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ABSTRACT

Autonomous robotic arm manipulators have the poten-
tial to make planetary exploration and in-situ resource
utilization missions more time efficient and productive,
as the manipulator can handle the objects itself and per-
form goal-specific actions. We train a manipulator to au-
tonomously study objects of which it has no prior knowl-
edge, such as planetary rocks. This is achieved using
causal machine learning in a simulated planetary envi-
ronment. Here, the manipulator interacts with objects,
and classifies them based on differing causal factors.
These are parameters, such as mass or friction coeffi-
cient, that causally determine the outcomes of its interac-
tions. Through reinforcement learning, the manipulator
learns to interact in ways that reveal the underlying causal
factors. We show that this method works even without
any prior knowledge of the objects, or any previously-
collected training data. We carry out the training in plan-
etary exploration conditions, with realistic manipulator
models.

Key words: Planetary manipulators; reinforcement learn-
ing; interaction-based learning; planetary exploration;
causal analysis.

1. INTRODUCTION

Autonomous manipulation has significant potential in
planetary missions, as it can increase the amount of time
spent exploring the environment and doing science activ-
ities. We review current methods for autonomous manip-
ulation of objects, both on Earth and in planetary explo-
ration environments. We see that approaches to manipu-
lation of unknown objects usually must leverage a large
amount of training data to work.

Reinforcement learning is commonly used to teach a
robot manipulator certain skills, such as pick and place
operations on objects, to solve specific tasks. In [1] the
manipulator chooses its policy from a set of actions, and
over time learns to use more of those actions that gave the

best results in the past. These are scored based on how
close the object gets to a target position. Here we fol-
low a different causal approach [2] using reinforcement
learning to find which actions give the most information
about the “causal factors”, the main parameters that deter-
mine the dynamics of the objects, so that this knowledge
can be used to carry out any general task. The manipula-
tor learns which actions produce the most distinguishable
interactions for each factor. For example, it may learn
about an object’s frictional properties by pushing it along
the ground, and studying the distance travelled, which is
directly affected by the friction.

There are relatively few papers on autonomous ma-
nipulators in planetary environments. Typically, two
types of objects are considered in the existing literature:
known objects where the robot has prior knowledge
(e.g. size, shape, mass of a known scientific device),
and objects which are completely unknown to the robot,
e.g. planetary rocks. In [3], the authors present a design
for a light-weight rover that can pick up and assemble
known objects. The objects are detected based on
machine-learning classification by colour. The same
rover is used in [4] to demonstrate the placement, testing
and collection of payload instruments, in a simulated
lunar environment on Earth.

More sophisticated techniques are required to learn to
manipulate unknown objects. In [5], the authors train a
robot to grasp objects on the Moon, using 3D octree rep-
resentations of the environment. A convolutional neural
network is used in conjunction with actor-critic reinforce-
ment learning to allow the robot to detect objects, choose
the most efficient pose, and pick the objects up. The pol-
icy, learned in simulation, is then passed to a real-world
rover in a lunar analogue centre.

Finally, it is also helpful to look at work on the problem
of manipulation in terrestrial environments. While this is
not carried out with planetary exploration in mind, many
techniques can be transferred, especially when the work
involves manipulation of unknown objects. In [6], several
real-world robots are used to attempt to grasp unknown
objects, using a single colour camera as input. The grasp
attempts are then passed to a self-supervised reinforce-
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ment learning algorithm, producing a policy that allows
grasping with high success rate.

Our analysis of the previous up-to-date research on au-
tonomous planetary exploration with manipulators con-
cludes that the major challenges in the area are related
to the following categories: Prior Knowledge of Objects,
Generalisability to Planetary Environments, and Applica-
bility to Non-Grasping Operations

Prior Knowledge of Objects. In [3] and [4], the
rover described is designed only to manipulate previously
known objects (the base station parts, and payload instru-
ments), using colour and expected dimensions to classify
them. These approaches are not applicable to unknown
object operations, given the lack of previous knowledge.
The approaches used in [1], [5] and [6] require compara-
tively less prior knowledge.

