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Abstract 

Face-centered cubic (FCC) metals with low to medium stacking fault energy 

(SFE) develop similar mesoscale substructures under cyclic loading. The 

formation of these substructures is controlled by dislocation interactions and 

loading conditions. For instance, cross slip facilitates cell formation and Hirth 

locks define the labyrinth structure. In the case of aluminium (high SFE metal), 

cross slip is easily activated and a cell structure is often observed. However, it is 

not always recognised that aluminium can also form PSBs at low temperatures. 

This highlights that the underlying mechanism controlling the cyclic response in 

aluminium is not different from other FCC metals.  

This work proposes the role of mesoscale substructure as a material-invariant 

among FCC metals to predict the cyclic response of aluminium. The effect of 

number of cycles on modelling dislocation substructures is explored, which is 

found to trigger a change in dislocation structures in aluminium at 298K. A crystal 

plasticity framework based on mesoscale substructures is developed to study the 

cyclic response of aluminium under different crystal orientations, strain 

amplitudes, number of cycles, and temperatures. 

Finally, this work implemented the crystal plasticity model to study the 

microstructure-sensitive crack propagation from shallow scribes in pure 

aluminium. The gradient of fatigue indicator parameters (FIPs) is estimated as 

crack extends inside a grain with explicit microstructure simulations, which 

followed the same decaying trend predicted by experiments. Thereby, an 

engineering solution is proposed to couple microstructural and geometric 

gradients at the crack tip independently. The model predicted the transgranular 

fatigue life with independently coupled gradients that agree well with 

experiments.  

Keywords: Aluminium, Mesoscale substructures, Cyclic response, Scribe marks, 

Microstructure-sensitive fatigue cracks  





iii 

Acknowledgements 

All praise is due to Allah Almighty, the Lord of all worlds, the Greatest, the most 

Beneficent, the most Merciful, the ever providing, for his countless blessings and 

his everlasting inspiration. May the peace and blessing of Allah be upon his 

Prophet Muhammad, his family, and his companions.  

I express my sincere and deepest gratitude to my supervisor Dr. Gustavo M. 

Castelluccio, for his valuable feedback, support, and time. I had a wonderful 

experience working with him as well as the privilege to be his first PhD student. I 

appreciate his patience and encouragement in improving my research and writing 

skills. His enthusiasm and insightful discussions have helped me to grow in the 

versatile field of mechanics of materials. I would also like to thank him for his 

financial support during hard times. His technical advice and feedback were 

essentials for the completion of this work. I would like to thank Dr. Muhammad 

Khan, Dr. Ali Mehmanparast, and Dr. Andrea Cini for reviewing this thesis and 

their valuable feedback.       

I would also extend my gratitude to The Punjab Educational Endowment Fund 

(PEEF) for funding this work. Besides, I am also grateful for the financial support 

provided by the school. Without this financial support, I would never have been 

able to complete this work.  

Many thanks to my colleagues and friends Dr. Ebiakpo Kakandar, Dr. Arijit Lodh, 

and Shahram Dindarlou for their help and insightful discussions. I would also like 

to thanks other colleagues in the TES centre for their help. Apart from my studies, 

I would like to mention many individuals who made my Cranfield stay a 

memorable one.  I am indebted to Mr. Masood (Uncle) and Mrs. Masood (Khala) 

for their love and care during my stay at Cranfield. Thanks to Dr. Zaheer for his 

thoughtful discussions, care, and especially delicious food. I would also like to 

thanks the Pakistani community especially Iftikhar, Muntazir, Shoaib, Kamran, 

Ali, and Umair for their support and the memorable time we spent as a family. I 

would also like to mention other friends Dr. Sarhan, Dr. Abdul Qabeer, Dr. Faisal 

Asfand, Dr. Akram Afzal, and Dr. Abdullah Asmari for their help and support.       



iv 

I am eternally indebted to my mother Sakina Ashraf and father Muhammad 

Ashraf, brothers, sisters, nieces, and nephews for their unconditional love and 

support without which I would not have reached this stage. Finally, I am heartedly 

grateful to my wife Maira, and children Maryam and Ibrahim for their love, support, 

and patience. They deserve my special gratitude for their understanding and 

encouragement.     



v 

Table of Contents 

Abstract .............................................................................................................. i 

Acknowledgements ......................................................................................... iii 

List of Figures .................................................................................................. ix 

List of Tables ................................................................................................. xvi 

List of Equations .......................................................................................... xvii 

List of Abbreviations ...................................................................................... xx 

1 Introduction ................................................................................................... 1 

1.1 Research motivation ................................................................................. 1 

1.1.1 Mesoscale substructure evolution during cyclic deformation .............. 2 

1.1.2 Scribe marks on aircraft fuselage skin................................................ 8 

1.2 Crystal plasticity modelling ........................................................................ 9 

1.3 Microstructure-sensitive fatigue cracks ................................................... 11 

1.4 Research study rationale ........................................................................ 14 

1.4.1 Research aims and objectives ......................................................... 14 

1.4.2 Thesis structure ................................................................................ 15 

References ....................................................................................................... 19 

2 Estimation of Dislocation Glide Barrier in FCC Metals and Alloys ......... 31 

2.1 Introduction ............................................................................................. 31 

2.2 Mechanisms of dislocation glide ............................................................. 32 

2.3 Independent estimation of parameters and their uncertainty .................. 37 

2.4 Quantification of glide activation from yield stress data .......................... 40 

2.4.1 Effect of solute concentration on �� and ��
� ....................................... 49 

2.4.2 Effect of hydrogen concentration on �� and ��
� .................................. 50 

2.4.3 Single crystal analysis ...................................................................... 52 

2.4.4 Effect of grain size on yield stress .................................................... 54 

2.4.5 Differences among activation energy formulations ........................... 56 

2.5 Discussion .............................................................................................. 59 

2.6 Conclusions ............................................................................................ 60 

References ....................................................................................................... 63 



vi 

3   Unravelling the Effect of Number of Cycles on Mesoscale Dislocation 

Substructures Under Cyclic Deformation ................................................ 73 

3.1 Introduction ............................................................................................. 73 

3.2 Physics-based crystal plasticity model .................................................... 74 

3.3 Effect of N on the mesoscale substructure ............................................. 77 

3.4 Mesoscale crystal plasticity framework ................................................... 80 

3.5 Model implementation for aluminium ...................................................... 83 

3.5.1 Independent quantification of model parameters ............................. 84 

3.5.2 Comparison of model results with experiments ................................ 91 

3.6 Discussion .............................................................................................. 99 

3.7 Conclusions .......................................................................................... 102 

References ..................................................................................................... 103 

4  Decoupling Geometric and Microstructural Gradients in Fatigue Crack  

Formation.................................................................................................. 111 

4.1 Introduction ........................................................................................... 111 

4.1.1 Models of MS fatigue crack growth ................................................ 112 

4.2 Crystal plasticity modelling of fatigue driving force gradient .................. 114 

4.2.1 Fatigue crack driving force ............................................................. 114 

4.2.2 Effect of microstructural gradient .................................................... 117 

4.2.2.1 Effect of local and non-local averaging domains on FIP .......... 120 

4.2.2.2 Transgranular crack extension along one plane ...................... 129 

4.2.2.3 Multislip crystallographic FIP ................................................... 133 

4.3 Coupled effect of microstructure and geometric gradient on FIPs ........ 138 

4.3.1 Explicit coupling using crystal plasticity simulation ......................... 138 

4.4 Independent quantification of geometric gradient ................................. 140 

4.5 Integration of independent gradients..................................................... 148 

4.6 Discussion ............................................................................................ 150 

4.7 Conclusions .......................................................................................... 152 

References ..................................................................................................... 155 

 



vii 

5  Coupling Microstructure and Geometric Gradients Independently to 

Predict Transgranular Fatigue Life ......................................................... 163 

5.1 Introduction ........................................................................................... 163 

5.2 Transgranular MSC growth law ............................................................ 164 

5.3 Model and experiment .......................................................................... 168 

5.4 Discussion ............................................................................................ 178 

5.5 Conclusions .......................................................................................... 181 

References ..................................................................................................... 183 

6 Implications of Overall Work .................................................................... 187 

6.1 Cyclic response of aluminium ............................................................... 187 

6.1.1 The role of activation energy .......................................................... 187 

6.1.2 Mesoscale dislocation substructures .............................................. 188 

6.1.2.1 Effect of activation energy on mesoscale substructure ............ 188 

6.2 Effect of shallow scribes on MSC growth .............................................. 190 

References ..................................................................................................... 193 

7 Conclusion and Future Work ................................................................... 195 

7.1 Contribution to knowledge .................................................................... 195 

7.1.1 Regarding the parametrization of glide........................................... 195 

7.1.2 Regarding aluminium mesoscopic response .................................. 195 

7.1.3 Regarding the microstructure-sensitive fatigue crack formation ..... 196 

7.2 Potential impact of findings ................................................................... 196 

7.3 Future recommendations ...................................................................... 197 

Appendices ................................................................................................... 201 

Appendix A ................................................................................................. 201 

Appendix B ................................................................................................. 205 

Appendix C ................................................................................................. 209 

References ..................................................................................................... 211 

Publications .................................................................................................. 215 

 



viii 

 



ix 

List of Figures  

Figure 1-1 Explicit effect of crystal orientation on the evolution of dislocation 
substructure during cyclic deformation [5]. .................................................. 2 

Figure 1-2 Evolution of dislocation substructures corresponds to different 
stages of CSSC in single slip oriented Cu single crystal [5]......................... 3 

Figure 1-3 a) PSB in aluminium single crystals near (211) at ��� = 3 × 10��, 

���� = 96 at 77K [21], and b) PSB in aluminium single crystals near 
(211) at ���� = 4 ���, � = 5 × 10� at 298K [22]    c) Labyrinth structure 
[001] aluminium single crystal at��� = 3.2 × 10��, � = 13000 [23] d) cell 

structure in pure aluminium at  ��� �2 = 6.25 × 10�� [24]  e) [100] 

dislocation walls in pure aluminium[20] at 77K, �� =  1.4 × 10��, N = 
5000 f) [201] dislocation walls in pure aluminium at 223 K , �� =
 6 × 10��, N = 23000 [20]. ............................................................................ 6 

Figure 1-4 Comparison of cyclic response of FCC single crystals 
[7,17,19,21,25–28]. Shear stress is normalised by shear modulus at 
respective temperature. Colorbar represents homologous temperature 
(�/��). ......................................................................................................... 7 

Figure 1-5 Microstructure- sensitive fatigue crack growth: Schematics of 
transition from planar (stage I) to non-planar (stage II) crack. ................... 13 

Figure 2-1 Schematic of Monte Carlo approach to estimate �� and ��
� .............. 41 

Figure 2-2 Normalised yield stress vs temperature for polycrystalline metals 
from various sources [42,43,47,48]. The normalization factor 
corresponds to the yield stress at room temperature. For aluminium, 
copper, and silver, yield data corresponds to 0.5% strain but is 0.2% for 
nickel. We consider each of the strain values as reported in experimental 
data in our analysis with equation (2.15). .................................................. 42 

Figure 2-3 Normalised yield stress vs temperature for polycrystalline alloys 
from various sources [49–52]. The normalization factor corresponds to 
the yield stress at room temperature. The yield stress was reported at 
0.2% strain for all alloys. ............................................................................ 43 

Figure 2-4 Glide activation energy of aluminium, nickel, copper, and silver. 
The red line is the best fit according to GEV distribution. .......................... 45 

Figure 2-5 Thermal slip resistance of aluminium, nickel, copper, and silver. 
The red line is the best fit according to GEV distribution. .......................... 45 

Figure 2-6 Glide activation energy of SS 304, SS316, Cupro-Nickel and AA 
3003(1.2Mn). The red line is the best fit according to GEV distribution. .... 46 

Figure 2-7 Thermal slip resistance of SS 304, SS 316, Cupro-Nickel and AA 
3003 (1.2Mn). The red line is the best fit according to GEV distribution. ... 47 



x 

Figure 2-8 Correlation between glide activation and stacking fault energy of 
different FCC metals and alloys. The experimental data for SS 310s alloy 
is given in Figure A-2. ................................................................................ 48 

Figure 2-9 Activation energy and thermal stress of Cu-Mn alloy with different 
solute concentrations. Error bars correspond to a 95% confidence 
interval. ...................................................................................................... 50 

Figure 2-10 Glide activation energy of stainless steel 310s with different 
concentrations of hydrogen. The red line corresponds to the best fit 
according to GEV distribution. ................................................................... 51 

Figure 2-11 Effect of H2 concentration on glide activation energy and thermal 
stress of pure Ni. ....................................................................................... 52 

Figure 2-12 Activation energy and thermal stress of a) aluminium, b) nickel, 
and c) copper single (SC) and polycrystals (PC). Experimental data of 
polycrystals [43,47,48] are shown in Figure 2-1 and data for single 
crystals [66–68] are given in Appendix A.2 (Figure A-2). The dimensions 
correspond to the grain size for polycrystals and crystal size for single 
crystals. ..................................................................................................... 54 

Figure 2-13 Effect of grain size on glide activation energy and thermal stress 
in a) copper b) silver. The upper bound of the dislocation density range 
is different for each case subject to the grain size. .................................... 55 

Figure 2-14 Effect of different p and q values on a) glide activation energy 
and b) thermal slip resistance of different FCC metals. ............................. 57 

Figure 2-15 Estimation of glide activation energy using a) equation (2.18) and 
b) equation (2.17). ..................................................................................... 59 

Figure 3-1  Dislocation substructure along (121) plane of Cu single crystal 
oriented near [221] cycled at a) 523K,  ∆���/2 =  1 × 10��  and ∆���

��� =

4 b) 523K, ∆���/2 = 8.84 × 10��  and∆���
��� = 73. ..................................... 78 

Figure 3-2 Dislocation substructure along (111) common cross slip plane of 
Cu single crystal oriented near [211] cycled at a) 523K, ∆���/2 =

3.5 × 10��  and ∆���
��� = 31 b) 678K, ∆���/2 = 3.5 × 10��   and ∆���

��� =

31. ............................................................................................................. 79 

Figure 3-3 Proposed framework for assigning saturated dislocation 
substructure at each FE integration point depending on ∆��� among slip 

systems that are a function of different loading conditions applied at a 
time. ........................................................................................................... 81 

Figure 3-4 Cyclic stress-strain response of Cu single crystal and correspond 
dislocation substructure at different plastic shear strain amplitude [41]. .... 82 

Figure 3-5 Single crystal specimen with the Voxellated finite element mesh 
containing 500 elements. ........................................................................... 83 



xi 

Figure 3-6 Finite element mesh of a polycrystal specimen. Colors represent 
the different grains. Model contains 237 grains, 5000 elements. ............... 84 

Figure 3-7 PSB wall thickness at 298K and 77K computed from TEM data 
[36,59]........................................................................................................ 88 

Figure 3-8 a) Correlation between cell wall size and wall thickness at different 
temperatures b) Histogram showing the ratio of cell thickness and cell 
size. ........................................................................................................... 89 

Figure 3-9  Cyclic stress-strain response of [149] aluminium single crystal 
under fully reversed strain-controlled loading (�� = −1) at 298K. The 
stress response as a function of N is compared with experiments [4]. ...... 92 

Figure 3-10 Cyclic stress-strain response of [149] aluminium single crystal 
under fully reversed strain-controlled loading (�� = −1) at 77K. ............... 93 

Figure 3-11 Comparison of complete stress-strain curve of [149] aluminium 

single crystal with the experiment at a) 
∆���

�
= ~3 × 10�� and 298K [2]  b) 

 
∆���

�
= ~6 × 10�� and 77K [2]. ................................................................... 94 

Figure 3-12 Cyclic hardening of aluminium single crystal oriented for single 
slip ............................................................................................................. 95 

Figure 3-13 Cyclic stress-strain response of aluminium single crystal oriented 
along [001], [011], and [111] direction under fully reversed strain-
controlled loading (�� = −1) at 298K. The [001] and [011] results were 
compared with available experimental data [38,39]. .................................. 96 

Figure 3-14 Comparison between model and experiment [62,68–70].: Cyclic 
stress-strain response of different polycrystals. Filled square markers 
represent experiments and empty diamonds correspond to Model 
results. ....................................................................................................... 97 

Figure 3-15 Comparison of complete cyclic stress-strain response of 
aluminium polycrystal between model and experiment [70]. ...................... 98 

Figure 3-16  Validation of similitude relation for aluminium using shear 
stresses and wall spacing (������ data from model and experiments 
[37,38,71] at different temperatures. .......................................................... 99 

Figure 3-17 Cyclic stress-strain response of Ni, Cu, Ag, and aluminium single 
crystals at the same homologous temperature, the y-axis is normalised 
with the bow-out stress [72]. .................................................................... 101 

Figure 4-1 Scribe marks at fuselage joints [5] a) a scribe in cladding b) 
extension of a crack from scribe. ............................................................. 111 

Figure 4-2 Graphical summary of the process that computes FIPmeso and 
extend a crack inside a grain ................................................................... 118 

Figure 4-3 Finite element mesh for a simple cubic model (~54 grains). ......... 119 



xii 

Figure 4-4 Evolution of cyclic peak stress with computational time for pure 
aluminium under ∆�/2 =0.05%, 0.1% ���, and �� = −1. ........................ 120 

Figure 4-5 Schematic illustration of assigning elements to a slip band inside 
grain......................................................................................................... 122 

Figure 4-6 Set of bands with the plane perpendicular to FCC slip normal 
direcion. ................................................................................................... 123 

Figure 4-7 Comparison of �����
�  and����

� over different domains a) elements 
b) bands c) grains. ................................................................................... 125 

Figure 4-8 Comparison of ����� and ���� along each slip system. Each point 
in the subplot correspond to an element of a grain that has the highest 
��������. Each subplot corresponds to a distinct FCC slip system. .......... 126 

Figure 4-9 Comparison of band averaged ����� and ���� along each slip 
system. Each point in the subplot corresponds to a averaged FIP along 
slip band in a grain, which has  highest ������� among all grain. The 
colormap represents the band number inside a grain. The schematic of 
location and relative size of a slip bands inside the grain in association 
with colormap are also shown adjacent to FIgure. Each subplot 
corresponds to a distinct FCC slip system. .............................................. 127 

Figure 4-10 Comparison of band averaged-FIP between all bands along the 
same slip plane normal direction. The x-axis is normalised with the 
maximum number of bands along the same plane. Each subplot 
corresponds to a different simulation with a different microstructure. 
Each point in the subplot represents an average FIP correspond to a 
band along the same plane as shown in Figure (right). ........................... 128 

Figure 4-11������� variation as crack extends inside a MLB. ........................ 131 

Figure 4-12 ������� variation as the crack extends along a MLB with the 
explicit effect of microstructure. Each curve corresponds to a different 
simulation with a different microstructure realisation. The distance on x-
axis is normalized by maximum distance along MLB. ............................. 132 

Figure 4-13 Variation of������� along 1st and 2nd MLB as crack extends in 1st 
MLB for four random realisations. The distance on x-axis is normalized 
by maximum distance along MLB. ........................................................... 133 

Figure 4-14 Pictorial illustration of intermediate slip bands to account for non-
planar slip (Copied from Hennessey [50]). ............................................... 134 

Figure 4-15 Effect of multislip FIP on crack extension following equation (4.8). 
The distance on x-axis is normalized by maximum distance along the 
band......................................................................................................... 136 

Figure 4-16 Multislip �������,��� as a function of crack extension with the 
explicit effect of microstructure. The distance on x-axis is normalized by 
maximum distance along MLB. ................................................................ 137 



xiii 

Figure 4-17 Normalised �������,��� with the transgranular crack extension. 
The scaling relation follows equation (4.9). The distance on x-axis is 
normalized by maximum distance along MLB. ........................................ 138 

Figure 4-18 Finite element mesh to study the effect of microstructure and 
notch on fatigue crack driving force. ........................................................ 139 

Figure 4-19 Effect of microstructure and geometric gradient on normalised 
�������,��� with crack extension in MLB at nominal strain amplitude of 

5 × 10��. The ordinate is normalised by on ����, which is a �������,��� 
at 0% crack length. The distance on x-axis is normalized by maximum 
distance along MLB. Each color and marker correspond to a realisation 
with a different microstructure. Each point represents the crack 
extension by deleting 10% element every two-cycle after nucleation 
evaluation i.e. 25 loading steps. .............................................................. 140 

Figure 4-20 Finite element mesh for notched specimens used for evaluating 
the homogenised geometry gradient in elastoplastic simulations. ........... 141 

Figure 4-21 Effect of notch radius on ���
��� along the notch root for notches 

of radius a) 5 μm b) 25 μm c) 50 μm at the nominal strain of 2.8 × 10��.
 ................................................................................................................ 142 

Figure 4-22 Angles between crack along the MLB and y-axis for different 
realisations. ............................................................................................. 143 

Figure 4-23 The gradient of normalised ���
���away from the notch tip for 

radius a) 5 μm b) 25 μm and c) 50 μm at different nominal strains.  The 
���

��� was normalised with the maximum ���
��� at the notch tip. The 

distance is normalised by the average grain size used for microstructural 
gradient i.e. 50 μm. .................................................................................. 145 

Figure 4-24 Comparison between ������
���  and ���

��� gradient for notches with 

different root radii. The distance is normalised by the average grain size 
used for microstructural gradient i.e. 50 μm. ........................................... 147 

Figure 4-25 Integration of microstructural (a) and geometric gradient (b) to 
reconstruct combined gradient (c). In Figure (c), the circle, square, and 
diamond markers correspond to the geometric gradient at 10�, 30�,and 
54� respectively. Each color in Figure (left) represents different 
simulation result with different microstructure and morphological 
properties whereas, each color in Figure (center) corresponds to decay 
of ���

��� along different angles. The normalization distance on x-axis 

corresponds to average grain size used for microstructural gradient i.e. 
50 μm. ..................................................................................................... 148 

Figure 4-26 Comparison between simultaneous estimation and independent 
coupling of gradients. �������,��� is normalised by ����, which is a 
������� at 0% crack extension. The normalization distance on x-axis 
corresponds to average grain size used for microstructural gradient i.e. 



xiv 

50 μm. Each color in Figure (left) represents different simulation result 
with different microstructure and morphological properties. Each circle, 
square, and diamond markers in Figure (right) represents independently 
coupled FIP with both microstructure and geometric gradient. ................ 149 

Figure 5-1 Finite element mesh of a simple beam without notch with 
elongated grains. ..................................................................................... 170 

Figure 5-2 Comparison between the calibrated and actual normalised 
������� across all grains with one microstructure realisation. .................. 172 

Figure 5-3 Steps to estimate the minimum ������� in each band each grain. . 173 

Figure 5-4 Comparison of number of cycles to extend the crack upto 50 �� 
between model and experiment [14]. ....................................................... 174 

Figure 5-5 Comparison of crack growth rate for different notches upto a crack 
length of 50 ��. ....................................................................................... 175 

Figure 5-6 Effect of notch radius on the number of cracks. The vertical lines 
(N1 and N2) represent threshold life following the experiment [9]. ............ 176 

Figure 5-7 Estimation of uncertainty with and without higher-order term in 
equation (5.9). ......................................................................................... 180 

 

Figure A-1 Effect of shear modulus range on a) activation energy b) thermal 
stress. For shear modulus range, Reuss model is used as a lower bound 
and Voigt model as an upper bound. ....................................................... 202 

Figure A-2 Shear stress data at different temperatures for a) aluminium, 
nickel and copper single crystals [9–11] b) Cu-Mn with different solute 
concentrations [12] c) stainless steel 310s  [13]. ..................................... 203 

Figure B-1 Persistent slip bands in an aluminium single crystal at 298K [14] 
and 77K [15]. The highlighted circles show the wall thickness measured 
using the reference length scale on the Figure. ....................................... 205 

Figure B-2 Dislocation cell structure in fatigued aluminium  at strain amplitude 

at a) 
∆���

�
= 0.0184 % b) 

∆���

�
= 0.0625 % c) 

∆���

�
= 0.26 % d) 

∆���

�
= 0.725 % 

at 298K [16]. ............................................................................................ 206 

Figure B-3 Dislocation cell structure in pure aluminium under cycling loading 
at a,b) ∆� = 10 %, T=78 K [20] c) ∆� = 0.2 %, T=78 K [18]. ..................... 207 

Figure B-4 Dislocation cell structure developed in 99.8% pure aluminium 
under cyclic loading at∆��� = 1%, T=298 K [19] a) extruded hard b) 

extruded soft. The cell size and thickness are measures with reference 
to the scale given in the figure. ................................................................ 207 

 



xv 

 



xvi 

List of Tables 

Table 2-1 Summary of different scaling level parameters. ............................... 39 

Table 2-2 Summary of materials and their properties used in Monte Carlo 
analysis. ..................................................................................................... 44 

Table 2-3. Most likely values and 95% confidence interval of activation 
energy and thermal slip resistance computed for pure metals and alloys 
computed from GEV distributions. ............................................................. 49 

Table 3-1 Fundamental parameters for aluminium. .......................................... 85 

Table 3-2 The constant � provide the approximate distance dislocation (l) can 
glide along a dominant slip system relative to the distance between 
channel walls (������). ................................................................................ 86 

Table 3-3 Summary of physical constants used in the constitutive model. ....... 90 

Table 3-4 Summary of temperature dependent parameters used in the 
model. ........................................................................................................ 90 

Table 5-1 ���
��� at the notch root for notches with different radii and same 

depth i.e. 25 ��. ...................................................................................... 170 

Table 5-2 The details of finite element model and representative 
microstructure. ......................................................................................... 171 

Table 5-3 Comparison between model and experiment: Effect of scribe root 
radii on the number of crack nucleation. .................................................. 177 

Table 5-4 Comparison between model and experiment: Effect of scribe root 
radii on the density of cracks. .................................................................. 178 

 

Table A-1 Shear modulus for different FCC metals and alloys. ...................... 201 

 

 



xvii 

List of Equations 

(2.1) .................................................................................................................. 33 

(2.2) .................................................................................................................. 33 

(2.3) .................................................................................................................. 33 

(2.4) .................................................................................................................. 34 

(2.5) .................................................................................................................. 34 

(2.6) .................................................................................................................. 34 

(2.7) .................................................................................................................. 34 

(2.8) .................................................................................................................. 35 

(2.9) .................................................................................................................. 35 

(2.10) ................................................................................................................ 36 

(2.11) ................................................................................................................ 36 

(2.12) ................................................................................................................ 36 

(2.13) ................................................................................................................ 36 

(2.14) ................................................................................................................ 37 

(2.15) ................................................................................................................ 37 

(2.16) ................................................................................................................ 47 

(2.17) ................................................................................................................ 57 

(2.18) ................................................................................................................ 57 

(3.1) .................................................................................................................. 74 

(3.2) .................................................................................................................. 74 

(3.3) .................................................................................................................. 75 

(3.4) .................................................................................................................. 75 

(3.5) .................................................................................................................. 76 

(3.6) .................................................................................................................. 76 

(3.7) .................................................................................................................. 76 

(3.8) .................................................................................................................. 76 

(3.9) .................................................................................................................. 76 

(3.10) ................................................................................................................ 77 



xviii 

(3.11) ................................................................................................................ 80 

(3.31) ................................................................................................................ 87 

