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Abstract

This thesis investigates novel intermittent fault detection and prediction techniques
for complex nonlinear systems.

Aerospace and defence systems are becoming progressively more complex, with
greater component numbers and increasingly complicated components and subcompo-
nents. At the same time, faults and failures are becoming more challenging to detect
and isolate, and the time that operators and maintenance technicians spend on faults is
rising.

Moreover, a serious problem has recently attracted a lot of attention in health di-
agnostics of these complex systems. Detecting intermittent faults that persist for very
short durations and manifest themselves intermittently have become troublesome and
sometimes impossible (also known as “no fault found”).

In response to the above challenges, this thesis focuses on the development of a novel
methodology to detect intermittent faults of these complex systems. It further investi-
gates various probabilistic approaches to develop efficient fault diagnostic and prognos-
tic methods.

In the first stage of this thesis, a novel model (observer)-based intermittent fault detec-
tion filter is presented that relies on the creation of a mathematical model of a laboratory-
scale aircraft fuel system test rig to predict the output of the system at any given time.
Comparison between this prediction of output and actual output reveals the presence
of a fault. Later, the simulation results demonstrate that the performance of the model
(observer)-based fault detection techniques decrease significantly as system complexity
increases.

In the second stage of this research, a probabilistic data-driven method known as
a Bayesian network is presented. This is particularly useful for diverse problems of
varying size and complexity, where uncertainties are inherent in the system. Bayesian
networks that model sequences of variables are called dynamic Bayesian networks. To
introduce the time variable in the framework of probabilistic models while dealing with
both discrete and continuous variables in the fuel rig system, a hybrid dynamic Bayesian
network is proposed.

The presented results of data-driven fault detection show that the hybrid dynamic
Bayesian network is more effective than the static Bayesian network or model (observer)-
based methods for detecting intermittent faults.

Furthermore, the second stage of the research uses all the information captured from
the fault diagnostic techniques for intermittent fault prediction by using a probabilistic
non-parametric Bayesian method called Gaussian process regression, which is an aid for
decision-making using uncertain information.
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Chapter 1

Introduction

1.1 Overview
A system is made serviceable, functional, and worthy when its fault detection process

is successful meaning that the fault in the system is detected and its main root causes are
precisely identified.

When the symptoms of a fault are consistent (hard fault), it is usually not difficult to
detect, isolate, and repair. However, a fault that persists for a very short duration and
manifests itself intermittently and only during a particular set of operational stresses can
be extremely difficult to identify and isolate (Khan et al., 2014a). A substantial portion
of malfunctions attributed to these type of faults is categorized as No Fault Found (NFF)
(Syed et al., 2016; Khan et al., 2014b).

• What is no fault found?

NFF is a term referring to a system or component that has been returned to the manu-
facturer or distributor for a warranty replacement or service repair but operates properly
when tested. This situation is also referred to as No Defect Found (NDF) and/or No
Trouble Found (NTF)(Khan et al., 2014b).

Understanding failure from a technical and non-technical perspective has begun to
become increasingly important when considering a class of system faults which cannot
be easily located, diagnosed or even reproduced under standard maintenance testing.
This has been commonly termed the NFF phenomena (Khan et al., 2014a).

The NFF phenomenon has a negative impact upon critical system stakeholder, re-
quirement, which at the top level include systems safety, dependability and life-cycle
costs (Khan et al., 2014b). As a result, it is essential to prevent the causes of NFF, or at
the very least to reduce the impacts and consequences. However achieving this requires
the ability to understand, identify and correct the root causes of NFF events while the
main causes of NFF can be categorized into the following set of classes (Khan et al.,
2014b):

• Technical,

• Organizational,
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• Procedural,

• Behavioural.

In the context of aircraft engineering and maintenance, NFF is a chain of events that
develops from a pilot experiencing a system malfunction with post-flight maintenance
failing to reproduce the reported symptoms. Without any repair being undertaken, the
malfunction may be experienced again on the subsequent flights. This present significant
cost impacts to the industry that includes financial, reduced operational achievement,
airworthiness challenges and potential flight safety issues (Khan et al., 2014b).