Generalisability to Planetary Environments. The
model described in [6] draws on training data from many
real-life grasping operations, carried out on Earth. This
is impractical for planetary missions, as any training data
generated on Earth would be very different from the data
produced in extraterrestrial environments and thus bias
the training of the machine learning models. In [1], a
similar approach is used, but the training is carried out
in a virtual environment, causing the same problems with
generalisability. [5] also trains the robot in a simulation
and then applies the model to real life (a “sim-to-real”
transfer). However, this strategy only has a success rate
of about 32% in the best case. This is likely due to the
simulation data not perfectly matching the data in the real
world. For [3] and [4], as reinforcement learning is not
used, the method can in principle be applied to an ex-
traterrestrial environment as well as a terrestrial one.

Applicability to Non-Grasping Operations. These
works mainly focus on grasping the objects. While [3]
shows that the rover can also carry out assembly oper-
ations, other complex manipulations, such as rolling, or
rotating the object, are not explored. The same occurs
in [4]. [5] and [1] each focus entirely on grasping. It is
mentioned in the discussion of [6] that the method can be
generalised to other operations, but the topic is not dis-
cussed further.

In Table 1 we present the summary of the previous com-
parative study of the most relevant needs for the goal
of autonomous robot manipulation in planetary environ-
ments.

As shown in Table 1, the existing approaches do not ful-
fil all three key requirements at once. In particular, ap-
proaches that can manipulate unknown objects are, over-
all, not generalisable to planetary environments. This is
due to the need to leverage data that has been previously
collected in a very different environment.

As the major contribution of this work, we investigate an
interaction-based causal learning approach, described in
[2] as a prospective candidate to fulfil all three of the re-
quirements at the same time. We define the relevant prob-

Table 1. Comparison of existing approaches based on
three identified requirements.

Existing Work Key Requirements

Unknown
Objects?

Genera-
lises?

Non-
Grasping?

Liu et al. [1] Yes

Schuster et al. [3] Yes

Lehner et al. [4] Yes

Orsula et al. [5] Yes

Kalashnikov et al. [6] Yes Yes

lem with a realistic manipulator and environment con-
straints. By trying many different actions to measure a
specific property of an object, and focusing only on those
that give the most information about the object, a manip-
ulator can autonomously learn about its surroundings in
any type of environment. This is possible without need-
ing any prior training data, or prior information about the
objects themselves. Furthermore, because the manipu-
lator is not explicitly told which actions it should try, it
can discover or apply the learning to alternative manipu-
lations to grasping. From here we carry out simulations
to demonstrate that the investigation approach can be ap-
plied to the identification of different parameters.

The remainder of the paper is as follows: Section 2 de-
scribes the problem, with the manipulator model and en-
vironment details given. Section 3 discusses the use of
causal machine learning to solve the relevant problem.
The test cases are simulated in Section 4 and concluding
remarks are presented in Section 5.

2. PROBLEM DESCRIPTION

2.1. Determination of Causal Factors

A causal factor is a parameter of an environment, that
causally affects the result of a particular action of the
manipulator on the environment. They are parameters
such that, by applying a certain sequence of actions on
the environment, the observations obtained are organised
in distinguishable disjoint sets according to the parameter
values. For example, if the manipulator pushes an object,
the outcome will vary depending on the mass of the ob-
ject - a heavy object will be harder to push than a lighter
one, and will not be pushed as far. Here the causal factor
is the mass.

In particular, if the same action is repeated in several dif-
ferent environments, it should in principle be possible to
measure or classify the underlying causal factor associ-
ated with each environment, according to the observed
result of such an action. This will be the problem to be
solved in this work.

Being able to determine causal factors fulfils all three re-
quirements discussed in Section 1. The manipulator does
not a priori need to know any of the physical properties



of the objects with which it interacts to learn about them
(requirement 1), no prior training data of the environment
is required making it fully generalisable (requirement 2),
and it carries out operations other than grasping (require-
ment 3).

2.2. Environment Simulation and Constraints

A simulation in PyBullet1 was used to implement the de-
termination of causal factors. The simulation design in-
cluded manipulator design and constraints as well as en-
vironmental parameters adequate to represent a real-life
planetary exploration scenario.