(3.32) ................................................................................................................ 98 

(4.1) ................................................................................................................ 114 

(4.2) ................................................................................................................ 115 

(4.3) ................................................................................................................ 115 

(4.4) ................................................................................................................ 116 

(4.5) ................................................................................................................ 116 

(4.6) ................................................................................................................ 129 

(4.7) ................................................................................................................ 129 

(4.8) ................................................................................................................ 135 

(4.9) ................................................................................................................ 137 

(4.10) .............................................................................................................. 141 

(4.11) .............................................................................................................. 141 

(4.12) .............................................................................................................. 141 

(4.13) .............................................................................................................. 144 

(5.1) ................................................................................................................ 164 

(5.2) ................................................................................................................ 165 

(5.3) ................................................................................................................ 165 

(5.4) ................................................................................................................ 165 

(5.5) ................................................................................................................ 165 

(5.6) ................................................................................................................ 166 

(5.7) ................................................................................................................ 166 

(5.8) ................................................................................................................ 166 

(5.9) ................................................................................................................ 166 

(5.10) .............................................................................................................. 167 

(5.11) .............................................................................................................. 167 

(5.12) .............................................................................................................. 167 

(5.13) .............................................................................................................. 167 



xix 

(5.14) .............................................................................................................. 169 

(5.15) .............................................................................................................. 171 

 

 



xx 

List of Abbreviations 

FCC Face Centred Cubic  

SFE Stacking Fault Energy  

PSB Persistent Slip Bands 

Ni Nickel 

Cu Copper  

Ag Silver 

Al Aluminium 

��  Strain Ratio 

CSSC Cyclic Stress-Strain Curve  

∆��  Plastic Shear Strain Range  

SF Schmid Factor 

�

��
  Homologous Temperature  

��  Melting Point 

MSC Microstructure-Sensitive Small Fatigue Cracks 

FM Fracture Mechanics 

FIP Fatigue Indicator Parameter   

FS Fatemi-Socie  

TST Transition State Theory  

N Number of Cycles 

�� Number of Computational Cycles  

SC Single Crystal  

PC Polycrystal 

AA Aluminium Alloy  

SS Stainless Steel  

GEV Generalised Extreme Value 

Γ Probability of a Dislocation to Overcome an Obstacle 

T Temperature  

∆G Gibbs Free Activation Energy 

kB Boltzmann Constant 

Fo Glide Activation Energy  

��
� Thermal Stress at 0K 



xxi 

p, q Profile Parameters in Kock’s Formulation 

� Local Shear Stress 

∆�  Activation Volume 

∆�  Helmholtz Free Energy 

��
∗ Pinning Energy at Zero Stress  

��
∗ Taylor stress 

Cf  Conversion Factor  

��
�  Yield Stress 

FE Finite Element 

UMAT  User Material Subroutine 

�̇�
�  Effective Shear Strain Rate 

��̇ Shear Strain Rate 

�  Shear Modulus 

�� Shear Modulus at 0K 

����
�   Effective Shear Stress  

��  Local Resolved Shear Stress 

��  Athermal Stress 

��  Intragranular Back Stress 

���  Dislocation Line Energy Coefficient 

���  Self-Interaction Coefficient 

��  Density of Mobile Dislocations 

��
�  Initial Dislocation Density 

∆��
� Dislocation Density upon Loading upto Yield 

d Fixed Dislocation Mean Free Path 

������  Dislocation Substructure Wall Spacing 

�  Burgers Vector 

������   Similitude Coefficient 

������   Constant Related to Dislocation Production 

h   Planck’s Constant 

�� Shear strain in α Slip System 

�� Mean Spacing Between Point Obstacles  

���, a Fitting Constants Correspond to Fo and SFE Relationship 

������  Mean Free Path in Mesoscale Substructures 



xxii 

�� Attempt Frequency 

DSA Dynamic Strain Aging 

EV Extreme Value  

MLL Maximum Log-Likelihood 

F Deformation Gradient 

��  Elastic Component of the Deformation Gradient  

��  Plastic Component of the Deformation Gradient 

�� Plastic part of velocity gradient 

�� Slip Direction of α Slip System 

�� Normal Direction of α Slip System 

��̇ Rate of Intragranular Back Stress 

�����
�  Macroscopic Plastic Deformation Tangent  

�����, ��� Eshelby Tensor Components for Prolate Spheroid Coordinate 
System 

��  Wall Volume Fraction 

� Characteristic Spacing of Dislocation Substructure 

� Poisson’s ratio  

�� Tangent elasto-plastic Poisson’s ratio 

�̇�
�� Rate of Mobile Dislocation Density  

��
�� Density of Screw Dislocations in Primary Slip Plane (α) 

��
��

 Density of Screw Dislocations in Cross Slip Plane (�) 

��
����

 Edge Dislocation Annihilation Distance  

��
����� Screw Dislocation Annihilation Distance 

���
�  Cross Slip Activation Volume in Primary Slip Plane (α) 

���
�

 Cross Slip Activation Volume in Cross Slip Plane (�) 

�� Initial Structural Distance 

��� Cross Slip Efficiency 

����
����� Cumulative Plastic Shear Strain in Cross Slip Plane 

∆������ Range of Plastic Shear Strain in Cross Slip Plane 

����
�  Plastic Shear Strain Increment in α Slip System 

����
� Energy Based FIP in α Slip System 

���� Maximum Shear Strain  

��
���  Maximum Normal Stress on ����  Plane 



xxiii 

k Material’s Constant in Fatemi-Socie FIP 

�����  Fatemi-Socie Fatigue Indicator Parameter 

Δ����
�  Maximum Plastic Shear Strain Range  

�����
�  Fatemi-Socie FIP in α Slip System 

��������  Grain Averaged FIP 

�������  Band Averaged FIP 

����������  Local FIP  

����  Maximum Normalised Band Averaged FIP  

�������  Normalised Band Averaged FIP  

�������
�,�  Normalised Band Averaged FIP in one plane 

�������,���  Multislip Normalised Band Averaged FIP in one plane 

MS  Microstructure Sensitive  

∆��  Cyclic Plastic Shear Strain Range in Slip System � 

��
�  Peak Stress Normal to the Slip Plane �  

��  Cyclic Yield Strength 

����
��  Maximum Plastic Shear Strain  

����
��  Maximum elastic Shear Strain 

����
����� Maximum total Shear Strain 

��  Maximum Principal Stress 

��  Minimum Principal Stress 

��  Maximum Principal Strain 

��  Minimum Principal Strain 

���  Number of Elements 

���  Length of an Element 

MLB  Minimum Life Band 

�� , �� Fitting Constants Related to Geometric Gradient 

��, � Fitting Constants Related to Microstructural Gradient 

���
���

  Reference Grain Size  

���  Reference Band Size 

����  Maximum Total Shear Strain  

LCF Low Cycle Fatigue 

Δ���  Crack Tip Displacement 



xxiv 

Δ���th  Threshold Crack Tip Displacement 

��

��
  Crack Growth Rate 

∅   Proportionality Factor 

����,�����,��   Irreversible Local Plastic Shear Strain 

D Grain Size 

A, b Scaling Constant that Relates FIP and Δ��� 

E Modulus of Elasticity  

� Normal Stress 

� Normal Strain 

ℎ�   Height of Extrusion 

��   Crack Length in ith Band 

��   Stress Concentration Factor 

����,��� Reference Maximum Band Average FIP 

Δ���� Reference Nominal Strain Range  

 

 



1 

1 Introduction 

 

Fatigue refers to localised damage in structural materials under cyclic loading.  

Such a phenomenon can crack a structural component at relatively low 

engineering stresses or facilitate a surface defect to lead to fatigue failure [1]. 

Therefore, there is a keen interest in understanding the mechanical response of 

materials under cyclic loading to ensure safety and structural reliability. 

High-performance computing along with numerical models improved our 

capabilities to redesign and advance better fatigue-resistant materials at low cost. 

However, efforts are still required to upgrade the models based on existing 

experiments. Here, this work leverages critical reviewing the existing experiments 

and models at different scales related to cyclic deformation of face-centered cubic 

(FCC) metals. The perceived information is used to construct a physics-based 

model that can predict the deformation response at different length scales and 

serve as an engineering tool.  

1.1 Research motivation  

This thesis studies aluminium, which is a widely used commercial aircraft material 

and a relatively high stacking fault energy FCC metal. Several studies [2–4] 

reported that the cyclic response of aluminium seems to differ substantially from 

other FCC metals at room temperature. For instance, a detailed review on cyclic 

deformation of FCC metals [5] demonstrated that Ni, Cu, and Ag evolve similar 

saturated dislocation substructures at mesoscale under cyclic loading at room 

temperature. However, they [5] did not include aluminium due to a lack of 

persistent slip bands (PSBs) at room temperature. 

This research reviews experimental data related to the cyclic response of FCC 

metals to understand how aluminium differs from other FCC metals. Following 

on, this research mainly comprises of two main pillars,  

1- Understanding aluminium mechanical response under cyclic loading 

compared to other FCC metals: Development of physics-based crystal 
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plasticity framework that can predict the cyclic response of aluminium 

under different loading conditions. 

2- Effect of shallow notches on microstructure-sensitive fatigue crack 

propagation in pure aluminium.  

The following sections describe the problem’s background and explain the need 

for research in the respective areas.  

1.1.1 Mesoscale substructure evolution during cyclic deformation 

When an annealed FCC metal is subjected to fully reversed (�� = −1) strain-

controlled loading, its microscopic examination shows complex dislocation 

arrangements: periodically ordered structure with dislocation rich and dislocation 

poor regions at mesoscale [6]. These dislocation arrangements are also termed 

as mesoscale dislocation substructures. The distinct stabilised substructures 

such as veins, persistent slip bands (PSBs), labyrinth, and cells were observed 

in Ni, Cu, and Ag single crystals subject to different crystal orientations and 

loading conditions. Figure 1-1 shows the effect of crystal orientation on saturated 

dislocation substructures evolved in FCC metals during cyclic deformation.  

 

Figure 1-1 Explicit effect of crystal orientation on the evolution of dislocation 

substructure during cyclic deformation [5]. 

 



3 

An important aspect of the mesoscale dislocation substructure is that they have 

a distinct effect on the cyclic stress-strain curve (CSSC) [5,7] as shown in  Figure 

1-2  [5]. These substructures accommodate plasticity during cyclic deformation 

and control hardening (mean stress response) of the material. Recent efforts [8] 

have proposed a crystal plasticity framework based on mesoscale substructure 

to predict the cyclic response of Ni single and polycrystal at room temperature. 

The substructures as shown in Figure 1-2 appear consistently in FCC metals 

under different loading conditions, which demonstrates that the underlying 

deformation mechanisms driving these substructures are important for predicting 

the mechanical response. This further shows that these substructures can be 

used as an invariant to model the cyclic response of FCC metals. 

 

 

Figure 1-2 Evolution of dislocation substructures corresponds to different stages 

of CSSC in single slip oriented Cu single crystal [5]. 

 

Based on the experimental studies related to FCC single crystals (Ag, Cu, and 

Ni) by Li et al. [5] and references therein, the effect of loading condition on the 

dislocation substructure during cyclic deformation can be summarised as, 
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1. When single crystal oriented for single slip i.e. [123], [-149], and [153] is 

deformed under cyclic loading, dislocations start accumulating along the 

primary slip system during the first few initial cycles [9]. Repeated tension 

and compression cycles produce positive and negative dislocations. 

These opposite sign dislocations attract each other and become trapped, 

thereby form dislocation dipoles [10]. Note that only edge dislocations of 

opposite sign form dislocation dipoles because screw dislocations can 

annihilate easily by cross slipping if stacking fault energy is high.  

The process of trapping continues until dislocation arrangement within 

veins is full of dislocation dipoles [10]. These dislocation dipoles form 

dislocation walls surrounded by dislocation- poor matrix region as shown 

in Figure 1-2. Mughrabi [7] highlighted that veins can accommodate 

plasticity upto shear plastic strain amplitude (∆��)  of 6 × 10�� (region A 

in Figure 1-2). Above ∆�� > 6 × 10��, ladder-type walls develop that lead 

to persistent slip bands (PSB) structure. These PSBs correspond to the 

plateau region in CSSC as shown in Figure 1-2. PSBs can accommodate 

much higher plastic deformation upto 7.5 × 10�� (region B in Figure 1-2).  

Upon further loading, when the volume fraction occupied by PSBs reaches 

100%, cell structure (region C in Figure 1-2) forms due to activity of 

secondary slip [11,12].  

2. Crystals loaded along the [001] direction form a labyrinth structure due to 

activation of Hirth locks [5] as shown in Figure 1-2. At low strain 

amplitudes, vein-type structure forms, which transforms into a labyrinth 

structure with the increase in strain amplitude [5]. No saturation or plateau 

region was observed for this orientation [13]. Li et al. [5] demonstrated that 

critical slip systems play a major role in the formation of labyrinth 

structures. The (010) is the best plane to view the labyrinth structure, 

where two sets of PSB ladders form belonging to the primary and 

secondary critical slip systems. 

3. Uniaxial loading along [011] direction typically forms a ladder-type wall 

structure [5]. The [011] crystals form a plateau region [14]  in CSSC similar 
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to single slip crystals (region B in Figure 1-2).  This plateau region 

becomes narrower, as we move towards [001] and vanishes at [001] as 

shown in Figure 1-1. The [001] and [011] activate multiple slip systems and 

have the same Schmid factor (SF), however, the latter does not evolve 

cross slip [8].  

4. Crystals oriented along [111] loading direction has the lowest SF. These 

crystals also form a vein structure at lower strain amplitude, which directly 

transforms into cells skipping intermediate PSBs with increasing strain 

amplitude due to the activation of multiple slip systems and profuse cross 

slip [15]. The CSSC of [111] crystal also does not present any plateau 

region [14] similar to [001]. Li et. al. [5] mentioned that the activation of 

coplanar slip systems plays a primary role in the formation of cell structure.  

5. High stacking fault FCC single crystals promote cross-slip and form cell 

structure earlier at low stresses.  

6. The effect of crystal orientation is strongly affected by loading conditions 

i.e. if the peak stress or strain increases sharply then the cell structure will 

form irrespective of loading condition [16].   

7. Deformation at higher homologous temperature (
�

��
) also promotes the 

formation of cell structure earlier due to the increase of cross slip. 

However, the upper temperature limit for the disappearance of plateau-

region is different for different FCC crystals e.g. for Ni is ~750 K and Cu is 

~523K [17,18].   

Although not clearly stated, most studies [2–4,19] missed recognizing that 

aluminium also evolves the same dislocation-substructures [20], however at 

different absolute temperatures as shown in Figure 1-3.  
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a) b)  

c) d)  

e)   f)  

Figure 1-3 a) PSB in aluminium single crystals near (2��) at ��� = � × ����, ���� =

�� at 77K [21], and b) PSB in aluminium single crystals near (2��) at ���� = � ���, 

� = � × ��� at 298K [22]    c) Labyrinth structure [001] aluminium single crystal at 

��� = �. � × ����, � = ����� [23] d) cell structure in pure aluminium at  
���

�
=

�. �� × ���� [24]  e) [100] dislocation walls in pure aluminium[20] at 77K, �� =

 �. � × ����, N = 5000 f) [201] dislocation walls in pure aluminium at 223 K , �� =

 � × ����, N = 23000 [20]. 
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It is evident from Figure 1-3 that aluminium evolves veins, labyrinth, and cell 

structures under room temperature and other loading conditions similar to other 

FCC metals. Besides, Figure 1-3(a) showed that aluminium also evolves ladder-

type PSBs at 77K similar to Cu and Ni at 298K. The difference between the 

mesoscopic response of aluminium and other FCC metals argued in literature [2–

4] is the temperature at which substructure develops.  

 

Figure 1-4 Comparison of cyclic response of FCC single crystals [7,17,19,21,25–

28]. Shear stress is normalised by shear modulus at the respective temperature. 

Colorbar represents homologous temperature (
�

��
).  

Figure 1-4 presents the existing experimental data for Ni, Cu, Ag, and aluminium 

single crystals, which demonstrates further that aluminium has a plateau region 

at lower number of cycles corresponding PSBs at room temperature. Following 

on, this work hypothesizes that aluminium evolves similar dislocation 
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substructures as other FCC metals at different temperatures. However, the detail 

of the underlying response is an open question. The challenge is determining the 

physics controlling and deviating the cyclic response of aluminium single crystal. 

Following on, this work focuses on, 

1- Understanding the deformation mechanisms controlling the cyclic 

response of FCC metals using existing literature to predict the mechanical 

response, 

2- Bridge the modelling gap between medium to high stacking energy FCC 

metals. 

1.1.2 Scribe marks on aircraft fuselage skin  

Scribe marks are micron-sized scratches introduced at fuselage joints using a 

sharp-edge tool during the sealant removal process prior to repainting [29]. These 

scratches [30,31]  are not deeper than 200- 300μm in size, however, their location 

in a high stressed area close to the joints makes them a potential spot for a small 

fatigue crack nucleation site. Some investigations [30] showed that scribe marks 

of less than 200 μm depth can reduce fatigue live significantly under service 

loads. Following on, Cini A. [32] studied the effect of scribe geometry on 

nucleation and propagation of small fatigue cracks in cladded 2024- T351 

aluminium alloy. The study [32] found that all the scribed samples showed 

microstructure-sensitive crack growth near the notch root and early growth was 

strongly influenced by the local microstructure.  

Furthermore, the nucleation density of small cracks was found to be sensitive for 

25 μm deep scribe inside the cladding (pure aluminium) [32]. Since we aim to 

develop a physics-based model to study the cyclic response of aluminium, this 

work further considered employing the crystal plasticity model to study the effect 

of shallow scribes on microstructure-sensitive fatigue crack growth in pure 

aluminium along with validating it with experiments [32]. 
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1.2 Crystal plasticity modelling    

Microstructure-sensitive small fatigue cracks (MSCs) from shallow scribes spend 

a major proportion of their fatigue lives growing inside a grain [33] and for entering 

into the next grain, they need to overcome the local crystal plasticity barrier [34]. 

Therefore, it is essential to consider the crystal plasticity response of individual 

grains while studying the growth of MSCs. 

In general, there are two kinds of crystal plasticity models: rate-dependent and 

rate-independent. In the rate-independent crystal plasticity models, the lack of 

robust strategy to determine slip systems and shear rate on each slip system 

makes the numerical analysis of crystalline material difficult [35,36]. Alternatively, 

a rate-dependent crystal plasticity model was proposed by Asaro and Needleman 

[37] that relate shear rate with resolved shear stress on each slip system. In these 

models, the amount of shear that appears on certain slip systems depends on 

the resolved shear stress of that system. This work considered a rate-dependent 

crystal plasticity model to study the cyclic response of aluminium.  

Several researchers [37–39] proposed a power law relation between shear rate 

and resolved shear stress to study the deformation in ductile single crystals. 

However, this phenomenological relation lacks physical interpretation such as 

activation energy required to overcome local barriers to glide etc. Furthermore, 

the power law relation also does not account for the effect of temperature unless 

exponent explicitly include it. On the other hand, Gibbs [40] noted that the 

probability of dislocation to overcome the barrier has Arrhenius temperature 

dependence on the barrier. He discussed two common formulations to quantify 

Gibbs free energy (∆G). The choice of ∆G formulation is one of the differences in 

present thermally activated flow rules. This work considered both ∆G formulations 

to quantify dislocation glide activation energy and rationalise the difference.  

Another difference in existing rate-dependent crystal plasticity models is the 

hardening mechanism. Several researchers [41–45] proposed a dislocation 

density-based hardening mechanism in which the shear rate in slip systems is 

primarily controlled by dislocation density. The models showed a good agreement 

with experimental trends. However, these models are much difficult to validate at 
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microscale due to the error in quantification of dislocation densities 

experimentally. Besides, these models are calibrated to study the deformation of 

polycrystals. However, some dislocation density-based models such as those 

proposed by Ma and Roters [44,46] and Dunne and co-workers [42,43,47,48] do 

not account for intragranular back stress, which is essential to study the cyclic 

response of FCC metals [49].  

FCC metals at mesoscale evolve dislocation substructures that are composed of 

low dislocation density soft region and high dislocation density hard regions. 

These substructures induce back stress that represents kinematic hardening at 

the macroscopic scale. Some other models  [50–52] considered back stress to 

account for internal stress that arises due to bowing-out of dislocation between 

precipitates. However, these models do not consider the geometry and wall 

volume fraction that characterize the dislocation substructure. Lemoine et al. [53] 

proposed a model that considered cell interior surrounded by a wall to account 

for back stress. However, this model is thermoelastic and compute very high back 

stress above 10�� plastic strain [54].  

Sauzay [49] proposed a model to estimate the back stress induced by dislocation 

substructure using Eshelby inclusion problem solution. Castelluccio and 

McDowell [8] proposed a mesoscale substructure-based hardening mechanism 

that predicts deformation response of low- medium stacking fault energy FCC 

single crystals at meso and macroscopic scales. They incorporated a physics-

based framework to account for back stress associated with mesoscale 

dislocation substructure. The model [8] reproduced the stress response of 

different single crystals oriented along different crystallographic directions without 

changing model parameters.   

Mesoscale substructure-based hardening mechanism has several advantages 

over dislocation density-based hardening. For instance, volume wall fraction of 

dislocation walls plays a similar role in kinematic hardening in mesoscale 

substructure as geometry necessary dislocations (GNDs) in dislocation density-

based models. However, volume wall fraction can be validated with more 

accuracy than GNDs using transmission electron microscopy TEM data. 
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This work aims to study the effect of shallow scribes on MSCs in single grains. 

Since the dislocation density-based models were calibrated for the average 

response of grains (polycrystals), the accurate response of single grain may not 

be guaranteed. Instead, Castelluccio and McDowell [8] model seem more 

promising as it accounts for the effect of orientation on the deformation of single 

crystals. Additionally, this work hypothesised that aluminium evolves similar 

mesoscale dislocation substructures as other FCC metals but under different 

loading conditions. This also supports Castelluccio and McDowell [8] model due 

to the same deformation mechanism at the mesoscale. Moreover, TEM images 

suggest that parameters related to physical processes at mesoscale should not 

be much different for aluminium compared to other FCC metals. These 

parameters have been studied independently using experiments and bottom-up 

approaches for different FCC single crystals. Therefore, uncertainty related to 

these parameters can be quantified independently.  

However, atomistic scale parameters such as glide activation energy have 

normally been calibrated for specific models using different approaches [8,55,56]. 

Thus, a comparison of glide activation energy for different FCC metals is difficult. 

Besides, glide activation energy parameters cannot be inferred from TEM 

substructures. Recent progress [57–59] with molecular dynamics simulation has 

successfully quantified the activation energy barrier. However, their high 

deformation rates and smaller-scale assumptions limit the applicability of results 

to coarser multiscale models. Other efforts [55,60] employed macroscopic 

experimental data to estimate activation energy parameters. However, these 

phenomenological approaches do not anticipate strengthening from point 

defects, dislocation, and grain boundaries, which operate at different length 

scales. Hence, this work aims to quantify and compare the activation energy for 

FCC metals independent of macroscopic response.  

1.3 Microstructure-sensitive fatigue cracks 

The term microstructure in this thesis is referred to as microstructural attributes 

with crystallographic orientation, grain size, and grain morphology, etc. 

Microstructure-sensitive small fatigue cracks (MSCs) are defined as cracks 
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having dimensions comparable to or smaller than the material‘s microstructure 

dimensions [61]. Fatigue damage represents crack initiation and crack growth 

inside a grain. At this length scale, crack initiation and early growth are influenced 

by the local microstructure and dislocation substructure [62]. Moreover, the 

kinetics of MSC growth depends on crack length relative to grain size [63]. These 

characteristics of small cracks reduce the applicability of traditional fracture 

mechanics (FM) at the microscale level [61,64]. The similitude assumption of FM 

states that two cracks in different geometric locations with the same stress 

intensity factor have the same crack driving force and cracks extend at the same 

rate per fatigue cycle [61].  

MSC growth is sensitive to grain anisotropy and controlled by local plastic shear 

along the slip systems [62]. This local plastic field of small cracks does not 

resemble a homogenised plastic field far from the crack tip predicted by FM laws 

and invalidates the similitude assumption. Hence, the driving force for MSCs 

needs to be characterised by local fields (stress and strains along slip systems). 

Sub-grain localization of slip is sensitive to microstructural features such as grain 

orientation, grain size, and grain boundaries, etc. These microstructural attributes 

combined with loading conditions define the accumulation of plasticity in 

individual slip systems, which further result in the formation of mesoscale 

dislocation substructures e.g. PSBs [10]. These substructures influence MSC 

growth.  

Forsyth [62] noticed that the early growth of MSCs is driven by local shear along 

the slip bands. Following on, He [62] characterised MSC growth into two stages 

i.e. stage I and stage II. Stage I represents the initial phase in which plastic 

deformation preponderantly occurs along the single most active slip plane, which 

facilitates the crack to grow along a well-defined crystallographic plane as shown 

in Figure 1-5. On the other hand, stage II corresponds to the activation of multiple 

slips along different planes, which results in nonplanar crack growth due to 

multiaxial driving forces.  
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Figure 1-5 Microstructure- sensitive fatigue crack growth: Schematics of transition 

from planar (stage I) to non-planar (stage II) crack.  

The local measures of driving force generally used in continuum models are 

referred to as fatigue indicator parameters (FIPs). These FIPs are used as a 

subrogate measure of driving forces that correlated with crack progress. Dunne 

and their co-workers [65–67] introduced an energy-based FIP to study 

microstructure-sensitive fatigue crack growth. They proposed that the maximum 

accumulated energy along the slip systems is an indicator of a crack nucleation 

site. These efforts [68] also considered predicting crack growth rate from notches 

using a 2D model, however, the lack of a third dimension may compromise real 

microstructure-induced fatigue variability. Castelluccio and McDowell [69–71] 

developed crystal plasticity models to study MSC growth using critical plane- 

approach based Fatemi-Socie (FS) FIP. They [69] showed an oscillatory crack 

growth rate inside a grain using FIP as a function of crack length. However, these 

efforts did not consider the notch effect on microstructural variability of FIPs.   

Several other efforts [52,72–74] employed strain accumulation criteria to study 

MSC growth. Rovinelli et al. [75] performed a probabilistic analysis to assess 

different energy and slip-based FIPs. The study [75] revealed that all the FIPs 

show similar behaviour, carry failure information upto an extent, and have an 

equivalent level of uncertainty. Recently, Wilson et al. [68] argued that energy-

based FIP has more physical meaning as compared to FS FIP. In this thesis, 

cyclic plastic shear strain range ( FS FIP) and strain energy along slip systems 
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that accounts for microstructural sensitivity are used as crack driving force. This 

work aims to compare FS and energy- based FIPs to study crack propagation in 

aluminium.  

Extensive research [76–80] has been done on studying the effect of a notch on 

fatigue life. However, these studies considered engineering size (~few mm) 

notches in which notch root radii was larger compared to the material 

microstructure. Therefore, a stress field produced by these notches extends 

many times longer than the microstructure dimensions, which makes these 

notches insensitive to material microstructure [81]. Contrarily, if the size of the 

defect is comparable to the grain dimension then crack growth is strongly 

influenced by local grain anisotropy [32].   

