graph

made by interconnected nodes. Each node encodes a couple of points with their encounter

epochs. Following the example of previous section, on an overall [a,b,c,d] sequence of

objects, and their encounter epochs, say [t1, t2, t3, t4], respectively, one has the following

nodes [A,B,C]:

• A = (at1,bt2)

• B = (bt2,ct3)

Appendix A and [40]
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• C = (ct3,dt4)

Each node thus encodes a trajectory linking two consecutive objects, being visited at the

specified epochs. When connecting two consecutive nodes, the first object in the second

node must be equal to the second object encoded in previous node. The cost of each

connection between two nodes is then given by the ∆v in Eq. 3.10. The first and last

node have also a cost associated to v∞,dep and v∞,arr, respectively. In this space, the

cost between consecutive nodes is unique, which is the main advantage of modelling the

search space in this way. Moreover, the problem is thus formulated in a way such that

the solution can be seen as a combination of independent sub-problems, i.e., the transfers

between the triplets of planets (Pi,Pj,Pk). Therefore, the sequence of objects has become

a sequence of nodes, each node, i.e., planet-to-planet leg, being independent from the

other ones. This allows dynamic programming techniques to be applicable to the problem

at hand.

5.3 Graph Exploration via Dynamic Programming

Although the transcription process described in section 5.2 is similar among similar works

[183–185, 188, 189], in the present paper the sub-structure of unique triplets as described

in section 5.2.1 is usefully exploited to obtain globally optimal transfers on the transcribed

search space via dynamic programming principles. The discrete problem of MGA mis-

sions is thus conveniently modeled as a tree-graph. Each node on the graph represents a

transfer that can be incrementally constructed expanding one or more of its branches, i.e.,

adding a trajectory leg. In this way, the problem can be seen as a multi-stage decision

process, on which the overall construction of MGA sequences is reached by making a se-

ries of lower-level choices, i.e., the selection of nodes between two different depth-level

of the tree-graph. This also allows to better handle the constraints as from Eq. 5.1 (e.g.,

on maximum ∆v defect, see also section 5.5), as branches that do not fit those boundaries

are pruned out from the search space. Thus, two steps are necessary when expanding a
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tree-graph: (1) branching the nodes, (2) selecting the branched nodes to be kept for further

expansion.

Among algorithms usually employed to scan tree-graphs, Depth First (DF) or Breadth

First (BF) strategies are the most common [162]. These are known to be complete strate-

gies, i.e., they allow to obtain the global optimum in discrete/combinatorial problems by

keeping all the possible branched nodes while in the selection step. However, for prac-

tical space-related applications, this usually implies an infeasible number of trajectory

branches to be evaluated and kept in memory. Beam Search (BS) algorithms might repre-

sent a very useful alternative [44], since the computational effort is bounded by heuristics

that prevent the exploration of non-promising branches, thus only a limited number of

nodes are kept at the selection step. For this reason, BS sacrifices the guarantee of global

optimality in favor of computational efficiency.

5.3.1 Single- and Multi-Objective Dynamic Programming

Dynamic programming mitigates the computational burden associated to exhaustive DF/BF

searches while guaranteeing global optimality for the problem at hand. To do so, dy-

namic programming exploits Bellman’s principle of optimality to make optimal decision

of nodes to be kept for further consideration at the selection step of the tree expansion.

The Bellman’s principle of optimality (in its single-objective formulation) states that re-

gardless of the node at which the spacecraft currently is on the tree-graph, the optimal set

containing this specific node would include the optimal subset of nodes before and after

the visited one [116].

In other words, if the graph expansion happens to arrive at the same node at a specific

tree-depth from different paths, then only the path with the minimum objective value

is useful to be kept for further consideration. Figure 5.3 shows a representation of this

principle. One notices that, at third depth-level, the tree expansion reaches node I from

four different paths, namely: ACI, ADI, BEI, and BFI (recall that each node is made
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Figure 5.3: Tree-graph with common node at the third depth-level.

by a couple of objects and their visiting epochs as from section 2.a). Assume now that

the cost of sequence BFI (e.g., f1 or f2 as from Eq. 5.2) is the lowest among all the

other sequences that arrive in node I. Thus, any other node added after I (namely K and

L) would imply an increase in cost that is the same for all the sequences, thus it is not

needed to keep all ACI, ADI and BEI for further consideration, since they will always be

worse than dominated by BFI in terms of cost function for any successive node added.

On the other hand, all the sequences that do not have any node in common at the given

tree-depth, namely ACG, ACH and BFJ, are kept for further expansion alongside BFI.

This ultimately allows a sensible reduction of the number of paths that need to be kept in

memory when exploring the tree. Therefore, in discrete optimization problems, single-

objective dynamic programming (SODP) allows to identify in an automatic manner the

sequence that minimizes a specific objective with the lowest number of paths to be stored

in memory.

The Bellman’s principle of optimality can be also extended to handle multi-objective

optimization. The extended principle states that, regardless of the node at which the

spacecraft currently is on the tree-graph, the Pareto-optimal set containing this specific

node would include the Pareto-optimal subset of nodes before and after the visited one.

Analogously to the SODP case, if multiple sequences arrive at the same node at a given
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(a) (b)

Figure 5.4: Representation of different paths arriving to the same node at a specific
tree-depth in the f1, f2 plane (a) and effect of adding a node to the same sequences (b).

Dotted lines link nodes on the Pareto front.

tree-depth, then only the paths belonging to the Pareto front are useful and thus need to

be kept for further consideration.

This can be seen intuitively following the same example of Figure 5.3. All the sequences

that share the same node at a given tree-depth (i.e., the node I at the third level in this

case), can be represented in a space that has a number of main axes as many as objec-

tive functions F(X ,y) = f1(X ,y), ..., fnob j(X ,y) in Eq. 5.1. For the sake of simplicity,

let’s consider just two objectives f1 and f2 (e.g., as from Eq. 5.2). The representation of

the nodes in such space is given in Figure 5.4.a. As an example, one identifies a Pareto

front with sequences ADI, BEI and BFI, while ACI is the dominated sequence. Adding

any node to these sequences, e.g., node K, would imply a variation in all the objectives,

namely ∆ f1 and ∆ f2 in Figure 5.4.b, which is the same for all the sequences. The Pareto

front is thus preserved for the sequences ADIK, BEIK and BFIK, and any sequence dom-

inated before adding node K is still dominated by the addition of this node, and thus is

not needed for further expansion. In this way, analogously to the SODP case, in discrete

optimization problems, multi-objective dynamic programming (MODP) allows to iden-

tify in an automatic manner the optimal Pareto front with the lowest number of paths to
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be stored in memory.

When expanding the tree-graph, one can either: (1) generate the list of feasible planetary

sequence by means of Tisserand-based information as from Chapter 4 and then apply the

tree expansion on each of them (explicit variant), or (2) exploiting the same Tisserand

information directly at the tree-expansion step (implicit variant). One notices that the

two options come with the same computational effort in terms of Lambert arcs solved

and defects computed. In this work, the tree-graph expansion branches new trajectory

legs only if the sequence is within a preloaded list of sequences (which is the result of the

Tisserand exploration as from Chapter 4). One should notice that since the multi-objective

optimization is performed on the transcribed space for each sequence in the list and such

transcription is an approximation likely to have worse ∆v of the successive refinement step

as from section 5.4, it is important to keep all the different MGA sequences that arrive at

a common node. Then, the leveraging is assessed in the refinement step for a correct trade

off analysis, as different sequences can perform in different ways in the refinement step

(see also section 5.4).

5.4 Defects Removal by DSM Correction Evaluation via

State Transition Matrix

By applying the transcription process described in section 5.2, the problem is in practice

decomposed into two consecutive sub-problems: firstly, the multi-objective discrete op-

timization, which aims at identifying promising MGA paths with respect to competing

mission criteria, and secondly, a refinement step aiming at optimizing the continuous de-

sign variables given a fixed sequence. The key aspect of the proposed method is assessing

the relationship between manoeuvres from the MGA-DSM model and the defects model.

This section focuses on this relationship, and it shows the robustness of the proposed ap-

proach (i.e., transcription + SODP/MODP application) in representing mission scenarios

that are easily convertible into higher-fidelity models (e.g., the MGA-DSM one).
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Insertion of a DSM to remove an infinity velocity defect at the next fly-by is here used

to establish the relationship between the manoeuvre and the corresponding correction of

the defect. The incoming defect dependency on a preceding mid-course DSM is thus

obtained. This dependency is referred to as leveraging ratio, i.e., the ratio between the

defect and a precedent DSM. A crucial consideration is the maintenance of the subsequent

rendezvous with the target planet for the fly-by, as well as the removal of the defect.

The DSM is assumed to take place at a time t0 = ηT on a planet-to-planet leg, while the

successive planetary encounter occurs at t f . The DSM is derived in a reference frame

which has v̂v, v̂p and v̂n as unit vectors, which are components along the velocity vec-

tor, in-orbit plane perpendicular to the velocity vector and out-of-plane normal, respec-

tively. The DSM has an impact on the position vector achieved at the epoch of the fly-by.

Therefore, a constraint vector C⃗ should be considered that maintains the relative posi-

tion error with respect to the swing-by planet and the infinity velocity defect at zero.

The constraints are thus C⃗ = [⃗rrel,∆v]T , where r⃗rel = r⃗− r⃗pl is the difference between

the spacecraft and planet position vectors at t f (i.e., r⃗ and r⃗pl , respectively), and ∆v is

the infinity velocity defect magnitude at t f . The control is U⃗ = [∆⃗v(t0), t f ]
T , on which

∆v(t0) = [DSMv,DSMp,DSMn]
T is the manoeuvre vector, written in the reference frame

identified by v̂v, v̂p and v̂n as defined above.

The required change in the constraint vector is
[

0 0 0 −∆v

]T

. The increment in the

control ∆U⃗ is found approximately from a single Newton-Raphson like iteration for C⃗ = 0

by:

∂C⃗
∂U⃗

∆U⃗ =

[
0 0 0 −∆v

]T

(5.3)

From which the control increment ∆U⃗ is found via matrix inversion. From Eq. 5.3, the

vector [0,0,0,−∆v∞]
T corresponds to the required change in the constraint vector C⃗, and

the matrix ∂C⃗
∂U⃗

is defined as follows:
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∂C⃗
∂U⃗

=

 ∂ r⃗rel(t f )

∂ ∆⃗v(t0)
∂ r⃗rel(t f )

∂ t f

∂ |⃗vrel |(t f )

∂ ∆⃗v(t0)
0

 (5.4)

where v⃗rel = v⃗− v⃗pl is the spacecraft velocity vector relative to the fly-by planet computed

at time t f (⃗v and v⃗pl are he spacecraft and planet velocities at t f , respectively).

By computing the State Transition Matrix (STM) Φ between t0 and t f one has:

Φ =

 ∂ r⃗(t f )

∂ r⃗(t0)
∂ r⃗(t f )

∂ v⃗(t0)
∂ v⃗(t f )

∂ r⃗(t0)
∂ v⃗(t f )

∂ v⃗(t0)

 (5.5)

Using ∂ r⃗(t f )

∂ v⃗(t0)
=

∂ r⃗rel(t f )

∂ ∆⃗v(t0)
, then:

∂ r⃗rel(t f )

∂ ∆⃗v(t0)
=

[
∂ r⃗(t f )

∂ v⃗(t0)
v̂v

∂ r⃗(t f )

∂ v⃗(t0)
v̂p

∂ r⃗(t f )

∂ v⃗(t0)
v̂n

]
(5.6)

Moreover, one has:

∂ r⃗rel(t f )

∂ t f
= v⃗(t f )− v⃗pl(t f ) (5.7)

where v⃗(t f ) and v⃗pl(t f ) are again the spacecraft and planet velocities computed at t f ,

respectively.

Then, to evaluate the following:

∂ |⃗vrel|(t f )

∂ ∆⃗v(t0)
=

[
∂ |⃗vrel |(t f )

∂DSMv

∂ |⃗vrel |(t f )
∂DSMp

∂ |⃗vrel |(t f )
∂DSMn

]
(5.8)

One uses:

∂ |⃗vrel|(t f )

∂DSMi
=

∂ (⃗v(t f )− v⃗pl(t f ))

∂DSMi
· v̂rel =

∂ v⃗(t f )

∂DSMi
· v̂rel (5.9)
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on which ∂ v⃗(t f )
∂DSMi

=
∂ v⃗(t f )

∂ v⃗(t0)
· v̂i, for each i = v, p,n.

Therefore, it is possible to compute ∂C⃗
∂U⃗

as defined in Eq. 5.4 using Eq. 5.6, 5.7 ans 5.8,

and thus ∆U⃗ from Eq. 5.3. This is again evaluated via STM along the nominal trajectory

for different values of t0. The leveraging ratio ∆v∞/|∆⃗v| can also be derived as a function

of t0. Its maximum value, corresponding to the minimum |∆⃗v| over the trajectory, can

then be obtained and used to inform successive refinement stages on the position of the

midcourse DSMs. The terms ∂ r⃗(t f )

∂ v⃗(t0)
and ∂ v⃗(t f )

∂ v⃗(t0)
used in Eq. 5.6 and 5.9 are obtained from

the standard STM as in Eq. 5.5 for the trajectory between t0 and t f .

Hence, the refinement process takes all or a given subset of solutions from the grid op-

timization and reconstructs the fly-by parameters and midcourse manoeuvres as in the

MGA-DSM model with the guess on: (1) departing dates and transfer times provided

by the grid optimization and (2) optimal location of the manoeuvres with the help of the

analytical procedure on the described with Eq. 5.3 to 5.9. Thus, the ∆v defects can be re-

placed with DSMs occurring after a fraction of the transfer time between two consecutive

swing-bys, according to the MGA-DSM model. It is important to note that the defects

solutions are not approximations of the complete problem, but they solve the same fitness

function fi(x,y) as for the refinement process. The visiting epochs and planetary fly-by

parameters, variables encoded in vector y, identified in the defect model, only need to be

refined in case a lower ∆v solution exists in the same neighborhood. This is done via the

above analysis, that checks if a variation in the visiting epochs exists such that a lower

∆v solution exists if midcourse DSM is included to remove the defects. The refinement

process in the MGA-DSM model is carried by re-optimizing the solutions using a PSO.

Departing epoch in y vector is allowed to vary on a ± 30 days-range with respect to

the corresponding grid optimization values, while visiting epochs on a ± 15 % range of

transfer time of the leg.

For this process to be efficient, defects solutions must be close enough to the real mini-

mum solution for the refinement step. This is shown in Figure 5.5, representing on the
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Figure 5.5: f1 and f2 values for different EVV trajectories arriving at the node (V,t1,V,t2)
computed with models of different fidelity.

( f1, f2) plane different trajectories on an overall EVV mission that arrive at the same node.

Recall that a node in the MGA graph transcription is made by a couple of objects (VV

in this case) and their encounter epochs (t1 = −589 MJD2000 and t2 = −183 MJD200,

in this example). One appreciates that all the solutions incoming to a given node belong

to a single-funnel structure [248]. Therefore, the SODP/MODP selection process as from

section 5.2 is robust as it allows to capture all the different funnels of the MGA problem

not losing information in the transcription process, and such funnels are then efficiently

refined within higher-fidelity models since no multi-funnels are found for a single node

under evaluation.

Figure 5.5 also provides an illustration of the potential value obtained from using STM-

based predictions to the MGA-DSM model. In particular, STM-based solutions are ac-

curate in the sense that they provide a better estimate of the solutions in higher-fidelity

models (average offset between STM-based model and defects model is about 400 m/s) as

well as the representation of the overall funnel. This suggests that including the procedure

as in Eq. 5.3 to 5.9 while in the branching step as from section 5.2 could be beneficial

for including DSMs that lie closer to the fully optimized solutions, at the price of rel-
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atively small increase in computational cost due to STM evaluation at each node. One

should also notice that defects solutions and STM-based solutions converge to the same

MGA-DSM solutions, so including STM-based approximation is a compromise between

computational effort and solution quality and depends upon the mission application.

5.5 Numerical Results and Discussion

Applications of the pipeline presented in Chapter 4 and sections 5.2, 5.3 and 5.4 are

here discussed. These follow a logic of increased complexity and are briefly introduced

here:

1. A transfer towards Saturn is optimized with respect to the two objectives f1 and

f2 as in Eq. 5.2, assuming the sequence from Earth to Saturn to be known, i.e.,

EVVEJS. This is like the Cassini and so-called Cassini-2 design problem proposed

by ESA 2. However, compared to most of the literature on the same problem, here

the multi-objective optimization is tackled. One tries to explore the launch window

to find suitable swing-by dates for the proposed sequence, as well as DSMs. This

is done to assess the ability of the proposed pipeline in identifying Pareto-optimal

paths (section 5.5.1) and to test to test the efficiency of using the transcription pro-

cess alongside SODP/MODP approaches when exploring the transcribed search

space (section 5.5.2). An analysis on the relationship between thrust model types

(i.e., defects and DSMs) is included to prove the robustness of the methodology in

representing primary missions of interest (section 5.5.3).

2. One now assumes that the sequence reaching Saturn is not known but needs to be

selected as part of the multi-objective optimization process (section 5.5.4). It will

be shown that it is possible to identify sequences that are competitive with respect

to the well-known EVVEJS and that contribute to the Pareto front. To do so, a much

wider exploration with respect to current literature is performed, both in terms of

2https://www.esa.int/gsp/ACT/projects/gtop/ last accessed March 2022
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transfer times between planets and number of revolutions between two consecutive

encounters.

3. Novel transfer options are explored in the context of a sample return mission to-

wards comet 67P/Churyumov-Gerasimenko, same target as Rosetta mission [249]

(section 5.5.5). The increased complexity of this mission scenario lies on: the ex-

tended launch window (10 years are considered in the 2030-2040 time-frame) and

the high number of planetary encounters (sequence with up to 10 objects are found).

The following discussion highlights the advantages of the approach presented in this

Chapter, which are:

1. Fly-by sequences, departing dates, transfer times, number of revolutions around the

Sun and manoeuvres size and location do not need to be known a priori.

2. Search spaces are substantially larger than those presented in similar problems in

current literature.

3. Optimal trajectories with respect to competing mission objectives in an overall

multi-objective optimization can be obtained in an efficient and robust manner, also

showing novel transfers with respect to literature.

5.5.1 Multi-Objective Optimization of EVVEJS Sequence

Here, the multi-objective optimization of sequence EVVEJS is assessed within the 1997

launch window. This is the same sequence employed by Cassini mission [171], which

was launched in October 1997 and arrived at Saturn in 2004. Cassini required at least

one large DSM between two Venus fly-bys to reach its destination. This problem is only

barely assessed in literature as usually only the single-objective optimization is consid-

ered. Some multi-objective problems have been formulated [201–203], but typically on

smaller search spaces than the one considered here.
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Table 5.2: Optimization scenario for EVVEJS sequence for a launch in 1997.