Manipulator Model. The robot manipulator used in the
simulations was designed to be analogous to the arm of
NASA’s Curiosity rover. This design was used as Curios-
ity’s arm was made to carry out functions similar to those
in this work, such as scooping surface samples [7].

Figure 1. Manipulator used in simulations.

As seen in Figure 1, the manipulator can control the az-
imuthal angle or “compass direction” of its end effector,
using the red azimuth actuator. It can also control the
height and radial distance from the end effector to the
rover, using the green and blue links shown. A “shoulder”
joint connects the green link to the red azimuth actuator,
while an “elbow” joint connects the green and blue links.
A CAD drawing of the manipulator is shown to illustrate
the dimensions of these links, in Figure 2.

Joint angle limits. Joint angle limits were required for
the manipulator to work, ensuring that the links would not
end up in unrealistic or unphysical configurations. The
angle at the “shoulder” between the red and green links
was locked to the range [0°, 150°], and the angle at the
“elbow” between the green and blue links was locked to
the range [-180°, 0°], so that the blue link always pointed
downwards.

Joint torques. Limits on the torque that could be ex-
erted by the joints were also necessary, as applying con-

1 https://pybullet.org

Figure 2. CAD Drawing of Manipulator, showing dimen-
sions of links (in mm).

trol algorithms with default torque limits generally leads
to very unrealistic results. The maximum torque exerted
by a motor is directly related to the power provided to it,
so these gave an estimate of what the torque should be.

The power output of a motor is given by

P = τω (1)

where P is the power output, ω is the angular velocity,
and τ is the torque exerted. Power subsystem data from
the Perseverance rover [8] was used to estimate the max-
imum possible torque that can be generated. Using the
dimensions of the manipulator as in Figure 2, and a max-
imum end-effector velocity of 2 m s−1, we find a max-
imum torque of 460 N m for the azimuth actuator and
shoulder joint, and 240 N m for the elbow joint.

3. PROPOSED METHODOLOGY: CAUSAL MA-
CHINE LEARNING

Here we present the implementation of our proposed so-
lution to the problem defined in Section 2 following the
approach in [2].

3.1. Interaction-Based Learning Overview

To implement the interaction-based learning and allow
the classification of objects based on different causal fac-
tors, the program required three broad steps:

1. Simulate a set of actions, each in several random en-
vironments that represent different classes of values
of the causal factors (E.g. heavy and light mass).
Record the position time series of the object in each
simulation.

2. For each action, apply machine learning time series
clustering algorithms to classify the corresponding



set of time series into distinct clusters or classes.
Score the actions based on the accuracy of the clas-
sification of their time series.

3. Using the scores in step 2, choose a number of best
or “elite” actions. Plan new actions that are sim-
ilar to the elite actions. Repeat step 1 using the
new actions, until the maximum number of repeti-
tions/iterations or required accuracy in the classifi-
cation is reached.

These steps teach the manipulator the most informative
actions to use to learn about its environment (measured
by the ability of the action to classify by causal factor of
interest). By choosing only the actions that give the most
accurate classifications, with each iteration the manipu-
lator improves its ability to learn. After iterating many
times, the code returns the best actions produced. This
method is similar to that seen in [1], which also chooses
actions similar to those that performed well in the past.

Figure 3. Flowchart showing different algorithm steps.

Figure 3 shows the relationships between the three steps
described above. These will be discussed in the sections
that follow.

3.2. Physics Simulation

The package used to study the manipulator was PyBullet.
The simulator automatically models physical phenomena
such as collisions, friction and gravity, and at the same
time, it provides full customizability of each of these phe-
nomena.

Environment setup. In each simulation, three meshes
were loaded in PyBullet - the robot manipulator, the ob-
ject being studied (a cube), and the ground plane, which
was static. The positions and orientations of each were
the same every time. The cube’s parameter under study

was chosen from a random distribution representing the
ranges of interest to analyse. It was chosen from a bi-
modal distribution, consisting of two Gaussian peaks,
representing two main categories for the value. The
means and standard deviations of these peaks were cho-
sen so that there was not too much overlap between them
(the difference between the means was three standard de-
viations). This ensured that the environments could in
principle be separated into two distinct classes or clus-
ters. Once the environment was set up, the manipulator
was allowed to execute its action. The starting setup is
shown in Figure 4.