The prior literature demonstrates the need for microstructure-sensitive models, 

however, estimation of fatigue life considering the effect of shallow notches was 

not studied explicitly. The estimation of fatigue life considering coupled driving 

forces i.e. geometric and microstructure gradients using crystal plasticity 

simulations is computationally intensive. This work aims to innovate new 

computational tools that can predict the effect of geometric gradient on 

microstructure-sensitive fatigue crack growth.   

 

1.4 Research study rationale  

1.4.1 Research aims and objectives 

The overall scientific aim of this thesis is to develop a physics-based model that 

can explain the cyclic response of aluminium single and polycrystals to study 

microstructure-sensitive fatigue cracks from shallow scribes. The specific 

objectives are: 

I. The dislocation glide activation energy will be estimated for aluminium 

considering the strain rate effect and methodology will be validated for 

other FCC metals. Other stochastic scaling level parameters present in the 

model will be estimated for aluminium independently. 
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II. The macroscopic cyclic stress-strain response of aluminium will be 

reproduced by parametrizing the micro and mesoscale attributes. 

Uncertainty related to model parameters will be quantified independently. 

III. The effect of notch geometry and loading conditions will be determined on 

microstructure-sensitive fatigue crack growth. Models will be compared to 

experiments in the literature.  

1.4.2 Thesis structure 

Figure 1-6 presents a graphical summary of the thesis structure. The second 

chapter (first pillar) overviews the model parameters related to physical 

processes at atomic scales. Since there is no ad-hoc methodology to estimate 

glide activation energy parameters for different materials, this work proposed the 

estimation of these parameters for several FCC metals and alloys independent 

of model response. We consider the interaction of dislocation with point-obstacles 

as a basic mechanism of strengthening in metals. This work employed a transition 

state theory (TST) based thermally- activated flow rule, which relates the glide 

activation barrier with the dependence of yield stress on temperature while 

coupling information from different scales. 

The third chapter (second pillar) considers understanding the cyclic response of 

aluminium compared to other FCC metals. We recognised that the cyclic 

response of aluminium is sensitive to number of cycles (N) at 298K contrary to 

other FCC metals. Some efforts [2] have shown the effect of N on dislocation-

substructure in stainless steel 316L. However, no other data was found for FCC 

metals at 298K in this regard. This consideration lacks the attention of 

researchers. This work aims to predict the explicit effect of N along with other 

loading conditions on the cyclic response of aluminium.  

The fourth chapter studies the role of multiple gradients (driving forces) in fatigue 

crack formation.  Since a micron-sized notch has a comparable dimension with 

grain size, therefore, the local microstructure plays a role in fatigue crack 

propagation. Hence, fatigue prognosis from a micron-sized notch requires 

estimating the driving force considering microstructure as well as the geometric 



16 

gradient. Firstly, this work aims to study the effect of microstructure and notch 

geometry on FIPs explicitly. In this thesis, the effect of microstructure on the 

gradient of FIP as crack extends through a grain is termed as the microstructural 

gradient. Whereas the effect of notch geometry on the gradient of FIP ahead of 

notch tip is referred to as geometric gradient. The estimation of coupled geometric 

and microstructure gradient using crystal plasticity simulation is computationally 

intensive. This work proposed an engineering approach to couple microstructure 

and geometric gradients independently to reconstruct an equivalent driving force 

quantified by crystal plasticity simulation.  

The fifth chapter considers estimating microstructure-sensitive transgranular 

fatigue life using an independently coupled microstructure and geometric 

gradients proposed in chapter 4. The results are compared with experiments. The 

approach provides a tool to account for multiple gradients independently that play 

a role in fatigue crack formation.  

The sixth chapter correlates the findings from earlier chapters and discusses the 

overall impact of the work. Finally, the seventh chapter concludes this work and 

presents recommendations for future work. 
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Figure 1-6 Overview of thesis structure. 
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2 Estimation of Dislocation Glide Barrier in FCC Metals 

and Alloys 

 

2.1 Introduction 

Strain hardening in single-phase metallic materials is often controlled by the 

production and flux of point and line defects [1]. Vacancies, interstitials and 

substitutional atoms, dislocations, lattice mismatch, and grain boundaries, etc., 

independently contribute to hardening and create an energy barrier that needs to 

be overcome to enable the plastic flow. Frost and Ashby [2] characterised 

dislocation strengthening by obstacles as weak, medium, and strong based on 

the type of interactions. Point obstacles such as isolated solute atoms, 

interstitials, and vacancies are weak strength obstacles; forest dislocations or 

dislocation- dislocations are medium strength obstacles while precipitates are 

strong obstacles. In a general engineering alloy, these obstacles coexist and 

contribute to the overall resistance.  

Recent progress with molecular dynamics calculations [3–5] has successfully 

quantified the energy barrier for simple systems. However, the small scale and 

high rate of deformation of atomistic models make it difficult to transfer 

quantitative data to coarser multiscale models. Furthermore, the combinatorial 

analysis of atoms distributions in alloys is still unresolved and the results are often 

valid for a specific strengthening mechanism with a certain atomic order. Other 

efforts [6,7] have attempted to calculate the activation energy for dislocation glide 

from macroscopic experimental data. For example, Frost and Ashby [2] 

characterised plastic flow by considering the yield stress at low temperatures. 

Following this idea, Balasubramanian and Anand [8] calculated activation energy 

to study the elasto-viscoplastic behaviour of polycrystalline aluminium. Their 

approach computes the thermal and athermal hardening simultaneously using 

yield stress data at different temperatures for polycrystalline aluminium. Thermal 

stress represents thermally activated barrier due to solute atoms, vacancies or 

short-range interactions that can be overcome with aid of thermal activation at 
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atomistic scale. Whereas athermal stress corresponds to temperature 

independent dislocations interactions such as pile ups or long-range interactions 

at mesoscopic scale. The aforementioned approaches [8] relied on 

phenomenological constitutive models that do not discern strengthening from 

point defects, dislocation, and grain boundaries, which operate at different length 

scales. A further limitation of previous efforts is the simultaneous estimation of 

multiple parameters, which sums up the uncertainty from various mechanisms 

across different scales. Indeed, not all mechanisms become active upon a 

change in loading conditions (e.g., monotonic, cyclic, etc.), so the results are not 

fully transferable across scales, models, and loading conditions.  

Here, we leverage on the approach introduced by Frost and Ashby [2], but we 

explicitly decouple the contribution of thermal and athermal stresses to 

parameterize the thermally-activated energy barrier for dislocation glide 

overcoming point obstacles. The glide activation barrier is characterised with a 

Monte Carlo approach by fitting a physics-based model that conveys independent 

strengthening mechanisms across scales to the tabulated yield stress data at 

different temperatures. Each mechanism is associated with uncertainty related to 

different input parameters, which are quantified independently. The results for 

different FCC metals and alloys provide a confined range for activation energies 

while informing the effect of model uncertainties.  

2.2 Mechanisms of dislocation glide  

Over 50 years ago, Eyring [9] recognised that inelastic deformation conforms to 

the principles of transition state theory (TST) and he hypothesised that stochastic 

perturbations at the atomic level control the rate at which dislocations glide. 

Indeed, atomistic simulations [4,5] have corroborated the stochastic nature of the 

mechanisms that control plastic flow. For instance, Esteban et al. [4] used 

molecular dynamics to compute the glide activation energy from the 

strengthening of Guinier-Preston zones. Similarly, Dong et al. [10] simulated the 

glide of a single dislocation to study the strengthening associated with the 

collaborative response of multiple obstacle types. However, their modelling 
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framework considered only athermal strengthening and lack of thermal activation 

explicitly.  

Following the TST approach, Gibbs [11] noted that the probability (Γ) of a 

dislocation to overcome an obstacle can be computed as, 

Γ = exp (
���(�)

���
)  ,                                                         (2.1) 

in which, kB is the Boltzmann constant, T is the temperature and ∆G is the Gibbs 

free activation energy required by a dislocation to bypass the barrier, which 

depends upon the local shear stress (�). The nature of the Gibbs free activation 

energy is still of much debate and there is no consensus on the most adequate 

formulation to estimate ∆G.  

Gibbs [11] discussed in detail probably the two most common approaches used 

to quantify ∆G. On the one hand, Gibbs free energy has been characterised by a 

dislocation-obstacle interaction potential, whose first derivate corresponds to the 

evolution of force (F) as a function of the distance travelled by a dislocation over 

the barrier (x). Seeger [12], Fleischer [13], and Mott and Nabarro [14] 

independently proposed interaction potentials considering different force-

displacement curves such as exponential, local tetragonal distortion, and 

sinusoidal, respectively. These interaction potentials can be described by, 

∆� = ��(1 − (
�

��
�)�)�,                                                        (2.2) 

in which  �� is the activation energy at zero stress, ��
� is the thermal stress at 0 K, 

and p and q are profile parameters that range between 0 to 1 and 1 to 2, 

respectively. On the other hand, the Gibbs free energy has also been quantified 

by, 

∆� = ∆� − �∆� ,                                                        (2.3) 

in which ∆� corresponds to the thermodynamic activation volume and ∆� is 

Helmholtz free energy.  
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Despite the ample use of both formulations, Langer [15] have recently argued 

about the lack of physical understanding of the origin of these mathematical 

formulations and has proposed a thermodynamically consistent approach in 

which: 

∆� = ��
∗exp (−

�

��
∗).                                                        (2.4) 

Where, ��
∗ is the pinning energy at zero stress and ��

∗ is the Taylor stress.  

Equations (2.2), (2.3), and (2.4) assume that their parameters are temperature-

independent. As noted by Kocks et al. [16], the temperature-independence of 

parameters is a reasonable assumption for glide resistance profiles without a 

plateau, which is the case for most FCC metals and alloys up to moderate 

temperatures. Since equation (2.2) requires four parameters rather than two as 

in the other two approaches, it makes the quantification of the parameters more 

stringent. Hence, we initially focus on determining independently the parameters 

for equation (2.2), which formulation has been extensively employed to model 

strain hardening in FCC single and polycrystals [8,17,18].  

Following the Orowan equation, we can relate the shear strain rate along the 

primary slip system (�) with the Gibbs free energy as,  

�̇� = �̇�
�exp (

���(�)

���
)                 (2.5) 

which combined with equation (2.2) leads to [17],  

�̇� = �̇�
� exp �−

��

���
�1 − �

����
�

��
� �

��

�

�

�

�

�                (2.6) 

Where, ����
�  is the effective shear stress, the parameters � and �� correspond to 

the shear modulus at � and 0K. Following on, the effective shear stress in 

equation (2.6) considers dislocation long-range interactions, 

����
� = 〈|�� − ��| − ��〉 (2.7) 
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and depends on the local resolved shear stress, (��), the athermal stress (��), 

and the long-range intragranular back stress (��) induced by the localization of 

dislocation densities.  

Since multiple deformation mechanisms become operative during deformation, 

the quantification of all relevant strengthening mechanisms along the entire 

stress-strain curve is a grand challenge. Instead, we limit the number of 

mechanisms by analyzing the deformation up to yield. Indeed, the influence of 

cross slip or long-range back stresses is less likely to be dominant at yield in well-

annealed materials. Instead, yielding is more likely to be dominated by the 

strength of dislocation pinning by point obstacles, as shown by the strong 

influence of impurities on yield stress [19]. Even when not all deformation 

mechanisms are activated, the yield stress still carries a significant amount of 

variability that should be taken into consideration. Based on this, we reorganised 

equation (2.6) in terms of the yield stress as follows,  

��
� =  ��� + ���

� �

��
� �1 − �−

���

��
ln �

�̇�
�

�̇�
���

�

�
�

�

�

� × ��.        (2.8) 

Here, �̇�
� is the strain rate, which corresponds to yield stress, Cf is a conversion 

factor that projects the mean shear stress into normal stress [20] and has a value 

that typically ranges from the Taylor factor (3.06) as an upper bound and to the 

Sachs factor (2.238) as a lower bound. This range represents an independent 

and approximate estimate of the conversion factor and accounts for some 

crystallographic variability.  

The athermal stress in equation (2.8) follows [17], 

�� = ���
��

�������
+ ��������     ,                                 (2.9) 

which conveys the stress required to bow-out dislocations (controlling dislocation 

production) and dislocation interaction stress (controlling coplanar hardening in 

Stage I). Here, ��� corresponds to the line energy scaling factor while ��� is the 

average interaction coefficient. In annealed metals, the contribution from latent 
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hardening on the stress at the onset of plastic deformation is negligible [21]. The 

principal role of dislocation production on secondary slip systems consists of 

promoting the formation of dislocation substructures and limiting the dislocation 

free path of the dominant slip. The dislocation substructure length scale ������ in 

equation (2.9) follows a similitude relation [22] as, 

������ = ������
��

�
    ,                                 (2.10) 

 Where, ������ is the similitude coefficient. By inserting the value of ������ in 

equation (2.9), we get 

�� = ���
��

�

���������
+ ��������                                    (2.11) 

Here, �� is the dislocation density on the primary slip system �. At yielding, 

macroscopic annealed materials have sparse dislocations and strengthening 

relies mostly on self-hardening interactions (we assume crystals over 1m in size 

to neglect dislocation starvation hardening [23]). We further incorporate the 

variability of hardening mechanisms by considering the uncertainty of the initial 

dislocation density and the role of grain size on limiting dislocation glide.  

Following on, we divide the total dislocation density into two contributions: initial 

dislocation density after annealing (��
�) and the increase in dislocation density 

upon loading up to yield (∆��
�), 

�� = ��
� +  ∆��

� ,                                 (2.12) 

Hansen [24] demonstrated that the dislocation density depends on grain size for 

the flow stress at intermediate strains, which is due to differences in the 

dislocations mean free paths. Hence, ∆��
� follows,    

∆��
� =

������ ��

��
  ,                                 (2.13) 

where, ������ is related to the production of dislocations and its value ranges 

between 1 and 4 [24–27], while  �� is the shear strain. The mean free path (d) 

can be estimated roughly as half the grain size, which corresponds to the average 

distance a dislocation would travel through the grain. Since the mean free path 
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impacts dislocation density and strengthening, equation (2.13) effectively 

introduces a dependence on the grain size and accounts for Hall-Petch effects.    

Finally, �̇�
� represents the effective shearing rate for a successful thermal 

activation event. The rate of increment in inelastic strain depends on the 

frequency, at which dislocations jump over point obstacles,  

�̇�
� = �����

���

�
    ,                                                               (2.14) 

In which h is Planck’s constant, and �� is the mean spacing between point 

obstacles. The term 
���

ℎ�  comes from Eyring’s reaction rate theory [28] 

collectively corresponds to an attempt frequency between 1010 to 1012 s-1. The 

obstacle spacing has a significant role in bypassing the energy barrier during 

thermal activation because a single event can create a cascade of unpinning 

events [29].  

By inserting the �� and �̇�
� from equation (2.11) and (2.14) in equation (2.8) and 

rearranging in terms of ��
�, we obtain a formulation that employs the glide 

activation energy to predict the yield stress as a function of temperature and strain 

rate, 

 ��
�(�) = ��������� + ���

� �

��
� [1 − {−

���

��
ln (

�̇�

�����
���

�

 )}
�

�]
�

�� ×
���������

(�����������)
. (2.15) 

Next, we employ experimental data and non-linear minimum-square regression 

to estimate, ��, ��
�, � and � independent of all other parameters.  

2.3 Independent estimation of parameters and their uncertainty 

We qualitatively divide the parameters in equation (2.15) into two categories 

related to their uncertainties: the first is related to fundamental parameters with 

low uncertainty such as �� and �. The shear modulus (�) is also a material 

parameter with relatively low uncertainty, which we accounted for by considering 

the Reuss and Voigt [30] models as lower and upper bounds respectively. These 

were computed using the elastic constants dependent on temperature from 
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Varshni [31]. Overall, the uncertainty of elastic constants has a minor secondary 

effect as demonstrated in Appendix A.1 (Figure A-1). 

High-uncertainty parameters are associated with the description of the mean 

value of stochastic processes such as atomic jump and dislocation-dislocation 

interactions. Dislocation density is one of the stochastic parameters that strongly 

depends on loading history and processing. Since its experimentally difficult and 

time consuming to precisely determine dislocation density values, these 

quantities are not frequently reported from experiments. Hence, we consider the 

typical range of initial dislocation densities for annealed materials as 

characterised by experimental dislocation density reports for various metals. 

These are relatively well understood and can be estimated with confidence. 

Mavlyutov et al. [32] studied the effect of annealing temperature on dislocation 

densities in ultrafine-grained aluminium and found values between 4 x 1012 m-2 

and 1.5 x 1012 m-2  for annealing at room temperature and 423 K, respectively. 

Similarly, Williamson and Smallman [33] estimated dislocation densities between 

1011 and 1012 m-2 for different annealed FCC metals. Here we assume an initial 

dislocation density (��
�) along primary slip system between 1x108 – 1x1011 m-2  

and ∆� (contribution from yielding) is calculated using equation (2.13) subject to 

the grain size of material. Typically, ∆�� ranges between 5 x 1012 to 1 x1010 m-2 

for grain sizes between 1 to 250 m [32]. In this analysis, the lower bound of 

dislocation density will remain 1x108 m-2, however the upper bound will be 

modified for every material subject to its grain size.    

The interaction coefficient (���) in equation (2.9) has been extensively estimated 

through experiments and dislocation dynamics simulations. The results obtained 

by multiple authors [34–38] reported a range between 0.1 and 0.3 for various 

materials and even for hydrogen pre-charged samples [39]. Furthermore, Fivel et 

al. [35] reported that interaction coefficients do not show significant change with 

the dislocation density and stress. As a result, we consider an average interaction 

coefficient between 0.1 and 0.3. 

The line tension coefficient (���) in equation (2.9) is related to the stress required 

to bow-out and multiplicate dislocations. Szajewski et al. [40] investigated 
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dislocation bow-out using molecular dynamics and quantified line tension in the 

range of 0.5 to 0.85. Tabata et al. [27] studied the effect of flow stress on 

dislocation behaviour in aluminium [111] single crystal assuming that the bow-out 

is pinned with forest dislocation in dislocation walls and used the line-energy 

coefficient as 1. Therefore, we assume that the line tension value should be in a 

range between 0.5 and 1.5. Furthermore, the similitude coefficient (������) in 

equation (2.10), Sauzay and Kubin [22] showed that FCC metals follow the 

similitude relation under cyclic and monotonic loading. They demonstrated that 

the similitude coefficient under monotonic loading varies between 5 and 10, which 

corresponds to the range employed in this study.  

Kocks et al. [16] bounded the profile parameters � and � in equation (2.2) 

between 0 to 1 and 1 to 2, respectively. Their calculations for ∆G considered 

different values and concluded that � = 3/4 and � = 4/3 represent an adequate 

description. Fleischer [13] derived � = 1/2 and � = 2  for a dislocation interacting 

with local obstacles creating a tetragonal distortion while Mott and Nabarro [14] 

proposed a sinusoidal interaction potential between dislocation and a particle in 

precipitate-hardened material and derived values of � = 2/3 and � = 3/2. More 

recently, Dong [41] used molecular dynamics to derive a polynomial expression 

for a dislocation-point obstacle interaction mechanism that resulted in � = 2/3 

and � = 3/2. Hence, we initially assume � = 2/3 and � = 3/2, but we will later 

consider other values in the range proposed by Kocks [16].  

Table 2-1 Summary of different scaling level parameters. 

Parameters Values 

Initial dislocation density (��) [32,33] 1x108 - 1x1011 m-2 

Average interaction coefficient (���) [34–38] 0.1 – 0.3 

Line energy (���)  [27,40] 0.5 – 1.5 

Similitude coefficient (������) [22] 5 – 10 

������ [24–27] 1 - 4 

Profile parameters 
[10,13,14,16,41] 

p 0 - 1 

q 1 - 2 

Mean separation distance between obstacles (��) [29] 1x10-9 - 50x10-9 m 
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Finally, Sobie et al. [29] studied the role of obstacle spacing on glide activation 

energy and proposed a spacing in the order of tens of nm. Following on, we 

assume the equivalent range for our analysis i.e. between 1 nm and 50 nm. Table 

2-1 summarizes the ranges of the parameters in equation (2.15) that were 

considered in the Monte Carlo analysis for evaluating �� and ��
�. 

2.4 Quantification of glide activation from yield stress data 

To quantify glide activation parameters �� and ��
� and their uncertainty, we 

implement a Monte Carlo approach that fits yield stress data to equation (2.15) 

as shown in Figure 2-1. There are two types of inputs considered in the analysis: 

Tabulated input and probabilistic input. The experimental yield stress data at 

different temperatures is the tabulated input as shown in Figure 2-2 and Figure 

2-3. The details of experimental data for different materials are also listed in Table 

2-2. The probabilistic inputs correspond to parameters from different deformation 

mechanisms in equation (2.15) that are known within range as shown in Table 

2-1. For each Monte Carlo calculation, a randomly chosen probabilistic inputs 

along with tabulated data is fitted with equation (2.15) using the least square 

fitting method to yield �� and ��
�. The lower and upper limits for �� and ��

� were 

defined between 0 – 5eV and 1 – 500MPa respectively. However, for ensuring 

the quality of results, we confirm that the results are not sensitive to these limits.  

Furthermore, the fitting quality is scrutinised and only those results with R-square 

above 0.8 are considered in the analysis.  

A total of 1000 iterations per metal was sufficient to converge the results. Each 

histogram was further analysed with an algorithm [60] to identify the distribution 

that best fits the data using the Matlab maximum likelihood estimation function. 

This function contains distributions such as normal, exponential, gamma, 

logarithmic, uniform, generalised extreme value (GEV), extreme value (EV), beta, 

and Weibull. The maximum log-likelihood (MLL) criteria calculate the sum of the 

log of probability distribution function values and return the mean and variance of 

the distribution. The analysis of multiple histograms shows that the GEV was 

optimal to represent the distributions and is used in the rest of the analysis. 
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Figure 2-1 Schematic of Monte Carlo approach to estimate �� and ��
� 

 

Pure metals and some alloys usually present a plateau in the yield stress at about 

0.2 homologous temperature. Several authors [42–45] associated the plateau 

with dynamic strain aging (DSA), in which impurities and solute atoms interfere 

with the mobility of dislocations [46]. Because equation (2.15) does not have any 

provision to account for the diffusion of point obstacles, we assume that they are 

static and limit our analysis yielding at low temperatures. 
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Figure 2-2 Normalised yield stress vs temperature for polycrystalline metals from 

various sources [42,43,47,48]. The normalization factor corresponds to the yield 

stress at room temperature. For aluminium, copper, and silver, yield data 

corresponds to 0.5% strain but is 0.2% for nickel. We consider each of the strain 

values as reported in experimental data in our analysis with equation (2.15).  
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Figure 2-3 Normalised yield stress vs temperature for polycrystalline alloys from 

various sources [49–52]. The normalization factor corresponds to the yield stress 

at room temperature. The yield stress was reported at 0.2% strain for all alloys. 
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Table 2-2 Summary of materials and their properties used in Monte Carlo analysis. 

Materials 
Annealing 
temp. [K] 

Mean 

grain dia. 
(d) [μm] 

Purity 

% 

Strain 
rate 

s-1 

Melting 
point 
[K] 

Stress(��)

@ 293K 
±� [MPa] 

SFE* 

[mJm-2] 

Aluminium 
[43] 

673 46 99.975 
6
× 10�� 

933.5 26 166 [53] 

Copper [47] 1023 45 99.999 
6
× 10�� 

1358.2 51 46 [54] 

Silver [48] 1073 40 99.97 
6
× 10�� 

1234.9 48 17 [55] 

Nickel [42] 866 45 99.85 
5.1
× 10�� 

1728.2 83 120 [56] 

Stainless 
steel 304 
[49] 

1344 90 N/A 
3.3
× 10�� 

1672-
1694K 

222 18 [57] 

Stainless 
steel 316 
[50] 

1423 65 N/A 
1
× 10�� 

1663-
1713K 

255 78 [57] 

Cupro - 
Nickel [51] 

866 35 N/A 
5.1
× 10�� 

1444.2 149 92 [58] 

AA 3003 
(1.2Mn) [52] 

603 100 N/A 
8.3
× 10�� 

928.16 41 140 [59] 

*   Stacking fault energy (SFE) 

Figure 2-4 and Figure 2-5 present the distribution of the glide activation energy 

and thermal stress respectively, as obtained from the Monte Carlo analysis The 

red lines in Figure 2-4 and Figure 2-5 depict the fitting of the GEV distribution 

while the most probable value and 95% confidence interval are summarised in 

Table 2-3. 
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Figure 2-4 Glide activation energy of aluminium, nickel, copper, and silver. The red 

line is the best fit according to GEV distribution.  

 

Figure 2-5 Thermal slip resistance of aluminium, nickel, copper, and silver. The 

red line is the best fit according to GEV distribution. 
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Figure 2-6 and Figure 2-7 illustrate the glide activation energy and thermal slip 

resistance computed for multiple alloys respectively. For each material, the 

activation energy for alloys with the same input parameters as used for pure 

metals seems to present less variability than thermal slip resistance, especially 

for alloys with higher yield stress.  

 

Figure 2-6 Glide activation energy of SS 304, SS316, Cupro-Nickel and AA 

3003(1.2Mn). The red line is the best fit according to GEV distribution. 
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Figure 2-7 Thermal slip resistance of SS 304, SS 316, Cupro-Nickel and AA 3003 

(1.2Mn). The red line is the best fit according to GEV distribution. 

Overall, activation energy resulted in narrow ranges between 1 and 3 eV, which 

indicate, as expected, weak point obstacles according to Frost and Ashby [2]. On 

the contrary, the thermal stress, so, presented much wider ranges between 15-

350 MPa. To further explore these magnitudes, Figure 2-8 presents the 

correlation with the stacking fault energy (SFE). Although there seems to be no 

correlation for the thermal stress, the activation energy presents an inverse 

proportionality with the SFE that can be parameterised as: 

�� = ��� −  � ∗ ���                                                                                (2.16) 

Where ��� = 2.5 (±0.18), � = 0.0066(±0.00177), are the coefficients of a linear 

fitting curve. The relation between the SFE and the activation energy has been 

suggested by Kocks for FCC metals [18].  
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Figure 2-8 Correlation between glide activation and stacking fault energy of 

different FCC metals and alloys. The experimental data for SS 310s alloy is given 

in Figure A-2.  
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Table 2-3. Most likely values and 95% confidence interval of activation energy and 

thermal slip resistance computed for pure metals and alloys computed from GEV 

distributions. 

Material 
Activation energy 

‘eV’ 

Thermal slip resistance 

‘MPa’ 

Aluminium 1.37 + 0.17 20.1 + 2.53 

Nickel 1.77 + 0.13 45.18 + 5.48 

Copper 2.41 + 0.26 19.2 + 3.71 

Silver 2.47+ 0.14 29.5 + 4.2 

Stainless steel 304 2.37 + 0.12 167.2 + 14.7 

Stainless steel 316 1.88 + 0.08 274.7+ 26.1 

Cupro-Nickel 2.10 + 0.09 97.18 + 11.0 

AA 3003 (1.2Mn) 1.87 + 0.10 26.79 + 3.65 

Stainless steel 310s 2.05 + 0.08 295.27 + 27.67 

Cu- 7.6%Mn 1.84 + 0.07 62.78 + 1.8 

Aluminium single crystal 1.42 + 0.08 5.81 + 0.15 

Nickel single crystal 1.75 + 0.06 26.22 + 1.28 

Copper single crystal 2.39 + 0.19 4.39 + 0.62 

 

2.4.1 Effect of solute concentration on �� and ��
�  

Continuing with the analysis of thermal stress, we recall the work from Wille et al. 

