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ABSTRACT 

Asset management is concerned with the management practices necessary to 

maximise the value delivered by physical engineering assets. Internet of Things 

(IoT)-generated data are increasingly considered as an asset and the data asset 

value needs to be maximised too. However, asset-generated data in practice are 

often collected in non-actionable form. Moreover, IoT data create challenges for 

data management and processing. One way to handle challenges is to introduce 

context information management, wherein data and service delivery are 

determined through resolving the context of a service or data request. 

This research was aimed at developing a context awareness framework and 

implementing it in an architecture integrating IoT with cloud computing for 

industrial monitoring services. The overall aim was achieved through a 

methodological investigation consisting of four phases: establish the research 

baseline, define experimentation materials and methods, framework design and 

development, as well as case study validation and expert judgment. The 

framework comprises three layers: the edge, context information management, 

and application. Moreover, a maintenance context ontology for the framework 

has developed focused on modelling failure analysis of mechanical components, 

so as to drive monitoring services adaptation. The developed context-awareness 

architecture is expressed business, usage, functional and implementation 

viewpoints to frame concerns of relevant stakeholders. The developed framework 

was validated through a case study and expert judgement that provided 

supporting evidence for its validity and applicability in industrial contexts. 

The outcomes of the work can be used in other industrially-relevant application 

scenarios to drive maintenance service adaptation. Context adaptive services 

can help manufacturing companies in better managing the value of their assets, 

while ensuring that they continue to function properly over their lifecycle. 

Keywords:  

Internet of Things, Context Information Management, Maintenance Ontology, 

Cloud Computing, Remote Monitoring Services 
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1 INTRODUCTION 

1.1 Overview 

In recent years, research into context management for Internet of Things (IoT) 

has received increased attention in academia, aimed to address the increasing 

complexity challenges of IoT-enabled data value chains (Perera et al., 2015). 

When considering IoT usage in industrial environments, the term ‘Industrial 

Internet of Things’ (IIoT), or simply ‘Industrial Internet’, is often employed, and is 

being considered synonymous to Industrie 4.0 (Jeschke et al., 2017). IoT is a set 

of enabling technologies that have the potential to provide ubiquitous connectivity 

to the Internet, transforming commonly-used objects into connected appliances. 

The underlying principle of IoT is the deployment of smart objects that have the 

capability of sensing the conditions in their surroundings, communicating and 

processing the obtained information, and then providing appropriate evaluations 

to the surroundings (Sisinni et al., 2018).  

The rapid evolution of technologies associated with the deeper penetration of IoT 

in industry creates significant opportunities, but also introduces challenges for 

monitoring services. This is further fuelled by the accelerating shift to service-

based business models, wherein service-level agreements must be ascertained, 

supported by adequate monitoring systems. IoT allows the physical world to be 

brought into the digital world, where physical things share information, and 

enables the coordination of decisions. Specifically, IoT brings together several 

functionalities, such as identification, sensing, communication, computation, 

services and semantics (Al-Fuqaha et al., 2015). Although IoT offers many 

benefits and solution enablers, substantial effort is required to manage and 

exploit the data generated by things. These functionalities can be used to connect 

a monitoring system with an end-user or another system, and can establish a 

remote overview of the observed system’s state in order to prevent machinery 

performance degradation and reduce maintenance costs, as shown in Figure 1-

1. 
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Figure 1-1: IoT functionalities for industrial monitoring services 

IoT-generated data are increasingly considered to be an asset, and their data 

asset value needs to also be maximised. However, asset-generated data, in 

practice, are often collected in non-actionable forms. Such collected data may 

comprise a wide number of parameters, gathered over long periods of time, and 

possibly at significant scale. They may also fail to represent the range of possible 

scenarios of asset operation or the causal relationships between the monitored 

parameters, and so the size of the data collection, while adding to the complexity 

of the problem, might not necessarily allow direct data asset value exploitation. 

One way to handle data complexity is to introduce context information modelling 

and management, wherein data and service delivery are determined upon 

resolving the apparent context of a service or data request.  

“Context is any information that can be used to characterize the situation of 

entities that are considered relevant to the interaction between a user and an 

application” (Dey et al., 2001). Context awareness is the ability of systems to give 

appropriate information or services to consumers utilising context information 

(Sezer et al., 2018). Systems with context awareness are employed in IoT 

environments for the purpose of sensing the operational environment and for 

delivering an appropriate response to both the user and application (Perera et al., 

2014). Such systems are capable of analysing the data generated by IoT devices, 
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producing a high level of semantic organisation of the data and then converting it 

into context information. This information is subsequently utilised in determining 

an environment’s status so as to drive appropriate responses. In general, the 

status of the environment is determined by a combination of circumstances, 

including users, applications, location or devices (Abowd et al., 1999), which 

constitute the context information. 

As IoT technologies become more embedded in monitoring activities, there is a 

growing necessity to manage their context information in industrial environments. 

Numerous technologies can become a significant part of this, especially by 

making their connected devices work together. Cloud computing is particularly 

relevant, enabling the delivery of hosted services for instance, storage, 

networking, analytics and software development platforms over the internet 

(Zhou et al., 2013). This entails gathering, modelling, reasoning and 

disseminating context in order to efficiently manage the data generated by 

multiple devices, and to ensure that they can be effectively integrated into 

enterprise systems. Nonetheless, the data contributing to context information are 

often modelled or processed within the narrow scope of isolated subsystems, 

thus restricting interoperability. Moreover, even when similar systems for 

collecting context are applied in distinct settings, information is infrequently 

shared among them (Perera et al., 2014).  

The ability to share context among different applications is a critical necessity for 

the IoT, making data shared between heterogeneous systems reusable in 

multiple applications (Ramachandran and Krishnamachari, 2019). Context 

information management has been recognised as a challenge for relevant 

research. Early on, Bernardos et al. (2008) developed a data fusion framework 

for context-awareness systems that included the following stages: (i) obtaining 

context; (ii) processing context; and (iii) reasoning and decision-making. 

Perttunen et al. (2009) surveyed popular context reasoning and representation 

techniques, providing an overview of the requirements for context representation, 

and arguing that such requirements were insufficiently covered in the literature 

regarding the interplay between efficiency, expressiveness, soundness and 



4 

completeness, with ontology-based approaches achieving improved scalability 

and reuse compared to other approaches. Ontology is defined as an explicit and 

shared conceptualization of a given domain (Dibley et al., 2012). It provides a 

vocabulary for representing knowledge about a domain which is often considered 

as a set of entities, relations, functions, and instances. 

The findings of Bettini et al. (2010) supported this, although the scalability of 

online reasoning with a large number of entities was raised as a significant 

challenge. This is the case when dealing with data of significant complexity and 

scale, as typically encountered in IoT applications, making it important that the 

semantics of IoT data are captured by appropriate context modelling in order to 

gain valuable insights (Perera et al., 2014). The sheer complexity of such 

activities creates a need to narrow down the scope of processing, and ground it, 

if possible, in a sound domain. This is exactly where context information 

management can contribute. It plays a central role in determining what data need 

to be collected and how to process it. It also identifies what information and 

services are required to be presented to the consumer. 

In the application domain of asset and maintenance management, context is 

relevant to the asset and its hierarchy, the user, the production or service 

business circumstances, as well as the overall system and operating-

environment aspects (Emmanouilidis et al., 2019). The resolution of asset context 

is needed to analyse mechanical systems and logically connect measurements, 

observed behaviour and intended function with machinery operating conditions 

and faults. Thus, a knowledge construct can be used to resolve context resolution 

requests in order to drive maintenance services. Such resolution can be achieved 

by ontological reasoning based on semantic similarity, determined through 

ontological distance metrics or other appropriate methods (Teoh and Case, 

2004). This bears relevance to similarity-based reasoning, such as that typically 

employed in Case-Based-Reasoning (CBR) systems, which have been employed 

in the past in the maintenance domain (Cândea et al., 2014). However, modelling 

and reasoning capabilities in ontologies go beyond CBR similarity. 
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For OWL2-based reasoning, the formulation of queries can be done via SPARQL 

queries in Resource Description Framework (RDF) documents. SPARQL is an 

RDF query language—that is, a semantic query language for databases—able to 

retrieve and manipulate data stored in RDF format. For Web Ontology Language 

(OWL2)-based reasoning, the formulation of queries can be done via SPARQL 

queries in RDF documents. OWL is a description logic based ontology language 

recommended by the World Wide Web Consortium (W3C) for use with the 

Semantic Web. Additionally, depending on the complexity of a given ontology 

model, the process of semantic matching can be served by using the Semantic 

Web Rule Language (SWRL). SWRL is a proposed language for the Semantic 

Web that can be used to express rules as well as logic. Overall, there is a need 

to further develop ontologically-based modelling, and an inference to drive 

maintenance services by extending currently-employed ontological concepts to 

include key additional and operational ones that are typically included in relevant 

standards, but less so in the relevant literature. 

Therefore, context information management has largely dealt with the challenges 

of ubiquitous environments, as well as data heterogeneity and service scalability. 

Nonetheless, while substantial research efforts have been devoted to context 

information management in web-based, mobile and ubiquitous computing, 

including IoT-enabled computing, little attention has been given to translating 

these advances into tangible progress in industrial monitoring services (Al-shdifat 

and Emmanouilidis, 2018). Moreover, the most applicable context-modelling 

techniques that have been surveyed are ontology-based. However, the studied 

approaches lack some expressiveness concerning the knowledge representation 

for monitoring services in manufacturing environments. To address these needs, 

it is imperative that an effective context-aware framework is developed in order 

to enhance monitoring services in industrial environments as a means of 

addressing challenges related to information complexity, as well as to integrate 

data with domain knowledge in industrial monitoring applications. These 

observations led to the research aim and objectives described in the next section. 
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1.2 Aim and Objectives 

The aim of the research is to develop a context awareness framework and 

implementing it in an architecture integrating IoT with cloud computing for 

industrial monitoring services. This is in order to address challenges related to 

information complexity, data heterogeneity, scalability, as well as integrating data 

with domain knowledge in industrial monitoring applications. 

To achieve this aim, the following research objectives (ROs) were set for the study: 

RO 1: To analyse the current practices of context lifecycle management, and 

identify the appropriate factors that are used in context acquisition, modelling, 

reasoning, and dissemination for IoT-enabled industrial monitoring services. 

RO 2: To design and develop a framework and an architecture that introduces 

context-awareness to enhance remote monitoring services. 

RO 3: To develop a maintenance context ontology for the framework focusing on 

modelling failure analysis of mechanical components. 

RO 4: To apply the framework on a use case through an implementation 

architecture and validate it through experiments and expert judgement. 

1.3 Research Questions 

The research questions addressed by this study were developed in order to fulfil 

the research aim and objectives. The research questions were: 

RQ 1: How can context be acquired, modelled, processed and disseminated for 

industrial monitoring services? 

RQ 2: What is an appropriate framework to manage context awareness in a way 

that facilitates efficient condition monitoring? 

RQ 3: How can the proposed framework, which integrates of IoT and cloud 

computing for industrial monitoring services, be validated?  
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Table 1-1 represents the extent to which the ROs contributed to answering the 

RQs (more ticks represent a stronger correlation). 

Table 1-1: Relationships between the RQs and ROs. 

  RO 1 RO 2 RO 3 RO 4 

RQ1 √√√ √√ √ √ 

RQ2 √√ √√√ √ √√ 

RQ3 √ √ √√√ √√√ 

 

An outline of the thesis is given next. 

1.4 Outline of the Thesis 

This thesis is structured into seven chapters, as follows: 

In Chapter 1, the motivation behind this research is discussed, with a description 

of the events that inspired the approach and the problem that offered the 

challenge. The RQs are stated here, alongside the respective specified ROs. An 

overview of the methodological approach adopted to address the ROs is given. 

Finally, the contribution of this work is summarised, and the document structure 

explained. 

Chapter 2 provides an analysis of the findings of the literature review that were 

relevant to the targeted research area. Specifically, the literature review focuses 

on three main concepts–context Information management, IoT and cloud 

computing, and industrial monitoring services. Following the literature review, the 

problem statement is discussed, and the research gaps that indicated the need 

for this research are identified. This chapter fulfils RO 1 and RQ 1. 

The different elements of the philosophical research approach are defined in 

Chapter 3, including philosophical assumptions, philosophical stances, research 
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approaches, research strategies, research choices and time horizons. The 

sources from which the data were gathered are also described in this chapter, 

which concludes with an illustration of the structure of the study. 

In Chapter 4, a framework, and an architecture that introduces context 

awareness to enhance remote monitoring services are proposed. The framework 

applies context-aware computing to deliver solutions and address key challenges 

that IoT-enabled monitoring services need to handle, specifically how the context 

can be modelled, processed and disseminated for remote monitoring services, 

how this impacts the service discovery solution, and what an appropriate 

taxonomy of ontology is. This chapter fulfils RO 2 and RQ 2. 

Chapter 5 presents a maintenance context ontology for the framework focused 

on failure analysis of mechanical components so as to drive monitoring services 

adaptation. The proposed ontology for the context resolution mechanism is 

relevant to the failure analysis of mechanical components, and the terminology 

and relationships between the concepts are structured on the basis of relevant 

standards, with a reliability-oriented knowledge grounding. This chapter fulfils RO 

3 and RQ 2. 

The focus of Chapter 6 is on presenting a validation of the developed 

maintenance context ontology and framework. In this respect, a gear test rig was 

chosen as a case study to validate the applicability of the proposed framework 

and ontology. This test rig was designed to emulate complex cases of 

misalignment, relevant to manufacturing and aerospace engineering assets. This 

is followed by an analysis of the evaluations obtained from expert judgment of 

the applicability of the framework. This chapter fulfils RO 4 and RQ 3. 

Chapter 7 provides a discussion of the work, and presents the overall critical 

findings of this research. Contributions to the literature are discussed and policy 

recommendations are provided. This chapter concludes with the limitations of this 

study and recommendations for the potential continuation of this research.  
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Figure 1-2 gives a diagrammatic representation of this thesis. 

 

Figure 1-2: Outline of the thesis 
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2 LITERATURE REVIEW 

2.1 Introduction 

Industrial monitoring services are required in order to meet the very high 

demands on the availability and efficiency of industrial systems. The rapid 

evolution of technologies associated with deeper penetration of IoT in industry 

creates significant opportunities, but also introduces challenges for monitoring 

services. These are related to the entire data lifecycle, encompassing data 

acquisition, real-time data processing, transmission, storage, analysis and higher 

added-value service provision to users, with the adequate data management and 

governance required to be in place (Al-Shdifat et al., 2020). The sheer complexity 

of such activities, and the need to ground data processing on sound domain 

knowledge, emphasises the need for context information management to 

produce a semantic organisation of data so as to drive maintenance services 

adaptation. With this in mind, this chapter provides an analysis of the findings of 

a literature review that was relevant to the targeted research area. Specifically, 

the literature review focuses on three main concepts–context information 

management, IoT and cloud computing, and industrial monitoring services. This 

chapter starts with the systematic literature review for those three main concepts, 

then moves to an analysis of recent literature that addresses context information 

management in IoT.  

A systematic literature review approach was applied to establish the research 

baseline and potential research gaps in the area. The main sources of information 

cited in this chapter were obtained from peer-reviewed journal articles in quality 

journals with acknowledged impact factors, books, reports and conferences 

proceedings in order to answer the RQs. The literature was surveyed by 

searching on a set of keywords in multiple databases (Scopus, Google Scholar, 

ABI, IEEE and Science Direct). The articles selected were mostly recent and 

directly related to one topic. An initial database search of selected keyword 

combinations revealed a total of 685 titles, as shown in Figure 2-1. After 

irrelevant subject areas were excluded, 340 titles in the relevant subject area 

remained. These results were narrowed down by applying another set of 
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keywords containing cloud computing, context lifecycle management and 

industrial monitoring services. This resulted in reducing the number of retained 

articles to 133 papers. 

 

Figure 2-1: Systematic review methodology 

Numerous studies had no close relation to the subject domain, although they did 

contain the keywords. Consequently, they were included in the search group. As 

shown in Figure 2-2, to ensure the relevance of all the articles, the titles, 

abstracts and keywords were carefully reviewed and qualified. Out of the 91 

documents that remained subsequent to screening the titles and abstracts, only 

77 were selected following a thorough analysis of them, with the others having 

no relevance to context information management in IoT, although they did lead 

to the identification of other relevant papers. Hence, they were not completely 

disregarded in this process, as they were read and cited where appropriate. The 

final 77 studies, published between 1999 and 2020, had a very strong relation 

with the subject matter. 
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Figure 2-2: Map of the literature review 

In order to establish the research baseline, as shown in Figure 2-2, a structured 

literature review in the area of context awareness in IoT and cloud computing for 

remote monitoring services was conducted. This chapter contains six core 

sections, starting with an overview of IoT, IoT architectures, IoT functionality, and 

finally middleware support for IoT (Section 2.2). This was important to understand 

the latest developments in this research area, and the technological trends that 

are extant today. This section also describes, in greater detail, the opportunities 

in cloud computing that provide the resources needed to store and analyse the 

vast amounts of data generated by IoT for remote monitoring services. Section 

2.3 includes a review of context awareness, context types and categorisation 

schemes, and context lifecycle management as a way of determining the current 

practices in context lifecycle management, and identifying the appropriate factors 

used in context acquisition, modelling, reasoning and dissemination. The context 

information sharing through IoT platforms is then discussed in greater detail in 

order to establish how context awareness can support remote monitoring 

services (Section 2.4). Section 2.5 reviews ontologies in predictive maintenance 

and asset management. This is important in order to develop a maintenance 

context ontology for the framework focusing on modelling failure analysis of 
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mechanical components. The final section of the literature review (Section 2.6) is 

a summary of the lessons learned. The literature review led to the identification 

of research gaps. 

2.2 Overview of IoT and Cloud Computing  

Recent developments in the Fourth Industrial Revolution have led to a renewed 

interest in IoT for remote monitoring services in order to meet very high demands 

on the availability and efficiency of industrial systems (Uhlmann et al., 2015). The 

term ‘IoT’ has been credited to Kevin Ashton, one of the founders of the original 

Auto-ID Laboratory at MIT, who presented it in 1999. Typical applications of IoT 

technologies amalgamate the ability to identify, sense, compute, communicate 

and sometimes actuate for the purpose of monitoring and remotely controlling the 

environment (de Matos et al., 2020). The IoT has evolved broadly in five stages, 

as shown in Figure 2-3. Prior to the emergence of IoT, networking focused on 

connecting a few computer systems together, later moving to scale this up by 

creating the World Wide Web. Later, mobile devices and people were connected 

to the Internet via mobile and social networks. Eventually, IoT extended the 

Internet connectivity to internetwork, a wide range of physical entities (Perera et 

al., 2015). 

 

Figure 2-3: Evolution of the IoT 
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According to a Statista (2020) report, it has been predicted that the number of 

devices with Internet connectivity will exceed 50 billion by 2030.  Such devices 

produce significant volumes of data, which are communicated through networks. 

Upon processing, such data enable better-informed decision-making and action-

taking. Nonetheless, using data of significant scale for monitoring can be 

challenging for several reasons; for instance, processing time, data type, power, 

data size and storage. The sheer complexity of such activities creates a need to 

narrow down the scope of processing, grounding it, if possible, on sound domain 

knowledge. This is exactly where context information management can help. It 

plays a central role in determining what data needs to be collected and how it 

should be processed. It also identifies what information and services are required 

to be presented to a human or system actor. 

IoT technologies are increasingly employed over a wide range of application 

domains, as shown in Figure 2-4. These include industry, healthcare, smart 

infrastructure, energy management and smart grids, retail and transportation, as 

well as many other areas that can transform our lives and societies for the better. 

A recent (2020) Statista report assumed that economic growth of IoT-based 

services was highly significant for businesses. According to projections, IoT 

expenditure is expected to undergo a compound annual growth rate of 13.6% for 

the period 2017–2025, exceeding $1.6 trillion by 2025 (Statista, 2020).  

 

Figure 2-4: Common IoT application domains 
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One promising application area for IoT is that of industrial monitoring services. It 

can allow the connection of a monitoring system with an end-user or another 

system, and can establish a remote overview of the observed system’s state in 

order to prevent machinery performance degradation, reduce maintenance costs, 

improve machine availability, and enhance process quality and safety. 

Furthermore, with global competition and technological progress, there have 

been growing demands by industry for more efficiency in monitoring the health 

status of manufacturing equipment in real-time. Remote monitoring services in 

the era of Industrie 4.0 are, however, facing some challenges, such as big data’s 

4Vs (volume, velocity, variety, veracity). While all these pose problems in 

conventional monitoring, they become even more challenging when integrating 

IoT and cloud computing to deliver advanced services to offer infrastructure 

availability and ubiquitous accessibility. Although IoT offers many benefits and 

solution enablers, substantial effort is required to manage and exploit the data 

generated by things services (Al-shdifat and Emmanouilidis, 2018). 

Because IoT creates interconnections between a massive number of different 

things, facilitating the capability to sense, communicate and process data, it is 

extremely difficult to present an all-encompassing definition of the plethora of 

recent developments in this diverse a field. Nevertheless, various foundational 

aspects can be emphasised, namely IoT architecture, IoT functionality and 

middleware support for IoT. The next part of this chapter will discuss IoT 

architectures. This is important in order to achieve the research objective 2, which 

is to develop an architecture that introduces context-awareness to enhance 

remote monitoring services in manufacturing environments. 

2.2.1 IoT Architectures 

The proliferation of IoT has generated increased focus on architectural design 

and adaptive systems to facilitate the connectivity between heterogeneous IoT 

devices and IoT systems (Uviase and Kotonya, 2018). It is necessary for the 

blueprint of an IoT architecture to emphasise scalability, modularity and 

interoperability between heterogeneous devices that may utilise diverse 

technologies. Different types of IoT architectures have been proposed (e.g. 
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Industrial Internet Reference Architecture, www.iiconsortium.org; Reference 

Architecture Model for Industry [RAMI] 4.0, Zentralverband Elektrotechnik- und 

Elektronikindustrie [ZVEI]; Alliance for Internet of Things Innovation [AIOTI], 

https://aioti.eu/) to address several essential factors, such as sustainability, 

reliability, quality of service (QoS) and integrity. In general, the approach taken 

involves a description, with multiple layers arranged according to the different 

services provided at each layer, which are dependent on the chosen technologies 

in addition to the business demands and technical specifications. For instance, 

the International Telecommunication Union has defined an IoT architecture is 

comprised of five layers–application, middleware, networking, accessing, and 

sensing. Different works define IoT architectures in different layers, depending on 

the level of abstraction. 

It was proposed by Atzori et al. (2010), Domingo (2012) and Jia et al. (2012) that  

IoT consists of three main layers–perception (or sensing), network and service 

(or application) layers. This three-layered architecture describes the main 

concept of IoT, but because research also focuses on the finer aspects of IoT 

(i.e. level of abstraction), this is not sufficient for IoT analysis. That is why some 

researchers have studied an additional layer that is also included in the current 

architecture of IoT–a middleware layer between the perception and application 

layers. In this regard, Liu et al. (2014) developed an IoT application framework 

that incorporates four layers– application, middleware, transport, and physical. In 

addition, in Xu et al. (2014), a framework consisting of four layers was obtained 

from the perspective of the functionalities provided, including sensing, 

networking, service and interface layers. 

The AIOTI can be considered to be one of the main leaders in this area. A High-

Level Architecture for IoT has been designed by AIOTI, which applies to large-

scale AIOTI pilots. One of the key recommendations from the AIOTI is that any 

architecture should be represented utilising the ISO/IEC/IEEE 42010 standard. 

This standard specifies minimum requirements for the architecture of 

descriptions, frameworks, description languages and viewpoints, as shown in 

Figure 2-5. 
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Figure 2-5: Architectural models based on ISO/IEC/IEEE 42010 (source: AIOTI, 

2018) 

Figure 2-5 distinctly illustrates how AIOTI WG3 concentrates upon functional and 

domain models. Domain models can be described broadly as the entities and 

relationships between them in the IoT domain (AIOTI, 2018). The functional 

model, from another perspective, defines both the interactions (interfaces) and 

functions in this domain.  

According to the AIOTI (2018) report, the functional paradigm comprises four 

layers. These layers are perception, network, the IoT and application. The 

perception layer can be considered the interface between the informational world 

and the physical world layers. Several types of technology are utilised by this, 

including sensor technology, radio frequency identification (RFID), barcode 

technology and other types of sampling technology, the purpose of which is the 

completion of information data-gathering and the subsequent transfer of the data 

to the network layer. The data gathered from the perception layer can be 

transferred by the network or transmission layer to the IoT layer via various 

network technologies. Depending on the needs of the application entities, its main 

task is to provide short- and long-range connectivity, data reorientation between 

entities, and level control services, such as device triggering, QoS and location. 

Following that, the IoT layer creates specific functions for IoT, such as data 

sensing, storage, communication, services and semantics, and exposes the IoT 
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functions to App entities via the Application Program Interfaces (APIs). Finally, 

the application layer is the top layer of the functional model architecture. This can 

be considered to be the interface between the IoT and different types of users or 

systems and their specific needs as a means to achieve various smart 

applications of IoT. Consequently, the intelligent applications of IoT still need the 

support of information technology (IT), such as middleware, cloud computing and 

expert systems (Al-Fuqaha et al., 2015; Zhong et al., 2016). 

In addition to the interaction between humans and machines, there is continuous 

communication between the machines. This generates an enormous and growing 

amount of data. Connectivity is one of the most essential features of the Fourth 

Industrial Revolution. It is a combination of the physical, natural and digital worlds. 

A RAMI 4.0 has been developed by the German Electrical and Electronic 

Manufacturers. RAMI 4.0 presents a general understanding of the relations 

existing among different individual components for the Industry 4.0 solutions 

landscape. RAMI 4.0 consists of three dimensions that describe the key features 

of Industry 4.0, as illustrated in Figure 2-6. 

 

Figure 2-6: RAMI 4.0 reference architecture (source: ZVEI) 
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RAMI 4.0 is composed of several hierarchical levels and the lifecycle and value 

stream. On Figure 2-6, the vertical axis is made up of six layers that are used to 

describe the complex IT perspective as a composition of smaller manageable 

parts. The corresponding access layers (listed from bottom to top) are: asset, 

integration, communication, information, functional, and business (Contreras et 

al., 2017). The value chain and lifecycle are indicated by the left horizontal axis, 

which is divided into two sides (type and instance) based on a draft standard 

lifecycle management guideline known as IEC 62890. The component’s function 

position in Industry 4.0 is indicated by the horizontal axis of the hierarchy levels. 

This adds the ‘product’ and ‘field device’ or the workpiece level at the bottom in 

order to expand the hierarchy levels. It also adds ‘connected world’, which, at the 

top, progresses beyond the separate factory boundaries (AIOTI, 2017; Wang et 

al., 2017). Therefore, Industry 4.0 is a specialisation within the IoT and services 

in the ‘manufacturing environments’ domain. 