Figure 4. Starting setup used in Test Case 1.

Definition of Actions. Each possible action of the ma-
nipulator was represented as a list of vectors in R

3, with
each vector representing a change in position. Beginning
from the initial position of the manipulator’s end effec-
tor, the action is executed by changing the end effector’s
position by the first vector, then by the second, then the
third, etc., until the end of the list is reached. This is
achieved using PyBullet’s built-in inverse kinematics cal-
culator. Because the vectors in each action can have real
number entries, they can vary continuously, and so this
definition gives a relatively large space of actions. In
the first iteration of the simulation, there are no previous
actions to choose from, so the actions were chosen ran-
domly - choosing each entry of the action’s vectors from
a uniform distribution. This represents the initial lack of
information about which actions are relevant to classify
the parameter.

Simulation Output. The output of the simulation was
the full position vector time series of the object as the
manipulator acted upon it. This was used in the next step
of the algorithm - the time series classification and scor-
ing.

3.3. Time Series Classification and Scoring

After the action had been executed on a set of objects,
each with a different causal factor, the set of time series



of the objects was separated into two classes using ma-
chine learning time series k-means clustering using the
tslearn library implementation2. The metric used was the
Euclidean distance. The clustering identified two distinct
groups in the set of objects, and assigned a label to each
object based on which group it belonged to. If the two
groups are well-separated, then the action is effective at
separating the objects based on causal factors. For ex-
ample, if an action causes light objects to be separated
from heavy objects by time series k-means clustering, it
is effective in determining the mass of the objects.

Figure 5. Time series of objects labelled by k-means clus-
tering.

Figure 5 shows a set of object time series, labelled by k-
means clustering. The heavier objects, coloured green,
do not move as far when pushed by the manipulator. The
lighter blue objects move much further. This difference
in behaviour can be detected by the clustering algorithm
and hence used to classify the objects.

Reward function. The approach implements a reward
function used to rank which actions give the best results
for the task at hand. In this work, the reward function in-
volved two terms. The first was the F1 score [9], a metric
which compares the labels assigned by k-means cluster-
ing to the true groups to which the objects belong. It
takes values between 0 and 1, with higher values mean-
ing a better identification of each object in its true class
according to the causal factor.

The second term was the silhouette score [10], a measure
of how well-separated the two clusters were. A silhouette
score of 1 implies perfect separation, while a silhouette
score of 0 implies no separation. This was used to mea-
sure how robust is the separation between the classes and
to penalise random classifications.

The relative weight of the F1 score and silhouette score
in the final reward function was determined by Equation
2:

R = (1− α)F + αS (2)

2 https://tslearn.readthedocs.io

where R is the overall reward, F is the F1 score, S is the
silhouette score, and α is the reward function parameter.
A value of 0.3 for α was used. This ensures the reward
function mainly depends on the F1 score, while giving
enough value to the silhouette score to remove random
classifications.

3.4. Policy Planning

To find the best actions, the cross-entropy method was
employed. The method is a Monte Carlo technique used
to choose an element of a set that maximises a reward
function. The approach works by generating in each iter-
ation random actions in order to explore all the possible
actions of the manipulator, but focusing in each iteration
on generating similar actions to the ones that obtained the
highest reward in the previous iteration step.

An implementation of this method to optimize a function
is described as Algorithm 4.1 in [11]. The function is
evaluated at several random samples, drawn from a mul-
tidimensional Gaussian distribution with mean µ̂

t−1
and

standard deviation σ̂t−1 (t-1 referring to the index of this
iteration). Then, the samples with the highest value of
the function (“elite samples”, denoted by the e subscript)
are averaged to a mean sample µ̂

e
. The standard devi-

ation σ̂e is also taken. Finally, the samples for the next
iteration are again drawn from a multidimensional Gaus-
sian distribution. The mean µ̂

t
and standard deviation

σ̂t of this distribution are smoothed between the initial
parameters and the elite parameters, using a smoothing
parameter β:

µ̂
t
= (1− β)µ̂

t−1
+ βµ̂

e
(3)

σ̂t = (1− β)σ̂t−1 + βσ̂e

Over many iterations, the overall set of samples drawn
in each iteration converges to a sample that locally max-
imises the relevant function, and the standard deviation
decreases as this happens.

