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Abstract—Trajectory management is a critical undertaking in
urban air mobility (UAM) to ensure safe, secure, and efficient
operations. Cooperative targets have the capability to report their
information while managing non-cooperative targets presents a
challenge in the UAM operational environment (UOE). Con-
sequently, ground-based non-cooperative surveillance assumes
a vital role in monitoring anomalies. Given the difficulties
associated with implementing centralized management in a large
metropolitan area, this study proposes a distributed management
architecture that leverages ground-based edge intelligence to
enhance resilience in performing relevant tasks. It demonstrates
that employing a developed edge computing system yields supe-
rior efficiency for heterogeneous sensors and their corresponding
algorithms, such as detection, fusion, and tactical conflict man-
agement, compared to typical cloud servers. Furthermore, the
proposed architecture incorporates an adaptive load balancing
scheme, which monitors the real-time tasks and balances tasks
among multiple edge devices to enhance the efficient resource
management of the edge intelligence system. Ultimately, the
distributed system offers energy-saving benefits and guarantees
performance, making it suitable for providing services to diverse
stakeholders involved in UAM.

Index Terms—Distributed trajectory management, edge intel-
ligence, ground-based surveillance, sensor fusion

I. INTRODUCTION

Urban air mobility (UAM) facilitates rapid passenger and

cargo transit services, and its high level of automation and

rapid development necessitates the deployment of advanced

techniques, such as intelligent resource management, efficient

trajectory management, smart communication, navigation, and

surveillance (CNS), etc., to ensure safety, security, and effi-

ciency. Managing all flights, from the strategic phase to the

tactical phase, is crucial in achieving these goals [1]. Potential

conflicts in submitted plans are analyzed and resolved at

the strategic stage, while tactical conflicts are predicted and

resolved based on real-time states obtained via cooperative

or non-cooperative surveillance. Furthermore, monitoring all

flights, including both cooperative and non-cooperative targets,

is essential during the tactical stage.

This research was partially supported by grants from the Funds of China
Scholarship Council (202008420248).

To acquire tactical information, UAM vehicles or operators

presently report their states cooperatively, owing to the low

operation density and complexity during the initial stage of

UAM Maturity Level (UML) [2]. However, high UMLs in

the future and the detection of anomaly events, such as the

intrusion of unintended objects, necessitate the utilization of

non-cooperative surveillance techniques, especially in critical

regions, e.g., the vicinity of a vertiport. To enhance tactical

management capability, the development and maturation of a

smart system are crucial. Numerous studies focus on onboard

intelligence, utilizing optical cameras, radar, RF detection,

etc., to enable airborne detection and avoidance [3] [4].

However, one concern is that airborne equipment failure can

pose a safety issue for other airspace users. Consequently, the

adoption of ground-based techniques becomes imperative in

establishing a robust surveillance system. Furthermore, the

ground system can share monitoring information within a

wide-range region with all stakeholders, providing an addi-

tional advantage.

A ground surveillance system for intelligent computing

typically includes various components and functionalities to

gather, process, and analyze data for intelligence purposes,

physically including sensors and computing techniques. There

are several computing techniques, such as general computing,

intelligent computing, high-performance computing, and edge

computing, of which the definition can be given as follows:

• General Computing refers to the broad field of computer

science and technology that encompasses a wide range

of applications and systems. Platforms such as desktop

computers, laptops, mobile devices, and embedded sys-

tems provide general-purpose computing capabilities for

various applications.

• Intelligent Computing focuses on enhancing computing

systems with artificial intelligence (AI) techniques. Ex-

amples include neural network accelerators like NVIDIA

graphics processing units (GPUs), cloud AI services, and

robotics platforms.

• High-Performance Computing (HPC) specializes in exe-

cuting complex computational tasks efficiently, utilizing
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TABLE I
PERFORMANCE METRICS COMPARISON

Computing Paradigm
Processing Power Latency Scalability Energy Efficiency Reliability Security Cost

Low High

General Computing ✓ Low to High Moderate Variable Moderate Moderate Variable

Intelligent Computing ✓ Low to High Moderate Low to Moderate Moderate Moderate Variable

High-Performance Computing ✓ Low High Low High High Very High

Edge Computing ✓ Low High High High High Moderate

supercomputers, cluster computing, and grid computing.

• Edge Computing brings computation and data storage

closer to the edge devices, such as NVIDIA Jetson, and

Raspberry Pi, etc.