On the other hand, the Industrial Internet Consortium (IIC) is considered to be 

one of the leading global organisations, the function of which is to revolutionise 

the nature of businesses and society as a whole by promoting the implementation 

of the IIoT. This is achieved by facilitating reliable industrial internet systems in 

which secure connections are established between systems and devices, which 

are controlled in order to supply transformational results throughout different 

industrial sectors, including healthcare, transportation, energy, public domain 

infrastructure and manufacturing (Shi-Wan et al., 2018). 

Both the IIC and RAMI 4.0 were designed based on the same objective of 

creating a convergence between the physical and digital domains, with a specific 

focus on converging IT and operational technology. There is obvious potential for 

generating mapping and alignment between the two in order to improve the 

comprehension of their complementary essence, as illustrated in Figure 2-7. This 

attempt at reconciling the architectures, in addition to the process of collaborating 

on testbeds and the design of infrastructures, will motivate collaboration 

throughout different industries and, ultimately, effect interoperability among 

systems. All of the above means that there is an increased potential to create 
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effective IIoT systems that provide improved business advantages and results 

(Shi-Wan et al., 2018). 

 

Figure 2-7: IIC and RAMI 4.0 working together to enable cross-domain 

interoperability (source: Shi-Wan et al., 2018) 

RAMI 4.0 is concerned with developing products through the management of 

whole value chains in addition to the lifecycles of the products, whereas IIC is 

related to the construction, deployment and operation of large-scale connected 

systems. As manufacturing is also an example of an industry covered by IIC, both 

IIC and RAMI 4.0 can be applied in this sector. IIC emphasises widespread 

interoperability and applicability of its IIoT technical frameworks - with its 

reference architecture – throughout different industries. RAMI 4.0 extends to 

greater depths in terms of digitisation and the interconnectedness of 

manufacturing. For example, RAMI 4.0 incorporates various facets of 

manufacturing value chains throughout the entire product lifecycle, from the initial 

concept to the end of the product’s life. 

This section indicates that the transformation of society’s demands towards 

technology-enabled services is a strong stimulus for improvements in industrial 

processes. This is further fuelled by the accelerating shift to service-based 

business models, wherein service-level agreements must be ascertained, 

supported by adequate monitoring systems. Context gathering, modelling, 

reasoning and dissemination are needed for the efficient handling of the vast 
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amounts of data produced by IoT-enabled devices, and their integration with 

other systems or industrial processes. In addition, the data collected by 

manufacturing information and communication technologies systems need to be 

introduced in a way that helps to improve machine availability and reduce 

maintenance costs. Consequently, there is a need for a flexible and more 

effective architecture to facilitate efficient monitoring systems that can be applied 

to a wider range of IoT-enabled monitoring applications. A thorough solution is 

required for the heterogeneity of IoT elements to make ubiquitous IoT services 

happen. The next section, therefore, moves on to discuss IoT functionalities, as 

well as their associated standards, technologies and realisations for the 

enhancement of monitoring systems. 

2.2.2 IoT Functionality 

The IoT brings together many functionalities, such as identification, sensing, 

communication, computation, services, and semantic information management 

(Al-Fuqaha et al., 2015; Burhan et al., 2018). Figure 2-8 shows the elements 

needed to deliver the functionality of IoT. 

 

Figure 2-8: Elements of the IoT (adapted from Burhan et al., 2018) 
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1- Identification provides a specific identity for every object in a network. It 

consists of naming and addressing. Naming is where an object is named, 

whereas addressing gives a particular object a distinct address (Burhan et 

al., 2018). There are many identification methods used for IoT, such as 

ubiquitous codes (uCodes) and electronic product codes (EPC). 

2- Sensing is extracting data from physical entities and sending it to other 

locations in order to analyse the collected data and to take specific actions 

based on the required services. Data are collected through sensors (i.e. 

temperature, pressure and humidity sensors and accelerometers) and are 

fed into an embedded computing device. The device is networked, and 

able to push the data to a cloud platform where they can be processed 

and visualised into relevant information for the user. 

3- Communication technologies play a critical role in enabling the 

interconnectivity of things and the sharing of data between things and the 

Cloud. Several communication protocols currently exist for IoT, such as 

RFID, IEEE 802.15.4, Bluetooth and WiFi. Figure 2-9 shows an example 

of the mapping of the different communication protocols provided for 

different IoT layers (AIOTI, 2019). 

 

Figure 2-9: Mapping of the different IoT protocols layer (source: AIOTI, 2019) 
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The upcoming wave of connectivity technology (incorporating 5G) comprises 

what appears to be an unlimited diversity of cases and applications, including 

wearables and monitoring systems. Various technologies in IoT with the 

spectrum of Enterprise-level connectivity regarding some of their key 

characteristics (e.g. power consumption, bandwidth, type of interconnection), are 

shown in Figure 2.10. 

 

Figure 2-10: Multi-access in Enterprise IoT (source: Cisco, 2019) 

4- Computation: IoT hardware and software applications are representative 

of the IoT’s computational capability and its ‘brain’. Computation allows a 

simple, highly customisable, cost-efficient way of acquiring data. Input 

signals originating from sensors can be processed by microcontrollers 

loaded with processing code that is uploaded into the memory and which 

sends output signals. This information can be presented in different forms, 

the most common being simple monitoring of the raw data on graphs to 

generate suggestions for possible interventions (Al-Fuqaha et al., 2015). 

5- Services: IoT services can be divided according to multiple classifications, 

including collaborative-aware, identity-related, ubiquitous and information 

aggregation services (Friess and Vermesan, 2015).  The most important 

and essential services that are used in other types of services are identity-

related services (Al-Fuqaha et al., 2015). Any application that needs to 

carry real-world objects into the virtual world must first recognize them. 
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Raw sensory measurements that need to be processed and reported to 

the IoT application are gathered and summarized by Information 

Aggregation Services. Collaborative-Aware Services sit atop Information 

Aggregation Services and use the information gathered to make decisions 

and react appropriately. Ubiquitous Services, on the other hand, strive to 

provide Collaborative-Aware Services to everyone, wherever, whenever 

they are needed (Al-Fuqaha et al., 2015). 

6- Semantics information processing offers solutions for managing the 

complex and often heterogeneous nature of data and knowledge from 

different entities, subsystems and users. The most commonly used 

semantic techniques are RDF, Extensible Markup Language (XML) and 

Web Ontology Language (OWL) (Barnaghi et al., 2012). 

Ubiquitous computing is the essence of IoT, which means integrating computing 

and communication into all objects around us. The interoperability of these 

heterogeneous devices requires well-defined standards. However, 

standardisation can be complicated due to the diverse needs of various devices 

and applications. A possible resolution to these heterogeneous applications is a 

middleware platform that can abstract an objects’ details for applications. The 

following section will discuss middleware Support for IoT. 

2.2.3 Middleware Support for IoT 

Because the concept of IoT pivots on involving numerous devices that produce 

massive volumes of data, it is necessary to have software (i.e. IoT middleware) 

that can coordinate the interaction among IoT components. Middleware is 

considered a critical component of all IoT systems. It is essential because it 

facilitates an infrastructure that supports communication among heterogeneous 

devices, the abstraction of distinct applications, service discovery, the mobility of 

things, as well as privacy and security. Middleware can be described as a 

software layer that exists between the operating systems and the applications 

running on them. The importance of middleware was recognised early on in the 

computing literature, even before IoT had become a widely-adopted term. 

Middleware allows communication and data management for distributed 
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applications, and is essential for addressing the growing complexity of such 

systems (Issarny et al., 2002). Heterogeneity, interoperability, security and 

dependability are among the typical problems middleware provides solutions for 

in a reusable manner.  The various features of IoT middleware solutions, such as 

device management, interoperation, platform portability and security, do not 

usually support context-awareness functionality, however; while some 

middleware solutions provided a level of context-awareness functionality, such 

requirements are insufficiently covered in the literature regarding device 

management, heterogeneity and interoperability (Atzori et al., 2010; 

Bandyopadhyay et al., 2011). 

Although it is evident that IoT has significant potential and opportunities, the 

process of managing things to seamlessly integrate the physical and cyber worlds 

is still difficult (Raggett, 2015; Yao et al., 2015; Qin et al., 2016). An increasing 

number of IoT middleware and connectivity protocols have been developed. 

Nevertheless, a large number of these do not simplify the process of connecting 

IoT devices and then interpreting the subsequently collected data (Ngu et al., 

2017). This problem is exacerbated by the fact that each type of IoT middleware 

supports various programming abstraction and architectures to access and 

connect to IoT devices. 

The conclusions that can be drawn from this section are that certain significant 

functions are served by the middleware layer, including the gathering and filtering 

of data from hardware devices. IoT middleware is a mediator suite that hides the 

heterogeneity among the components, devices and technology of an IoT 

environment. Consequently, context gathering, modelling, reasoning and 

dissemination are needed for the efficient handling of the vast amounts of data 

produced by numerous devices and their efficient integration in Enterprise 

systems. Many technologies can be included as a significant part of this, 

especially by making connected devices work together. Cloud computing is 

particularly relevant, enabling the delivery of hosted services, such as storage, 

networking, analytics and software development platforms over the Internet. With 

this in mind, the next section moves on to describe, in greater detail, the 
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opportunities provided by cloud computing to provide the resources needed to 

store and analyse the vast amount of data generated in IoT for remote monitoring 

services. 

2.2.4 Cloud Computing 

A large volume of data is generated by IoT devices, which consequently places 

a significant strain on the Internet infrastructure. As a result, firms are required to 

determine solutions to minimise this pressure, as well as to find solutions to the 

problem of transferring significant volumes of data. It is necessary to store and 

process the large volume of heterogeneous data gathered by IoT devices, and 

the acquired insights must be retrieved for actuation or visualisation. However, it 

is rare that such tasks can be performed on IoT devices themselves, as their 

computing, storage, networking and energy resources are generally limited 

(Delicato et al., 2017). Thus, IoT must be supported by resources with greater 

power, with the most frequently used being cloud computing (Botta et al., 2016). 

Cloud computing has now become a standard IT that provides scalability in the 

provision of Enterprise applications and Software as a Service (SaaS). 

Cloud computing represents a significant shift from the conventional way 

companies think about IT resources that can be utilised for remote monitoring 

services. It brings together several benefits, such as reliability, global scale, 

performance, speed and reduced costs. The term ‘cloud computing’ refers here 

to a model that allows users to access their applications, services and data at any 

time and from any location on the Internet as a result of the storage of information 

on the server supplied for cloud computing services and not on the user’s 

devices. Different kinds of service models exist according to the type of resources 

they deliver, as shown in Figure 2-11. The rapid provision and deployment of 

services, platforms and infrastructure are possible with less administrative work 

or interaction with the service provider (Mell and Grance, 2011). 
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Figure 2-11: Types of cloud services and top benefits 

Cloud computing architecture can be divided into three main categories. Firstly, 

Infrastructure as a Service provides infrastructure services and capabilities that 

deploy and run software in general, such as physical computers, virtual 

machines, networks, storage devices or a combination of these. Secondly, 

Platform as a Service plays a vital role in providing capabilities for application 

development and deployment in the cloud. Finally, SaaS provides the necessary 

applications and infrastructure services from the service provider, such as API.  

Nowadays, there are several available IoT cloud platforms, both proprietary and 

open-source, that provide several operational benefits to industrial environments. 

IoT platforms are critical components of IoT architecture because they allow 

services and applications to be developed by end-users. IoT platforms vary in 

their capabilities and features, most being designed to solve major issues relating 

to the heterogeneity of objects and the cloud. The attributes regarded as being 

key to satisfying application developers’ and users’ requirements, according to 

the literature, are outlined in the platforms listed in Table 2-1. 

Table 2-1: Characteristics of IoT cloud platforms (synthesised from Ismail et al., 

2018; Hoffmann et al., 2019; Klaauw, 2019; Yu and Kim, 2019) 

Platforms Proprietary or 
Open-source 

Functional 
Capabilities 

Interoperability Scalability Security 

Amazon Proprietary ++ ++ +++ +++ 
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IBM Proprietary +++ ++ ++ +++ 

Microsoft Open +++ ++ +++ +++ 

Google Proprietary ++ ++ +++ +++ 

FIWARE Open + +++ +++ + 

Cisco Proprietary +++ + ++ +++ 

ThingsBoard Open +++ +++ ++ + 

SiteWhere Open + ++ ++ + 

Huawei Proprietary +++ + ++ + 

Although managing and controlling industrial IoT (IIoT) devices and data are 

important functions provided by IIoT platforms, various different platforms have 

been developed that are suitable for different use cases. IIoT platforms offer 

various combinations of capabilities, such as endpoint management and 

connectivity, the ability to capture, ingest and process IoT data, the visualisation 

and analysis of data, and the incorporation of IoT data into workflows and 

processes (Hoffmann et al., 2019). Furthermore, IIoT platforms provide a variety 

of different advantages, such as reduced costs, improvements in operations, 

production and security, as well as IoT data monetisation opportunities.  

In summary, the spread of IIoT devices, standards and communications protocols 

is increasing the complexity of effectively managing IIoT networks. IIoT platforms 

are types of IIoT software that enable organisations to manage all the networked 

individuals, systems and objects within an IIoT ecosystem in a secure manner. 

Cloud computing delivers on-demand, convenient and scalable network access, 

which allows computing resources to be shared; in fact, this subsequently 

enables dynamic data from a variety of data sources to be integrated. The 

following section discusses the integration of IoT and cloud computing for 

industrial monitoring services. 

2.2.5 IoT and Cloud Computing for Remote Monitoring Services 

Although IoT and cloud have evolved separately, the literature has recognised 

that their integration has enabled them to jointly deliver many benefits. The 

effectively unlimited resources and capacity of the cloud has enabled IoT to gain 
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advantages. Cloud computing has a particular ability to enable the composition 

of web services and their utilisation by IoT applications. The fundamental concept 

behind IoT and cloud computing is that it makes regular tasks more efficient 

without having a detrimental impact on the quality of data that is being stored or 

transferred.  

Product Lifecycle Management (PLM) systems are particularly benefitting from 

technologies that connect physical assets and products, processes, data, people 

and business systems (Keivanpour and Ait Kadi, 2019), exploiting product 

embedded-sensor and intelligence capabilities, including product or process 

Condition- Monitoring (CM) capabilities. Recent developments in IoT and cloud-

computing technologies have led to a renewed interest in condition-monitoring 

systems. For the successful implementation of a condition-monitoring system, it 

is necessary to integrate various technologies that allow the flow of information 

from the data-collection stage through advisory generation-recommended 

actions.  The process via which data is handled should comprise six distinct 

stages, as illustrated in Figure 2-12. 

 

Figure 2-12: Maintenance-related data-processing cycle (adapted from ISO, 2012) 

The first three stages are associated with technology, suggesting that they are 

dependent on a type of measurement. The data acquired from the transducer 

(sensor) is then digitised (defined as the data-acquisition stage) and processed 
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(data-manipulation stage), and then a comparison is made with standard baseline 

profiles, where mechanisms, such as thresholds for the detection of 

abnormalities, are also stipulated.  The final three stages utilise the current state 

of the machine, and identify suitable maintenance actions on the basis of the 

expected state of the system or elements in the future. Initially, on the basis of 

historical data, and the diagnosis of any faults (fault-diagnosis stage), the existing 

situation can be analysed. Subsequently, future behaviour is forecast 

(prognostic-assessment stage), and then relevant maintenance actions are 

suggested (BSI ISO 13373-2:2016). 

‘Condition monitoring’ refers to the process of acquiring and processing 

information and data that express the state of a machine over time, in order to 

provide meaningful real-time information to help reduce risk and lower rates (ISO, 

2012). Through the four steps below, a remote monitoring programme, can 

remotely access asset-condition data and enable effective, efficient predictive 

maintenance (Peng, 2011). 

1- Data acquisition is the process of gathering valuable data from things and 

converting that data into digital data. 

2- Data processing involves producing meaningful information by converting 

digital data into real quantities of working machine conditions. 

3- Decision-making not only focuses on the nature of machine failure, but 

also detects and identifies a machine fault. When failure happens, suitable 

actions could be considered automatically to control the operational status 

of the machine. 

4- Remote communication is employed to transmit information, such as a 

machine’s operational status and alarm conditions, over the network. 

The integration of IoT and cloud computing can improve asset management 

processes through introducing more automation, real-time data analysis and 

smart decision-making. Moreover, such integration could reduce interruptions, 

improve uptime, remotely identify faults more quickly, and decrease time to repair 

by providing real-time data on the performance of assets that enhances their 

value to the business. Although several researchers have presented solutions 
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that focus on remote monitoring in the cloud, these solutions can only be used in 

specific scenarios, while being difficult to apply in other situations. IoT-driven and 

cloud-supported monitoring services are faced with some of the typical 

challenges of big data. To this end, it is necessary to introduce context awareness 

into this research in order to present contextual information about the involved 

objects, and to determine what information and services are required to be 

offered to the consumers, systems or software. Moreover, the context has a 

significant role in enabling the provision of adequate services to the users based 

on their surrounding environments. In addition, the context can help IoT services 

to adapt to dynamic environment changes and making right decisions. The 

following sections present a discussion on the basic concepts in the field of 

context-aware systems, including context, context awareness in IoT, and 

ontologies in maintenance and asset management.  

2.3 Context Information Management 

2.3.1 Introduction 

The concept of context-aware systems was originally proposed by Schilit and 

Themier in 1994, who stated that “A system is context-aware, if it uses context to 

provide relevant information and/or services to the user”. Another early work 

defined context as “any information that can be used to characterize the situation 

of an entity, an entity is a person, place, or object that is considered relevant to 

the interaction between a user and an application” (Abowd et al., 1999). Abowd 

and Mynatt (2000) specified the basic elements required for analysing and 

understanding context, namely the five Ws (what, who, where, why and when). 

According to Byun and Cheverst (2004), a system is defined as being context 

aware if it is capable of extracting, interpreting and using context information, and 

its functionality can be adapted to the prevailing context of use. To clarify that, 

Figure 2-13 illustrates an example of how context awareness applies in an IoT 

environment for monitoring services.  
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Figure 2-13: A context-aware system in an IoT environment for monitoring 

services. 

Context awareness is the mechanism through which systems can adapt to the 

needs of a user by monitoring the context. Context includes environment, spatial, 

temporal, etc information that is used to infer the current activity. Collaboration 

among appliances is often ignored in traditional home design: each appliance 

performs its tasks and provides its services in isolation, with very minimal – or no 

– information exchange. This approach hinders the smart home paradigm's 

advancement of home automation and customisation of domestic services. In 

fact, in the smart home, domestic appliances should cooperate in a distributed 

and interconnected system, by acquiring context data and processing them in 

order to provide customised services. In this way, BMS scenarios can be used to 

create variations in the context, including rules of thumb for determining context-

specific responses (control actions). For example, when ventilation is on and the 

difference between outdoor and indoor temperature is more than 5C, the indoor 

temperature approaches outdoor by 1C every 30 minutes. Otherwise, indoor 

temperature approaches outdoor temperature by 1C every 2 hours. 

Highlighting the semantic added value of context, Sanchez et al. (2006) 

differentiated between raw data (data obtained directly from the source without 

being processed) and context information (raw data that has been processed). In 

the domain of asset and maintenance management, the early definition of context 

by Abowd et al. (1999) can be adopted and extended by specifying that context 

is relevant to the asset and its hierarchy, the user, the production or service 
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business circumstances, as well as the overall system and operating-

environment aspects (Emmanouilidis et al., 2019). 

2.3.2 Context Types and Categorisation Schemes 

Despite the generally acknowledged definitions of what is regarded as being 

context awareness, a standard format and representation of the concept has not 

been established (Xu et al. 2014; Perera et al., 2015; de Matos et al., 2017; Tran 

et al., 2019; Hodkiewicz et al., 2020). Various researchers have determined 

different typologies of context. Abowd et al. (1999) differentiated between primary 

and secondary, in addition to conceptual and operational, context. It is possible 

to classify operational context further into sensed, static, profiled and derived, 

and, according to Chen and Kotz (2000), context can be categorised as passive 

and active, based on whether the context can be directly actioned with respect to 

the manner in which it is utilised in applications. Based on an operational 

categorisation viewpoint, Henricksen (2003) classified context into four levels––

sensed, static, profiled and derived, whilst Liu et al. (2011) stated that context can 

be classified as user, physical or networking. Another study, published in the 

same year, by Yanwei et al. (2011) classified context into three levels––user, 

computing and things. Table 2-2 provides a summary of the different approaches 

adopted in categorising context. 

Table 2-2: Different context categorisation schemes 

Survey Year Context Categorisation 

Abowd et al. 1999 Who, Where, When What, and Why 

Chen and Kotz 2000 User, Computing, Physical, and When 

Henricksen 2003 Sensed, Static, Profiled and Derived 

Van et al. 2005 Operational and Conceptual 

Chong et al. 2007 Computing, Physical, Historical, and 
Sensor 

Rizou et al. 2010 Observable and Non-Observable 

Liu et al. 2011 User, Physical, and Networking 

Emmanouilidis et al. 2013 User, Environment, System, Social, 
Service 

Valverde et al. 2018 Location and Social 
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Various researchers have thus utilised different context categorisation schemes 

based on their different perspectives. An outline of the strengths and weaknesses 

of typical context classification approaches are depicted in Figure 2-14.  

 

Figure 2-14: Comparison of context categorisation schemes 

Context information management has largely dealt with the challenges of 

ubiquitous environments, as well as data heterogeneity and services scalability. 

Context management issues have increasingly progressed from dealing with 

context acquisition and modelling to context reasoning and dissemination. The 

early context information management literature targeted mobile computing and 

web-based information processing. IoT has expanded the range of applications 

having substantial need for context management, and this is reflected in the focus 

of relevant surveys. Several context-aware systems use context purely for 

decision-support/-making or direct distribution to the end-user. Nevertheless, 

certain systems allow context information to be shared with other interested 

actors or subsystems. This is defined as context information sharing, and 

represents one of the key challenges in the field of context awareness for IoT 

(Perera et al., 2015; Boavida et al., 2016). 



 

36 

2.3.3 Context-Awareness in IoT 

Recent developments in IoT technologies have led to a renewed interest in 

context-aware computing. Context awareness plays an important role in defining 

what data needs to be gathered and how to process it, as well as in determining 

what information and services are required to be made available to a consumer 

of data or services (Perera et al., 2014; Sezer et al., 2018). Context management 

is generally considered to comprise context acquisition, modelling, reasoning and 

dissemination (Perera et al., 2014). Table 2-3 summarises the surveys of context-

aware systems conducted between 2010 and 2020. 

Table 2-3: Summary of context-aware system surveys 

Survey Title Year Contribution Reference 

“A survey of context 
modelling and reasoning 
techniques” 

2010 Context modelling and reasoning in 
pervasive computing. 

(Bettini et al., 
2010) 

“Context Aware Computing 
for The Internet of Things: 
A Survey” 

2014 Comprehensive survey and analysis of 
context awareness for internet of things. 

(Perera et al., 
2014) 

“Engineering context-
aware systems and 
applications: A survey” 

2016 Context-aware systems and applications in 
engineering. 

(Alegre et al,. 
2016) 

“Internet of Things: A 
Review of Surveys Based 
on Context Aware 
Intelligent Services” 

2016 A meta-survey of surveys on context 
awareness 

(Gil et al., 2016) 

“Context-Aware 
Computing, Learning and 
Big Data in Internet of 
Things: A Survey” 

2018 Context awareness for IoT (Sezer et al,. 
2018) 

“The MOM of context-
aware systems: A survey” 

2019 Comparison of several context-aware 
systems 

(Pradeep and 
Krishnamoorthy, 

2019) 

“Context information 
sharing for the Internet of 
Things: A survey” 

2020 Context sharing platforms- challenges and 
issues. 

(de Matos et al., 
2020) 

According to Perera et al. (2015), the steps required for a system to deliver 

context information are acquisition, modelling, reasoning and distribution, which 

form the context lifecycle when combined. In the acquisition step, the raw data 

are collected from sensors, databases or the surrounding environment. In the 

modelling stage, the data is brought into a particular representation so it can be 

converted into input for the reasoning stage. Various approaches have been 
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described in the current literature for the modelling process, including key-value 

pairs, ontology and markup schemes (Bettini et al., 2010; Snidaro et al., 2015). 

The semantic processing stage in the context lifecycle is the reasoning process. 

Different methods can be used to infer context, such as supervised/unsupervised 

learning, rules, ontologies, probabilistic approaches, data aggregation and fusion 

mechanisms (Perera et al., 2015). Hence, the context awareness of a system is 

determined by its ability to utilise the context acquired via the context lifecycle in 

order to deliver beneficial information/services to the users (Abowd et al., 1999). 

Therefore, in order to design an appropriate framework to efficiently manage 

context for IoT-enabled monitoring services, further analysis is needed. In order 

to do that, an outline of how the lifecycle of context information can be managed 

must first be introduced.  

2.3.4 Context Lifecycle Management 

Context lifecycle management refers to how data is gathered, modelled and 

processed, and how knowledge is deduced from the obtained data (Sezer et al., 

2018). It presents how data moves from stage to stage in software systems. It 

also demonstrates where the data comes from and where it is consumed (Jih et 

al., 2009). Hynes et al. (2009) suggested two categories of data lifecycle. The 

first is context lifecycle approaches (CLAs), which focus on context management. 

The second category is Enterprise lifecycle approaches, which deal with context 

and CLAs. There are also three stages of the typical context lifecycle––context 

acquisition, then information processing and, ultimately, reasoning and decision-

making (Bernardos et al., 2008). 

Context lifecycle management generally consists of four steps––context 

acquisition, modelling, reasoning and dissemination. The first stage involves 

obtaining the context from multiple sources, and compiling it to present more 

accurate data. Then, the obtained data must be represented and modelled in an 

appropriate form. After that, it is essential to obtain high-level context information 

based on the acquired contextually-relevant data through the processing of 

modelled data. The last step is distributing the context information to the 

interested parties (Perera et al., 2014). 
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2.3.4.1 Context Acquisition 

Context acquisition involves acquiring and bringing together data from physical 

objects in different ways. In context acquisition, there are five factors that must 

be considered when context-aware data-processing in IoT model undergoes 

improvements. Each technique is explained below, based on sensor type, 

responsibility, acquisition process, frequency and source (Aguilar et al., 2018). 

❖ Based on responsibility: Pietschmann et al. (2008) discussed context 

acquisition as being achieved using the pull and push methods. 

Pull can be defined as the programme component whose main function is to 

obtain sensor data from things regularly or immediately. 

Push is responsible for sending collected data from the physical or virtual 

sensor to the software component whose main function is to obtain sensor 

data from things regularly or immediately. Although the requirements and 

surrounding contexts change, the sensors are requested to programme and 

adapt to such changes. 

❖ Based on frequency: Two types of events––instant and interval––can be the 

cause of context. 

Instant events occur immediately, and do not take long to happen.  

Interval events last for a period of time, and sensor data needs to be obtained 

regularly. 

