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Composite Model Reference Adaptive Control under Finite
Excitation with Unstructured Uncertainties

Namhoon Cho, Hyo-Sang Shin, Youdan Kim, and Antonios Tsourdos

Abstract—This paper presents an online parameter update
algorithm in the context of composite model reference adaptive
control based on intermittent signal holding to improve conver-
gence properties of the parameters representing the unstructured
uncertainties in the absence of persistent excitation. The present
study extends the algorithm which was previously developed by
considering only the structured uncertainties for which the basis
functions are known a priori. The proposed extension utilises
the Gaussian radial basis function neural network as the model
for the uncertainty assuming appropriate placement of the local
basis functions in the state space. A notable distinction from the
case with full knowledge of the features constituting the linearly-
parameterised uncertainty model is that the extended algorithm
introduces a robustifying modification in the earlier phase of
operation to deal with the inevitable learning residual.

Index Terms—Model Reference Adaptive Control, Finite Exci-
tation, Parameter Convergence, Radial Basis Function, Unstruc-
tured Uncertainties, Composite Adaptive Control

I. INTRODUCTION

Online model learning endows an autonomous system with
the capability to improve its state prediction accuracy over
time, enabling more precise and efficient planning/control
using the learned model. In general, a parametric control-
oriented model for the system dynamics can be optimised
either separately or jointly with a parametric controller for the
system-level performance with respect to a given task, bearing
a wide range of possibilities in the definition of objective. In
this perspective, online model learning can be formulated as
the problem of minimising the state prediction error described
using the online acquired trajectory data. Recent studies clearly
show that an accurate dynamic model is not necessary but
sufficient for optimal downstream task performance [1], [2].
The optimality of predictive planning and control methods
directly benefit from the improved accuracy of the learned
model parameters.

Robustly stable and accurate online model learning requires
a careful design for both exploration and exploitation aspects.
In the context of adaptive control, online model learning is
often referred to as long-term learning or slow adaptation to
highlight the point that a system needs certain period of time to
collect enough information for identifying the uncertain part
of the model and to process the information. Regarding the
exploration side of the task, the trajectory data should be rich
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enough to provide a large information gain. Regarding the
exploitation side of the task, the loss function associated with
the model learning objective should be constructed to enforce
strict convexity with respect to the parameter, provided that
the optimiser employed is capable of converging to a local
minimum of the loss function supplied.

From the perspective that views parameter evolution over
time according to an update algorithm as the result of an
optimisation problem solver unrolled in time, the non-strict
convexity of the loss function associated with the model
learning task with respect to the parameter is detrimental to
the stability and convergence characteristics of the overall
closed-loop system. The non-uniqueness of the solution to
the optimisation problem, i.e., the multitude of local minima
of the loss function, which can essentially be the infinitude
of feasible fitting solutions manifests itself as the parameter
staying at an undesired point or even drifting along the
connected set of feasible points possibly in an unbounded
manner.

On one hand, explicit regularisation as a remedy can en-
force strict convexity and enhance robustness, however, at the
cost of possibly shifting the minimum point from the true
parameter to an arbitrary value. On the other hand, assuring
persistent excitation as a remedy does not change the loss
function itself, however, relying on persistent excitation for
convergence of parameters in classical estimation algorithms
is unreasonable since stable control precedes accurate learning
in most practices.

To overcome the difficulties arising from the stringent
requirement of persistent excitation, various methods have
been developed to ensure parameter convergence under a more
relaxed condition such as the finite excitation in the initial
interval in the context of composite adaptive control [3]–[5].
The effectiveness of composite adaptation for stable simulta-
neous learning and control in an adaptive control system has
already been well understood in the earlier studies [6]–[8].
However, classical parameter estimation schemes for linearly-
parameterised models such as the instantaneous gradient-
based or the recursive least squares estimators depend on
the persistency of excitation in order to guarantee parameter
convergence. In the classical methods, the information matrix
given by the rank-deficient outer product of the basis function
at each instance is the main cause rendering the loss function
to be non-strictly convex. The concurrent learning algorithm
presented in [9]–[11] addressed the rank-deficiency by utilis-
ing a set of recorded historical data together with the current
measurement to populate the information matrix to full rank
over time. The composite adaptation algorithm presented in
[12] utilised the Kreisselmeier’s memory regressor extension

h.binning
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

h.binning
Text Box
in: 2023 62nd IEEE Conference on Decision and Control (CDC), 13-15 December 2023, SingaporeDOI: 10.1109/CDC49753.2023.10383834



2

scheme as reviewed in [4] together with an intermittent signal
holding algorithm to avoid ill-conditioned information matrix.
Exponential parameter convergence could be guaranteed in the
structured uncertainty case assuming only finite excitation.

