ASTRA 2023: 17th Symposium on Advanced Space Technologies in Robotics and Automation, 18 - 20
October 2023, Leiden, Netherlands

A ROS-BASED SIMULATION AND CONTROL FRAMEWORK FOR IN-ORBIT
MULTI-ARM ROBOT ASSEMBLY OPERATIONS

Saksham Bhadani', Sairaj R Dillikar’, Omkar N Pradhan’®, Irene Cotrina de los Mozos*, Leonard Felicetti’,
Saurabh Upadhyay®, and Gilbert Tang’

'MSc Robotics, Cranfield University, Cranfield, United Kingdom, Email: saksham.bhadani.558@ gmail.com
2MSc Robotics, Cranfield University, Cranfield, United Kingdom, Email: sairaj.dillikar. 102 @ gmail.com
3MSc Robotics, Cranfield University, Cranfield, United Kingdom, Email: omkarnilesh.pradhan.867 @ gmail.com
*MSc Robotics, Cranfield University, Cranfield, United Kingdom, Email: i.cotrinadelosmozos.212 @ gmail.com
>School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, United Kingdom, Email:
Leonard. Felicetti@cranfield.ac.uk
8School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, United Kingdom, Email:
Saurabh.Upadhyay @ cranfield.ac.uk
7School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, United Kingdom, Email:
g.tang @cranfield.ac.uk

ABSTRACT

This paper develops a simulation and control framework
for a multi-arm robot performing in-orbit assembly. The
framework considers the robot locomotion on the assem-
bled structure, the assembly planning, and multi-arm con-
trol. An inchworm motion is mimicked using a sequen-
tial docking approach to achieve locomotion. An RRT*
based approach is implemented to complete the sequen-
tial assembly as well as the locomotion of MARIO across
the structure. A semi-centralised controller model is used
to control the robotic arms for these operations. The ar-
chitecture uses Movelt! libraries, Gazebo simulator and
Python to simulate the desired locomotion and assembly
tasks. The simulation results validate the viability of the
developed framework.

Key words: Robot Operating System (ROS); On-orbit
Assembly; Locomotion; Free-Floating nature; Multi-
Manipulator System; Multi-Armed Robot for In-Orbit
Operations; Spatial Reticular Structure (SRS); Modular
Truss Structure; Path planning.

1. INTRODUCTION

Large scale space infrastructures such as space stations
and deep-space telescopes have played a vital role in
building a fundamental understanding of our universe,
and have also been key in the development of space-
capable technologies. The size of these structures is cur-
rently limited by the fairing capacity and constraints of
launch vehicles. With the present state of technology, as-
sembly in space is the most viable way around these limi-
tations. Moreover, future space constructions will require

in-orbit robotic assembly operations, especially in ambi-
tious projects that require the building and maintenance
of very large structures such as space-based solar power
plants or cosmic telescopes. Multi-Manipulator Systems
(MMS) are preferred for space robotics due to their im-
proved object handling and performance compared to
single-arm robots. For example, [1] proposed the Multi-
arm Installation Robot for readying Orbital Replacement
Units (ORU) and Reflectors, or MIRROR for short. It
comprises a torso and three identical arms with Stan-
dard Interfaces (SI) as end-effectors for object manipu-
lation and remarkably for the robot’s locomotion. The
RAMST (Robotically Assembled Modular Space Tele-
scope) robot, for its part, attempts to include six arms.
Hence, it is called hexbot [2]. This increase in degrees of
freedom allows for the minimisation of sudden changes
in the displacement of the centre of mass and the reduc-
tion of transmitted loads into the structure.

Independently of the system morphology, SIs are key to
the interaction of the robot with its environment. Differ-
ent proposals to achieve primarily mechanical, data and
power connections can be found throughout the years.
In [3], the evolution of the docking mechanisms used
in spacecraft docking is explained. The Apollo vehicles
achieved docking using a probe and a cone-latching sys-
tem. This system is light in weight and hence is still used.
However, they require high contact velocity for docking.
NASA'’s docking, a peripheral capture system, is much
more versatile due to the system’s flexibility and hav-
ing six telescope-based actuation arms that facilitate the
shifting of the mating adapter. This comes with the cost
of additional weight but allows the soft capturing of the
system. Recent developments set the focus on creating
a standard uniform docking interface for European mis-
sions, as seen in [4], [5] [6].