❖ Based on Source: Chen et al. (2004) argued that context can be acquired 

based on the source via two methods–directly from sensor hardware or 

through a middleware infrastructure. A positive aspect to this categorisation 

is the ability for direct communication with the sensors and fewer required 

resources. However, a negative aspect includes having less control over the 

sensor configuration. 

❖ Based on Sensor Types: Acquiring context can be done by different types 

of sensors (Indulska and Sutton, 2003).  

Physical sensor are the most widespread and most used in our daily lives. 

They can be used to obtain data such as humidity, temperature and vibration. 
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Virtual sensor can be used to collect data that is difficult to physically measure 

because it does not generate data by itself, such as social networking, emails 

and calendars. 

Logical sensors can be employed when data is required from a physical 

sensor and a virtual sensor in order to provide a meaningful information 

format. 

❖ Based on Acquisition Process: Perera et al. (2014) argued that context can 

be acquired based on three techniques: 

Sensed: Sensors can be used to obtain data; for example, vibration can be 

retrieved through a vibration sensor. Also, some data can be obtained from 

databases. 

Derived: Data collected from sensors can be derived by calculations to 

produce other information.  

Manually provided: Some instructions and conditions are defined manually; 

for example, a user may want to be alerted when a temperature or vibration 

rises higher than normal. Researchers have used different techniques for 

context acquisition, each with their own strengths and weaknesses, as 

indicated in Figure 2-15.  

 

Figure 2-15: Comparison of context acquisition factors 
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2.3.4.2 Context Modelling 

Context modelling is also generally referred to as the representation and 

formalisation of the context through certain modelling approaches (Cabrera et al., 

2017). Perera et al. (2014), Veiga et al. (2017) and Cabrera et al. (2017) argued 

that, in order for context information to be processed into a format that could meet 

IoT requirements (i.e. expressiveness, reuse, extension and interoperability, 

among other things), they should go through a context modelling phase, which 

would present and give meaning to the collected context data. Context models 

come in two different types––static and dynamic––as described by Yanwei et al. 

(2011). Context modelling techniques have been examined by Chen and Kotz 

(2000), Strang and Linnhoff-Popien (2004), and Perera et al. (2014) and include 

ontology-based, key-value, logic-based, markup scheme and graphical methods. 

❖ Key-Value Modelling: involves context information being modelled as key-

value pairs in several formats that provide user-friendliness, flexibility and 

simplicity. Modelling limited amounts of data, such as application 

configurations, is among its other uses. Whilst it would be difficult to represent 

relationships using this model, it is useful for smaller amounts of data because 

it is flexible and easy to manage. 

❖ Markup Scheme Modelling: Tags, which store context, are used to model data. 

Popular markup techniques, such as XML, have access to sophisticated 

validation tools. Whilst it can get complicated when many levels of information 

are involved, this technique can be used as an intermediate data organisation 

format that allows efficient data retrieval, which is why it is considered to be a 

step up from key-value modelling. 

❖ Graphical Modelling exceeds both key-value and markup scheme modelling 

because it enables relationships to be obtained from the context model. 

Moreover, while that is easy, capturing queries can be complicated. According 

to Li et al. (2015), the most widely used model examples are the Unified 

Modelling Language, the entity-relationship model and the object-role model.   

❖ Logic-Based Modelling: High-level context can be generated using low-level 

context, which is defined as facts, expressions and rules. When it comes to 

adding, updating or removing data, this model can be quite flexible.  
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❖ Ontology-Based Modelling: Ontology is defined as an explicit and shared 

conceptualization of a given domain (Dibley et al., 2012). It provides a 

vocabulary for representing knowledge about a domain which is often 

considered as a set of entities, relations, functions, and instances. Cabrera et 

al. (2017) pointed out that some of the uses of this model were in describing 

the relationships of the context and entities in the environment, and providing 

reasoning capabilities and data structure for data sources. Semantic 

technologies are used to organise the context into ontologies.  

Several researchers have utilised different techniques for context modelling. 

These techniques have their own strengths and weaknesses, as shown in Figure 

2-16.  

 

Figure 2-16: Comparison of context modelling techniques (synthesised from 

(Strang and Linnhoff-Popien, 2004; Perera et al., 2014; Cabrera et al., 2017) 

The contextual information that is represented by a context model is easily stored 

and accessed by the mechanism on which the said paradigm depends. Each 

piece of contextual information becomes relevant only when it is coupled with 

another piece of information; when isolated, it makes no sense. Therefore, since 

contextual information is interdependent, a network is the best means of 
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representing it, rather than a sequential format, thereby allowing the semantics 

to be preserved. Consequently, the ontological method is one of the most popular 

methods of storing and organising contextual information because it is effective 

at storing densely interrelated and complicated pieces of information, which is a 

principal requirement for context-aware systems. It may be illustrated as a dense 

graph structure that represents the pieces of information as well as the ways in 

which they are connected. 

2.3.4.3 Context Reasoning 

Context reasoning can be defined as a process that contributes significantly to 

the collection of new knowledge based on acquired contextually-relevant data 

(Bikakis et al., 2008). Typical context reasoning techniques include rule-based 

approaches, supervised learning, fuzzy logic, unsupervised learning and 

ontology-based methods (Bikakis et al., 2008; Perttunen et al., 2009; Bettini et 

al., 2010): 

❖ Supervised Learning: Gathering training examples is the first set of 

processes in this category. Classifying them according to the expected results 

comes second. The final step involves their application to all available data so 

that the anticipated results may be generated. It can describe decision tree, 

Bayesian and artificial neural networks as monitored learning methods that 

can be applied to model complicated paradigms and patterns between inputs 

and outputs.  

❖ Unsupervised Learning: In this technique, the process of clustering is 

applied to derive significant results from data that has not been labelled. The 

k-nearest neighbours, Kohonen self-organising map, noise and outlier 

detection, and support-vector machines techniques are utilised for context 

reasoning. A clustering technique can be employed to resolve low-level, 

simple actions and operations (location and positioning). 

❖ Rules: A reasoning technique can be obtained using an if-then format, which 

is easy to define, but can only be defined manually. A low-level context is used 

to create high-level context information. No other method rivals this in 

popularity; it is massively employed, coupled with ontological reasoning. 
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❖ Fuzzy Logic has certain differences to conventional logic. In conventional 

logic, everything is denoted by either 1 or 0. Conversely, in fuzzy logic, partial 

truth is also acceptable. Consequently, it is more admissible to the 

represented reality to use fuzzy logic than conventional logic (e.g. speed could 

be relatively fast, extremely slow, etc.). The fuzzy logic reason method is not 

used alone, however, being commonly applied in combination with 

ontological, probabilistic and rule-based reasoning approaches. 

• Ontology-based Reasoning: Because ontology is based on description 

logic, it allows complex reasoning and complex representation. With this 

technique, data needs to be modelled in a compatible format, and this is one 

of its disadvantages. RDF(S), OWL and RDFS are common representations 

of semantic web languages for implementing ontology-based reasoning. 

Researchers have utilised several different techniques for context reasoning, 

each with their own strengths and weaknesses, as indicated in Figure 2-17.  

 

Figure 2-17: Comparison of context reasoning techniques (synthesised from 

Strang and Linnhoff-Popien, 2004; Perera et al., 2014; Cabrera et al., 2017) 

In summary, several context-aware systems use context purely for decision-

support/making or direct distribution services to the end-user. However, certain 

systems allow context information to be shared with other interested actors or 
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subsystems. This is defined as context information sharing, and represents one 

of the key challenges in the field of context-awareness for IoT (Perera et al., 2015; 

Boavida et al., 2016). Context information can be provided in various different 

ways, including variations in format, length, type and representation of the data 

(de Matos et al., 2020). Hence, there is a need to ensure that context-sharing 

platforms offer context interoperability. Thus, the following part of this chapter 

moves on to describe context information sharing through IoT platforms in greater 

detail. 

2.4 Context Information Sharing through IoT Platforms and 

Middleware 

Context-relevant data can be produced by IoT entities, and context management 

needs to be handled through a context management information processing 

layer. This layer would be expected to handle context data produced from multiple 

sources, including third-party software. Therefore, context-sharing functionality is 

facilitated by a context-sharing platform. Such platforms are capable of creating 

semantic interconnections between domains via the sharing of context 

information. As IoT environments can be highly complex, context-sharing 

platforms must be capable of dealing with a range of situations, and be able to 

implement service adaptation mechanisms driven by context-building blocks (de 

Matos et al., 2020). These building blocks can be categorised as properties and 

architectural components. The former applies to predominantly the software 

aspects of context-sharing platforms, including modelling, reasoning, 

dissemination, processing, interoperability, privacy, scalability and availability, as 

outlined in Table 2-4. 

Table 2-4: Context sharing concerns 

Context 
sharing 

Properties 
Type Aim 

Implementation 
features 

References 

Modelling (M) Properties 

Responsible for mapping 
context into a predefined 
format. 

Key-value, markup 
scheme, graphical, 
object oriented, logic-
based, ontology-based 
and hybrid context 
modelling. 

(Chen and 
Kotz, 2000; 
Perera et al., 

2015) 
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Context 
sharing 

Properties 
Type Aim 

Implementation 
features 

References 

Reasoning (R) Properties 

Defined as the process to 
obtain high-level 
information from less 
enriched, or even raw 
data 

Supervised & 
unsupervised learning, 
rules, fuzzy logic, 
ontology-based, 
probabilistic reasoning. 

(Bettini et al., 
2010; Perera 
et al., 2015) 

Data 
Dissemination 

(D) 

Properties 

The context information is 
shared to relevant entities  

Static and dynamic. (Perera et al., 
2015) 

Privacy (P) Properties 

Data on the context 
includes private data, 
such as User ID, 
preferences, activities, 
and location. Although 
these drive contexts, 
privacy preservation 

should apply. 

Access control policies, 
anonymization, 
cryptography. 

(Tiburski et 
al., 2015) 

Interoperability 
(I) 

Properties 

Heterogeneity of data 
requires that different 
subsystems or systems 
must be interoperable 

Interoperability through 
format, source, length, 
& representation, and 
semantic alignment 

(de Matos et 
al., 2020) 

Context 
Processing 

(CP) 

Properties 

It aims to obtain, produce, 
and share context 
information to service a 

data or service request 

Searching, filtering, 
and aggregation. 

(Lunardi et 
al., 2015) 

Availability 
(AV) 

Properties 
The context must be 
always available for 
possible sharing 

Availability ensured via 
cloud platforms or 
cached data 

(de Matos et 
al., 2020) 

Communication 
technologies 

(C) 

Architectural 
Components 

It refers to all equipment 
and programs that are 
used to process and 
communicate information 

Communication 
devices, channels, and 
protocols for external 
and internal networks 

(Doukas et 
al., 2015; de 
Matos et al., 
2020) 

History (Hi) 
Architectural 
Components 

Past data or inferred 
context stored locally or 

over the cloud.  

Locally or cloud - based (de Matos et 
al., 2020) 

Architectural 
model 

Architectural 
Components 

Architecture can follow 
different patterns to 
support context sharing 

Cloud-based, 
centralized-edge, and 
decentralized-edge 

(de Matos et 
al., 2020) 

Architectural considerations, regarding enabling hardware for the deployment of 

a context-sharing platform, include communication technologies, storage space 

and processing layers. In addition, some building blocks are strictly related to the 

context-sharing properties (e.g. modelling, reasoning and dissemination), 

including those that are specifically required in industrial monitoring for driving 

maintenance services adaptation. There are a variety of different IoT platforms, 

frameworks, services and middleware that are capable of collecting, processing 

and analysing sensor data. In this regard, various researchers (e.g. Perera et al., 

2015; Mineraud et al., 2016; Sezer et al., 2018; Pradeep and Krishnamoorthy, 
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2019; de Matos et al., 2020) have examined surveys of such IoT platforms, 

frameworks, systems, prototypes, middleware and various different techniques. 

Some representative examples are listed in Table 2-5, which also shows their 

context modelling, reasoning and dissemination features.  

Table 2-5: Comparison of context-awareness features of existing approaches 

Approach 

Name Year Category Modelling Reasoning Dissemination Ref 

Context 

Toolkit 

2001 Toolkit Key-value () Provided 

but not 

mentioned 

Query (Dey et al ., 

2001) 

Aura 2002 Middleware Markup 

Schemes 

Rules Publish (Garlan et al., 

2002) 

CoBrA 2004 Middleware Ontology-Based Rules, 

ontology-

based 

Query (Chen et al., 

2004) 

MoCA 2006 Middleware Markup 

Schemes, 

Ontology-Based 

Ontology-

Based 

Publish, Query (De Rocha and 

Endler, 2006) 

DMS-CA 2008 System Markup 

Schemes 

Rules Query (Herbert et al., 

2008) 

CoSM 2009 Model Ontology-Based Ontology-

Based 

Dynamic (Yamamoto et 

al., 2009) 

FIWARE 2014 Platform () Provided 

but not 

mentioned 

() Provided 

but not 

mentioned 

Query / 

Subscribe 

(fiware.org/) 

RCOS 2016 Middleware Ontology-Based Ontology-

Based 

Dynamic (Dhallenne et al 

., 2016) 

PSW 2017 Model Ontology-Based Ontology-

Based, Rules 

Dynamic (Ruta et al., 

2017) 

CoaaS 2018 Middleware () Provided 

but not 

mentioned 

Rules, Pro Dynamic (Hassani et al., 

2018) 

SCENTS 2019 Middleware () Provided 

but not 

mentioned 

Rules Dynamic (Liu et al., 2019) 

Overall, this section has indicated that there has been significant interest in 

context-aware computing among scholars since its introduction around a decade 

ago. Although the sharing of context information between entities is a common 

objective of all of the presented projects, each has its own unique attributes, as 

they have various differences. All the presented projects are summarised in 

Table 2-6, which illustrates how they differ in the context-sharing building blocks, 
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and also indicates that the most frequently used techniques for the modelling 

feature are ontology-based. This is also applicable to IoT platforms, as ontologies 

enhance their support for interoperability. 

A variety of different context-aware frameworks have been designed to show the 

advantages of this innovative technology, including the Context Toolkit, Aura and 

CoBrA, while additional frameworks remain under development. Everyday users 

are still unable to access context-aware services on a regular basis, however. 

Building context-aware systems remains a challenging process because of the 

absence of suitable infrastructure or middleware-level support. A suitable 

infrastructure for context-aware systems should have the ability to provide 

support for the majority of activities related to managing contexts, including: 

obtaining context from diverse sources, like physical sensors, databases and 

agents; interpreting context; disseminating context to relevant parties in a 

systematic and efficient manner; and generating programming models for the 

construction of context-aware services. In order to provide a supportive 

environment for the completion of these tasks, an effective context model should 

be established. Specifically, the majority of the above-mentioned platforms 

concentrate on the field of manufacturing, offering representations of 

manufacturing-field knowledge from a general perspective. Nevertheless, in 

terms of monitoring condition in manufacturing, they all lack a certain 

expressiveness with regard to representing knowledge about monitoring and 

maintenance activities. 

A knowledge construct can be used to resolve context resolution requests in 

order to drive maintenance services. Such resolution can be achieved by 

ontological reasoning based on semantic similarity, determined through 

ontological distance metrics or other appropriate methods (Teoh and Case, 

2004). This has relevance to similarity-based reasoning, such as that typically 

used in CBR systems, which have been employed in the maintenance domain in 

the past (Cândea et al., 2014). However, modelling and reasoning capabilities in 

ontologies go beyond CBR similarity. For OWL2-based reasoning, the 

formulation of queries can be done via SPARQL queries in RDF documents. 
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Additionally, depending on the complexity of a given ontology model, the process 

of semantic matching can be served using SWRL. Overall, there is a need to 

further develop ontology-based modelling and inference in order to drive 

maintenance services by extending currently-employed ontology concepts to 

include the key additional and operational ones that are typically included in the 

relevant standards, but less so in the literature. In this regard, the next section 

moves on to describe in greater detail of ontologies in predictive maintenance 

and asset management. This is important in order to develop a maintenance 

context ontology for the framework focusing on modelling failure analysis of 

mechanical components. 

2.5 Ontologies in Predictive Maintenance and Asset 

Management 

As the manufacturing environment becomes more knowledge-intensive and 

dynamic, maintenance is becoming more and more crucial in asset lifecycle 

management. The use of semantic technologies, particularly ontology-based 

modelling for predictive maintenance, has become an important research topic, 

and thus many ontologies have been offered to promote knowledge 

representation and reuse within the context of predictive maintenance. In this 

regard, various different ontological modelling approaches have been pursued in 

the fields of production, maintenance and asset management over the years. 

Using ontologies to model domain knowledge is a valid approach, and therefore 

several research efforts utilising or recommending ontologies in the domain of 

asset and maintenance management have been reported in the literature. Some 

of these sought to adopt relevant standards as a baseline for the ontology 

concepts; for example, an asset management ontology based on the PAS55 

recommendation, which was later subsumed by the ISO 5000 standard, has been 

reported (Frolov et al., 2010), but the scope is broader than simply maintenance 

and, while it serves asset management purposes well, it does not specifically 

target maintenance. 

When considering maintenance in the manufacturing domain, it is of interest to 

capture the functional impact of the asset integrity level on the actual production 
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process. The anticipated integrity level would then require a predictive approach 

(Cao et al., 2019). Although such an approach can be highly relevant, prediction 

based only on historical data, without accounting for predicted future operating 

aspects, is appropriate only insofar as the historical data align with future 

expectations, which is often not the case. However, if the intended use of an 

ontology is to serve maintenance action determination, planning and scheduling, 

then operational semantics need to be included in the modelling. 

Appropriate knowledge constructs with potential impact, which link assets, their 

function and their faults, are failure modes and effects analysis (FMEA) or failure 

mode, effects and criticality analysis (FMECA) (Nuñez and Borsato, 2018). An 

FMECA approach would still be limited, however, in that, while it associates 

assets and component faults with detectability, it does not include explicit 

information about measurement methods per asset and fault type, or specific 

measured parameters for the measurement methods. While this is appropriate 

for the original intended purposes of a FMECA study, it falls short of the 

requirements for a knowledge formalism that would serve operational purposes. 

A more promising approach would be to extend the FMECA by including link-

failure modes in the ontology concepts, with more detailed diagnostic information 

and associated recommended actions to the resources that would be needed for 

implementing the actions, such as spare parts and human resources (Jin et al., 

2009). Such an extension could look into the recommendations of relevant 

standards (ISO 13374:1, 2003; ISO 17359, 2011) that link monitoring parameters 

and fault indicators to failure modes and recommended actions (D’Elia et al., 

2010). A maintenance ontology may comprise multiple layers––an upper-level 

ontology to abstract the key domain concepts and a lower-level ontology 

contextualised around specific operational factors (Koukias et al., 2013). 

Monnin et al. (2011) developed a knowledge model for fleet predictive 

maintenance to handle fleet-wide contextual knowledge, arguing that fleet-wide 

Prognostics and Health Management (PHM) requires a knowledge-based system 

capable of handling contextual information. Decision-making processes for 

diagnosis and maintenance are strengthened by semantic modelling, which deals 
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with the definition of concepts and the relationships between them. As another 

example, an ontology was developed for predictive maintenance in the wind 

energy domain, being used as a basis for the identification and diagnosis of faults 

in monitoring the condition of wind turbines (Papadopoulos and Cipcigan, 2010). 

The proposed ontology model was used by conducting ontology queries to detect 

potential failures and their specific locations in the gearbox of the wind energy 

converter. 

When considering the manufacturing domain, it is most useful to capture the level 

of functional impact of asset integrity on the actual manufacturing process. Castet 

et al. (2018) presented an approach for capturing fault information in a modelling 

environment using the ontology of fault management and a set of plugins 

designed to automatically extract two reliability artefacts––the FMECA and fault 

tree. The FMECA offers a sound basis upon which to express the organisational 

and functional association between a manufacturing asset hierarchy and its 

linkage with the functional integrity of the production facility. Nuñez and Borsato 

(2018) proposed an ontological model called OntoProg that served as a widely 

accepted data and knowledge representation scheme for diagnostic-oriented 

maintenance, capable of being used in different types of industrial machines. 

They also suggested a set of SWRL rules to improve the ontology’s 

expressiveness. More recently, Cao et al. (2019) introduced an ontology-based 

approach to facilitate predictive maintenance in industry. This approach 

combines the use of blurry clustering and semantic technologies. Ontological 

approaches that employ industrial scenarios to support maintenance 

management have been developed for a range of assets, including urban 

infrastructure (Wei et al., 2020), highway infrastructure (France-Mensah and 

O’Brien, 2019), building information management (Farghaly et al., 2019), 

transport infrastructure (Ren et al., 2019; Li et al., 2020) and railway infrastructure 

(Dimitrova et al., 2020). Table 2-6 summarises other studies on ontologies in 

maintenance and asset management. 
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Table 2-6: Ontologies used in maintenance and asset management 

Survey Title Ontology 

domain  

Contribution Reference 

“A Formal Ontology for 
Semantics in 
Maintenance Platforms” 

Production 
system 

An ontology to produce new knowledge 
in the field of industrial maintenance. 

(Karray et al., 
2012) 

“Ontology-Based 
Implementation of an 
Advanced Method for 
Time Treatment in Asset 
Lifecycle Management” 

Lathe 
Machine 

Implemented a method for exploiting the 
characteristics of time in maintenance 
asset lifecycle management (ALM) 
systems. 

(Matsokis and 
Kiritsis, 2012) 

“Ontology-Based 
Schema to Support 
Maintenance Knowledge 
Representation With a 
Case Study of a 
Pneumatic Valve” 

Pneumatic 
Valve 

A methodology for knowledge 
representation using ontological 
principles is proposed. 

(Ebrahimipour 
and Yacout, 

2015) 

“A novel maintenance 
system for equipment 
serviceability 
improvement “ 

Manufacturing 
machine 

A maintenance system for real-time 
equipment that integrates augmented 
reality (AR) for context-aware overlay of 
textual and graphical maintenance 
instructions on the maintenance scene. 

(Ong and 
Zhu, 2013) 

“Context-Aware 
Recommendation for 
Industrial Alarm System” 

A power 
generation 

plant 

Via semantic web technology and 
machine learning techniques, an 
industrial alarm management system is 
suggested. 

(da Silva et 
al., 2018) 

“Semantic Data Model for 
Operation and 
Maintenance of the 
Engineering Asset” 

N/A A semantic data model for engineering 
asset management is proposed. 

(Koukias et 
al., 2013) 

“Context Modelling with 
Situation Rules for 
Industrial Maintenance”  

knowledge 
gateway 
system 

A knowledge modelling approach is 
proposed to support maintenance 
personnel 

(Aarnio et al., 
2016) 

“A research on intelligent 
fault diagnosis of wind 
turbines based on 
ontology and FMECA”  

Wind turbine A method based on ontology and 
FMECA for intelligent wind turbine fault 
diagnosis is suggested. 

(Zhou et al., 
2015) 

“Building an ontological 
knowledgebase for 
bridge maintenance” 

Transport 
infrastructure 

An ontology for achieving automatic 
control of rules and improving the 
management and communication of 
bridge maintenance knowledge. 

(Ren et al., 
2019) 

A review of the related research work revealed two issues. Firstly, there is a 

missing link between knowledge constructs and operational, reliability-based 

services adaptation actions. Focusing on the asset context, relevant domain 

knowledge can be modelled in many forms, but of particular interest are 

knowledge constructs relevant to reliability analysis, such as failure modes, 

effects (and criticality) analysis (FME(C)A), FMEA or FMECA models. These are, 

however, often utilised in design-stage engineering studies. Maintenance 
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services, on the other hand, need to be invoked during the operating time, and 

so relevant information representations need to be enriched in order to enable 

dynamic context inference and the composition of contextually-relevant services. 

Secondly, existing predictive maintenance approaches in the manufacturing 

domain are still limited to the deployment of condition monitoring systems for 

identifying the failure mode and effects analysis in mechanical components. 

Therefore, the resolution of asset context is needed to analyse mechanical 

systems, and to logically connect measurements, observed behaviour and 

intended function, with machinery operating condition and faults. To this end, 

FMEA offers an appropriate grounding for the baseline of the knowledge 

mapping. According to ISO 17359 (2011), failure mode analysis based on 

FME(C)A is recommended so as to ensure that maintenance activities are 

consistent with established fundamental practice-oriented knowledge. 

2.6 Chapter Summary and Research Gaps 

The literature review offered important insights into the lifecycle of contexts, which 

determines where data are generated and where they are consumed. During this 

lifecycle, context awareness can be regarded as a service, defined by various 

researchers as ‘context as a service’.  

While all the approaches deal with some form of context management, starting 

with acquisition and modelling, eventually the actionable context needs to be 

domain specific. In the application domain of asset and maintenance 

management, context strongly depends on the assets and their hierarchy. Unless 

such context is captured, it is difficult to convert IoT-generated data from industrial 

systems to actions. Therefore, it is important to create a representation that 

integrates qualitative and quantitative data, wherein data and service delivery is 

determined upon resolving the apparent context of a service or data request. The 

most common approach to achieving this is through ontology-based modelling. 

This allows a more meaningful representation of context and supports semantic 

reasoning. In addition, it can overcome several technical restrictions, such as 

interoperability and strong validation and expressivity. 
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The advantages and disadvantages of each context lifecycle management 

method are distinctly observable. Ontology-based reasoning appears to be 

effective at deriving high-level context from existing contexts for remote 

monitoring services because of the dominance of knowledge sharing, logical 

inference and the reuse of knowledge. Furthermore, it allows the context 

information to be stored according to the ontological structure, and automatically 

reasons later, when required. In remote monitoring services, this can enable not 

only fault detection, diagnostics and prognostics, but also action 

recommendations consistent with the inferred context of the analysed situation. 

In addition, rules represent the most uncomplicated and easiest techniques for 

reasoning, out of all those available. The structure of rules generally follows the 

if-then pattern, permitting the creation of upper-level content data using lower-

level context (Kessler et al., 2009; Zhou et al., 2009). 

2.6.1 Research Gaps 

The following research gaps were identified from the literature review. 
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Table 2-7: Link gaps with research questions and sections 

Research 
gap 

section 

Research gap Research question 

2.5 

Asset and maintenance management are concerned with the management 
practices, technologies and tools necessary to maximise the value delivered 
by physical engineering assets. IoT-generated data are increasingly 
considered to be an asset, and their data asset value needs to be 
maximised, too. However, asset-generated data, in practice, are often 
collected in non-actionable form, and need to be modelled and represented 
to ensure that they continue to function properly, and that their value is 
optimised over their lifecycle (Perttunen et al.,2009; Bettini et al., 2010; 
Perera et al., 2014; Collins and Lanz., 2019; Al-Shdifat et al., 2020). 

How can context be acquired, modelled, 
processed and disseminated for industrial 
monitoring services? 

2.2.5 

The IoT has expanded the range of applications with substantial needs for 
context management, and this is reflected in the focus of the relevant 
studies. Nonetheless, while substantial research efforts have been devoted 
to context lifecycle management in web-based, mobile and ubiquitous 
computing, including IoT-enabled computing, little attention has been given 
to translating these advances into tangible progress in industrial monitoring 
services (Lee and Martinez Lastra, 2013; Scholze et al., 2017; Al-shdifat 
and Emmanouilidis, 2018).  