[61], who studied the effect of solute concentration on activation energy 

parameters in Cu-Mn single crystal oriented for single slip. Their analysis used 

an empirical relation for the activation volume to quantify the sensitivity of 

activation energy and thermal stress to solute concentration. To validate our 

approach, we consider the shear stress data at different temperatures from Wille 

et al. [61] (as shown in Appendix A.2 (Figure A-2)) to compute the activation 

energy parameters. Figure 2-9 presents the glide activation and thermal stress 

with a 95% confidence interval determined using GEV distribution. Our results 

agree with the trends from Wille et al. [61] and demonstrate that an increase in 
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solute concentration increases primarily the thermal stress rather than the 

activation energy. We highlight that our analysis does not require the empirical 

relation proposed by Wille et al. [61], but fully relies on physics-based 

mechanisms parameterised independently. 

 

Figure 2-9 Activation energy and thermal stress of Cu-Mn alloy with different 

solute concentrations. Error bars correspond to a 95% confidence interval. 

2.4.2 Effect of hydrogen concentration on �� and ��
�  

Figure 2-10 and Figure 2-11 show the effect of hydrogen on activation energy 

parameters in SS 310s and pure Ni respectively. Both results show that �� and 

��
� increase with the increase in hydrogen concentration. The role of hydrogen in 

mechanical response of metals is stochastic as it appears to soften or harden the 

FCC metals. Some studies [62] explored the increase of drag stresses in �-Fe 

while studying hydrogen interaction with vacancy complexes using atomistic 

simulations. Tehranchi et al. [63] studied the effect of hydrogen interaction with 

different solutes in the Ni matrix independently. They [63] reported that hydrogen 
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interaction with vacancies in the Ni matrix causes a softening effect, whereas 

interaction with carbon and sulphur solute atoms renders a hardening effect. The 

study [63] reveals that role of hydrogen is also sensitive to the impurities and 

solute atoms present in metals. The experimental data [64,65] used in Figure 2-10 

and Figure 2-11 analysis also has traces of carbon and sulphur solute items along 

with a hydrogen environment. Hence, the finding [63] indirectly supports the 

increase of �� and ��
�  with an increase of hydrogen concentration. 

 

Figure 2-10 Glide activation energy of stainless steel 310s with different 

concentrations of hydrogen. The red line corresponds to the best fit according to 

GEV distribution.  
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Figure 2-11 Effect of H2 concentration on glide activation energy and thermal 

stress of pure Ni. 

2.4.3 Single crystal analysis  

Further validation proceeds from an analysis of a single crystal oriented for single 

slip, which does not promote cross slip at low plastic strain amplitude. Hence, to 

ascertain that the estimated activation energies relate indeed to the gliding 

process rather than cross-slip, we consider aluminium, nickel, and copper single 

crystals [66–68]. Figure 2-12 compares the activation energy for these single 

crystals (SC) and polycrystals (PC); the overlapping of activation energies 

between single- and poly-crystals supports our methodology. These results also 

highlight the variability conveyed by polycrystals.  

A second consideration is that the thermal stresses in polycrystalline analysis 

seem consistently higher than that in single crystals. One source for such effect 

is their difference in the level of impurities as shown before (these materials are 

effectively not pure when considering the thermal stress). 
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c)  

Figure 2-12 Activation energy and thermal stress of a) aluminium, b) nickel, and c) 

copper single (SC) and polycrystals (PC). Experimental data of polycrystals 

[43,47,48] are shown in Figure 2-2 and data for single crystals [66–68] are given in 

Appendix A.2 (Figure A-2). The dimensions correspond to the grain size for 

polycrystals and crystal size for single crystals.  

2.4.4 Effect of grain size on yield stress 

Another aspect that requires consideration is the effect of grain size on yield 

stress [69], which may affect the estimation of the glide parameters. Figure 2-13 

presents the effect of different grain sizes on activation energy parameters. The 

overlapping of results in Figure 2-13 shows that glide activation energy and 

thermal stress are not significantly influenced by the grain size. This further 

validates the incorporation of the grain size effect in equation (2.15). 
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a)  

b)  

Figure 2-13 Effect of grain size on glide activation energy and thermal stress in a) 

copper b) silver. The upper bound of the dislocation density range is different for 

each case subject to the grain size.  
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2.4.5 Differences among activation energy formulations 

Finally, this work explores the role of the activation energy formulation on the 

activation parameters. First, we consider the effect of choosing different p and q 

values in equation (2.2) on the activation energy parameters. Here, we 

emphasize accessing the quantitative effect on activation energy parameters 

rather than establishing the phenomenological significance of these parameters. 

Figure 2-14 shows that changing the values of p and q between 2/3 to 1 and 1 to 

3/2, respectively, have a marginal effect on the activation energy parameters. 

Hence, we support Kocks [18] recommendation that p and q  should be picked to 

represent the dominant mechanism and should remain constant for the rest of 

the analysis.  
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b)  

Figure 2-14 Effect of different p and q values on a) glide activation energy and b) 

thermal slip resistance of different FCC metals. 

Next, we repeat the Monte Carlo analysis considering ����
�  and �̇�

� from equations 

(2.7) and (2.14), respectively, but with the energy barrier proposed on equations 

(2.3) and (2.4). By combining each of these equations with equation (2.5) and 

following algebra detailed in section (2.2), we obtain,  

��
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⎣
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���
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⎥
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 (2.17) 
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�(�) = ��������� −  ���

∗ × �� �−
���

��
∗ ln �

�̇�

�����
���

�

���� ×
���������

(�����������)
             (2.18) 

In equation (2.17), the activation volume is estimated by (����), in which �� is 

separation between point obstacles and � is an unknown average length of 

thermal activation or height of the barrier. Following the same procedure in 

section (2.4), we consider equations (2.17) and (2.18) to compute ��
∗, ��

�∗ and ∆�, 

�, respectively. The same criteria are employed for ensuring the fitting quality i.e. 

only fitting with a R-square value greater than 0.8 is considered. The materials 

that did not satisfy this criterion are not presented. 
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Figure 2-15 a) demonstrates that the glide activation energy and thermal stress 

in Langer formulation (equations (2.4)) follow similar trends as those found for 

Kocks formulation (Figure 2-8). Indeed, the activation energy correlates inversely 

with the SFE while the thermal stresses computed with equation (2.18) are 

roughly a third of the stresses computed with equation (2.15).  

Similarly, Figure 2-15 b) presents the Helmholtz activation energy and height of 

the barrier for different materials computed using equation (2.17). Here, the 

Helmholtz activation is almost independent of the SFE materials whereas, the 

height of the barrier demonstrates a positive correlation with the SFE.    
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b)  

Figure 2-15 Estimation of glide activation energy using a) equation (2.18) and b) 

equation (2.17). 

 

2.5 Discussion 

This study characterised the activation energy for dislocations to glide in FCC 

metals and alloys by combining physics-based arguments and parameter 

uncertainty quantification. These results can now be used along with mesoscale 

parametrisation to study mechanical response of aluminium. We considered 

three formulations for the Gibbs free energy as a function of the effective stress, 

which was computed using parameters that were estimated independently. The 

analysis used the least-square fitting of experimental data to determine only two 

parameters at a time rather than many coefficients [8,61]. As a result, we 

mitigated the spurious cancellation of error among parameters and we were able 

to estimate the uncertainty of the activation energy parameterization. Besides, 

we found a correlation between the SFE and glide activation energy or the 

activation volume, which could be further explored with atomistic models.  
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The comparison among Gibbs free energy formulations showed that Kocks 

approach (equations (2.2)) yielded the best results when fitting a nonlinear 

dependence of the yield stress on temperature, even when parameters p and q 

were fixed. Equations (2.3) and (2.4), which represent linear and exponential 

dependencies, respectively, demonstrated some limitations in fitting the yield 

stress dependence on temperature. Hence, our analysis supports the 

quantification of Gibbs free energy using Kocks formulation (equations (2.2)) with 

profile parameters p and q fixed in the ranges between 2/3 to 1 and 1 to 3/2, 

respectively. In the usual case of estimating parameters for multiscale models in 

FCC metals without sufficient data to quantify all parameters independently, we 

recommend the estimation of �� from equation (2.15). Since this magnitude has 

a low variability, the potential error is small and it is further mitigated by estimating 

only one parameter (��
�)  from the available experimental data. This methodology 

provides a consistent estimation of glide activation parameters and mitigates 

spurious errors.  

Finally, our approach relied on experimental data readily available in the literature 

to predict the glide activation energy in monolithic FCC metals with weak point 

obstacles. Future efforts should further explore the extension of the analysis to 

metals with medium and high strength obstacles. These approaches should add 

additional strengthening mechanisms to the athermal stress as well as reconsider 

the dependences of the parameters involved.  

2.6 Conclusions  

A physics-based predictive framework is presented to estimate the glide 

activation energy in monolithic metals while considering parameter uncertainties 

independently. We consider the role of weak point obstacles, dislocation 

strengthening, and grain size to predict the dependence of yield stress on 

temperature. 

We employed a Monte Carlo procedure to fit the formulation to experimental data 

and quantify glide activation energy uncertainty. Our calculations found a 
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correlation of some parameters with the SFE and quantified the effect of 

impurities on solid solution strengthening. 

Our analysis suggests that the formulation proposed by Kocks to parameterize 

Gibbs free energy can yield superior results, even if parameters p and q are fixed. 

Hence, we presented a recommendation for estimating glide activation energy 

for multiscale models in which limited experimental data is available. 
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3 Unravelling the Effect of Number of Cycles on 

Mesoscale Dislocation Substructures Under Cyclic 

Deformation 

 

3.1 Introduction  

Researchers [1–3] have shown that aluminium single crystal oriented for single 

slip does not form a plateau region in the cyclic stress-strain curve at 298K. Dhers 

and Drivers [4] revealed that stress response in [1�23] aluminium single crystal is 

sensitive to the number of cycles (N), however, they did not study the effect of N 

on dislocation substructures. Instead, the study [4] reported cell structure at a 

higher number of cycles. Some efforts [2,3] recognised that aluminium has a 

relatively higher T/Tm corresponding to 298K and tried to compare the stress level 

with Ni and Cu based on this difference. However, the simple arithmetic 

comparison did not explain the response of aluminium. Following these findings, 

it was conceived that the cyclic response of aluminium differs substantially 

compared to other FCC metals.    

Following extensive literature data related to cyclic deformation of Ni, Cu, and Ag 

single crystals under different loading conditions, Li et al. [5] summarised the 

fundamental mechanisms related to the formation of mesoscale dislocation 

substructures and its corresponding relation with the macroscopic stress-strain 

response. They [5] showed that Ni, Cu, and Ag evolve similar dislocation 

substructure under fully reversed cyclic loading. However, they [5] missed 

recognizing that aluminium also evolves similar substructures likewise other FCC 

metals, but at different temperatures [6].  

The TEM analysis [7] of cyclically deformed Cu single crystal at higher 

temperature showed that N has a significant effect on changing PSBs into cell 

structure. Since mesoscale substructures have a characteristic relation with 

stress response, therefore Lisiecki and Weertman's [7] finding indirectly supports 

the Dhers and Drivers [4] results related to aluminium at 298K. However, 
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estimation of the explicit effect of N on the evolution of mesoscale substructure 

is an open question and needs to be addressed. This work aims to reveal the 

cyclic response of aluminium single and polycrystal while considering mesoscale 

substructure as invariant among FCC metals.   

The rate-dependent crystal plasticity models mainly depends on two aspects i) 

ΔG (energy barrier) dependence on effective stress, and ii) hardening 

mechanisms. The activation energy parameters considering different ΔG 

formulations have been discussed in the previous chapter in section 2.4.5. The 

results showed that Kock's formulation provides better results with nonlinear 

dependence of yield stress on temperature. Regarding the hardening 

mechanisms, the mesoscale substructure-based hardening has several 

advantages over dislocation density-based hardening as outlined in Section 1.2.  

This work hypothesised that aluminium evolves similar mesoscale substructures 

as other FCC metals, however at different homologous temperatures. Therefore, 

we considered the same physics-based constitutive model that was used to study 

the cyclic response of nickel [8] previously. However, this work modifies the 

framework [8] to account for the explicit effect of N, temperature, and strain 

amplitude on the mesoscale substructure. The framework is implemented in 

Abaqus UMAT to study the response of aluminium single and polycrystal. 

 

3.2 Physics-based crystal plasticity model  

Crystal plasticity models rely on the multiplicative decomposition of the elastic 

and plastic components of the deformation gradient as [9],  

� = ����, (3.1) 

The velocity gradient depends on slip system shear rate (��̇) following,  

�� = ∑ ��̇�
��� (��⨂ ��), (3.2) 
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Here, m is the total number of slip systems e.g. 12 for FCC crystal, �� and �� are 

the slip and normal directions of ���slip system respectively. Kocks [10] proposed 

a thermally activated flow rule to quantify a shear rate along ��� slip system as, 

�̇� = �̇�
� exp �−

��

���
〈1 −  [

〈|�����|���〉

��
� �

��

]�〉�� ���(�� − ��),           (3.3) 

where, �̇�
� is the effective shearing rate, kB is the Boltzmann constant, T is the 

temperature, Fo is the glide activation energy, ��
� is the thermal stress at 0 K, and 

p and q are the profile parameters. Also, � and �� are the shear modulus at 

temperatures T and 0K. Additionally, the Macaulay brackets follow  〈�〉 = 0 if � ≤

0 or 〈�〉 = � if � > 0 

The flow rule in equation (3.3) has been extensively used in crystal plasticity 

models with different hardening mechanisms [11–16]. In this work, equation (3.3) 

relates the rate of reaction (increment in plastic strain) with the height of the 

energy barrier (effective stress) and has an Arrhenius thermal dependence. For 

continuing flow, dislocation must overcome obstacles with aid of thermal 

activation. Moreover, effective shear stress (����
� ) i.e. |�� − ��| − �� that drive 

dislocation glide depends on the local resolved shear stress (��), athermal stress 

(��) and intragranular back stress (��) due to dislocation long-range interactions 

at mesoscale.  

The athermal stress in equation (3.3) has two components, i) the stress required 

to bow-out dislocations (controlling dislocation production) and ii) dislocation self-

interaction stress controlling coplanar hardening proposed by Franciosi et al. [17].  

�� = ���  
��

�������
+ ��������     ,                                 (3.4) 

In equation (3.4), ���  is the dislocation line energy coefficient, ��� is the self-

interaction coefficient, �� is the density of mobile dislocations. 

Following Sauzay’s approach of Eshelby inclusion problem [18], the intragranular 

back stress in equation (3.3) follows, 



 

76 

�̇� =
��

����
 

��(��������)

��������������
� �̇�   ,                                                             (3.5) 

Where, �� is the wall volume fraction, �����
�  is the instantaneous macroscopic 

plastic deformation tangent. The Eshelby tensor components for a prolate 

spheroid coordinate system follows [19],  

����� =
��� + (�� − 1.75 − 2���� + 2��)���

8�(1 − ��)(�� − 1)
      ,  (3.6) 

��� =
���(��(����)������� �)

�(����)
�       , (3.7) 

And,  

�� =
��

�

�
�(���)�����

�

��
�

�
�(���)�����

�      , (3.8) 

Here, �� is the tangent elasto-plastic Poisson’s ratio, and � is the elastic Poisson’s 

ratio. The parameter � is the ratio of 
������

������
�  that is the characteristic spacing 

of dislocation substructure. ������ is the length that corresponds to the distance 

between two walls along the dominant slip plane and ������ is the adjacent wall 

spacing. 

Finally, Kocks [10] proposed that the effective shearing rate in equation (3.3) 

depends on the frequency (��) at which dislocations jump over point obstacles 

and density of mobile dislocations as,  

�̇�
� = �����������    ,                                                               (3.9) 

The density of mobile dislocations in equation (3.4) and (3.9) follows,  
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�̇�
�� =

������

�������
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����

�
��

��|�̇�| −
��

��������
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������
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��
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��
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⎜
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��� ∑ ��
��

�
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�

��
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��� (���) − (1 −
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�
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����
�������������

���
�

�
��� (���)

⎠

⎟
⎞

         , 

(3.10) 

which is the net result of dislocation multiplication, annihilation, and cross slip 

[20–22]. In equation (3.10), ��
�� and ��

��
 is the density of mobile screw dislocation 

in primary and cross slip plane respectively, ���
�  and ���

�
 is the cross slip activation 

volume in primary and cross slip plane respectively, ��
����

 and ��
����� are the 

annihilation distances for edge and screw dislocations respectively, �� is the 

initial structural distance and ������ determines the number of dislocations 

produced. Since two screw dislocation bows out of parallel walls [21], therefore 

Its value is 1 for the cells and 2 for parallel walls such as labyrinth or PSBs. The 

parameter ��� is the cross-slip efficiency that compensates for the inefficiency 

because some dislocations annihilate while cross slipping.  

 

3.3 Effect of N on the mesoscale substructure  

The effect of N on mesoscale substructure has not been studied explicitly with 

models. However, some researchers [7] showed that further cycling can change 

PSB into cells in Cu single crystal at 523K (
�

��
= 0.38). Figure 3-1 shows that 

dislocation substructure changes from veins-type dislocation walls into elongated 

cells with the explicit effect of number of cycles.  
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a)  b)  

Figure 3-1  Dislocation substructure along (1���) plane of Cu single crystal oriented 

near [���] cycled at a) 523K, 
∆���

�
= � × ���� and ∆����

��
= � b) 523K, 

∆���

�
=

�. �� × ����  and ∆����
��

= ��. 

The TEM data as shown in Figure 3-1 (a) and (b) correspond to slightly different 

strain amplitudes and different number of cycles. However, this is the best 

available data that shows the change of PSB into cells with increasing N. Figure 

3-1(a) shows loose dislocation walls with short tentative PSBs, which transformed 

into well developed cells with the increasing number of cycles. Since cell structure 

evolves with the cross slip, Figure 3-1 supports the notion that plastic shear strain 

in cross slip plane should be a function of N at higher homologous temperature. 

It is well understood that cross slip activates due to activation of multiple slip 

systems at higher strain amplitude and higher temperature. However, this work 

reveals that cross slip can also increase with increasing N at higher homologous 

temperature.    

To justify that plastic shear strain in cross slip plane increases as cell structure 

forms, this work analyses the TEM data in Cu single crystal at different 

temperatures. Lisiecki and Weertman [7]  showed that Cu single crystal evolves 

PSB at 523 K, however no PSBs were found at 678K. Figure 3-2(a) shows how 

PSBs along primary [101] and secondary [110] slip direction intersects to form 

cell walls at 523 K, 
∆���

�
= 3.5 × 10��, and ∆��

��� = 31. In Figure 3-2(a), the walls 

along [211] are less dense due to limited cross slip at 523 K.   Figure 3-2(b) shows 

the cell structure along same plane at 678K, 
∆���

�
= 3.5 × 10��, and ∆��

��� = 31, 
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which shows denser walls due to profuse cross slip and increase in cyclic plastic 

shear strain in cross plane.   

a)  

b)  

Figure 3-2 Dislocation substructure along (�����) common cross slip plane of Cu 

single crystal oriented near [211] cycled at a) 523K, 
∆���

�
= �. � × ����  and ∆����

��
=

�� b) 678K, 
∆���

�
= �. � × ����  and ∆����

��
= ��. 

The findings [7] shown in Figure 3-1 demonstrate the effect of N on transformation 

of PSBs into cells in Cu single crystal at 
�

��
= 0.38. Since the aluminium has 

�

��
=

0.32 at room temperature, which corresponds to higher temperatures for Ni 

(600K) and Cu (~523K), therefore Figure 3-1 likely explains why most studies 

reported cells in aluminium. This work hypothesises that the cyclic response of 

aluminium at 298K is sensitive to N [4] and it evolves slip bands that transform 

into cells with increasing N. Following on, this work proposed that N has a 
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noticeable effect on the mesoscale substructure at higher 
�

��
 and needs to be 

accounted to predict the cyclic response of FCC metal.  

The cell structure forms when abundant cross slip is activated, and plastic strain 

started accumulating in the cross slip plane as shown in Figure 3-2. This reflects 

that the amount of cumulative plastic strain in cross-plane can be used as an 

indicator to quantify the effect of N on transformation of PSB into cells. Following 

on, we proposed a relationship between plastic shear strain range in cross slip 

plane (∆������) and N as, 

∆������ =
����  

�����

�
                                                (3.11) 

Here, ����  
����� is the cumulative plastic shear strain in the cross slip plane. As 

mentioned earlier, there is no TEM data available to quantify this parameter. 

Therefore, we calibrate this while comparing the model stress-strain response 

with experiments for aluminium single crystal oriented for a single slip at 298K. 

Following on, we kept  ����
����� constant for evaluating different temperatures and 

multiple slip orientations.  

3.4  Mesoscale crystal plasticity framework  

Literature [5] showed that FCC metals develop four saturated substructures: 

veins, PSBs, cell, and labyrinth during cyclic deformation. The formation of these 

substructures is controlled by dislocation interactions and loading conditions. 

Here, we summaries the existing literature findings related to cyclic deformation 

of aluminium:   

 Aluminium single crystals oriented for single slip develop vein structure 

at 77K [23] that transform into PSBs at higher strains [24] similar to Ni 

and Cu [5]. At room temperature mostly cells are observed however,  

TEM data recorded in experiments mostly corresponding to higher N 

[3,4]. Following the literature related to aluminium [4] and Cu at ~0.32 and 

0.38 homologous temperature respectively, this work proposed that 

aluminium evolve slip bands at lower N that transformed later into cells 
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with increasing N. Since cell structure is associated with cross slip, we 

propose equation (3.11) explicitly accounting for the effect of N on PSB 

transformation into cells.  

 Aluminium single crystal oriented along [001] direction [25] shows 

labyrinth structure due to the activation of Hirth locks. If both Hirth locks 

pairs form on the most active slip system (∆������), then labyrinth 

substructure will form [5].   

 Crystals oriented along [011] form wall structure [26].  

Following the above finding, this work considered the same saturated 

substructure i.e. veins, PSBs, cells, and labyrinth to study the cyclic response of 

aluminium. The crystal plasticity framework [8] is modified to further include the 

effect of temperature and number of cycles using equation (3.11) as shown in 

Figure 3-3. We considered predicting the saturated mesoscale substructures 

based on plastic shear strain (∆��) among different slip systems �,  

 

Figure 3-3 Proposed framework for assigning saturated dislocation substructure 

at each FE integration point depending on ∆��� among slip systems that are a 

function of different loading conditions applied at a time.  
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The flowchart in Figure 3-3 predicts the saturated substructure for a given state 

of plastic strain range among slip systems over a loading cycle. At low strain 

amplitude, when cyclic plastic shear in primary slip system (∆����) is less than 

∆��
��, vein structure will form. If ∆���� exceeds ∆��

�� but there is no cross slip, 

then PSB will form. This is the case of a single slip oriented crystal at low strain 

amplitude <10-3 and low T/Tm. if multiple slip activates either due to 

crystallographic orientation, high strain amplitude, or high T/Tm, then a complex 

labyrinth or cell structure will form. After computing the structure, the parameters 

related to mesoscale substructures i.e. (�, ������ , ��) will be updated to compute 

the back stress, bow-out stress, and dislocation density.  

The parameter ∆���� in Figure 3-3 represents maximum plastic shear strain 

range in the most active slip system. ∆������ and ∆������ represent the range of 

plastic shear strain in cross slip and Hirth plane respectively. The parameter ∆��
�� 

represents the range of plastic strain accommodated in vein structure and serves 

as a transition point between veins and PSBs as shown in Figure 3-4. For Cu and 

Ni single crystals [27], its value is found to be ~ 5 × 10��.  

 

Figure 3-4 Cyclic stress-strain response of Cu single crystal and correspond 

dislocation substructure at different plastic shear strain amplitude [28].  

Hahner et al. [29] mentioned that the stability of dipoles in dislocation walls is a 

function of the amount of plastic strain (dislocation density). Since aluminium 

evolve cross slip much earlier that can annihilate the mobile dislocations. Thus, 
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justifies higher ��
�� as compared to other FCC metals. Moreover, literature [24,28] 

also showed that parameter (∆��
��) is a function of temperature and has a higher 

value corresponding to lower temperature. Here, this work considered ∆��
�� =

1 × 10�� at 298 K and ∆��
�� = 1 ×  10�� at 77K for aluminium [4,24].  

The next sections explain the quantification of model parameters using literature 

data related to FCC metals and implementation of crystal plasticity framework 

(Figure 3-3) in Abaqus to study the cyclic response of aluminium single and 

polycrystal.  

3.5 Model implementation for aluminium 

The present work validates and extends the applicability of the physics-based 

model [8] from Ni to high SFE aluminium using a modified crystal plasticity 

framework (Figure 3-3). The framework is implemented using Abaqus UMAT and 

UXTERNALDB subroutines [30]. A simple mesh is created in Abaqus containing 

500 brick elements (C3D8R) as shown in Figure 3-5. Four crystal orientations i.e. 

[149], [011], [001], and [111] are considered along the loading direction for single 

crystal meshes (Figure 3-5). For polycrystals, each element represents a single 

grain, and a different random orientation is assigned to each element for 

representing a collective response as shown in Figure 3-6. The displacement and 

periodic boundary conditions are specified along the x-axis and the remaining 

four faces of the model are left as a traction free surface in all simulations.  

 

Figure 3-5 Single crystal specimen with the Voxellated finite element mesh 

containing 500 elements.  
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Figure 3-6 Finite element mesh of a polycrystal specimen. Colors represent the 

different grains. Model contains 237 grains, 5000 elements.  

In the high cycle fatigue regime, the evolution of saturated dislocation 

substructure requires thousand and millions of physical cycles. It is 

computationally infeasible to run thousands of cycles for crystal plasticity 

calculations. This work employed the same decoupling time scale strategy as 

proposed by Castelluccio and McDowell [8] to implement the new crystal plasticity 

framework. The saturated substructures are updated once per computational 

cycle depending on the plastic shear strain range among active slip planes as 

shown in Figure 3-3.  

3.5.1 Independent quantification of model parameters  

The estimation of model input parameters is an important prerequisite to study 

the physics-based material response. The physical approximation of input 

parameters determines the physical nature of a model. This work aims to 

estimate the input parameters and their underlying uncertainties independently 

using experimental data related to FCC metals. The constitutive model 

mentioned in section 3.2 consists of two types of parameters: Fundamental 

parameters with low uncertainty and model parameters related to different 
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deformation mechanisms. The summary of fundamental parameters is shown in 

Table 3-1.  

Table 3-1 Fundamental parameters for aluminium. 