When using multiple manipulators together, various ap-

Published by European Space Agency. This is the Author Accepted Manuscript issued with:
Creative Commons Attribution License (CC:BY 4.0). Please refer to any applicable publisher terms of use.

h.binning
Text Box
ASTRA 2023: 17th Symposium on Advanced Space Technologies in Robotics and Automation, 18 - 20 October 2023, Leiden, Netherlands

h.binning
Text Box
Published by European Space Agency. This is the Author Accepted Manuscript issued with:
Creative Commons Attribution License (CC:BY 4.0). Please refer to any applicable publisher terms of use.

proaches have been researched extensively. For this par-
ticular use case, control concepts from swarm robotics
were considered for adaptation. The primary approaches
being centralised control, (where all manipulators use a
single controller/driver), semi-centralised control (where
all manipulators have their independent controllers but at
the same time have another singular controller command-
ing them and acting as the main one), and de-centralised
control (where each manipulator has its own independent
controller). Since multiple independent arms are present,
decentralised control can be practical for space robots [7],
[8]. It allows the units to have separate power while com-
municating with the control systems. On the other hand,
a centralised strategy combines the control of all the ma-
nipulators onto a single computer, which can be compu-
tationally expensive depending on the use case. Never-
theless, it is still a feasible approach as it can ensure all
agents (robotic arms) are in sync [9]. Semi-centralised
control can also be adequate if a method similar to the
one followed in [10] is used, where the moving cost for
the tasks is minimised and only necessary movements are
made.

Depending on the mechanism and configuration used,
the control equation can result in different singularity
conditions, which often makes the control requirements
unique. The kinematics and dynamics of a robot with
multiple manipulators can be challenging since the cal-
culation changes depending on the end-effectors’ dock-
ing. If one manipulator is docked, its end-effector acts as
the base frame for the entire system, whereas when two
manipulators are docked onto a fixed structure, they form
a closed-loop kinematic chain, which has entirely differ-
ent kinematic and dynamic properties. In the closed-loop
kinematic chain, if a torque is applied at one of the joints,
it is transferred to all the others since all the links are
rigid. In order to avoid damaging the joint motors, all
of them must be actuated to nullify the force [11]. In
dynamic movement, where the motion between two ma-
nipulators is coordinated, approaches such as trajectory
coordination using kinematic constraint equations based
on the kinematic constraints between end-effectors can
be used, as explained in [12].

The ease of solving kinematic equations can change de-
pending on the arm configurations and link lengths, lead-
ing to the MMS design. The latter presents significant
challenges in space conditions due to the harsh and un-
certain environment, the long communication delays, and
the limited availability of resources. The design should
consider the specific mission requirements, such as the
type of tasks to be performed, the mission’s duration, and
the available resources. When it comes to implementing
and testing autonomous robots under the extreme con-
ditions of outer space, a lot of critical capabilities, mis-
sion planning, etc. need to be designed and validated.
Therefore, simulation can play a vital role in the starting
phases. In addition, these simulation tools can flag prob-
lems in the early stages of projects hence they can save
considerable research and development time and costs.

Most cutting-edge research on robotics uses ROS as a

basis due to its high reliability, compatibility, and open-
source libraries. One of the prominent use cases of ROS
in space robotics can be observed in Robonaut 2 [13],
developed by NASA and General Motors. Other NASA
missions, such as Astrobee [13], used ROS too. Gazebo
is another powerful open-source tool: it supports the sim-
ulation of mobile robots, as presented in [14], manipu-
lator tasks as discussed in [15], and even aerial robotic
simulations, as shown in [16]. Efforts have been made to
adopt ROS and Gazebo framework into a unified library
for space robotics as discussed in [17], but further devel-
opment on control is needed for a better adaptation to-
wards creating a framework capable of supporting multi-
manipulator systems for complex tasks.

This paper presents the results of an investigation per-
formed by a team of students at Cranfield University on
the adaptability of the Robotic Operating System (ROS)
and Gazebo environment to perform in-orbit assembly
simulations. Taking reference from under-development
concepts, the simulation scenario considers the challenge
of the autonomous assembly of a modular truss struc-
ture using a Multi-Arm Robot for In-orbit Operations
(MARIO) in free-floating conditions, the main operations
being locomotion and assembly. The control interface
made use of open-source kinematic solution algorithms
and trajectory planning incorporated through Movelt! li-
braries.