One of the major causes identified for NFF occurrence within electronic, mechanical
and hydraulic products are faults that are intermittent (Qi et al., 2008). This makes it
difficult to use systematic fault detection techniques effectively, as a system are subject
to model uncertainties and unknown disturbances. The philosophy behind this criterion
is that the designed fault detection and prediction filters should be robust to unknown
inputs (disturbances) but sensitive to intermittent faults where the occupancy of inter-
mittent faults can be alarmed by the use of an adaptive threshold. One of the aims of this
thesis is to demonstrate the development of such methodologies and to examine their
performances in a real-world testbed.

When a fault manifests itself intermittently, a big part of the system’s failure is as-
signed to these Intermittent Faults (IF)s, and therefore they are considered as one of the
main root causes of NFF issues. Other causes for NFF after the IFs are technician expe-
rience, troubleshooting manuals, and NFF diagnostics training. Likewise, Built-in Test
Equipment (BITE) and software are the lowest-ranked causes for NFF.

• What is intermittent fault?

In literature, these type of faults is usually expressed as NFF phenomena (Mashkov et al.,
2019; Anderson & Synaptics, 2015). Other names used across the literature include:
Erroneous Removal (ER), No Problem Found (NPF), Can Not Duplicate (CND), and
Re-Test is OK (RTOK) (Khan et al., 2014a).

Such faults (discontinuities) start with a very short duration and mostly of low am-
plitude. Therefore, to diagnose such faults, an on-line and, in many cases, real-time
diagnostics system is required. Moreover, the intermittent fault is concerned with the
dynamic behaviour of discrete events (intermittent failure) and reset events continu-
ously along any path of the system’s evolution. An IF is a loss of some function or
performance characteristic in a product for a limited period and subsequent recovery of
the function (Syed et al., 2016). IFs can manifest themselves in any system, mechanical
or electronic, in an unpredictable manner. The assumed unpredictability of an IF means
that it cannot be easily detected or predicted and that it is not necessarily repeatable
during maintenance testing. Faults of this nature raise many concerns in the realm of
through-life engineering of products (Khan et al., 2014b) .

In (Zhang et al., 2018a) the intermittent fault detection and the event-triggered filter-
ing has been investigated for a class of uncertain continuous systems with sensor satu-
ration. In their deigned intermittent fault detection filters they used the upper bound of
the system errors as their threshold to detect the intermittent faults which may cause to
miss detection or false detection of the intermittent faults. They also only considered the
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noise and uncertainties in the parameters not any unmatched uncertainties in the system
which is one of the limitations in designing a fault detection filters.

If an IF is left unattended or missed during standardized maintenance testing, by its
very definition it will reoccur at some time in the future and typically will tend to worsen
over time. It will eventually become substantial enough to be detected with conventional
test equipment (Khan et al., 2014b).

In aerospace and defence avionics, IFs are the result of maintenance disruption,
degradation mechanisms and the performing environment, which cause the degradation
and ageing of the avionics.

• Where does NFF have the highest impact?

NFF is a serious problem that commonly affects aerospace and defence systems.
currently, systems, particularly aerospace and defence systems, are becoming increas-

ingly complex because of the increasing number of components/subcomponents, which
increases the complexity of the inter-dependency structure between these components.
Thus, faults and failures are becoming harder to detect and isolate, and consequently,
the time that operators and maintenance technicians must spend on fault detection rises
in direct relation to these complexities. A further serious problem that has recently at-
tracted much attention is the health diagnostics of these complex systems consisting of
many electronic components, where IFs have become troublesome or almost impossible
to find, which as a consequence will increase the NFF rate in those systems.

Hence, with the increasing complexity of real-world avionics in aerospace and de-
fence systems, the need to improve the reliability, maintainability and safety of these
systems also increased.

• How much does NFF affect the aerospace and defence industries?

NFF costs the affected industries a great deal of money. However, it is exceptionally
difficult to quantify the exact cost related to NFF in the aerospace and defence sectors.

Based on available statistics drawn from surveys (Huby, 2012), avionics creates 75%
of aircraft NFF incidents and that the avionics NFF proportion is 40% or higher.