This study mainly aims to extend the design and analysis of
the adaptation algorithm developed in [12] only for the case of
structured uncertainties to deal with unstructured uncertainties.
The extended algorithm considers a shallow learning model
known as the Gaussian radial basis function neural network
for the approximate representation of the uncertainty. The
key difference from the structured uncertainty case lies at the
presence of the inevitable learning residual, leading to the
necessity of robustifying modification in the design as well
as the changes in the stability analysis concluding uniform
ultimate boundedness.

The rest of the paper is organised as follows: The pre-
liminaries and problem formulation are given in Sec. II. In
Sec. III, the extended adaptation law is designed to deal with
unstructured uncertainty and its stability is analysed assuming
finite excitation. Concluding remarks are provided in Sec. IV.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section describes the definitions of excitation condi-
tions and the formulation of a state feedback Model Reference
Adaptive Control (MRAC) problem.

A. Preliminaries

In the followings, let ∥·∥, ∥·∥max, and ∥·∥F denote the
induced 2-norm, the elementwise max norm, and the Frobenius
norm, respectively. Also, let (⃗·), λmin (·), and λmax (·) denote
the columnwise vectorisation, the minimum eigenvalue, and
the maximum eigenvalue of a matrix, respectively. Then, for
example, V (t) := 1

2e
TPe+ 1

2 tr
(
W̃TΓw

−1W̃
)

satisfies

1

2
λmin (P) ∥e (t)∥2 ≤ 1

2
eTPe ≤ V (t)

1

2
λmin

(
Γw

−1
) ∥∥∥W̃ (t)

∥∥∥
F

2

≤ 1

2
tr
(
W̃TΓw

−1W̃
)
≤ V (t)

(1)

Note that λmin (P) > 0 for P > 0, and λmin

(
Γw

−1
)
> 0 for

Γw > 0.

Lemma 1 (Bounded-Input Bounded-State Stability of Linear
Time-Invariant System). For a linear time-invariant system
ẋ = Ax + Bu where x ∈ Rn×1 and u ∈ Rm×1, if A is
diagonal and Hurwitz, x (t0) = 0, and sup

τ∈[t0,t]

∥u (τ)∥ = ū,

then

∥x (t)∥ ≤ ∥B∥ ū
|λmax (A)|

(2)

The main objective of this study is to extend the parameter
estimation algorithm proposed in [12] assuming structured
uncertainty to unstructured uncertainty for improved parameter
convergence characteristics under a limited degree of excita-
tion. The excitation conditions are formally defined as below.

Definition 1 (Finite Excitation). A bounded vector signal v (t)
verifies Finite Excitation (FE) condition over a finite time

interval [ts, ts + T ], if there exist T > 0, ts ≥ t0, and γ > 0
such that ∫ ts+T

ts

v (τ)vT (τ) dτ ≥ γI > 0 (3)

Definition 2 (Persistent Excitation). A bounded vector signal
v (t) verifies Persistent Excitation (PE) condition, if there exist
T > 0 and γ > 0 such that∫ t+T

t

v (τ)vT (τ) dτ ≥ γI for ∀t ≥ t0 (4)

B. Problem Formulation

1) System Dynamics: Consider a class of uncertain linear
Multi-Input Multi-Output (MIMO) dynamic system given by

ẋp (t) = Apxp (t) +Bp (u (t) +∆ (xp (t)))

z (t) = Hpxp (t)
(5)

where xp (t) ∈ Rnp×1 is the state which is assumed to be
fully measurable, u (t) ∈ Rm×1 is the control input, z (t) ∈
Rm×1 is the performance output, and ∆ (xp (t)) ∈ Rm×1 is
the state-dependent uncertainty. Ap ∈ Rnp×np , Bp ∈ Rnp×m,
and Hp ∈ Rm×np in Eq. (5) are known constant matrices
which satisfies i) controllability of the pair (Ap,Bp), and ii)
the linear independence of the columns in Bp.