Elastic constants [31] 

(GPa) 

��� = 114.216 − 10.11141/(���(258.4/�) − 1) 

��� =  61.9493 − 2.05109/(���(293.6/�) − 1) 

��� =  31.6054 − 2.56479/(���(168/�) − 1) 

Boltzmann constant (��) 

(JK-1 mol-1) 
8.314 

Attempt frequency (s-1) 5x1011 [32] 

Burgers vector (10-10 m) 2.86 [10] 

 

The model parameters are related to deformation mechanisms occurring at 

multiple scales under cyclic loading and having relatively high uncertainty 

compared to fundamental parameters. These constants include glide activation 

energy parameters, dislocation interaction parameters, and parameters related 

to saturated dislocation substructures. The model parameters can be quantified 

by indirect measurement from experiments and dislocation dynamics simulations.  

The parameters related to glide activation energy are estimated in Chapter 2 as 

shown in Figure (2-11). Following on, this work considered �� = 0.8 �� and so
 = 

12 MPa. The unique values of �� and so are computed by rerunning the analysis 

(Section 2.4) using the fixed values of other parameters used in this work.  

Similarly, the quantification of self-interaction coefficient (���) and line tension 

coefficient (�) in equation (3.4) has already been described in the previous 

chapter (Section 2.3). Following on, this work considered ��� = 0.1 and �=1.  

In equation (3.10), the parameter related to annihilation distances for edge and 

screw dislocations can be quantified using experiment and TEM data. Tippelt et 
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al. [33] found that the dislocation dipoles are stable only if their heights (h) lie 

between critical annihilation distance for edge dislocation (��) and critical height 

of dipoles. They [33] proposed minimum dipole height as annihilation distance for 

edge dislocation i.e. ��= 2.6 nm for Ni at 293 K. Kassner and wall [34] calculated 

the minimum dipole height in Al is 3 nm at 77 K. Since, the annihilation distance 

is not sensitive to temperature [33,35]. Therefore, we considered the same 

annihilation distance ~ 3-3.5 nm for Al. The annihilation distance for screw 

dislocation was considered to be 50 nm as suggested by Feaugas [36] and 

Essmann and Mughrabi [21]. 

The cross-slip activation volume in equation (3.10) is also a dislocation interaction 

parameter, whose quantification is sensitive to the length scales. Since cross slip 

is a microscopic phenomenon. Therefore, we relied on the studies [37] that 

estimated the activation volume at a microscopic scale. We considered the 

activation volume ~1000b3 for aluminium in the present work.  

The cross-slip efficiency parameter (∅��) is introduced in equation (3.10) to 

compensate for the inefficiency of the annihilation of dislocation in the cross slip 

plane. The value of this coefficient is around 0.5. 

This work hypothesised that mesoscale substructures control strain hardening 

and back stress by constraining the motion of dislocation (mean free path). 

Hence, the characteristic spacing � in equation (3.8)  represents the mean value 

for corresponding substructures as shown in Table 3-2. 

 

Table 3-2 The constant � provide the approximate distance dislocation (l) can glide 

along a dominant slip system relative to the distance between channel walls 

(������). 

Dislocation 
substructure 

Veins PSBs Labyrinth Cells 

� = �
������

�  ~50 ~20 ~2 ~1 
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The similitude coefficient (������) is another parameter related to the 

substructures, which relates the dependence of shear stress on channel width 

(������). Sauzay and Kubin [38] have shown that Cu and Ni follow the similitude 

relation under cyclic and monotonic loading conditions. However, some efforts 

have independently [24,39] showed the similitude relation in aluminium and 

suggested ������ equals to be 2.5. Therefore, we assume the same ������    for 

present work.  

Wall thickness is another characteristic distance related to mesoscale 

substructures, which determines the wall volume fraction (��) and quantifies the 

structural spacing. Although the quantification of wall size is hard because of 

assumptions and idealization in geometric configurations and lack of TEM data 

for various loading conditions. Here, this work considered calculating the wall 

volume fraction using a phenomenological approach resembles Estrin et al. [40], 

�� = ���� + ��� − �������� �
�∆����/�

��
�                                              (3.12) 

Where �� and ���� are the initial and saturation values of wall volume fraction and 

�� describes the rate of decrease of �� with strain rate and equals to 1.5. The 

parameters in equation (3.12) can be estimated by measuring �� from TEM data. 

Several efforts [36,40–42] computed �� using different geometric models 

depending on wall characteristic spacing measurements. Here, this work 

considered Feaugas [36] approach to estimate the ���� as the ratio of wall 

thickness (W) divided by the wall spacing (������).  

Studies related to cyclic deformation of Ni, Cu, and stainless steel [29,43–45] 

showed that the wall thickness when a crystal is fully covered with PSBs is not a 

function of temperature. However, the spacing between adjacent walls (������) 

increases with temperature [38]. The TEM analysis [23,46] of aluminium single 

crystals under cyclic deformation also showed that wall thickness does not vary 

with temperature as shown in Figure 3-7. However, the wall spacing was found 

to be roughly 2 μm at 298K [25] and ~0.5 μm at 77K [24]. Using TEM data [23,46] 

as shown in Appendix B.1, we measured the wall thickness equals to be ~0.15μm 
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corresponding to 77K and 298K. Following on, ���� can be estimated as the ratio 

of W/ ������, which is equal to ~0.1 at 298K and 0.29 at 77K. The peak value of 

wall fraction (��) corresponds to the volume fraction occupied by the veins, which 

is approximated to be 45% [47,48]. 

 

Figure 3-7 PSB wall thickness at 298K and 77K computed from TEM data [23,46]. 

This work computed the cell wall thickness and cell size using the TEM data [49–

52] at 77K and 298K for pure aluminium as shown in Appendix B.2. The cell size 

varies as a function of applied strain. For instance, cells are larger and coarser at 

lower strains due to potential lack of saturation and equiaxed at higher strains. 

Here, we computed the multiple cell sizes from each TEM data rather than 

estimating an average cell size to quantify the uncertainty. In Figure 3-8, the data 

with a large errorbar represent coarser cells correspond to low temperature or 

lower applied strains and vice versa. Figure 3-8(b) shows that the ratio of W/ 

������ for cells is constant on average, which follows that ���� for cells is not a 

function of temperature. Here, this work considered ����= 0.2 for cells. 
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a)  

b)  

Figure 3-8 a) Correlation between cell wall size and wall thickness at different 

temperatures b) Histogram showing the ratio of cell thickness and cell size. 
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Finally, Table 3-3 and Table 3-4 shows a summary of the physical constants and 

temperature dependent parameters used in the model respectively. The 

summary of initial values for internal state variables are: 

The density of mobile (screw) dislocations (���
� )= 109 m-2 

The initial structure distance (������
� )= 10 µm  

The normalised glide � = ������, the fw is initiated at low values for convergence 

(��
�) = 0.1 

The cross-slip activation volume (���
� ) = 1000b3 

 

Table 3-3 Summary of physical constants used in the constitutive model.  

Parameter Value Parameter Value 

�� 0.8 eV ���� 2 × 10�� 

��
� 12 MPa ������

����� 2 

p 0.667 ������
����  1 

q 1.5 �� 50 �� 

����
����� 0.2 �� 3.5 �� 

�� 0.45 ������ 2.5 

�� 1.5 × 10�� ��� 0.1 

��� 1   

 

Table 3-4 Summary of temperature dependent parameters used in the model.  

Parameters (T) 298K 77K 

μ (GPa) 25.9  28.9  

����
��� 0.1 0.29 

�� 1 × 10�� 1 × 10�� 
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3.5.2 Comparison of model results with experiments 

Figure 3-9 compares the experiment and model results for the cyclic stress-strain 

response of [149] aluminium single crystals at 298K and �̇ =1 x10-3 s-1 and �� =

−1. Each point in Figure 3-9 corresponds to a new simulation at different total 

applied strain and stabilised computational cycle. It is important to distinguish the 

terms physical and computational cycles used in experiments and modelling 

respectively. The latter represents the number of cycles to achieve a stabilised 

stress-strain response of the model whereas, the former corresponds to number 

of cycles physically applied in the experiments. In this work, each simulation 

result (each point in Figure 3-9) corresponds to 25 computational steps, which 

was enough to achieve the convergence of stress response. Besides, this work 

predicted the effect of number of physical cycles using crystal plasticity 

framework (Figure 3-3) without running it.    

In Figure 3-9, the stress response is studied for a fixed physical number of cycles 

i.e. N=50 and ���� = 50 at 298K following experiment [4]. The ���� is calculated 

using 4���� [47], where ��� is the plastic strain amplitude. Figure 3-9 shows the 

change of peak stress level with increasing number of physical cycles above 

0.1% plastic strain and agrees with the experiment [4]. Moreover, this variation of 

stress with N follows the framework shown in Figure 3-3. This implies that at N=50 

model predicted slip bands corresponds to lower stress level (black diamond). 

However, at higher N (���� = 50) and above 0.1% plastic strain, blue diamond 

represents cells that showed a higher stress level with explicit effect of N.   
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Figure 3-9  Cyclic stress-strain response of [149] aluminium single crystal under 

fully reversed strain-controlled loading (�� = −�) at 298K. The stress response as 

a function of N is compared with experiments [4]. 

Figure 3-10 presents the cyclic stress-strain response of [149] aluminium single 

crystal at 77K, �̇ =1x10-3 s-1 and �� = −1. Each point in Figure 3-10 corresponds 

to a simulation at different total applied strain, stabilized computational cycle and 

5000 physical cycle. The choice of 5000 physical cycles is associated with the 

saturated stress state in experiment [24]. The stress-strain curve shows a clear 

plateau region correspond to PSBs similar to Ni and Cu. Besides, the results are 

in agreement with experiments for aluminium [24].   
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Figure 3-10 Cyclic stress-strain response of [149] aluminium single crystal under 

fully reversed strain-controlled loading (�� = −�) at 77K. 

Figure 3-11 presents the complete stress-strain curve for [149] aluminium single 

crystal corresponds to the stabilised cycle at 298K and 77K. The model results 

show a good agreement with experiments [2]. However, the shape of cyclic 

stress-strain obtained from the model is more rectangular compared to 

experiments as shown in Figure 3-11. Since the finite element geometry (Figure 

3-5) is different from the real specimens used in experiments in terms of shape 

and microstructural history, thereby a difference in the stress-strain curve could 

be expected. Overall, the peak stresses and area under the stress-strain curve 

(strain energy) agrees well with experiments, which are more relevant for fatigue 

prognosis than the shape of the entire curve because these are the indicators of 

fatigue response of material [53].  
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a)  

b)  

Figure 3-11 Comparison of complete stress-strain curve of [149] aluminium single 

crystal with the experiment at a)  
∆���

�
= ~� × ���� and 298K [2]  b) 

∆���

�
= ~� × ���� 

and 77K [2]. 
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Figure 3-12 compares hardening curves in model and experiments for aluminium 

single crystal oriented for single slip. Each point corresponds to a different 

simulation at the different number of physical cycles and at room temperature. 

The mesoscale substructures shown in Figure 3-12 are the representative 

substructures obtained in simulations. Since the mesoscale substructure is 

computed over each element, the percentage of cell structure mentioned in 

Figure 3-12 corresponds to the elements that have cells. The model results are 

in good agreement with the experiments. Figure 3-12 demonstrates that N has a 

significant effect on mesoscale substructure particularly in aluminium due to its 

high homologous temperature at 298K.    

 

Figure 3-12 Cyclic hardening of aluminium single crystal oriented for single slip. 

 

Figure 3-13 presents the cyclic stress-strain response of aluminium single crystal 

oriented along [011] [001], and [111] at 298K, �̇ =1 x10-3 s-1 and �� = −1. Each 

point in Figure 3-13 corresponds to a simulation at different total applied strain, 
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stabilized computational cycle, and 5000 physical cycles. The choice of 5000 

physical cycles is associated with the saturated stress state in the experiment  

[25,26]. The stress level and overall trends for [001] and [011] crystal agree with 

experiments [25,26]. Figure 3-13 also shows the stress-strain response of [111] 

single crystal. The trend of stress evolution corresponding [111] single crystal 

agrees with Cu single crystals [54]. However, there is currently no experimental 

data available to compare [111] model results. This work considered predicting 

the cyclic stress-strain response of aluminium single crystal along single and 

multiple slip orientation before predicting the polycrystal response. In other 

words, we calibrate the individual response of grains to mitigate the uncertainties 

underlying polycrystal.   

 

Figure 3-13 Cyclic stress-strain response of aluminium single crystal oriented 

along [001], [011], and [111] direction under fully reversed strain-controlled 

loading (�� = −�) at 298K. The [001] and [011] results were compared with 

available experimental data [25,26]. 
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Figure 3-14 presents the comparison of stress-strain response of pure aluminium 

polycrystal between model and experiments [55–57]. Each point in Figure 3-14 

corresponds to a simulation at different total applied strain, stabilized 

computational cycle and 5000 physical cycle. The mechanism of cyclic 

deformation in single crystals are generally applicable to the grains of polycrystals 

[47]. However, grain boundaries significantly affect the cyclic deformation 

response [47]. Because the model was calibrated with large single crystals, the 

results in Figure 3-14 are representative of large grains when the grain size effect 

saturates. Thus, the results agree well with large grain experimental data [55–

57]. At this stage, the model does not have an explicit grain size effect, but future 

efforts will introduce the explicit size effect in the model to study the cyclic 

response of polycrystals with different grain sizes. 

 

Figure 3-14 Comparison between model and experiment [49,55–57].: Cyclic stress-

strain response of different polycrystals. Filled square markers represent 

experiments and empty diamonds correspond to Model results. 
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Figure 3-15 presents the complete cyclic stress-strain response of aluminium 

polycrystal correspond to the stabilised cycle at 298K and 
∆���

�
= ~1 × 10��. The 

model results show a good agreement with experiments [57].  

 

Figure 3-15 Comparison of complete cyclic stress-strain response of aluminium 

polycrystal between model and experiment [57].  

  

Sauzay and Kubin [38] showed that Cu and Ni follow similitude relation under 

cyclic and monotonic loading conditions as, 

������� =  
�

��

�
������

�
 (3.13) 

Following on, we plotted the similitude relation for aluminium using the shear 

stress and wall spacing (������) computed from model results. Figure 3-16 shows 

the agreement of similitude relation between model and experiments [24,25,58] 
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for aluminium. This is a mesoscale validation of the model and hypotheses that 

FCC metals have the same operating mechanisms under cyclic loading. 

 

 

Figure 3-16  Validation of similitude relation for aluminium using shear stresses 

and wall spacing (������) data from model and experiments [24,25,58] at different 

temperatures.  

3.6 Discussion 

This work was motivated by the challenge that aluminium under cyclic 

deformation also evolves the similar mesoscale substructures as other FCC 

metals, however at different loading conditions. This work demonstrates that N 

has a significant effect on the mesoscale substructure at higher homologous 

temperatures for all FCC metals. Following on, we proposed a framework that 

predicts the mesoscale substructure with the explicit effect of N. Since the 
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mesoscale substructure has a characteristic relation with the stress response [5], 

this work considered validating the effect of N  with existing experimental data [4].  

The work considered comparing the deformation response of aluminium with 

other FCC metals at different scales. We quantified the model input parameters 

while considering the physics related to the deformation processes. Since the 

deformation processes among FCC are the same, we only changed those 

parameters that are intrinsic to material properties such as �� , ��
� , and μ. All the 

remaining parameters related to the mesoscale substructure and dislocation 

interactions were the same as proposed for Ni [8].  

The physical nature of the model manifests that the similar mesoscale 

substructures can be used as an invariant to predict the cyclic response of FCC 

metals. The current model is capable of predicting the cyclic response of low- 

high stacking fault energy FCC metals. Moreover, the current model can also be 

used to predict the response of other metals and alloys, which show similar 

mesoscale substructures. Future efforts will explore the cyclic response of 

aluminium alloy using the current model.  

Another important aspect of this work is the prediction of macroscopic stress-

strain response as a function of the number of cycles, which has a unique 

importance in fatigue prognosis. The peak stresses correspond to shear strain 

and strain energy (area under the stress-strain curve) are the fatigue indicator 

parameters that inform about the hotspot for nucleation and propagation of 

microstructurally small fatigue cracks [16]. Hence, the current crystal plasticity 

framework can be used as a tool to predict the nucleation and propagation life of 

microstructurally small cracks.  

This work considered comparing the cyclic response of aluminium with other FCC 

metals at the same 
�

��
. Figure 3-17 compares the cyclic stress-strain response of 

different FCC single crystals at the same homologous temperatures (
�

��
= 0.17).  
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Figure 3-17 Cyclic stress-strain response of Ni, Cu, Ag, and aluminium single 

crystals at the same homologous temperature, the y-axis is normalised with the 

bow-out stress [59]. 

The current findings reinforce the physical nature of crystal plasticity framework, 

which is capable of predicting the cyclic response of low –high SFE FCC metals 

under different orientation, temperature, and N. However, this is only valid for fully 

reverse straining (��= -1) and at strain rate below 0.1 s-1. Future efforts are 

required to understand the effect of different stress ratios and higher strain rates 

on cyclic deformation.  

Several aspects require future consideration to improve the model. The grain size 

dependence needs to be considered explicitly in the model to predict the cyclic 

response of different grain sizes. Another aspect that needs to be introduced is 

the initial hardening stage i.e. increase in stress with few initial cycles. 

Experiments [27,60,61] showed that the increase in stress during the onset of 

cyclic deformation is a function of plastic strain amplitude and number of cycles. 
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Future efforts will consider implementing the initial hardening stage to study the 

cyclic hardening.    

The current framework can predict the cyclic response only up to 0.5 
�

��
.  Since 

some other deformation processes such as dislocation climb become activated 

above 0.5 
�

��
, which needs to be considered in the framework. Further effort will 

focus on understanding the deformation mechanism above 0.5 
�

��
, which is of 

interest in creep analysis. 

3.7 Conclusions  

This work bridges the gap between cyclic deformation of Cu, Ni, and aluminium 

using mesoscale substructure as an invariant. This research highlights that the 

number of cycles has a significant effect on mesoscale substructures and 

macroscopic stress-strain response at higher homologous temperatures. 

Following on, we modified the crystal plasticity framework that can predict the 

mesoscale substructure and stress-strain response as a function of N, strain 

amplitude, and temperature. 
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4 Decoupling Geometric and Microstructural Gradients 

in Fatigue Crack Formation  

 

4.1 Introduction  

Scribe marks are maintenance-induced defects often introduced in fuselage 

joints during the sealant removal process before repainting. These shallow marks 

as shown in Figure 4-1 are micron-size surface scratches that behave as a notch 

under service loads [1–3]. Research studies [1,4] have shown that these notches 

can nucleate multiple cracks and significantly reduce the fatigue life of aircraft 

components. The potential detrimental role of small surface defects on early 

failure highlights the importance of accurate prognosis of their fatigue lives. Cini 

and Irving [1] characterised the size effect of notches on fatigue crack nucleation 

in aluminium and found that the early fatigue crack growth is affected by notch 

geometry. Since the size of scribe marks and microstructure attributes (e.g., 

grains) are often of comparable dimensions, the microstructure plays a role in 

fatigue crack initiation.  

 

Figure 4-1 Scribe marks at fuselage joints [5] a) a scribe in cladding b) extension 

of a crack from scribe. 

Fatigue crack nucleation in metallic materials is usually controlled by 

microplasticity shear strain and is sensitive to local elastic and plastic anisotropy 

[6]. These characteristics of microstructure sensitive (MS) small cracks reduces 

the validity of far-field fracture mechanics laws at the microscale [7,8]. Since small 
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cracks from shallow notches spent 90 -95% of their fatigue life inside a grain [9], 

it becomes essential to consider the role of the local crystal plasticity response 

on small crack formation and propagation. The below section reviews the existing 

literature related to recent advances in modelling MS fatigue crack growth. 

4.1.1 Models of MS fatigue crack growth  

Fatigue prognosis includes several aspects such as rate of crack growth, crack 

path, and the number of cycles to failure. From the design perspective, predicting 

the life (number of cycles to failure) is of greater engineering interest than 

predicting the crack path or rate of crack growth.  

Several studies [10,11] investigated the MS crack path and crack growth rate 

using accumulated plastic strain and stored energy criteria. However, they 

showed that the crack path predicted normal to maximum principal direction is 

less microstructural sensitive. Zhang et al. [12] evaluated the short crack 

propagation using maximum cumulative shear strain along slip systems. The 

model captured the tortuous crack path observed experimentally. However, their 

model was not able to predict cracks with sharp deflections due to computational 

cost and XFEM limitations. Besides, these studies [10–12] considered 2-

dimensional models to simulate small cracks. However, the lack of a third 

dimension may affect the microstructure-induced fatigue variability. 

Some efforts [13] proposed a framework to explicitly model discrete slip bands to 

study the deflection of short cracks. They [13] considered upscaling the numerical 

cycles to compare the number of cycles to failure with experiments due to high 

computational demand. However, simple upscaling or direct comparison of 

number of cycles between experiment and simulation with the initial and final 

crack lengths might not be appropriate due to the complexity and non-linearity of 

the problem.   

Some models [14] estimated the nucleation life considering only one parameter 

i.e., critical stored energy. However, model results agree with experimental data 

for R =0.1, however, underpredicted the results for R=-1. This infers that one 
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parameter (critical stored energy) might not be sufficient to capture the variability 

of fatigue damage under different loading conditions.  

Recently, Xu et al. [15] derived an analytical solution for stored energy density in 

terms of stress intensity factor while assuming the elastic shear solution 

equivalent to plastic shear at the crack tip. The analytical stored energy densities 

were compared with crystal plasticity solution for a fixed crack length of 500 μm 

and found to be good in agreement. However, the analytical solution assumed 

for plastic shear is arguable for microstructurally small cracks with cracks length 

of few ten microns.   

Castelluccio and McDowell [16] developed crystal plasticity models to study the 

effects of microstructure on fatigue indicator parameters (FIPs), which are 

subrogates of the fatigue driving force. Their results demonstrated that FIPs tend 

to decrease as cracks extend inside a grain, which agrees with the oscillatory 

fatigue crack growth rate found in experiments [17]. Furthermore, they proposed 

an empirical relation between FIP and crack length while considering the explicit 

effect of microstructure. Thereby, the study proposed a unique solution to relate 

the microstructure-sensitive crack growth rate with FIP and crack length to 

compute the number of cycles to failure. However, these studies did not account 

for the role of notch geometry on the gradient of FIP at notch tip to predict fatigue 

life. Besides, their [16] approach considered only the planar cracks along slip 

bands.    

Some studies  [18–21] have studied the initiation of MS fatigue cracks from 

notches with crystal plasticity models that explicitly introduce geometrical 

gradients. However, these studies are computationally expensive and require a 

large set of simulations to predict the microstructural and geometric variability.  

So far the existing models have demonstrated many features of MS fatigue crack 

growth with several criteria. However, none have shown the effect of shallow 

notches on microstructure-sensitive fatigue crack growth and fatigue life. Some 

experiments [22] depicted that aluminium alloy has a similar decaying pattern of 

crack growth rate inside a grain. Therefore, Castelluccio and McDowell [16] 
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approach seems most promising for further study. However, the model needs to 

be modified to account for multislip FIP due to profuse cross slip in aluminium.  

This work aims to quantify independently the effect of notch geometry and 

microstructure on gradients of FIPs as crack extends through a grain to innovate 

on engineering approaches that can predict fatigue cracking from shallow 

notches in aluminium. By coupling microstructural variability from crystal plasticity 

simulations without geometric gradient [16] and the decay of the maximum plastic 

shear away from a notch in elastoplastic simulation [23], we predict the early 

stages of fatigue cracks in notches. 

 

4.2 Crystal plasticity modelling of fatigue driving force gradient 

4.2.1 Fatigue crack driving force  

Pioneer work from Morrow [24], and Brown and Miller [25] served as a basis for 

energy and critical plane approach based models respectively to predict the 

fatigue life of engineering materials. Energy-based approaches [24,26,27] 

employed hysteresis energy per cycle or strain energy density as a crack driving 

force to predict the fatigue crack growth. With five decades of progress in 

multiaxial fatigue assessment, several studies [28–30] demonstrated that these 

energy and critical plane approach based parameters can be used as fatigue 

indicators for initiation and propagation.  

Dunne and his co-workers [28,29] proposed crystallographic energy-based FIP 

(����
�), whose fundamentals are similar to earlier energy based approaches to 

predict the MS fatigue crack growth as,  

����
� =  ∫  ������

���

�
                                 (4.1) 

Where, �� is the resolved shear stress, ����
�  is the plastic shear strain increment 

in � slip system and �� is the number of computational steps. The ����
� in 

equation (4.1) demonstrates plastic strain energy stored over each time 

increment for computational cycles (��) .  
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Critical plane approaches used the plastic strain range to predict fatigue failure 

using experimental data. These approaches [25,31], which considered only the 

strain terms (normal and shear) were unable to account for the effect of mean 

stress or strain path dependent hardening [32]. Following on, Fatemi and Socie 

[33] upbuilt the Kandil et al. [34] model by replacing the normal strain with 

maximum normal stress on a maximum shear plane to account for the effect of 

mean stress and non-proportional hardening. They [33] proposed a parameter as 

shown in equation (4.2) that can be related to total fatigue life.    

���� �1 + �
��

���

��
� = ��������                   (4.2) 

Where, ���� is the maximum shear strain, which is the measure of plastic slip 

activity over a loading cycle, ��
��� is the maximum normal stress on ����  plane 

normalised by yield stress and k is a material constant normally ranges between 

0.5 and 1 [33].  

Castelluccio and McDowell [30,35] correlated the Fatemi-Socie parameter with 

crack tip displacement for several multiaxial loading conditions. They proposed 

that Fatemi-Socie parameter can be used as a fatigue indicator to study the MS 

fatigue crack initiation and growth. Castelluccio and McDowell wrote Fatemi-

Socie parameter in terms of fatigue indicator parameter (FIP) as, 

����� = ∆����
� �1 + �

��
���

��
�                   (4.3) 

Where, ∆����
�  is the maximum plastic shear strain range, which is the measure 

of plastic slip activity over a loading cycle. For microstructurally small fatigue 

cracks (MSCs), the driving force in the early stages of nucleation and crack 

growth is influenced by the local microstructure [17]. The sub-grain localization of 

slip along active slip systems plays a role in defining the fatigue driving force. 

Thereby, those crystallographic planes can be considered critical planes. 

Castelluccio and McDowell [30] emphasised that �����
�  along individual slip 

systems are more appropriate for early crack growth and can be reformulated as, 
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�����
� =

�

�
∆��|��� �1 + �

��
�

��
�                   (4.4) 

Where, ∆�� is the cyclic plastic shear strain range in slip plane �, ��
� is the peak 

stress normal to the slip plane � and �� is the cyclic yield strength.  

Several investigations [36,37] have shown that both energy (����
�) and shear 

range (�����
� ) based FIPs have microstructural sensitivity and describes local 

fields. Therefore, these FIPs can be used as subrogate measure of fatigue driving 

force. In addition, Rovinelli et al. [38] performed a probabilistic analysis to assess 

the uncertainty associated with slip/energy-based FIPs. They considered a crack 

driving force matrix containing several FIPs based on accumulated slip and 

energy similar to equations (4.1) and (4.4). They mentioned that all the FIPs 

demonstrate similar behaviour, having an equivalent level of uncertainties, and 

carry failure information upto a certain extent.  