Moreover, according to the industry-wide survey conducted in 2012 by Copernicus
Technology, 66% of participants could not assess the cost of NFF in their industry, and
34% were unaware of the effect of NFF cost on their serviceability (Figure 1.1).

However, NFF has the most significant impact on people because it can restrict op-
erational results and therefore cause extra pressure for the people in charge. When an
operation is abandoned unfinished because of an IF, the amount of pressure on the air-
crew is equal to the amount of pressure felt by the maintenance technicians whose efforts
in repairing a fault ended up with NFF.

• How is it possible to decrease the NFF rate in this research?

In response to the above challenges, the main subject of this thesis is the development,
application and testing of novel Intermittent Fault Detection and Prediction (IFDP) tech-
niques for nonlinear complex systems. The IFDP tool should reliably detect IFs when
they occur (see the first block of Figure (1.2)) and predict future IFs, regardless of any
uncertainties in the system (see the second block of Figure (1.2)).

This chapter sets the context for this research work.
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Figure 1.1: Cost impact of NFF according to the industry-wide survey conducted in 2012
by Copernicus Technology (Huby, 2012).According to this survey, 66% of participants
could not assess the cost of NFF in their industry, 22% assess that the cost of NFF in
their industry is less than 1M$ and 12% assess the NFF cost between 1M$ to 10M$.

1.1.1 The need for IF detection

Currently, the increasing number of components and subcomponents in aerospace
and defence systems increases the complexity of the inter-dependency structure between
these components. Thus, IFs are becoming harder to detect and isolate.

For years, in response to these demands, several methods have been introduced for
detecting possible faults in complex systems to guarantee the normal functionality of the
system (Wünnenberg, 1990). These conventional methods are useful in the detection of
well-known faults such as hard faults in a single component system or systems with a
limited number of building components.

In general, fault detection methods have several overlapping taxonomies. Some are
more oriented toward a control engineering approach and others toward mathematical,
statistical and Artificial Intelligence (AI) approaches. In practice, the designer selects
one of several fault detection methods, based on the specifications of the system and the
nature of possible faults.

The well-known fault detection methods are categorized as follows:

(a) Physical redundancy methods: A traditional approach to fault detection in the
wider application context is based on hardware or physical redundancy methods
that use multiple sensors, actuators or components to measure and control a par-
ticular variable (Ding, 2005).

(b) Model-based methods: In view of the conflict between reliability and the cost of
adding more hardware, it is possible to use dissimilar measured values together
to cross-compare them, rather than replicating each hardware component individ-
ually. Hence, model (observer)-based fault detection techniques were introduced
(Ding, 2005).

Although among all the methods for online fault detection, one of the particu-
larly interesting techniques is the model (observer)-based fault detection approach,
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Figure 1.2: Thesis roadway

whose effectiveness has been shown in detecting sensor, actuator and system com-
ponent faults (Chen, 2011), it has a few drawbacks. The most serious one is that,
in the case of noise, input variations and change in the operating point of the mon-
itored process, false alarms are possible.

(c) Experience-based methods:

Systems in industrial plants are becoming increasingly complex, so modelling
them has become extremely time-consuming and costly and may involve numer-
ous measuring errors. Hence, for better detection, substantial domain-specific
knowledge is required.

However, for new or extremely complex systems, monitoring experience/knowledge
is becoming increasingly difficult to obtain by ordinary field operators (Shen &
Chouchoulas, 2000). Thus, there is a pressing need for computer-based solutions
or data-driven methods.

(d) Data driven-based or data-driven methods:

Data-driven fault diagnostic techniques rely on historical data about previous op-
erations performed for specific fault symptoms. This method uses captured infor-
mation to solve new problems (Jiang et al., 2014; Naik, 2010):

(i) Deterministic data-driven methods:
One important characteristic that a deterministic data-driven reasoning sys-
tem relies on is the experience obtained. Experience should be complete and
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adequate to cover all possible failure statuses. This can be crucial for new
systems. Furthermore, for systems that need safety, such as nuclear plants or
aircraft, a dearth of knowledge regarding some extraordinary events because
of their rare occurrence may be an issue. Hence, deterministic data-driven
reasoning can be beneficial when the understanding of the system is poor
but knowledge of previous cases and actions taken is acceptable (Magoun,
2000).