2. SCENARIO DEFINITION

This section aims to explain the presented work devel-
oped at fundamental and conceptual levels. The sys-
tem design starts with the definition of parameters and
constraints around the dimensions, functional and opera-
tional requirements and control requirements. Consider-
ing the set of conditions based on the capability to loco-
mote and assemble, a planar delta configuration i.e. all
of the manipulator’s base frames being in the same plane
in a 120-degree equidistant placement was chosen. This
configuration allows for good independence as well as a
collaborative work envelope for manipulators, which is
essential for the desired use case.

2.1. MARIO’s Configuration

The configuration of the robotic arm was derived based
on an industrial collaborative articulated robotic arm Ki-
nova Gen 3 which is equipped with six revolute joints
connected serially. The frame assignments for the indi-
vidual joints were realised according to the classical DH
convention. Figure 1 represents the frames of the final as-
sembly of the MARIO. Figure 2a gives a graphical repre-
sentation visualising all three robotic arms’ frames along
with the SI.

The DH parameter, as illustrated in Table 1, was tabulated
for the first robot arm, and for the subsequent arms, only

S
=t

1250

1000

Figure 1: Representation of Joint Frames for MARIO
with three Kinova Gen 3 manipulators

the base frame is required to rotate by +120° as shown
in Table 2 and Table 3, and the frames for the rest of the
joints are same.

Table 1: DH Parameter table for Kinova Gen 3 manipu-
lator (Arm-1 of MARIO)

i" Joint o;_q a;_1 d; 0;
Oa 0 0 0 0
1 0 0 604.16mm 01
2 90° 0 0 02
3 0 410mm 0 03 + 90°
4 90° 0 0 04 + 90°
5 90° 0 320mm 05 + 90°
6 90° 0 0 0s + 180°
7 0 0 80mm 0

Table 2: DH Parameter table for Base Joint (Arm-2 of
MARIO)

i" Joint o;_1 a;j—1 d; 0;
0b 120° 0 0 0

Hexagonal Spatial Reticular Structures (SRSs) are the
modules used to make up said truss structure that can be
seen in 2b, allowing for high strength and ability of tessel-
lation. A custom-designed SI is used on the robot’s end-
effectors and the SRSs to enable docking. MARIO uses
these SIs for assembling and locomoting on the structure.
The corresponding models can be seen in Figure 2.

In a typical operation, two robotic arms are used for lo-
comotion following an inchworm gait strategy, while the
third arm is used to carry the SRSs to assemble the space
structure. The overall scenario also considers a primary
hub, which hosts the SRS modules that MARIO can col-

Table 3: DH Parameter table for Base Joint (Arm-3 of
MARIO)

i" Joint o;_q a;_1 d; 0;
Oc —120° 0 0 0

lect, transport and place to build the structure, as shown
in Figure 2c.

2.2. Concept of Operations (CONOPS)

The mission takes place as follows. The hub, containing
MARIO and the SRSs, is launched into space. Once in
orbit, MARIO emerges and starts its regular operation.
This begins by fetching the first SRS from the then-open
top of the hub with one of the arms. Using the remaining
two robotic arms, MARIO climbs down the front wall
by means of the docking points placed for this purpose.
Now, at the bottom, the robot assembles the module at the
first assembly position: the central or “zeroth” module
located right below the storage area.

The entire assembly takes place in rings around the cen-
tral hub. Afterwards, MARIO disengages and climbs
back up to pick up the next SRS module. This cycle, rep-
resented in Figure 3, is repeated until the structure’s com-
pletion. The difference between iterations is the assembly
point, which depends on the SRS currently being placed
and is given by a coverage planning algorithm discussed
in Section 2.4. To get to that desired location, MARIO
crawls on the previously assembled modules using its two
manipulators: their end-effector SIs are docked with the
upper SIs of the assembled SRSs. The specific sequence
would be obtained by the path planning algorithm.

2.3. ROS-Gazebo simulation & control architecture

The simulation has been developed on ROS1-Noetic, and
Gazebo used to visualise them. The robot configuration
packages are generated through Movelt! Setup Assistant
using the MARIO URDF! packages. Python scripts com-
prising functions responsible for the sequence of tasks
to be completed are used for performing the mission. A
Gazebo plugin named ROS-Link-Attacher [18] is utilised
to simulate the docking of the robot arms with the SRSs
during the locomotion and assembly tasks. A tree search
algorithm, based on the RRT*, is proposed to generate
an optimised path through the already-built structure to
locate and assemble new SRSs.