Design variables Values and bounds
Sequence Known: EVVEJS

Departure velocity magnitude v∞,dep ∈ [3,5] km/s
Maximum defect at each fly-by ∆v ∈ [0,2] km/s

Launch window t0 ∈ [−1095.5,−730.25] MJD2000
Number of revolutions about the Sun Nrev ≤ 1

Transfer times between planets T1 ∈ [30,400] days T2 ∈ [100,470] days
T3 ∈ [30,400] days T4 ∈ [400,2000] days

T5 ∈ [1000,6000] days

The optimization is performed on the transcribed space as from section 5.2. In this case,

the ∆v computed as in Eq. 3.10 may lead to larger values. This is because they are ma-

noeuvres applied immediately after departing from a fly-by, thus not representing DSMs

in a real mission design context. In this case, a simple post-processing step as described in

5.4 is needed and again proves the robustness of the method in converging to benchmark

solutions.

Figure 5.6: Pareto front of f1 and f2 objectives as from MODP optimization for
EVVEJS. Primary missions of interest for the scenario are highlighted.

The problem to be solved consists in finding the optimal assignment of departing date and

visiting epochs for all the planets in the sequence minimizing the objectives f1 and f2 as

in Eq. 5.2. The optimization scenario is described in Table 5.2 for a launch window in

1997. One should notice that the transfer time bounds are chosen from available literature
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for bench-marking 3 [131]. For the grid optimization, step size in start date and durations,

sts and std , respectively, are chosen to be sts = std = 3 days for EVVE sub-sequence evalu-

ation and std = 6 days for EJS sub-sequence. Larger step sizes are admissible for transfer

to outermost planets since these are less sensitive to grid sizes, due to their increased

orbital periods [189].

Table 5.3: Results for Cassini-like mission compared to solutions from defect model and
refinement. When a manoeuvre is not present between two planetary encounters, a ’−−’

is included.

Event Cassini [171] Defects solution Refined solution
Earth departure Oct. 6, 1997 Nov. 23, 1997 Oct. 20, 1997

v∞,dep 4.25 km/s 4.01 km/s 4.00 km/s
∆v1 −− −− −−

Venus fly-by Apr. 21, 1998 May 22, 1998 Apr. 29, 1998
∆v2 0.466 km/s 1.97 km/s 0.431 km/s

Venus fly-by Jun. 20, 1999 Jul. 01, 1999 Jun. 26, 1999
∆v3 −− 0.604 km/s −−

Earth fly-by Aug. 19, 1999 Aug. 20, 1999 Aug. 18, 1999
∆v4 −− 0.214 km/s −−

Jupiter fly-by Dec. 30, 2000 Jan. 01, 2001 Jan. 11, 2001
∆v5 −− −− −−

Saturn arrival Jul. 01, 2004 Jun. 06, 2004 Sep. 19, 2004
v∞,arr 5.59 km/s 5.47 km/s 5.17 km/s

f1 10.3 km/s 12.3 km/s 9.60 km/s
f2 6.73 years 6.61 years 6.91 years

The effect of sts and std alongside the maximum defect admissible at each fly-by is crucial

when assessing the efficiency of the proposed approach and it is always a compromise

between solutions quality and computational effort (see later section 5.5.2). This setup

allows to obtain all the missions of interest for the given transfer scenario on a wide

Pareto front, ranging from less than 6 years to almost 18 years of transfer time, as shown

in Figure 5.6. Specifically, the Pareto front is comprehensive in that it correctly identifies

the primary mission of interest, which are: (1) the actual Cassini mission, i.e., a fast

transfer to Saturn of about 7 years; (2) the Cassini-2 problem solutions with relaxed time

constraints, i.e., solutions with about 9.9 years, corresponding to the best-known time

constrained solution; (3) optimal solutions for the given transfer scenario with transfer

3https://www.esa.int/gsp/ACT/projects/gtop/, last accessed March 2022
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duration of about 17.3 years.

Table 5.4: Results for Cassini-2 like mission compared to solutions from defect model
and refinement.

Event Cassini-2 a Defects solution Refined solution
Earth departure Nov. 13, 1997 Nov. 23, 1997 Nov. 11, 1997

v∞,dep 3.26 km/s 3.88 km/s 3.30 km/s
∆v1 0.480 km/s −− 0.462 km/s

Venus fly-by Apr. 29, 1998 May 20, 1998 Apr. 30, 1998
∆v2 0.398 km/s 1.83 km/s 0.398 km/s

Venus fly-by Jun. 27, 1999 Jul. 02, 1999 Jun. 28, 1999
∆v3 −− 0.682 km/s −−

Earth fly-by Aug. 20, 1999 Aug. 21, 1999 Aug. 20, 1999
∆v4 −− −− −−

Jupiter fly-by Mar. 31, 2001 Apr. 18, 2001 Apr. 01, 2001
∆v5 −− −− −−

Saturn arrival Apr. 09, 2007 Apr. 24, 2007 Apr. 04, 2007
v∞,arr 4.24 km/s 4.21 km/s 4.24 km/s

f1 8.38 km/s 10.6 km/s 8.40 km/s
f2 9.40 years 9.41 years 9.39 years

a See footnote 2

Details and trajectory representations can be found in Tables 5.3, 5.4 and 5.5, as well as

in Figure 5.7, 5.8 and 5.9, for both Cassini, Cassini-2 and optimal solution sequences,

respectively. The solutions identified correspond closely within few days to referenced

solutions. One notices that to the best knowledge of the author no reference solutions

exist for the optimal sequences in terms of ∆v consumption (Table 5.5 and Figure 5.9),

again proving the efficiency of the pipeline in comprehensively solving the multi-objective

optimization.

Table 5.5: Results for optimum solution in the given mission scenario compared to
solutions from defect model and refinement.

Event Defects solution Refined solution
Earth departure Nov. 13, 1997 Nov. 10, 1997

v∞,dep 3.63 km/s 3.59 km/s
∆v1 −− 0.694 km/s

Venus fly-by May 10, 1998 May 01, 1998
∆v2 1.16 km/s 0.180 km/s

Venus fly-by Jun. 02, 1999 Jun. 29, 1999
∆v3 0.0933 km/s −−

Earth fly-by Aug. 27, 1999 Aug. 26, 1999
∆v4 0.139 km/s −−

Continued on next page
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Table 5.5 – Continued from previous page
Jupiter fly-by Jun. 18, 2002 Jun. 12, 2002

∆v5 −− 1.70 km/s
Saturn arrival Mar. 02, 2015 Feb. 05, 2017

v∞,arr 4.27 km/s 2.08 km/s
f1 9.29 km/s 7.55 km/s
f2 9.30 years 19.2 years

(a) (b)

Figure 5.7: Cassini-like EVVEJS transfer with departure date in 1997 as resulting before
(a) and after (b) the refinement process.

(a) (b)

Figure 5.8: Cassini-2 EVVEJS transfer with departure date in 1997 as resulting before
(a) and after (b) the refinement process.

From Table 5.3, the nominal Cassini transfer lasts under 7 years from launch to ren-

dezvous with Saturn. As a fast and time-constrained transfer, this mission does not rep-

resent the optimum in terms of f1 objective. Faster transfers increase the infinity velocity

at Saturn and lead to increased transfer velocity at the Earth, as well as larger DSMs.
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(a) (b)

Figure 5.9: Optimal solution for EVVEJS transfer scenario with departure date in 1997
as resulting before (a) and after (b) the refinement process.

From Table 5.4, the best reported solution for the Saturn problem at this launch year (i.e,

Cassini-2), as compared to the actual Cassini one, is characterized by lower infinity veloc-

ities at departure and arrival, thus better f1 objective, but with much higher transfer time,

i.e., higher f2, mainly due to the last Jupiter-Saturn leg of the transfer. However, Pareto

front in Figure 5.6 suggests that this solution is still constrained in terms of duration and

significant improvements in terms of f1 objective can be obtained. This is confirmed from

Table 5.5, where the infinity velocity at Saturn is leveraged by a large DSM on the last

leg, at the price of increased f2 value (see also later section 5.5.3).

5.5.2 Assessment of Single-/Multi-Objective Dynamic Programming

on MGA Trajectory Optimization

In multi-objective optimization of the transcribed MGA trajectory design as shown in

5.2, a full evaluation (FE) of all possible combinations of departing dates and transfer

times in a sequence of legs linked by gravity assist usually makes the number of possible

routes to rise exponentially with the number of legs. This issue is mitigated via SODP

and MODP approaches as described in section 5.3. The key question is how feasible

FE, SODP and MODP are when executed on a typical laptop. This is answered here by

assessing the stages of evaluation and numbers of evaluation per stage for the EVVEJS
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example considered in Table 5.2, which are as follows:

1. The number of Lambert arcs evaluated (NL)

2. The number of defects evaluated (Nd)

3. The number of routes for FE (Nr,FE), SODP (Nr,SODP) and MODP (Nr,MODP)

The rate of rise in NL, Nd , Nr,FE , Nr,SODP and Nr,MODP depends critically on the discretiza-

tion considered in evaluating each leg (i.e., step size in start sts and duration std), and on

the non-linear constraints applied, generally on maximum ∆v defect at each encounter.

A parametric study is thus performed to assess the feasibility of FE, SODP and MODP

with respect to the step size for start date and durations, sts and std , respectively, and the

maximum defect ∆vmax. Table 5.6 highlights the cases considered here. It should be noted

again that larger step sizes are used for EJS legs as transfers to outermost planets are less

sensitive to grid sizes due to the increased orbital periods [189].

Table 5.6: Values used in parametric study for multi-objective optimization of EVVEJS.

sts [days] std [days] (EVVE) std [days] (EJS)
Case 1 2 2 4
Case 2 3 3 6
Case 3 5 5 10

Regarding the maximum defect limit ∆vmax, this is linked to limitations on spacecraft

propulsion system, thus large values are not feasible for standard spacecraft designs. To

achieve computational efficiency, ∆v defects should be the minimum possible, but subject

to the condition that locally optimal solutions are not lost, and the Pareto sets character-

istics are retained. This implies an upper limit on the DSM in-between two consecutive

swing-bys, which is related by the leveraging ration, i.e. the ratio between ∆v defect and

precedent DSM. As a general consideration, one should expect degradation of the Pareto

front characteristics with larger step sizes and lower ∆vmax. One should highlight that

the Case 2 from Table 5.6 alongside ∆vmax = 2 km/s employed in the numerical study in

section 5.5.1 is able to capture wide Pareto front and primary missions of interest for the

optimization scenario considered. Table 5.7 represents the computational effort in terms
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of NL, Nd , Nr,FE , Nr,SODP and Nr,MODP with respect to the case considered. The number

of Lambert problems solved NL and the number of defects Nd decreases when coarser

grids are considered. As it can be seen, although the number of defects and Lambert

problems remain the same for both SODP, MODP and FE, the number of different MGA

paths evaluated and stored in memory by each of the methods is substantially lower for

both SODP and MODP when compared to FE. This can also be seen from Figure 5.10

explicitly showing an example for EVVEJS tree exploration using SODP. Two different

sequences arrive at common node (V, t7,E, t8) at level 3, but only the bold one is kept

for further expansion since the accumulated ∆v is lower. The same happens at level 4,

where the node (E, t8,J, t10) is reached by three routes, but only one is kept for further

consideration.

Table 5.7: Computational effort for SODP, MODP and FE. No defects are computed on
the first leg of the transfer, thus a ’−−’ is included. The ∆vmax = 2 km/s.

Case 1
NL Nd Nr,SODP Nr,MODP Nr,FE

EV 34038 −− 2249 2249 2249
VV 14880 418314 1462 10924 26263
VE 11718 271932 4764 66249 1190503
EJ 64160 1910364 1772 28170 4864556
JS 670536 2216772 278910 6145707 2754878045

Totals 795332 4817382 278910 6145707 2754878045

Number of points in Pareto front 560
Optimum for f1 9.447 km/s

Case 2
NL Nd Nr,SODP Nr,MODP Nr,FE

EV 15128 −− 995 995 995
VV 6572 123380 643 3403 7869
VE 5208 79732 2105 20302 240687
EJ 28035 562035 780 8479 654155
JS 292734 650520 121213 1754661 246966060

Totals 347677 1415667 121213 1754661 246966060

Number of points in Pareto front 333
Optimum for f1 9.494 km/s km/s

Case 3
NL Nd Nr,SODP Nr,MODP Nr,FE

EV 5550 −− 362 362 362
Continued on next page
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Table 5.7 – Continued from previous page
VV 2475 27150 225 798 1642
VE 1875 16875 741 4586 29102
EJ 10143 119301 277 1837 49196
JS 103707 138777 42454 340078 11146629

Totals 123750 302103 42454 340078 11146629

Number of points in Pareto front 205
Optimum for f1 9.566 km/s km/s

Table 5.6 can also be used to infer approximate run time for the scenario considered,

as the overall procedure is dominated by Lambert arcs and defects computations. Few

microseconds are usually needed to compute a single Lambert arc [250] on standard lap-

top (i.e., 4 GHz single-core) on compiled code, while for the defects computation only

few nanoseconds are necessary. Therefore, no more than few seconds are needed for the

optimization even for the finest step-size cases (e.g., Case 1), making the whole proce-

dure efficient for most interplanetary missions considered here. In conjunction with the

Tisserand-informed planetary exploration, the whole procedure lasts from few seconds to

couple of minutes for the cases considered.

Figure 5.10: Example of EVVEJS tree exploration. Crossed paths are pruned by SODP
application. Accumulated ∆v up to the given tree level are also shown. The bold path is

f1-optimal.

The effect of ∆vmax is also shown in Figure 5.11, representing the Pareto set degradation

with respect to the Case considered and ∆vmax. It can be seen from 5.11.a that increasing
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the defects limit at a value larger than 2 km/s does not produce significant variations

of the Pareto front, while a too aggressive pruning might result in non-precise Pareto

set representation. The leveraging ratio varies typically between 0.5 and 6.5 in most of

the interplanetary missions considered here (see also section 5.5.3), so for example a

maximum defect of 2 km/s implies a maximum DSM magnitude of about 0.310 km/s

in the extreme leveraging case (note that 6.5 is still a high leveraging ratio and will be

generally less than that). Thus, ∆vmax = 2 km/s seems appropriate to truthfully represent

Pareto front characteristics for the mission at hand.

(a) (b)

Figure 5.11: Pareto fronts for EVVEJS scenario varying with the ∆vmax (a) and Case
number (b).

Figure 5.11.b highlights the impact of the step size with respect to the Pareto represen-

tation. A fine search (Case 2) is usually preferable, as coarser step sizes can degrade the

solutions quality relatively fast (Case 3). However, this choice is always a compromise

between computational effort and solution quality, thus in this sense Case 2 seems the

most balanced. The results also show the f1 optimum solutions converging with increas-

ing defect size for different interval considered, giving high confidence in the optimality

for a given step size. To conclude, if defects are to be used as the only processing stage,

i.e., with no further optimization in MGA-DSM, then small intervals (Case 2) are useful

to use with MODP, providing accurate results (section 5.5.5) and are less consequential in

terms of route numbers than other strategies. If another stage is envisaged, then a larger
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interval could also potentially be used (Case 3) with greater efficiency for the whole pro-

cess. The issue with using large intervals in the first phase and then using a second phase,

is to ensure that the large interval in the first phase does not result in selection of alter-

native local minima that do not then converge to the true minima in the second phase. In

practice this does not seem happen with the interval ranges discussed.

5.5.3 Converting Defects into DSMs

A key feature of the pipeline described in this paper is the relationship between the in-

finity velocity defects and the DSMs obtained with the refinement step. Assessing the

relationship between these two manoeuvre types is thus important to the understanding

of the whole pipeline. The analytical approximation described in section 5.4 is employed

here. This allows to obtain the leveraging effect obtainable from a DSM, i.e., the depen-

dency of an infinity velocity defect on a preceding DSM. As it can be seen from both

Table 5.3, 5.4 and 5.5, large defects occurring in the Venus-Venus leg of EVVEJS (both

for Cassini, Cassini-2, and optimal solution) are replaced by DSMs, reducing from more

than 1 km/s to approximately 400-600 m/s. The ∆v occurring in all the other legs are vir-

tually reduced to zero by means of the refinement process. In the fully optimized solution

after the refinement, the defect at the start of the second leg, i.e., VV, has been removed by

lowering the infinity velocity at the first Venus fly-by, with a DSM applied in the first leg.

This happens in the case of both Cassini-2 and optimal solution, while nominal Cassini

experiences higher velocity increment at the Earth departure. The lower initial infinity

velocity at Venus causes a large defect at the second Venus encounter, but this is corrected

by a DSM in the second leg where high efficiency of DSM is seen. The grid-based solu-

tion has higher cost, i.e., ∆v prediction, than the refined solution, because the refinement

redistributes the infinity velocity defects to maximally utilise the DSM leveraging.

This is noticed from the leveraging ratios computed on each leg of the EVVEJS transfer

both for Cassini, Cassini-2, and optimal solution in Figure 5.12. The parameter repre-

sented is the infinity velocity defect corrected to magnitude of a DSM versus the time
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(a) (b)

(c)

Figure 5.12: Leveraging ratios per leg considered for Cassini (a), Cassini-2 (b) and
optimal solution (c).

fraction elapsed into the segment. The plot illustrates that in the second segment, i.e.,

the Venus-Venus leg, the peak ratio is the highest in all the cases considered, and thus it

implies that any infinity velocity defect can be efficiently corrected with a much smaller

DSM, which is what happens in the refinement step. In the Earth-Venus leg, the ratio is

generally less than 1 but exceeds 1 towards the end of the leg, reaching approximately

1.4. The efficiency in this segment is clearly much less than Venus-Venus segment. It is

also interesting to notice that in the last Jupiter-Saturn leg for both Cassini and Cassini-2

scenarios (Figure 5.12.a and 5.12.b), the leveraging ratio remains below 1 for all the time

elapsed in the segment, reaching its maximum value, i.e., 1, only at Saturn encounter.

This suggests that no DSM are useful to leverage infinity velocity at Saturn, as also con-

firmed by refined results in Table 3 and Table 4. In the case of optimal solution (Figure
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5.12.c), the peak of the leveraging ratio on the last leg is higher than 1 around the mid-

region of the last Jupiter-Saturn leg. Therefore, it is more efficient to remove most of the

infinity velocity at Saturn with large DSM between last two planets as again proved by

the refinement process in Table 5.5.

5.5.4 Multi-Objective Optimization of Earth-Saturn Missions

In the second optimization scenario considered here, one assumes that the sequence to

reach Saturn is not known but needs to be selected as part of the optimization process.

Table 5.8 highlights the set up for this scenario. One should notice that the time bounds

are larger than those considered in Table 5.2, and multiple revolutions around the Sun

(up until 2 full revolutions) are admissible for innermost planets (i.e., if Venus, Earth, or

Mars are involved in the transfer). The launch can happen anytime in 1997 to benchmark

solutions with Cassini-like transfers and the maximum number of planets in the sequence

is selected to be 6. As in the previous case, for the grid optimization, step size in start date

and durations, sts and std , respectively, are chosen to be sts = std = 3 days for transfers

involving Earth, Venus and Mars, while std = 6 days is suitable for transfers involving

Jupiter and Saturn.