What is an appropriate framework to 
manage context awareness in a way that 
facilitates efficient condition monitoring? 

2.3.4.1 & 
2.5 

The most applicable context-modelling techniques that have been 
examined are ontology-based. However, the studied approaches lack some 
expressiveness concerning the representation of knowledge for monitoring 
services in manufacturing environments (Castet et al. 2018; Nuñez and 
Borsato 2018; Al-Shdifat et al., 2020). 

How can context be acquired, modelled, 
processed and disseminated for industrial 
monitoring services? 

2.4 & 2.2.5 

There is a need to develop a framework and an architecture that can 
introduce context awareness to enhance monitoring services in 
manufacturing environments 

What is an appropriate framework to 
manage context awareness in a way that 
facilitates efficient condition monitoring? 
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This chapter included a thorough, detailed review of context awareness in the 

IoT. The following chapter presents a discussion on the research methodologies 

that were considered for this study, offering a justification for the ones ultimately 

applied to answer the RQs in order to achieve the ultimate research aim. 
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3 RESEARCH DESIGN AND METHODOLOGY 

3.1 Introduction 

This chapter outlines the methodological framework developed to address the 

ROs. In presenting this methodological framework, the philosophical and 

theoretical perspectives underpinning the development of the context-aware IoT 

framework for industrial monitoring services are examined, and the multi-phase 

methodological approach adopted is discussed. This study was aimed at 

developing a flexible and more effective framework in a way that would facilitate 

efficient industrial monitoring. To achieve this, the intention was to solve the 

problem theoretically by developing a framework, architecture and maintenance 

ontology, and validating these through laboratory experiments as part of a case 

study and expert judgments. 

First, the design of the study is presented and its philosophical underpinnings 

explained. The design is typically the means by which researchers address their 

primary RQs. It is determined by the relative value the researcher ascribes to 

different research methods (Bryman and Bell, 2011). Design therefore dictates 

which data collection and analysis methods are applied, and the validity of the 

subsequent findings. "Research methods include all the techniques and methods 

which have been taken for conducting research where as research methodology 

is the approach in which research troubles are solved thoroughly. It is a science 

of studying how research is conducted systematically" (Mishra and Alok, 2011). 

Thus, the selection of a methodology must be underpinned by the adoption of a 

wider research paradigm. The next section explains and describes a variety of 

philosophical underpinnings to research. This is followed by a rationale and 

justification for the philosophical stance assumed for this study and the research 

methodology adopted. 

3.2 Research Philosophical Approach 

Saunders et al. (2009) likened the process of research to an onion, with the 

research steps being the individual layers. Assumptions are needed at each step 

regarding the design of the research and its associated methodology. There are 
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six key elements in research––philosophies, approaches, strategies, choices, 

time horizons, and techniques and procedures employed in the data collection 

and analysis. Subsequent subsections define the key philosophical assumptions 

the researcher must address. This is followed by a brief discussion of the six core 

research elements. 

3.2.1 Research Philosophical Assumption 

In essence, a research philosophy comprises the core beliefs and assumptions 

held by the researcher at each step of the research process (Burrell and Morgan, 

1979). To develop a theory, the researcher needs to be cognisant of the 

philosophical basis of their research. It is therefore essential to clarify the ways in 

which the core philosophical assumptions–ontology, epistemology and axiology 

differ. These assumptions are depicted in Figure 3-1. 

 

Figure 3-1: Research philosophical assumptions 

3.2.2 Philosophical Stance of this Research 

There are five philosophical stances in the first layer of the research onion–

positivism, critical realism, interpretivism, postmodernism and pragmatism. 

These are summarised in Appendix A. To recall, the main objective of this study 

was to analyse the current practices of context lifecycle management, and identify 

the appropriate factors that are used in context acquisition, modelling, reasoning 
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and dissemination for IoT-enabled industrial monitoring services. The outcome of 

this objective is to be used in developing a framework that introduces context 

awareness to enhance remote monitoring services in manufacturing 

environments, and in developing a maintenance ontology for the framework, 

focused on modelling the failure analysis of mechanical components. To achieve 

this, the researcher intended to solve the problem theoretically, by developing a 

framework and validating it through laboratory experiments and a case study. 

Given this, pragmatism was adopted as the philosophical stance in this study. 

The aim of pragmatism is to provide useful solutions to the problem that the 

research is addressing (Appendix A). This practical solution will aim to shape 

the way procedures are undertaken in the future in order to produce the best 

results. 

3.3 Research Approach 

Having selected a philosophical stance, it was important to then decide upon an 

appropriate approach to the research. Three disparate approaches–deductive, 

inductive and abductive–were considered. When the aim is to establish a causal 

relationship between variables, a deductive approach is typically employed. This 

was defined by Saunders et al. (2018) as an approach based on theory-testing, 

where the aim is to verify the validity of a certain set of assumptions. Conversely, 

an inductive approach involves generating and building new theories (often in the 

form of a conceptual framework) (Bryman and Bell, 2015). The third approach–

abductive research–concentrates on the empirical explanation of research 

questions. Based on the stated aim and objectives, the approach adopted in this 

study was an inductive one. Since this research sought to identify the appropriate 

factors that are used in context lifecycle management for IoT-enabled industrial 

monitoring services, and based on the stated aim and objectives, the inductive 

approach was adopted. 

The next step in the research process is to verify its purpose. In this respect, there 

are four possible alternatives: explanatory, exploratory, correlational, and 

descriptive, as presented in Figure 3-2.  
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Figure 3-2: Types of research – Viewpoint of objectives (adapted from Kumar, 2005) 

For this study, an exploratory approach was appropriate to satisfy the aim of 

investigating the unexplored gap between the integration of IoT, cloud computing 

and context awareness for industrial monitoring services, as identified in Chapter 

2. 

3.4 Research Choice 

A key element in every research study is the process of data collection. Such 

data can be either quantitative, and therefore collected through questionnaires, 

surveys or as secondary data, or qualitative, and therefore collected through 

interviews and documentation (Creswell, 2009). Equally important are the 

techniques employed to analyse the data. If the data is quantitative, statistical 

analyses are usually conducted. If they are qualitative, a range of techniques can 

be applied, such as thematic analysis or grounded theory. Making the correct 

methodological choices with respect to data collection and data analysis is 

therefore imperative. In terms of whether to adopt a quantitative or qualitative 

approach, there are three possible options––the monomethod (quantitative or 

qualitative), multimethod (quantitative and qualitative) and mixed method. This 

study fell into the mixed-method category. This choice meant that the research 

would include both quantitative and qualitative procedures and techniques to 

collect and analyse data. To develop the theoretical framework, secondary data 
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were collected, comprising peer-reviewed articles in high-quality journals with a 

high impact factor, books, reports and conference proceedings. To conduct the 

case study, data were collected from the operational and maintenance records of 

a laboratory-based test rig. In addition to case study validation, experts’ judgment 

on the developed maintenance context ontology for the framework was sought. 

In this respect, a basic questionnaire was developed to be administered to the 

participants to determine the extent of their knowledge regarding ontologies, 

faults, causes and effects of failure along with maintenance terminology. 

3.5 Research Strategy 

The research strategy is an overall plan of action adhered to by the researcher to 

address the RQs and fulfil the ROs (Saunders et al., 2012). The exact strategy 

employed will depend on the ROs, the findings of previous research, the time 

available and, above all, the resources and data available. The seven principal 

strategies are “experimentation, survey, case study, action research, grounded 

theory study, ethnography and archival research”. For this study, the intention 

was to develop a framework, and validate it through laboratory experiments and 

case studies. Therefore, given the objectives of this research (as stated above), 

an experimental and case-study strategy was deemed the most appropriate to 

adopt. This is explained in further detail in Section 3.7. 

3.6 Time Horizon 

The fifth layer of the research onion is the time horizon. This is a vital component 

of research, and is associated directly with the RQs (Saunders et al., 2012). It 

concerns whether the research is carried out at a specific time, in which case it 

will be cross-sectional, or over a longer period, in which case it will be longitudinal. 

This study required a longitudinal time horizon, the aim being to investigate 

changes, and the developments that take place, in specific phenomena over time. 

Although time constraints can create problems for this type of study, these is 

offset by the potential value of the insights obtained. However, if secondary data 

is required, the availability of such data may become another constraining factor 

(Saunders et al., 2012). 
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3.7 Research Structure Diagram 

The methodological structure of this study was shaped by both the aim and 

objectives of the research, and the questions it sought to answer. These required 

the adoption of appropriate research tools and methods (Creswell and Poth, 

2016). The methodological contribution made by this research is that it was 

intended to highlight the multi-phased strategy needed to develop robust 

research frameworks with high validity. This framework, depicted in Figure 3-3, 

comprised four phases, all of which made a distinct contribution to the study. 

Initially, this study’s function was to recognise its aim as well as its objectives. A 

study of the RQs was undertaken, in addition to the research area. Furthermore, 

additional enhancement of the objectives may have been achievable by means 

of a literature review, with technical development requirements in the research 

area as well as the research direction’s new outcomes. Figure 3-3 illustrates all 

the phases that helped in proceeding with an initial estimation of the overall timing 

and milestones. The information related to each phase is briefly explained below. 

3.7.1 Phase 1 – Establish the Research Baseline 

The initial phase of this study paid particular attention to the contextual 

understanding and comprehension of the ongoing practices of context lifecycle 

management and the integration of IoT and cloud computing for industrial 

monitoring services. An extensive literature review was conducted to examine 

related work and determine factors, methods and techniques appropriate for the 

study, in order to understand the latest developments and to identify gaps in the 

research area (Objective 1). In light of that, the appropriate factors used in 

context lifecycle management were critically analysed and published in a 

conference paper. 
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Figure 3-3: Research methodology 

3.7.2 Phase 2 –Framework Design and Development 

This phase involved the design and development of a framework and an 

architecture that would introduce context awareness to enhance remote 

monitoring services in manufacturing environments through a set of steps. Firstly, 

the context acquisition factors were defined and captured. Secondly, a 

representation mechanism appropriate for context modelling was identified. 

Finally, the process of context reasoning and dissemination, in order to derive 

high-level context deductions from a set of contexts, and to deliver context to end-
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user applications, was investigated (Objective 2). This is explained in further 

detail in Chapter 4. In this regard, the initial framework and architecture were 

developed after reviewing relevant and commercial solutions. The initial 

framework has been published in a conference paper.  

3.7.3 Phase 3 – Experimentation Materials and Methods 

The third phase involved the early prototype, virtual prototype and context model 

development (Objectives 2 and 3). For the early prototype, a functional test was 

performed in order to investigate the functionality of the key components of the 

proposed framework and architecture. In this regard, physical implementation 

was conducted from data generation to data visualisation because the problems, 

benefits and challenges needed to be understood before a real-world case study 

was undertaken, as outlined in Figure 3-4.  

 

Figure 3-4: Early Prototype phase 

Data are collected through different sensors and are fed into an embedded 

computing device. The device is networked and is able to push the data to a cloud 

platform where they can be processed and visualized into relevant information 

for the users. That information can be presented in different forms; the most 

commons are simple monitoring of the raw data on graphs to generate 

suggestions for possible interventions based on the measurement ranges. When 
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unexpected or unwanted events are detected, the system issues alerts, which 

are communicated to users or other systems.  

For the virtual prototype, a gearbox test rig was chosen as a case study to validate 

the applicability of the proposed framework and architecture. In light of that, 

different scenarios have been created. These scenarios focused on the design of 

simulation through two different scenarios ("Building Management System" and 

“Machine Monitoring System”) to illustrate the operation and utility of the 

proposed architecture for the integration of IoT and cloud computing for industrial 

monitoring services as shown in Figure 3-5. In order to do that, ThingsBoard 

platform was utilized to validate the applicability of the proposed framework and 

architecture. ThingsBoard is an open-source IoT platform that allows IoT projects 

to be rapidly developed, managed and scaled. The platform enables users to 

develop rich IoT dashboards for the purpose of visualising data and then applying 

controls on remote devices in real-time. ThingsBoard facilitates the connectivity 

between devices through developed application layer protocols ThingsBoard 

(e.g. MQTT, CoAP and HTTP) and provides for deployments via the cloud. 

 

Figure 3-5: Virtual Prototype phase 

For the context model development, the focus of the maintenance ontology is on 

modelling failure analysis of mechanical components to answer queries regarding 

how faults manifest themselves and how they can be prevented or addressed, so 
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as to adapt relevant diagnostics or maintenance actions in a Condition-Based 

Maintenance setting. This is explained in further detail in Chapter 5. 

The development of ontology can be based on one of the numerous procedures 

described in the literature (Sure et al., 2009), including Uschold and King, 

Grüninger and Fox, Methodology, Ontology Development 101 (OD1) and 

KACTUS. In the current research, the Ontology Development 101 is adopted due 

to the following reasons: (1) This methodology was designed for beginners. As 

such, it is easy to learn and operate. (2) The detailed activities involved in this 

approach have been specified. The process of establishing an ontology is 

described in detail in this methodology. (3) It can be integrated with other tools. 

This method contains detailed instructions on how to implement the ontology in 

the Protégé environment (Ren et al., 2019). OD1 comprises six stages (Noy and 

McGuinness, 2001). However, along with identification of the procedure that will 

be adopted, the development of ontology models requires tools that can support 

all activities in the development process. Such tools include TopBraid 

(www.topquadrant.com) and OntoStudio (www.semafora-systems.com), as well 

as open ones, such as the popular OntoEdit (Sure et al., 2002), HOZO (Kozaki 

et al., 2005) and Protégé (https://protege.stanford.edu/). Specifically, Protégé is 

the most dominant application (ontology publisher) due to the fact that it is an 

open platform that offers Plug-in extensibility as well as XML (S), OWL, RDF (S) 

and Excel along with graphic taxonomy, queries in SPARQL, rules in SWRL 

language, and a reasoner (Pellet). 

3.7.4 Phase 4 – Framework Validation 

In the final phase of the research, the results had to be validated to test their 

applicability, and to identify areas for further development. The selected gearbox 

test rig case was employed to validate the applicability of the proposed framework 

and ontology. In this regard, several ontology evaluations have been proposed 

that could take an implementation or a design viewpoint (Degbelo, 2017; Kumar 

and Baliyan, 2018). In the validation process, the semantic and syntactical 

correctness of the ontology is ensured and verified, whether the ontology satisfies 

the targeted requirements or not. The scope of the present case study was 

http://www.topquadrant.com/
http://www.semafora-systems.com/
https://protege.stanford.edu/
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exploratory; that is, the aim was to present the development of a context-

resolution service mechanism for industrial diagnostics, based on the design of a 

maintenance ontology focused on modelling the failure analysis of mechanical 

components. Therefore, it was considered appropriate to focus on a subset of 

evaluation criteria–namely robustness, level of detail, effectiveness, internal 

consistency and applicability–within the viewpoint of the targeted application case 

study. In addition to case study validation, experts’ judgment on the developed 

maintenance context ontology for the framework was sought. This is explained in 

further detail in Chapter 6. 

3.8 Chapter Summary 

In this chapter, the research method used in this study was explained, with Figure 

3-6 summarising the methodology selection.  

 

Figure 3-6: The research methodology selection (adapted from Saunders et al., 

2018) 

In this chapter, the common research philosophical approaches followed were 

defined, including the philosophical research assumptions, philosophical stances, 

approaches, strategies, choices and time horizons. In each element of the 

philosophical research approach, different options were evaluated, and the 

position of the present study was highlighted among the available options. The 

aim of the study was to design and implement a context-awareness framework 
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and an architecture for the integration of IoT and cloud computing for industrial 

monitoring services. Consequently, pragmatism was adopted as the 

philosophical stance. Furthermore, based on the stated aim and objectives, the 

approach adopted was an inductive one. The research fell into the mixed-method 

choice, meaning that the study included both quantitative and qualitative 

procedures and techniques in order to collect and analyse the data. Finally, given 

the objectives of this study (as stated above), an experimental and case-study 

strategy was deemed the most appropriate to adopt, and the overall structure of 

the research was illustrated. 

Research ethics were considered throughout the research process. In 

accordance with the General Data Protection Regulation, all data has been 

handled in a way that preserves confidentiality and privacy. The effective 

employment of this methodological framework enabled the attainment of the 

research aim–the development of a context-awareness framework for industrial 

monitoring services. The insight gained from the second phase of the multi-phase 

research methodology–architecture and framework development–is discussed in 

the next chapter. 
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4 ARCHITECTURE AND FRAMEWORK DEVELOPMENT 

4.1 Introduction 

The introduction of IoT technologies has expanded the ability of industries to 

generate data from devices that can sense and communicate in real time, 

supporting decision-making processes for monitoring the state of equipment, and 

offering guidance for proactive maintenance (Bousdekis et al., 2015). The 

explosive growth of IoT-generated and -managed data requires substantial 

further effort for the effective management and exploitation of the data, however. 

The absence of general architectural knowledge is currently preventing 

researchers from exploiting the scope of IoT-centric approaches. Due to distinct 

methods, standards and use cases, insufficient focus has been applied to 

translating these developments into actual progress in terms of industrial 

monitoring services. Resultantly, there is a need to develop architectures and 

frameworks that can introduce context awareness in order to enhance monitoring 

services in manufacturing environments. 

This chapter comprises two core sections. Section 4.2 presents an overview of 

architecture development for the introduction of context awareness to enhance 

remote monitoring services in manufacturing environments. This consists of four 

viewpoints–business, usage, functional and implementation. Section 4.3 

describes the development of a context-aware IoT framework for remote 

monitoring services. The framework applies context-aware computing to deliver 

solutions and address key challenges that IoT-enabled monitoring services need 

to handle, specifically how the context can be modelled, processed and 

disseminated for remote monitoring services, how this impacts the service 

discovery solution, and what an appropriate taxonomy of ontology is. This 

represents phase two of the multi-phase research methodology presented in 

Section 3.7 and RO 2. 
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4.2 Architecture Development 

Viewpoints represent the central aspects of the ISO/IEC/IEEE architecture 

description standard (ISO/IEC/IEEE 42010:2011). A viewpoint consists of 

conventions that frame the analysis and description of particular system 

concerns. One or multiple concerns are framed by a viewpoint. A concern is 

defined as any topic of interest associated with the system. A stakeholder refers 

to a person, group, organisation or categories thereof who have a stake in a 

particular concern, and hence have an interest in the given viewpoint and system. 

In line with the approach stipulated in the ISO/IEC/IEEE architecture description 

standard, the concepts used to describe, analyse and resolve the group of 

particular concerns in each viewpoint are defined as that viewpoint’s architecture. 

In this regard, the proposed architecture, to introduce context-awareness to 

enhance remote monitoring services, has been developed based on the Industrial 

Internet Reference Architecture (IIRA) and is actively maintained by the Industrial 

Internet Consortium (IIC, 2017). This architecture comprises four viewpoints, as 

illustrated in Figure 4-1. These viewpoints are business, usage, functional and 

implementation. 

 

Figure 4-1: Architecture viewpoints (adapted from IIRA 2015; IIC, 2017) 
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4.2.1 The Business Viewpoint 

The business viewpoint is concerned with identifying users, as well as their 

business vision, values and goals (IIC, 2017). Such concerns are particularly 

interesting to product managers, systems engineers, technicians and decision-

makers. Business-focused concerns, such as business value, maintenance 

costs, increased efficiency, machine availability and product liability, must be 

assessed in regard to the application of IIoT systems for resolving business 

issues.  

Focusing on the application domain of asset and maintenance management, 

context information management was considered on the basis of a valid 

knowledge construct for reliability-oriented maintenance management, wherein 

data and service delivery were determined through resolving the context of a 

service or data request. Therefore, the main business viewpoint goal was to 

increase efficiency and availability, make informed decisions, minimise costs and 

maximise profits, all without compromising the service or product quality. When 

users interact with systems in this regard, the proposed maintenance ontology 

can help them to narrow down the list of options to those that are contextually 

relevant. This allows both managers and operators to assume control and make 

more effective decisions so that general efficiency can be enhanced throughout 

the entire industry. Furthermore, the utilisation of machine monitoring systems 

enables machines to monitor problems that occur in their operations, such as the 

failure of components or outages, and then report them to the manager so the 

required fixes can be applied. Figure 4-2 presents a proposed high-level view of 

the viewpoints of key stakeholders, and the key concepts through which these 

can be served. 



 

72 

 

Figure 4-2: Business viewpoint 

❖ Stakeholders have a significant interest in the business and are highly 

influential in its direction. They are frequently considered to have strategic 

thinking skills and are innovators in a firm or an industry sector. Employees 

from various departments are involved in the maintenance and asset 

management function, including those with engineering, technical, 

managerial and financial duties. Data and knowledge applicable to certain 

staff roles may be irrelevant to others. Maintenance and asset 

management information systems must account for such variations in the 

roles and responsibilities of different staff. The effective adaptation of 

services and data provisioning is sought via context-adaptive computing, 

which is becoming more relevant to enterprise information systems. 

❖ Vision determines the direction in which the business applies its focus. 

Upper-level business stakeholders generally formulate and distribute the 

vision of the organisation. In this study, context management was 

considered on the basis of a valid knowledge construct for reliability-

oriented maintenance management. The vision was to produce a semantic 

organisation of data so as to drive maintenance services. 

❖ Values mirror the manner in which the vision can be viewed by the 

stakeholders who provide the funds for the application of the new systems, 

and also by the users of the implemented system.  
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❖ Key objectives are quantifiable and high-level technical, and are the 

ultimate business results required of the implemented system in terms of 

the delivery of values. In this study, the collected data involved a wide 

number of parameters, gathered over long periods of time, and were of 

significant scale. However, they may potentially have failed to represent 

the range of possible scenarios of asset operation, or the causal 

relationships between the monitored parameters, and so the size of the 

data collection, while adding to the complexity of the problem, would not 

necessarily allow direct data-asset-value exploitation. One way to handle 

data complexity is to introduce context information modelling and 

management, wherein data and service delivery are determined upon 

resolving the apparent context of a service or data request. Moreover, a 

reasoning mechanism can be used for delivering context resolution, where 

a metadata layer can be added by the determined context resolution onto 

data or events produced via automated and manual methods. 

❖ Fundamental capabilities are defined as the high-level specifications of the 

system’s basic ability to conduct specific important business activities. 

Primary goals represent the foundation for identifying fundamental 

capabilities. In this research, remote monitoring solutions facilitate the 

process by which the performance and functionality of remote equipment 

and installations are monitored, controlled and supervised by users. 

Remote monitoring gives users the ability to continue viewing and 

controlling equipment, facilities and operations in locations that are 

unsupervised, difficult to access and in isolated locations. 

4.2.2 The Usage Viewpoint 

The usage viewpoint is related to the manner in which an IoT system achieves 

the primary capabilities determined in the business viewpoint (IIC, 2017). This 

viewpoint delineates the activities that provide coordination for different work 

units over different system elements. Such activities, which describe how the 

system is utilised, act as an input for the system requirements incorporating those 

denoting important system properties and also facilitate the processes of 
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designing, implementing, deploying, operating and developing the IoT system. 

Moreover, the usage viewpoint demonstrates how applications function in 

harmony for the purpose of supporting processes within the business. It can be 

employed for identifying the services required by such processes and different 

applications, or in developing business processes through describing the 

services available. 

In the application domain of asset and maintenance management, context is 

relevant to the asset and its hierarchy, the user, the production or service 

business circumstances, as well as the overall system and operating-

environment aspects (Emmanouilidis et al., 2019). The resolution of asset context 

is needed to analyse mechanical systems, and logically connect measurements, 

observed behaviours and intended functions with machinery operating condition 

and faults. To this end, the usage viewpoint relates to the application of 

engineering concepts in the context of optimising equipment, procedures and 

departmental budgets to better maintain equipment and its reliability and 

availability. Figure 4-3 illustrates a workflow of the usage viewpoint.  Initially, 

information pertaining to the maintenance, evaluation and decision support of 

machines is translated by knowledge-engineers (analysts) into ontology and 

SWRL rules. Next, Protégé and SWRLTab are used to define the ontology and 

SWRL rules, which are then stored in a knowledge base.  Subsequently, SWRL 

rules are executed by the rules engine, which produces new facts within the 

ontology management system. Lastly, decision-makers can acquire beneficial 

information by applying multiple constraints via the query interface. 
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Figure 4-3: Usage viewpoint for maintenance action recommendation service 

The main activity in the presented example is that of producing a semantic 

organisation of data so as to drive maintenance services.  

Trigger: This activity will be initiated (‘triggered’) by the role ‘analyst’ in an 

explicit way. 

The maintenance ontology is being used for the storage of knowledge relevant to 

fault diagnosis and reliability analysis through monitoring techniques (Task 1). 

Hence, it is possible to query which type of approach should be used for condition 

monitoring, and in what manner (Task 2). Queries can thus be made about what 

kind of condition monitoring technique should be used, and how. Additionally, 

inferences can be drawn (Task 3), in the sense that it is possible to make a 

comparison between an obtained value and specific thresholds based on relevant 

ISO standards in order to determine whether the value can be categorised as 

good, satisfactory, alert or alarm. Therefore, if a recorded value is considered to 

be in the alert category (Task 4), the system can diagnose that a failure could 

occur, and a maintenance notification is issued for the machine indicating that 

intervention is required. Subsequent to the identification of an alert notification 

(Task 5), it is then necessary to connect this with diagnostic information about 
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the mechanical part being investigated, which will allow the failure mode and 

potential causes to be determined. 

4.2.3 The Functional Viewpoint 

The functional viewpoint concentrates on the functional elements in a system, 

along with their interconnections and structure, the interfaces and their 

interactions, and the associations and interactivity with components existing in 

the outside environment. According to the context-aware IoT architecture for 

industrial monitoring services, it is possible to decompose a platform’s 

functionality into six superior-level functional areas–control, operations, 

information, analytics, simulation and application, as illustrated in Figure 4-4. 

 

Figure 4-4: Functional viewpoint 

❖ The control domain consists of a group of general functions. These can be 

implemented with different degrees of complexity and sophistication based 

on the specific system, and various elements may not even be included. It 

denotes the amalgamation of functions that are conducted by control 

systems in industry. The primary functions include fine-grained closed 
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loops, reading sensor data, the application of logic and rules, and 

controlling the physical system via actuators (‘actuation’). 

❖ The operation domain denotes a group of functions tasked with providing, 

managing and optimising all systems within the control domain, as 

illustrated in Figure 4-5. Extant control systems in industry predominantly 

concentrate on the optimisation of assets within one physical plant. 