The control strategy of MARIO is inspired by decen-
tralised approaches in swarm robotics, wherein its three
arms are treated as individual robots. For the presented
Gazebo simulation results, kinematic solvers available in
Movelt! have been used, along with predefined poses to
follow a set of known functioning robot configurations.

'URDF - Unified Robotic Description Format

. = Standard Interface
& |

MARIOQ's Torso

AF i
e

(a) Multi-Arm Robot for In-Orbit Operations
(MARIO) (SRS)

(b) Spatial Reticular Structure

Standard Interface

(c) Central Hub Structure with the SRSs being
assembled

Figure 2: Graphical representations of MARIO, SRS, and Central Hub

Figure 3: Concept of Operations

But, for achieving full autonomy, the approach with sep-
arate solvers for each manipulator would be more suited.

This approach obtains the accurate location of the torso
using forward kinematics in combination with the in-
version of the kinematic chain for a single manipulator
which is ’docked’ to the space structure. The second
arm’s joint values can then be calculated through inverse
kinematics based on the location of the torso. This allows
for a relatively simpler control since only a few viable so-
lutions are generated through calculations. In the case of
two arms being treated as a single kinematic chain, the
combined DOF (degrees of freedom) of the two manipu-
lators results in a kinematic chain of 12 DOF. When kine-
matics for this configuration is solved, many solutions are
generated, creating an additional requirement for a cost-
function-based optimization algorithm. The robustness
of this strategy has been tested in simulations where the
main structure is in free-floating conditions.

2.3.1. Control Architecture for ROS-based Simulation

The URDF packages were generated from the detailed
design of the systems. The initial step was to set up the
configuration files required to run the simulation. These
packages were MARIO (the 3-arm robot system), and
the SRS module (spawning of individual SRS). The rele-
vant ROS parameters are loaded into the ROS server from
these URDF packages and the YAML (robot controller)

as shown in Figure 4.

The joint state controller and joint trajectory con-
troller were utilised within the controller configura-
tion files (YAML) of the URDF package. The
Jjoint_state_controller is responsible for reading the joint
state of all the existing joints and is of topic type: sen-
sor_msgs/JointState [19]. Additionally, one of the essen-
tial controllers is JointTrajectoryController under posi-
tion_controller, which receives a position input and gen-
erates an entire trajectory. On the other hand, within
Movelt! ROS controllers are also defined as individ-
ual arm groups, and the controller type is used as Fol-
lowJointTrajectory.

A Movelt! library was used to generate the movegroup
configuration packages that contain the motion planning
and other framework files. One of the most significant
parameters was gravity, which was kept at zero for the
X, ¥, & z directions with respect to the world frame.
The simulation was performed using Python scripts, and
it is comprised of two parts: locomotion and assembly
of a single SRS module. Multiple functions are defined
within the scripts for attaching, crawling and spawning.
The coupling of two bodies requires the plugin of type
ros_link_attacher.so, which was utilised from the ros link
attacher package. This plugin is introduced within a
world file, as the Gazebo would load all the necessary
plugins required for the simulation.

2.3.2. Autonomous Control Architecture

During normal use of a manipulator, with the base frame
location known and the pose (position and orientation) of
the target known, inverse kinematics can be used for cal-
culating the required joint values as shown in [20]. These
joint values can then be supplied to the joints to achieve
the desired manipulator configuration.

For solving forward kinematics, the joint angles are re-
quired, and the result is the position of the TCP (Tool
Centre Point) of the manipulator. Using the same DH pa-

URDF Packages Configuration

(.xacro)
YAML
Central Hub _ [
Package 1
0 Robot Controller | |
; Configuration ||
I
Mario? Package !
S
!
!
!
SRS Modules — =
Package Ip=c=o=s= 5
[f |
[
[—
Y VY ¥
main_execution_ P Launch files
sequence.py python (Mainlaunch) [
functions

—— Joint State Controller |«—

Controller Manager

[| JointTrajectoryController

position_controllers/

Gazebo Simulation
_ N J World

Model GAZEBO
<

Attach function
Detach function

Spawn SRS function -

) T TeE——
__main__

Plugins

ros_controller.so

Physics Parameter

Assembly Planning
-

Gravity: <0 0 0>

ros_link_attacher.so

Figure 4: ROS Simulation Architecture

rameters mentioned in Table 1, 2, 3, the exact location of
the manipulator final frame can be calculated if the posi-
tion of the other extremity is known, and the joint angles
can be acquired.