Table 5.8: Optimization scenario for Earth-Saturn mission for a launch in 1997.

Design variables Values and bounds

Sequence
Unknown. Any planet can be chosen

among: Venus, Earth, Mars, Jupiter, Saturn.
Maximum number of planets: 6

Departure velocity magnitude v∞,dep ∈ [3,5] km/s
Maximum defect at each fly-by ∆v ∈ [0,2] km/s

Launch window t0 ∈ [−1095.5,−730.25] MJD2000

Number of revolutions about the Sun
Nrev ≤ 1 if only V, E, M are in the leg;

Nrev = 0 if J or S are in the leg

Transfer times between planets
T ∈ [50,750] days If any leg has V, E, M

T ∈ [500,5000] days If any leg has J or S
T ∈ [400,2500] days If Nrev ≥ 1

With such a scenario, a total of 11 sequences are identified, for which Pareto fronts are

shown in Figure 5.13. Pareto fronts result from the specific mission scenario considered
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in Table 5.8, that considers less than one revolution when either Jupiter or Saturn are

present in a leg. One expects further reduction in f1 in the region of 24-25 years of

transfer times if such hypothesis is removed. As it can be noticed, Cassini-like transfers

following an EVVEJS sequence still represent the f1 optimal solution for short mission

durations, i.e., approximately 7 years of transfer time, while other sequences like EVEJS

or EVEEJS become competitive for longer mission durations, i.e., more than 10 years. In

general, Tisserand based exploration already informs the optimization process that having

Jupiter as last planetary fly-by reduces the infinity velocity at Saturn, thus providing better

transfers in terms of f1 objective.

Figure 5.13: Pareto front of Earth-Saturn options.

One can see that in fact EVEJS seems to dominate EVVEJS for mission durations at about

10 years of transfer times. This mission option is characterized by large defect on the EJ

segment as reported in Table 5.9, as a single Earth fly-by usually is not necessary to in-

crease the spacecraft apoapsis to Jupiter orbit without the use of a large manoeuvre. In

fact, a quick analysis of the leveraging ratio in Figure 5.14 shows that an optimal manoeu-

vre location in this segment should be at the very beginning of the leg, i.e., in the same

position of the defect, to remove the velocity defect at the next Jupiter encounter. How-

ever, the defect at Jupiter is already small, thus the manoeuvre is likely not to decrease as
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much as in the EVVEJS case, where high efficiency is seen on the VV leg, as experienced

in the refinement step shown in Table 5.3. Trajectories for EVEJS both before and after

the refinement are shown in Figure 5.15, where one can see the manoeuvre at the very be-

ginning of the EJ segment. One can appreciate that the trajectory structure is very similar

to the EVVEJS as in section 5.5.1, and in fact the additional Venus fly-by before the Earth

encounter is useful to increase the infinity velocity at the Earth, thus reducing the defect

on the EJ leg.

Table 5.9: Results for the ≈ 10 years EVEJS solution in the given mission scenario.

Event Defects solution Refined solution
Earth departure Oct. 22, 1997 Oct. 20, 1997

v∞,dep 3.73 km/s 3.99 km/s
∆v1 −− −−

Venus fly-by Mar. 26, 1998 Mar. 24, 1998
∆v2 0.425 km/s −−

Earth fly-by Aug. 04, 1999 Aug. 02, 1999
∆v3 1.63 km/s 1.44 km/s

Jupiter fly-by Apr. 09, 2001 May 12, 2001
∆v4 −− −− km/s

Saturn arrival Sep. 09, 2007 Oct. 14, 2008
v∞,arr 4.18 km/s 4.13 km/s

f1 9.96 km/s 9.56 km/s
f2 9.88 years 10.9 years

In addition, it is possible to identify a new f1 optimal solution for the Earth-Saturn mission

scenario considered. This is the case of the EVEEJS sequence, exploiting more than 1

revolution in the EVEE legs, outperforming the missions identified in section 5.5.1, in

terms of f1 value, at the price of increased total transfer time f2.

The trajectory is depicted in Figure 5.16 and corresponding values are shown in Table

5.10. Compared to the EVVEJS optimum from section 5.5.1, EVEEJS experiences a

lower ∆v both in the first EV and last JS leg, in terms of DSMs and infinity velocities at

the planet. A general consideration is that the topology of the search space is correctly

captured for any of the sequence identified, and the grid optimization alongside the dy-

namic programming approach already provides a very powerful tool to correct trade off

analysis with very small computational effort (see section 5.5.2).
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Figure 5.14: Leveraging ratios for EVEJS transfer for a transfer duration of ≈ 10 years.

(a) (b)

Figure 5.15: EVEJS from grid (a) and refinement (b) for a transfer duration ≈ 10 years.

(a) (b)

Figure 5.16: EVEEJS from grid (a) and refinement (b) for a transfer duration ≈ 25 years.

Continued on next page
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Table 5.10 – Continued from previous page
Table 5.10: Results for optimal EVEEJS in the given mission scenario.

Event Defects solution Refined solution
Earth departure Jun. 24, 1997 Jul. 24, 1997

v∞,dep 3.77 km/s 3.75 km/s
∆v1 −− −−

Venus fly-by Sep. 27, 1998 Oct. 10, 1998
∆v2 0.609 km/s 0.525 km/s

Earth fly-by May 23, 2000 Jun. 16, 2000
∆v3 0.0751 km/s 0.057 km/s

Earth fly-by Feb. 14, 2007 Feb. 18, 2007
∆v4 −− −−

Jupiter fly-by May 08, 2011 May 15, 2011
∆v5 −− −−

Saturn arrival Apr. 23, 2021 Apr. 16, 2021
v∞,arr 3.09 km/s 3.08 km/s

f1 7.54 km/s 7.41 km/s
f2 23.8 years 23.7 years

This is useful in preliminary mission analysis when multiple mission options are generally

required in short time with very little a priori knowledge of the structure of the final

trajectory. In this way, all the possible feasible trajectory options are identified and can

inform successive optimization in higher-fidelity models.

5.5.5 Comet Sample Return Missions

A mission scenario towards cometary objects among the Jupiter Family Comets (JFCs)

is explored in this section. These objects are characterized by periapsis of approximately

1 AU and apoapsis close to the orbit of Jupiter, which makes them accessible for sample

return and rendezvous opportunities. Such missions are of paramount importance for

future Solar System exploration to understand the assembly process of cometary materials

and their relationship with large-scale mixing in the ancient Solar System. As such, they

have received attention from scientific community in the context of ESA Cosmic Vision

2050 for future missions [210].

The scenario considered here is reported in Table 5.11. The increased complexity of

this mission scenario mainly relies on the high number of objects’ encounters, the ex-

tended launch window and transfer times as well as the trajectory structure in terms of
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Table 5.11: Optimization scenario for comet sample return mission for a launch in
2030-2040.

Design variables Values and bounds
Target comet 67P/Churyumov-Gerasimenko

Sequence
Unknown. Any planet can be chosen

among: Venus, Earth, Mars. Maximum
number of objects: 10

Departure velocity magnitude v∞,dep ∈ [3,5] km/s
Maximum defect at each fly-by ∆v ∈ [0,2] km/s

Launch window t0 ∈ [10957.5,14610] MJD2000

Number of revolutions about the Sun
Nrev ≤ 1 if only V, E, M are in the leg;

Nrev = 0 if 67P is in the leg
Maximum time on each transfer phase
(either to go to the comet or to return

to the Earth)
tp ∈ [0,8] years

Science phase time tw ∈ [6,12] months

Transfer times between planets
T ∈ [50,750] days If any leg has V, E, M

T ∈ [300,2500] days If any leg has 67P
T ∈ [400,2500] days If Nrev ≥ 1

spacecraft revolutions about the Sun 4. The target comet is assumed to be known, and is

67P/Churyumov-Gerasimenko, which is the same target of ESA’s Rosetta mission [249].

One looks for trajectories in the 2030-2040 launch window. The constraints considered

for this optimization problem are: (1) the maximum defects limit is set at 2 km/s for

each leg considered, (2) the transfer time on each phase of the mission tp (either to go to

the comet or to return to the Earth) should not exceed 8 years, (3) the time tw between

cometary rendezvous and departure should be within 6 to 12 months to account for sci-

ence phase operations. The objective is to explore the whole 10-years launch window

to find suitable trajectory options to go to the comet and return within the constraints.

Thus, a MODP-based approach is considered with the following objectives: (1) the first

objective is to maximise the spread in launch dates, i.e., to look how many opportunities

exist to go to 67P and return within the constraints in Table 11; (2) minimize the overall

mission cost computed as follows:

4The maximum Nrev derive from pure mission analysis considerations: any additional revolution imply
(more than) 1 year of transfer time, likely making the trajectory last too long.
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f1 =


v∞,dep +

nint−1

∑
i=1

∆vi +∆varr +∆vdep +(v∞,arr−4 km/s) if v∞,arr > 4 km/s

v∞,dep +
nint−1

∑
i=1

∆vi +∆varr +∆vdep otherwise

(5.10)

where v∞,dep and v∞,arr are the departing and arrival infinity velocities at the Earth, respec-

tively; ∆vi are the manoeuvres on each leg of the transfer (either on the way to the comet

or on the return phase to the Earth); ∆varr and ∆vdep are the manoeuvres required for the

rendezvous and the departure with the comet, respectively. The f1 function accounts for

both the phases of the mission, i.e., the transfer to the comet and the return phase to the

Earth, and considers a free return to the Earth if the v∞,arr ≤ 4 km/s (considered as a rea-

sonable maximum threshold for a free-∆v re-entry in the Earth atmosphere [251,252]). To

ensure correct spreading in the departing dates over the large launch window (10 years),

all the paths that depart the Earth with different launch epochs and that are compliant with

the constraints are retained at any selection steps of the MODP expansion.

(a) (b)

Figure 5.17: EVEM (a) and EEVE (b) sequences for a 67P sample return mission as
from Tisserand exploration.

The MODP exploration informed by Tisserand-based criterion automatically allows to

identify a very high number of trajectories (109) involving up to 6 fly-bys with Solar

System planets for a total of up to 9 objects in the overall sequence. The overall launch
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window exploration remains efficient (see section 5.5.2) and only takes approximately 1.5

hours (4 GHz laptop).

(a) (b)

Figure 5.18: Cost of transfers towards 67P (a) and back to the Earth (b) with respect to
launch and arrival date, respectively.

Figure 5.17 represents a possible strategy to go to the comet and to return to the Earth,

involving an EVEM transfer towards 67/P (5.17.a) and an EEVE transfer on the way back,

exploiting a 2:1 resonance on the EE leg of the mission (Figure 5.17.b). From Figure 5.17,

one recognizes that having Mars as last planetary encounter (or first encountered planet on

the return phase) could be useful to rendezvous/depart at 67P/Churyumov-Gerasimenko

with virtually zero ∆v, having a fly-by with the planet at about 12 km/s of relative velocity.

On the other hand, transfers with Earth and Venus immediately before/after the cometary

encounter imply a larger ∆v and relatively high relative velocities at the planets. However,

transfer scenarios only involving Earth and Venus seem to have lower overall ∆v as the

synchronicity between those two planets is more favorable than the one with Mars.

Figure 5.18.a illustrates the f1 cost of reaching the comet with the sequences identified

by the pipeline with respect to the launch date at the Earth, while Figure 5.18.b shows

the cost of the return phase with respect to the arrival date at the Earth. The two phases

are here separated for the sake of representation, and the f1 cost refers to the single phase

under consideration. One notices that the specular sequences like EVEE and EEVE pro-

vide the cheapest transfers towards the comet and back to the Earth, respectively. When
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(a) (b)

Figure 5.19: Total f1 cost (a) and mission duration (b) for comet sample return options
with 67P in the 2030-2040 launch window.

compared to other transfers, sequences having Mars as last/first planetary fly-by, such as

the specular EVEM or MEVE, usually experience higher defects at Mars encounter due

to rare phasing with Earth and Venus. This is also shown in 5.19.a, where where EVEE-

67P-EEVE sequence appears as the optimal with respect to f1 objective, exploiting 2:1

resonant transfer on each EE leg.

Figure 5.20: Comet sample return trajectory to 67P involving an EVEE trajectory to the
comet (black path) and a EEVE transfer on the way back (magenta path).

This transfer is shown in Figure 5.20, and the corresponding events and values are re-
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ported in Table 5.12. No large manoeuvres are required neither in the defect approxi-

mation, nor in the refined solution, showing very good correspondence between defect

solutions and refined ones, and the only contribution to the f1 cost is given by the ren-

dezvous with the comet and the departure on the return phase of the mission.

Table 5.12: Results for optimum solution for the given comet sample return mission
scenario.

Event Defects solution Refined solution
Earth departure Jul. 15, 2031 Jul. 05, 2031

v∞,dep 4.31 km/s 3.89 km/s
∆v1 −− −−

Venus fly-by Dec. 17, 2031 Dec. 17, 2031
∆v2 −− −−

Earth fly-by Oct. 26, 2032 Oct. 28, 2032
∆v3 −− −−

Earth fly-by Oct. 26, 2034 Oct. 28, 2034
∆v4 0.743 km/s −−

Comet arrival May 08, 2011 May 11, 2011
∆varr 1.33 km/s 1.24 km/s

Comet departure Mar. 16, 2037 Mar. 16, 2037
∆vdep 1.14 km/s 1.14 km/s
∆v5 −− −−

Earth fly-by Oct. 22, 2040 Oct. 22, 2040
∆v6 −− −−

Earth fly-by Oct. 22, 2042 Oct. 22, 2042
∆v7 0.0874 km/s −−

Venus fly-by Mar. 13, 2044 Mar. 07, 2044
∆v8 0.0262 km/s −−

Earth arrival Aug. 21, 2044 Aug. 11, 2044
v∞,arr 4.02 km/s 3.78 km/s

f1 6.48 km/s 6.27 km/s
f2 13.1 years 13.1 years

From Figure 5.19, another interesting option is represented by EVE-67P-EVE sequence,

which experiences short transfer times and good f1 costs, due to small number of plane-

tary encounters, but at the price of rare repetition over the mission range considered. Fig-

ure 5.19.b also shows that almost every year an opportunity to rendezvous with the comet

and return to the Earth exists within relatively short mission durations, i.e., less than 15

years, within the ∆v constraints. The procedure has proven again to be efficient in explor-

ing a mission scenario of complex configuration, demonstrating the ability of identifying

multiple mission options for practical preliminary analysis of future missions.
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5.6 Planning High-Inclination Tours

Tisserand-based exploration as from Chapter 4 allows to identify the need for resonant

orbits on legs that visit the same planet consecutively. These can occur when the time

of flight is such that the spacecraft encounters the same point for two encounters. Such

transfers are thus characterized by a ratio N:M of integers between the planet and space-

craft orbit periods, where N is the number of planet revolutions about the Sun and M is

the number of spacecraft revolutions.

The details of resonant orbits can be obtained analytically via derivation of post fly-by

relative velocity vector characteristics, and thus solution of Lambert’s problem is not re-

quired. A brief description of the process to obtain resonant transfers is reported in sec-

tion 5.6.1, while a possible application for exploiting high-inclination orbits is presented

in section 5.6.2.

5.6.1 Generating Resonant Orbits

The resonant ratio N:M implies a ratio between the planet and spacecraft orbital periods,

namely Tpl and Tres respectively, that is (from Chapter 4):

Tres =
N
M

Tpl (5.11)

It is thus possible to compute the semi-major axis of the resonant orbit as:

ares =

(
µ

(
Tsc

2π

)2
)1/3

(5.12)

The spacecraft velocity after the first fly-by with the resonant planet is thus:

v+ =

√
µ

(
2
|⃗rpl|
− 1

ares

)
(5.13)
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Where r⃗pl is the planet position at the encounter. Recalling the velocity triangle of Figure

5.21, one has that the angle α = π−θ on which:

θ = arccos
(

v−2
∞ + |⃗vpl|2− v+2

2v∞|⃗vpl|

)
(5.14)

where v−2
∞ and v⃗pl are the infinity velocity magnitude and planet velocity vector at the

planetary encounter, respectively. Similarly to what already seen in Chapter 4, an N:M

resonant orbit is achievable for a given v−∞ only if:

∣∣∣∣v−2
∞ + |⃗vpl|2− v+2

2v∞|⃗vpl|

∣∣∣∣≤ 1 (5.15)

Figure 5.21: Possible spacecraft orientations after the first fly-by.

In a local reference frame (see Figure 5.21), defined as [153]:


v̂ =

v⃗pl
|⃗vpl |

n̂ =
r⃗pl×⃗vpl
|⃗rpl×⃗vpl |

ĉ = v̂× n̂

(5.16)

one has that the infinity velocity vector after the first fly-by with the resonant planet, i.e.,

v⃗+∞ is found as:
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v⃗+∞ = v−∞


cosα

sinα cosφ

sinα sinφ

 (5.17)

One should then convert v⃗+∞ in the inertial reference frame by:

v⃗+∞ ← T v⃗+∞ (5.18)

where T is the transformation matrix made by vectors [v̂, n̂, ĉ]. The rotation of v⃗−∞ to v⃗+∞

should again be compliant with the maximum deflection admissible at the given fly-by.

Finally, one can reconstruct relevant information, such as the spacecraft velocity after the

first fly-by with the resonant planet, v⃗+ = v⃗pl− v⃗+∞ , that, alongside the spacecraft position

r⃗+ = r⃗pl , fully define the resonant orbit. However, one should notice that such orbit is

function of the angle φ , that defines spacecraft orbits of different inclinations. Therefore,

one could either select the angle that minimizes the inclination change between the pre-

and post-fly-by orbit or select a range of inclined resonant orbits to be kept for further

consideration.

5.6.2 High-Inclination Tours

If the aim is to maximise the heliocentric inclination, the analysis presented in Chapter 4

already showed the effectiveness of using Venus and Earth as possible planets to fly-by to

gradually increase the orbital inclination. Specifically, the Earth is particularly effective

to change the inclination compared to Venus since it is farther from the Sun, permitting to

achieve higher inclinations with similar infinity velocities with respect to Venus.

The steps to construct high-inclination tours would be to identify from Tisserand graph

exploration (Chapter 4) the infinity velocities that allow to reach the desired inclination

with the Earth (say, for example, that the target is to have orbits with inclination higher
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Figure 5.22: Inclination before and after the last Earth fly-by of EVEEEE with 1:1, 1:1
and 2:3 resonant orbits between successive Earth fly-bys.

than 30 degrees). In this case, the infinity velocity at the Earth should be at least 15 km/s.