The TABLE I provides a comparison of different computing

paradigms based on various performance and price factors. We

can find that edge computing addresses the need for real-time

processing, low latency, and privacy in edge devices and IoT

applications. And it prioritizes latency, scalability, and energy

efficiency compared with other categories.

Some works investigated the application of edge computing

to various tasks. For example, edge computing was utilized for

radar-camera fusion [5], in which camera and radar informa-

tion were pre-processed on separate edge devices and made an

association later. Tracking-level fusion with multiple sensors,

e.g. camera, lidar, and radar, was also able to be performed

with the edge system [6]. Other requirements like real-time

fault diagnosis could also be achieved with the edge devices

for the application of rotating machines with multi-sensor data

[7]. In this way, edge computing offers several advantages

when applied to various tasks, e.g. sensor fusion and trajectory

management. By bringing computational capabilities closer to

the data source, edge computing enables real-time processing

and analysis at the edge of the network, offering distinct

benefits.

As a result, this research proposes and experimentally

evaluates a general architecture based on distributed edge

computing to explore innovative techniques for managing

UAM services, e.g., sensor fusion for trajectory prediction

with ground non-cooperative surveillance, as well as trajectory

management.

The contribution of this paper can be summarized as fol-

lows:

1) The architecture of managing UAM services with dis-

tributed edge intelligence is proposed to effectively man-

age UAM services. This architecture takes advantage

of the capabilities of edge devices to perform various

distributed operational tasks.

2) The adaptive load balancing scheme is integrated into the

intelligence system to balance the resource dynamically,

considering the real-time status of the device.

3) Edge-level multi-sensor fusion and subsequent tasks, such

as tactical conflict detection, are successfully deployed on

the edge computing system. Notably, each deployed ap-

proach achieves similar accuracy levels while maintaining

acceptable inference times and remaining competitive in

terms of performance metrics, such as CPU/GPU usage

and GPU temperature, compared to cloud computing for

UAM services.

Overall, these contributions enhance the effectiveness and

efficiency of UAM services by leveraging distributed edge

intelligence, adaptive load balancing, and edge-level multi-

sensor fusion.

II. METHODOLOGY

In this section, the detailed architecture and workflow of

edge computing for UAM operation management are demon-

strated. And the workload balancing scheme for the edge

system is also described to manage the system resources.

A. Architecture of the Edge Intelligence

The detailed configuration is illustrated in Fig.1, which

demonstrates the construction of a ground infrastructure in-

corporating heterogeneous sensors. Data streams from sensors

of ground infrastructure are processed by the distributed edge

computing platform. Especially, edge computing can reduce

the transmitting and workload for the cloud server side,

while simultaneously improving the system’s robustness. Sub-

sequently, analyzed flight states on the edge are forwarded to

stakeholders, e.g. the provider of services to UAM (PSU), UAS

Service Suppliers (USS), and Vertiport Automation System

(VAS), for various applications such as intruder tracking,

trajectory deconfliction, etc. Particularly, the designed edge

system is modular and distributed, which can enable scalability

as well as automation.

Based on the given structure, the architecture can be di-

vided into two stages: edge-level multi-sensor fusion and

subsequent-task accomplishment, and are described as follows:

1) Edge-level multi-sensor fusion. The disparate data from

heterogeneous sensors, e.g., camera, lidar, and radar,

are gathered by the edge device, is dynamically fused

with developed camera-lidar and camera-radar fusion

techniques for resilient multi-object detection, tracking,

and prediction under various environmental conditions.



Real-time Operation Perception

Modular

Data Privacy
 Edge-Cloud 

Collaboration Automation

Distributed Edge Computing 

Low-altitude airspace/corridor management Aircraft and ground vehicle surface tracking

Conflict prediction and resolution

Related coordination and suggestion services

    Ground 

Infrastructure
Vehicle Avionics

Provider of Services to UAM (PSU) UAS Service Suppliers (USS) Vertiport Automation System (VAS)

Landing pad / parking spot availability

Non-cooperative aircraft/sUAS intruders/birds monitor

Flight States, Risk

UAM CNS

operations,constraints.modifications, intents

status, negotiations, reservations, availability, flight plan request

Fig. 1. The architecture of managing UAM services with edge intelligence.

The forecasted insights will be critical for stakeholders’

follow-on activities.