The objective is to achieve tracking of a given bounded
piecewise continuous command zcmd (t) ∈ Rm×1 with the per-
formance output z (t). Augmenting Eq. (5) with the integrated
output tracking error ezI (t) ≜

∫ t

t0
(z (τ)− zcmd (τ)) dτ yields

the extended system as follows

ẋ (t) = Ax (t) +B (u (t) +∆ (xp (t))) +Brzcmd (t)

z (t) = Hx (t)
(6)

where x ≜

[
xp

ezI

]
∈ Rn×1 with n = np +m is the extended

state vector and

A ≜

[
Ap 0np×m

Hp 0m×m

]
∈ Rn×n, B ≜

[
Bp

0m×m

]
∈ Rn×m

Br ≜

[
0np×m

−Im×m

]
∈ Rn×m, H ≜

[
Hp 0m×m

]
∈ Rm×n

(7)

Note that (A,B) is controllable if and only if (Ap,Bp) is

controllable and det

([
Ap Bp

Hp 0m×m

])
̸= 0.

2) Models of Uncertainty: The uncertainty ∆ (xp (t)) can
be modelled by function expansion using artificial basis func-
tions in the absence of structural knowledge. The only thing
available about the uncertainty is that it is known to be
continuous and defined over a compact domain Dp ⊂ Rnp×1.
A function approximator with the universal approximation
capability can be used to model the uncertainty in this case.
Among various function approximation schemes, the Radial
Basis Function Neural Network (RBF NN) will be used in this
study, because better simplicity of further analysis is expected
owing to its linear-in-parameter structure. The following as-
sumption is satisfied for the unstructured uncertainty.
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Assumption 1 (Unstructured Uncertainty).
Let σi (xp (t)) denote a Gaussian RBF with its center at ci
and its width of µi, which is defined as follows,

σi (xp) = exp

(
−∥xp − ci∥2

µi

)
(8)

and let Σ (xp) =
[
1 σ2 (xp) · · · σq (xp)

]T ∈ Rq×1 be
the RBF vector. According to the universal approximation
capability of RBF NN [13], there exists a unique constant ideal
parameter W∗ ∈ Rq×m that approximates the uncertainty
∆ (xp (t)) ∈ Rm×1 as closely as possible with a fixed number
of given RBFs such that

∆ (xp (t)) = W∗TΣ (xp (t)) + ω (xp (t)) (9)

holds for ∀xp ∈ Dp ⊂ Rnp×1. In Eq. (9), ω (xp (t))
is the minimal approximation error vector. Note that ω ≜
sup

xp∈Dp

∥ω (xp (t))∥ can be arbitrarily small with sufficiently

large number of RBFs at the cost of computation load.

3) Model Tracking Error Dynamics: The MRAC design
philosophy is to synchronise the system state with the state of a
reference model representing the desired closed-loop response.
A reference model is the ideal closed-loop system obtainable
with the baseline control law for the nominal system. Let us
assume that there exists a full-state feedback baseline control
law ubase = −Kx such that the gain K satisfies Ar = A−BK
for a given Hurwitz matrix Ar. Then, the reference model can
be represented as

ẋr (t) = Arxr (t) +Brzcmd (t)

zr (t) = Hxr (t)
(10)

Given Ar is Hurwitz, there exists a symmetric positive definite
matrix P ∈ Rn×n satisfying the following Lyapunov equation

Ar
TP+PAr +Q = 0 (11)

for any symmetric positive definite matrix Q ∈ Rn×n

The control law for the uncertain system of Eq. (6) can be
designed as

u = ubase − uad = −Kx− uad (12)

where ubase represents the baseline control law, and uad
represents the adaptive input. Then, the model tracking error
defined as e (t) ≜ xr (t) − x (t) evolves over time according
to

ė (t) = Are (t) +Bϵ (t) (13)

where ϵ (t) = uad (t) − ∆ (xp (t)) ∈ Rm×1 denotes the
uncertainty approximation error. The adaptive input can be
designed to cancel the uncertainty from the tracking error
dynamics as

uad (t) = ∆̂ (xp (t)) = ŴT (t)Σ (xp (t)) (14)

where Ŵ (t) denotes the estimated parameter. The estimate
Ŵ should be as close as possible to the ideal value W∗ to
minimise the parameter estimation error denoted by W̃ (t) ≜

Ŵ (t) −W∗. Note that ˙̃W =
˙̂
W. The model tracking error

dynamics given in Eq. (13) can be rewritten as

ė (t) = Are (t) +B
[
W̃T (t)Σ (xp (t))− ω (xp (t))

]
(15)

Equation (15) shows that the parameter estimation error enters
into the tracking error dynamics. The interaction of the two
errors e and W̃ within the feedback loop should be taken into
account in the design of an adaptation law that generates Ŵ.