To achieve such speeds, Tisserand graph exploration allows to identify sequences like

EVE or EVEVE, followed by sequences of 1:1 and 2:3 resonant orbits to maximize the

inclination.

(a) (b)

Figure 5.23: Inclination before and after the last Earth fly-by of (a) EVEVEEEE with
1:1, 1:1, and 2:3 resonant orbits on the successive EE fly-bys, and (b) EVEVEEEEE

with 1:1, 1:1, 1:1 and 2:3 resonant orbits on EE legs.

Successive resonant orbits are constructed by means of the steps presented in section 5.6
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Figure 5.22 shows the achievable inclinations for the option EVEEEE with 1:1, 1:1 and

2:3 resonances before and after the last fly-by with the Earth. The maximum inclination

achievable is approximately 33.34 degrees in about 5.765 years.

Figure 5.24: EVEVEEEEE sequence with 1:1, 1:1, 1:1 and 2:3 resonant orbits on
successive EE legs. The red orbit is achieved after the last fly-by with the Earth.

For the option EVEVE, the inclination achievable is higher thanks to the higher infinity

velocity at the last Earth encounter reached thanks to the Venus fly-by. One could use

successive Earth fly-bys in 1:1, 1:1 and 2:3, as in Figure 5.23.a to achieve higher incli-

nations (the infinity velocity at the Earth is higher, i.e., 17 km/s), or use 1:1, 1:1, 1:1 and

2:3 to achieve a maximum of 37.65 degrees in just under 10 years, or above 35 degrees in

less time, i.e., 5.695 years. By adding another 1:1 resonant fly-by before the 2:3 one, Fig-

ure 5.23.b shows that the maximum inclination becomes 41.19 degrees, reached in 10.16

years, or one can get to approximately 37 years in 6.695 years. Figure 5.24 illustrates the

EVEVEEEEE trajectory that achieves 41.19 degrees of inclination.

5.7 Conclusions

This Chapter presented a robust and efficient approach to the multi-objective optimization

of complex MGA transfers. This relies on the specific process that considers: (1) approx-
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imated ∆v manoeuvres, i.e., velocity defects at planetary encounters, allowing efficient

exploration of the search space in terms of launch window and transfer times; (2) efficient

exploration of the transcribed search space by means of a novel multi-objective dynamic

programming (MODP) approach applied to interplanetary missions.

Specifically, robustness is ensured by the evaluation of the relationship between the differ-

ent manoeuvre model types. Efficiency is achieved by exploiting the sub-optimal structure

of the MGA path planning step. In this way, MODP is used as a method to explore the

transcribed search space guaranteeing the global Pareto optimality of competing mission

objectives.

The ability of the proposed approach in identifying globally optimal paths was tested

against mission towards Saturn, similar to Cassini mission, to prove the effectiveness

in representing wide Pareto fronts of complex configuration for well-known trajectories.

Indeed, in such cases the method allowed for finding the ∆v-global optimum without

any need of a priori knowledge of the solution (e.g., on the gravity-assist sequence, the

departing date, transfer times and DSMs) in an efficient way, from wider search spaces

compared to existing literature, as well as new transfer scenarios that populate very wide

Pareto fronts.

Numerical results showed that the proposed pipeline is also suitable for exploring novel

scenarios such as sample return missions towards comets, where the complexity mainly

lies in (1) the extended launch window considered, and (2) the structure of the trajectories

themselves, requiring up to six fly-bys for the overall mission.

Finally, the extension of the presented tool to planning of high-inclination resonant tours

is provided, showing the scalability of such approach to many different mission scenar-

ios.
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Chapter 6

Modified Dynamic Programming for

MAB Exploration

The present Chapter focuses on the space trajectory design of asteroids’ tour mission,

where the term tour simply indicates a mission that aims to visit not one but several

celestial objects by means of one single spacecraft. As identified in Chapter 2, these

problems have been tackled as global optimization problems, under the formulation of

mixed-integer global optimization problems. However, beyond the aim of finding the

global optimum, mission designers are usually interested in providing a wide range of

mission design options reflecting the multi-modality of the problem at hand. In this sense,

a CSP-like formulation is also relevant.

It should be highlighted that this Chapter is ideal to support mission analysis studies

like CASTAway [9, 10], MANTIS [205] or Lucy [11], and its content is inspired by the

challenges posed by such missions. For such missions, no pre-defined targets are to be

visited, but rather a feasibility assessment is needed of the MAB exploration with close

passages with asteroids within the envelope of practical mission boundaries (e.g., ESA

M-class boundaries).

The key ideas behind the present Chapter can be then summarized with the following
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points. The subdivision of the Chapter is also provided:

• Firstly, the models used in this Chapter are recalled in section 6.1.

• One then wants to construct sequence of asteroids with the help of planetary fly-bys

to increasing the chances of visiting multiple asteroids. This is explained in section

6.2.

• The problem of finding asteroids and planets sequences is transcribed into a TSP

variant, i.e., a pure combinatorial problem, on which the asteroids and planets can

be visited only at fixed epochs. To do so, an approach based upon the Minimum

Orbital Interception Distance (MOID) is described in section 6.3. The structure of

such space, that is analogous to the one presented in Chapter 5, is also summarized.

• On this transcribed space, one wants to find all the possible sequences (combina-

tions) of asteroids and planets (or as many as possible) that are compliant with given

mission constraints. In this sense, one solves both the CSP-like problem (multiple

sequences of asteroids to be found) and the global optimization problem (the op-

timal sequence with respect to a given objective is searched to asses the minimum

spacecraft performances). For this purpose, one might want to consider exhaus-

tive tree-graph explorations with DF or BF. However, retaining all the possible se-

quences is usually unfeasible due to the enormous tree size (that depends upon the

number of asteroids in the sequence). One might then consider applying BS as a

standard way to find numerous solutions that are compliant with the constraints, but

with no guaranty on the optimality. This is discussed in section 6.4.

• Therefore, the proposed approach is to slightly modify the paradigm of dynamic

programming as explained in Chapter 5 to retain not only the globally optimal path

on the transcribed problem, but also multiple solutions with less computational ef-

fort compared to standard BS-like procedures. In this sense, the CSP-like approach

as presented in Chapter 2 is set up such that trajectory optimization is still carried

out in a modified dynamic programming fashion, thereby retaining more individuals

180



CHAPTER 6. MODIFIED DYNAMIC PROGRAMMING FOR MAB EXPLORATION

within the trajectory optimization population. This is explained in section 6.5.

• Section 6.6 presents numerical results that demonstrate the efficiency and effective-

ness of applying the modified dynamic programming approach to the problem at

hand. This shows novel mission scenarios within realistic set of mission boundary

conditions using Earth, Venus, and Mars gravity assist for future missions to ex-

plore the main asteroid belt. Sequences of up to 18 asteroids are found and wide

launch windows are explored (i.e., 10 years).

• Section 6.7 summarizes main results and achievements.

6.1 Modelling MGA Trajectories with Multiple Asteroids

By recalling the formulation employed in previous Chapters 3 and 5, typical multi-target

mission analysis parameters (like ∆v or mission lifetime) crucially depend on variables

that can assume both integer and continuous-varying values, i.e., X and y, respectively.

In this Chapter, integer vector set X encodes the targets to be visited, i.e., asteroids and

planets, while the continuous-varying of vector y encodes visiting epochs and other con-

tinuous variables which describe spacecraft manoeuvres, such as planetary gravity assist

or DSMs. The mathematical model employed is again the MGA-DSM one (see Chap-

ter 3) on which the fly-by with planets are modelled as impulsive manoeuvres that are

governed by the quantities (rp,γ), defining the minimum distance of the fly-by hyperbola

and the orientation of the fly-by plane. Regarding the fly-by with asteroids, these are

assumed to be massless points in this preliminary analysis (i.e., no sphere of influence).

The trajectory between two consecutive asteroids then results from a Lambert arc be-

tween the asteroids positions (known from ephemerides) and a ∆v manoeuvre is assumed

to link incoming and outgoing arcs at a given asteroid encounter (similarly to the defects

computation in Chapter 5).

Figure 6.1 represents an example trajectory as proposed for CASTAway mission for ESA
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Figure 6.1: Example of MAB tour trajectory for CASTAway design envelop. Arrowed
lines represent asteroids paths. Sun and planets textures are not in scale.

M5 call, which follows an Earth-Mars swing-by to increase the spacecraft orbital energy

and encountering a total of 12 asteroids. In this case, vector X encodes a total of nint = 14

visited objects (i.e., the Earth, that is the departing planet, 12 asteroids and Mars). Vector

y encodes 17 variables, that are the departing date t0, the transfer time between the objects

Ti,∀i = 1, ...,nint −1 and three variables for the Mars encounter, i.e., the fraction of time

before the encounter at which a DSM is performed (η), the minimum distance to the

planet during the fly-by (rp) and the orientation of the fly-by plane (γ).

6.2 Planetary Gravity Assists Baseline Path

The (X ,y) vectors contain the information necessary to describe a multiple planetary grav-

ity assist trajectory with asteroids encounters. The few variables (both integer X and

continuous-varying y) defining the planetary encounters will disproportionally contribute

to the chances of the spacecraft to encounter main-belt asteroids at a low ∆v expenditures.

This is mostly due to the fact that a planetary encounter will greatly affect the overall
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energy and orientation of the spacecraft trajectory, hence affecting its capability to reach

the MAB and therefore exploring it.

Ultimately, different MGA sequences allow the probe to enter the MAB with different

trajectories and spend more or less time within the bounds of the MAB. Figure 6.2 shows

three specific examples of planetary encounters to access the MAB. It showcases a simple

Earth direct escape with no planetary encounters, as well as an Earth-Venus-Earth, an

Earth-Mars and an Earth-Mars-Mars. The dotted lines represent the MAB limits, and so

it can be observed that each transfer opportunity features different paths within it.

(a) (b)

(c) (d)

Figure 6.2: Four MGA trajectory options with E alone (a), EVE (b), EM (c), EMM (d).
Grey points represent asteroids in the dataset and dotted lines are the limits of the MAB.

Sun and planet textures are not in scale.

In the reminder of the Chapter, the Earth-Mars sequence as from Figure 6.2.c is considered

(up to section 6.6.1), since as shown in Figure 6.2.c and analysed by Gallego [253] it
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enables a decent reach within the MAB at relatively low Earth v∞,dep, especially if short

missions are considered (e.g., ≤ 5 years). The following sections describe the process to

explore all asteroids tours possible for one single Earth departure in an Earth-Mars MGA

sequence, and the details of the trajectory are reported in Table 6.1, where ∆tMAB is the

time spent in the MAB region.

Table 6.1: Details for the Earth-Mars reference trajectory for M5 call.

Event Value
Earth departure Dec. 24, 2030
Departing v∞ 4.23 km/s
Mars fly-by Mar. 3, 2033

∆tMAB 1250 days

6.3 Transcription of the Problem

This section deals with asteroids tour problem transcription. It first defines the aster-

oids dataset (section 6.3.1), and then for any MGA path one selects potential asteroids

encounter dates based upon MOID information (section 6.3.2). The accuracy of such

transcription is then discussed in section 6.3.3.

6.3.1 Pre-pruning

Once a general baseline transfer, i.e., with planetary sequence and epochs for each plan-

etary encounter, is identified, the search for asteroid belt multiple fly-by options can be

initiated. As of September 2022, slightly over 1 million asteroids in the MAB are known,

according to the Jet Propulsion Laboratory Small-Body Database 1. Exploring all the

potential, for example, 10-asteroids long sequences within the known population would

require computing trajectories for more than 1053 different sequences. Computing this

number of trajectories would take many orders of magnitude more than the age of the

universe and, therefore, there is an obvious need to prune out the overall catalogue and

1https://ssd.jpl.nasa.gov/tools/sbdb_query.html, last accessed September 2022
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target only a sensible set of interesting MAB objects. Here, a pruned database of ∼

102,000 main belt asteroids is used to search for main-belt asteroid sequences [9, 10, 61].

This database provides a pre-filtered population of MAB objects: all asteroids larger than

10 km in diameter are retained in the database, while smaller objects are pruned out main-

taining a representative diversity of asteroids in size and orbital distribution. The orbital

elements and other physical information of the asteroids in the database is downloaded

from Jet Propulsion Laboratory Small-Body Database. It should be noted that an asteroid

set of ∼ 102,000 objects is already a much larger set than any GTOC-related asteroid

set [254], and the addition of one or multiple gravity assists with planets as in Figure 6.2

adds extra complexity to the problem.

6.3.2 Asteroids Tour Transcribed Problem

The transcription process can now be initiated. Recall that two different sub-problems

need to be solved to design an asteroids tour. Firstly, the right sequence of asteroids (i.e.,

completing the integer vector variable X), among the∼102,000 targets, need to be appro-

priately chosen, which requires solving a discrete combinatorial problem. However, the

goodness (∆v and/or TOF) of a given asteroid tour can only be assessed after identifying

the actual dates for each asteroid encounter (i.e., continuous-varying vector variable y). It

should be noted that the ∆v cost of an asteroid tour will be highly sensitive to the actual

dates of the asteroid encounters. A priori, the possible dates for each asteroid fly-by (t f b)

could be any date that satisfies y1 < t f b < y1+TOF (TOF being the overall mission time

of flight). The fact that both of these two sub-problems are tightly associated defines the

crux of the asteroid tour problem and differentiates it from other classic combinatorial

problems, such as the TSP.

Given that the asteroid tour sequence is refined over one specific baseline trajectory, as

identified in section 6.2, one may consider that only asteroids that are close to the space-

craft at any one point during the trajectory can be feasibly encountered. An analyti-

cal algorithm identifying the minimum orbital intersection distance (MOID), combining
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Figure 6.3: Reference trajectory and close asteroids with respect to the distance
threshold. Sun and planets textures are not in scale.

both [255] and [256] algorithms, is instead implemented to identify asteroids within a

MOID range, as well as their true anomaly at the epoch of the MOID point crossing. The

distance between the spacecraft and the asteroid at the epoch at which the asteroid crosses

its MOID point is here used as a good estimate of the asteroid minimum distance (note

multiple asteroid epochs may exist within the spacecraft TOF).

Algorithm 4 summarizes the main steps of the transcription process. For any given as-

teroid in the catalogue, the algorithm computes the MOID i.e., the minimum distance

between the asteroid and the spacecraft reference orbit on the leg. Then, it checks the

position of the asteroid and the spacecraft at the asteroid’s MOID point crossing epoch

and computes the actual distance. If this is less than a pre-defined threshold dthr, then the

given asteroid is considered as a candidate object to be potentially reached. Algorithm 4 is

thus used to compute sub-set of asteroids whose orbits intersect the spacecraft trajectory

close enough to be suitable targets, with respect to the distance threshold.

Figure 6.3 shows the EM reference trajectory as from section 6.2 and close-by asteroids

at their MOID point epochs with varying distance threshold values. Figure 6.3 shows the

set of asteroids within the distance thresholds of 0.03 AU, 0.04 AU, 0.05 AU, 0.10 AU

186



CHAPTER 6. MODIFIED DYNAMIC PROGRAMMING FOR MAB EXPLORATION

Algorithm 4 Pseudo-code for computing potentially reachable asteroids and their MOID
epochs with respect to a reference trajectory

1: Load reference trajectory (section 6.2), the population of MAB objects and dthr:
2: for each leg on the GA reference trajectory do
3: for each asteroid in the dataset do
4: Compute the MOID between the leg and the asteroid orbit
5: Compute spacecraft-asteroid distance at asteroid’s MOID-point epoch
6: if the distance is less than threshold dthr then
7: Save the asteroid and its MOID-point crossing epoch
8: end if
9: end for

10: end for

and 0.15 AU. One can thus prune out all asteroids that do not satisfy a given distance

threshold dthr, which for the five thresholds in Figure 6.3 will leave an asteroid dataset

containing 49, 98, 158, 562 and 1026 asteroids, respectively.

Note that each asteroid in the set also has an epoch associated to it, which identifies

the epoch at which the asteroid crosses its MOID point. This uniquely identifies each

asteroid with the time of its possible fly-by. Such an approximation allows thus tackling

the path planning combinatorial problem on its own. The continuous optimization with

the actual dates for each asteroid encounter may then be refined in a later stage (see section

6.3.3).

6.3.3 Refinement

By applying the transcription process, the problem is decomposed into two consecutive

sub-problems: firstly, the discrete combinatorial problem (CP), which aims at identifying

promising sequences of asteroids to complete a tour, and secondly, the refinement problem

(RP) aiming at optimizing the continuous design variables given a fixed asteroid sequence.

Hence, the RP refines all or a given promising sub-set of solutions from CP, which provide

a fixed sequence of objects to visit. It is important to note that the CP solutions are not

approximations of the complete problem, but full trajectories. The visiting epochs and

planetary fly-by parameters, variables encoded in the vector y, identified in the CP process
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only need to be refined in case a lower ∆v solution exist in the same neighbourhood.

For this process to be efficient, CP solutions must be close enough to the real minimum

solution for the RP.

Figure 6.4: Summary of solutions as from RP and their estimates as from CP. Red error
bars indicate 3σ distributions at 7.75, 8.25 and 8.75 km/s.

Figure 6.4 reports the ∆v costs of an ensemble of unique asteroids tour solutions identified

after exploring the baseline EM trajectory from Table 6.1 by means of both CP and RP

sequential processes. Each point in Figure 6.4 represents a trajectory with 12 asteroids

plus Mars with its ∆v for the CP as indicated in the x axis, and the cost of the associated

RP as indicated the y axis. The RP solutions are obtained by re-optimizing the solutions

for ∆v using MATLAB particle swarm optimization. The visiting epochs in vector y

are allowed to vary on a ± 30 days-range with respect to the corresponding CP values.

Figure 6.4 shows that the refinement of CP solutions may achieve some improvement of

∆v (3σ distribution), but the transcribed problem still provides a rather accurate estimate

of the goodness of the trajectory, without the need to deal with the continuous variable

optimization.

Thus, the CP assumption already provides a very good estimate of the ∆v of a given

transfer. As additional proof, Figure 6.5, shows the ∆v costs of the asteroid-to-asteroid
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Figure 6.5: ∆v variation on the different legs of the CASTAway EM reference trajectory
with respect to the MOID epochs for each of the visited asteroids.

legs completing a full 12-asteroid tours in the MAB. The x-axis in Figure 6.5 describes

the sensitivity of each asteroid-to-asteroid leg to changes on the asteroid fly-by epoch, as

centred around each asteroid’s MOID point crossing epoch. Circles highlight the actual

minimum ∆v possible for the given leg. The Figure illustrates that the described procedure

results in a very efficient process to find a fixed time of flight between two consecutive

objects. Note that the a-priori knowledge of the asteroid fly-by time was y1 < t f b <

y1 +TOF , and that the process allows to identify a fly-by epoch within few days of its

optimal configuration.