2) Subsequent-task accomplishment. The predicted informa-

tion is utilized across a myriad of scenarios and applica-

tions. In instances where broad-airspace surveillance is

necessary, the Provider of Services to Urban Air Mo-

bility (UAM) shall avail themselves of this information

for managing low-altitude airspace, performing tactical

conflict resolution, and providing additional services.

Similarly, when the sensor network is deployed in and

around critical zones such as vertiports or vertihubs, the

Vertiport Automation System (VAS) must analyze this

data to determine landing pad availability, track surface

trajectories, and mitigate potential conflicts with non-

cooperative targets.

The two-stage view is then split into practical steps as in

Fig. 2, including (1). hardware and sensor acquisition, (2).

edge device setup, (3). sensor stream acquisition, (4). edge-

level object detection and fusion with deep learning, (5).

trajectory prediction, (6). tactical conflict management, (7).

system integration for workload balancing, and (8). final test

and optimization. Following those steps, UAM-related services

can be deployed and evaluated with edge intelligence.

B. Adaptive Load Balancing

The edge system comprises a lot of devices for computing.

To distribute tasks or workloads efficiently among multiple

edge devices in a network, Feedback Control Load Balancing

is used in edge computing [8] [9]. It aims to achieve opti-

mal resource utilization, improve performance, and maintain

system stability.

Adaptive load balancing involves several steps, which is also

depicted in Fig. 3:

1) Task monitoring: The system continuously monitors the

performance metrics of edge devices, such as CPU usage pcpu,

CPU temperature tcpu, memory usage mem, GPU usage pgpu
and GPU temperature tgpu. These metrics provide insights into

the current workload and resource availability of each device.

2) Load Check: Based on the collected metrics, the system

evaluates the load on each edge device. We assign weights to

each metric to reflect their relative importance in determining

the overall device load. Let wpcpu
be the weight for CPU

usage, wtcpu be the weight for CPU temperature, wmem be

the weight for memory usage, wpgpu
be the weight for GPU

memory usage, and wtgpu be the weight for GPU temperature.

Then the weighted formula for device load can be represented

as in Eq. (1):

L = wpcpu
· pcpu + wtcpu · tcpu + wmem ·mem

+ wpgpu
· pgpu + wtgpu · tgpu (1)

And the real-time load L is compared with the load limi-

tation Llimit across all devices. If the load deviation exceeds

a certain threshold Lthreshold, load balancing actions, such as

task offloading or migration, are triggered.
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Fig. 3. The flow chart of adaptive load balancing.

3) Task Assignment: The overflow part of the load will

be resolved by randomly transferring some tasks to other

available devices.

4) Update Load: The load distribution is updated and

repeats the process continuously.

Finally, the detailed steps are also illustrated in Algorithm

1.

III. EXPERIMENT

In this section, the edge intelligence system is constructed

for evaluating various tasks in UAM. Deep learning-based

object detection, sensor fusion, and trajectory management

are applied to kinds of scenarios for en-route flight conflict

management. The experiments finally prove the performance

of the edge computing system.

A. System Construction

The experiment is carried out on the Multi-User Environ-

ment for Autonomous Vehicle Innovation (MUEAVI) road at

Cranfield University. The sensor network in the MUEAVI sys-

tem consists of cameras, lidars, and radars, whose deployment

layout is depicted in Fig. 4, and in which Jetson AGX Xavier

platforms enable a distributed edge computing system.

The Jetson AGX Xavier is selected as it is often considered

better in terms of AI performance for several reasons: (1) It

is specifically designed for AI applications and comes with

Algorithm 1: Adaptive Load Balancing

Input: Load limit Llimit, threshold Lthreshold, load

L[n], last adjustment[n] for n devices

while True do

for i = 0 to n do
if load[i] < target load− threshold or

load[i] > target load+ threshold then

for j = 0 to n do
if load[i] > target load+ threshold

and

load[j] < target load− threshold

then
Adjust the load by load balancing

algorithm;

Transfer one task from platform i to

platform j;

Update load[i] and load[j];
Update last adjustment[i] and

last adjustment[j];
end

end

end

end

for i = 0 to 3 do

Execute task on platform i;

end

end



Fig. 4. The smart devices of the MUEAVI system.

dedicated hardware accelerators, such as Tensor Cores and

deep learning accelerators. (2) It is optimized for energy

efficiency, allowing for efficient processing of AI workloads

while keeping power consumption relatively low. (3) NVIDIA

provides comprehensive software support for the Jetson plat-

form, including libraries, frameworks, and development tools

specifically tailored for AI development, such as JetPack SDK.