This work considered both crystallographic energy and shear range based FIPs 

to make a comparison of fatigue driving forces. The calculation of ����
� using 

equation (4.1) is not computationally intensive, however it requires large storage 

space to save the data each cycle. Therefore, this work adopted a slightly 

different approach to compute accumulated strain energy, which is equivalent to 

equation (4.1). Since the accumulation of plastic strain energy over each time 

increment is computationally challenging for a large number of cycles, 

alternatively, this work considered computing the range of ����
� over a stabilised 

cycle multiplied by the number of cycles (N) to compute ����
� as,  

����
� =   ∆(������

� )�
���

 × �                                    (4.5) 

Equation (4.5) renders equivalent accumulated plastic strain energy for the same 

N but requires less data storage and save computational time. Finally, this work 

considered equation (4.4) and equation (4.5) as small fatigue crack driving force 

to study the effect of microstructure and geometric gradient in the following 

section. 
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4.2.2 Effect of microstructural gradient 

The term microstructural gradient refers to the explicit effect of microstructure on 

FIP variation as a crack propagates inside a grain. In the previous chapter, we 

demonstrated that aluminium has similar deformation mechanisms as other FCC 

metals under different loading conditions. To further validate this notion 

independently, this work employed the Castelluccio and McDowell [16] approach 

to study the explicit effect of microstructure on transgranular FIP in pure 

aluminium. Furthermore, they proposed [16] that a planar FIP decays 

quadratically as a crack approaches the grain boundary. This approach has been 

implemented for low- medium stacking fault energy FCC metals i.e. Ni-based 

superalloys and bridge steel [39], which normally show planar crack growth 

behaviour. Here, we implemented the same approach in pure aluminium, which 

is a high SFE metal and facilitates the nonplanar crack growth. Therefore, we 

proposed a new strategy to account for the multislip FIP effect on the net crack 

driving force as explained later in Section 4.2.2.3. Figure 4-2 outlines the process 

of transgranular crack propagation. Several simulations are run with different 

microstructural attributes while following the same process shown in Figure 4-2 

to study the explicit effect of microstructure on FIP variation as a function of crack 

length.  
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Figure 4-2 Graphical summary of the process that computes FIPmeso and extend 

a crack inside a grain 

A simple cubic geometry is created with 3375 (C3D8R) brick elements, roughly 

54 grains (average grain diameter= 50 μm) using Abaqus v2017 [40], Dream3D 

[41], and in house Matlab code as shown in Figure 4-3. The physics-based crystal 

plasticity framework explained in the previous Chapter 3 is employed in Abaqus 

UMAT with a cubic FE model (Figure 4-3). 

Input:

Applying 
displacement on right 
side of RVE shown in 

Figure 4-3 

Copmute FIPFS and 
FIPE using Eq. (4.4) 

and (4.5) in each 
element along each 
slip system after 25 

loading step

Average the FIP over 
the slip bands (FIPmeso) 

using Eq. (4.6)

Find the band having 
maximum FIPmeso

among all grains and 
all slip systems. i.e. 

refers as MLB

Assign a state 
variables to each 9% 

elements of MLB

After 25 loading steps, 
crack is initiated by 
degrading elastic 

stifness of first 9% 
element of MLB

Run 4 loading steps to 
converge the stress-
strain response and 
compute FIPmeso to 

evaluate the effect of 
deleted element of MLB

At 29th step, extend the 
crack again by deleting 

further 9% elements 
and run 4 loading steps 

to compute FIPmeso

Similary, the crack is 
extended in MLB after 
every 4 loading step by 
deleteing 9% elements 

and FIPmeso is evaluated 
until band is fully 

cracked

Output: 

The variation of 
FIPmeso is plotted as 

function of crack length 

This is done by 
imposing 

coreesponding state 
variables to zero in 

Abaqus UMAT 
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Figure 4-3 Finite element mesh for a simple cubic model. The size of RVE is 150 

μm x 150 μm x 150 μm. The number of elements is 3375 and the number of grains 

is 54. 

 

The simulations apply twenty-five computational cycles, which are enough to 

achieve convergence of the stress-strain response and FIPs as shown in Figure 

4-4. Following on, the crystallographic FIP is estimated for all slip systems for all 

elements following equations (4.4) and (4.5).  
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Figure 4-4 Evolution of cyclic peak stress with computational time for pure 

aluminium under ∆�/� =0.05%, 0.1% ���, and �� = −�.  

 

4.2.2.1 Effect of local and non-local averaging domains on FIP  

One of the significant aspects of fatigue damage prognosis is the domain over 

which FIPs are evaluated. In this thesis, elements are referred to as local domain, 

whereas volume averaging domain is referred to as non-local domain. In order to 

quantify the mesh insensitive FIPs and consider the finite volume of fatigue 

process zone, this work adopted a nonlocal (volume-averaged) estimation of 

FIPs. A volume-averaged FIP can better represent the fatigue damage zone and 

mitigate mesh uncertainties [42]. 

Some studies [43] have considered evaluating the fatigue damage by averaging 

the FIP over entire grains. Consequently, they underestimated the driving force 

and reported lower FIP values. Some other studies [28] have considered a non-

local averaging scheme based on a Gaussian weighting function applied to a 

volume integral around a given point. This procedure facilitates mesh 

independent FIP however, averaging outside the gradient path is less effective. 

Castelluccio and McDowell [42] rationalised the effect of the domain on FIPs by 
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comparing the averaged FIP over grains, slip bands, and elements. Their study 

[42] showed that band averaging provides a good estimate of FIP corresponding 

to damage process zone and mitigates mesh uncertainties. Here, this work 

compared �����
�  and ����

�  over different domains such as grains, slip bands and 

elements.  

The slip bands at mesoscale evolve as a result of slip activity along most active 

slip planes. Forsyth [6,44] noticed that small cracks grow along the slip bands 

during the early stages. Following on, He [6] characterised the onset of fatigue 

damage into two stages i.e. stage I and stage II.  Stage I represents the initial 

phase in which plastic deformation preponderantly occurs along the single most 

active slip plane, which facilitates the crack to grow along a well-defined 

crystallographic plane. On the other hand, stage II corresponds to the activation 

of multiple slips along different planes, which results in nonplanar crack growth 

due to multislip driving force.  

Following the characteristic growth of small cracks along the slip bands, 

Castelluccio and McDowell [42] proposed the artificial slip bands along 

crystallographic planes that represent the local damage zone and mitigate mesh 

uncertainties. This work initially adopted the same approach to create slip bands 

along crystallographic planes. The detailed procedure of creating the slip bands 

in a grain follows,  

Since FCCs materials have four slip planes, thereby each element was assigned 

four different bands inside a grain. The elements are assigned to each band as,  

 Firstly, the centroid of the grain is determined as shown by the plus sign in 

Figure 4-5. 

 The grain is rotated along slip normal direction using the rotation matrix 

and sets of planes (black lines in Figure 4-5) perpendicular to slip plane 

normal directions are created. The distance between these planes is one 

band width, which is set to be the size of element in one dimension due to 

homogeneity. Bands with less than one element spacing tend to be 

discontinuous and may have disconnected elements.  
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 Now, the elements are assigned to the respective bands according to their 

centroids position in between two planes, which are then named as shown 

in Figure 4-5 at right side. 

 In the schematic shown below, 5 planes were created inside a grain 

perpendicular to slip normal direction. The number assigned to a band 

formed by planes is called layer number and is shown with unique color 

below. For example, layer five is shown by a green band. Finally, GLP 

abbreviation is used in code to identify a particular band with its plane and 

grain, where G is the grain number, L is the layer number and P is the 

plane number. 

 

 

Figure 4-5 Schematic illustration of assigning elements to a slip band inside the 

grain. 

 

Figure 4-6 demonstrates the slip bands inside a grain. Four sets of slip bands 

corresponding to FCC slip planes are shown. In Figure 4-6, the details of grain 

orientations are given in Appendix C.1. For averaging the FIPs over elements, 

bands and grains, firstly we define a threshold to eliminate the values that are too 

small and less likely to contribute to fatigue crack formation. Since the grain has 

a larger averaging volume compared to bands and elements, this work estimated 

the threshold as �������� =max ((��������)/1000).  
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Figure 4-6 Set of bands with the plane perpendicular to FCC slip normal direcion. 

 

Figure 4-7 compares the frequency distribution for �����
�  and ����

� averaged over 

elements, bands, and grains after twenty-five computational cycles. The data 

corresponding to ���������
��  and ���������

�  consider each element and each 

octahedral slip system from eight different realisations.  

Each element in each grain has 12 FIP values corresponding to 12 slip systems. 

For element- averaged FIP (����������) consider only those values in slip systems 

that are higher than �������� as shown in Figure 4-7(a). Slip Bands consists of set 

of elements as shown in Figure 4-6. For averaging along slip bands (�������), 

FIPs are averaged along respective slip systems of elements of bands. 

Consequently, ������� has 12 values that averaged along slip systems. Figure 

4-7 (b), only those values are considered that are higher than ��������.        

For estimating grain- averaged FIP (��������), FIPs are averaged along 

respective slip systems for all elements inside a grain. In Figure 4-7, only those 

�������� are considered that are higher than ��������.   
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a)  

b)  
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c)  

Figure 4-7 Comparison of �����
�  and ����

� over different domains a) elements b) 

bands c) grains. 

In Figure 4-7, higher values of FIPs (tail of distribution) lead the fatigue crack 

formation, therefore neglecting the FIPs below the threshold does not affect the 

fatigue life estimation in the next chapter.   

The distribution of averaged FIP over elements, band, and grains as though look 

similar, however, the extreme values decrease as the volume of the domain 

increases. Figure 4-7 elucidates that band-averaged FIP demonstrates a good 

quantitative balance between element-averaged and grain-averaged FIP and 

better represents a fatigue damage zone. Moreover, the trend of distributions 

agrees with Castelluccio and McDowell's findings [42].  

Both �����
�  and ����

� show similar distributions regardless of different domains. 

However, the frequency of ����
�  seems to be twice of �����

�  within the same 

range of data. This difference might be due to mesh sensitivity or due to elements 

at grain boundary. Since the amount of shear stress and shear strain in slip 

systems is sensitive to the microstructural features e.g. grain orientation and grain 

size, Thereby, we plotted ����������
�  along all slip systems separately to elucidate 

the direct relation between �����
�  and ����

�. Figure 4-8 relates �����
�  and ����

� 
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along each slip system in a grain having maximum ��������. The extreme values 

of ����� and ���� shows a linear relationship (subplot 3 and 6 in Figure 4-8), 

which leads to the crack formation. The encircled data in the remaining subplots 

show the slip systems that have a higher value of ����  as compared ����� and 

this probably increase the frequency of ����  in Figure 4-7. These values might 

result from mesh sensitivity, however, are less likely to contribute to fatigue crack 

formation. 

 

 

Figure 4-8 Comparison of ����� and ���� along each slip system. Each point in 

the subplot correspond to an element of a grain that has the highest ��������. Each 

subplot corresponds to a distinct FCC slip system.  

Figure 4-8 also manifests the uncertainty associated with local ���������� and 

demonstrates the need for non-local FIP. Figure 4-9 presents the band averaged 

FIP along each slip system from the same grain data as shown in Figure 4-8. The 

schematic of slip bands and their sizes insides the grain is shown adjacent to 
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Figure 4-9. Both ����� and ���� are averaged along respective slip systems of 

each element of slip band. Each subplot represents a slip system and each circle 

in a subplot corresponds to a band-averaged FIP. The color of the circle 

corresponds to the position and size of the slip band in the schematic. Figure 4-9 

shows a better agreement between ����� and ����. It can be seen that bands 

near the grain boundary consist of only few elements and still show a marginal 

difference between ����� and ����. 

 

Figure 4-9 Comparison of band averaged ����� and ���� along each slip system. 

Each point in the subplot corresponds to an averaged FIP along slip band in a 

grain, which has the highest ������� among all grain. The colormap represents 

the band number inside a grain. The schematic of the location and relative size of 

slip bands inside the grain in association with colormap is also shown adjacent to 

FIgure. Each subplot corresponds to a distinct FCC slip system.  

Figure 4-9 also demonstrates that slip bands correspond to the (111) slip plane 

(subplot 3) has extreme values of ������� and value of ������� across slip bands 

in this plane is not very different from each other. To further show this explicitly, 

we replotted the �������  in all slip bands along the same plane that corresponds 

to extreme values. Figure 4-10 shows the ������� correspond to all slip bands 
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along the same plane from four random realisations. Each subplot belongs to a 

different simulation with different microstructural attributes. The slip plane that 

has a maximum value of ������� is considered and ������� of all the slip bands 

across that plane is used to plot Figure 4-10. 

– 

Figure 4-10 Comparison of band averaged-FIP between all bands along the same 

slip plane normal direction. The x-axis is normalised with the maximum number of 

bands along the same plane. Each subplot corresponds to a different simulation 

with a different microstructure. Each point in the subplot represents an average 

FIP correspond to a band along the same plane as shown in Figure (right). The 

arrows on Figure(right) shows slip normal directions. 

(1�1�1)

(11�1�)

(1�11�)

(1�11�)
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Both �������
��  and �������

�  shows similar trends and agrees with Figure 4-9. 

Moreover, Figure 4-10 manifests that all the bands correspond to extreme values 

and the same plane normal has comparatively equivalent potential to contribute 

to fatigue crack formation. This implies that for a grain having extreme values of 

FIPs, any part of the entire grain has an equal probability to initiate a crack. Note 

that this work account only for different microstructural attributes without any 

defects such as precipitate and inclusions, which can play a role locally to initiate 

a crack. The intrinsic variability of �������   inside a grain is seemed to be not 

sensitive to the material as similar behaviour was observed in Ni-based 

superalloys [42]. 

 

4.2.2.2 Transgranular crack extension along one plane 

Following on, this work considered slip bands as volume averaged domains of 

FIPs and propagation path of cracks. After twenty-five computational steps, the 

average of �����
�  and ����

� in each band from each grain is referred to as the 

mesoscale driving force �������, 

������� =
���

���
���

∑ �����
��

�

�
 , (4.6) 

in which � corresponds to the number of elements in each band. Moreover, the 

������� is normalised with the grain size length scale 
���

���
���, in which ���

���
 is the 

reference grain size and ��� represents the size of the slip band diameter and 

follows, 

��� = �������. (4.7) 

Where, ��� is the length of the element and ��� is the number of elements of the 

band under consideration. Note that equation (4.7) is only valid for a regular 

mesh. The ������� normalization with length scale as shown in equation (4.6) 

supports the size dependence of an irreversible slip proposed by Risbet and 

Feaugas [45]. The band having maximum normalised ������� across all grains is 
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referred to as minimum life band (MLB) and is considered to initiate a fatigue 

crack first.  

Degrading the elastic stiffness tensor is one of the computationally efficient 

methods to study crack propagation. The crack extends by decreasing the elastic 

stiffness of elements of the slip bands in a grain. Once stiffness is degraded, 

those elements are removed from the calculation and only a few steps are 

required to update the FIPs. The degradation of stiffness only play role in stress 

tensor calculation that makes use of the elastic component.  This calculation is 

performed after solving the elastic and plastic strains. Thereby, change in elastic 

stiffness does not affect the convergence of plastic components.  

To evaluate the ������� after partial cracking of a band within a grain, a crack is 

extended inside the MLB by deleting 9% elements of the bands at a time. 

Elements are deleted every 2 cycles by imposing corresponding state variable 

values to zero in the Abaqus UMAT subroutine. As the crack extends, the ����� 

is averaged i.e. �������  in remaining elements of MLB after every two cycles. 

The schematic demonstration of crack extension inside the MLB is shown in 

Figure 4-11 and a process map of crack extension is shown in Figure 4-2. Figure 

4-11 demonstrates the variation of ������� as crack extend in MLB.  

In Figure 4-11, the MLB is shown at the top of the plot and the increasing blue 

color in MLB shows the cracked elements. The averaged FIP in the remaining 

elements is shown by the blue dots in the plot. The first point in Figure 4-11 

corresponds to maximum ������� and zero crack length. Few blue elements in 

the 2nd image from left on top of Figure 4-11 represents 9% element deletion and 

the corresponding 2nd blue dot in the Figure represents the averaged FIP in the 

remaining elements of MLB. The blue color in the third image on the top 

represents 18% elements and vice versa.  The decaying trend of ������� with 

crack propagation agrees with experiments [22]. 
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Figure 4-11 ������� variation as crack extends inside a MLB. 

 

Following Figure 4-11, this work considered several microstructure realisations 

to study the explicit effect of microstructure on ������� variation as a function of 

crack length. Figure 4-12 presents the  ������� as a function of crack length from 

several microstructure realisations. The �������  correspond to ����� and ���� 

show exactly the same trend for each realisations, which supports Rovinelli et al. 

[38] findings.   

Figure 4-12 shows a decaying trend of �������, which is not consistent among all 

realisations. For example, the pink and dark red points show a sharp decreasing 

trend compared to other data. It is likely that ������� in another plane might be 

increasing while it’s decreasing in the MLB. To further explore this notion, we 

compared the ������� between 1st and 2nd MLB as a function of crack length. The 

2nd MLB corresponds to the band having 2nd highest among ������� at 25 

computational cycles. Note that 1st and 2nd MLB belongs to the same grain. 
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Figure 4-12 ������� variation as the crack extends along a MLB with the explicit 

effect of microstructure. Each curve corresponds to a different simulation with a 

different microstructure realisation. The distance on the x-axis is normalized by 

maximum distance along MLB. 

 

Figure 4-13 compared the ������� variation along 1st and 2nd MLB as the crack 

extend for four random realisations. This clearly shows that the driving force in 

the 2nd MLB (different plane) can exceed the driving force in the 1st MLB, which 

is not being accounted for in Figure 4-12. This justifies the wide dispersion of 

������� in different realisations. 
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Figure 4-13 Variation of ������� along 1st and 2nd MLB as crack extends in 1st MLB 

for four random realisations. The distance on the x-axis is normalized by maximum 

distance along MLB. 

 

Figure 4-13 highlights the need for multislip FIP in aluminium since it activates 

multiple slip systems easily. This notion is further supported by the findings [46] 

that show perpendicular fracture between the slip bands in an aluminium single 

crystal. 

 

4.2.2.3 Multislip crystallographic FIP 

Several efforts [43,47] have proposed strategies to account for non-planar crack 

growth in aluminium alloys. Hennessey [47] considered non-planar crack growth 

in Al 7075 while extending the crack from one grain into the adjacent grain. He 

created two sets of slip bands A and B in an uncracked grain corresponding to 
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two slip normal directions ahead of the crack tip as shown in Figure 4-14. 

Following on, an intermediate plane was created by finding the intersection of 

crack with each band set A and band set B. The element of uncracked grain was 

assigned to the intermediate band by mapping the centroid of elements inside 

the band. Finally, the cracked is extended into the intermediate band by deleting 

the proportion of elements after regular intervals of computational cycles. The 

�������  on the intermediate plan was evaluated by summing the normalised FIP 

on the bands intersected with crack front (e.g. 3B and 5A as shown in Figure 

4-14). The FIP was normalised by a reference length scale of band over mean 

grain diameter i.e. 
���

���
���. 

 

Figure 4-14 Pictorial illustration of intermediate slip bands to account for non-

planar slip (Copied from Hennessey [47]). 

 

The proposed approach [47] demonstrated stage II crack growth by averaging 

the FIP along the potential candidate bands. However, the study did not mention 

the choice of slip plane normal as only two planes normal out of four were 

considered to evaluate intersection with the crack front. The evaluation of non-

planar crack only at the grain boundary is another assumption that limits the 

applicability of the approach. Overall, the approach is computationally 

burdensome and requires a complex effort of creating slip bands ahead of the 

crack tip, evaluating the intersection with crack front, and then extending non-

planar crack while evaluating damage on intersected bands.  
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Some other efforts [43] have implemented the same approach [47] without slip 

bands to study fatigue damage in 7075-T651. They considered averaging the FIP 

over the grains and summing two highest FIP values among four slip planes to 

evaluate non-crystallographic FIP. However, the study missed grain variability by 

averaging over a larger volume.   

Here, this work proposes a strategy to account for the multislip transgranular 

driving force using slip bands along the crystallographic direction. After twenty-

five computation steps, we computed ������� following equation (4.6) and found 

the grain having a maximum value of ������� among all grains. Following on, we 

sorted all the bands in that grain in descending order of ������� and selected the 

first three consecutive bands along different planes. Those bands were referred 

to as the 1st, 2nd, and 3rd MLB respectively. It is worth mentioning that in most 

realisations, the first three bands were normally having different slip planes.and 

found to be connected in all simulations. 

Following on, the crack is extended in each band the same way as explained in 

the previous section i.e. by degrading the elastic stiffness of the band element 

incrementally after every two cycles until the band is fully cracked. The resultant 

driving force �������,,��� is estimated by the vector sum of ������� along 1st, 2nd 

and 3rd MLB after every two loading cycles as,   

�������, ��� =
�

���
���

 ����,��������(�)��������������� + ���,��������(�)���������������  

+ ���,��������(�) �����������������. 

(4.8) 

Where, ���(�), ���(�), and ���(�) are the average FIPs in the 1st, 2nd, and 3rd 

MLB along different planes. Since FIP averaging along a band introduce a 

directional character to driving force (FIP), thereby equation (4.8) shows the 

vector sum of averaged FIP along different planes. Figure 4-15  infer the effect of 

������� along different planes on crack extension. During the first 20% of 

propagation, crack is dominated by driving force along 1st MLB then it changes 

its path along the different plane and dominated by 2nd MLB until it reaches the 

grain boundary.  
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Figure 4-15 Effect of multislip FIP on crack extension following equation (4.8). The 

distance on x-axis is normalized by maximum distance along the band. 

 

Figure 4-16 shows the multislip �������, ��� computed using equation (4.8) for 8 

realisations. Contrary to Figure 4-12, �������, ��� shows a consistent decaying 

trend for all realisations. Interestingly, both ����� and ���� follow the same trend 

regardless of cracking along uniaxial plane (Figure 4-12) or multislip plane (Figure 

4-16).  
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Figure 4-16 Multislip �������,��� as a function of crack extension with the explicit 

effect of microstructure. The distance on x-axis is normalized by maximum 

distance along MLB. 

 

Figure 4-17 shows normalised �������,���
��   as a function of crack length for 8 

realisations. The �������,���
��   is normalised by the �������,���

��  at 0% crack length 

and distance along the x-axis is normalised by the maximum distance along the 

MLB. The decaying trend of �������, ����
���������

 in aluminium  agrees with the 

decaying trend of �������|�������� in Ni based super alloys [16]. Castelluccio and 

McDowell [16] parametrised the fatigue driving force (normalised �������|��������) 

as a function of crack length in Ni based superalloy as,  

�������
����

� =  1 − �� �
��

���
� �

�

 (4.9) 

Where p and m are the scaling constants. Yuan et al. [39]  implemented the 

approach [16] in bridge steel to evaluate various alternatives of FIP evolution 

inside a grain using equation (4.9). Here, this work found that a similar relation is 
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still valid for �������, ����
���������

 as shown in Figure 4-17. The 
��

���
�   term in 

equation (4.9) represents the proportion of the crack length inside MLB. Following 

on, equation (4.9) is referred as microstructural gradient, which is found to be less 

sensitive to material.  

 

Figure 4-17 Normalised �������,��� with the transgranular crack extension. The 

scaling relation follows equation (4.9). The distance on x-axis is normalized by 

maximum distance along MLB. 

 

4.3 Coupled effect of microstructure and geometric gradient on 

FIPs 

4.3.1 Explicit coupling using crystal plasticity simulation 

Following on, we employed the same approach as mentioned in the previous 

section to evaluate the coupled microstructure and geometric gradient. A cubic 

geometry with a notch of radius 5 μm and depth 25 μm is created in Abaqus 

v2017 [40] as shown in Figure 4-18. The microstructure (~16 grains and average 
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grain diameter of 50 μm along the x-y direction and 120 μm along the z-direction) 

is created alongside the notch using an in-house Matlab code. The model 

geometry is used to implement the crystal plasticity formulation in Abaqus UMAT 

[40]. 

 

Figure 4-18 Finite element mesh to study the effect of microstructure and notch 

on fatigue crack driving force.   

Figure 4-19 shows the combined effect of microstructure and geometric gradient 

on normalised �������,��� as a function of crack length. The decaying trend of 

normalised �������,���  agrees with Figure 4-17, but it is steeper due to the notch. 

This reveals that the gradient in Figure 4-17 can be calibrated to the gradient in  

Figure 4-19 with the addition of an independent geometric gradient.  

 

∆�/2 = 5 × 10��
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Figure 4-19 Effect of microstructure and geometric gradient on normalised 

�������,��� with crack extension in MLB at nominal strain amplitude of � × ����. 

The ordinate is normalised by on ����, which is a �������,��� at 0% crack length. 

The distance on x-axis is normalized by maximum distance along MLB. Each color 

and marker correspond to a realisation with a different microstructure. Each point 

represents the crack extension by deleting 10% element every two-cycle after 

nucleation evaluation i.e. 25 loading steps.   

 

4.4 Independent quantification of geometric gradient  

The evaluation of the cracking within grains shown in the prior section is time 

consuming and computationally intensive, so this work seeks a simple method 

that modulates microstructural variability with a homogenised solution for the 

geometric gradient. Rovinelli et al. [38] showed that the ����� and plastic shear 

strain range are equivalent parameters in predicting the fatigue damage. This 

work proposed an engineering solution to evaluate the homogenised geometric 

gradient by estimating the maximum plastic shear strain (����
�� ) along the radial 

distance ahead of notch root using following equations, 
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����
�� =  ����

����� −  ����
�� , (4.10) 

where, 

����
����� =

��� ��

�
 , and  (4.11) 

����
�� =

�� −  ��

2μ
 (4.12) 

where, ��, �� and ��, �� are maximum and minimum principal strains and stresses 

respectively computed from elastoplastic simulations. The parameter μ in 

equation (4.12) represents the shear modulus. A notched specimen with 

approximately 150,000 elements was created as shown in Figure 4-20 The 

periodic boundary conditions are applied at the left side of the specimen in Figure 

4-20, whereas nominal cyclic strain of 2.8 × 10�� was applied to the right-hand 

side along the x-axis. The input plastic stress-strain properties for elastoplastic 

simulation were obtained from crystal plasticity model results. 

 

 

Figure 4-20 Finite element mesh for notched specimens used for evaluating the 

homogenised geometry gradient in elastoplastic simulations. 
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a)  

b)  

c)  

Figure 4-21 Effect of notch radius on ����
��

along the notch root for notches of 

radius a) 5 μm b) 25 μm c) 50 μm at the nominal strain of �. � × ����. 
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Figure 4-21 presents the ����
��  gradient for different notch radii typical of scribe 

marks. The evolution of a strain field in form of a continuous loop at the notch 

root shows refined mesh quality.  Since the extension of the crack (Figure 4-17) 

has a directional character due to grain anisotropy, we computed the angles that 

crack along MLB (in each realisation of Figure 4-17) form with the y-axis. Firstly, 

we extracted the Euler angles and normal plane direction of the band that failed 

from all realisations. We used the rotation matrix from these Euler angles to rotate 

the plane and finally computed the angle using the rotated vector and vertical axis 

as shown in Figure 4-22.  

 

Figure 4-22 Angles between crack along the MLB and y-axis for different 

realisations. 