6.4 Tree Searches on Transcribed Space

The structure of the transcribed space is similar to the one described in Chapter 5. This

space is made by nodes that are couples of asteroids at their encounter epochs, that

uniquely define the Lambert arc between them (for fixed number of revolutions). By

referring again to Figure 5.2, to connect different nodes on this space, namely (Pi,Pj) and

(Pj,Pk), one uses the ∆vi j = |⃗v+j − v⃗−j |, where one has replaced v⃗−
∞, j and v⃗+

∞, j with solutions

of the Lambert arcs v⃗−j and v⃗+j , respectively. Therefore, for the triplet (Pi,Pj,Pk) one has
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a unique cost. Being the ∆vi j a tri-asteroids dependent cost, unique for each of the legs of

the search space, a tri-structured score matrix can be created. Figure 6.6 shows an exam-

ple of score matrix for the smallest set of 49 asteroids (see section 6.3.2). Each row, in y

axis, represents a couple of asteroids, i.e., a trajectory between two objects, and each col-

umn, in x axis, is encoded with asteroids in the catalogue that completes the triplet. The

third dimension is completed with ∆vi j for Figure 6.6.a and with time of flight T for Fig-

ure 6.6.b 2. Asteroids and planets are ordered with respect to their visiting time. In fact,

one should recall that each asteroid and planet comes with its own visiting epoch from

the procedures described in sections 6.2 and 6.3. Thus, asteroid A1 cannot be reached by

asteroid A5, since A5 is encountered after A1 (this also explains the white space in Figure

6.6).

(a) (b)

Figure 6.6: Score matrix with ∆v values (a) and time of flight T (b) for the catalogue of
49 asteroids (dth = 0.03 AU).

Such score matrix allows to usefully exploit the substructure of unique triplets 3. In fact,

one can either pre-compute all the possible triplets in the score matrix or store the cost for

each triplet at the first instance that is computed during the search process. In this way

one identifies several characteristics of the whole set of asteroids (like the ∆v as in Figure

2In this case, for example, Figure 6.6.b shows the time of flight impact that adding a given triplet has on
the overall sequence.

3Figure 6.6 is for representation purposes. One can extract the transfers/asteroids that are feasibly reach-
able by simply pruning rows and columns from the matrix.
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6.6.a, the transfer time as in Figure 6.6.b, encountering conditions, relative velocities,

phase angles, and so on) without even addressing the combinatorial problem.

Having defined the search space as a graph of connected nodes, each of which defined as

pairs of asteroids, it may then be tempting to consider complete tree traverse algorithms

to solve the CSP problem, i.e. to find all the sequences of asteroids. DF and BF may allow

to systematically cross the tree graph representing the entire search space of the problem

(see section 2.1.4 describing such procedures). By means of the binomial coefficient (see

Eq. 1.1), one can quickly see how the total number of possible paths in a tree quickly

grows to unfeasible values. Table 6.2, for example, shows all the possible sequences of

12-asteroid-long paths that exist for each set identified for different distance threshold

(see section 6.3.2). Considering pruning criteria derived from realistic mission design

scenarios, one can still complete tree traverse explorations for the smallest catalogues in

Table 6.2. Nevertheless, given the exponential growth of the number of combinations, the

task quickly becomes an impossible endeavor for larger sets.

Table 6.2: Number of combinations of 12 asteroids sequences.

Number of asteroids Number of sequences with
12 asteroids

49 9×1010

98 8×1014

158 3×1017

562 2×1024

1026 2×1027

One might then want to consider incomplete searches like BS, on which the computational

effort associated with tree exploration is bounded by capping the number of branches that

can be expanded at any one level. More specifically, from all the branches generated at

one level, only a limited set of them, referred as the beam, is selected to be expanded

at successive levels. The dimension of the beam (i.e., the number of sequences to be

kept in memory for further expansion) is referred as the beam width (BW). The sequence

selection is usually done by prioritizing those that minimize a cost function, e.g., the ∆v.

Although this is a well-established procedure to obtain multiple locally optimal solutions
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for the problem at hand (see Chapter 2), the guaranty on global optimality with respect to a

given criterion (e.g., the ∆v) is not assured. Selecting the proper BW is thus a compromise

between solution quality and number and computational effort.

Performances of the BS algorithm on the problem at hand are evaluated over a grid of

settings for the BW for the different asteroids’ catalogues considered. The BW varies

from 0 to an arbitrary high number, e.g., 200,000, that allows to consistently find tens of

thousands of solutions. Results are provided in Figure 6.7. The analysis in Figure 6.7

show several plateaus, with transitions at a priori unknown BW. One can first observe

first that transitions to the same ∆v level occur at a larger BW for larger catalogues: see

for example the 98 and 158 asteroids catalogues, which both reach 6.977 km/s level, but

the 158 asteroid catalogue requires more than twice the BW to reach it than for the 98

catalogue. This feature suggests an underlying multi-modal structure of rapidly increas-

ing complexity. The last of these plateau transitions must thus coincide with the global

optimum. However, one does not know a priori the BW necessary to reach this final

transition.

Figure 6.7: Best ∆v solutions with respect to the BW for different catalogue considered.
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6.5 Modified Dynamic Programming for Graph Explo-

ration

As discussed above, as the number of asteroids in the dataset grows, the dimensionality of

the problem quickly prevents the possibility to perform an exhaustive DF/BF exploration.

Similarly to Chapter 5, efficient computational strategies, such as the single-objective

variant of dynamic programming (SODP), may however mitigate this issue and enable

a search guaranteeing the global optimality of the output of the search. For dynamic

programming to be applicable, the problem needs to be decomposed into independent

sub-problems, which are tackled separately, then the solutions of the sub-problems are

combined to gradually solve the original problem. This has been done in section 6.3.2,

showing that the solution of independent sub-problems for the asteroid tour mission tack-

led here corresponds to link a triplet of asteroids with Lambert arcs.

Beyond the aim of finding optimal asteroids tours from a single-objective point of view,

the definition of feasible asteroids sequences for practical mission scenarios usually comes

together with the definition of the scientific interest around specific (sequences of) aster-

oids. In theory, if one could find a ‘science’ function that is f (X) = S, where X encodes

again a sequence of asteroids, and S the science that can be performed with the given se-

quence X , one could set-up, for example, a multi-objective optimization (like the MODP

approach presented in Chapter 5) and optimize for different functions like the overall

∆v (to be minimized) and S (to be maximized). However, the definition of such func-

tion f (X) = S is not trivial and any function adopted (e.g., the ones employed in GTOC

competitions [236] or in practical mission scenarios studies [9]) would be arbitrary and

problem-dependent. In this sense, a CSP-like approach becomes relevant, as its aim is to

find as many solutions as possible that satisfy given constraints, and (possibly) optimal

solutions with respect to one or more criteria.

A simple modification to the SODP approach presented in Chapter 5 could be employed
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for this purpose. In SODP algorithm, if the graph expansion arrives at a node that is in

common to two or more paths, then only the path with the minimum objective function

is saved for further expansion and the other ones are discarded. This is because all the

successive nodes that are attached to these solutions make the cost function vary of a

constant value for all the paths that arrive at the common node.

The modification to the SODP scheme could be such that the best N solutions are retained

alongside the single best solution at each node evaluation. It is thus possible to find and

store rather than just the optimal solution, the best N solutions, where N is a user-defined

parameter. Therefore, at termination of the sequence of asteroids instead of a single best

solution, there are a set of N minimum solutions, as evaluated over data from start to end

of the sequence. The interest in obtaining a set N of such solutions is that is diversified

in their properties (the degree of diversification being dependent on how large N is). It

should be noted that this modified approach is different from the MODP presented in

Chapter 5 as it does not require multiple objective functions to be specified.

This modified approach lies somewhat in the middle between the SODP (one path saved

per node evaluation) and MODP (multiple paths saved per node evaluation according to

multiple criteria) approaches presented in Chapter 5. In this way, the global optimality

is ensured for crucial and quantifiable functions (like the ∆v) and diversity of solutions

is preserved. This can be seen intuitively in Figure 6.8, on which an EVEMEJ trajectory

is optimized with respect to the total ∆v cost of the mission (i.e., the f1 function as in

Chapter 5) at different values of N. The figure shows the information available at different

N in terms of the launch date (in x axis) and the total cost of the mission (y axis). As N

grows, more solutions are included in the final set, that are diverse from one to the other

(i.e., wider launch windows are captured). The global optimum is captured for all the

scenarios.

The key question is how large N can be for such a process to be computationally efficient.

This depends upon the number of solutions that can be retained in memory and kept for
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Figure 6.8: Departing dates and total cost for EVEMEJ sequence optimized with
dynamic programming with different N.

further expansion. Similarly to well-known strategies like BS, the tuning of the parameter

N is a compromise between solution number and computational effort.

As anticipated, the modified dynamic programming approach still carries out an optimiza-

tion process, as the best N solutions are retained in terms of a specified objective function/

∆v, but retains more individuals within the population to be kept for further expansion,

thus allowing more diversity to be included in the final set, that is similar to a CSP (see

also Chapter 2).

6.6 Numerical results and discussion

Analyzing possible transfer scenarios relevant for MAB tour missions similar to CAST-

Away requires a complete exploration of the search space, in terms of launch window

analysis and transfer strategies. This implies a high number of MINLP/CSP problems

to be solved, with associated challenges as described in previous sections. Therefore, a

pipeline based on MGA assessment (section 6.2), transcription (section 6.3) and determin-

istic exploration (section 6.5) provides an efficient tool to explore the search space.
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Applications of the pipeline are discussed in this section and are as follows:

• In section 6.6.1, the mission scenario is considered fixed (one single departing date

and one single option in terms of gravity assist sequence are studied). The Earth-

Mars baseline trajectory as presented in section 6.2 is explored with the modified

dynamic programming approach and its efficiency is discussed. The number of

asteroids is fixed to 12.

• In section 6.6.2, the last scenario considers a modified dynamic programming ap-

proach over the latest formulation of CASTAway mission design, for a submission

to the latest ESA M-class call. In this scenario, according to the latest trajectory

boundaries from ESA, the launch date can happen anytime within the 2037 year.

The mission assumes a maximum number of asteroids fly-bys equal to 10 (the re-

duced number of asteroids compared to the first iteration of CASTAway design as in

point (1) was mainly because of operational costs). The boundaries of the M-class

call are then relaxed and a wider search within a 10-years launch window with free

number of asteroids is also presented.

6.6.1 Earth-Mars Scenario

The scenario considered here assumes a fixed gravity assist baseline path and one single

departing date from the Earth. The details of such trajectory are reported in Table 6.1.

An analysis of modified dynamic programming approach is performed to assess the effi-

ciency of the exploration. As in Chapter 5, to estimate the computational effort of such a

scenario, one can consider the number of Lambert arcs to be solved (NL), the number of

manoeuvres to be computed (Nd) (either defects at the planets or at the asteroids), and the

number of routes to be stored in memory (Nr). The five options for the dthr are considered

from section 6.3.2, namely 0.03 AU, 0.04 AU, 0.05 AU, 0.10 AU and 0.15 AU. Three

options are considered for the parameter N, that are 1, 2, and 5 (again, one should recall

that having N=1 corresponds to solve a SODP optimization). The analysis is completed
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with a comparison against the BS strategy to assess the pros and cons of the proposed

exploration. The cost function to be analyzed is the overall ∆v for the mission (i.e., f1 in

Eq. 5.2), with a cap at 5 km/s for the v∞,dep.

Table 6.3: Number of asteroids, Lambert problems and defects computed for different
dthr for the EM CASTAway scenario.

dthr Number of asteroids NL Nd
0.03 AU 49 22100 20825
0.04 AU 98 166650 161700
0.05 AU 158 682640 669920
0.10 AU 562 29900930 29742164
0.15 AU 1026 181062154 180534276

Table 6.3 represents the computational effort in terms of NL and Nd with respect to the dthr.

One should notice that these do not depend upon the selection of the dynamic program-

ming parameter N, as dynamic programming does not avoid computing all the necessary

Lambert arcs and defects to achieve global optimality (similarly to the cases considered

in Chapter 5). In the largest catalogues considered, namely dthr=0.10 AU and dthr=0.15

AU with 562 and 1026 asteroids, the number of Lambert arcs and defects to be computed

is quite high, leading to approximately 30 to 200 seconds to solve the whole problem

(considering few microseconds for solving a single Lambert arc [250] on standard laptop

(i.e., 4 GHz single core) on compiled code, as well as few nanoseconds for defects com-

putation). However, one should notice that such MOID threshold are unnecessarily high

for practical mission scenarios and will be in general lower than that. For example, MOID

threshold of 0.05 AU (alongside an appropriate step size in launch dates considered, e.g.

5-10 days) allows a consistent scan of the space around the reference trajectory as shown

in section 6.6.2.
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Table 6.4: Number of routes Nr needed at each stage of the tree expansion with respect
to the modified dynamic programming parameter N for different catalogues explored.

The analysis is completed by running different beam searches for comparison.

Number of asteroids: 49
Modified Dynamic Programming

Tree Level N=1 N=2 N=5
1 5 5 5
2 89 89 89
3 462 911 1731
4 623 1246 3101
5 600 1200 2999
6 489 978 2445
7 442 884 2210
8 353 706 1764
9 250 500 1245

10 198 396 972
11 113 212 502
12 198 331 612

Best ∆v 7.274 km/s
Beam Search

BW 623 1246 3101
Number of solutions 0 0 0

Best ∆v −− −− −−
Number of asteroids: 98

Modified Dynamic Programming
Tree Level N=1 N=2 N=5

1 11 11 11
2 395 395 395
3 1643 3255 7956
4 2264 4528 11130
5 2204 4408 10706
6 1948 3896 9708
7 1735 3465 8572
8 1523 3041 7480
9 1204 2400 5890

10 818 1623 3967
11 652 1296 3182
12 1508 2871 6265

Best ∆v 6.977 km/s
Beam Search

BW 2264 4528 11130
Number of solutions 25 61 140

Best ∆v 7.583 km/s 7.583 km/s 7.5823 km/s
Number of asteroids: 158

Modified Dynamic Programming
Tree Level N=1 N=2 N=5

1 14 14 14
2 755 755 755
3 4137 8211 20197

Continued on next page

198



CHAPTER 6. MODIFIED DYNAMIC PROGRAMMING FOR MAB EXPLORATION

Table 6.4 – Continued from previous page
4 5800 11600 28842
5 5583 11166 27740
6 5007 10014 25030
7 4437 8845 21915
8 3893 7774 19320
9 3119 6203 15274

10 2266 4504 11006
11 1644 3273 8117
12 6783 13266 31504

Best ∆v 6.977 km/s
Beam Search

BW 5800 11600 28842
Number of solutions 82 301 626

Best ∆v 7.583 km/s 7.583 km/s 7.5823 km/s
Number of asteroids: 562

Modified Dynamic Programming
Tree Level N=1 N=2 N=5

1 59 59 59
2 6430 6430 6430
3 35095 68976 165422
4 58255 115091 280296
5 56175 112111 279088
6 55505 110920 275684
7 51091 100838 247895
8 43881 87130 214706
9 37136 73756 181295

10 27436 54065 131298
11 18931 37612 92863
12 121614 239063 562689

Best ∆v 6.458 km/s
Beam Search

BW 58255 115091 280296
Number of solutions 7937 35772 80104

Best ∆v 7.026 km/s 7.026 km/s 7.026 km/s
Number of asteroids: 1026

Modified Dynamic Programming
Tree Level N=1 N=2 N=5

1 91 91 91
2 11758 11758 11758
3 79835 155661 372096
4 152678 302137 740700
5 152558 304259 756211
6 150604 300667 749770
7 141546 282185 699053
8 127398 251752 617577
9 105521 208110 507140

10 77213 151683 365084
11 51782 102322 249330
12 381195 727658 1654189

Best ∆v 6.458 km/s
Continued on next page
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Table 6.4 – Continued from previous page
Beam Search

BW 152678 304259 756211
Number of solutions 46639 69135 208984

Best ∆v 6.616 km/s 6.616 km/s 6.616 km/s

Table 6.4 shows the number of routes Nr that are stored at each level of the tree expansion

while exploring different catalogues with respect to the dynamic programming parameter

N. A BS is also run with BW equal to the maximum number of trajectories needed by

dynamic programming for each case considered. In this way, one assesses the advantages

of employing the proposed approach over standard strategies by simply tuning a single

parameter (i.e., N). From Table 6.4, one notices that, for the cases considered, the BS does

not find the global optimum solution (in terms of ∆v) and always finds more than one order

of magnitude less solutions than the modified dynamic programming. It is interesting to

notice that for the smallest catalogue considered (i.e., 49 asteroids) no solutions are found

with the defined beam widths (the minimum beam width to obtain solutions for this case

is 4,000). This is substantially higher than the maximum number of solutions required by

dynamic programming, which is 623 for N=1. In other words, while not ensuring global

optimality on the transcribed space, BS needs to evaluate more 12-asteroids sequences

than dynamic programming to obtain the same order of magnitude of solutions.

In addition, the modified dynamic programming approach manages the information in a

way that the solutions quality is better (in terms of best ∆v) compared to the BS simu-

lations considered here. This can be seen in Figure 6.9, that is obtained for the largest

catalogue explored (1,026 asteroids) and the largest parameter setting employed (N=5 for

dynamic programming and beam width of 757,000 for BS). From Figure 6.9, assuming

to classify the number of solution from beam search and dynamic programming (at tree

level 12) in different bands of ∆v, one notices that dynamic programming finds again

many more order of magnitude of solutions compared to the beam search. For example,

dynamic programming finds two solutions in the 6-6.5 km/s band (one of which is the

globally optimal one), while BS finds none. This ultimately implies that the solutions
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Figure 6.9: Number of solutions with respect to different ∆v bands for beam search
(beam width of 757,000) and dynamic programming (N=5) used on the 1026-asteroids

catalogue.

quality is also improved overall (not only their number).

Figure 6.10: Number of unique asteroids within the final solution set for BS and
dynamic programming at different N.

Finally, Figure 6.10 shows that the modified dynamic programming approach provides

the highest asteroids’ diversity in the final set of sequences, that is an analogous demon-
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stration of Figure 6.8, on which the diversity grows with N, as expected. One notices that

Figure 6.10 only represents the largest set explored, i.e., 1026 asteroids, but this behavior

is experienced for all the catalogues explored.

To sum up, the following points have been demonstrated:

• Global optimality on the transcribed space is assured with dynamic programming

approaches, while commonly-used heuristics do not guarantee it.

• No parameters need to be tuned (e.g., there is no BW to be selected). A simple set-

up of N=1 already provides the global optimality with the minimum computational

effort. Setting N>1 simply allows to seek for higher number of sequences in the

final solution set 4.

• To obtain the same number of solutions, BS-like approaches generally needs more

sequences calculations, typically 1 to 2 orders of magnitude more.

• On the cases considered, dynamic programming allows for better solution quality

in terms of ∆v and higher diversity.