To determine the performance level of the edge intelligence

system, a cloud-side server, which equips with Nvidia RTX

2080 Ti, is also running for algorithm deployment. The

detailed parameters are compared in TABLE II. It’s important

to note that the RTX 2080 Ti is primarily targeted at high-

performance computing and gaming applications, where the

number of CUDA Cores and Tensor Cores excels. However,

for AI-focused workloads, the dedicated AI accelerators and

energy-efficient design (30W/device) of Jetson AGX Xavier

make it a compelling choice.

B. Result Analysis

We conducted a series of flight trials using small UAVs

along the MUEAVI road, during which we collected a dataset

specifically for training deep learning approaches. In partic-

ular, we deployed the DeepAssociation approach, which is

a framework proposed in our previous work [10], for radar-

camera detection, fusion, and tracking. These correspond to

steps 4 and 5 in Fig. 2. Additionally, we utilized the graph-

based tactical deconfliction algorithm, which was previously

developed in our work [11], to validate short-term trajectory

management, corresponding to step 6 in Fig. 2. All of these

algorithms were deployed on both the edge computing system

and the cloud server for evaluation and comparison.

In this experiment, the schematic diagram of managing

UAM services with a cloud server is demonstrated in Fig.

5 at first. In this setup, camera streams from nodes 12

and 15, and radar stream node 14 are directly input to the

server workstation. The server centrally processed all data

and utilized the aforementioned approaches to accomplish

object detection, fusion, and trajectory management tasks. As

a comparison, the raw data from each sensor in the edge

computing system was processed individually by specific edge

platforms. More specifically, camera-related tasks are handled

by Jetson nodes 12 and 15, the radar information is prepared

by Jetson node 14, and the fusion and tactical deconfliction

works are conducted on Jetson node 11. This configuration

highlights the connection and flexibility of the edge computing

system

Fig. 5. The schematic diagram of managing UAM services with cloud server.

Fig. 6. The schematic diagram of managing UAM services with edge
intelligence.

A comparison of the object detection performance between

the server and the edge computing system reveals that the pre-

processing and inference time on the edge side is longer than



TABLE II
DETAILED PARAMETERS COMPARISON: NVIDIA RTX 2080 TI VS JETSON AGX XAVIER

Parameter NVIDIA RTX 2080 Ti Jetson AGX Xavier

GPU Architecture Turing Volta

CUDA Cores 4352 512

Tensor Cores 544 64

GPU Memory 11 GB GDDR6 16 GB LPDDR4x

Memory Bandwidth 616 GB/s 137 GB/s

Max Power Consumption 260 W 30 W

Storage 2TB 32 GB eMMC 5.1

Dimensions Dual-Slot, 267 mm length 105 mm x 105 mm

those on the server side, as presented in TABLE III. However,

despite the slightly longer processing time, the edge computing

system maintains an acceptable level of accuracy, comparable

to that of the server.

TABLE III
COMPARISON OF SPEED FOR OBJECT DETECTION(IN MILLISECONDS)

Device Pre-process (ms) Inference (ms) NMS (ms)

Jetson AGX Xavier 1.5 51.8 1.9

Server (2060Ti) 0.3 16.4 0.4

TABLE IV
COMPARISON OF SPEED FOR CAMERA-RADAR FUSION AND TACTICAL

DECONFLICTION

Device Camera-Radar Fusion (ms) Tactical Deconfliction (s)

Jetson AGX Xavier 151.5 1.31

Server (RTX 2060 Ti) 87.6 0.73

To evaluate the distributed deployment of fusion and tactical

deconfliction on the edge platforms, a noticeable difference

can be observed from TABLE IV. The processing time on edge

computing devices increases significantly, almost doubling that

of servers due to the hardware performance disparity. However,

the edge computing system can still be capable of maintaining

the same level of accuracy as the servers since they share the

same inference model.

During the inference process, it is crucial to consider not

only accuracy but also changes in significant metrics and

overall efficiency. We present a comprehensive comparison

of these metrics in TABLE V. It is worth noting that the

four-device edge platform demonstrates the ability to maintain

lower power consumption while achieving high computational

performance, leading to increased efficiency. Furthermore, the

distributed system exhibits a larger total storage and memory

capacity, enabling it to accommodate a greater volume of

essential caches.