ROS, as we know, utilises nodes, topics and services con-
nected to each other as the skeletal functional architec-
ture. In case of the simulation, ROS controllers are be-
ing used for controlling individual joints. Using scripts
and proprietary commands, the values of the joint an-
gles can be modified/changed, which in turn is reflected
in Gazebo. From Gazebo simulation, the instantaneous
state of the joints can be determined using the joint state
service.

farm_01_joint_position_contratericommand

farm_02_joint_position_controlerlcommand
farm_03,joint_position_controlerstate

farm_ 03 joint_position_controlerlcommand

Arm-1 Inverse. Arm-2 Inverse Arm-3 Inverse.
Kinematic solver Kinematic solver Kinematic solver
o Input TP pose
ot i e Oupu st e

=

Am-1 (Tip to base) Arm-2 (Tip to base) Arm-3 (Base to tip)
Forward Kinematic Forward Kinematic Forward Kinematic
solver solver sol
oot o [r—— ‘ E
Ouipu e ou o

S

Figure 5: Architecture for Automation of MARIO

Combining the inverse and forward kinematics as in Fig-
ure 5, MARIO can calculate its position and control the
other manipulators based on it. An essential requirement
to implement this method of operation is the inversion of

frames for the manipulators. As explained in Figure 6, the
base frame and end-effector frames would be swapped
when the locomotion is done for either end. Consider-
ing the movement of one of the arms while the other is
docked, the docked manipulator’s end effector frame is
treated as a base frame, the position of the torso of the
robot is calculated using forward kinematics, and then the
inverse kinematics for manipulation of the other arm can
be calculated considering the torso as the base frame.

ered from Mario Torso to the
ocking inte f thy

Inverse is to be

arm2 to the Mario Torst

Figure 6: Concept of inversion of frame assignment

2.4. Path Planning and locomotion

To effectively navigate the MARIO to the destined point
of assembly, an RRT* based algorithm was developed
and tested on MATLAB to obtain the waypoints for each
SRS module with respect to the central hub. The algo-
rithm starts by generating paths based on all the available
SI locations on the structure as well as its dimensions.
Once this is done, all the generated paths are taken into
consideration, and based on the *weight’ of each element,

the "cost’ for each route is derived. Considering the fact
that the *cost function’ is nothing but the assigned weight
multiplied by the number of elements, the path with the
least cost is chosen as it represents the most efficient vi-
able path. When the complete structure is assembled, the
location of all the assembly points can be obtained rela-
tive to the global origin. Considering the number of con-
centric rings that need to be assembled, all the assembly
points are collected and then sorted according to the order
that completes individual rings at a time with the inward-
out coverage.

Map Generated for 20th tille

[] L]
L L]
= L]
fa -
R SN
%
) - L
- ’ %
[, L1
= b LA " L]
] #
*]
., ;.
V=== ;
L) - L
L k]
=
Keaxes

Figure 7: Path generated for 20" SRS using RRT* based
algorithm computed on MATLAB

The problem that needs to be considered is that the points
available for MARIO to traverse depend on the number
of SRS modules already assembled in the previous steps,
as they provide the physical points for intermediate dock-
ing to locomote on. The algorithm also accounts for the
same and creates a new map for every iteration of avail-
able points from the already assembled SRS modules and
thus provides the next point of assembly.

In addition, the shortest path from the 0" (zeroth) dock-
ing module to the assembly point is maintained, decreas-
ing the number of steps to carry out for the assembly and
thus reducing the overall cost. An example of a path gen-
erated for 20" SRS is shown in Figure 7. The Numerical
results from RRT* have been shown in Table 4 consist-
ing of values generated to traverse to and from the desired
SRS. These values are represented in a cartesian coordi-
nate system for both Arm-1 and Arm-2 demonstrating a
sensible navigation path.