 

Following on, these angles were used to quantify the ����
��  away from the notch 

tip. Figure 4-23 shows the normalised ����
��  as a function of normalised radial 

distance from the notch at different angles and notch radius. The ordinate of 

Figure 4-23 is normalised by the maximum ���� at the notch tip, whereas the 
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abscissa is normalised by the average grain size used for microstructural gradient 

i.e. 50 μm. Following on, we parametrised the relation between normalised ����
��  

and normalised radial distance with inverse of Taylor series of order 2 as, 

����
��   

���� ,   ����� ���
��   

� =  1
(1 + ��� +  ����)�  (4.13) 

 

Where, �� and �� are the fitting parameters for each notch radius as shown in 

Figure 4-23. Equation (4.13) is referred to as the geometric gradient. 

 

a)  
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b)  

c)  

Figure 4-23 The gradient of normalised ����
��

 away from the notch tip for radius a) 

5 μm b) 25 μm and c) 50 μm at different nominal strains.  The ����
��

 was normalised 

with the maximum ����
��

 at the notch tip. The distance is normalised by the average 

grain size used for microstructural gradient i.e. 50 μm. 
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Figure 4-24 compares the ����
��  and ����

����� gradient at different angles and 

different strain amplitudes, which shows that both gradients are the same. 

However, the large difference between ����
��  and ����

�����  could be expected if there 

is not enough plasticity corresponding to lower nominal strains. We recommend 

computing the ����
�����  corresponding higher nominal strains as it requires less 

computation and provides an engineering solution.  

a)  
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b)  

c)  

Figure 4-24 Comparison between ����
����� and ����

��
 gradient for notches with 

different root radii. The distance is normalised by the average grain size used for 

microstructural gradient i.e. 50 μm. 
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4.5 Integration of independent gradients  

This work explored that the empirical relation related to microstructural gradient 

[16] is also valid for aluminium irrespective of planar (uniaxial) and multislip FIP. 

Hence, this reflects a notion to use the same microstructural gradient [16] with an 

independently estimated geometric gradient to reconstruct the FIP that 

represents the coupled effect.    

Here, we propose a reconstruction of microstructural variability of the notch 

without the computational cost of the entire simulation by multiplying equation 

(4.13) with the microstructure-sensitive results without notches (equation (4.9)). 

However, we consider equation (4.13) with �� and �� correspond to range of 

angles i.e. 10 degree, 23 degree and 54 degree. Figure 4-25 depicts the 

microstructural gradient estimated in section 4.2.2 without notches (left) 

multiplied by the homogenised geometric gradient (center, Figure 4-23(a)) to 

obtain the equivalent results for notches in Figure 4-25 (right).   

    

    1 − �� �
��

���
� �

�

              
�

�����
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���
� �� ���
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� �
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� �
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��

���
� �� ���

��
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� �
� 

Microstructural gradient          Geometric gradient                       Coupled gradient  

Figure 4-25 Integration of microstructural (a) and geometric gradient (b) to 

reconstruct combined gradient (c). In Figure (c), the circle, square, and diamond 

markers correspond to the geometric gradient at ���, ���,and ��� respectively. 

Each color in Figure (left) represents different simulation result with different 

microstructure and morphological properties whereas, each color in Figure 

= 

×  
 =  
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(center) corresponds to decay of ����
��

 along different angles. The normalization 

distance on x-axis corresponds to average grain size used for microstructural 

gradient i.e. 50 μm. 

Since FIPFS is the range of cycle plastic shear strain multiplied by normalised 

stress factor, thereby multiplying that maximum plastic shear strain in 

dimensionally justified. Furthermore, Figure 4-26 compares the microstructure-

sensitive simulations with and without explicit notches. The results demonstrate 

that geometric and microstructural gradients can be decoupled and estimated 

independently to produce comparable FIP results.  Besides, Figure 4-26 shows 

that the variability induces by the different angular positions of the geometric 

gradient (right) is comparable with that from crystal plasticity simulations (left).  

 

 

Figure 4-26 Comparison between simultaneous estimation and independent 

coupling of gradients. �������,��� is normalised by ����, which is a ������� at 0% 

crack extension. The normalization distance on x-axis corresponds to average 
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grain size used for microstructural gradient i.e. 50 μm. Each color in Figure (left) 

represents different simulation result with different microstructure and 

morphological properties. Each circle, square, and diamond markers in Figure 

(right) represents independently coupled FIP with both microstructure and 

geometric gradient.  

 

4.6 Discussion  

This work is motivated by the challenge of evaluating the multiple driving force 

gradients that play a substantial role in fatigue crack formation from shallow 

notches. However, simultaneous evaluation of multiple gradients using crystal 

plasticity simulations is computationally challenging. Here, we introduced a notion 

to evaluate and couple geometric and microstructural gradients independently to 

predict fatigue crack formation.    

Firstly, we evaluated the microstructural gradient with and without notch while 

implementing an existing approach [16] using crystal plasticity simulations. Some 

studies [28] have emphasised that the choice of ���� has more physical meaning 

as compared to �����. Contrarily, other efforts [38] have found that energy and 

shear range based FIPs are equivalent predictors of fatigue process and have 

similar levels of uncertainty. Following on, this work considered both  ����� and 

���� as a subrogate measure of driving force to elucidate the choice of FIP. 

Moreover, we also compared both FIPs as volume averaged FIPs over different 

domains i.e. element, bands and grains. Figure 4-7 shows that both FIPs have 

similar distributions over different domains. However, ���� has higher frequency 

compared to ����� over the same range. The one-to-one (element based) 

comparison of ����� and ���� (Figure 4-8) shows that they have a linear 

relationship correspond to their extreme values. However, some elements have 

higher ���� as compared to �����. This difference belongs to the elements at the 

grain boundary as shown in Figure 4-9 or is due to mesh sensitivity. Since the 

extreme values (tail of distribution) of FIP lead crack growth, therefore, the 

difference among small values of both FIPs can be ignored.  
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This work further showed that the volume averaged FIP mitigates the mesh 

uncertainty and present a good agreement between ����� and ����. However, 

averaging FIPs over larger domains such as grain volume missed the variability 

associated with sub grain fields and thereby may underestimate the fatigue 

driving force. Therefore, slip band with their reference length scale comparable 

to the fatigue damage process zone presents a balanced estimate of averaged 

FIP between element and grain averaged FIP, which agrees with Castelluccio 

and McDowell's [42] finding. They also argued that FIP averaging over bands 

represents a better estimate than refining the mesh and also facilitates in 

reducing the computational load.  

Since aluminium has lower plastic shear activation energy (Chapter 2) that 

facilitates slip activity over multiple planes, therefore the fatigue prognosis of 

aluminium requires multislip driving force. This work extended the applicability of 

the existing approach [16] from uniaxial ������� estimation to multislip ������� as 

a function of crack length. Following on, we evaluated the microstructural gradient 

considering several realisations using proposed �������, ����
���������

, which 

shows a decaying trend as the crack extend inside a grain. The microstructural 

gradient in aluminium is found to be the similar as estimated in Ni based 

superalloy [16], although, the gradient in Ni-based superalloy was computed 

using a planar driving force (�������|��������). This finding reveals that 

microstructural gradient among FCC metals is less sensitive to material. 

Moreover, this finding also supports the centralised hypothesis of this thesis that 

FCC metals has same deformation mechanisms under different loading 

condition.  

Following on, we computed the combined effect of geometric and microstructure 

gradients on FIPs using crystal plasticity simulations, which were found to be 

steeper than the explicit microstructural gradient. Following the findings from 

crystal plasticity simulation of microstructural gradient with and without notch, this 

work introduced a notion to decouple geometric and microstructural gradients. 

Since the microstructure gradient is material insensitive, it can be coupled with 
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an independent geometric gradient to reconstruct the FIP that represents the 

effect of both gradients.  

This work proposed a homogenised engineering solution for the independent 

quantification of geometric gradient. A simple elastoplastic model is considered 

to capture the notch gradient by estimating the ����
����� at the notch root along the 

different radial path. Since the gradient estimated using crystal plasticity 

simulation has large variability, we proposed to estimate the ����
����� along the angle 

that cracks follow in crystal plasticity simulations. This strategy imparts variability 

to independently coupled gradients and agrees with crystal plasticity results 

(Figure 4-26).   

The proposed approach enables quantification of notch gradient with a large 

mesh size, which mitigates the mesh sensitivity issues inherently associated with 

notch problems. Besides, we proposed this approach with a broader scope of 

accounting for the role of complex gradients on MS fatigue crack formation.  

Future efforts will consider coupling the complex gradients with microstructure 

gradient using the current approach to predict fatigue life.  

 

4.7 Conclusions 

This work analysed Fatemi-Socie and Energy based FIPs over different volume 

averaging domains and compared its variation as a function of crack length inside 

a grain. Both FIPs showed a linear relationship correspond to their extreme 

values. Moreover, both FIPs present the same variation as the crack propagates 

inside the grain. We found that the choice of domain is more important as 

compared to the choice of FIP.   

This work proposes a strategy to estimate multislip FIP to study the transgranular 

crack propagation. The effect of the microstructure is analysed on multislip FIP 

variation while extending the crack inside a grain. The microstructure gradient in 

FCC metals is found to be the same however, fundamental mechanisms need to 

be considered. For instance, multislip FIP is essential for aluminium as a high 
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SFE metal, whereas uniaxial FIP works for low- medium SFE metal at room 

temperature.  

Following the outcome of crystal plasticity simulations with or without a notch, this 

work decoupled microstructure and geometric gradients in fatigue crack 

formation. We proposed an economical solution (less computationally intensive) 

for coupling independent gradients.  
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5 Coupling Microstructure and Geometric Gradients   

Independently to Predict Transgranular Fatigue Life 

 

5.1 Introduction  

Extensive research [1–4] has been done on predicting the fatigue life of a notched 

component. However, these studies considered the engineering size (~few mm) 

notches in which notch root radii was larger compared to the material 

microstructure. Therefore, a stress field produced by these notches extends 

many times longer than typical microstructure dimensions, which makes these 

notches insensitive to material microstructure [5]. Contrarily, if the size of the 

defect is comparable to the grain dimension then crack growth is strongly 

influenced by local microstructure [6].   

Scribe marks are induced on the aircraft fuselage joints as a result of improper 

maintenance procedure [7]. Several efforts [8] have shown that these scribe 

marks on fuselage joints act as micron-sized notches and lead the fatigue crack 

propagation through the thickness. Some other efforts [9] have noticed that the 

early crack growth from scribes was strongly influenced by local microstructure 

irrespective of scribe geometry. Since microstructure-sensitive small crack 

growth is controlled by the local shear along the crystallographic plane [10], the 

estimation of fatigue life of a scribed component requires computing the local 

driving force using crystal plasticity simulations. 

Several studies [11,12] have attempted to predict the fatigue life of metals using 

crystal plasticity simulations without considering the geometric gradient. Some 

efforts [13] have attempted to study the effect of notch on microstructure-sensitive 

crack growth at 2.7 × 10�� strain amplitude. However, their mesh sensitivity 

analysis showed that a notch of 1000 μm root radii requires 15 μm mesh seed 

size. The study [13] explicitly mentioned that a smaller mesh size may provide 

better results. However, it is computationally intensive to run the analysis using 

crystal plasticity simulations. In the present work, we considered notches with 
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root radii comparable to shallow scribe marks (5- 25 μm) that require even smaller 

mesh seed size. In the previous chapter, we proposed a less computationally 

intensive solution to compute the coupled microstructure and geometric 

gradients. Here, this work aims to employ the independently coupled gradient to 

predict the transgranular fatigue life in pure aluminium and compare it with 

experiments [14].  

 

5.2 Transgranular MSC growth law 

The microstructure sensitive (MS) crack growth rate is proportional to the 

irreversible dislocation emissions after a cycle, which is related to crack tip 

displacement ∆��� [15] as,  

��

��
= ∅〈∆��� − ∆�����〉 (5.1) 

Where ∅ is the proportionality factor represents the mechanical irreversibility and 

determines the number of irreversible dislocations emitted from the crack tip. 

Besides, the parameter ∅ strongly depends on the environment and its value 

typically ranges between 0.01 -0.2 [16] for transgranular crack growth. The 

∆����� is a threshold recognises minimum driving force below which no 

dislocation emission take place i.e. Burgers vector. Here, ∆����� is considered 

as 2.86 × 10�� �� i.e. size of a Burger vector of aluminium. The crack growth 

rate in equation (5.1) follows Macaulay’s brackets i.e. growth rate is zero if net 

crack driving force is less than the threshold. The estimation of ∆��� requires 

detailed representation of crack tip geometry and a tedious process. Instead, FIP 

provides an efficient way to estimate the fatigue driving force for MS crack growth 

[17].  

Castelluccio and McDowell [18] found a correlation between ����� and ∆CTD for 

crystallographic cracks under shear and mixed-mode loading conditions. They 

proposed a surrogate for ∆��� as,  
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��� = A (∆���)� (5.2) 

where A and b are the constants resulting from linear regression [19] to minimize 

the mean square error. The parameter A is the scaling constant that relates FIP 

with ∆��� and may depend on the grain size. Castelluccio and McDowell [18] 

proposed the linear relation between FIP and ∆��� for a Ni base superalloy by 

modelling explicit cracks in single crystal simulations. Some other efforts [20,21] 

have implemented equation (5.2) to study microstructure sensitive fatigue crack 

in Al 7075-T6. Following on, this work also considered the same relation to study 

the fatigue response of pure aluminium. Risbet and Feaugas [22] proposed size 

dependence of irreversible slip that strongly resembles 
���

���
��� as ,  

����,�����, �� =
ℎ�

�
 

(5.3) 

 

Where, ℎ� is the height of extrusion in the slip band and D is the grain size along 

the slip band direction. They [22] argued that the critical value of local plastic 

shear strain must be reached for inducing a crack inside a band. Since FIP 

represent the range of plastic shear strain, therefore, ∆��� in equation (5.2) is 

comparable to height of extrusion in equation (5.3) which shows that A should be 

an inverse coefficient with the dimension of length, which may be the grain size. 

This highlights the need for a length scale 
���

���
��� in equation (5.2). By introducing 

the length scale in equation (5.2) and putting its value in equation (5.1) results,  

��� = A
 ���

���

���
 (∆���)� (5.4) 

Since the parameter A has the size effect, Castelluccio and McDowell [18] 

calibrated A=2 for 20 µm grain size. we write equation (5.4) as,  

��� =
40

���
 ∆��� (5.5) 

By putting the FIP in equation (5.1),   
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��

��
= ∅ 〈

���

40
�������,���(�, �) − ∆�����〉 (5.6) 

Here, �������,��� correspond to the coupled microstructure and geometric 

gradient as shown in the previous chapter to predict the transgranular fatigue 

crack driving force as,  

�������,���
����

� =
1 − �� �

��
���

� �
�

1 + �� �
��

���
� � + �� �

��
���

� �
� (5.7) 

Where, �� & � and �� & �� are fitting parameters correspond to microstructure 

and geometric gradients and are given in Figure 4-14 and Figure 4-19 

respectively. By putting equation (5.7) in equation (5.6) to estimate the 

transgranular crack growth rate, 

��

��
= ∅ 〈

���

40
����

⎝

⎛
1 − �� �

��
���

� �
�

1 + �� �
��

���
� � + �� �

��
���

� �
�

⎠

⎞ − ∆�����〉 

 

(5.8) 

By rearranging and simplifying the equation (5.8), 

��

��

= ∅ 〈 

���

40 ���� �1 − �� �
��

���
� �

�

� − ∆����� �1 + �� �
��

���
� � + �� �

��
���

� �
�

�

1 + �� �
��

���
� � + �� �

��
���

� �
�

〉 

(5.9) 

At a nominal strain range (∆�) roughly > 10��, numerical calculations show that 

the driving force proportional to ∆��� is significantly larger than ∆����� in 

equation (5.8). Therefore, the higher-order term in equation (5.9) with ∆����� can 

be ignored due to negligibly small value compared to the crack driving force. 

However, we considered computing the error associated with this assumption as 

discussed in later Section 5.4. Thus, equation (5.9) may be rewritten as,  
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Microstructure gradient [23] Geometric gradient  

������� =  �
1

∅
〈 

1 + �� �
��

���
� � + �� �

��
���

� �
�

���

40 ���� �1 − �� �
��

���
� �

�

� − ∆�����

 〉 ���

��

�

 (5.10) 

Assuming,  

���   
���

��
���� − ∆�����       &         �� = ��

���

��
����     

By combining the constant terms in equation (5.10), we get,  

������� =  �
1

∅
〈
1 + �� �

��
���

� � + �� �
��

���
� �

�

�� − �� �
��

���
� �

� 〉 ���

��

�

 (5.11) 

Where, ������� is the number of cycles to extend the crack in ith band and �� is 

the crack length in ith band. By simplifying, 

������� =  �
1

∅
 〈

1

�� − �� �
��

���
� �

� +
�� �

��
���

� �

�� − �� �
��

���
� �

� +
�� �

��
���

� �
�

�� − �� �
��

���
� �

�〉  ���

��

�

 (5.12) 

                           

 

The first term in equation (5.12) inside integration corresponds to the 

microstructural gradient proposed by Castelluccio and McDowell [23]. While the 

linear and quadratic terms represent the contribution from the geometric gradient. 

The analytical integration of equation (5.12) with m=2 results in, 

������� =
1

∅
〈

1

√����

���ℎ�� ���
��

��
�  − ��

��(�� − ����)

2��
+ ��

√�����ℎ�� ���
��
��

� − �√��

√��
�

〉 
(5.13) 

 

 

Geometric gradient            Microstructure gradient [23]  
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In equation (5.13), the normalised crack length (�) correspond to 
��

���
� . Equation 

(5.13) estimates the fatigue life to extend the crack inside a grain while unifying 

the contribution from independent gradients. The formation of equation (5.13) 

conveys a notion that fatigue life corresponds to several gradients can be added 

independently without re-estimating the existing gradients.   

5.3 Model and experiment 

Research studies [14] have shown that scribe marks at fuselage joints behave as 

micron-sized notches fostering the small crack propagation through the 

thickness. Since these cracks are comparable to grain size, the prognosis of 

crack growth from scribes involves both geometric and microstructure gradients. 

Hence, this work considered equation (5.13) that accounts for both geometric and 

microstructure gradients independently to predict the number of cycles to extend 

a crack in pure aluminium and compared with experiments [14]. 

Cini A. [14] studied the effects of scribe marks on fatigue failure of cladded 2024-

T351 aluminium alloy. The aluminium alloy was cladded with highly pure 

aluminium up to a thickness of 80 μm on each side of the sample. Scratches of 

different sizes were marked at the gauge section perpendicular to the loading 

direction. Fatigue tests were performed at room temperature under maximum 

stress of 200 MPa, R=0.1, and a constant frequency of 10 Hz. 

This work is primarily focused on crystal plasticity modelling of aluminium single 

and polycrystals. Therefore, the present work only considered predicting the 

fatigue behaviour of cladding material [14] i.e. pure aluminium. Following on, we 

reckoned only smaller notches that nucleate and extend cracks inside the 

cladding layer. Cini A. [14] mentioned that cladding appears to be more sensitive 

under 25 �� deep scribes below 50 �� radius. Therefore, we considered 25 �� 

deep notches with 5 ��, 25 ��, and 50 �� radius to compare the model with 

experiments. 

Cini A. [14] showed that the substrate was fully elastic under the applied nominal 

stress of 200 MPa, which is lower than its yield stress i.e. 360 MPa. He assumed 
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that the gauge section withstands the nominal equivalent stress, which means 

that clad has also the same nominal equivalent stress. However, under the same 

applied loading, the stresses in cladding and substrate should be different due to 

the material mismatch. But the elastic mismatch between substrate and cladding 

is minimum because they are both inherently aluminium. This work considered 

the nominal elastic strain as total strain and calculated using Hook’s law,  

� =
�

�
 (5.14) 

In experiments, the cross section is dominated by the substrate. Therefore, when 

substrate is strained, cladding should undergo the same nominal strain. Following 

the maximum nominal stress of 200 MPa and Young’s modulus of 60.5 -70.5 GPa 

[14], equation (5.14) estimates the nominal strain (∆�) to be ~2.8 × 10��. 

Following on, we considered this nominal strain as a reference to compute the 

model results and compared with experiments [14].  

The estimation of ������� in equation (5.13) requires computing ���� after 25 

loading steps with both microstructure and geometric gradients using crystal 

plasticity simulation. The choice of 25 loading steps corresponds to the minimum 

number of steps required to achieve stress-strain convergence (Figure 4-3). The 

notches induce large plastic deformation close to the notch tip based on their 

stress concentration factor (��). Thereby, it is computationally challenging to run 

the crystal plasticity analysis with coupled microstructure and notch geometry at  

∆� = ~2.8 × 10��, and mesh size of >35K.  

Cini and Irving [9] mentioned that crack growth from scribes was primarily 

affected by material microstructure. Furthermore, they found that scribe geometry 

only influenced stage-I crack growth. The notch geometry escalates the plastic 

deformation at the notch root that can trigger the nucleation phase of fatigue 

damage. This work proposes to estimate the maximum ���
��� at the notch tip for 

each notch case under consideration using elastoplastic simulations and apply 

that as a nominal strain (∆�) on a simple beam without a notch. Table 5-1 shows 

the ���
��� at the notch root for each notch case computed at ∆� of ~2.8 × 10�� 

using the model shown in Figure 4-17. Following on, the nominal strain (∆�) 
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corresponds to these ���
���  are applied on a simple beam to estimate the fatigue 

life to compare with experiments [14]. 

Table 5-1 ���
��� at the notch root for notches with different radii and same depth i.e. 

�� ��. 

Notch radius 5 �� 25 �� 50 �� 

���
��� 1.4 × 10�� 1.44 × 10�� 8.6 × 10�� 

∆� 7.02 × 10�� 7.2 × 10�� 4.3 × 10�� 

A simple beam with elongated grains is created using Abaqus v2017 [24] and 

Dream3D [25] software. Cini and Irving [9] mentioned that an elongated grain 

structure appears in clad Al2024 specimens and cladding has an equiaxed grains 

that extend across the entire average cladding thickness of 70-80 ��. This work 

considered similar grain dimensions as reported by Cini and Irving [9], i.e. 150-

200 �� along rolling direction, 80-100 �� along transverse and 20 �� along 

thickness direction. The geometry of a simple beam and representative 

microstructure is shown in Figure 5-1. The detail of finite element mesh and 

microstructural features is given in Table 5-2.  

 

Figure 5-1 Finite element mesh of a simple beam without notch with elongated 

grains.  
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Table 5-2 The details of finite element model and representative microstructure.  

Number of 
grains 

Number of 
elements 

Size of 
elements (���) 

Size of the 
specimen (��) 

Average 
grain size 

(μm) 

~16 3000 10 × 10 × 10 100 × 100 × 300 ~70- 90 

Cini A. [14] measured the fatigue crack nucleation life up to 50 �� for notches 

with different root radii. He mentioned that the nucleation life at the notch root 

was controlled by the notch geometry. In modelling, we assume that the 

nucleation phase is instantaneous due to the large plastic gradient (Figure 4.18). 

Following on, we computed the minimum number of cycles (�������) to extend a 

crack up to 50 �� inside each band in each grain using equation (5.13).  

This work implemented the finite element model (Figure 5-1) with UMAT 

subroutine in Abaqus v.2017 [24] to compute the ���� after 25 loading steps at 

the nominal strains shown in Table 5-1. However, it was computationally 

challenging to compute the ���� for large strains. Alternatively, we run the 

simulations (25 computational steps) at different strain amplitudes i.e. between 

10�� − ~10�� and noticed that ���� (equation (5.13) can be up-scaled as,  

����|∆� =
∆�

∆����
����,��� (5.15) 

Where, ����,��� is the reference FIP and correspond to FIP at 1 × 10�� strain 

amplitude. Figure 5-2 demonstrates that crystal plasticity prediction agree with 

the upscaling of ���� across all grains at higher strain amplitude using lower strain 

data following equation (5.15). Lucarini and Segurado [26] have also proposed 

an upscaling considering extensive microstructure simulations to predict fatigue 

life. The findings [26] support equation (5.15) independently. Following on, this 

work employed equation (5.15) to compute the ���� at different strain amplitudes 

mentioned in Table 5-1.  
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Figure 5-2 Comparison between the calibrated and actual normalised ��� ���� 

across all grains with one microstructure realisation. 

Figure 5-3 explains the steps required to estimate ������� using equation (5.13). 

Figure 5-4 presents the comparison of ������� upto 50 �� between model and 

experiment [14].  The minimum ������� to extend a crack upto 50 �� from all 

grains is plotted using boxplot for each notch case. In the previous chapter, this 

work estimated the geometric gradient at different angles (Figure 4.19), which 

shows that the ∆���
��� gradient correspond to ~10�  and ~50� represent lower 

and upper bounds respectively. Thereby, weestimated the ������� upto 50 �� 

correspond to lower (~10�) and upper bound (~50�) of �� and �� to capture 

variability. The ������� corresponds to upper bound geometric gradient predicts 

the minimum life for different notches, which is in good agreement with 

experiments.  
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Figure 5-3 Steps to estimate the minimum ������� in each band each grain. 

Compute the maximum ����
��

at 
notch root using elasto-plastic 

simulations (Section 4-4) 

Calculate ∆� from maximum 
����

��
at notch root

Upscale the FIPo correspond 
to ∆� for each notch as shown in 
Table 5-1 using equation (5.15) 

Evaluate crack extension upto 
50 μm length using equation 

(5.13) in each band each grain   

Find the minimum life band 
among all grains and this further 
refers as minimum life of grain

End
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Figure 5-4 Comparison of number of cycles to extend the crack upto 50 �� 

between model and experiment [14]. 

 

Figure 5-5 presents the crack growth rate as a function of crack length for different 

notches as predicted by equation (5.8). In Figure 5-5, color differentiate the 

notches with different root radii. The range of boxplot corresponds to the 

maximum crack growth rate in all grains. Overall, the crack growth rate is 

decreasing as crack extends inside a grain irrespective of notch size, which 

agrees with the experiment [27]. However, for the same notch depth, the crack 

growth rate is slightly higher for the smaller radius notch corresponds to each 

crack length. The direct comparison of Figure 5-5 results with the experiment is 

difficult due to the unavailability of data. However, Cini [14] measured the number 

of cycles to extend the crack upto 50 �� as shown in Figure 5-4. If we estimate 

the crack growth using this data, its results 1.89 × 10��  
��

������   for notch radius 

5 ��, which agrees with the results in Figure 5-5. 
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Figure 5-5 Comparison of crack growth rate for different notches upto a crack 

length of 50 ��. 

Cini and Irving [9] found that the notches with depth 25 �� nucleated multiple 

cracks and the number of cracks varies with the radius of notch. They measured 

the number of cracks after specimen failure, which corresponds to different 

number of cycles. In simulations, this work considered estimating the number of 

cracks as the number of grains cracked corresponding experimental number of 

cycles to failure for each notch case [9]. Since notches with root radii 5 �� and 

25 �� have about the same life [9], we employed one threshold for both 5 and 

25 �� radii notches represented by N1 in Figure 5-6. On the other hand, the 

threshold for the notch with 50 �� root radii is denoted by N2.    