As anticipated, the main drawback of the modified dynamic programming is the unpre-

dictability of the maximum number of solutions that will be needed during the search. As

expected, such number grows with the parameter N (and obviously with the number of

asteroids in the catalogue). However, two considerations can be done:

• The maximum number of solutions for most practical cases, e.g., dthr between 0.05

AU and 0.1 AU (see also section 6.6.2), is usually manageable as from Table 6.4.

• One can always hybridize the modified dynamic programming with a BS-like prun-

ing (thus introducing the beam width) to keep a user-defined maximum number of

solutions, alongside the globally optimal path.

4The final set-up on N>1 cases will always depend upon the working environment. If the ma-
chine/environment allows for high RAM, then N>>1 can be used.
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6.6.2 CASTAway Mission Design

CASTAway trajectory design, defined as the exploration of mission opportunities for

ESA’s M7 mission call, is here used as a further stress test case to show the versatility

of the presented tools in designing complex asteroids’ tours. Table 6.5 summarizes the

boundary conditions for the mission call. The pre-pruned main belt asteroid database

contains approximately 102,000 objects, as described in section 6.3.1.

Table 6.5: Boundary conditions for CASTAway mission compatible with M7 call.

Value Description Constraints
t0 Launch epoch Jan. 1, 2037 - Dec. 31, 2037

v∞,dep Earth escape velocity v∞ ≤ 5 km/s
TOF Overall mission duration TOF ≤ 7 years
Nasts Number of visited asteroids Nasts = 10

To generate baseline MGA trajectories to access the MAB region, planetary sequences are

analysed that include all permutations of Earth, Venus, and Mars, with up to 2 planetary

swing-bys. The 2037 launch window is discretized in 75 departing dates (approximately

5 days’ time step). It should be noted that, given the launch date time-step considered,

a dthr = 0.05 AU ensures a sustained sweep of the MAB, exploring consistently all the

reachable space. In theory, larger step size could also be allowed (e.g., up to 10 days), as

shown in Figure 6.11, at the price of a smaller number of options to be optimized in the

combinatorial step, but with larger dthr = 0.1 AU.

Figure 6.12 shows the ratio between the time spent in the MAB region ∆tMAB and the over-

all ∆v consumption needed for each baseline trajectory analysed. This allows to identify

the most promising MGA options to explore the MAB region, as these are characterized

by the highest ∆tMAB/∆v ratio. As a general understanding of the results, the launch win-

dow analysis indicates that opportunities to explore the MAB are available through the

entire launch window. A direct launch from Earth is assumed to occur with infinity ve-

locity equal to 5 km/s for all the launch date scanned. As expected, a direct escape from

the Earth towards the MAB is less sensitive to launch date, at the cost of shallower access

to the MAB with respect to MGA strategies. Among all the MGA strategies considered
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Figure 6.11: Reference trajectories for a direct launch from Earth (blue lines). Black
lines, centered in reference trajectories and distant 0.05 AU from them, represent the

space within which asteroid catalogues are built to explore asteroid tour opportunities.
Earth departures are spaced by 10 days. Dotted lines are the limits of the MAB. Sun and

planets textures are not in scale.

here, employing a single fly-by (i.e., for EV and EM) allows to reduce the overall ∆v to

reach the MAB, as no phasing manoeuvres are needed to encounter a third planet.

(a) (b)

Figure 6.12: Time accumulated in the MAB per total ∆v with respect to the launch date
for different strategies: E, EM, EMM, EVE (a), and EV, EVV, EVM, EME, EMV (b).

Between EV an EM, as expected, the latter performs better (i.e., higher ∆tMAB/∆v ratio) in

terms of MAB exploration as the spacecraft is launched directly towards high-apoapsis re-

gions. When considering strategies with two fly-bys, EVE provides the highest ∆tMAB/∆v
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ratio in the region around November and December 2037. This is because the more

favourable phasing conditions in terms of ∆v between Earth and Venus when compared

with strategies with Mars. Strategies like EMM, EME and EVV are quite competitive

in terms of ∆tMAB spent in the MAB, however, they come with generally higher ∆v con-

sumption due to the required phasing conditions between Earth, Venus, and Mars, thus

making them less favourable when compared to single-flyby strategies as EM.

(a) (b)

Figure 6.13: Launch window analysis for 2037 launch opportunities for CASTAway-M7.
Different gravity assist options are shown E, EM, EME, EMM (a) and EMV, EV, EVE,

EVM, EVV (b).

Results (after refinement) are shown in Figure 6.13, showing the best opportunities for

each gravity assist option during the 2037. One notices that Figure 6.13 is qualitatively in

good accordance with Figure 6.12 (e.g., see the EVE strategy), as an additional proof of

the effectiveness of the proposed pipeline. Figure 6.14 represents the trajectory followed

by the spacecraft for the ∆v-optimal EVE sequence (overall ∆v = 3.951 km/s).

The modified dynamic programming (N=5) is able to provide a wide catalogue of trajecto-

ries for CASTAway, in the order of millions of solutions for each MGA option considered,

as shown in Figure 6.15 5. Such high number of trajectories constitute a database that can

be accessed by in successive stages of the design for further analysis by scientists, guid-

ance analysts and so on. For example, one can post-process the solutions with respect to

5Again, one notices that the choice N=5 is just an example, and one is free to select the proper N>1 set-
up (if needed) according to the power available on the personal machine/environment.
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Figure 6.14: EVE strategy for CASTAway-M7 call.

scientifically interesting criteria like [9]:

• Criterion 1: scientifically compelling asteroids to be visited 6. See also Appendix

E.

• Criterion 2: number of asteroids that have diameter higher than a threshold (e.g., 10

km)

• Criterion 3: number of asteroids that have information on spectral type

• Criterion 4: number of regions visited (i.e., Hungaria, Inner Belt, Middle Belt,

Outer Belt, Cybele, Hylda) [9]

• Criterion 5: number of asteroids families visited (i.e., Flora, Vesta, Nysa, Maria,

Eunomia, Geflon, Koronis, Eos, Thermis, Hygiea) [9]. See also Appendix E.

For example, in the year 2037, if one orders the number of sequences with respect to such

criteria (i.e., first the sequences that maximize successively Criterion 1, 2, and so on), one

6The author thanks Professor C. Snodgrass for providing the list of scientifically interesting asteroids.
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Figure 6.15: Number of solutions that satisfy the constraints for the CASTAway-M7
mission design.

can classify the MGA options as in Table 6.6. The Table shows the characteristics of the

sequence that maximizes the number of asteroids for each Criterion. It can be noticed

that the maximum number of special asteroids that are visited in a sequence of 10 objects

is 2. EM scenario has a good balance between all the criteria, while EVE allows for the

highest number of regions visited, due to the high apoapsis reachable after the Earth fly-

by. Surprisingly, EMV allows for the highest number of asteroids families visited (12)

while EVV maximizes the number of asteroids with diameter greater than 10 km/s.

Table 6.6: Number of asteroids satisfying each criterion for different MGA options.

Option Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5
E 1 4 1 3 8

EM 2 2 2 3 7
EME 1 3 0 5 6
EMM 2 1 1 4 8
EMV 1 4 0 4 12
EV 2 1 0 3 5

EVE 2 1 1 5 9
EVM 1 3 1 4 8
EVV 1 6 4 4 6
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The most diverse exploration in terms of asteroids regions is provided by EME and EVE

sequence, that allows to cross up to 5 different orbital regions. The representation of such

trajectory and the regions visited is shown in Figure 1.1 and Figure 6.14. In fact, one

notices here that the EVE strategy selected for CASTAway submission maximises the

number of asteroids’ regions visited.

(a) (b)

Figure 6.16: Launch window analysis for 2030-2040 launch opportunities for
CASTAway extended mission design. Different gravity assist options are shown: E, EM,

EME, EMM (a) and EMV, EV, EVE, EVM, EVV (b).

It should be noted again that CASTAway M7 mission design considers very strict bound-

ary conditions from M7 call, e.g. on the number of asteroids to be visited, or the launch

window. In theory, as already demonstrated in Chapter 5, the pipeline presented allows

for much wider search spaces to be explored, both in terms of number of asteroids to be

visited and the dimension of the launch year. Figure 6.16 provides results for an explo-

ration like the scenario in Table 6.5, but with the following modifications: (1) the number

of asteroids is maximized during the search; (2) the launch can happen anytime between

2030 to 2040.

Figure 6.16 shows that visiting the MAB with almost any sequence of gravity assist body

is not a rare event. However, as expected, the Earth provides more flexibility in the launch

date, but at a higher cost overall, while the sequences employing gravity assists have

better solutions in terms of optimal ∆v, but are spaced one to the other of a synodic
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(a) (b)

Figure 6.17: Number of asteroids for the launch window analysis in the 2030-2040
time-frame. Different gravity assist options are shown: E, EM, EME, EMM (a) and

EMV, EV, EVE, EVM, EVV (b).

Figure 6.18: EVE strategy to visit 19 asteroids.

period. Figure 6.17 shows the maximum number of asteroids that are reachable with

different gravity assist sequences in the 2030-2040 time-frame, which are compatible

with the scenario under consideration. As expected, EM and EVE provide the highest
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number (19). Figure 6.18 shows the EVE trajectory for the longest asteroids-sequence

found (overall ∆v = 7.787 km/s).

6.7 Conclusions

This Chapter has tackled the asteroid tour problem with gravity assist manoeuvres from

two different, though related, formulations: global optimization problem, aiming at find-

ing the global optimum solution with respect to a cost function (i.e., overall ∆v of the

mission), and a formulation based on a paradigm inspired by the CSP, aiming at finding

as many solutions as possible satisfying given mission-driven constraints.

A pipeline to perform preliminary mission design of missions that visit multiple aster-

oids has been presented. The crucial step of such pipeline is the transcription process

employed to transform the mixed-integer problem into a combinatorial one. This opened

the possibility of applying dynamic programming principles and to extend them to retain

multiple diverse solutions. In this way, the pipeline is versatile enough to:

• Guarantee global optimality on the transcribed space.

• Obtain more and diverse solutions with respect to standard methods like BS, by

managing the search conveniently.

• Obtain better-quality solutions in terms of cost function (∆v), since they are searched

around the optimal ones.

• Explore very wide search spaces in terms of number of asteroids visited (up to 19)

and launch window analysis (10 years explored).

The proposed process is ideal to support preliminary mission design studies of asteroid ex-

ploration missions such as CASTAway or MANTIS. Indeed, the process was implemented

to support CASTAway mission proposal submission to the European Space Agency’s 7th

Medium-size call, enabling a comprehensive main-belt exploration opportunities for a

launch window in 2037.
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Chapter 7

Conclusions

The thesis presented a pipeline to tackle mixed-integer space trajectory design problems

robustly and efficiently. The versatility of the approaches has also been shown on different

test cases of complex configuration. This last Chapter draws the conclusions of the present

study. After presenting the summary of the work in section 7.1, section 7.2 discusses the

response to the objectives and aim declared in Chapter 1. Section 7.3 finally discusses

current limitations and possible paths for further research.

7.1 Summary of the Work

The mission analysis of multi-target space missions, belonging to the so-called class of

mixed-integer design problems, is studied in the present work.

After having contextualized the thesis within the current literature (Chapter 2) and having

presented the mathematical framework (Chapter 3), the thesis focused on the develop-

ment of a multi-fidelity pipeline to efficiently and robustly planning interplanetary space

missions that aim to visit multiple targets. The efficiency is achieved by exploiting search

space structures at each fidelity level, while robustness is assured with the in-depth dis-

cussion on information that can be passed from one fidelity level to another.
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Particularly, the first level starts with a Tisserand map exploration (Chapter 4). This al-

lows to assess the feasibility of different fly-by sequences, even for very complex trans-

fers, requiring more than 40 fly-bys (see Appendix D). Compared to current literature,

Tisserand map exploration has been extended to missions that aim to maximise the final

orbital inclination by means of resonant transfers. Additionally, it has been shown how

the information from Tisserand maps can be exploited to speed up successive stages of

mission planning.

At the next level of fidelity (Chapter 5), one looks for actual dates and transfer times be-

tween the selected objects. A model based upon ∆v defects allows to transcribe the search

space into a graph of interconnected nodes. In this way, dynamic programming can be eas-

ily applied, that allows to obtain globally optimal paths with limited computational effort.

Compared to current literature, dynamic programming principles have been extended to

deal with the challenging multi-objective optimization of interplanetary trajectories, thus

allowing to obtain optimal Pareto fronts on complex mission scenarios.

Finally, within the context of missions to visit multiple asteroids (Chapter 6), dynamic

programming principles have been further extended. The resulting approach, called mod-

ified dynamic programming, allows to retain multiple paths at each object-to-object eval-

uation. Compared to current standard methods employed in literature, it allows to obtain

more, diverse and better-quality solutions, without preventing the globally optimal path.

In this sense, the optimization is enhanced by retaining multiple sub-optimal solutions

that allow truthful representation of the topology of the search space. Again, stress test

cases of complex configuration have been used to prove the adaptability of the proposed

methodology.

7.2 Fulfilled Objectives and Response to Aim

In Chapter 1 five objectives are declared. The assessment of such objectives is here dis-

cussed, allowing to respond to the overall aim of the thesis.
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Objective 1: To review the current trends for space mission analysis in the context of

multi-target trajectory design, and relate such context to optimization and constraint

satisfaction fields.

Such objective has been thoroughly assessed in Chapter 2, where trajectory design ap-

proaches are discussed, and novelties with respect to literature are presented. In particu-

lar, it has been identified that most of the current literature tackles the design of mixed-

integer interplanetary missions by formulating a global optimization problem, especially

from the single-objective point of view. However, the more challenging multi-objective

optimization is to be tackled as well, to properly inform the mission design with full ex-

tent of trajectory options at preliminary design stages. Moreover, a constraint satisfaction

problem is also relevant, especially when multiple trajectory options are to be sought,

that share similar performances in terms of ∆v or mission duration, but are different with

respect to scientific-related criteria, that are difficult to model.

Objective 2: To assess the feasibility of different model types on an overall multi-fidelity

design of multi-target trajectories.

The contributions to the second objective are found in Chapters 3, 4, 5 and 6. In particular,

when presenting the mathematical framework, Chapter 3 presented an extension to the

well known MGA-DSM model to include multiple DSMs on a same planet-to-planet leg.

The resulting model, referred to as MGA-nDSM, better helps trajectory designers to plan

missions where multiple DSMs are needed. Although not explicitly employed in Chapter

5 and 6, Chapter 3 has shown how it can be used to plan complex missions like those to

Mercury in conjunction with the material provided in successive Chapters.

In Chapter 4, section 4.4 is dedicated to the assessment of the information that can be

exchanged between levels of different fidelities. It has been noticed that the knowledge on

infinity velocities at planetary encounters are useful to constraint the search for trajectories

at the next fidelity level. This helps reducing the computational effort in terms of Lambert

arc solved and defects computed, while preserving the Pareto front characteristics. On the
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other hand, any other information, e.g. about transfer times, should be taken with care,

as the underlying assumptions on Tisserand map (i.e., circular co-planar planetary orbits)

prevent accurate estimations on such critical mission parameter.

The robustness of the transcription process at the next fidelity level is ensured in Chap-

ter 5 in section 5.4 by evaluating the effect of inserting a DSM to remove a ∆v defect

at a planetary encounter. The Chapter has demonstrated the relationships between such

manoeuvres and the defects via a simple STM approach. In particular, the transcription

process implied by the application of defects preserves the search space characteristics,

thus allowing to capture optimal solutions with tree-traverse techniques like dynamic pro-

gramming.

Finally, section 6.3.3 of Chapter 6 discusses that also the transcription process implied

by the MOID search is able to provide accurate results even before the final refinement.

Specifically, the refined solutions lie close within few days to their corresponding esti-

mates at the combinatorial level.

Objective 3: To propose efficient strategies for the global exploration of the search

space for multi-target missions.

This objective is assessed in Chapters 4, 5 and 6. The exploration of meaningful search

space is driven by the definition of nodes that allow tree-traverse techniques to be conve-

niently employed.

In the context of Tisserand map exploration in Chapter 4, a node is made by a triplet of

(v∞,α,k), that uniquely identifies an orbit on the Tisserand map. Such nodes are con-

veniently linked by fly-bys, VILTs and resonant transfers on an overall MGA sequence.

The computational efficiency of Tisserand map exploration lies on the pre-computation of

all the possible intersections and/or VILTs as in Algorithms 1 and 2, reducing the overall

search of MGA paths to matrix manipulations. This strategy can also be adopted in suc-

cessive stages, e.g., when solving Lambert arcs between different objects (see Chapters 5

and 6). In this case, a node is made by two objects an their specific encountering epochs.
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This allows to pre-compute all the possible Lambert arcs and defects, thus permitting to

construct a score matrix that encodes all the information on the search space (e.g., ∆v,

v∞, phase angles, transfer times, and so on), without even solving the combinatorial prob-

lem.

The clever definition of such nodes allows dynamic programming to be applicable. In

this way, optimal solutions are guaranteed on the graph space with limited computational

effort.

Objective 4: To tackle the constraint satisfaction problem for multi-target missions.

This objective has been assessed mainly in Chapter 6. One has defined the constraint

satisfaction problem as the problem to find as many solutions as possible (i.e., compatibly

with memory issues of the working environment) within given mission constraints, and

possibly an optimal one with respect to a specific objective.

A modified dynamic programming approach has been proposed to answer such need. The

governing parameter of the approach is N, defining the number of paths to be stored in

memory at each node evaluation. This is the only tuning parameter that is needed and,

compared to literature approaches, its tuning does not prevent optimal solutions to be

found. In other words, N = 1 already corresponds to a SODP approach, thus guaranteeing

global optimality at least for one objective, and the choice of N > 1 only allows to find

more solutions.

Objective 5: To demonstrate the efficiency and robustness of such approaches with

relevant and practical test cases.

This last objective is assessed in Chapters 5 and 6, specifically in the numerical results

sections 5.5 and 6.6. It has been shown that multi-objective optimization and modified

dynamic programming approaches allow to plan MGA trajectories on complex mission

scenarios with moderate effort.

In fact, apart from well-known mission options towards Jupiter and Saturn, the thesis
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addressed the design of novel and complex scenarios. Going beyond the current literature,

the increased complexity of such scenarios lies on the trajectory planning for long MGA

sequences and very large search spaces (10 years launch window). Such studies are ideal

for planning future missions and to support preliminary trajectory design studies as those

performed in the context of ESA F/M-class calls (see section 1.5.5).

To conclude, in Chapter 1, the following aim for the whole work is declared:

To establish an efficient and robust pipeline to tackle both the global optimization prob-

lem and the constraint satisfaction problem for space missions that aim to visit multiple

targets.

The aim response is considered to be achieved as all the objectives have been answered.

The thesis thus contributed to current knowledge on multi-target space mission design

by proposing multi-fidelity pipelines based on dynamic programming for finding optimal

trajectories with limited computational effort.

7.3 Current Limitations and Future Work

Further implementations and possible research directions can be identified based on cur-

rent limitations of the proposed work. Three main paths are identified.