 

               Figure 4-5: Structure of an operation domain 

❖ The information domain denotes the group of functions responsible for 

collecting information from different domains as shown in Figure 4-6, 

particularly from the control domain, and then converting and 

modelling/analyzing the information to obtain superior-level intelligence 

regarding the entire system. 
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Figure 4-6: Information domain 

❖ The analytics domain incorporates capabilities for the collection and 

processing of field data to facilitate the comprehension of monitoring 

services. It also delivers intelligence to users, although this is not always 

restricted to humans or vertical implementations (i.e. predictive 

maintenance solutions). When configured correctly, both automation and 

simulation domains can directly utilise the results of data analysis 

algorithms. 

❖ The simulation domain incorporates capabilities for the simulation of 

behaviour, with the goal of optimising or verifying what-if cases incurring 

low costs and risks. 

❖ The application domain denotes the group of functions responsible for the 

implementation of logic to realise particular business capabilities. 

As IoT technologies become more embedded in monitoring activities, there is 

a growing necessity to manage their context information in industrial 

environments. Cloud computing is particularly relevant, enabling the delivery 

of hosted services, such as storage, networking, analytics and software 

development platforms, over the Internet. Hence, there is a need to ensure 

that context-sharing platforms offer context interoperability. Context-relevant 
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data can be produced by IoT entities, and context management needs to be 

handled through a context-management information-processing layer, which 

in turn is expected to handle contextual data produced from multiple sources, 

including third-party software. To clarify how a context-sharing platform is 

organised, Figure 4-7 illustrates an example of how context sharing applies 

in an IoT environment for monitoring services. With asset monitoring, users 

are able to capture the state of a machine so they can understand how the 

asset is performing in the field. In this example, a physical gearbox test rig 

was considered as an asset, designed to emulate misalignment. The 

application of context sharing allows monitoring of the performance of the 

asset at the same time as making a diagnosis and determining the required 

failure modes and maintenance actions. 

 

Figure 4-7: Context sharing feature 

Data are collected through different sensors (i.e. temperature, pressure, 

proximity and humidity sensors, and accelerometers) and are fed into an 

embedded computing device. The device is networked, and is able to push 

the data to a cloud platform, where they can be processed and visualised into 

information relevant to the users. This information can be presented in 

different forms, the most common being simple monitoring of the raw data on 
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graphs to generate suggestions for possible interventions based on 

measurement ranges. When unexpected or unwanted events are detected, 

the system issues alerts, which are communicated to the users or other 

systems. 

4.2.4 The Implementation Viewpoint 

The implementation viewpoint addresses the technology required for the 

implementation of functional elements, their communication schemes and their 

lifecycle processes. 

Figure 4-8 presents the implementation viewpoint for the integration of IoT and 

cloud computing for industrial monitoring services, which (i) provides a common 

terminology as well as (ii) mapping to extant architecture representations. It 

commences with a definition of each of the elements depicted in Figure 4-8, 

beginning in the lower part. To establish a clear differentiation between the 

notions described in this study and analogous or similar notions depicted in the 

relevant platforms and associated research: 

❖ The field layer is defined as the physical layer, which is equipped with 

sensors designed to detect and collect information regarding the 

environment. The primary task of this layer is to gather beneficial 

data/information from objects or the environment and then convert them 

into a digital setup. 

❖ Sensors are hardware employed for the measurement of parameters in 

their physical surroundings, which are converted into electrical signals; for 

instance, this could involve measurements of the humidity or temperature 

levels of a piece of equipment. 

❖ An additional hardware component is the actuator, which can take actions 

on, control or influence the physical environment, such as by providing an 

acoustic or optical signal. These connected gadgets deliver commands to 

the actuator, and convert electrical signals into a certain form of physical 

activity. Similarly to sensors, actuators generally have a connection with, 

or are embedded in, a gadget, and this connection can be established 

either in a wired form or wirelessly. 
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Figure 4-8: Context-aware architecture for the integration of IoT and cloud 

computing for industrial monitoring services. 

❖ A device is also a hardware constituent to which sensors and/or actuators 

are connected, either in wired form or wirelessly, or sometimes these 

components are embedded inside the gadget. The processing of 

information received from sensors and actuator controls generally 

necessitate software, consisting of drivers. In the context of the 

architecture in the present study, a driver facilitates the process of 

additional software on the gadget from accessing actuators and sensors. 

An initial step is to use software for processing information generated by 

sensors, and to manage the actuators that manipulate the physical 

environment. Hence, devices represent the point of entry of the physical 

environment into the digital universe. Devices can be either: (i) self-
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sufficient, or (ii) linked to a different system, such as IoT integration 

middleware. 

❖ Communication refers to the connections between sensors, controllers, 

actuators, gateways and different types of edge systems. Various types of 

mechanisms of communication are available, including a bus (local to an 

underlying system platform or remote) or an architecture based on 

networks (hierarchical, hubs and spokes, meshed, point-to-point), with 

some having a static configuration and others being dynamic. A protocol 

is defined as a unique collection of rules and regulations that are used by 

an endpoint in a telecommunications connection when required to 

establish communication with a different endpoint that has a connection to 

the same, or an alternative, network. Different types of messaging 

protocols are available for selection based on different kinds of 

specifications related to an IoT system. 

❖ IoT integration middleware is tasked with collecting information from the 

linked devices in order to commence processing the gathered information, 

such as by assessing condition-action rules, to deliver the collected 

information to linked applications, and to manage gadgets by distributing 

the commands to be implemented by the actuators. Gadgets can maintain 

direct communication with IoT integration middleware in cases where 

suitable communication technologies are supported, such as WiFi, a 

matching transport protocol, such as HTTP or MQTT, and a corresponding 

payload format, such as JSON or XML. Alternatively, communication is 

facilitated via a gateway, using IoT integration middleware. Hence, from 

the functional perspective, it acts as an integration layer for various types 

of actuators, sensors, gadgets and applications.  

❖ Entity abstraction, by representing a virtual entity, delivers an abstraction 

of multiple actuators and sensors, peer controllers and systems within the 

succeeding higher tiers, and describes their interconnecting relationships. 

It acts as the context that facilitates the understanding of sensor data, the 

enactment of actuation and the process of interacting with different 

entities. In general, it incorporates the semantics of the terms used in the 
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representations or messages communicated among elements of the 

system. 

❖ The IoT integration middleware is not constrained to the abovementioned 

functionalities. It can also consist of different types of functionality that are 

essential for particular cyber-physical systems, such as rules engines and 

graphical dashboards. Furthermore, the management of gadgets and 

users, in addition to the compilation and utilisation of collected information, 

can be conducted within this component.  

❖ The rules engine facilitates the processing of messages from devices, and 

initiates configurable processing modules, known as plugins. Via the rules 

engine, it is possible to deliver an email in the event that the gadget 

properties change, set a notification to alert when telemetry values 

surpass a given threshold, and redirect telemetry information to Kafka or 

an external RESTful server.  

❖ Core services include a collection of primary services that facilitate the 

management of certain entities, including gadgets and their associated 

credentials, rule nodes and chains, tenants and clients, widgets and 

dashboards, and alerts and events. Rules are capable of invoking a 

specific subgroup of APIs; for instance, a rule could set an alert for a 

specific gadget. 

❖ The application component denotes software that utilises IoT integration 

middleware to increase the understanding of the physical environment by 

requesting sensor information, or to manage physical actions through the 

use of actuators; for instance, a software system that manages a 

machine’s temperature is an example of an application linked to IoT 

integration middleware. In this context, an application could additionally be 

a different form of IoT integration middleware, such as for integrating 

numerous systems. 
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4.2.5 Summary  

An architecture includes information that identifies the basic architecture 

constructs and defines the concerns, viewpoints, stakeholders, types of model, 

rules of correspondence and applicability conditions. Architecture frameworks 

can be used by system architects for discovering, describing and organising 

topics of interests (concerns) related to a given system. Furthermore, architecture 

representation can be used for clarifying, analysing and resolving such concerns. 

In this section, the proposed architecture that introduces context awareness to 

enhance remote monitoring services was explained. It consists of four 

viewpoints––business, usage, functional and implementation–as shown in 

Figure 4-9. These viewpoints are concerned with the technical representation of 

an IoT system, and address the technologies required for the implementation of 

functional elements, along with their communication schemes. 

 

Figure 4-9: Summary of architecture viewpoints 

Context information management has largely dealt with the challenges of 

ubiquitous environments, as well as the data heterogeneity and service 
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scalability. However, when dealing with monitoring services in manufacturing 

environments, developed approaches often lack expressiveness concerning the 

representation of domain knowledge. To address such needs, there is a need to 

develop an effective context-aware framework to enhance monitoring services in 

industrial environments as a means of addressing challenges related to 

information complexity as well as to integrate data with domain knowledge in 

industrial monitoring applications. The next section of this chapter will focus on a 

novel framework for context-aware IoT-enabled maintenance services. 

4.3 FRAMEWORK DESIGN AND DEVELOPMENT 

4.3.1 Introduction 

When considering IoT usage in industrial environments, the term IIoT, or simply 

Industrial Internet, is employed, and is being considered as fundamentally linked 

to Industrie 4.0 (Jeschke et al., 2017). Product Lifecycle Management (PLM) 

systems are particularly benefitting from such technologies that connect physical 

assets and products, processes, data, people and business systems (Keivanpour 

and Ait Kadi, 2019), exploiting product-embedded sensor and intelligence 

capabilities, including product or process condition monitoring capabilities. 

However, when dealing with monitoring services in manufacturing environments, 

previously developed approaches often lack expressiveness concerning the 

representation of the domain knowledge. To address this gap, there is the need 

to develop an effective context-aware framework to enhance monitoring services 

in industrial environments as a means of addressing challenges related to 

information complexity, as well as to integrate data with domain knowledge in 

industrial monitoring applications.   

One way to handle such challenges is to introduce context modelling and 

management, wherein data and service delivery are determined through 

resolving the context of a service or data request. The following section describes 

a framework that introduces context awareness to enhance remote monitoring 

services in manufacturing environments. The framework applies context-aware 

computing to deliver solutions and address key challenges that IoT-enabled 

monitoring services need to handle, specifically how the context can be modelled, 
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processed and disseminated for remote monitoring services, how this impacts 

the service discovery solution, and what an appropriate taxonomy of ontology is. 

4.3.2 Overview of the context modelling and management framework 

The actual value of data can be enhanced via contextualising data provisioning 

services; that is, by providing the right information to the right person in the right 

place and time to serve the needs and purposes in a particular business process. 

This becomes a definitive requirement when these services lead diagnostics and 

support decision-making by fusing information from collaborating maintenance 

and monitoring systems. Therefore, in order to design an appropriate framework 

to efficiently manage context for IoT-enabled monitoring services, it is important 

to separate the IoT context framework for monitoring services from the 

particularly frequent context (defined by Dey as the expression ‘context’) in 

computing in order to establish the background circumstances, or the particular 

situation of an entity regarding specific data or computing service requests. In 

order to do this, the composing IoT entities must initially be recognised, and their 

situations must be subsequently classified. It was found, following a review of 

current associated studies, that the information paradigm comprising entities, 

services and resources are necessary IoT domain actors, as depicted in Figure 

4-10. 

 

Figure 4-10: Main IoT entities 
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As a result, context data models have been increasingly adopted by application-

focused initiatives that compete in translating maintenance mobility and context 

awareness into specific benefits for maintenance performance and remote 

monitoring. The facilitation of well-framed context information can leverage the 

profiling of key maintenance processes, and filter the information exchanged 

between integrated components.  

Various researchers have thus utilised different context categorisation schemes 

based on their different perspectives. Abowd et al. (1999) differentiated between 

primary and secondary, in addition to conceptual and operational, context. It is 

possible to classify operational context further into sensed, static, profiled and 

derived, and, according to Chen and Kotz (2000), context can be categorised as 

passive and active, based on whether the context can be directly actioned with 

respect to the manner in which it is utilised in applications. Based on an 

operational categorisation viewpoint, Henricksen (2003) classified context into 

four levels––sensed, static, profiled and derived, whilst Liu et al. (2011) stated 

that context can be classified as user, physical or networking. Another study, 

published in the same year, by Yanwei et al. (2011) classified context into three 

levels––user, computing and things. Emmanouilidis et al. (2013) classified 

context into five levels–user, environment, system, social, service. Valverde et al. 

(2018) have focused only on the location and social. After conducting the initial 

experimental tests, context classes were reached that have meaningful 

connotations for adapting maintenance services. In this regard, Figure 4-11 

presents context categories as follows: 
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Figure 4-11: Context taxonomy for remote monitoring services based on 

(Emmanouilidis et al., 2019; El Kadiri et al., 2016) 

❖ User context can broadly be described as the information that pertains to 

a user and that user’s system. The semantics underpinning the data, such 

as role, task and location, are mapped by the user context. The system 

context contains the semantics used to describe the features of a device, 

as well as additional non-functional data. 

❖ Asset context is defined as the attributes of industrial assets, describing 

how they connect with other components. This can comprise a part, 

component, device, sub-system, functional unit, system or equipment that 

can be separately explained and considered. 

❖ Environment Context: All contexts surrounding a user are clustered by 

an environmental category. This contains environmental physical 

information, such as data collection parameters and measurement 

techniques, as well as non-functional data about things such as a device’s 

battery or memory. 

❖ The Service Context can be defined as characterising the service 

required by a user to produce a semantic organisation of their data so as 
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to drive maintenance services adaptation, and includes the context of the 

functions and services assigned by the user. 

Context is commonly translated, system-wise, into a set of parameters that define 

a descriptive state or a profile. The environment and the asset context are often 

the most easily exploitable contexts for producing system adaptations that impact 

the user experience. The user context is a much wider context, with a large pool 

of custom or domain-oriented parameters that can drive the personalisation of 

services. Moving into the service context, the parameter semantics become more 

abstract and less tangible or measurable. These contexts can easily be expanded 

using better focused semantics that, instead of supporting a state or values, hold 

descriptive knowledge. 

Context awareness introduces the capturing, clustering and interpretation of the 

above contexts in order to balance and enrich the provision of content and 

services. While all these approaches deal with some form of context 

management, starting from acquisition and modelling, eventually actionable 

context needs to be domain-specific. In the application domain of asset and 

maintenance management, context strongly depends on assets and their 

hierarchies. Unless such context is captured, it is hard to convert IoT-generated 

data from industrial systems into actions. Therefore, it is important to create a 

representation that integrates qualitative and quantitative data, wherein data and 

service delivery is determined upon resolving the apparent context of a service 

or data request. The most common approach to achieve this, as presented in 

Chapter 2, is through ontology-based modelling. Context modelling is where all 

entities and relationships, among such entities that are required for describing the 

entire context, are specified; for instance, this could include location, environment 

or user data, as well as its current or scheduled activity. On the other hand, 

context reasoning denotes the automatic deduction of additional facts that were 

previously implicit on the basis of explicitly-provided context data. 

An ontology formally represents knowledge through concepts and relationships 

that exist in a specific domain, and are a key construct of the semantic web. 

Therefore, a maintenance ontology serves as a semantic formalism that can be 
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employed to drive maintenance services. The mechanism for this is through 

resolving the context of a service request, with the context identification being 

performed via ontological reasoning on the basis of semantic similarity, 

determined by ontological distance metrics or other relevant means. Asset 

maintenance action recommendation cannot be considered in isolation from 

other operational aspects, however, and so operational semantics are of 

considerable value in ensuring an ontology of appropriate scope and applicability. 

Ontologies have frequently been categorised according to their design and 

structure, considering their expressiveness and generality as key normal criteria. 

The generality criterion advocates the establishment of a layered view of 

ontologies, with its key objective being to specify general classifications at the 

highest levels (abstraction) and more specific classifications at the lower levels 

(granularity). The expressiveness criterion shows the degree of detail of an 

ontology. Consequently, this study concentrated on two levels of detail for context 

modelling–upper and lower. The objective of the upper level was to supply a 

fundamental taxonomy of context classifications to represent very general 

concepts of context, as shown in Figure 4-12, whereas the lower level was 

employed to indicate a series of detailed classifications that depended particularly 

on the domain. 

 

Figure 4-12: Upper-level ontology and characteristics 
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Focusing on the asset context, relevant domain knowledge can be modelled in 

many forms, but of particular interest are the knowledge constructs relevant to 

reliability analysis, such as FME(C)A. The asset context has to be resolved for 

the analysis of mechanical systems, and to establish logical connections between 

measurements, perceived behaviour and the desired functionality, and the 

operating health and defects. In this regard, FMEA provides a suitable basis for 

the baseline of knowledge mapping (IEC 60812, 2018), for a variety of reasons. 

First, the qualitative components render it suitable for the abstraction of 

maintenance knowledge, focused on reliability. Second, the quantitative 

component allows maintenance tasks to be prioritised on the basis of 

measurements, conducive to an approach based on risk. Third, its bottom-up 

structure allows failure to be assessed starting from the basic level of a production 

system. In other words, data are analysed from machinery parts through to the 

overall system. The initial stage involved the determination of the specific aspects 

of the machine that had the potential to fail, and then progressed to obtaining a 

comprehension of the causes and effects of such failures (FMEA).  

Based on the modelled data, more abundant contextual information can be 

deduced via user-defined reasoning, allowing new knowledge and 

comprehension to be acquired based on the particular context. When considering 

the maintenance domain, real data collection from the shop floor, or simulated 

data with ‘has current value’ data properties, can be used to infer a component’s 

health status, and trigger alerts for decision-making, such as the prognosis of a 

failure and the scheduling of condition-based maintenance actions. In this regard, 

the SWRL language has been used in object properties to construct transitive 

rules, with new connections being applied to the classes that allow assertion 

inferences to be improved. In this way, the ontological approach becomes 

scalable. Specifically, SWRL built-ins (SWRLb) allow further extensions within a 

taxonomy. This greatly enhances the model by allowing multiple arguments, 

according to specific real-world requirements, that enable greater expressiveness 

in OWL2 languages. 
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A transitive property is considered in cases such as the following: if subclass 

component type (C1) has object property has mode, and subclass failure mode 

(FM) has object property has cause (CA) related to subclass potential cause 

(PC), then subclass component type (C1) has the object property has cause (CA) 

related to subclass potential cause (PC). Then the SWRL rule is: has mode (?C1, 

?FM1) failure mode (?FM1) component type (C1) potential cause (?PC1) has 

cause (?FM1, ?PC1) –> has cause (?C1, ?PC1). Figure 4-13 illustrates this rule. 

 

Figure 4-13: Representation of SWRL transitive rule based on (Nuñez and 

Borsato, 2018) 

The main conclusion that can be drawn from this section is that it is important to 

communicate the data from different field devices, such as IoT devices and 

sensors, to a higher level. However, the occurrences are changed into the 

information presented by means of this ontology at this level. Specifically, the 

context modelling technique, which resolves the difficulty of representing context 

information, is a significant factor. It also resolves the way information is 

controlled for the purpose of obtaining high-level contextual information from low-

level data objects, consequently enriching the domain knowledge. Therefore, a 

system that is context-aware must be capable of reasoning with regard to the 

information, and should offer a suitable prognosis on the context of the entities. 

In order to become context aware, it is necessary for a system to possess a 
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suitable context model and reasoning technique. The next section describes a 

framework that introduces context awareness to enhance remote monitoring 

services in manufacturing environments. 

4.3.3 Three-Layered Context-Aware System Framework 

The ability to share context among different applications is a critical necessity for 

the IoT, making data shared between heterogeneous systems reusable in 

multiple applications (Ramachandran and Krishnamachari, 2019). Context 

information management has been recognised as a challenge for relevant 

research and early on Bernados et al. (2008) developed a data fusion framework 

for context-awareness systems that included the following stages: (i) Obtaining 

context, (ii) Information picture, (iii) reasoning and decision-making. The 

proposed framework was also lacking with respect to context modelling, context 

information representation and the distribution of associated services. Perttunen 

et al. (2009) have surveyed popular context reasoning and representation 

techniques and provided an overview of the requirements for context 

representation, arguing that such requirements were insufficiently covered in the 

literature regarding the interplay between efficiency, expressiveness, soundness, 

and completeness, with ontology-based approaches achieved improved 

scalability and reuse compared to other approaches. This finding is consistent 

with that of Bettini et al. (2010), although scalability of on-line reasoning with a 

large number of entities is raised as a significant challenge. This is the case when 

dealing with data of significant complexity and scale, as typically encountered in 

IoT applications Matos et al. (2020), making it important that the semantics of IoT 

data are captured by appropriate context modelling to gain valuable insights 

(Perera et al., 2014). 

Therefore, context information management has largely dealt with the challenges 

of ubiquitous environments, as well as data heterogeneity and service scalability. 

Nonetheless, while substantial research efforts have been devoted to context 

information management in web-based, mobile and ubiquitous computing, 

including IoT-enabled computing, the translation of these advances into concrete 

improvements in industrial monitoring services has received little attention. 
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Moreover, the most applicable context-modelling techniques that have been 

surveyed are ontology-based. However, the studied approaches lack some 

expressiveness concerning the knowledge representation for monitoring services 

in manufacturing environments. To address these needs, it is imperative that an 

effective context-aware framework is developed in order to enhance monitoring 

services in industrial environments as a means of addressing challenges related 

to information complexity, as well as to integrate data with domain knowledge in 

industrial monitoring applications. 

Building upon the understanding obtained from the extensive literature review, 

the second RO was meant to design and develop a framework in order to 

accomplish this RO, the multi-phase research methodology adopted helped to 

facilitate the development of a context-aware framework to enhance monitoring 

services in industrial environments. In this respect, the knowledge and 

understanding gained from the extensive literature review and the experiments 

(early prototype and virtual prototype) was instrumental in the development of the 

framework. 

The proposed framework was aimed at introducing context-awareness to 

enhance remote monitoring services in manufacturing environments. Specifically, 

the aim was to produce a semantic organisation of data so as to drive 

maintenance services. The developed framework consists of three layers, as 

shown in Figure 4-14. The framework was designed graphically, with two main 

elements–the title of each level (on the left) and the different functions in each 

level (in the centre)–and comprises three layers (from down to up)–edge, context 

information management and application. 
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Figure 4-14: A context-aware framework for remote monitoring services 

❖ The edge layer involves the sensing and collection of data via heterogeneous 

sensors and embedded devices. It is a combination of physical hardware and 

components of the network, and is tasked with the acquisition of raw context 

data from a variety of sources. 

There are two core modules contained within this layer device connectivity 

and device functionality. The former addresses the discovery and association 

of devices and sensors, so that they can be accessed by the platform. 
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Sensors and devices generally have the ability to connect via various different 

protocols. After discovery, a handle to the device is then delivered to the 

device functionality module. The handles delivered by the device connectivity 

module are then taken by the device functionality module and converted into 

high-level APIs that act independently from the low-level details of the devices 

and sensors. Subsequently, the contexts obtained, such as temperatures 

captured by embedded sensors, are passed to the context information 

management layer. 

❖ The context information management layer pre-processes the acquired 

data delivered by the context-sensing layer, and then query the context 

ontology and infers the reasoned context. This layer functions on low-level 

context-sensing data so as to enable context abstraction for manipulating 

context at higher levels. It comprises three components that collaborate: (1) 

context engine, data obtained from the edge layer is pre-processed by the 

data pre-processing component to construct a context knowledge base; (2) 

maintenance-service-related contexts, derived from heterogeneous sources, 

are abstracted by the context ontology model, and then converted for the 

purpose of formalising representations to allow interoperability and reusability; 

and (3) logic reasoning services (e.g. the derivation of high-level context from 

contexts in lower levels) are provided by the context reasoner for pre-

processing contexts pertaining to maintenance services through the 

reasoning engine. Below, a description of these components’ functionalities 

is offered: 

 In principle, context-computing tasks may be delegated to a software 

component called context engine. Typical tasks of a context engine 

include filtering and refining the contextual clues, providing logical context 

interpretation, accessing external context providing services, and 

managing an archived sensor information database.  A description of 

these components’ functionalities is offered below: Data pre-processing 

component: Generally, it is necessary to have multiple sensors 

functioning at the same time for the correct identification of various 

activities, with each sensor delivering measurements (i.e. raw data) in a 
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distinct format. Hence, raw data alone have minimal (or zero) benefit for 

algorithms that detect activity. It is necessary for this data to be pre-

processed if information that is beneficial and important for the application 

is to be obtained. The pre-processing stage incorporates techniques 

associated with cleaning, transforming, segmenting and reducing the data, 

with the aim of converting the data into suitable formats. 

 Context  modelling (maintenance ontology): Semantic capabilities are 

provided by this component through the utilisation of ontology engineering 

for the purpose of modelling context information related to maintenance 

services. In this work, the focus of the maintenance ontology was on 

modelling the failure analysis of mechanical components to answer 

queries regarding how faults manifest themselves and how they can be 

prevented or addressed, so as to adapt relevant diagnostics or 

maintenance actions in a condition-based maintenance setting. 

 Context reasoning: The context reasoner is constructed on the context 

representation in addition to the functionalities of the context ontology 

mode. It has the objective of extracting and defining abstract context 

information that devices and sensors are unable to detect directly (e.g. 

what are the common failures and diagnostic approaches for a given 

machine type?; which physical parameters need to be measured/used?; 

what is the recommended preventive or corrective action required for the 

specific failure mode of an asset?), for the purpose of providing advanced 

processing services. This is accomplished via the use of a reasoning 

engine, which supports the process of inferring high-level contexts from 

their matching basic contexts, in a procedure that is dependent on the 

availability of obtained data in addition to the requirements of the system. 

Chapter 5 is devoted to a detailed description of the context maintenance 

modelling and reasoning. 

❖ The application layer is considered to be a top layer in the proposed 

framework, acting as an interface that facilitates user access to the context 

information delivered by the context management layer. This layer derives 

benefit from the various levels of contextual information that come from the 
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context-sensing and context-management layers. It is tasked with the delivery 

of application-specific services to the users. Each application may require 

different services, as they are dependent on the data gathered by the sensors. 

 

 

4.4 Chapter Summary 

The aim of this chapter was to explain the development of an architecture and 

framework that would introduce context awareness to enhance monitoring 

services in manufacturing environments. This equates to phase two of the multi-

phase research methodology presented in Section 3.7 and RO 2. 

Regarding the architecture development, Section 4.2 presented the proposed 

architecture that could introduce context awareness to enhance remote 

monitoring services. This consisted of four viewpoints–business, usage, 

functional and implementation. The business viewpoint determines the manner 

in which the IoT system accomplishes the established goals via its mapping to 

basic system functionalities. The usage viewpoint deals with the concerns of 

anticipated system utilisation, and is usually denoted by series of activities 

incorporating human or logical users, which provide its predetermined 

functionality in eventually accomplishing its basic system capacities. The 

functional viewpoint concentrates on the functional elements within a system, 

their interconnectedness and formation, the interfaces and interrelations, and the 

associations and interconnections of the system with components in the external 

environment. Finally, the implementation viewpoint focuses on the technical 

depiction of an IoT system, and the technology and system constituents 

necessary for the implementation of functions and activities determined by the 

functional and usage viewpoints. 