C. Filtered System Dynamics
This section describes the regressor filtering scheme which

is similar to the one based on first-order filter as described in
[8]. From Eq. (13), we have

uad (t)−B† [ė (t)−Are (t)]

= ∆ (xp (t)) = W∗TΣ (xp (t)) + ω (xp (t))
(16)

where (·)† denotes the Moore-Penrose pseudoinverse. The
column linear independence of Bp assures full column rank
of B. Therefore, B† =

(
BTB

)−1
BT . Assuming e (t0) = 0

without loss of generality, the Laplace transform of Eq. (16)
can be written as

uad (s)−B† (sIn×n −Ar) e (s)

= ∆ (xp) = W∗TΣ (s) + ω (s)
(17)

Consider a stable linear first-order low-pass filter represented
as F (s) = 1

τfs+1 with τf > 0. Multiplying both sides of Eq.
(17) by F (s) yields the filtered uncertainty as

uadf (s)−B†
[
1

τf
e (s)−

(
1

τf
In×n +Ar

)
ef (s)

]
= ∆f (xp) = W∗TΣf (s) + ωf (s)

(18)

where the subscript f is used to denote a signal filtered
by F (s), i.e., αf (s) = F (s)α (s). The inverse Laplace
transform of Eq. (18) yields the filtered system dynamics as
follows:

χ (t) ≜ ξ (t)− 1

τf
B†e (t) = W∗Tη (t) + δ (t) (19)

ξ̇ (t) =
1

τf

[
uad (t) +B†

(
1

τf
In×n +Ar

)
e (t)− ξ (t)

]
(20)

η̇ (t) =
1

τf
(Σ (xp (t))− η (t)) (21)

δ̇ (t) =
1

τf
(ω (xp (t))− δ (t)) (22)

with ξ (t0) = 0m×1, η (t0) = 0q×1, δ (t0) = 0m×1 The
output χ (t) is a function of known signals ξ (t) and e (t), and
the filtered regressor η (t) is also a known signal. Therefore,
the system described by Eqs. (19)-(22) provides the equations
to perform linear regression.

III. UNCERTAINTY LEARNING UNDER FINITE EXCITATION

This section develops a new adaptation law for the case of
unstructured uncertainty by extending the algorithm presented
in [12] and discussed in [4] which was developed assuming
full knowledge of the basis function for the uncertainty. Also,
this section presents the analysis of stability and performance
of the overall closed-loop system under the proposed scheme.
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A. Design of Adaptation Law

Let us assume FE in the filtered regressor.

Assumption 2 (Finite Excitation of Filtered Regressor). The
filtered regressor η (t) verifies FE over [ts, te].

The learning residual δ is generally nonzero for the un-
structured uncertainties. It can be inferred from Eq. (19) that
the unknown parameter W∗ can be estimated with some
nonremovable amount of bounded error from the measurable
signals χ (t) and η (t). This intuition will be shown later as
the exponentially convergent ultimate uniform boundedness
around the neighborhood of

(
e,W̃

)
= (0,0).

Let the information matrix Ω (t) and the auxiliary matrix
M (t) be defined by

Ω̇ (t) = −k (t)Ω (t) + η (t)ηT (t)

Ṁ (t) = −k (t)M (t) + η (t)χT (t)
(23)

with Ω (t0) = 0q×q and M (t0) = 0q×m where k (t) is a
scalar forgetting factor satisfying 0 < kL ≤ k (t) ≤ kU . One
possible example introduced in [12] for the design of forgetting
factor is to set

k (t) = kL + (kU − kL) tanh (ϑ ∥η̇∥) (24)

where ϑ > 0 is a constant design parameter, and η̇ is
calculated according to Eq. (21).

Central to the adaptation algorithm of [12] is the idea of
intermittent signal holding which is to perform selective update
of the adequate information matrix Ωa (t) and the adequate
auxiliary matrix Ma (t) as follows:

ta ≜ max

{
argmax
τ∈[t0,t]

F (Ω (τ))

}
Ωa (t) ≜ Ω (ta)

Ma (t) ≜ M (ta)

(25)

where F (·) represents a chosen metric for quantifying the
quality of information matrix. The intention behind performing
selective update as described in Eq. (25) is to ensure mono-
tonic increase in F (Ωa (t)), i.e., dF(Ωa(t))

dt ≥ 0 for ∀t ≥ t0.
One representative example for the choice of the information
measure is to set F (·) = λmin (·).