The first one relates with handling multi-revolutions transfers on Lambert grids evalua-

tion, when same planet-to-planet transfers are considered. There exist non-resonant bal-

listic trajectories that arrive at the same body with the same infinity velocity. Such trans-

fers imply non-integer ratio of mean motions such that the return occurs at the alternative

planet orbit crossing event. These transfers must involve co-planar orbits. These orbit

solutions may be derived analytically. For a given initial crossing, a range of returning

orbit solutions are possible corresponding to a bounded range of post fly-by semi-major

axes (and consequently eccentricity). This case can be obtained with evaluation of a grid

of Lambert arcs, and it is implemented in this way in the whole pipeline presented in the
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thesis. However, future versions may be adapted to include the option to substitute the

analytical non-integer resonance to remove the need for evaluation of a Lambert grid for

that leg, thus potentially reducing computational effort. This becomes particularly use-

ful when dealing with small bodies (e.g., Saturn moons) that don’t have as much flyby

deflection power as planets. As additional improvement, one can add further type of res-

onance where an integer ratio of ‘half’ revolutions applies. In this case, the return occurs

at the alternative orbit node of the spacecraft’s orbit with respect to the planet orbit plane.

In this case co-planarity is not required but the node constraint imposes a constraint on

eccentricity. They may also be derived analytically.

The second improvement relates with managing the exploration with modified dynamic

programming approach when addressing asteroid-related constraint satisfaction problem.

As said, the tree exploration is governed by the parameter N, and larger values of N allow

to capture more sequences and thus to preserve more information about the topography

of the search space when compared to literature approaches. However, information about

how much of the search space has been explored (i.e., how many diverse sequences have

been obtained) can only be done as a post-processing step. In other words, during the

tree search there is no explicit bias on how much adding a specific node would contribute

to the diversity of the final solutions set, but rather a post-processing assessment of the

solutions with respect to mission-specific criteria. This is a common issue of current tree-

search and meta-heuristic strategies from literature, thus further research is needed. A

possible solution that has been opened in [221] under the author’s supervision is: (1) to

explicitly define a diversity measure to be used in the search step and, (2) to use modified

dynamic programming approach biasing the exploration not only by optimality but also

by diversity.

Finally, a third research direction concerns the fidelity of the models employed when

traversing the transcribed space. A truthful transcription is crucial to preserve the search

space characteristics between models of different fidelities. As anticipated in Chapters 1
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and 2, the application of deep neural networks are proving their efficiency to truthfully ap-

proximate critical mission parameters like ∆v and transfer times with low computational

effort. Such networks are trained over databases of transfers with the aim of reconstruct-

ing the processes to obtain them. These networks can then be used as approximators for

optimal trajectories when exploring the tree graph. To the best knowledge of the author,

there is still little literature on how to use such approach on multiple fly-by missions with

DSMs or low-thrust transfers. The main issue with fly-by missions is, once more, the

tri-dependency ∆v cost of connecting two nodes. Future research can thus focus on de-

veloping deep neural networks as approximators for MGA missions with DSMs to be

included into the presented dynamic programming approaches. The advantage could be

that more complex dynamical models that go beyond Keplerian dynamics are tackled at

early stages of the design. The ultimate aim is to have closer correspondence between

models of different fidelities.
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Appendix A

Lambert’s Problem

This Appendix provides an overview about the of Lambert’s problem and its solution.

Since Lambert’s problem is one of the most extensively studied problems in astrodynam-

ics, the aim of this Appendix is just to provide a general understanding about it and bits of

possible solution implementations. Section A.1 describes the problem and the variables

that are needed to solve it, while section A.2 provides some information about how to

solve it.

A.1 Description of the problem

In Lambert’s problem, also known as the orbital two-point boundary value problem, the

following quantities are given: (1) spacecraft initial and final positions, r⃗i and r⃗ f , respec-

tively, and (2) the transfer time ∆t = t f − ti between the two. Solving the problem consists

in finding the arc that connects r⃗i and r⃗ f in the given ∆t. This ultimately corresponds

to find the velocities v⃗i and v⃗ f at the positions r⃗i and r⃗ f , respectively, such that the state

[⃗ri, v⃗i] propagated by ∆t leads to the final state
[⃗
r f , v⃗ f

]
. A representation of the problem is

given in Figure A.1.

From the Figure, the angle ∆θ between r⃗i and r⃗ f defines the direction of motion and it is
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Figure A.1: Geometry of different ellipses for multi-revolution transfers.

defined as:

∆θ = arccos
(

r⃗i · r⃗ f

rir f

)
(A.1)

When implementing a solution to Lambert’s problem, a boolean variable is required to

select the appropriate value for ∆θ that distinguished between two cases: (1) ∆θ > 0, i.e.,

the solution orbit has an inclination i < 180 degrees (prograde orbit), (2) ∆θ < 0, i.e., the

solution orbit has an inclination i > 180 degrees (retrograde orbit).

If the transfer time ∆t is sufficiently high, multiple solutions to the problem appear asso-

ciated to different number of spacecraft revolutions about the main body. The maximum

number of revolutions is given by:

Nmax = f loor

(
∆t

2π
√

µ/a3
m

)
(A.2)

where am = 1/4
(
ri + ri + |⃗ri− r⃗ f |

)
is the semi-major axis of the minimum energy ellipse

that connects r⃗i and r⃗ f [38].

In the case of multiple revolutions, the geometry of the possible options are given in
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Figure A.2: Geometry of different ellipses for multi-revolution transfers.

Figure A.2. From the Figure, the vector r⃗ f − r⃗i is the chord line. In this case, another

boolean variable should be set to select between two solutions: (1) high path, i.e., the

second focus of the transfer orbit (F ′ from Figure A.2) is above the chord line; (2) low

path, i.e., the second focus of (F ′′ from Figure A.2) is below the chord line.

A.2 Implementation bits

It can be demonstrated [257] the transfer time ∆t ′ between two positions r⃗i and r⃗ f can be

expressed as a function f of the semi-major axis a of the orbit connecting r⃗i and r⃗ f , ri, r f

and the chord length c:

∆t ′ = f (a,ri + r f ,c) (A.3)

The aim of a generic Lambert’s problem solver is thus to find the a∗ of the orbit that

connects r⃗i to r⃗ f in the given ∆t, to then reconstruct all the variables of the solution orbit

(i.e., velocities v⃗i and v⃗ f ). This corresponds to solve a non-linear equation:
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∆t ′(a∗)−∆t = f (a∗,ri + r f ,c)−∆t = 0 (A.4)

Choosing the semi-major axis a as free-parameter for solving Eq. A.4 can be inconvenient

as [258]: (1) the solution is not unique, (2) the derivative of transfer time is singular when

a = am (i.e., the semi-major axis of the minimum energy ellipse). Thus, modern Lambert

solvers use different independent variables to solve the time equation as in Eq. A.4.

For example, Battin [38], Gooding [39] and Izzo [40] use universal variables, Avanzini

[259] and Wen [260] use eccentricity, while Bate [261] and Boltz [262] use semi-latus

rectum. The other ingredients that affect the performances of the Lambert solver are

[258, 263]:

• The initial guess of the independent variable

• The root finder for solving Eq. A.4

• The procedure to reconstruct v⃗i and v⃗ f from the independent variable

In the present work, the algorithm presented by Izzo [40] is used due to its ease of imple-

mentation and computing times [258, 263]. The full details of the algorithm are beyond

the scope of the present thesis and the interested reader is referred to [40]. For the pur-

poses of the present thesis, it suffices to say that the independent variable defined by Izzo

is called ξ and it is related to the eccentric anomaly of the spacecraft on the solution orbit.

The initial guess is provided by a linear approximation of the time of flight as in Eq. A.3,

that is made possible thanks to the definition of the variable ξ . The Householder iteration

scheme is adopted as non-linear solver to find the solution to Eq. A.4. This uses up to the

second derivative of the time of flight equation with respect to the independent variable to

update the initial guess towards the final solution. Velocities v⃗i and v⃗ f are then found by

using again the variable ξ , and relating it to the anomalies on the solutions orbit.
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Dynamic Programming on Discrete

Problems

Dynamic programming is an efficient method first introduced by Bellman [118] to guar-

antee global optimality in (discrete) sequential optimization problems. The underlying

assumption is that the search space must be composed of discrete node such that the

cost of connecting two nodes is uniquely defined (e.g., in the classical TSP variant, the

cities correspond to the nodes and the cost connecting them is related to the distance that

the salesman needs to travel between the two). Moreover, the problem must exhibit an

optimal substructure [118], that is, the optimal solution to the problem must incorpo-

rate optimal solutions to related sub-problems, which can be solved independently [162].

Hence, the question arises of what the minimum size sub-problem is that can be solved

independently. Solving independently refers here to the capacity to compute the fitness

of a given part of the trajectory (e.g., distance between cities) without the need to know

what the path was prior to arrive to that point. In addition, the overall problem must be

formulated as a multi-stage decision process, on which the stages represent the points at

which a decision is required. In multi-stage decision processes, the construction of the

overall sequence of nodes is reached by making a series of lower-level choices, i.e., the
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selection of consecutive nodes.

At each stage, the system can be in different states, and the decision transforms the current

state into another one associated to the next stage. To make optimal decisions, Bellman’s

principle of optimality is used. Such principle states that an optimal decision policy has

the property to be independent from the history needed to arrive at the specific point. The

optimal policy is thus a sequence of decisions which is the most advantageous from a

pre-assigned criterion. Assuming the system to be in the state sn at a given stage n, the

optimal decision x∗n is the one that minimizes the cost fn resulting from the best overall

policy at stages 1, . . . ,n− 1 plus a contribution csn,xn produced by the current decision

xn.

Thus, the optimization is carried out by using the recursive formulation:


f ∗n (sn) = min

xn∈Sn
fn(sn,xn) = fn(sn,x∗n)

f ∗n (sn) = min
xn∈Sn

{
csn,xn + f ∗n−1(sn)

} (B.1)

where Sn is the set of admissible decisions at stage n. Therefore, at each stage of the

process at which the decision is required, only the minimum path leading to the given

node is saved for further consideration, which constitutes the main advantage of dynamic

programming.

Translating the discussion to the multi-target space trajectory optimization, Bellman’s

principle of optimality would state that, regardless of the node 1 at which the spacecraft

currently is, the optimal set containing this specific node would contain the optimal subset

of nodes before and after the visited one (optimality refers to the cost function, typically

∆v). In other words, dynamic programming answers the following question:

If the spacecraft is at a given node, what is the best sequence of nodes to come from, ac-

cording to a pre-assigned fitness criterion?

1Recall that a node is made by a couple of planets/asteroids and their visiting epochs for the purposes
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Table B.1 summarizes the variables needed for the dynamic programming transcription

relevant to the MGA optimization problem. Since the whole trajectory is modelled with

consecutive Lambert arcs between pair of objects in the sequence, the ∆v cost for a given

planet-to-planet leg depends upon the previously visited object, as discussed in Chapter

5. The Bellman’s principle of optimality as from the recursive formula in Eq. B.1 is

applicable only considering each state sn as couple of planets (i.e., a node) at a given level

n in the overall sequence, i.e., n = 1, . . . ,nint − 1, where is the number of fly-by objects

in the sequence. Therefore, at each stage one wants to find the overall best sub-sequence

to come from, i.e., f ∗n−1(sn), for each state sn that contributes with , corresponding to the

∆v on the last leg attached to f ∗n−1(sn).

Table B.1: Summary of dynamic programming formulation for the MGA problem.

Variables Description

n = 1, . . . ,nint−1 Number of stages, i.e., the number of fly-bys to be
evaluated

sn Sates, i.e., planetary couples to be branched at stage n

xn
Decision policy, i.e., selection of a given sequence of

nodes up to stage n
f ∗n−1(sn) Optimal sequence leading to state sn

csn,xn Contribution of state sn due to the decision policy xn

Figure B.1 also provides a representation of dynamic programming approach to MGA

trajectory optimization. Nodes are linked by means of ∆v defects (see also Chapter 3). At

the given node, i.e., the last one on the right, one should evaluate the best history leading

to that node, i.e., f ∗n−1(sn), plus the contribution csn,xn provided by the last node. For the

purposes of the present thesis, since the overall function to be minimized is the f1 from

Eq. 5.2, the contribution of the first and last node to the overall sequence should also

consider infinity velocities at the departing and arrival planets. In other words, given a

node at which the spacecraft currently is, only the sequence of nodes that minimize the

quantity csn,xn + f ∗n−1(sn) is kept for further consideration (recall that a node is made by a

couple of planets and their visiting epochs as described in Chapter 5).

of the present thesis as discussed in Chapter 5.
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Figure B.1: Representation of dynamic programming approach to MGA trajectory
optimization for a generic current node evaluated (i.e., the one at the far right). Each

node represents a couple of planets and their visiting epochs. Connection between two
nodes is given by ∆v defects. The contribution of first nodes is explicitly reported as
infinity velocity needed to leave the first planet, i.e., v∞. Bold arrows highlight the

optimal path leading to the current node under consideration.
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Appendix C

Toolboxes

In this Appendix, the functioning of the produced toolboxes is discussed with practical

examples. The toolboxes are encoded in MATLAB. The following sections describe AU-

TOMATE (section C.1), ASTRA (section C.2), RESTOUR (section C.3) and DYNAMIS

(section C.4). The toolboxes can be found at [74]

C.1 AUTOMATE

AUTOmatic Multiple-gravity Assist with Tisserand Exploration (AUTOMATE) allows

to automatically explore Tisserand graphs, and thus to list all the possible planetary se-

quences and DSMs that reach specific orbital regions. AUTOMATE main engine is pre-

sented in Algorithm 3.

AUTOMATE allows to search for fly-by tours within three different regimes:

• the Solar System, the main attracting body being the Sun and fly-by objects being

the planets (ID: 1.Mercury, 2.Venus, 3.Earth, 4.Mars, 5.Jupiter, 6.Saturn, 7.Uranus,

8.Neptune)

• the Jupiter Moon System, the main attracting body being Jupiter and the fly-by

objects being its biggest moons (ID: 1.Io, 2.Europa, 3.Ganymede, 4.Callisto)
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• the Saturn Moon System, the main attracting body being Saturn and the fly-by ob-

jects being its biggest moons (ID: 1.Enceladus, 2.Tethys, 3.Dione, 4.Rhea, 5.Titan)

A typical MATLAB script to call AUTOMATE starts as in Figure C.1. One first needs

to ensure that the folder named ’functions’ is within the path (line 4). Then, one of the

orbital regimes should be selected, by setting the appropriate central body (ID: 1. Sun,

5.Jupiter, 6.Saturn), the fly-by bodies and the infinity velocity contours (lines 6-9).

Figure C.1: AUTOMATE script for Solar System exploration.

One should then select the departing and arrival planets (lines 11-12). Maximum and

minimum infinity velocity at departure and arrival are also requested, as well as the max-

imum number of legs (lines 14-16). Some optional input follow. In particular, one can set

V ILT S = 0 or V ILT S = 1 (line 17), if VILTs are to be used or not, respectively (see also
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Algorithm 2). If V ILT S = 1, then one can select the maximum ∆v admissible on each

MGA leg and the maximum ∆v for the overall MGA sequence (lines 18-19). Addition-

ally, if a specific sequence is searched on the Tisserand map, one can explicitly specify

it (line 20); otherwise, one simply sets seq = []. Input are then collected in a structure

named INPUT (lines 22-24). The function ’prepareINPUT.m’ computes and stores all

the possible intersections on Tisserand map (see Algorithm 1), as well as VILTs transfers

(2), if V ILT S = 1.

Figure C.2: AUTOMATE script for Jupiter Moon System exploration.

The exploration is then performed (line 28) and the results are saved in a structure named

OUT PUT . Legs and types of transfers (i.e., resonances, VILTs, intersections) are saved

in OUT PUT.LEGS and OUT PUT.TY PES. For representation purposes, one can spec-

ify the sequence to plot on the Tisserand map (line 32). The code extracts the sequence

from OUT PUT structure (line 33) and then constructs the path (line 34). The function
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plotPath_SS.m is then used for representing the sequence on Tisserand map (many op-

tions exist for plotting, like the colour of the path, the colour of the Tisserand contours,

legend, and so on). The function ’extractSeqOutput.m’ (line 33) also provides informa-

tion on minimum and maximum infinity velocity at each planetary encounter (variable

V INF).

If one wants to construct more complex MGA sequences, e.g. within the Jupiter or Saturn

system, a script like the one in Figure C.2 should be used. From Figure C.2, similarly

to Figure C.1, one selects the input (lines 6-23) that are relevant for the scenario under

consideration. Since the central body is Jupiter, AUTOMATE requires a departing node

on the Tisserand map (lines 27-31). This can be the orbit reached by the spacecraft after

the injection within the planet SOI (the same applies when Saturn is the central body).

The exploration can then be performed (line 34). The specific setup shown in Figure C.2

can be used to obtain Figure 4.10.a.

Figure C.3: AUTOMATE script for Europa leveraging options.

To obtain Figure 4.10.b, i.e., leveraging sequence at Europa, one can explicitly look for

VILTs transfers with a single moon (it also works with Solar System planets). Figure

C.3 shows an example. As before, one should specify the departing node (lines 8-9),
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that can be an intersection with a previously-visited moon. VILTs option is now set to 1

(line 19), to allow the search for VILTs transfer and thus to reduce the infinity velocity

progressively. The exploration can be then performed by launching the same command

(line 34) as in Figure C.2.

C.2 ASTRA

Automatic Swing-by TRAjectories (ASTRA) implements SODP and MODP to look for

departing dates and transfer times for any given sequence of fly-by bodies (e.g., provided

by the Tisserand exploration from AUTOMATE).

A MATLAB script for setting ASTRA input is represented in Figure C.4. The script

allows to optimize an EVEEJ sequence with a 2:1 resonant transfer on the third leg.

Line 2 calls a script (’clearDeleteAdd.m’) that is useful to add ASTRA functions to the

working path and to build C++ based mex files like the multi-revolutions Lambert solver

and the function to compute defects.

Figure C.4: Script for ASTRA input.
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One needs to specify the sequence of planets to be optimized alongside specific resonant

legs (line 9). If a resonant transfer is present on a planet-to-planet leg, one specifies

it as res =
[

2 1 3

]
, meaning that the 2:1 resonance is present on the 3rd leg. If no

resonances are present in the transfer, one simply sets res = []. One then needs to select

the maximum number of revolutions per leg (line 12). All the possible permutations of

revolutions per leg are produced (lines 13-14) and those options that have more than one

revolution on outer planets (i.e., Jupiter, Saturn, Uranus, Neptune) are removed (line 15)

1.

Figure C.5: Script for specifying objective functions in ASTRA.