Regarding the framework development, Section 4.3 included a three-layered 

framework–edge, context information management and application–that 

introduced context awareness to enhance remote monitoring services in 

manufacturing environments. The edge layer involves the sensing and collection 
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of context via heterogeneous sensors and integrated devices. The context 

information management layer includes the pre-processing of data deriving from 

the context-sensing layer, the interpretation of these data by the context ontology 

model, and the inferences drawn by the context reasoner. Finally, the interface 

represented by the application layer enables users to access the context 

information provided by the context management layer. 

The development of this framework and architecture are a significant part of this 

study. As identified in Section 2.6, a comprehensive framework and architecture 

for introducing context awareness to enhance remote monitoring services in 

manufacturing environments has been lacking. 

The next chapter explains the development of a maintenance context ontology 

for the framework, focusing on modelling the failure analysis of mechanical 

components so as to drive monitoring services adaptation. The proposed 

ontology for the context-resolution mechanism is relevant to the failure analysis 

of mechanical components, and the terminology and relationships between 

concepts are structured on the basis of relevant standards with a reliability-

oriented knowledge grounding. 
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5 MAINTENANCE ONTOLOGY DEVELOPMENT 

5.1 Introduction  

This chapter presents a maintenance context ontology for the framework focused 

on failure analysis of mechanical components so as to drive monitoring services 

adaptation. The proposed ontology for the context resolution mechanism is 

relevant to failure analysis of mechanical components, and the terminology and 

relationships between concepts are structured on the basis of relevant standards 

with a reliability-oriented knowledge grounding. A mechanism for reasoning is 

being utilised for the delivery of context resolution, and the obtained context can 

introduce a metadata layer on data or events produced by either automation or 

human-driven means. An example of health management of rotating machinery 

is utilised to offer a basis for the domain context, but the actual upper-level 

ontology expressiveness is such that can apply to a range of machines by 

extending it through more specialised or application-specific detailed ontologies. 

The ontology is being utilised for the storage of knowledge relevant to fault 

diagnosis and reliability analysis through monitoring techniques. Hence, it is 

possible to query which type of approach for condition monitoring should be used 

and in what manner. Thus, queries can be made about what kind of condition 

monitoring technique that should be used and how. Additionally, inferences can 

be drawn in the sense that it is possible to make a comparison between an 

obtained value and specific thresholds based on relevant ISO standards in order 

to determine whether the value can be categorised as Good, Satisfactory, Alert 

or Alarm. Therefore, if the recorded value is considered to be in the Alert 

category, the system diagnoses that a failure could occur and a maintenance 

notification is issued for the machine indicating that intervention is required. 

Subsequent to the identification of an alert notification, it is then necessary to 

connect it with diagnostic information of the mechanical part being investigated, 

which will allow the failure mode and the potential causes to be determined.  
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Nonetheless, such simple threshold-based rules often fail to apply in practice and 

in view of that the ontological approach does not seek to replace actual 

diagnostics techniques, which may involve far more efficient and sophisticated 

data processing. Instead it acts as a meta-layer of knowledge to drive services 

adaptation, and as such could work in synergy with other techniques of data 

processing and condition monitoring approaches. The intended end result is that 

the proposed maintenance intervention is more directed and tailored to the 

apparent context of a situation.  

As shown in Figure 5-1, the system framework combined the information inferred 

from maintenance ontology and semantic rules to model the reasoning process. 

There are devices within the plant that generate raw data which can be collated 

within a group of domain entities from which events are produced. To generate 

valuable information about an area of interest, subsequent reasoning, various 

methods can be employed to model this context. The process was applied as 

follows:  

Initially, data are collected through different sensors and are fed into an 

embedded computing device. Next, the collected data pertaining to the 

maintenance, evaluation and decision support of machines is translated by 

knowledge-engineers (analysts) based on FMEA analysis into ontology and 

SWRL rules. Real data collection from the shop floor can be used to infer a 

component’s health status and trigger alerts for decision-making, such as the 

prognosis of a failure and the scheduling of condition-based maintenance 

actions. In this regard, the rule's definition is used in object properties to construct 

transitive rules, and new connections are applied to the classes that allow 

assertion inferences to be improved. Subsequently, SWRL rules are executed by 

the rules engine, which produces new facts within the ontology management 

system. Lastly, queries could be raised in terms of the resolution of the monitoring 

service context to determining the failure mode and its potential causes, in 

addition to the relevant measurement parameters. Moreover, SWRL reasoning 

rules can be used for the evaluation of the data gathered; the prognosis of failure 
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is being performed, sending a maintenance message for intervention in the 

machine. 

 

Figure 5-1: Visual representation of the system framework 

A testing machine is an appropriate rig in order to emulate a wide range of failures 

and capture the data. In order to capture the operational health of the machine, 

the test rig must be analysed, allowing for an understanding on how to best 

capture the degradation effect on the test machine as shown in Figure 5-2. As 

stated in ISO/FDIS 17359:2002(E), which details the flowchart for starting the 

condition monitoring process, the start is to choose the machine components in 

the maintenance ontology.  
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Figure 5-2: The implementation of the proposed ontology 

Then, the necessary functionality of each of the components is explained for the 

machine to operate correctly. Additionally, all failure modes, effects, causes, 

symptoms and measurement approaches pertaining to the machine components 

are inputted utilising the FMEA method. Subsequently, the implementation of the 

FMEA method indicates the most suitable measurement locations and their limits 

for the measurement of values by employing the vibration analysis method for 

prediction, which are based on ISO 13373-1: 2002, ISO 13373-2: 2016 and ISO 

10816-3: 2009. The most pertinent components along with the most appropriate 

measurement methods are identified by utilising the FMEA classification, which 

assigns weights according to the highest severity (SEV), occurrence (OCC), 

detectability (DET) and risk priority number (RPN). SEV, OCC and DET scale 

from 1 to 10, with higher numbers representing a greater seriousness or risk. 
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5.2 Failure Mode and Effect Analysis (FMEA) 

Asset context must be resolved for the analysis of mechanical systems and to 

establish logical connections between measurements, perceived behaviour and 

the desired functionality, and the operating health and defects. In this regard, 

Fault Modes and Effects Analysis (FMEA) provides a suitable basis for the 

baseline of the knowledge mapping (IEC 60812, 2018) due to various reasons. 

First, the qualitative components render it suitable for the abstraction of 

maintenance knowledge focused on reliability. Second, its bottom-up structure 

allows failure to be assessed starting from the basic level of production systems; 

in other words, data are analysed from machinery parts through to the overall 

system. The initial stage involves the determination of the specific aspects of the 

machine that have the potential to fail and then to comprehend the causes and 

effects of such failures (FMEA). 

Based on the FMEA Table 5-1, the most frequent outcome of misalignment of 

the gearbox will be vibration and power transfer loss through a gearbox, as 

revealed by the RPN values. Subsequently, the vibration is spread across the 

machine and is most pronounced in specific locations, namely the bearings, and 

it is possible to easily capture the transfer loss by calculating the RPN difference 

between the driving motor and the loading dynamometer. As determined by the 

FMEA analysis, the two potential failures that are identified as having the greatest 

level of severity if misalignment or loading occurs in the system are degradation 

of the gear teeth in the gearbox (RPN 150) as well as the bearing degradation 

(RPN 140).  
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Table 5-1: A subset FMEA of Test Rig based on (del Castillo et al., 2020) 

Item (ID) 

Function  

(Requirements) 

 

Failure Mode 

 

Failure Effects 

 

S

E

V 

 

Failure Causes 

 

O

C

C 

 

Mitigation 

 

D

E

T 
RPN 

Bearing 

"To achieve a 

smooth, low-

friction rotary 

motion or sliding 

action between 

two surfaces" 

Abrasive 

wear 

Reduce fatigue life and 

misalignment in the bearing 
6 

lubricant condition, grease 

degradation, and improper isolation 

4 

Lubricant inspection 

and proper isolation , 

Monitor Shaft 

alignment 

4 96 

Bearing 

seizure 

Crack formation on rings 

and balls or rollers - 

Skidding 

4 

Inadequate heat removal capability 

- Loss of lubricant - High 

temperature - Excessive speed 

3 

3 36 

Noisy 

bearing 

Surface fatigue - Glazing - 

Micro spalling of stressed 

surfaces 

4 

Loss of lubricant - Housing bore 

out of round - Corrosive agents - 

Distorted bearing seals 

3 

2 24 

Fatigue 

(Spalling) 
Bearing failure 3 

Excessive loading (cyclic), 

misalignment 

5 
1 15 

Vibration Gear Misalignment 7 
Misalignment - Housing bore out of 

round - Unbalanced/excessive load 

4 
5 140 

Gear 

"To transmit 

shaft power on 

predetermined or 

designed angular 

velocities" 

Tooth wear 
Partial tooth contact 

(Misalignment) 
6 

Contaminants in the gear mesh area 

or lubrication system 

5 

"Lubricant inspection, 

Regular inspection 

surface sanding " 

5 150 

Scuffing 
Wear and eventual tooth 

failure (Misalignment) 
5 Lubrication breakdown 

2 4 40 

Tooth shear Fracture (Misalignment) 6 Tooth failure 2 3 36 

Spalling 

Mating surface 

deterioration, welding, 

galling, eventual tooth 

failure 

4 Fatigue 

1 2 8 

Root fillet 

cracking; 

Tooth end 

cracks 

Surface contact fatigue and 

tooth failure 
5 Tooth bending fatigue 

2 2 20 

Pitting Tooth surface damage 6 
Cyclic contact stress transmitted 

through lubrication film 

2 2 24 
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NOTE: Table 5-1 presents a partial FMEA study (needs to be completed with 

domain knowledge, manually) focusing on elements of interest for the specific 

test rig and this as a starting ontology, which can be expanded. SEV, OCC and 

DET scale from 1 to 10, with higher numbers representing a greater seriousness 

or risk. Different combinations of SEV, OCC and DET may produce exactly the 

same value of RPN (have equal weights), but their hidden risk implications may 

be totally different. Because the RPN is the product of three ratings, different 

circumstances can produce similar or identical RPNs. For example, an RPN of 

100 can occur when SEV = 10, OCC = 2 and DET = 5; when SEV = 1, OCC = 10 

and DET = 10; when SEV = 4, OCC = 5 and DET = 5, etc. In addition, it may not 

be appropriate to give equal weight to the three ratings that comprise the RPN. 

For example, an organization may consider issues with high severity and/or high 

occurrence ratings to represent a higher risk than issues with high detection 

ratings. Therefore, basing decisions solely on the RPN (considered in isolation) 

may result in inefficiency and/or increased risk.   

Wearing of the teeth is generally caused by misaligned gears, excessive loading 

and lastly, a lack of lubrication. Degradation of the bearings is caused by wearing 

of the teeth in the gears as well as the impact of gear vibration being transferred 

to the shaft and then to the bearings. If the shaft of the gear is short and hard, 

and the bearings are situated in close proximity to the centre where meshing of 

the gears occurs, this can be a source of vibration, which can be measured by 

placing sensors at the bearings as shown in Figure 5-3. 

 

Figure 5-3: CAD Rendering of Drive System and Bearing Locations 
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5.3 Design of the FMEA-based ontology 

The development of ontology can be based on one of the numerous procedures 

described in the literature (Sure et al., 2009), including Uschold and King, 

Grüninger and Fox, Methodology, Ontology Development 101 (OD1) and 

KACTUS. Each method has its own merits and shortcomings (Ren et al., 2019). 

In the current research, the Ontology Development 101 is adopted due to the 

following reasons: (1) This methodology was designed for beginners. As such, it 

is easy to learn and operate. (2) The detailed activities involved in this approach 

have been specified. The process of establishing an ontology is described in 

detail in this methodology. (3) It can be integrated with other tools. This method 

contains detailed instructions on how to implement the ontology in the Protégé 

environment (Ren et al., 2019). OD1 comprises six stages (Noy and McGuinness, 

2001), and the way it has been applied here is shown in Figure 5-4. These steps 

are outlined next. 

 

Figure 5-4: The ontology development stages 

5.3.1 Determine Scope 

The initial stage in the methodology is to determine the scope. It requires to define 

what the ontology will cover, how it will be utilised, and the types of supported 

questions. The responses to such questions generally evolve throughout the 
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process of constructing the ontology. In this work, the focus of the maintenance 

ontology is on modelling failure analysis of mechanical components to answer 

queries regarding how faults manifest themselves and how they can be prevented 

or addressed, so as to adapt relevant diagnostics or maintenance actions in a 

Condition-Based Maintenance setting. 

5.3.2 Consider Reuse 

The evaluation of the degree to which ontologies can be reused or expanded is 

a significant factor to consider. While other maintenance ontologies exist, the 

specific interest here is on application-specific, operational, and diagnosability 

concepts, thus ontological models developed by other researchers should be 

considered to determine their adaptability to the current research proposal such 

as those proposed in (Nuñez and Borsato, 2018; Sanislav and Miclea, 2015). 

Nuñez and Borsato (2018) proposed an ontological model called OntoProg that 

served as a widely accepted data and knowledge representation scheme for 

diagnostic-oriented maintenance, capable of being used in different types of 

industrial machines. They also suggested a set of SWRL rules to improve the 

ontology’s expressiveness. In their ontology, there is a missing link between 

knowledge constructs and operational and reliability-based services adaptation 

actions. In this regard, the OntoProg ontology was adopted and expanded for the 

purpose of this research. For example, the FMEA technique was adopted in this 

work to identify, evaluate and eliminate all potential failures or risks to a system. 

Moreover, the main classes were expanded. In this work, the Top-Down method 

was employed, in which general classes are added first, followed by the sub-

classes, a process well aligned with asset hierarchies. 

5.3.3 Enumerate Terms 

The terminology considered for the present ontology is associated with predictive 

maintenance. Therefore, the main terminology and the associated definitions are 

based on consolidated academic literature and mostly on established 

international standards, such as condition monitoring, diagnostics and 

maintenance (ISO 13372, 2012, 13306), vibration analysis (ISO 2041, 2009), 
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asset management (ISO 55000, 2014), and MIMOSA (www.mimosa.org) 

standards. 

5.3.4 Define Classes and Hierarchies 

The techniques used to define class hierarchies (Uschold and Gruninger, 1996) 

are Top-Down; Bottom-Up; and Mixed. In this work, the Top-Down method was 

employed, in which general classes are added first, followed by the sub-classes, 

a process well aligned with asset hierarchies. The main class of the proposed 

ontology is Maintenance Ontology, and includes subclasses Asset, FMEA 

Technique and Condition Monitoring Parameters. Every such class has its own 

subclasses for example, subclass FMEA Technique has subclasses: Failure 

Effect, Failure Mode, Potential Cause, and Symptom. An example of class 

hierarchy is shown in Figure 5-5. 

 

Figure 5-5: Ontology classes 

A more detailed view of the first, second, and third-level classes hierarchy is 

shown in Figure 5-6, using the OntoGraf plug-in. 
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Figure 5-6: Hierarchy of level 1, 2 and 3 classes adapted from (Nuñez and Borsato, 

2018) 

5.3.5 Define Properties and Constraints 

Class hierarchies alone are insufficient to represent knowledge. They need to be 

accompanied by three distinct types of properties: data properties, object 

properties, and annotation properties. The data property explains the properties 

of certain occurrences both quantitatively and quantitatively. The object attribute 

explains the associations among distinct classes. The annotation property is 

frequently employed in the description or explanation of particular occurrences. 

Table 5-2 shows the properties mentioned above with their relevant Domain and 

Ranges. 

Table 5-2: Object Properties adapted from (Nuñez and Borsato, 2018) 

Object Property Domain Range 

Has Failure Cause Failure Mode Potential Cause 

Has Failure Effect Failure Mode Failure Effect 
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Object Property Domain Range 

Has Measurement Measurement Techniques Measurement Location 

Use Collector Measurement Location Collector Type 

Use Magnitude Collector Type Magnitude 

Is Part Of Asset Asset 

Has Failure Mode Component Type Failure Mode 

Is Detected With Symptom Measurement Techniques 

Has Group Magnitude Zone Boundary 

Has Symptom Potential Cause Symptom 

Table 5-3 provides the terminology that gives the possibility of classes being fed 

with certain characteristics, called data properties, with restrictions on domain 

and range. 

Table 5-3: Data Properties adapted from (Nuñez and Borsato, 2018) 

Object Property Domain Range 

Has Current Value Measurement Location Decimal 

Has DET Symptom Integer 

Has DGN Symptom Integer 

Has Failure Value Potential Cause Decimal 

Has Frequency Spectrum Potential Cause String 

Has Function Manufacturing Items String 

Has Health Measurement Location String 

Has ID Measurement Items String 

Has Location ID Measurement Location String 

Has Measurement 
Direction 

Potential Cause String 

Has SEV Effect Integer 

Has Specification Maintenance Ontology String 

Has Unit Magnitude String 

Has Velocity Zone Boundary String 

Has Warning Measurement Location String 
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Object Property Domain Range 

Has Zone Zone Boundary String 

Is Caused By Potential Cause String 

 

Figure 5-7 shows an RDF graph. The mechanical component is represented by 

the data properties has Specification, has Function, has ID, and an object 

property is part of. Furthermore, this relationship enables the search for a 

particular component, including its description, specification, necessary function, 

and machine to which it belongs. 

 

Figure 5-7: RDF graph of component characteristics adapted from (Nuñez and Borsato, 

2018) 

5.3.6 Create Instances 

The creation of individual class instances involves: (1) selection of the class, (2) 

creation of an individual occurrence of the class and (3) filling slot values. These 

instances are used in the representation of particular elements. A class is 
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selected for every instance in a way that binds the properties of the object, data 

and/or annotations. 

Along with identification of the procedure that has been adopted, the development 

of ontology models requires tools that can support all activities in the development 

process. Such tools include TopBraid (www.topquadrant.com) and OntoStudio 

(www.semafora-systems.com), as well as open ones, such as the popular 

OntoEdit (Sure et al., 2002), HOZO (Kozaki et al., 2005) and Protégé 

(https://protege.stanford.edu/). Specifically, Protégé is the most dominant 

ontology publisher due to the fact that it is an open platform that offers plug-in 

extensibility as well as XML (S), OWL, RDF (S) and Excel support, along with 

graphic taxonomy, queries in SPARQL, rules in SWRL language, and a reasoner 

(Pellet). The combination of OWL/SWRL provides a more flexible ontology 

language for modelling knowledge domains with a greater degree of 

expressiveness than using OWL alone (Lawan and Rakib, 2019). The SWRL is 

a W3C recommendation that extends horn-clause rules to OWL. OWL has 

demonstrated significant expressive powers over other ontology languages as 

the recommended ontology language for the semantic web. Although the domain 

knowledge models provided by OWL ontologies are not complex, they can be 

reused and are easily understandable, they do not have the declarative 

expressiveness that rules developed in SWRL can offer. 

5.4 Chapter Summary  

This chapter has presented a maintenance context ontology for the framework 

focused on failure analysis of mechanical components so as to drive monitoring 

services adaptation. This represented phase three of the multi-phases research 

methodology presented in section 3.7 and research objective 3. 

It has followed an established ontology development process but its design differs 

from other approaches in that it expands FMEA/FMECA – based ontology 

constructs with additional concepts adopted from available standards in the field 

that link the key reliability-based concepts of the knowledge constructs with asset 

level and fault – specific relevant diagnosability concepts. The Ontology 

Development 101 (OD1) is adopted here based on available reliability standards 

http://www.topquadrant.com/
http://www.semafora-systems.com/
https://protege.stanford.edu/
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such as FMECA or FMEA, and has been shown to be well-suited for maintenance 

modelling and is well documented for implementation in Protégé environment. 

The Ontology Development 101 had six phases, which have been addressed as 

follows: 

(i) Determine scope – in this phase, the scope and domain of the ontology are 

defined. (ii) Consider reuse – ontological models developed by other researchers 

should be considered to determine their adaptability to the current research 

proposal. (iii) Enumerate terms – this phase involves the enumeration of all terms 

pertinent to the area of the ontology being developed. (iv) Establish classes and 

hierarchies– in this phase, all classes and sub-classes are classified. (v) Establish 

properties and constraints– subsequent to defining the class hierarchy, it is 

important to determine the class relationships. (vi) Create instances– this denotes 

the final stage of the procedure in which specific instances are formed within the 

class hierarchy.  

The next chapter describes the applicability of the developed ontology model by 

utilising a real physical asset. This is done through a case study and expert 

judgements. 
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6 CASE STUDY, RESULTS DISCUSSION, AND 

VALIDATION  

6.1 Introduction  

The applicability of the developed ontology model is shown by utilising a real 

physical asset. Gearboxes have broad utilisation in numerous applications such 

as machine tools, industrial devices, conveyors and essentially any form of 

rotatory power transmission equipment in which the torque and speed 

requirements need to be changed. When such devices fail, the results can be 

catastrophic, with serious consequences. Therefore, a proactive approach must 

be adopted that enables such components to be monitored in real time using 

predictive maintenance methods (Khan et al., 2019). Moreover, for the majority 

of rotating machines used in process industries, the preference is for faster 

speeds, greater horsepower per machine, and reduced sparing. 

However, to reduce vibration, and prevent bearings, couplings and shaft seals 

from wearing out too quickly, faster speeds require greater precision with respect 

to balancing and alignment. Greater horsepower and less sparing substantially 

increase the reliability of machines, and are thus of immense economic value. 

These, in turn, require essential components for them to function without breaking 

down or prematurely wearing out. For the current study, a laboratory-based test 

rig was employed as a case study, as shown in Figure 6-1, with data being 

collected from its operation and maintenance records. The test was designed to 

emulate a complex case of misalignment, which had relevance to manufacturing 

and aerospace engineering assets. The technique of vibration analysis was 

approached because techniques used for assessing the health of components 

based on vibration are regarded as applicable in numerous reciprocating and 

rotating machines.  
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Figure 6-1: Gear-misalignment machine 

6.2 Case Study Results and Discussion   

The aim of ontology-based context modelling is to produce a semantic 

organisation of data so as to drive maintenance services adaptation. When users 

interact with systems in this regard, the proposed maintenance ontology can help 

them to narrow down their list of options to the contextually-relevant ones by 

providing answers to questions such as:  

• What are the common failures and diagnostic approaches for a given machine 

type? 

• Which are the physical parameters to measure/use? 

• What is the recommended preventive or corrective action required for a 

specific failure mode of an asset? 
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To achieve this, context-based adaptation software was developed, as shown in 

Figure 6-2. This software represents the developed ontology, and can be used 

to drive maintenance service adaptation. In the simplest case, the adaptation 

mechanism automatically retrieves relevant knowledge content via ontology 

reasoning. For example, it can retrieve the most common faults expected to 

occur, and match the appropriate parameters or techniques suitable for 

monitoring the asset condition and identifying faults.   

 

Figure 6-2: Context based adaptation interface 

A typical utilisation scenario is one where, during condition-monitoring, queries 

could be raised to resolve the monitoring service context. For instance, this could 

be related to determining the failure modes of a part, the functional effect of a 

defect on the operation of the test rig, or the measurements suitable for identifying 

specific defects on specific components, along with the relevant measurement 

parameters. In the context of the present study, SPARQL queries were designed 

to resolve these queries. SPARQL also allows the federation of queries across 

different sources of data. By applying these queries, it is possible to determine, 

for example, ‘What are the main components of the test rig?’. The test rig is just 

an example of an asset, and the same mechanism can be applied to other 

physical assets. 
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Figure 6-3: Query result to identify the main components of an asset 

Figure 6-3 shows the results of a query to identify the main components of an 

asset type (here, a test rig), including the bearing, coupling, lubricant, rotor, seals 

and shaft. Another query can be applied to determine the functions of the main 

components. This query may be useful to a maintenance engineer, enabling the 

linking of faults to functional impacts, as shown in Figure 6-4. 

 

Figure 6-4: Query result to identify component functions 

Figure 6-4 shows the function of a shaft component, as an example. This 

implementation also allows a query in the maintenance ontology to resolve key 

analysis characteristics, such as component functions, failure modes, causes, 

effects mitigation and risk priority number (RPN), as shown in Figure 6-5. 
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Figure 6-5: Characteristics of shaft key analysis 

Another query can be applied, based on FMEA, to determine the common 

gearbox problems and diagnosis methods; for example, the problems that arise 

in relation to gearboxes are misalignment, bearing damage, bearing wear, 

unbalance, mounting fault and damaged impeller, as indicated in Figure 6-6 (left 

side). 
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Figure 6-6: Misalignment faults matched to measurement parameters and techniques 

After identifying the common gearbox problems, as shown in Figure 6-6 (left 

side), the parameters that can be used in fault detection can be identified (these 

are the parameters relevant to the specific context, given the asset type and 

failure mode). The developed ontology links physical measurement entities with 

appropriate measurement techniques. This allows the association of common 

faults with the physical asset, and matching them with the parameters or 

techniques appropriate for detecting the occurrence of such faults (Figure 6-6, 

right side). 

Considering that the test rig used in this study was designed to examine complex 

cases of misalignment in industrial machinery, the focus here was on 

misalignment. In gearbox arrangements, misalignment can cause gear and 

bearing pitting, which eventually leads to complete failure. It may cause vibrations 

and excessive loads that harm the functioning components of the machine, such 

as bearings and oil seals. It is therefore important to detect and fix such issues to 

avoid incurring unnecessary costs. As shown in Figure 6-7, this can take four 

forms–axial misalignment, offset or parallel misalignment (where the centres of 

the shafts are in different lines), angular misalignment (where a motor shaft is at 

an angle to a driven component shaft), and combination misalignment (where 

both angular misalignment and parallel misalignment co-occur). 
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Figure 6-7: Types of shaft misalignment (adapted from Khan et al., 2019) 

Components that are misaligned also consume more power. Coupling and 

bearings temperatures can also increase, which is problematic because the 

components can only function within specified temperature ranges, resulting in 

the breakdown of bearings, couplings and seals. Misalignment can also increase 

the bearing load, affecting life span and reliability. 

In addition, the shaft loading caused by misalignment wears away the seals. 

These have precisely designed components, with an established accuracy of 2 

µm, and consequently will not function well in conditions of poor alignment and 

increased temperatures. They can fail catastrophically, without warning. This may 

then cause the bearings to fail because non-functioning seals allow dirt, grit and 

metallic particles to contaminate the bearings. However, removing and refitting 

seals can also damage the bearings. Both must therefore be replaced. An 

additional problem caused by misalignment is that it generates reaction forces in 

the coupling, which often causes vibration. The primary purpose of flexible 

couplings is to connect shafts. They generate driving torque, and accommodate 

any intended misalignments. However, fixing of the coupling moments can lead 

to the machine shafts bowing. This worsens as the torque and speed of the 

machinery increases, leading to greater vibrations. 