(ii) Probabilistic data-driven methods:
However, to detect faults in complex systems in the presence of uncertainty,
probabilistic data-driven fault detection methods are more appropriate. These
techniques are particularly useful for diverse problems of varying size and
complexity, where uncertainties are inherent in the system (Deng, 2002).

1.1.2 Intermittent fault prediction
As explained earlier, the increasingly complex and expensive systems built for use in

intense environments have resulted in new challenges in maintenance, planning, decision-
making and monitoring that make fault prediction a challenging task (Lorton et al., 2013;
?).

Fault prediction methods can be classified as follows:

(a) Model-based (Wende et al., 2014)

(b) Statistical (Suresh et al., 2014)

(c) Deterministic data-driven (Williams & Rasmussen, 2006)

(d) Probabilsitic data-driven (Williams & Rasmussen, 2006)

(e) Hybrid approaches (combinations of multiple approaches, i.e., a combination of
data-driven and model-based approaches) (Li et al., 2013; bar, n.d.)

Some recent studies have attempted to use probabilistic data-driven methods to provide
a unified framework for fault prediction in complex systems. Dealing with uncertainty
in prognosis and balancing decision-making strategy are major benefits of the chosen
methods (Khodakarami, 2009; Deng, 2002).

Most probabilistic data-driven fault prediction methods can integrate information
from different sources, including experimental data, historical data, and prior expert
opinion. This is particularly useful for the reliability assessment of fault-tolerant sys-
tems, where failures in test or field operations are prohibitively expensive, or even im-
possible (such as IFs).

1.2 Research aim and objectives

1.2.1 Principal aim
In response to the above challenges, the main aim studied in this thesis is as follows
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• To achieve a robust intermittent fault detection and prediction approach for
nonlinear complex systems.

The work described in this research aims to first develop a novel model-based IF de-
tection method in the presence of unknown inputs (uncertainties). Then, appropriate
model-free detection and prediction methods are employed to detect, isolate and predict
IFs when uncertainty is inherent in the system.

1.2.2 Objectives

To achieve the principal aim, a series of objectives must be attained:

1) Identify, test and validate novel model-based methods that can detect faults in the
presence of uncertainties, with a special focus on intermittency.

2) Employ, compare and validate model-free approaches to detect and isolate faults
in the presence of uncertainties, with a special focus on intermittency.

3) Propose, test and validate model-free approaches to predict faults in the presence
of uncertainties, with a special focus on intermittency.

1.3 Thesis structure

The thesis chapters are organized as set out in the list below and shown in Figure
(1.3):

• Chapter 2 provides a literature review identifying other important or relevant pub-
lications and background in fault detection and isolation methods.

• Chapter 3 describes the methodology and solutions used in this research.

• Chapter 4 describes a fully functioning experimental fuel rig, the main case study
used for the validation and evaluation of methods and algorithms.

• Chapter 5 studies the novel model-based IF detection methods. This chapter fo-
cuses mainly on the novel development of the model-based fault detection tech-
niques for a wider range of continuous nonlinear systems. The designed methods
can be used for a wider range of nonlinear systems with fewer limitations.

• Chapter 6 introduces the application of the designed model-based IF detection
filter for detecting the IFs of an experimental fuel rig system with unknown inputs.
To do that, first, the mathematical model of the experimental fuel rig is presented.
Next, an appropriate model-based fault detection filter is designed for the system.
Finally, the effectiveness of the designed fault detection filter is demonstrated with
the presented simulation results.
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• Chapter 7 investigates how the specific form of probabilistic data-driven meth-
ods, Bayesian Networks (BN)s, known as a Hybrid Dynamic Bayesian Network
(HDBN) can be applied to detect IFs in the experimental fuel rig system under
consideration. Initially, the knowledge of the model-based fault detection method
from Chapter 6 is used to construct the static BN. Next, a static BN is used to
detect and isolate IFs in the experimental fuel rig system. Then, the posterior
probabilities of the component failures give an indication of which components
have caused the symptoms observed (isolation). After that, the HDBN is designed
for the same system to detect and isolate IFs. HDBN can handle the temporal
dynamics and uncertainties in the system. The performance of the two networks
is then compared using sensitivity analysis.