Departing dates range should then be defined (lines 18-23). Additional options should

then be defined. One selects: (1) the type of optimization to be performed, either SODP

or MODP (line 26); (2) the boundaries on departure v∞ (line 17), on the maximum ∆v

per leg and on the maximum accumulated ∆v (line 18); (3) plot options (line 29); (4) if

parallel computing is to be used (line 30); (5) the grid step sizes (line 31) 2.

Without specifying any other input, ASTRA automatically sets the bounds for planet-

to-planet transfer times. If Mercury, Venus and Earth are the only planets involved in

the leg, transfer times are bounded as T ∈ [50,750] days. If Mars is in the leg, then

T ∈ [50,850] days. If outer planets are present in the leg (i.e., Jupiter, Saturn, Uranus,

Neptune), then T ∈ [5002500] days. If multiple revolutions are admitted in the leg,

then T ∈ [400,2500] days. The user can also set up their own bounds by adding a

line like INPUT.TOF_LIM =

[[
50 400

]
;
[

50 400

]
;
[

50 400

]
;
[

500 1000

]]
(units are days).

1This is optional.
2For outer planets (i.e., Jupiter, Saturn, Uranus, Neptune), the step size is automatically doubled.
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Figure C.6: Script for launching ASTRA and post-processing.

By default, if SODP is chosen, ASTRA minimizes the first of Eq. 5.2, otherwise, also the

overall transfer time is minimized. The user can specify their own objectives by defining

MATLAB anonymous functions as in Figure C.5. By default, ASTRA does not apply any

bounds on the infinity velocities at planetary encounters. The user can specify their own

bounds (e.g., informed by a Tisserand-based exploration as from section C.1) by adding

a line like INPUT.V INF_LIM =

[[
3 5

]
;
[

5 10

]
;
[

5 10

]
;
[

3 6

]]
(units are

km/s).

ASTRA can then be run as in Figure C.6. Results are saved in a structure called OUT PUT

(line 36). To extract information from it, one can look at the field OUT PUT.ovPF where

the Pareto front is saved (objectives are organized in columns 3). The user then selects the

row number of OUT PUT.PF for the path to display and calls the function path f romPF.m

to build the path (line 41). One can then plot it with the function plotPath.m (line 44) and

export its values as a .txt file using generateOut putT XT.m (line 47) 4. A typical ASTRA

.txt output file is shown in Figure C.7.

3Last column encodes an identifier for the position of the specific path in the final results set.
4This function requires in input the path and the folder where to save the .txt file
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(a) (b)

Figure C.7: ASTRA output file example.

C.3 RESTOUR

Resonant TOUR (RESTOUR) uses OUT PUT structure from ASTRA (as from section

C.2) to find maximum inclination orbits exploiting successive resonant fly-bys with the

last planet of the sequence optimized by ASTRA.

Figure C.8: Script for using RESTOUR.
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Figure C.8 shows how to use RESTOUR. In particular, one needs to select if the incli-

nation should be maximised or not by setting or , respectively (line 3). The available

resonances at the given planet should be specified (line 4), as well as the maximum num-

ber of resonant legs (line 5), and the option to use parallel computing (line 6). RESTOUR

can then be used (line9). As said, the structure OUT PUT from ASTRA (see section C.2)

should be used in input.

Additionally, if the spacecraft needs to perform the fly-by with the last planet of the reso-

nant tour, one can extract the desired path and then perform a fly-by (i.e., finding (rp,γ)) to

maximise inclination (line 12). Lines 16-20 are for plotting. The presented script allows

for reproducing the trajectory shown in Figure 4.17.

C.4 DYNAMIS

DYNamic programming for Asteroids Missions (DYNAMIS) needs input from ASTRA

to look for asteroids that are close to a reference MGA trajectory. Figure C.9 shows the

input needed by DYNAMIS. Particularly, one needs to select the maximum duration of

the mission (line 13) 5 and the dthr for MOID pruning (line 14), as from Chapter 6.

An MGA path is loaded (line 20), e.g., as coming from ASTRA output (see again sec-

tion C.2), and it is processed to produce the variable ST RUC (line 22) via the function

’path2StrucDY NAMIS’. In the example provided, an EVEEJ sequence is loaded, de-

parting in October 2037. This function requires as an additional input a vector rpinKin

encoding (rp,γ), i.e., the fly-by parameters for the last planet in the sequence. If the

transfer ends at such planet, without a fly-by, one simply sets rpinKin = [NaN,NaN].

The MOID search can then be initiated (line 27). This produces a structure called in f o,

where all the asteroids that are close-by the selected path are saved.

After the MOID search, dynamic programming can be used to look for asteroids se-

5The maximum duration of the mission is relevant only if the spacecraft performs a fly-by with the last
planet in the MGA sequence. Otherwise, the maximum duration is assumed to be the time needed to reach
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Figure C.9: Script for ASTRA input.

Figure C.10: Script for calling dynamic programming using DYNAMIS.

quences. Figure C.10 shows the remaining steps. One needs to select pruning criteria

via the variable INPUT.tols (line 32). In particular, INPUT.tols(1) is for the maximum

the last planet.
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v∞,dep; INPUT.tols(2) is for the maximum ∆v intended as the sum of all the DSMs in

the transfer; INPUT.tols(3) is for the object-to-object maximum DSM; INPUT.tols(4)

is for the maximum ∆v intended as the sum of all the DSMs and v∞,dep. One can then

select the number of asteroids in the sequence (line 33). If the user wants to maximise the

number of asteroids in the sequence, INPUT.astMax = 1e99 should be used. The user

is also free to select the parameter N for the modified dynamic programming approach

(see Chapter 6). This can be done by choosing the parameter INPUT.soltokeep (line 41).

One should recall that having N = 1 corresponds to a SODP search. Lines 43-45 are for

saving purposes. The search using dynamic programming can then be run (line 48). The

results are saved in the structure SOL.

Figure C.11: EVEEJ trajectory visiting 3 asteroids.

Additionally, line 53 uses a script called ’optimizedDY NAMISpathUsingAST RA.m’ that

takes the optimal path from SOL and further refines it using ASTRA, by adjusting the

departing dates and transfer times. One notices that this already gives very accurate results

with the advantage of ASTRA computational efficiency, even without explicitly looking

for actual DSMs. This is because the defects at asteroids fly-bys are relatively small (e.g.,

few hundreds m/s) and ASTRA solutions lie close to fully refined solutions, as discussed

in Chapter 5.
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Final lines 55-58 are for representation purposes. The presented script is useful to gener-

ate the path shown in Figure C.11. The spacecraft reaches Jupiter after 6.152 years, with

v∞,dep = 3.706 km/s and v∞,arr = 5.658 km/s, while passing by 3 asteroids. The overall

∆v needed to visit them is 0.2984 km/s.
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Saturn Moons’ Tours with Dynamic

Programming

As further stress test for AUTOMATE, a long MGA sequence is searched within the

Saturn system. Assuming a departing orbit around Saturn, one looks for a moon tour

that ends at Enceladus with relatively low infinity velocity (e.g. 500 m/s). The added

complexity of such mission scenario arises from the very high number of fly-by and DSMs

options that are needed to achieve the declared goal. This is mainly because of the low

gravity field of Saturn moons, thus providing limited orbit change when performing fly-

bys.

SODP is used in this case to look for minimum ∆v paths on Tisserand map 1. This is

implemented as described in Chapter 5. The nodes that are relevant for SODP application

are triples of numbers made by (v∞,α,k) as described in Chapter 4. Among all the paths

that arrive at a common node, only the one with minimum accumulated ∆v is kept for

further expansion.

1Also MODP can be used, here SODP is implemented for the sake of simplicity.
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D.1 Capture

As described in section C.1, the search is initiated by defining a starting node. For exam-

ple, this can be an elliptical orbit within Saturn SOI that is reached after a ∆v manoeuvre

from the hyperbolic approach at the planet. Among Saturn moons, Titan presents a good

option for initial orbit energy reduction, as it has the strongest gravity field the other

moons considered here, thus allowing for more flexibility in the design process. The aim

would then be to reach Titan at relatively low speed, e.g., v∞ = 2.8 km/s to start the moon

tour.

The strategy to reach such condition could be to:

• Arrive within Saturn SOI with a hyperbolic path (depending upon the spacecraft-

Saturn relative velocity at the SOI).

• Perform a first manoeuvre (∆v1) to move the spacecraft from the hyperbola to an

elliptical capture orbit within the SOI.

• Perform a second manoeuvre (∆v2) to arrive at Titan at v∞ = 2.8 km/s.

The total ∆v for the two manoeuvres would thus be function of:

• The spacecraft-Saturn relative velocity at the moment of encounter (here 5.5 km/s

is considered, that is similar to the Cassini mission [171]).

• The size of the elliptical capture orbit around Saturn, namely eccentricity and peri-

apsis (here a fixed eccentricity e = 0.99 is used, similar to the one used for Cassini,

and the rp is left free).

A good compromise is found to be (ra,rp) = (348.37,19.17) RS ( RS being Saturn radius),

allowing to reach Titan at v∞ = 2.8 km/s with a total ∆v = ∆v1 +∆v2 = 1.3 km/s.
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D.2 Moons’ Tour

After the capture phase, the moons’ tour can be initiated. Both fly-bys and VILTs are

allowed, as described in Chapter 4. AUTOMATE scans the whole search space in terms

of moon fly-bys and VILTs to construct sequences towards Enceladus. The optimization

is divided in phases, one for each moon, on which the spacecraft performs fly-bys and

VILTs with one single moon before moving to the next one. In this case, a single objective

is optimized, that is the sum of the DSMs needed to reach Enceladus with infinity velocity

of 500 m/s. The tour found by AUTOMATE is represented on Tisserand graphs in Figure

D.1.

The first phase is the Titan (T) one, that allows to reach Rhea (R) with v∞ = 1.8 km/s

relative to Rhea on an overall TTTR sequence. From the starting orbit, the spacecraft

performs a fly-by with Titan to reduce the apoapsis, reaching a quasi-resonant 4:1 orbit

with the moon. A DSM of 0.0681 m/s is then performed to reduce the infinity velocity

at Titan from 2800 m/s to 2200 m/s. Then, two more fly-bys are needed, the second one

of which is in 1:1 resonance with Titan. The time needed to complete this phase is 79.65

days. The second phase is the one with Rhea. This is the longest one on the overall tour

in terms of number of fly-bys and transfer time, with 14 encounters with Rhea and an

overall 428.77 days of transfers. The overall ∆v cost of the Rhea phase is 0.283 km/s.

This allows to reduce the infinity velocity with respect to Rhea down to 1 km/s. After the

last Rhea encounter, Dione is encountered with a relative velocity of 1 km/s. On the third

phase, Dione is used to leverage the infinity velocity up to 0.7 km/s, using an overall ∆v of

0.0442 km/s and 164.49 days of transfer. The spacecraft then reaches Tethys at a relative

speed of 0.7 km/s. Interestingly, only resonant and quasi-resonant transfers are used at

this moon, i.e., ∆v = 0 km/s, with an overall 139.77 days of moon phase. Last phase is

at Enceladus, on which only VILTs are used to leverage the v∞ down to 0.350 km/s after

201.70 days and a cost of 0.105 km/s.

Although Tisserand graphs provide no explicit information on the transfer time between
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(a) (b)

(c) (d)

(e)

Figure D.1: Tour phases at Titan (a), Rhea (b), Tethys (c), Dione (d) and Enceladus (e).

different moons’ phases, as this depends upon the phasing between the objects, one could

easily look for individual transfer strategies once a transfer option from Earth to Saturn is
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identified in terms of launch and arrival dates. In any case, one should not expect large

variations in the overall transfer time within the moons’ tour (few tens of days), due to the

very low orbital periods of the objects.

Overall, the moon tour uses:

• 49 fly-bys with Saturnian moons

• 0.501 km/s of ∆v

• Approximately 1018.51 days of transfer time
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Appendix E

Asteroids Families, Regions and Special

Targets

From Chapter 6, a pruned database of ∼ 102,000 asteroids is used [9, 10] to assess the

feasibility of a CASTAway-like mission. Asteroids’ orbits that belong to such catalogue

are represented in Figure E.1.

Figure E.1: Map of semi-major axis and eccentricity for the selected asteroids.

This shows semi-major axis and eccentricity of the objects and reports the main families
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and regions that are relevant for the mission analysis of CASTAway within the context of

ESA’s M-class call 2022.

The author also thanks Prof. Colin Snodgrass for providing a list of scientifically com-

pelling asteroids. The list is reported in Table E.1.

Table E.1: List of scientific interesting asteroids for CASTAway-like missions.

Category 1: individual objects of special interest
Number Name Justification

24 Themis Possible water ice on surface from
ground-based spectroscopy.

596 Scheila Recent craters formed.

16 Psyche Lump of metal. NASA is considering
dedicated discovery mission.

65 Cybele Possible water ice on surface.
Category 2: previous missions’ targets

Number Name Justification

1 Ceres Surface evolution ∼ 20 years after Dawn [264].
Active body.

4 Vesta Surface evolution ∼ 20 years after Dawn [264].

21 Lutetia Surface evolution ∼ 25 years after
Rosetta. [249].

Category 3: extreme sizes
Number Name Justification

2 Pallas Big size and interesting at 3 micron spectrum.
10 Hygiea Big size and dark (7% albedo).

Category 4: extreme shapes
Number Name Justification

216 Kleopatra Highly elongated.
824 Anastasia Elongated.

1248 Jugurtha
208150 2000 FJ34
211895 2004 JX32

Category 5.a: family membership
Number Name Justification

298 Baptistina Possible source of Earth impactors.

396 Aeolia Object from families < 100 Myr old. Largest
asteroid of 306 family members.

606 Brangane Object from families < 100 Myr old. Largest
asteroid of 192 family members.

832 Karin Very young family (∼ 6 Myr).
Category 5.b: possibly recently split

Number Name
1270 Datura
4765 Wasserburg
5026 Martes
6070 Rheinland

Continued on next page
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Table E.1 – Continued from previous page
6825 Irvine
7343 Ockeghem
8898 Linnaea
9068 1993 OD
9783 Tensho-kan

10123 Fideoja
10321 Rampo
10484 Hecht
11842 Kap’bos
13046 Aliev
13653 Priscus
15107 Toepperwein
15501 Pepawlowski
17198 Gorjup
17288 2000 NZ10
19289 1996 HY12
21436 Chaoyichi
21509 Lucascavin
21930 1999 VP61
22280 1985 CD2
23891 1998 SC49
23998 1999 RP29
25884 2000 SQ4
26416 1999 XM84
29358 1996 AY7
32957 1996 HX20
34162 2000 QV27
34380 2000 RV55
38184 1999 KF
38395 1999 RR193
39991 1998 HR37
40366 1999 NF27
40837 1999 TX95
42946 1999 TU95
48281 2002 EN153
48652 1995 VB
51161 2000 HY57
51609 2001 HZ32
52478 1995 TO
52773 1998 QU12
52852 1998 RB75
53754 2000 ED69
54041 2000 GQ113
56048 1998 XV39
56232 1999 JM31
57738 2001 UZ160
60151 1999 UZ6
60546 2000 EE85
60744 2000 GB93
63440 2001 MD30

Continued on next page
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63468 2001 OY21
64092 2001 SM289
65801 1996 AJ7
69142 2003 FL115
70511 1999 TL103
71484 2000 BE34
76111 2000 DK106
80218 1999 VO123
81337 2000 GP36
84203 2002 RD133
87887 2000 SS286
88259 2001 HJ7
89714 2001 YA114
92336 2000 GY81
92652 2000 QX36
99052 2001 ET15
101065 1998 RV11
101703 1999 CA150
106598 2000 WZ112
106700 2000 WX167
111335 2001 XL94
112249 2002 LM9
114243 2002 WZ5
118645 2000 JC14
128637 2004 RK22
133220 2003 QX79
138938 2001 BJ18
139537 2001 QE25
143155 2002 XS50
145314 2005 LE5
159435 1999 VJ178
165389 2000 WC188
180906 2005 KB6
183137 2002 RW219
184300 2005 ED114
189994 2004 GH33
195479 2002 GX130
203370 2001 WY35
220015 2002 PU155
226268 2003 AN55
226877 2004 TD93
228674 2002 JZ80
229401 2005 SU152
237517 2000 SP31
237738 2001 XN74
268305 2005 QV114
287982 2003 UQ164
318689 2005 QC62
337108 1999 RV84
338178 2002 RJ126

Continued on next page
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Table E.1 – Continued from previous page
344172 2001 AV49

Category 6.a: triple
Number Name

45 Eugenia
87 Sylvia
93 Minerva

130 Elektra
216 Kleopatra

Category 6.b: binary
22 Kalliope
41 Daphne
90 Antiope

107 Camilla
121 Hermione
243 Ida and Dactyl
283 Emma
317 Roxane
379 Huenna
702 Alauda
762 Pulcova
809 Lundia
854 Frostia
939 Isberga

1052 Belgica
1089 Tama
1453 Fennia
1509 Esclangona
1717 Arlon
1830 Pogson
2006 Polonskaya
2047 Smetana
2121 Sevastopol
2131 Mayall
2343 Siding Spring
2478 Tokai
2486 Metsahovi
2623 Zech
2691 Sersic
2754 Efimov
2815 Soma
3034 Climenhaga
3073 Kursk
3169 Ostro
3309 Brorfelde
3433 Fehrenbach
3673 Levy
3703 Volkonskaya
3782 Celle
3841 Dicicco
3868 Mendoza

Continued on next page
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3905 Doppler
3951 Zichichi
3982 Kastel
4029 Bridges
4272 Entsuji
4383 Suruga
4440 Tchantches
4492 Debussy
4514 Vilen
4541 Mizuno
4607 Seilandfarm
4666 Dietz
4674 Pauling
4765 Wasserburg
4786 Tatianina
4868 Knushevia
4951 Iwamoto
5425 Vojtech
5426 Sharp
5474 Gingasen
5477 Holmes
5481 Kiuchi
5899 Jedicke
5905 Johnson
6084 Bascom
6244 Okamoto
6265 1985 TW3
6369 1983 UC
6615 Plutarchos
6708 Bobbievaile
7187 Isobe
7225 Huntress
7958 Leakey
8026 Johnmckay
8116 Jeanperrin
8306 Shoko
8474 Rettig
9069 Hovland
9260 Edwardolson
9617 Grahamchapman
9783 Tensho-kan

10123 Fideoja
10208 Germanicus
11217 1999 JC4
11264 Claudiomaccone
13123 Tyson
15268 Wendelinefroger
15430 1998 UR31
15822 1994 TV15
16525 Shumarinaiko

Continued on next page
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Table E.1 – Continued from previous page
17246 2000 GL74
17260 2000 JQ58
18890 2000 EV26
20325 1998 HO27
21436 Chaoyichi
22899 1999 TO14
26416 1999 XM84
27568 2000 PT6
31450 1999 CU9
32008 2000 HM53
43008 1999 UD31
44620 1999 RS43
46829 1998 OS14
52316 1992 BD
69406 1995 SX48
76818 2000 RG79
79472 1998 AX4
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