Techniques for monitoring vibration and noise that may affect health are 

considered to be a plausible option for a large number of reciprocating and 

rotating machines, and gearboxes in particular. In the case study, optimal mesh 

alignment of the gears was required to ensure power was being transmitted 

efficiently. This ensured a uniform distribution of load on the teeth, which 
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extended the service life of the gears and diminished the likelihood of them failing 

prematurely. One of the techniques used to monitor and diagnose misalignment 

is signal processing, which utilises vibration analysis. This is a frequency domain 

analysis that uses fast Fourier transform (FFT). The FFT spectrum provides 

measurements in both radial and axial directions for the drive and non-drive parts 

of the motor. Velocity in root mean square (RMS) is measured using an FFT 

analyser, in conjunction with an accelerometer. The velocity frequency spectrum 

has a frequency that equates to rotor speed. If the harmonics of a frequency are 

high, there is a problem with angular misalignment. If vibrations become 

increasingly varied, there is a misalignment issue. Therefore, vibrational analysis 

can provide a fast and accurate assessment of the state of a mechanical system. 

One component that has great significance in failure analysis is the bearing 

(Table 5-1). A critical failure mode is gear tooth wear, and the typical failure effect 

of this is partial tooth contact (misalignment). A query can be applied to determine 

the failure mode, failure cause, failure effect, symptoms and fault severity (SEV), 

and also to determine faults with the highest diagnostic potential (DGN), or those 

that pose the highest impact risk. SEV and DGN scale from 1 to 10, with higher 

numbers representing a greater seriousness or risk; an appropriate query can 

return the faults with the highest DGNs (Table 6-1) or risks. Therefore, 

parameters such as SEV, DGN and DET, from the FMEA technique, can be used 

in the ontology model to enable queries that, in turn, can identify components or 

processes of priority for maintenance actions.  

Table 6-1: Query outcome for failure mode with highest DGN 

Component 

Type  

Failure 

Mode 

Failure 

Cause 

Failure Effect Sympto

m 

SEV DGN Technique 

Rolling 

bearing 

Tooth 

wear 

Tooth 

failure 

Partial tooth 

contact 

(misalignment) 

Vibration 

5 

6 5 Vibration 

analysis 

As such, the most suitable points to capture the degradation of the system, 

including the wearing of teeth and bearings due to loading and misalignment, are 

the bearings, where vibration sensors can be placed (Girdhar and Scheffer, 

2004). These sensors are able to pick up the constant vibration occurring in the 
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system (datum vibration). Then, once the machine experiences an induced 

failure, the system is able to capture the variation in data, and send an alert about 

a potential issue in the system (Farrar and Worden, 2012).  

The next section describes the validation of the developed ontology framework. 

This is done using a case study and expert judgement. 

6.3 Ontology validation 

Several ontology evaluations have been proposed, which can take either an 

implementation or a design viewpoint (Degbelo, 2017; Kumar and Baliyan, 2018). 

In the validation process, the semantic and syntactical correctness of the ontology 

is ensured, while it is also verified whether the ontology satisfies the targeted 

requirements. The scope of the present case study was exploratory– the aim was 

to present the development of a context-resolution service mechanism for 

industrial diagnostics, based on the design of a maintenance ontology focused 

on modelling the failure analysis of mechanical components. Therefore, it was 

considered appropriate to focus on a subset of evaluation criteria, namely 

usability through expert judgment, robustness, effectiveness, internal consistency 

and applicability, within the viewpoint of the targeted application case study. 

6.3.1 Expert judgment 

6.3.1.1 Usability 

In addition to validating the framework through the use of a case study, expert 

judgment on the developed maintenance context ontology for the framework was 

sought. The use of expert opinion to validate an approach is a method commonly 

employed by researchers. Expert judgment and critique was sought to help not 

only validate the ontology, but also to provide insights for further refining the 

framework. In this respect, the usability of the framework was evaluated utilising 

the System Usability Scale (SUS) proposed by Brooke (1996), and subsequently 

employed in multiple studies (Hammar, 2017; Tan et al., 2017; Gregori, 2018). 

The SUS has proved to be highly effective in numerous applications, indicating 

that it can be used for a variety of different systems and forms of technology. It 

has been demonstrated that the results produced by the SUS are similar to those 
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of more substantial scales that further the understanding of user attitudes towards 

a given system’s usability.  Additionally, the SUS is capable of discriminating and 

identifying systems whose usability is high or inadequate. 

Whilst the aim was to capture a broad array of expert views, the seven industry 

domain experts (DE1–DE7) successfully surveyed were sufficient to achieve the 

ROs. Some verbatim extracts are provided below. Table 6-2 summarises the 

years of experience, backgrounds and qualifications of the experts. 

Table 6-2: Information on the experts 

NO. Years of Experience Area Level of Education 

DE 1 8 Mechanical engineer PhD 

DE 2 11 Maintenance engineer Professional qualification 

DE 3 13 Instruments & sensors Professional qualification 

DE 4 9 Maintenance engineer Professional qualification 

DE 5 10 Mechanical engineer PhD 

DE 6 15 Maintenance engineer Professional qualification 

DE 7 9 Maintenance engineer Bachelor's degree 

For the purpose of conducting the test, a basic questionnaire was developed for 

administration to the participants in order to determine the extent of their 

knowledge regarding ontologies, faults, the causes and effects of failure, and their 

maintenance terminology (see Appendix B). 

A basic rating system was developed to enable an evaluation of the respondents’ 

knowledge. Each response received a score ranging from 1 (no knowledge at all) 

to 5 (expert). Subsequently, three basic levels were determined for the different 

score ranges, based on the following ratings descriptions:  scores under 15 were 

ranked as ‘non-expert’, scores 15–20 were ranked as ‘good level of knowledge’, 

and scores over 20 were ranked as ‘expert’. Table 6-3 shows the survey results. 
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Table 6-3: Level of knowledge scores 

NO. LOK 1 LOK 2 LOK 3 LOK 4 LOK 5 LOK 6 Level of Knowledge 

DE 1 3 3 4 2 3 4 Good Level 

DE 2 4 3 3 2 4 3 Good Level 

DE 3 4 4 3 2 3 3 Good Level 

DE 4 3 2 4 2 2 4 Good Level 

DE 5 3 4 4 3 4 4 Expert 

DE 6 4 5 5 4 4 5 Expert 

DE 7 2 2 2 1 1 2 Non-expert 

Previous test results had demonstrated that the majority of questionnaire 

respondents could be evaluated as having a good level of knowledge. 

Subsequent to gathering the survey results, the actual SUS test that was 

proposed by Casellas (2009) was conducted, after the model was presented via 

a brief presentation (see Appendix C). 

The methodology used for the purpose of calculating the SUS scores was 

identical to that used by Tan et al. (2017) and Gregori (2018). To obtain the final 

value, the following adjustments were made to the scores: for questions with odd 

numbers, 1 was subtracted from the score (X-1), whereas for questions with even 

numbers, the score was subtracted from 5 (5-X). The scores from the questions 

with even and odd numbers were summed. Subsequently, this total was 

multiplied by 2.5, so that the final score could be presented in percentage form. 

Furthermore, Bangor et al. (2009) proposed a correlation between the SUS 

scores and the adjective rating scale for the purpose of assessing the SUS 

results, as shown in Table 6-4. 
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Table 6-4: Adjective rating scale – SUS score correlation 

Adjective SUS Score (up to :) 

Worst Imaginable 12.5 

Awful 20.3 

Poor 35.7 

Ok 50.9 

Good 71.4 

Excellent 85.5 

Best Imaginable 90.9 

Table 6-5 shows the evaluation results, including the 10 questions necessary for 

a SUS evaluation. 

Table 6-5: Ontology usability evaluation 

NO. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SuS score 

DE 1 4 2 4 2 5 2 5 2 4 3 72.5 % 

DE 2 5 3 4 2 5 2 5 2 4 2 75 % 

DE 3 3 2 5 2 4 2 4 2 4 2 70 % 

DE 4 3 3 4 2 3 2 4 2 4 2 62.5 % 

DE 5 5 2 5 2 5 2 5 2 5 2 80 % 

DE 6 4 2 5 3 4 2 5 2 5 2 77.5 % 

DE 7 3 2 3 3 2 2 3 2 3 2 55 % 

The results showed that the individual scores were significantly over the 

acceptable threshold of 50.9%, with the average being 70.35% (good) and the 

peak being 80%. Hence, the usability of the model was successfully validated. 

Nevertheless, it is important to note that, in the context of this validation, the 

primary focus was on qualitative not quantitative analysis. In this regard, the 

developed maintenance context ontology for the framework was peer-reviewed 

and published in the Journal of Frontiers in Computer Science (Mobile and 

Ubiquitous Computing section), under the title ‘Ontology-based Context 

Modelling in Physical Asset Integrity Management’. Publication is one of the most 

reliable validation strategies because the process involves feedback and 
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criticism. The work was reviewed and critiqued by referees from another leading 

journal. 

6.3.2 Ontology applicability, robustness, internal consistency, and 

effectiveness 

For the purposes of this study, a laboratory-based test rig was employed. When 

conducting maintenance inspection routines, queries are made on the designed 

maintenance ontology via a communication network utilising data obtained from 

the functioning machine, which can be achieved using the SPARQL Protocol and 

RDF Query Language, both being the most frequently used types of W3C.  

To assess the model’s robustness, a number of queries were constructed in 

SPARQL and tested on the ontology model. The process was considered 

satisfactory when all tests were shown to produce satisfactory responses in the 

given operation scenario. Moreover, the degree of detail is correlated with its 

fidelity, and is assessed by rigidly adhering to a consolidated process for ontology 

engineering, as well as an FMEA technique. In this study, the Ontology 

Development 101 process was used to guide the modelling. 

To assess the reasoning consistency, the Pellet reasoner was employed. Real 

data collection from the shop floor, or simulated data with ‘has current value’ data 

properties, can be used to infer a component’s health status and trigger alerts for 

decision-making, such as the prognosis of a failure and the scheduling of 

condition-based maintenance actions. In this regard, the SWRL language is used 

in object properties to construct transitive rules (Nuñez and Borsato, 2018), and 

new connections are applied to the classes that allow assertion inferences to be 

improved.  

In this way, the ontological approach becomes scalable. Specifically, SWRL built-

ins (SWRLb) allow further extensions within a taxonomy. This greatly enhances 

the model by allowing multiple arguments, according to specific real-world 

requirements, that enable greater expressiveness in OWL2 languages. A 

transitive property is considered in cases such as the following: if subclass 

component type (C1) has object property has mode, and subclass failure mode 
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(FM) has object property has cause (CA) related to subclass potential cause 

(PC), then subclass component type (C1) has the object property has cause (CA) 

related to subclass potential cause (PC). Then the SWRL rule is: has mode (?C1, 

?FM1) failure mode (?FM1) component type (C1) potential cause (?PC1) has 

cause (?FM1, ?PC1) –> has cause (?C1, ?PC1). Table 6-6 shows all the 

variables linked to each class of the maintenance ontology, for creating SWRL 

rules. 

Table 6-6: Object properties using SWRL rules based on (Nuñez and Borsato, 

2018) 

Property SWRL Rules 

Has Velocity Group1 (?Gp1), has Zone (?Gp1, "Good"^^string) -> has Velocity(?Gp1, "greater than or equal 
0 and less than or equal 2.3"^^string) 

Has Velocity Group1 (?Gp1), has Zone (?Gp1, "Satisfactory"^^string) -> has Velocity (?Gp1, "greater than 
2.3 and less than or equal 4.5"^^string) 

Has Velocity Group1 (?Gp1), has Zone (?Gp1, "Alert"^^string) -> has Velocity (?Gp1, "greater than 4.5 and 
less than or equal 7.1"^^string) 

Has Velocity Group1 (?Gp1), has Zone (?Gp1, "Alarm"^^string) -> has Velocity (?Gp1, "greater than 
7.1"^^string) 

Has Health Measurement Location (?M1), greater Than Or Equal (?A, 0), has Current Value (?M1, ?A), less 
Than Or Equal (?A, 2.3) -> has Health(?M1, "Good"^^string) 

Has Health Measurement Location (?M1), has Current Value (?M1, ?B), greater Than (?B, 2.3), less Than 
Or Equal (?B, 4.5) -> has Health (?M1, "Satisfactory"^^string) 

Has Health Measurement Location(?M1), greater Than (?C, 4.5), has Current Value(?M1, ?C), less Than Or 
Equal (?C, 7.1) -> has Health (?M1, "Alert"^^string)  

Has Health Measurement Location (?M1), greater Than (?D, 7.1), has Current Value (?M1, ?D) -> has Health 
(?M1, "Alarm"^^string 

Has Warning Has Health (?M1, ?A), equal (?A, "Good"^^string), Measurement Location (?M1) -> has Warning 
(?M1, "Collect new data in 3 months"^^string) 

Has Warning Has Health (?M1, ?B), Measurement Location (?M1), equal(?B, "Satisfactory"^^string) -> has 
Warning(?M1, "Collect new data in 1 months"^^string) 

Has Warning Has Health (?M1, ?C), Measurement Location (?M1), equal (?C, "Alert"^^string) -> has Warning 
(?M1, "Schedule Condition-based Maintenance"^^string) 

Has Warning Has Health (?M1, ?D), Measurement Location (?M1), equal(?D, "Alarm"^^string) -> has Warning 
(?M1, "Turn off equipment"^^string) 

Is Caused By Has Health (?M1, ?A), equal (?A, "Good"^^string), Measurement Location(?M1) -> is Caused 
By (?M1, " Everything is ok "^^string) 

Is Caused By Has Health (?M1, ?B), Measurement Location (?M1), equal (?B, "Satisfactory"^^string) -> is 
Caused By (?M1, " Loss of lubricant - Housing bore out of round - Corrosive agents - 
Distorted bearing seals"^^string) 

Is Caused By Has Health (?M1, ?C), Measurement Location (?M1), equal (?C, "Alert"^^string) -> is Caused 
By (?M1, " Excessive loading (cyclic), misalignment "^^string) 
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Property SWRL Rules 

Is Caused By Has Health (?M1, ?D), Measurement Location (?M1), equal (?D, "Alarm"^^string) -> is Caused 
By (?M1, " Misalignment - Housing bore out of round - Unbalanced/excessive load"^^string) 

As part of the SWRL rules in the suggested ontology, ISO10816-3:2009 was 

utilised for the evaluation of the data gathered from the vibration measurements 

and analysis. The test rig used in the validation study was regarded as a mid-

level asset in an asset hierarchy that included a rolling-element bearing (at a 

lower level in the asset hierarchy), and that also included an accelerometer acting 

as a transducer in the data collection process. The resulting assessed 

parameters could include the velocity of the vibration in mm/s root mean square 

(RMS), with the measurement sites defined by standard MIMOSA VB-00, while 

the operating zone limits were based on the ISO10816–3:2006 standard. 

Assume that, when the data for the rolling bearing part give a mm/s RMS value 

of between 0 and less than or equal to 2.3, a ‘good’ notification is displayed. When 

values exceeding 2.3 but below 4.5 are detected, a ‘satisfactory’ notification is 

shown. A value between 4.5 and 7.1 would trigger an ‘alert’ notification, and 

values in excess of 7.1 would cause an ‘alarm’ notification, which would instantly 

terminate the machine’s operation. 

These values change from one machine to another. The ISO10816-3 standard 

explains that these are only relevant for specific types of machines. So, the value 

2.3 is only applicable to machines in Group 1 (large machines with rated power 

over 300 kW but below 50 MW, or electrical machines with a height of more than 

3.15 m). The same standard indicates that, for smaller machines, the value is 1.4 

instead of 2.3. Given this, let us assume that a value of 4.7 mm/s RMS is 

recorded. This is fed through the ontology, activating the Pellet plugin reasoner 

in the Protégé ontology editor, producing an ‘alert’ outcome, prompting a 

recommendation to ‘schedule condition-based maintenance’, as illustrated in 

Figures 6-8 and 6-9. Once an ‘alert’ warning has been issued, it is then important 

to associate it with the diagnostic information for the analysed mechanical 

component, linking the identified failure mode to potential causes (Figure 6-10). 

In this way, the maintenance intervention becomes context-depended, and 
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consequently more focused and relevant to the identified context of the 

monitoring situation. 

 

Figure 6-8: Vibration velocity in RMS on context-based adaptation interface 
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Figure 6-9: SWRL rules for generating a warning 
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Figure 6-10: SWRL rules for generating potential cause 



 

135 

The Pellet reasoner was applied in this work because it can detect 

inconsistencies and verify class hierarchies, range, domain and conflicting 

disjoint assertions. The Protegé editor provides a warning with a red triangular 

alert symbol when a consistency error occurs. The Pellet reasoner is 

subsequently activated, as shown in Figures 6-9 and 6-10 in order to detect any 

inconsistencies. It was employed here to make sure that no inconsistencies were 

present. 

In summary, while simple, single-parameter threshold-based rules might be easy 

to interpret, they do not often hold in practice. Instead, more complex, multi-

parameter rules are more likely to apply. The reasoning process can replace 

simple rules with the activation of more complex decision functions, and these 

can be produced as a result of machine learning over monitoring historical data. 

The value of the described process is that it sits at a higher level of abstraction, 

and can therefore work with different lower-level computational rules. 

The following section is aimed at validating the developed architecture. This was 

done through the simulation of two different scenarios. 

6.4 Architecture Validation 

Within the IoT system, there is a connection between the sensors, actuators and 

smart devices and the Internet. Numerous technologies play a role in this 

process, particularly by making the connected devices work together. Cloud 

computing has specific relevance, as it enables hosted services to be delivered. 

Certain applications necessitate that the interaction among IoT devices and the 

cloud for remote monitoring services should be analysed in detail. In particular, 

research in the field of monitoring services is confronted with issues that include 

how such a large group of devices should be governed, as well as how 

meaningful data can be provided in real time that depicts the condition of a 

machine over time. The next section of this chapter will focus on the design of a 

simulation, through two different scenarios, to illustrate the operation and utility 

of the proposed architecture for the integration of the IoT and cloud computing 

for industrial monitoring services. 



 

136 

6.4.1 Scenario 1 “Building Management System (BMS)” (Early 

Prototype) 

The following section describes a Building Management System (BMS) for 

automating Smart Buildings based on the developed architecture presented in 

Chapter 4. The primary objective of a BMS is to enhance the comfort of those in 

the building by ensuring that it is consistently maintained in the intended 

condition, as well as to decrease the use of energy by preventing scenarios 

involving the excessive use of such; for example, by forecasting the time at which 

an individual will enter a room, the temperature can be adjusted in advance, or 

by identifying when a room will be unoccupied, lights can be switched off that 

have been left on unintentionally. In this way, BMS scenarios can be used to 

create variations in the context, including rules of thumb for determining context-

specific responses (control actions). 

In this scenario, Cranfield Thingsboard platform was utilised to validate the 

applicability of the proposed architecture. ThingsBoard is an open-source IoT 

platform that allows IoT projects to be rapidly developed, managed and scaled. It 

enables users to develop rich IoT dashboards for the purpose of visualising data 

and then applying controls on remote devices in real time. ThingsBoard facilitates 

the connectivity between devices through developed application layer protocols 

(e.g. MQTT, CoAP and HTTP), and provides for their deployment via the cloud. 

This section presents an explanation regarding the data generation process, as 

well as the specific elements in the building that are being monitored. Due to the 

fact that deploying multiple sensors in a building can be expensive, they were 

simulated for the purpose of scaling the system and creating a more realistic 

scenario. This is followed by a description of the transformation of the data into a 

conventional format, and its subsequent uploading onto the cloud platform. 

Finally, the usage of the data via the building management application is 

explained. Figure 6-11 shows the elements that make up the system, divided into 

different layers. 
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Figure 6-11: Implementation of high-level architecture 

To date, BMS has generally only been used in the industrial and commercial 

sectors, although recently it is becoming more frequently implemented in large 

domestic cases. In the commercial and industrial HVAC sector, BMS has been 

widely employed for some years. The types of BMS used in the commercial 

sector include simple control units to total building control in multi-floor, multi-

functional buildings, as shown in Figure 6-12. 

 

Figure 6-12: BMS system for monitoring a group of buildings 

Figure 6-12 shows that a BMS system can be used to monitor a group of 

buildings in different locations. In this scenario, the buildings are Building A and 

Building B, with the BMS being used to control and monitor a variety of services 

inside a building, such as heating and ventilation systems, as well as water 

consumption, as shown in Figure 6-13. Additional functions, including monitoring 

the level of occupancy in the building, can be employed for controlling features 
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such as lighting and heating demand, so that the activation of such functions only 

occurs in the event that parts of the property are occupied or being used. 

 

Figure 6-13: BMS for building A 

The initial step in enhancing a property with intelligent features is to monitor all 

the required components it contains. For buildings, elements that have 

importance include lights, HVAC systems, CO2, light intensity, water, energy and 

room occupancy. It is also necessary to monitor the environment to determine 

whether it can be exploited; for example, turning lights off if the external luminosity 

is sufficiently high for internal use. 

Certain components are equipped with small sensors that have the capability of 

acquiring the data required to determine the state. Because deploying multiple 

sensors in a building can be expensive, they were simulated for the purpose of 

scaling the system and creating a more realistic scenario. With regard to 

environmental data, humidity, temperature and luminosity, sensors allowed the 

respective values to be read. To mimic the remaining components of the system, 

data was produced using software that can create identical packets to those of 

physical elements. 

After reading the sensor data and then encapsulating it in a packet with the 

shape, it was transmitted to the ThingsBoard platform. Messages are received by 
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ThingsBoard gateways through various protocols, such as HTTP, MQTT and 

CoAP. As gateways are boosted by an Internet connection, raw messages are 

forwarded to a central server tasked with aggregating and standardising data. 

When combined with wireless monitoring and control systems, BMS will be able 

to significantly enhance the systems currently being used. However, considerable 

amounts of data are generated by such systems, and these need to be monitored, 

logged and analysed. In industrial and commercial environments, these collected 

data are given to the facilities manager, who conducts an analysis on the data 

and then makes operational decisions accordingly. There is an expanding market 

for software instruments that are able to analyse and present monitored data in 

easily-understandable and rapidly-available formats. Technologies, such as web 

dashboards, are meeting this gap in the market. 

Web dashboards are capable of monitoring data from various different sources, 

and subsequently displaying the data on-screen, similarly to the manner in which 

information is presented to car drivers on their dashboards. Graphical and 

coloured interfaces are generally used to present such data, which allows a 

facility’s manager to rapidly determine and deal with problems or irregularities 

that might emerge in the functioning of the system they are controlling, as shown 

in Figure 6-14. 

 

Figure 6-14: Building A dashboard 
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Collected data are presented by such dashboards via aesthetically-satisfying 

interfaces that are user friendly and easily understandable. Although it is possible 

for ‘abnormal’ readings to occur when data telemetry is processed and collected, 

such readings are not within the expected range of telemetry readings for the 

device. Additionally, it is possible to create alarms via ThingsBoard, which are 

activated in the event that the telemetry sent by an IoT device falls outside the 

specified range, as illustrated in Figure 6-15. 

 

Figure 6-15: Alarms system 

In general, the proposed application consists of a pair of differentiated 

components. First, the BMS is tasked with directly receiving sensor data through 

the subscriptions performed to the various sensors within the property. Once a 

new message is stored in the middleware database, it is also forwarded to the 

application, permitting the BMS to act correspondingly, where appropriate. 

Nevertheless, as previously noted, due to the fact that deploying and testing this 

type of scenario can be expensive, simulation was selected as the second 

component in order to acquire results that were realistic regarding the benefits of 

the property improved with intelligent features. 

The entire system behaves in the following way. The BMS is fed with both actual 

and software-generated sensor data by the BMS. Subsequent to the data 

reaching the application, their state is modified by simulated components so that 

it can be synchronised with the matching sensor. For example, the room light 

turns on automatically when motion is detected by a motion sensor (motion 

sensor light), as shown in Figure 6-16. 



 

141 

 

Figure 6-16: Occupancy based on motion detection 

Figure 6-16 illustrates a light bulb with a motion sensor switch. A light is installed 

in the room, and includes a switch and a motion sensor. When motion is detected, 

the switch closes the circuit and the light turns on. Based on this pattern, the 

synchrony between the actual and virtual sensors and the simulated building 

elements is maintained by the simulator. Resultantly, if it is detected by the 

simulator that an actuation is required, it automatically alters the element’s state, 

and all of the necessary software-defined sensors are updated so that the 

synchronism can be maintained. 

The final feature of the simulator relates to the intelligent functionality of the BMS. 

In other words, the system must be capable of detecting whether an action that 

enhances comfort, while potentially increasing energy production, can be 

continued by examining the property’s state at every moment. Recent 

advancements in building-integrated wind-turbine technologies have made them 

more reliable, enhanced their efficiency at reduced wind speeds, and lowered 

their capital expenses. Micro wind turbines can be applied at the building scale–

termed ‘building-integrated wind turbines’–for the local production of electricity. 

In this scenario, the wind turbine is represented as an asset, as indicated in 

Figure 6-13. The wind turbine has two devices installed––a wind-direction sensor 

and a rotating system. In this scenario, the rotating system is responsible for 

changing the direction of the wind turbine based on the wind direction, as 

displayed in Figure 6-17. 
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Figure 6-17: Wind turbine rotated based on wind direction 

In the current scenario, the representation of context information is achieved via 

values allocated to properties that characterise all entities that have relevance to 

an application. The cloud platform allows the defining of assets, devices, rule 

chains and dashboards, among others. The physical ‘things’ that the IoT solution 

is targeting are defined as asset’. Device ‘things’ are defined as devices. ‘Rule 

chains’ are essentially the means for designing IoT data process workflows. Data 

can be forwarded to external systems, or actions can be triggered using custom 

logic via the use of rule chains. The sharing of context information facilitates the 

process of producing, gathering, publishing and consuming context information 

by users at large scales, and it can be exploited for the purpose of transforming 

all applications into ‘smart’ and ‘aware’ forms. The section below moves on to 

consider the physical implementation of the proposed scenario. 

6.4.1.1 Physical Implementation 

This physical implementation involved the detection of real-time temperature, 

relative humidity and object distance of a building at predetermined intervals, 

using an embedded computing device (Raspberry Pi). In this case, the Raspberry 

Pi microcontroller is the monitoring node, while the sensor used is a DHT22 

temperature/humidity sensor, as illustrated in Figure 6-18. The connection 

between the sensor and the Raspberry Pi device was achieved using a jumper 

wire. The Python language was used for programming the Raspberry Pi kit. The 

ThingsBoard platform facilitated the real-time monitoring of the sensor data. The 



 

143 

data processed by the Raspberry Pi was continuously updated on the cloud 

server, with the users being able to access the stored data. 

 

Figure 6-18: DHT22 sensor connected to a Raspberry pi 2 (microcontroller) 

For this purpose, the code for the DHT22 sensor was designed in Python (see 

Appendix D), although different languages, such as C, C++ and Java, could also 

have been utilised. Python was employed for this application because it offered 

certain benefits. The length of a Python programme is generally 3–5 times less 

than a corresponding Java programme. This distinction is due to Python’s 

integrated, high-level data types, as well as its dynamic timing. It is intended to 

provide high readability. Python is a basic, dynamic, interpreted and object-

oriented programming language, and Python interpreters allow Python code to 

run on multiple different systems. 