The new adaptation law for the unstructured uncertainty
case is proposed as follows:

˙̂
W (t) =



−Γw

[
Σ (xp (t)) e

T (t)PB

+ R
(
Ωa (t)Ŵ (t)−Ma (t)

)
+ κŴ (t)

]
if rank (Ωa (t)) < q

−Γw

[
Σ (xp (t)) e

T (t)PB

+ R
(
Ωa (t)Ŵ (t)−Ma (t)

)]
if rank (Ωa (t)) = q

(26)

where Γw > 0 is a constant adaptation gain matrix, κ > 0
is a constant scalar gain for the robustification term, R > 0
is a scalar relative weight on the parameter-estimation-based
modification term, and P = PT > 0 is the solution of Eq.
(11) for a given Q = QT > 0.

B. Stability and Performance Analysis

The solution of Eq. (23) can be written as

Ω (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ)ηT (τ) dτ

M (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ)χT (τ) dτ

(27)

From Eqs. (19) and (27), it is clear that

M (t) = Ω (t)W∗ +N (t) (28)

where

N (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ) δT (τ) dτ (29)

Let us consider λmin (·) for F (·) in Eq. (25). It is obvious
from Eqs. (25) and (28) that

Ma (t) = Ωa (t)W
∗ +Na (t) (30)

where Na (t) ≜ N (ta).
In Lemma 2, the adequate information matrix is shown to

be positive definite after FE. Using this result, the stability of
the equilibrium point is shown in Theorem 1, and the transient
performance guarantee is given in Corollary 1.

Lemma 2 (Positive Definiteness and Minimum Eigenvalue
of Adequate Information Matrix). With the FE condition as
stated in Assumption 2 and the choice of F (·) by λmin (·),

• Ωa (t) ≥ 0 for ∀t ≥ t0.
• Ωa(t) > 0 for ∀t ≥ te.
• λmin (Ωa (t)) ≥ λmin (Ωa (te)) > 0 for ∀t ≥ te.

Proof: See [12].

In the unstructured uncertainty case, δ (t) is unknown, but
it is bounded as explained in Lemma 3. Using this result,
the boundedness of the mismatch term Na (t) is shown in
Lemma 4. The boundedness of unknown signals shown in
these Lemmas is essential in the following analysis.

Lemma 3 (Uniform Boundedness of η (t) and δ (t)).
The signals η (t) and δ (t) are uniformly bounded as follows

∥η (t)∥ ≤ √
q

∥δ (t)∥ ≤ ω̄
(31)

Proof: It is obvious that ∥Σ (xp (t))∥ ≤ √
q, because the

Gaussian RBF given by Eq. (8) satisfies 0 < σi (xp) ≤ 1.
Also, we have ∥ω (xp (t))∥ ≤ ω̄ from Assumption 1. Then,
the bounds on η (t) and δ (t) can be obtained as Eq. (31) by
applying Lemma 1 to Eqs. (21)-(22).

Lemma 4 (Uniform Boundedness of Mismatch Term).
Let Dp be the compact set in which the RBF NN approximation
holds as explained in Assumption 1. If xp ∈ Dp for ∀t ≥
t0, then the mismatch term Na (t) in Eq. (30) is uniformly
bounded as follows

∥Na (t)∥F ≤
ω̄
√
q

kL
(32)
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Proof: Since 0 < kL ≤ k (t) ≤ kU , we have

0 < exp (−kU (t− τ)) ≤ exp

(
−
∫ t

τ

k (ν) dν

)
≤ exp (−kL (t− τ))

(33)

From Eq. (33) and Lemma 3, the upper bound on N (t) can
be obtained from the triangle inequality as follows:

∥N (t)∥F ≤
∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)∥∥∥η (τ) δT (τ)
∥∥∥
F
dτ

=

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
∥δ (τ)∥ ∥η (τ)∥ dτ

≤
∫ t

t0

exp (−kL (t− τ)) ω̄
√
qdτ ≤

ω̄
√
q

kL

(34)