Referring to those physical metrics, we can find the specific

difference when running the deployed algorithms as in Fig.

7. For instance, when comparing Jetson platforms to the

server workstation, the deployed algorithms exhibit slightly

higher memory consumption on the former. Furthermore, a

noticeable increase in core temperature is observed for the

server workstation, indicating intensive processes involved in

centralized object detection, fusion, and trajectory deconflic-

tion. In contrast, Jetson devices experience minimal changes in

core temperature. Additionally, GPU usage on the server work-

station rises by approximately 30%, whereas Jetson platforms

utilize a maximum of 11.8% of the GPU. This finding suggests

that edge devices are in a state of low energy consumption

operation.

It is also critical to assess the real-time workload on each

device in the edge computing system and balance the load

adaptively. We employ Eq. (1) to obtain the load at first. We

assign wpcpu
= 0.2, wtcpu = 0.2, wmem = 0.1, wpgpu

= 0.3,

and wtgpu = 0.2. Prior to executing the algorithms, the normal

load for Jetson node 11 is determined as Lnode11 = 0.341,

with the following initial metrics: pcpu = 2.0%, tcpu =
52.2◦C, mem = 15.6%, pgpu = 42.1%, tgpu = 45.5◦C.

Similarly, the initial loads for Jetson nodes 12, 14, and 15

are obtained as Lnode12 = 0.344, Lnode14 = 0.331, and

Lnode15 = 0.339, respectively.

The device load limitation is set as Llimit = 0.500 and

the threshold is defined as Lthreshold = 0.01. The loads are

visually compared in Fig. 8 and remain within the safe range

of load limitation. If the load on any device exceeds this

limitation, the offloading procedure will be triggered.

To demonstrate the offloading scheme, we add more tasks

to Jetson 11 and observe the load changes. Consequently, the

load value increases to Lnode11 = 0.515 which surpasses

the acceptable margin as depicted in Fig. 9. At this point,

the adaptive load balancing decides to transfer some tasks to

Jetson node 14. Therefore, the load on Jetson 11 decreases



TABLE V
PERFORMANCE METRICS COMPARISON: JETSON AGX XAVIER (×4) VS. 1 RTX 2080 TI (×1)

Performance Metric Jetson AGX Xavier (×4) RTX 2080 Ti (×1)

Power Consumption (W) 120 260

Computational Ability (TFLOPS) 128 13.4

Storage (GB) 64 (eMMC) 11 (GDDR6)

Memory (GB) 64 (LPDDR4x) 11 (GDDR6)

Memory Bandwidth (GB/s) 2744 616

Efficiency (TFLOPS/W) 1.07 0.05
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Fig. 7. Metric comparison.

to Lnode11 = 0.464, while the load on Jetson 14 increases to

Lnode14 = 0.390 as illustrated in Fig. 10. These results indi-

cate that the loads across all devices have been appropriately

distributed and balanced.

Finally, we conclude that all deployed algorithms, e.g.

multi-sensor fusion, and trajectory deconfliction can main-

tain performance on the designed edge intelligence system.

Satisfactory performance and fast responsiveness of the edge

platform, which employs adaptive load balancing for resources

management, prove the capability for trajectory management,

as well as various tasks for stakeholders.

IV. CONCLUSION

In the paper, an example of the infrastructure system is

demonstrated and one general architecture with edge intelli-

gence is developed, which may be deemed a good endeavor in

terms of validating the effectiveness of the ground-based non-

cooperative surveillance, e.g. object detection and fusion, and

subsequent tasks for stakeholders, e.g. tactical deconfliction, as

there is no similar well-functioning system and conditions for

UAM research. The performance of all deployed algorithms
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Fig. 10. Load comparison after offloading.

can be guaranteed by taking advantage of edge computing,

such as efficiency, reliability, cost, etc. Meanwhile, the adap-

tive load balancing scheme proves to be able to ensure task

balance among all edge devices.

With the proposed framework, the implementation of more

practical UAM applications becomes possible, thereby pro-

moting data-driven and digital management for sustainable

urban environments. Future works include more intelligent

works on the edge computing system, e.g. deep learning-

based load balancing and collaboration scheme, to increase

the intelligence level and resilience to uncertainties or device

failures of the system.
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