Data from Raspberry Pi was sent to a ThingsBoard server, and was updated and 

stored after each second (the processing time of the sensor is 1 second, and so 

the data was in fact updated every second). The update time can be increased, 

but not reduced. Data from the sensor was visualised using different widgets, as 

shown in Figure 6-19. 
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Figure 6-19: Temperature and Humidity readings 

The development of small, inexpensive sensors has paved the way for the 

emergence of systems that can monitor for various fields of application in real 

time. The IoT is an innovative field of IT that facilitates connections between a 

number of these heterogeneous devices via distinct network protocols to enable 

large-scale interoperability. It was shown by the physical implementation how it 

is possible to integrate certain open-source software tools for the purpose of 

collecting, monitoring and processes data streams delivered in real time by 

sensor devices. The proposed architecture can be used in a variety of monitoring 

scenarios for studying the patterns of certain key parameters, as well as to trigger 

alarms when problematic situations occur. The following section moves on to 

consider a mechanical gear rig that was used in the simulation. 

6.4.2 Scenario 2 “Machine Monitoring System” 

To test the applicability of the proposed architecture, a physical gearbox test rig 

was employed (Figure 6-20). Digital twinning of the gearbox was implemented in 

a local cloud-based deployment of an IoT platform (ThingsBoard). The rig was 

instrumented with industry-grade sensing, data acquisition and networking, with 

both edge and cloud-based computing support for a complete data-process 

workflow.  
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Figure 6-20: Physical gearbox transmission test rig for emulating misalignment 

cases 

In this case study, the most common effect of gearbox misalignment was 

vibration, and loss of power transfer through the gearbox. The vibration affected 

the entire machine, with the most prominent points being the bearings, the loss 

of transfer easily being captured by the difference in RPM between the driving 

motor and the loading dynamometer. The reason for vibration being the main sign 

of an issue in such a machine is because the machine consists of several high-

speed rotating components. 

The wearing of gear teeth is generally caused by gear misalignment, excessive 

loading and a lack of lubrication. Degradation of the bearings is caused by 

wearing of the gear teeth and the impact of gear vibration being transferred to the 

shaft, and then to the bearings. If the shaft of the gear is short and hard, and the 

bearings are situated in close proximity to the centre, where meshing of the gears 

occurs, this can be a source of vibration, which can be measured by placing 

sensors at the bearings, as shown in Figure 6-21. 
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Figure 6-21: Draft layout of the gear test rig presented on the ThingsBoard 

platform 

For this scenario, the gear test rig was defined as an ‘asset’ and the sensors as 

‘devices’. In summary, the scenario was aimed at designing and developing an 

IoT application that could collect temperature and vibration readings from multiple 

sensors deployed in a gear test rig. For simplification, two different types of 

sensors were deployed, as shown in Figure 6-21. These sensors included a 

single thermometer for generating temperature data, and two accelerometers for 

measuring the angular velocity (rate of change of the angular position over time, 

along the X and Y axes). Thus, three devices were created––‘thermostat’, 

‘vibration1’ and ‘vibration2’. Once the ‘thermostat’ icon installed on the gear test 

rig was clicked, the system allowed the end-users to monitor real-time 

temperature data, as shown in Figure 6-22. 
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Figure 6-22: Real-time temperature data 

Most critical problems result in the overheating of the motor or dynamometer, or 

in vibration propagating throughout the machine due to gear misalignment. This 

is why temperature and vibration sensors were deemed the most appropriate to 

capture those particular potential failures. Figure 6-22 (top half) shows the 

graphical user interface for the real-time temperature readings in different widgets 

(chart and analogue gauges). Charts are beneficial for visualising real-time or 

historical data with a time window. The bottom half of Figure 6-22 presents the 

temperature control and alarms. Temperature control can be used to effectively 

visualise the present state, as well as to send RPM commands to target devices. 

For this scenario, the temperature control was used to increase and decrease the 

temperature readings.  

On the other hand, once the ‘vibration1’ icon installed on the gear test rig (Figure 

6-21) was clicked, the system allowed end-users to monitor a time-series 

vibration signal, as indicated in Figure 6-23. Vibration data is one of the most 

commonly used techniques for detecting abnormalities in a machine. To measure 

vibration, three different types of sensors can be used–motion, speed and 

accelerometer. An accelerometer was chosen for this study because it was the 

solution with the greatest dynamic range and the largest frequency range. Other 

solutions are not suitable for industrial use. 
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Figure 6-23: Time series of a vibration signal 

Comma-separated values (CSVs) were used here as a method of collecting data 

because of the flexibility offered. CSVs are broadly used for exchanging data-

table data among applications with distinct architectures for the purpose of 

solving issues involving the interoperability of data formats that are not 

compatible. In general, the format is defined on the basis of the predetermined 

standards of both parties, and a clear format standard has not been established. 

For this study, the data used to feed the platform was from previous tests by Prof 

Muhammad Khan (Cranfield University), including data from displacement 

sensors and accelerometers. In order to visualise the collected dataset, node.js 

code was developed (see Appendix E). 

After receiving the data, the platform stored the data in the memory and displayed 

the vibration curve through the chart, as shown in Figure 6-23. Depending of the 

values of the data with regard to the ranges of values (descriptors), the 

interpretation rules defined the condition of the asset in terms of the associated 

failure mode. Based on that, the system provided a reminder and an issue or a 

warning. This could be used as a simplified interpretation rule to monitor 

misalignments depending on the load. 

In summary, this section described the simulation environment which has been 

used to test the proposed architecture. The proposed architecture is aimed to 

introduce context awareness to enhance remote monitoring services in 
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manufacturing environments. Functional test requirements were identified that 

need to be passed by the key components of the proposed architecture that will 

serve quality-assurance purposes. These functional tests (unit, code, integration, 

communication and system testing) were designed to investigate the functionality 

and applicability of the key components of the proposed architecture. In light of 

that, this section also focused on simulation design through two different 

scenarios (building management system and machine monitoring system) to 

illustrate the operation and utility of the proposed architecture for the integration 

of the IoT and cloud computing for industrial monitoring services. The context 

information management is used by the proposed architecture to help the user to 

get a particular service without much user intervention. The application of the 

architecture on simulation design through two different scenarios respectively 

provide some assurance regarding the validity of the developed architecture. 

Moreover, the proposed scenarios showed the performance of the proposed 

architecture by simulating the system to fetching the services automatically for 

the user. 

6.5 Chapter Summary  

The validation process incorporated in the development of the framework and 

architecture for introducing context awareness to enhance remote monitoring 

services in manufacturing environments was outlined in this chapter. This 

represented phase four of the multi-phase research methodology presented in 

Section 3.7 and RO 4. Table 6-7 summarises how the elements of the proposed 

framework (Figure 4-14) are validated. 
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Table 6-7: summarises how the elements of the proposed framework are validated. 

Framework 
layer 

What is validated? How is validated? 
Where is 

validated? 

Edge layer 

Functional test requirements were identified that 
need to be passed by the key components of the 
proposed framework that will serve quality-
assurance purposes. These functional tests (unit, 
code, integration, communication and system 
testing) were designed to investigate the 
functionality and applicability of the key 
components of the proposed framework. 

The Raspberry Pi microcontroller is the monitoring node, while 
the sensor used is a DHT22 temperature/humidity sensor. The 
Python language was used for programming the Raspberry Pi 
kit. The ThingsBoard platform facilitated the real-time 
monitoring of the sensor data. 

6.4.1.1 "Physical 
implementation" 

Context information 
management layer 

A maintenance context ontology for the framework 
has validated focused on modelling failure analysis 
of mechanical components, so as to drive 
monitoring services adaptation. 

The ontology development was applied to a physical 
mechanical-transmission test rig. The focus of the validation 
was specifically applied to five ontology quality features–
robustness, level of detail, effectiveness, internal consistency 
and applicability. In addition to the case study validation 
process, expert judgement was sought, which was generally 
positive. 

6.3.1 "Expert judgment". 

6.3.2 "Ontology 
applicability, robustness, 
internal consistency, 
and effectiveness" 

Application layer 
The applicability of the key components of the 
proposed framework. 

For the virtual prototype, different scenarios have been 
created. These scenarios focused on the design of simulation 
through two different scenarios ("Building Management 
System" and “Machine Monitoring System”) to illustrate the 
operation and utility of the proposed framework for the 
integration of IoT and cloud computing for industrial monitoring 
services.  The proposed scenarios showed the performance of 
the proposed framework by simulating the system to fetching 
the services automatically for the user. 

6.4.1 Scenario 1 
“Building Management 

System (BMS)” 

6.4.2 Scenario 2 
“Machine Monitoring 

System” 
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The ontology development was applied to a physical mechanical-transmission 

test rig. Queries were raised in terms of the resolution of the monitoring service 

context to determine the failure mode of the test rig and its potential causes, in 

addition to the relevant measurement parameters. The outcomes can be used in 

other industrially-relevant application scenarios to drive maintenance service 

adaptation. While the application focus was quite specific, the ontology 

abstraction level was actually such that it could also be implemented in other 

application cases, as it offers a sound baseline for further customisation or 

extensions. 

The focus of the validation was specifically applied to five ontology quality 

features–robustness, level of detail, effectiveness, internal consistency and 

applicability. In addition to the case study validation process, expert judgement 

was sought, which was generally positive. The next chapter concludes the study, 

and offers research limitations and ideas for future work. 
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7 CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary of the research project, highlighting how the 

ROs and RQs have been achieved. The contribution to knowledge from 

undertaking this research project is then discussed, before areas for future work 

are suggested, based on the limitations of this study. 

7.1 Contribution to the knowledge 

With the stated aim and objectives of this research, this project was positioned to 

make several contributions to knowledge, with implications at three levels–

academic, scientific and business. 

 At the academic level, the systematic literature review would provide an 

update to previous reviews on the topic of context management in the IoT, 

creating a potential checkpoint for researchers intending to perform a 

study on this topic. In addition, and most importantly, the appropriate 

factors used in context acquisition, modelling, reasoning and 

dissemination were critically analysed so as to develop a framework and 

an architecture that could introduce context awareness in order to 

enhance monitoring services in manufacturing environments. According to 

the available literature, as well as the researcher knowledge base, this 

method of combining IoT and cloud computing with context awareness for 

industrial monitoring services had not previously been covered or 

investigated. 

The core academic contributions of this research include; 

• A context awareness framework and architecture, developed to enhance 

remote monitoring services in manufacturing environments. The 

framework and architecture apply context-aware computing to deliver 

solutions and address key challenges that IoT-enabled monitoring 

services need to handle, specifically dealing with ways in which the context 

can be modelled, processed and disseminated for remote monitoring 

services, how this impacts the service discovery solution, and what an 

appropriate taxonomy of ontology is. 
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• A context maintenance ontology for the framework, developed by focusing 

on the modelling failure analysis of mechanical components so as to drive 

monitoring services adaptation. The proposed ontology for the context 

resolution mechanism is relevant to the failure analysis of mechanical 

components, and the terminology and relationships between the concepts 

are structured on the basis of relevant standards so as to adapt relevant 

diagnostics or maintenance actions in a condition-based maintenance 

setting. 

 At the scientific level, a novel classification of the relevant literature has 

been produced, following a survey and critical analysis. To that end, three 

conference papers have been published. The first was presented at the 

13th World Congress on Engineering Asset Management in Norway in 

2018. It offers a survey and analysis of the recent literature that addresses 

context management in IoT. The second was presented at the 7th 

International Conference on Through-life Engineering Services, and was 

aimed at presenting a context-awareness IoT framework for industrial 

monitoring services. The third was presented at the 4th IFAC AMEST 2020 

Workshop on Advanced Maintenance Engineering, Services and 

Technologies. In this paper, ontology-based approaches for semantic 

maintenance were proposed as a data and service mediation mechanism. 

Ontology-Based Context Modelling in Physical Asset Integrity 

Management was published in a Frontiers journal. This presents the 

system framework and the ontology development process, based on 

established practice and maintenance vocabulary standards. Partial 

results from these publication have been used in the thesis chapters. 

 At the business level, the outcomes of the work can be used in other 

industrially-relevant application scenarios to drive maintenance service 

adaptation. Context adaptive services can help manufacturing companies 

in better managing the value of their assets, while ensuring that they 

continue to function properly over their lifecycle. This allows managers and 

operators to assume control and make more appropriate decisions based 

on data, thus facilitating improved, real-time communication among 
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managers and the shop floor. Furthermore, the proposed framework will 

help those companies to interpret the situation of a monitoring service and 

its associated data acquisition in order to identify various faults at the 

monitoring level and to propose actions contextually relevant to the 

identified situation. 

To achieve the research aim, the study had four ROs, which are addressed 

below. 

7.1.1 Review of the Research Objectives 

 

RO1 - Analysing Current Practices of Context Lifecycle Management 

The first RO was aimed at analysing the current practices of context lifecycle 

management, and identifying the appropriate factors that are used in context 

acquisition, modelling, reasoning and dissemination for IoT-enabled industrial 

monitoring services. To achieve this RO, a systematic literature review was 

conducted. In light of that, the appropriate factors used in context lifecycle 

management were critically analysed, and published in a conference paper. 

Furthermore, an extensive literature review was undertaken which highlighted 

that IoT has expanded the range of applications with substantial needs for context 

management, and this is reflected in the focus of the relevant studies. 

Nonetheless, while substantial research efforts have been devoted to context 

lifecycle management in web-based, mobile and ubiquitous computing, including 

IoT-enabled computing, little attention has been given to translating these 

advances into tangible progress in industrial monitoring services. 

A gap identified from the literature was that most applicable context-modelling 

and reasoning techniques that had been examined were ontology-based. 

However, the studied approaches lacked some expressiveness concerning the 

representation of knowledge for monitoring services in manufacturing 

environments. Because contemporary computational infrastructures facilitated by 

the IoT are dynamic in nature, it is necessary for applications to be aware of the 

contextual data of interest, with an ability to function with minimal human 
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intervention. Hence, context awareness is now considered to be a critical factor 

in the provision of adaptive services in IoT settings. Thus, the aim of this research 

project was to contribute by developing a context-aware framework to enhance 

monitoring services in industrial environments as a means of addressing 

challenges related to information complexity, as well as to integrate data with 

domain knowledge in industrial monitoring applications. 

RO2 - Developing a Context-aware Framework to Enhance Monitoring 

Services 

Building upon the understanding obtained from the extensive literature review, 

the second RO was meant to design and develop a framework and an 

architecture that would introduce context awareness to enhance remote 

monitoring services. In order to accomplish this RO, the multi-phase research 

methodology adopted helped to facilitate the development of a context-aware 

framework to enhance monitoring services in industrial environments. In this 

respect, the knowledge and understanding gained from the extensive literature 

review and the experiments (early prototype and virtual prototype) was 

instrumental in the development of the framework. 

The developed architecture has four distinct but interconnected viewpoints. This 

consisted of four viewpoints–business, usage, functional and implementation. 

The business viewpoint determines the manner in which the IoT system 

accomplishes the established goals via its mapping to basic system 

functionalities. The usage viewpoint deals with the concerns of anticipated 

system utilisation, and is usually denoted by series of activities incorporating 

human or logical users, which provide its predetermined functionality in 

eventually accomplishing its basic system capacities. The functional viewpoint 

concentrates on the functional elements within a system, their 

interconnectedness and formation, the interfaces and interrelations, and the 

associations and interconnections of the system with components in the external 

environment. Finally, the implementation viewpoint focuses on the technical 

depiction of an IoT system, and the technology and system constituents 

necessary for the implementation of functions and activities determined by the 

functional and usage viewpoints. 
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Regarding the framework development, Section 5.3 included a three-layered 

framework–edge, context information management and application–that 

introduced context awareness to enhance remote monitoring services in 

manufacturing environments. The edge layer involves the sensing and collection 

of context via heterogeneous sensors and integrated devices. The context 

information management layer includes the pre-processing of data deriving from 

the context-sensing layer, the interpretation of these data by the context ontology 

model, and the inferences drawn by the context reasoner. Finally, the interface 

represented by the application layer enables users to access the context 

information provided by the context management layer.  

This developed framework allows managers and operators to assume control and 

make more appropriate decisions based on data, thus facilitating improved, real-

time communication among managers and the shop floor. Furthermore, the 

proposed framework will help those companies to interpret the situation of a 

monitoring service and its associated data acquisition in order to identify various 

faults at the monitoring level and to propose actions contextually relevant to the 

identified situation. 

RO3 - Developing a Maintenance Context Ontology for the Framework 

RO3 was adopted to develop a maintenance context ontology for the framework, 

focusing on modelling the failure analysis of mechanical components. The aim of 

ontology-based context modelling is to produce a semantic organisation of data 

so as to drive maintenance services adaptation. When users (e.g. maintenance 

engineers) interact with systems in this regard, the proposed maintenance 

ontology can help them to narrow down the list of options. In order to achieve this 

objective, a maintenance ontology was developed, employing established 

methodologies, and through consultation of a range of domain-relevant 

international standards. This was presented in Chapter 5 and published in a 

journal. While following an established ontology development process, its design 

differed from other approaches in that it expanded FMEA/FMECA-based 

ontology constructs with additional concepts adopted from available standards in 

the field, which linked the key reliability-based concepts of the knowledge 

constructs with asset-level and fault-specific relevant diagnosability concepts.  
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Thus, queries could be raised, in terms of the resolution of the monitoring service 

context, to determine the failure mode of machinery and its potential causes, in 

addition to the relevant measurement parameters. Moreover, SWRL reasoning 

rules were used, based on ISO10816-3:2009, to evaluate the data gathered, 

perform the prognosis of failure, and send a maintenance message for 

intervention in the machine. In this way, the maintenance intervention was more 

directed, ceasing to be exploratory. This highlighted the need for handling the 

whole context information management lifecycle and ontologies in maintenance 

and asset management to maximise the value delivered by physical engineering 

assets. 

RO 4 - Validating the Proposed Ontology and Architecture 

The final RO involved applying the framework on a use case through an 

implementation architecture, and validating it through experimentation and expert 

judgement. The selected gearbox test rig case study was employed to validate 

the applicability of the proposed framework and ontology. In this regard, several 

ontology evaluations have been proposed, which can take an implementation or 

a design viewpoint (Degbelo, 2017; Kumar and Baliyan, 2018). The process of 

validation involved verification of the ontology’s syntactical and semantic 

correctness, in addition to ensuring that the ontology satisfied the planned 

requirements. The scope of the present case study was exploratory, the aim 

being to present the development of a context resolution service mechanism for 

industrial diagnostics, based on the design of a maintenance ontology focused 

on modelling the failure analysis of mechanical components. Therefore, it was 

considered appropriate to focus on a subset of evaluation criteria–namely, 

robustness, level of detail, effectiveness, internal consistency and applicability–

within the viewpoint of the targeted application case study. In addition to the case-

study validation process, expert judgement was sought, which was generally 

positive. Results showed that the individual scores are significantly over the 

acceptable threshold of 50.9%, where the average was 70.35% (Good). 

Therefore, validation for usability was successfully achieved. 
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7.1.2 Review of the Research Questions 

This section presents the RQs relevant to this exploratory study. The questions 

are assessed in the context of the research undertaken. A concise response to 

the RQs is summarised in Table 7-1. 

Table 7-1: RQs and review informed from the research 

RO Review 

RQ 1: How can context be 
acquired, modelled, 
processed and disseminated 
for industrial monitoring 
services? 

This RQ was addressed in Chapter 2 by reviewing the 
state of the art in context lifecycle management. 
Context lifecycle management refers to how data is 
gathered, modelled and processed, and how 
knowledge is deduced from the obtained data. It 
presents how data moves from stage to stage in 
software systems. It also demonstrates where the 
data comes from and where it is consumed. In light of 
that, the appropriate factors used in context lifecycle 
management were critically analysed (Section 2.3.4). 

RQ 2: What is an appropriate 
framework to manage context 
awareness in a way that 
facilitates efficient condition 
monitoring? 

This RQ was addressed in Chapters 4 and 5. A 
framework, and an architecture that introduced 
context awareness to enhance remote monitoring 
services, were proposed. The framework applies 
context-aware computing to deliver solutions and 
address key challenges that IoT-enabled monitoring 
services need to handle, specifically how the context 
be can modelled, processed and disseminated for 
remote monitoring services, and how this impacts the 
service discovery solution. Moreover, Chapter 5 
presented a maintenance context ontology for the 
framework, focused on the failure analysis of 
mechanical components, so as to drive monitoring 
services adaptation. 

RQ 3: How can the proposed 
framework, which integrates 
of IoT and cloud computing for 
industrial monitoring services, 
be validated?  

This RQ was addressed in Chapter 6. The framework 
was validated through a real-world case study and 
expert judgment. In this respect, a gear test rig was 
used as a case study to validate the applicability of 
the proposed framework and ontology. This was 
followed by an analysis of the evaluations obtained 
through expert judgment of the applicability of the 
framework. 
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7.2 Research Conclusion 

• This study was aimed at developing a context-awareness framework and 

implementing it in an architecture that integrated the IoT with cloud 

computing for industrial monitoring services as a means of addressing 

challenges related to information complexity, scalability and data 

heterogeneity, as well as integrating data with domain knowledge in 

industrial monitoring applications. To achieve this, the problem had to be 

solved theoretically, by developing a framework, architecture and 

maintenance ontology, and validating these through laboratory 

experiments in a case study. 

• The overall aim was achieved through a methodological investigation 

consisting of four phases. The first phase was focused on setting the 

research aim and objectives, after a thorough investigation of the research 

background that confirmed the validity of the research aim. The second 

phase was based on academic investigation of the existing literature on 

context-awareness frameworks, the definition and capturing of context 

acquisition factors, identification of a representation mechanism 

appropriate for context modelling, investigation of the process of context 

reasoning and dissemination in order to derive high-level context 

deductions from a set of contexts, and the delivery of context to end-user 

applications. The third phase consisted of experimentation materials and 

methods. Specifically, this involved early prototype, virtual prototype and 

context-model development. The final phase was focused on pulling 

together all the content into a framework based on context information 

management for industrial monitoring services. 

• Regarding the framework development, the framework comprises three 

layers: the edge, context information management, and application. 

Moreover, a maintenance context ontology for the framework has 

developed focused on modelling failure analysis of mechanical 

components, so as to drive monitoring services adaptation. The developed 

context-awareness architecture is expressed business, usage, functional 
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and implementation viewpoints to frame concerns of relevant 

stakeholders. 

•  The developed framework was validated through a case study and expert 

judgement that provided supporting evidence for its validity and 

applicability in industrial contexts. 

• The outcomes of the work can be used in other industrially-relevant 

application scenarios to drive maintenance service adaptation. Context 

adaptive services can help manufacturing companies in better managing 

the value of their assets, while ensuring that they continue to function 

properly over their lifecycle. 

7.3 Research Limitations 

Research limitations are usual and are encountered by any study, and so does 

this study. These limitations form the basis for further research on the same topic. 

The underlying objectives of the research have been achieved. As elaborated in 

section 1.2, the research objectives included analysing the current practices of 

context lifecycle management, developing a context-aware framework to 

enhance monitoring services, developing and validating a context resolution 

service mechanism for industrial diagnostics. 

Some limitations in the research process, however, need to be acknowledged. 

One inherent limitation arose from the experimentation materials adopted, from 

choosing simple sensors and embedded devices for academic purposes, rather 

than using other methods, such as sensors and embedded devices for industrial 

application. In addition, only one real physical asset was used in the case study 

validation process; more cases could have been explored using actual physical 

assets. Since this study was limited to the functional issues, it was not possible 

to address some of the non-functional issues, such as IoT security, which 

constitutes a critical adoption barrier in current IIoT-enabled systems. 

Context-based adaptations are not adapted in real operating conditions, but on 

realistic scenarios. Consequently, the outcomes of the work can be used in other 

industrially-relevant application scenarios to drive maintenance service 
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adaptation. While the application focus is quite specific, the ontology abstraction 

level is actually such that it could also be implemented on other application cases, 

as it offers a sound baseline for further customisation or extensions. When 

serving different application scenarios, the derived abstract model, developed 

using the process described in Chapter 5, still holds, as the employed terms and 

relationships were developed using established standards. However, after going 

through a similar process to derive the application-specific part of the ontology, 

as described in Chapter 6, and the developed queries, additional needs were 

identified, which may require the inclusion of additional entities, relationships and 

query development. This will be determined by going through an ontology 

assessment and evaluation cycle in the context of the new application scenario, 

particularly regarding the ontology expressiveness and coverage. 

Moreover, while simple single-parameter threshold-based rules might be easy to 

interpret, they do not often hold in practice. Instead, more complex multi-

parameter rules are more likely to apply. The reasoning process can replace 

simple rules with the activation of more complex decision functions, which may 

be produced as a result of machine learning over monitoring historical data. The 

value of the described process is that it sits at a higher level of abstraction, and 

can therefore work with different lower level computational rules. 

Finally, whilst the aim was to capture a broad array of expert views, only 2 appear 

as experts and others as having professional experience. More expert judgement 

on the developed ontology could have been sought. 
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7.4 Future Work 

This study has raised opportunities for further research in three areas that are 

explained below. 

Firstly, the findings reveal a substantive theory on a topic that has not yet been 

studied, according to the available literature and the researcher’s knowledge––a 

method of combining the IoT and cloud computing with context awareness for 

industrial monitoring services, which has not yet been covered or investigated. 

Secondly, from the research limitations identified above, future work could involve 

further case-study validations. These could help further develop/refine the 

developed maintenance ontology and framework. Consequently, further research 

should be carried out to link the current ontology implementation with a live 

condition-monitoring service, as well as to apply it to real industrial environments 

as an enabler of more efficient IoT-enabled monitoring services. Moreover, the 

example reasoning rules presented in Chapter 6 could be re-used, but also could 

be extended with additional ones to address the coverage and expressiveness of 

the updated ontology. 

Thirdly, as context information modelling implementation in industrial monitoring 

services is still in its infancy, further work could include expanding the context 

information management layer in the proposed framework (context modelling and 

context reasoning) to give appropriate information or services to consumers 

utilising context information, so as to drive maintenance services adaptation. 

Consequently, further research is required to develop context-aware approaches 

and architectures to deliver more efficient IoT-enabled monitoring services, 

including non-functional issues, such as IoT security, which constitute a critical 

adoption barrier in current IIoT-enabled systems. 

Fourthly, and finally, one of the key issues in maintenance is to allocate focus 

and resources to those components and subsystems which are the most 

unreliable and prone to failures. In industrial systems, two methods that can be 

usually brought up when talking about failure identification are FMEA/FME(C)A 

and Fault Tree Analysis (FTA). For this research, the proposed ontology was 



 

164 

developed based on the FMEA technique. A further study with more focus on 

FTA technique is therefore suggested.  FTA technique can be used as part of 

maintenance culture allows for more data-driven decisions.. 
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APPENDICES 

Appendix A : Comparison of five major research philosophical stances (Source) adapted from (Saunders et al., 2018) 
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Appendix B (Questionnaire) 
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USABILITY EVALUATION (SUS test) 
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Appendix C - Further explanation of the model 
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Appendix D (DHT22 sensor) 
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Appendix E (Vibration analysis node.js code) 

 
 