Figure 5-6 shows the cumulative distribution of cracked grains as a function of 

number of cycle. The distribution in Figure 5-6 shows the number of grains fully 
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cracked corresponding number of cycles on x-axis. Only the minimum ������� to 

extend a 50 �� crack from all grains is considered in Figure 5-6. Table 5-3 

compares the experiment and model results for the effect of scribe radii on the 

nucleation of multiple cracks. The ratio of cracks between 5 �� and 25 �� 

notches corresponds to N1 (threshold) results 1.41 following Figure 5-6, which is 

1.25 according to experiments [9]. Hence, model results agree with experiments 

within 11% error. The ratio of cracks between 5 �� and 25 �� notches still agrees 

experiments [9] corresponding threshold N2. However, the comparison of 50 �� 

notch with smaller radii notches is not appropriate because they were calculated 

at a different number of cycles. Overall, the model predicts the trends observed 

in the experiment i.e. number of cracks decreases with the increase in notch radii 

as found by the experiments [9]. 

 

 

Figure 5-6 Effect of notch radius on the number of cracks. The vertical lines (N1 

and N2) represent threshold life following the experiment [9]. 
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Table 5-3 Comparison between model and experiment: Effect of scribe root radii 

on the number of crack nucleation.   

Radius 
(μm) 

�� = 2.4 × 10� �� = 4.4 × 10� 

Number of 
cracks 

(experiment) [9] 

Number of 
grains failed 

(Model) 

Number of 
cracks 

(experiment) [9] 

Number of 
grains failed 

(Model) 

5 10 1.92 - 12.8 

25 8 1.36 - 10.8 

50 - 0 5 3.36 

This work also compared the density of cracks along the notch with experiments 

[9]. We computed the density of cracks by dividing the number of cracks by the 

length of the notch. Table 5-4 shows that the model overestimated the density of 

cracks compared to the experiment. The density of cracks reported in the 

experiment [9] corresponds to the scribe of 80 mm length, which is 267 times 

larger than the model dimension i.e. 300 μm. This highlights that the model lacks 

the microstructure statistics (number of grains) along the notch.  

For comparing the density of cracks over a length, the model should have 

equivalent and comparable dimensions with the experiments. For notch with 5 

μm root radii, Cini and Irving [9] found 1 crack per 8 mm. Alternatively, a model 

with 8 mm dimension and random microstructural features can be employed to 

run 10 simulations to find the equivalent ratio of the density of cracks. Future work 

will consider recalibrating the model with a larger number of simulations to study 

the effect of scribe root on the density of crack.  
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Table 5-4 Comparison between model and experiment: Effect of scribe root radii 

on the density of cracks.   

Radius 
(μm) 

Density of cracks ���� at which 

density 
measured   Experiment [9] Model 

5 0.125 6.4 2.4 × 10� 

25 0.1 4.5 2.4 × 10� 

50 0.0625 11.2 4.4 × 10� 

 

5.4 Discussion   

This work is motivated by predicting the transgranular fatigue life in pure 

aluminium using the independently coupled gradients proposed in the previous 

chapter. Here, we relate the crack driving force with MS fatigue crack growth rate 

following Castelluccio and McDowell [23]. However, this work accounts for the 

explicit effect of microstructure and geometric gradients on MS transgranular 

fatigue life. The effect of notch root radii on transgranular fatigue life is estimated, 

which showed a good agreement with experiments [14].  

Fatigue prognosis of geometric gradients using crystal plasticity simulations is 

computationally demanding in low cycle fatigue (LCF) regime. This work 

proposed an independent estimation of the geometric gradient, which 

significantly reduces the computational burden in several aspects. One aspect 

was highlighted in the previous chapter where we coupled geometric and 

microstructure gradient independently to reconstruct the equivalent ������� as 

shown in equation (5.7). This mitigates the need for running damage with crystal 

plasticity simulations (cracking element one by one) with both microstructure and 

geometric gradient. However, equation (5.7) still require computing ���� from 

crystal plasticity simulation with both gradients. The estimation of ����  

corresponding experimental loading condition (∆� = 2.8 × 10��) was challenging 

with available computational resources due to the large mesh size. Alternatively, 

this work proposed to compute ����
��  at the notch root with nominal strain of 
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2.8 × 10��  using homogenised geometric gradient and use that ����
��  to compute 

���� with smooth specimen without notch. Hence, this approach enables the 

quantification of equivalent ���� that represent both geometric and microstructure 

gradients.  

Following on, this work further explored that estimation of ���� even with the 

smooth specimen is highly computationally demanding above 1% strain 

amplitude. Alternatively, we proposed an upscaling strategy to quantify ���� 

above ∆� =1% using lower ∆� data. Finally, this work explored several challenges 

and proposed a less computationally intensive solution to estimate the fatigue life 

while accounting for multiple gradients above 1% strain amplitude. However, 

future efforts require consideration to estimate the uncertainty related to 

upscaling in equation (5.15). An explicit analysis with large statistics of 

microstructure attributes is required to further explore the upscaling relation as it 

is useful in reducing the computational burden.   

Another aspect that requires consideration is the uncertainty quantification 

related to higher-order terms of the geometric gradient with ∆����� in equation 

(5.9), which was ignored to make analytical integration easier. Here, we 

estimated the uncertainty underlying this assumption by evaluating the crack 

growth rate with or without a higher-order term corresponding nominal strains 

mentioned in Table 5-1. Figure 5-7 shows that higher-order terms with ∆����� 

did not contribute much towards the results, therefore ignoring these terms to 

make analytical integration simpler can be justified. 
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Figure 5-7 Estimation of uncertainty with and without higher-order term in 

equation (5.9). 

 

Cini and Irving [9] showed that shallow notches nucleate multiple cracks at the 

surface. For the same notch depth i.e. 25μm, the number of cracks decreases as 

the notch root radii increases [9]. Here, this work computed the number of cracks 

nucleated by shallow notches with different root radii and compared with 

experiments [9]. We estimated the number of grains cracked corresponding to 

the life of failure given in the experiment for each notch case under consideration 

[9]. The notch with smaller root radii has a larger plastic gradient at the notch root 

(Figure 4.19), thereby, it nucleates higher number of cracks as shown in Figure 

5-6. The present analysis shows that the nucleation of multiple cracks is a 

function of the plastic gradient at the notch root. 

This work correlated the independently coupled geometric and microstructure 

gradients with MS crack growth rate to predict the fatigue life from shallow 

notches in pure aluminium. The results showed a good agreement with 

experiments and manifest the predictability of the model in assessing fatigue 

damage. Future efforts will consider estimating the effect of deeper notches on 
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fatigue crack nucleation in 2024- T351 aluminium alloy using the current 

approach. Future efforts will also attempt studying the crack extension upto few 

grains.  

5.5 Conclusions 

This work proposed a less computationally intensive solution to compute the 

effect of geometric and microstructure gradient on transgranular fatigue life in 

LCF regime. The model showed good predictability and agreement with the 

experiments. However, some areas require consideration to improve model 

prediction. For instance, future efforts should consider predicting the density of 

cracks with large microstructural statistics to validate the trend with experiments.   

Overall, the current approach presented a different less computationally intensive 

solution to study the effect of multiple gradients independently on fatigue crack 

formation in the LCF regime. Future efforts will also consider estimating the 

multiple gradients on fatigue failure using the current approach. 
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6 Implications of Overall Work 

 

This thesis focuses on the cyclic deformation of aluminium while comparing its 

response with other FCC metals. We demonstrate a way to study the atomistic 

scale effect (Chapter 2) and mesoscale effect (Chapter 3) independently. A 

modified crystal plasticity framework is used to predict the microstructure-

sensitive transgranular crack propagation from shallow scribes. Coherently, the 

understanding from the first chapters is essential for the later ones due to the 

local microstructure sensitivity of small cracks.  

6.1 Cyclic response of aluminium 

This work hypothesised that aluminium evolves similar dislocation substructures 

as other FCC metals at the same homologous temperatures under cyclic loading. 

Following on, mesoscale substructures can be used as an invariant to predict the 

cyclic response of aluminium. The findings presented in chapters three and four 

support this hypothesis.  

6.1.1 The role of activation energy  

The key finding of Chapter 2 (Figure 2-7) revealed that the activation energy (��) 

in FCC metals and alloys is inversely proportional to its stacking fault energy 

(SFE). This implies that aluminium as a higher SFE metal has lower activation 

energy as compared to other FCC metals. This justifies the low stresses in 

aluminium during the early stages of plastic deformation as compared to other 

FCC metals.  

The activation energy parameters are found to be sensitive to solute 

concentrations (Section 2-4.1). Both activation energy and thermal stress 

increase with increasing solute concentration. Since the solute atom hinders the 

motion of dislocations and increases the height of the energy barrier, it increases 

the stresses in the material. The dependence of �� and ��
� on solute 

concentrations proposed a simple way to study the cyclic response of alloys using 



 

188 

�� and ��
� with simple microstructure instead of explicitly modelling the real 

microstructure. 

6.1.2 Mesoscale dislocation substructures 

Recent research [1] showed that the evolution of mesoscale substructures in low-

medium stacking energy FCC metals under fully reversed cyclic loading 

represents physics-based hardening mechanisms. Some studies [2–5] showed 

that aluminium also evolved similar dislocation substructures as other FCC 

metals, however at different temperatures. This work highlighted that the number 

of cycles (N) has a significant effect on mesoscale substructure in all FCC metals 

above roughly 0.3 
�

��
. This work modified the crystal plasticity framework [1] by 

incorporating the effect of N, temperature, strain amplitude and crystal orientation 

on mesoscale substructure using existing literature data related to cyclic 

deformation of FCC metals.  

The results of chapter 3 show the effect of different loading on the cyclic response 

of aluminium single crystal, which reinforces the hypothesis that aluminium 

evolves similar substructures and has similar deformation mechanisms as other 

FCC metals at similar homologous temperatures. Besides, this work also 

validated the model at mesoscale i.e. estimating the wall spacing against the 

shear stress level (similitude relation). The similitude relation has been proposed 

by Sauzay and Kubin [6] for Ni, Cu, and Ag. Interestingly, few studies [4,5] also 

proposed this relation for aluminium with experiments. This work used these 

experiments [4,5] to validate the similitude relation in aluminium (Figure 3- 14). 

Moreover, the findings [4,5] also support building the current hypothesis.  

6.1.2.1 Effect of activation energy on mesoscale substructure  

As discussed in the previous section 6.1.1, the solute concentrations increase �� 

and ��
�. The increase in �� makes dislocation glide difficult and reduces secondary 

slip. Fujii et al. [7] studied the cyclic response of Al-0.7%Mg single crystal oriented 

along a single slip direction at 298K. They [7] showed that the cyclic stress-strain 

response of Al-0.7%Mg evolves a plateau region corresponding to PSBs similar 
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to Cu, Ni, and Ag single crystal at 298K. The findings of Fujii et al. [7] 

independently manifest the effect of solute concentration on the cyclic response 

of metals. Besides, the findings [7] also support the current hypothesis and 

implications of chapter 2 and chapter 3.  

The evolution of saturated dislocation substructures at the mesoscale is 

associated with specific dislocation mechanisms under cyclic loading. For 

example, cross slip dominates cell structure and Hirth locks facilitate labyrinth 

structure, etc. [8,9]. The underlying mechanism that controls hardening in 

mesoscale substructure is the mean free path of mobile dislocations (screw 

dislocations) [1]. For instance, during the early stages of cyclic deformation, 

dislocations can travel up to 5-10 micron in veins and PSBs. However, with 

increasing plastic strain, the mean free path is significantly reduced in cells that 

causes hardening [1]. The mean free path of dislocation is a more generalised 

aspect than saturated substructures and its correlation with other mesoscale 

characteristic lengths such as wall volume fraction can help in understanding 

intermediate mesoscale substructure.  

Literature [10] showed that deformation mechanisms at the atomistic scale are a 

function of the material. For instance, Cu has a different yield point with different 

solute concentrations under similar loading conditions, etc. [10]. However, 

mechanisms at the mesoscale scale related to dislocation substructures are less 

material sensitive [11]. This demonstrates the need for estimation of Fo & so and 

supports the hypothesis.  

Generally, several reasons support the use of mesoscale dislocation 

substructures to define the hardening in metals as compared to dislocation-

density based models such as,  

 The substructures can be estimated with relatively low uncertainty using 

TEM data as compared to dislocation density. For instance, the volume 

fraction of dislocation walls (static dislocations) can be quantified using 

TEM data with relatively low uncertainty (Appendix B.2) as compared to 

the dislocation density.  
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 Similar mesoscale substructures are evident in many materials, which 

provides a path to bridge the difference between different materials by 

understanding the physics driving local mechanisms to reach a similar 

conclusion (mesoscale substructure). 

6.2 Effect of shallow scribes on MSC growth  

This work considered implementing crystal plasticity simulations to study the 

explicit effect of microstructure on the variation of FIP as a function of crack length 

in pure aluminium to test the hypothesis. Since aluminium has relatively high 

stacking fault energy and activates secondary slip earlier (Chapter 3), therefore 

this work proposed a strategy to estimate a multislip FIP. The decaying trend of 

multislip FIP as a function of crack length in pure aluminium is found to be similar 

to other FCC alloys [12,13]. This shows that the empirical relation for 

microstructure gradient [12] is also valid for aluminium in addition to bridge steel 

[14], and Ni-based superalloy [12].   

This work proposed a less computationally intensive and homogenised solution 

to quantify notch sensitivity using elastoplastic simulations. By coupling the 

microstructure gradient from a crystal plasticity simulation with a geometric 

gradient from elastoplastic simulation, we reconstructed the equivalent FIP as 

computed by crystal plasticity simulation at a lower computational cost. Hence, 

this work proposed an engineering solution to estimate the driving force from 

multiple gradients to study fatigue crack formation.  

Since the microstructure gradient is found to be similar in several microstructural 

realisations, changing geometric gradient would not require rerunning the 

computationally intensive crystal plasticity analysis. Instead, the geometric 

gradient can be quantified with elastoplastic simulations independently and 

coupled with the existing microstructure gradient to study fatigue crack formation.  

Finally, we employed the coupled gradients to predict transgranular fatigue life in 

pure aluminium and compared it with experiments. Overall, this work provides an 

engineering tool to estimate the effect of multiple gradients on small fatigue crack 
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growth using less computationally intensive models. The proposed approach 

enables saving computational time from days to hours.   
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7 Conclusion and Future Work 

 

The major conclusion of this work is that it provides understanding about the,  

- Cyclic response of aluminium single and polycrystals under different 

temperatures, strain amplitude, and number of cycles.    

- Effect of geometric gradient on microstructure-sensitive transgranular 

fatigue crack growth in pure aluminium.  

7.1  Contribution to knowledge 

7.1.1 Regarding the parametrization of glide 

- Activation energy is estimated using three different formulations normally 

employed in constitutive models. The Kocks approach yielded the best 

results as compared to Langer and Taylor's approach when fitting a 

nonlinear dependence of yield stress on temperature.  

- For Kocks formulation, this work estimated the glide activation energy 

(��& ��
�) for several metals and alloys while considering other model 

parameters and their uncertainties independently. The results related to 

different metals and alloys showed that both activation energy (��) and 

thermal stress (��
�) are sensitive to solute concentrations.  

- The effect of profile parameters (p and q) is quantified on �� ��� ��
�. The 

results show that values of p and q between 2/3 to 1 and 1 to 3/2, 

respectively, have a marginal effect on the activation energy parameters. 

7.1.2 Regarding aluminium mesoscopic response 

- This work highlighted that the number of cycles has a significant effect on 

the mesoscale substructures and correspondingly macroscopic stress 

response for all FCC metals at relatively higher homologous temperatures 

(
�

��
> 0.3).  



 

196 

- The comparison of aluminium with low-medium stacking fault energy FCC 

metals under cyclic loading is not appropriate at 298K. Aluminium has a 

higher homologous temperature at 298K that makes him sensitive to the 

number of cycles in addition to other loading conditions. However, 

aluminium evolves similar substructure as other FCC metals but at 

different temperatures.  

7.1.3 Regarding the microstructure-sensitive fatigue crack formation 

- The comparison of energy and Fatemi-Socie fatigue indicator parameter 

(FIPs) over different domains shows that they have the same potential to 

predict the small fatigue cracks. However, the choice of domain is 

important than the choice of FIPs. The averaging along slip bands 

represents a better estimation of fatigue damage than the local or larger 

averaging domains.  

- The decay of FIP as a function of crack length under the explicit of 

microstructure in aluminium is found to be similar in Ni-based superalloy. 

This revealed that the proposed relation for microstructure gradient is still 

valid for different materials as it has been implemented for bridge steel, Ni-

based superalloy, and aluminium.   

- The independent coupling of microstructure (crystal plasticity simulation) 

and geometric gradients (elastoplastic simulations) reconstructed the 

similar FIPs as estimated by the crystal plasticity simulations (both 

gradients).    

- The effect of shallow scribes on transgranular fatigue life and nucleation 

of multiple fatigue cracks was estimated using independently coupled 

microstructure and geometric gradient.   

7.2 Potential impact of findings 

- This work proposed an empirical relationship between the glide activation 

energy and stacking fault energy for several FCC metals and alloys. This 

enables the estimation of glide activation energy for any FCC material 

within a range independently. Moreover, the glide activation energy is an 
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important parameter of a crystal plasticity model and often calibrated using 

different approaches. This work provides an ad-hoc methodology to 

quantify this parameter relative to other materials. Besides, this work also 

provides a tool to quantify the effect of solute concentration on cyclic 

deformation.   

- This work demonstrates that mesoscale dislocation substructures can be 

used as an invariant to study the cyclic deformation of FCC metals. The 

evolution of dislocation substructures at mesoscale is not a material 

property rather it belongs to the dislocation interaction mechanisms 

occurring along different slip planes (slip systems). Hence, this implies that 

a crystal plasticity framework based on similar mesoscale substructures 

as proposed in the previous work can be used to study a broad range of 

materials. Moreover, employing an invariant to study the response of 

different materials can help to bridge the gap between them and this could 

further help to unify the constitutive models.   

- This work provides an engineering solution to predict the effect of multiple 

gradients on microstructure-sensitive crack growth rate. This further 

enables to test and improve the microstructure-sensitive designs to avoid 

fatigue.   

7.3 Future recommendations 

Several areas for future research have been explored during this work. These are 

summarised as follows,  

- Glide activation energy parameters are found to be sensitive to impurities. 

Since impurities have different sizes and different concentrations in 

engineering materials, therefore they have a different effect on activation 

energy parameters. Future efforts would consider estimating the explicit 

effect of impurities on activation energy parameters.    

- The presence of hydrogen in FCC metal and alloys has a significant effect 

on its activation energy and thermal stress. Both activation energy 

parameters increased with increasing hydrogen concentration. Future 
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efforts should explore the effect of hydrogen on stress-strain response of 

FCC metal and alloys using activation energy parameters as a function of 

concentration.   

- The current crystal plasticity model is capable of predicting the stress-

strain response of aluminium polycrystal with larger grain sizes when the 

grain size effect saturates. Future efforts will modify the model to 

implement the grain size effect.  

- The present model innovates a less computationally intensive framework 

to predict the stress response of FCC metals for a specific number of 

cycles. However, future effort requires predicting the initial hardening 

stage i.e. stress response in first few hundred cycles.   

- Several aluminium alloys such as Al 3003 and Al-Mg have been found to 

have similar mesoscale substructures as FCC metals. Future efforts 

should consider predicting the cyclic response of those alloys using the 

current framework. 

- This work considered only pure aluminum (cladding) to study the 

microstructure-sensitive crack growth from shallow scribes. However, 

there is sufficient experimental data available for Al 2024-T351.  Future 

efforts should consider studying the cyclic response of Al 2024-T351 and 

predicting the effect of deep scribes in Al 2024-T351 using the current 

approach. 

- This work overestimated the nucleation density of cracks due to a 

significantly large difference in model and experiment specimen size. 

Future efforts should consider predicting the nucleation density with a 

large specimen size and more microstructural attributes.  

- This work considered fully reversed cycling while estimating the fatigue life 

of pure aluminium. Future efforts require estimating the effect of mean 

stress on fatigue life.  

- The current work used the existing experimental data to understand 

material behaviour. This further encourages the use of existing worthy 
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knowledge to understand the deformation mechanisms and transform 

them into models. Future efforts should consider existing experiments to 

understand the mechanisms that control material response. 
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Appendices 

Appendix A  

A.1 Effect of shear modulus range on Fo and so 

Table A-1 presents the shear modulus and Burgers vector for different metals 

and alloys used in the current analysis. Figure A-1 showed that glide activation 

energy and thermal stresses for different FCC metals are less sensitive to the 

uncertainty underlying shear modulus.  

Table A-1 Shear modulus for different FCC metals and alloys. 

Materials 

Shear Modulus 

� [10-10 
m] 

Reuss model Voigt model 

� (300 K) 
[GPa] 

�� (0 K) 

[GPa] 

� (300 K) 

[GPa] 

�� (0 K) 

[GPa] 

Aluminium 25.9 [1] 29.1 [1] 26.2 [2] 29.4 [2] 2.86 [3] 

Nickel 78.2 [1] 84.7 [1] 94.2 [2] 101 [2] 2.49 [3] 

Copper 41.7 [1] 43.5 [1] 54.6 [2] 59.3 [2] 2.56 [3] 

Silver 25.4 [1] 28.4 [1] 33.5 [2] 37.5 [2] 2.89 [3] 

Stainless steel 
304 

77.3 [4] 82.1 [4] - - 2.58 [5] 

Stainless steel 
316 

75.1 [4] 81.0 [4] - - 2.58 [6] 

Cupro-Nickel 57.0 [7] 60.6 [7] - - 2.56 [3] 

AA 3003 (1.2) 
Mn 

25.9 [8] 29.2 [8] - - 2.87 [3] 
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a)  

b)  

Figure A-1 Effect of shear modulus range on a) activation energy b) thermal stress. 

For shear modulus range, Reuss model is used as a lower bound and Voigt model 

as an upper bound. 
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A.2 Experimental data used in the analysis  

Figure A-2 shows the experimental data for aluminium, nickel, and Cu single 

crystals, Cu-Mn single crystal, and stainless steel 310s respectively. The data is 

used to calculate activation energy parameters shown in Figure 2-8, Figure 2-9, 

and Figure 2-12. 

 

Figure A-2 Shear stress data at different temperatures for a) aluminium, nickel and 

copper single crystals [9–11] b) Cu-Mn with different solute concentrations [12] c) 

stainless steel 310s  [13].  
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Appendix B  

B.1 TEM data showing persistent slip bands in an aluminium 

single crystal at room temperature  

Figure B-1 shows the PSB substructure in aluminium single crystal oriented for 

single slip deformed under cyclic loading at 298K and 77K. PSB wall thickness is 

measured at 77K and 298K using the reference length scale given on respective 

TEM. The data is plotted using the histogram and shown in Figure 3-7. 

a)  

b)  

Figure B-1 Persistent slip bands in an aluminium single crystal at 298K [14] and 

77K [15]. The highlighted circles show the wall thickness measured using the 

reference length scale on the Figure.  
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B.2 Correlation between dislocation cell wall thickness and cell 

size  

Figure B-2, Figure B-3, and Figure B-4 show the dislocation cell substructure in 

pure aluminium from various sources [16–19] deformed under cyclic loading at 

298K and 77K. The cell thickness and cell size are estimated following the 

reference scale shown on the respective TEM. Since the cell sizes are not 

constant in each TEM data, therefore we considering quantifying multiple cell 

sizes in each data to account for uncertainty as shown in Figures below. The 

quantitative data is shown in Figure 3-8. 

a) b)  

c) d)  

Figure B-2 Dislocation cell structure in fatigued aluminium  at strain amplitude at 

a) 
∆���

�
= �. ���� % b) 

∆���

�
= �. ���� % c) 

∆���

�
= �. �� % d) 

∆���

�
= �. ��� % at 298K [16]. 
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a) b)  

c)  

Figure B-3 Dislocation cell structure in pure aluminium under cycling loading at 

a,b) ∆� = �� %, T=78 K [17] c) ∆� = �. � %, T=78 K [18]. 

 

Figure B-4 Dislocation cell structure developed in 99.8% pure aluminium under 

cyclic loading at ∆��� = �%, T=298 K [19] a) extruded hard b) extruded soft. The 

cell size and thickness are measures with reference to the scale given in the figure.  
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Appendix C  

C.1 Details of grain size and orientation  

 

Average 

grain 

dia (μm) 

Euler angles (radians) Average 

grain dia 

(μm) 

Euler angles (radians) 

�� � �� �� � �� 

48.5718 4.0458 1.7869 0.3356 44.7747 4.0937 0.7571 5.7686 

29.173 6.0678 1.0619 3.0329 42.4314 5.3 2.3835 3.0686 

46.8956 2.1574 1.2566 1.3489 53.682 4.6607 1.3553 2.1387 

44.1304 2.7358 1.7861 3.5735 53.682 1.5776 1.4737 6.0556 

41.7121 4.5598 2.2945 6.0223 51.8531 3.6901 2.3543 0.2725 

48.3004 2.327 2.569 5.9221 54.1203 5.5071 1.1473 0.7906 

44.1304 5.7805 1.4147 5.6074 50.6411 6.0452 2.6632 1.0074 

19.6949 2.1975 0.8027 5.2774 29.173 3.2743 1.7072 4.6522 

49.1056 4.8225 1.5239 1.1716 50.1397 0.34565 2.3083 4.0079 

44.7747 3.9768 0.6078 5.3259 45.0901 2.8374 2.0119 1.4162 

55.3941 0.8054 1.0899 0.8862 44.4549 1.8546 1.8772 0.4868 

52.7834 1.3906 2.5423 2.7857 46.3093 5.5192 1.1499 6.1738 

51.8531 4.0546 1.5405 2.5831 52.7834 5.7998 0.6456 2.1072 

45.7078 0.01399 2.8227 4.817 56.4126 3.8835 1.3995 2.6985 

47.1833 3.6861 1.2803 4.815 47.4675 0.77552 1.6114 0.83863 

51.8531 2.282 1.4458 2.4707 57.7796 5.3293 1.8082 0.90509 

45.401 4.4291 0.91516 3.2179 52.0888 4.3959 0.96316 0.39122 

48.8402 3.7458 0.5361 2.5262 59.0847 6.2814 2.6194 4.6018 
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48.3004 4.3025 1.6119 3.0332 55.1859 1.4101 1.9639 1.3171 

48.5718 0.893 2.1378 5.3688 48.8402 5.5715 0.51679 5.0351 

50.3917 2.0956 0.98108 1.0798 48.026 0.9109 2.2299 3.5058 

47.1833 2.0227 2.3135 5.2229 48.5718 5.5787 2.0268 2.1457 

52.5539 1.7612 2.4962 4.9264 52.5539 2.9669 2.3143 6.1269 

50.3917 5.3633 1.2474 2.4227 47.7484 0.060493 1.7811 5.5761 

57.0065 1.6557 0.80177 5.887 57.7796 4.6126 2.1031 4.367 

58.9018 3.2679 0.79769 1.9713 41.3429 0.13446 2.6395 3.8901 

29.173 4.0458 1.7869 0.33568 40.967 2.9122 2.0363 0.92892 
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