Along with the machine learning time-series classifica-
tion and reward function, this method is crucial to allow
convergence to the best-classifying actions. By generat-
ing actions that are similar to the best actions of the previ-
ous iteration, we improve the probability of finding good
actions in the next iteration, and can quickly narrow down
the search space to only the actions that are likely to give
useful results.

4. SIMULATION RESULTS

Given the algorithm described in the previous sections,
the following three test cases are considered. The simu-
lations were carried out on a PC with the following spec-
ifications: AMD Ryzen 5 3600X CPU, EVGA GeForce
GTX 1060 6GB GPU, and 16GB Aegis G.SKILL DDR4
RAM.



4.1. Test Case 1: Mass

In the first test case, the mass of the object was varied.
A cube of side length 25 cm was used. The “light” and
“heavy” clusters had mean masses of 25 kg and 50 kg
respectively, giving realistic densities for planetary rocks
[12]. The performance of the algorithm was studied while
varying the number of actions used per iteration of the
algorithm.

The reward function over time for different numbers of
actions, averaged over 16 simulations, is shown in Figure
6. Table 2 shows the average final reward R, F1 score F ,
and silhouette score S at the end of each simulation.

Figure 6. Evolution of reward functions in Test Case 1.

Table 2. Final scores from Test Case 1.
Actions R F S
10 0.656 0.775 0.379

20 0.783 0.867 0.587

40 0.890 0.938 0.779

60 0.941 0.973 0.868

From Figure 6, we can see that the number of actions
used hugely affects the algorithm’s performance. With
only 10 actions, the performance is rather poor, reaching
an average reward function of only 0.656. This implies
that many of the simulations do not converge to an ac-
tion that correctly classifies the objects. However, by the
nature of the cross-entropy method used to plan new ac-
tions, the algorithm will always converge to some action.
Hence, it is essential to find a good classifier in the early
stages of the algorithm. If not, it can become “stuck” on
a poorer action that locally maximises the reward, despite
not classifying properly.

It is for this reason that using more actions improves the
performance. At 60 actions, the average reward improves
to 0.941. With more actions, we can more thoroughly
explore the space of possible actions to use, increasing
the probability of finding good classifiers.

4.2. Test Case 2: Friction

In the second test case, the friction coefficient between
the object and the ground was varied. The same cube as
before was used, this time with a fixed mass of 50 kg.
There were two possible clusters of friction coefficients,
with means of 0.4 and 0.6, both realistic values for plan-
etary rocks [13].

As before, the performance of the algorithm was studied
while varying the number of actions used per iteration.
The actions used to differentiate the clusters were also
observed to record differences to those used in Test Case
1.

The reward function over time for different numbers of
actions, averaged over 16 simulations, is shown in Figure
7. Table 3 shows the average final reward R, F1 score F ,
and silhouette score S at the end of each simulation.

Figure 7. Evolution of reward functions in Test Case 2.

Table 3. Final scores from Test Case 2.
Actions R F S
10 0.695 0.811 0.423

20 0.748 0.842 0.530

40 0.885 0.937 0.765

60 0.929 0.968 0.839

As with Test Case 1, the evolution of the reward function
improves as the number of actions used is increased. De-
spite the change in the causal factor, the results are very
similar between the two test cases.

After analysing the optimal actions for classification
found, we observe that there is a change in the type of
actions found between the first and second tests. In Test
Case 1, there were many actions that sufficed to classify
the objects based on mass. The object could be pushed,
rolled, or even flipped into the air. When the causal factor
is friction, however, the best classifiers found tend to be
gentle pushes along the ground. This is because the fric-
tion coefficient only affects the outcome of actions when
the object is in contact with the ground. Hence, the best



actions will be those that maximise the time the object is
grounded.