Equation (32) is an obvious consequence of Eq. (34).
From Eqs. (15), (30), and (26), the closed-loop system

dynamics of the tracking error e and the parameter estimation
error W̃ can be written as follows:

ė = Are+B
[
W̃TΣ (xp)− ω (xp)

]
e (t0) = 0

˙̃W =


−Γw

[
Σ (xp) e

TPB+ (RΩa + κIq×q)W̃

− Na + κW∗] , if rank (Ωa (t)) < q

−Γw

[
Σ (xp) e

TPB+RΩaW̃ −Na

]
if rank (Ωa (t)) = q

(35)

The uniform ultimate boundedness of the closed-loop trajec-
tories around

(
e, ⃗̃W

)
= (0,0) is shown in Theorem 1, and

the ultimate bound is given as a performance guarantee in
Corollary 1.

Theorem 1 (Uniform Ultimate Boundedness of Errors). Let
D ≜

{
x |xp ∈ Dp ⊂ Rnp×1, ezI ∈ DI ⊂ Rm×1

}
be a com-

pact set where Dp is the compact set in which the RBF NN
approximation holds, i.e., ∥ω (xp)∥ ≤ ω in Dp, and DI is an
arbitrary closed bounded subset of Rm×1 containing 0m×1.
Let α ≜ max

x∈D
∥x∥, and let Bα ≜ {∥x∥ ≤ α} so that Bα ⊂ D.

Consider the Lyapunov function defined by Eq. (36), and let
β be the minimum possible value of V such that V̇ < 0 is
guaranteed for all

(
e,W̃

)
outside of and at the boundary of

the set Ωβ ≜
{(

e,W̃
)∣∣∣ V (e,W̃)

≤ β
}

. Let γ ≥ β and

Ωγ ≜
{(

e,W̃
)∣∣∣ V (e,W̃)

≤ γ
}

.
Suppose that the following assumptions hold:

(i) x (t0) ∈ Bα;
(ii) V

(
e (t0) ,W̃ (t0)

)
∈ Ωγ;

(iii) The reference model is BIBO stable such that ∥xr (t)∥ ≤
α−

√
2γ

λmin(P) for ∀t ≥ t0.

Then, with the control law given by Eqs. (12) and (14),
the adaptation law given by Eq. (26), and the FE condition
as stated in Assumption 2, the trajectory e (t) and ⃗̃W (t) are
uniformly ultimately bounded for all t ≥ t0.

Proof: Consider the following positive definite and radi-
ally unbounded Lyapunov candidate function.

V
(
e,W̃

)
=

1

2
eTPe+

1

2
tr
(
W̃TΓw

−1W̃
)

(36)

Note that V (0,0) = 0, and V
(
e,W̃

)
> 0 for ∀

(
e,W̃

)
̸=

(0,0). Let ξ ≜
[
eT ⃗̃W

T
]T

, then the Lyapunov candidate
function given by Eq. (36) is bounded from below and above
as follows:

1

2
min

{
λmin (P) , λmin

(
Γw

−1
)}

∥ξ∥2 ≤ V
(
e,W̃

)
≤ 1

2
max

{
λmax (P) , λmax

(
Γw

−1
)}

∥ξ∥2
(37)

Consider the positive definite and radially unbounded Lya-
punov candidate function given by Eq. (36). Let ξ ≜[
eT ⃗̃W

T
]T

, then the Lyapunov candidate function of Eq.
(36) is bounded from below and above as Eq. (37). As
explained in Lemma 2, under the FE condition of Assumption
2, there exists te > t0 such that Ωa (t) > 0, ∀t ≥ te.
Therefore, the adaptation law given by Eq. (26) switches from
the first one to the second one at some te, as rank (Ωa (t))
becomes populated to the full rank.

Suppose that there exists the the boundary value of the
Lyapunov function, β > 0, as described in the statement of
this Theorem. The β will be clearly defined below. From
the assumption (ii), V

(
e (t0) ,W̃ (t0)

)
∈ Ωγ , it can be

shown that ∥e∥ ≤
√

2V
λmin(P) ≤

√
2γ

λmin(P) , ∀t ≥ t0, because

V
(
e,W̃

)
≥ 1

2λmin (P) ∥e∥2 for ∀t ≥ t0, Ωβ ⊆ Ωγ , and

V̇ < 0 outside Ωβ . Next, from the assumption (iii), it can be
shown that ∥x∥ = ∥xr − e∥ ≤ ∥xr∥+∥e∥ ≤ α for all t ≥ t0,
using the result shown above. Then, for all t ≥ t0, x (t) ∈ D
because Bα ⊂ D, and therefore the RBF NN approximation
holds.