3. SIMULATION AND RESULTS

The locomotion cycle consists of predefined robot poses
for two arms (mainly to perform the inchworm mecha-
nism); these poses are defined as lift pose and stand pose,
so one single locomotion cycle would incorporate a se-
quence of Arm-1 and Arm-2 with their respective poses,
along with the docking function. The predefined poses

Table 4: Sequence of steps generated for MARIO’s Arm-
1 & Arm-2 up until the 20" SRS in Cartesian Coordinate
System

To Traverse Forward

Arm-1 Arm-2
X Y Z X Y Z
0.45 6321.19 1021.1 0.45 5120.19 1021.1
0.45 5120.19 1021.1 0.45 3920.19 1021.1
0.45 3920.19 1021.1 0.45 2720.19 1021.1
0.45 2720.19 1021.1 0.45 1520.19 1021.1
0.45 1520.19 1021.1 0 316.1 1170
0 316.1 1170 -1013.25 316.1 1755
-1013.25 316.1 1755 -1013.31 316.1 2925
To Traverse Backwards
Arm-1 Arm-2
X Y zZ X Y Z
0 316.1 1170 -1013.25 316.1 1755
0.45 1520.19 1021.1 0 316.1 1170
0.45 2720.19 1021.1 0.45 1520.19 1021.1
0.45 3920.19 1021.1 0.45 2720.19 1021.1
0.45 5120.19 1021.1 0.45 3920.19 1021.1
0.45 6321.19 1021.1 0.45 5120.19 1021.1

are then called with the help of the move group comman-
der service and are executed by the plan group method.

The assembly planning method is similar to the locomo-
tion cycle, but the robot poses are defined for the arms
that involve the docking of the spawned SRS module (or
N® module) with the previously assembled one. At the
end of each assembling cycle, an SRS is spawned at a
specified location in the SDF? file of the SRS modules’
URDF package. The spawning is usually triggered by
calling the SpawnModel service type associated with the
spawn_sdf-model service.

(c) Step-3

(d) Step-4

Figure 8: i SRS Assembly Steps

To further analyse the sequencing of the robotic arms and
the movement of MARIO the output data and various
frames were observed. The relative position of the base
frame of MARIO with respect to the world frame was
plotted. Figure 9 shows that the robotic system is able to
locomote using the control architecture hence validating
the working of the same.

Furthermore, the position of the end-effector (the SI at-
tached to the manipulators) during locomotion, as well
as the joint values for each respective joint were plot-

2SDF - Simulation Description Format

0.2 p—— -

—_— "

T T T T
01:00:00.0 01:00:20.0 01:00:40.0 01:01:00.0

T T
01:01:20.0 01:01:40.0 01:02:00.0

Figure 9: Base frame of the MARIO w.r.t world frame (Distance as a function of Simulation Time)

1
SRRV W W U
o — n — — —
WA
-0.5§ u U u U
— T r T r T T — T T T
01:00:00.0 01:00:20.0 01:00:40.0 01:01:00.0 01:01:20.0 01:01:40.0 01:02:00.0

(a) Arm-1 End-Effector Position w.r.t MARIO’s Base Frame

2
1.5
1
0.5

i

0=

T T T T T T T T T T T T T
01:00:00.0 01:00:20.0 01:00:40.0 01:01:00.0 01:01:20.0 01:01:40.0 01:02:00.0

(c) Arm-2 End-Effector Position w.r.t MARIO’s Base Frame

——————— e
01:00:00.0 01:00:20.0 01:00:40.0 01:01:00.0 01:01:20.0 01:01:40.0 01:02:00.0
(b) Arm-1 Joint Values

1
0.5
L]

0.5 =

-1

f T T T T T T T T T T
01:00:00.0 01:00:20.0 01:00:40.0 01:01:00.0 01:01:20.0 01:01:40.0 01:02:00.0

(d) Arm-2 Joint Values

Figure 10: Position and Joint Values of Arm-1 and Arm-2 (Distance/Joint angles as a function of Simulation Time)

ted using the PlotJuggler®. The simulation results can be
conceived through the obtained plots as depicted in Fig-
ure 10. In addition to this, the simulation video* demon-
strates the operations of locomotion and assembly.

3.1. Technical Specifications

The hardware utilised was a computer system with an
Intel(R) Core™ i7-9750H CPU @ 2.60GHz processor
paired with 16 GB RAM and an NVIDIA GeForce GTX
1050 graphics card on Ubuntu 2020.04 platform. Also,
the project was developed on Python 3.7 and the sim-
ulation was validated on ROS Noetic Ninjemys 8 with
Gazebo v11.11.