4.3. Test Case 3: Gravity

For the final test case, the object’s parameters were kept
fixed, while the acceleration due to gravity, g, for the
whole environment was varied. The clusters of values for
g were chosen from the mean lunar and Martian values of
1.625 m s−2 [14] and 3.721 m s−2 [15], with slight vari-
ations (σ = 0.01 m s−2) due to the topography of these
bodies. Again, the number of actions per iteration was
varied and the nature of the actions used to differentiate
the causal factors was studied.

The averaged reward function over time for different
numbers of actions is shown in Figure 8. Table 4 shows
the average final reward R, F1 score F , and silhouette
score S at the end of each simulation.

Figure 8. Evolution of reward functions in Test Case 3.

Table 4. Final scores from Test Case 3.
Actions R F S
10 0.571 0.705 0.261

20 0.735 0.805 0.572

40 0.951 0.969 0.910

60 0.946 0.961 0.912

The performance in Test Case 3 is worse than the previ-
ous test cases when fewer actions are used, e.g. 10 ac-
tions, but much better when 40 or 60 actions are used.
In particular, the silhouette score is much better on aver-
age. This is likely due to the minimal variation between
environments within the same class, e.g. two environ-
ments of lunar gravity. The difference in gravity is so
small that environments of the same class behave almost
identically, giving a perfect separation between the two
classes and driving up the value of S. The actions discov-
ered by the manipulator to differentiate the environments
tended to be gentle pushes along the ground, as in Test
Case 2. These are sufficient, as the normal force between
the object and ground (and hence the friction) is directly
affected by the acceleration due to gravity.

5. DISCUSSION

The results of the simulations verify the requirements set
out in Section 1. The algorithm works without the ma-
nipulator needing access to any information on the ob-
ject’s physical parameters. It can thus handle completely
unknown objects, satisfying the first requirement. Re-
garding the second requirement, no previous training data
is needed for the reinforcement learning to work, only
the information generated through its own simulations.
Hence the method can generalise to planetary environ-
ments. Finally, the manipulator has full autonomy over
the actions it uses. Due to this, it does not need to grasp
objects to learn about them, fulfilling the third require-
ment mentioned.

The algorithm in this project could be used in other types
of interactions, such as for example the ones related to
wheel slip prediction - the measurement and prediction of
the slipping of rover wheels on planetary soils. In partic-
ular, there is a significant amount of work in the area of
“in advance” wheel slip estimation [16], which surveys
oncoming terrain for potential hazards that could cause
the rover to become stuck. Here the causal factors would
be the mechanical properties of the soil. The manipulator
could be pushed along the ground, and the forces mea-
sured to estimate these properties. The technique would
allow the classification of the terrain into “Safe” or “Un-
safe” classes, without the rover needing to drive over it
first.

Other approaches that attempt to learn about objects by
training the manipulator to carry out one specific action
tend to have very sparse reward functions. That is, only
very specific inputs give significant rewards. For exam-
ple, an approach that trains the manipulator to grasp and
then lift the object to measure the mass requires a very
specific sequence of actions to work properly. Thus, hun-
dreds of thousands of actions can be needed during re-
inforcement learning for these approaches, as seen in [5]
and [6], which both teach the manipulator to grasp.

The tests in this work show that, if the objective is to learn
to manipulate an object, using causal factors can consid-
erably shorten the process. An object’s mass, the causal
factor studied in Test Case 2, affects the outcome of al-
most any kind of interaction the manipulator can carry out
- pushing, lifting, rolling, etc. Hence, if we wish to learn
about an object’s mass, any action that interacts with the
object in some way is likely to give some information
about it. This offers an advantage over previous methods
in learning about the environment.

6. CONCLUSIONS

We have used a causal machine learning-based approach
that allows a robot manipulator to learn autonomously
about its surroundings in a simulated planetary environ-
ment. This method works by revealing the differences in



interactions due to changing causal factors of the envi-
ronment. Reinforcement learning is used to choose those
actions that give the best performance in separating the
environments. We have shown that this allows classifica-
tion of objects based on changing parameters, and that it
generalises to different types of parameters.
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