Consider first the case of rank (Ωa (t)) < q, which corre-
sponds to the time interval t0 ≤ t < te. From Eqs. (11), and
(35), the time derivative of Eq. (36) along the trajectory of the
closed-loop system can be obtained as:

V̇
(
e,W̃

)
= eTP

(
Are+B

[
W̃TΣ (xp)− ω (xp)

])
− tr

(
W̃T

[
Σ (xp) e

TPB+ (RΩa + κIq×q)W̃

− Na + κW∗])

= −1

2
eTQe− tr

(
W̃T (RΩa + κIq×q)W̃

)
− eTPBω (xp) + tr

(
W̃T [Na − κW∗]

)
(38)

Ωa (t) is only positive semidefinite while rank (Ωa (t)) < q.
Using Eq. (34), the upper bound for Eq. (38) can be obtained
as follows

V̇
(
e,W̃

)
≤ −

[
1

2
λmin (Q) ∥e∥ − c1

]
∥e∥

−
[
κ
∥∥∥W̃∥∥∥

F
− (c2 + c3)

] ∥∥∥W̃∥∥∥
F

= −1

2
λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− κ

(∥∥∥W̃∥∥∥
F
− c2 + c3

2κ

)2

+
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

≜ fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
(39)

where c1 = ∥PB∥ ω̄, c2 = κ ∥W∗∥F , and c3 =
ω̄
√
q

kL
. There-

fore, V̇ < 0, ∀t < te, if
(
e,W̃

)
is outside of the compact
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set Θ ≜
{(

e,W̃
)∣∣∣ fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
≥ 0
}

. The boundary

∂Θ is a level set on which fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
= 0, and it is

an ellipse centered at
(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
=
(

c1
λmin(Q) ,

(c2+c3)
2κ

)
.

The compact set Θ is inside of that boundary, including the
boundary itself. Let us define β as

β ≜ (1 + ζ) · max
(e,W̃)∈Θ

V
(
e,W̃

)
(40)

where 0 ≤ ζ ≪ 1 is an arbitrarily small number. The boundary
∂Ωβ =

{(
e,W̃

)∣∣∣ V (e,W̃)
= β

}
is an ellipse centered at(

∥e∥ ,
∥∥∥W̃∥∥∥

F

)
= (0, 0). Note that Θ ⊆ Ωβ . Also note that

V̇ < 0 on ∂Ωβ for ζ > 0, or except the point of contact
between ∂Ωβ and ∂Θ for ζ = 0. Therefore, the compact set
Ωβ is positive invariant. Moreover, the solution

(
e (t) ,W̃ (t)

)
that starts outside of Ωβ will ultimately enter the set Ωβ

within some finite time. Thus, the solution
(
e (t) ,W̃ (t)

)
is

uniformly ultimately bounded.
The analysis for the case of rank (Ωa (t)) = q, which

corresponds to t ≥ te, can be performed similarly. Using
Eqs. (11) and (35), the time derivative of Eq. (36) along
the trajectory of the closed-loop system can be obtained as
follows:

V̇
(
e,W̃

)
= eTP

(
Are+B

[
W̃TΣ (xp)− ω (xp)

])
− tr

(
W̃T

[
Σ (xp) e

TPB+RΩaW̃ −Na

])
= −1

2
eTQe−R tr

(
W̃TΩaW̃

)
− eTPBω (xp) + tr

(
W̃TNa

)
(41)

The upper bound for Eq. (41) can be obtained as follows

V̇
(
e,W̃

)
≤ −

[
1

2
λmin (Q) ∥e∥ − c1

]
∥e∥

−
[
Rλmin (Ωa (te))

∥∥∥W̃∥∥∥
F
− c3

] ∥∥∥W̃∥∥∥
F

= −1

2
λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

−Rλmin (Ωa (te))

(∥∥∥W̃∥∥∥
F
− c3

2Rλmin (Ωa (te))

)2

+
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

(42)

The rest of the proof to show the uniform ultimate bounded-
ness is identical to the case where t0 ≤ t < te.

The geometrical representation depicted in Fig. 1 summa-
rizes the proof.