4. CONCLUSIONS AND FUTURE WORK

The open-source nature of ROS and the community sup-
port makes it relatively easy to develop and integrate
complex robotic systems onto it. This paper presented a
viable ROS-based framework, which was developed for
controlling the proposed multi-manipulator system. The
prerequisites and parallel development have also been ex-
plained for the entire architecture. A fully autonomous
operation of the system is explored further through a sep-
arate strategy demonstrating the ease of adaptation of the
approach to fit the requirements. For the path planning,
the outputs from an RRT* based algorithm have also
been discussed. Finally, using all the aforementioned el-
ements, the simulation results from Gazebo are presented
proving the feasibility of the framework. The work car-

3PlotJuggler - https:/plotjuggler.io/
4Simulation Video - https://youtu.be/AsthinugMb4

ried out for the project can be accessed through the Space
Robotics Lab Cranfield University repository at [21].

For a more realistic simulation, the gravity gradient act-
ing upon the orbiting bodies would have to be taken into
account. This can be integrated through the On-Orbit-
ROS package [22]. On another note, Visual Servoing
(VS) could be added to enhance the approach manoeu-
vre by allowing the robotic arm to locate the SI with
which to couple. Moreover, a more sophisticated plug-
in that demonstrates the actual mechanical latching could
be developed. Finally, with a view to reduce the assembly
time, the work could be carried out by multiple MARIOs
with coordination among them and simulated by defin-
ing each MARIO under different namespaces in the ROS
architecture.

Cranfield Space Robotics Laboratory is carrying out fur-
ther development for MARIO and other space robotic
systems, both on control software and physical hardware,
with the aim to establish a potential future research in the
Space Robotics field.

REFERENCES

1. J Estremera, J Garcia, P Romeo, A Rodriguez, I Col-
menarejo, M Lucia, A Rusconi, G Sangiovanni,
S Cordasco, D Antonucci, A Margan, L Baccielliere,
N G Tsagarakis, J Vifals, G Guerra, and L Gerdes.
Re-locatable manipulator for on-orbit assembly and
servicing.

2. Nicolas N Lee, Joel W Burdick, Paul Backes, Ser-
gio Pellegrino, Kristina Hogstrom, Christine Fuller,
Brett Kennedy, Junggon Kim, Rudranarayan Mukher-
jee, Carl Seubert, and Yen-Hung Wu. Architecture for
in-space robotic assembly of a modular space tele-

10.

11.

12.

scope. https://doi.org/10.1117/1.JATIS.2.4.041207,
2:041207, 07 2016.

Heather Hinkel, John J Zipay, Matthew Strube, and
Scott Cryan. Technology development of auto-
mated rendezvous and docking/capture sensors and
docking mechanism for the asteroid redirect crewed

mission. IEEE Aerospace Conference Proceedings,
2016-June, 06 2016.

Martin Kortmann, Kai-Uwe Schroder, Andreas
Dueck, Christopher Zeis, Tobias Meinert, and
Kai-Uwe Schroeder. Design and qualification
of a multifunctional interface for modular satel-
lite systems homer-highly redundant modular
robotic systems for space applications view
project design and qualification of a multifunc-
tional interface for modular satellite systems.
https://www.researchgate.net/publication/3283 14664,
pages 1-5, 2018.

Stefan Scherzinger, Jakob Weinland, Robert
Wilbrandt, Pascal Becker, Arne Roennau, and
Riidiger Dillmann. A walking space robot
for on-orbit satellite servicing: The recobot.
http://arxiv.org/abs/2203.10217, 03 2022.

Juan Sanchez, Garcia Casarrubios, Pierre Letier,
Torsten Siedel, Mathieu Deremetz, Edgars
Pavlovskis, Benoit Lietaer, Korbinian Notten-
steiner, Maximo A Roa, Juan Sanchez, Javier
Luis, Corella Romero, and Jeremi Gancet. Hot-
dock: Design and validation of a new generation
of standard robotic interface for on-orbit servicing.
https://www.researchgate.net/publication/344871962.

. Yassine Bouteraa, Jawhar Ghommam, Gérard Pois-

son, and Nabil Derbel. Distributed synchronization
control to trajectory tracking of multiple robot ma-
nipulators. Journal of Robotics, 2011:1-10, 2011.

A Prévot, R Gourdeau, F Aghili, and J C Piedboeuf.
Multi-manipulator system cooperation in the perspec-
tive of dextre. 2004.

Behrokh Khoshnevis and George Bekey. Central-
ized sensing and control of multiple mobile robots.
Computers & Industrial Engineering, 35:503-506,
12 1998.