Corollary 1 (Performance Guarantee for the Case of Unstruc-
tured Uncertainty). Let

α1 ≜
min {λmin (Q) , 2κ}

max
{
λmax (P) , λmax

(
Γw

−1
)} ,

α2 ≜
min {λmin (Q) , 2Rλmin (Ωa (te))}
max

{
λmax (P) , λmax

(
Γw

−1
)} ,

ψ1 ≜
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ
,

ψ2 ≜
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))
.

cx
e

F
W

2 cx

2 cy

cy

c
a

c
b

� �
� �

� �
� � � �� �
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min1
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22
2 32 3 1

min

22
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min
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Fig. 1. Geometrical Representation of the Stability Analysis

For some constant θ ∈ (0, 1), the bounds for the Lyapunov
function given by Eq. (36) can be derived as follows:

V (t) ≤



(
V (t0)−

ψ1

θ (1− θ)α1

)
exp (−θα1 (t− t0))

+
ψ1

θ (1− θ)α1

for t0 ≤ t ≤ te(
V (te)−

ψ2

θ (1− θ)α2

)
exp (−θα2 (t− te))

+
ψ2

θ (1− θ)α2

for t ≥ te

(43)

where

V (t0) ≤
1

2
λmax

(
Γw

−1
) ∥∥∥W̃ (t0)

∥∥∥
F

2

V (te) ≤
(
1

2
λmax

(
Γw

−1
) ∥∥∥W̃ (t0)

∥∥∥
F

2

− ψ1

θ (1− θ)α1

)
· exp (−θα1 (te − t0)) +

ψ1

θ (1− θ)α1

(44)

The bounds for ∥e (t)∥ and
∥∥∥W̃ (t)

∥∥∥
F

can be obtained by
substituting Eqs. (43)-(44) into

∥e (t)∥ ≤

√
2V (t)

λmin (P)∥∥∥W̃ (t)
∥∥∥
F
≤
√

2V (t)

λmin

(
Γw

−1
) (45)

Proof: Let V (t) := V
(
e (t) ,W̃ (t)

)
. Consider first the

time interval in which Ωa is rank deficient, namely t ∈ [t0, te].
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For some constant θ ∈ (0, 1), Eq. (39) can be rewritten using
Eq. (37) as:

V̇ (t) ≤ −θ
[
1

2
λmin (Q) ∥e∥2 + κ

∥∥∥W̃∥∥∥
F

2
]

− 1

2
(1− θ)λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− (1− θ)κ

(∥∥∥W̃∥∥∥
F
− c2 + c3

2κ

)2

+
1

1− θ

[
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

]
≤ −θ1

2
min {λmin (Q) , 2κ} ∥ξ∥2

+
1

1− θ

[
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

]
≤ −θα1V (t) +

ψ1

1− θ

(46)

Eq. (43) for t0 ≤ t ≤ te can be derived by applying the
comparison lemma to Eq. (46).

Next, consider the right-infinite time interval in which Ωa

is full rank, namely t ≥ te. For some constant θ ∈ (0, 1), Eq.
(42) can be rewritten using Eq. (37) as follows:

V̇ (t) ≤ −θ
[
1

2
λmin (Q) ∥e∥2 +Rλmin (Ωa (te))

∥∥∥W̃∥∥∥
F

2
]

− 1

2
(1− θ)λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− (1− θ)Rλmin (Ωa (te))

(∥∥∥W̃∥∥∥
F
− c3

2Rλmin (Ωa (te))

)2

+
1

1− θ

[
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

]
≤ −θ1

2
min {λmin (Q) , 2Rλmin (Ωa (te))} ∥ξ∥2

+
1

1− θ

[
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

]
≤ −θα2V (t) +

ψ2

1− θ

(47)

Applying the comparison lemma to Eq. (47) yields Eq. (43)
for t ≥ te.

IV. CONCLUSIONS

A composite model reference adaptive control algorithm is
extended to be capable of learning unstructured but matched
uncertainties without requiring excessive degree of excitation.
A selective update algorithm that performs intermittent hold-
ing is combined with the memory-based regressor extension
scheme to avoid rank deficiency of the information matrix
after being encountered with a finite amount of excitation.
The proposed scheme updates the adequate information ma-
trix only when its quality in terms a chosen metric can
be improved. The closed-loop stability analysis showed that
the extended algorithm guarantees exponentially convergent
uniform ultimate boundedness of the errors in the unstructured
uncertainty case.
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