Shuo Wan, Jiaxun Lu, and Pingyi Fan. Semi-
centralized control for multi robot formation.
2017 2nd International Conference on Robotics
and Automation Engineering, ICRAE 2017, 2017-
December:31-36, 02 2018.

Zeyuan Sun, Hong Yang, Que Dong, Yang Mo,
Hui Li, and Zhihong Jiang. Autonomous assembly
method of 3-arm robot to fix the multipin and hole
load plate on a space station. Space: Science & Tech-
nology, 2021, 01 2021.

Chunjian Su, Shuai Zhang, Shumei Lou, Rui
Wang, Gaohua Cao, Longyun Yang, and Qing
Wang. Trajectory coordination for a cooperative

15.

16.

18.

20.

22.

. Sachin Chitta,

multi-manipulator system and dynamic simulation er-
ror analysis. Robotics and Autonomous Systems,
131:103588, 09 2020.

. M A Diftler, J S Mehling, M E Abdallah, N A Rad-

ford, L B Bridgwater, A M Sanders, R S Askew, DM
Linn, J D Yamokoski, F A Permenter, B K Hargrave,
R Platt, R T Savely, and R O Ambrose. Robonaut
2 - the first humanoid robot in space. Proceedings -
IEEE International Conference on Robotics and Au-
tomation, pages 2178-2183, 2011.

. Kenta Takaya, Toshinori Asai, Valeri Kroumov, and

Florentin Smarandache. Simulation environment for
mobile robots testing using ros and gazebo. 2016 20th
International Conference on System Theory, Control
and Computing, ICSTCC 2016 - Joint Conference of
SINTES 20, SACCS 16, SIMSIS 20 - Proceedings,
pages 96-101, 12 2016.

Wei Qian, Zeyang Xia, Jing Xiong, Yangzhou Gan,
Yangchao Guo, Shaokui Weng, Hao Deng, Ying Hu,
and Jianwei Zhang. Manipulation task simulation us-
ing ros and gazebo. 2014 IEEE International Con-
ference on Robotics and Biomimetics, IEEE ROBIO
2014, pages 2594-2598, 04 2014.

Carlos Sampedro, Alejandro Rodriguez-Ramos,
Bavle Hriday, Adrian Carrio, Paloma, and Pascual
Campoy. A fully-autonomous aerial robot for search
and rescue applications in indoor environments using
learning-based techniques. Journal of Intelligent and
Robotic Systems: Theory and Applications, 95:601—
627, 08 2019.

. JL Ramoén, J Pomares, and L Felicetti. A ros/gazebo-

based framework for simulation and control of on-
orbit robotic systems. 2022.

PAL Gazebo ros link
attacher. https://github.com/pal-
robotics/gazebo_ros_link_attacher.

Robotics.

Eitan Marder-Eppstein, Wim
Meeussen, Vijay Pradeep, Adolfo Rodriguez
Tsouroukdissian, Jonathan Bohren, David Coleman,
Bence Magyar, Gennaro Raiola, Mathias Liidtke, and
Enrique Fernandez Perdomo. ros_control: A generic
and simple control framework for ros. The Journal
of Open Source Software, 2:456, 12 2017.

John J. Craig. Introduction to Robotics: Mechanics
and Control. Addison-Wesley Longman Publishing
Co., Inc., USA, 2nd edition, 1989.

. Saksham Bhadani, Sairaj R Dillikar, Omkar N

Pradhan, Irene Cotrina de los Mozos, Leonard
Felicetti, Saurabh Upadhyay, and Gilbert Tang.
Space-robotics-lab-cranfield-university/gdp-rbt-

2023-group-6. https://github.com/Space-Robotics-
Lab-Cranfield-University/GDP-RBT-2023-Group-6.

J L Ramén, J Pomares, and L Felicetti. Onor-
bitros/simulation: Ros framework for on orbiting
space robots simulations. July 2022. Accessed on
11/05/2023.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-10-20

A ROS-based simulation and control
framework for in-orbit multi-arm robot
assembly operations

Bhadani, Saksham

European Space Agency (ESA)

Bhadani S, Dillikar SR, Pradhan ON, et al., (2023) A ROS-based simulation and control
framework for in-orbit multi-arm robot assembly operations. Presented at: ASTRA 2023: 17th
Symposium on Advanced Space Technologies in Robotics and Automation, 18-20 October
2023, Leiden, The Netherlands

https://dspace.lib.cranfield.ac.uk/handle/1826/20622

Downloaded from Cranfield Library Services E-Repository