• Chapter 8 introduces the Bayesian-based prediction method known as Gaussian
Process Regression (GPR) for IF prediction. The GPR model is an example of a
flexible, probabilistic, non-parametric model for prediction with uncertainty quan-
tification. It offers a range of advantages for modelling from data and has therefore
been used for dynamic systems and time-series modelling. This chapter also deals
with the issue of covariance function selection and presents a two-step process to
detect, isolate and predict IFs in the experimental fuel rig system. The proposed
method is then verified by using a simulation case study.

• Chapter 9 contains a summary, discussions and conclusions on the overall thesis
results along with ideas for possible further work.

• Appendix A: This appendix covers definition of Lipschitz nonlinearity.

• Appendix B: This appendix covers the Bayesian probability theory terms and def-
initions.

• Appendix C: This appendix covers the Gaussian and uniform distributions.

• Appendix D: This appendix covers Beta distribution.

• Appendix E: This appendix covers the limitation of the model (observer)-based
fault detection techniques as system complexity increases.

1.4 List of Publications
• Papers from Chapter 5:

– Sedighi, T., Foote, P. D., Sydor, P. (2017). Feed-forward Observer-based
Intermittent Fault Detection, CIRP Journal of Manufacturing Science and
Technology, 17, 10-17.

– Sedighi, T., Foote P. D., and Khan, S. (2014). The Performance of Observer-
based Residuals for Detecting Intermittent Faults: the Limitations, Procedia
CIRP, 22,65–70.

– Sedighi, T., Phillips P. and Foote P. D. (2013). Model-based Intermittent
Fault Detection, Procedia CIRP,11,68−73.
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• Paper from Chapter 6:

– Sedighi, T., Foote P. D., and Khan, S. (2015). Intermittent Fault Detection
on an Experimental Aircraft Fuel Rig: Reduce the NFF Rate, Proceeding of
the International Conference on System and Control, ICSC’2015

• Papers from Chapter 7:

– Naghshband, S. N., Varga, L., Purvis, A., McWilliam, R., Minisci, E., Vasile,
M., Troffaes, M., Sedighi, T., Weisi, G., Manley, E., Jones, D. H. (2020). A
Review of Methods to Study Resilience of Complex Engineering and Engi-
neered systems, IEEE Access.

– Sedighi, T. (2019). Using Dynamic and Hybrid Bayesian Network for De-
cision Making, International Journal of Strategic Engineering (IJOSE), 2,
13.

– Daneshkhah, A., Hosseinian-Far, A., Chatrabgoun, O., Sedighi, T., and
Farsi, M. (2018) . Probabilistic Modeling of Financial Uncertainties, In-
ternational Journal of Organizational and Collective Intelligence, 8, 1-11.

– Daneshkhah, A., Hosseinian-Far, A., Sedighi, T., and Farsi, M. (2017). Prior
Elicitation and Evaluation of Imprecise Judgements for Bayesian Analysis of
System Reliability, Strategic Systems Engineering for Cloud Computing and
Big Data Analytic, 63-79.

– Farsi, M., Hosseinian-Far, A., Daneshkhah, A., and Sedighi, T. (2017).
Mathematical and Computational Modelling Frameworks for Integrated Sus-
tainability Assessment, Strategic Systems Engineering for Cloud Computing
and Big Data Analytic, 3-27.

29



CHAPTER 1: INTRODUCTION

Thesis

Introduction

Model-based

Introduction to the application system

References

Chapter 1

Chapter 2

Chapter 4

Appendices

Introduction

Methodology
Chapter 3

Chapter 5

Data-driven based

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Literature survey

Model (observer)-based intermittent

fault detection 

Model (observer)-based intermittent fault 

detection application

Bayesian network-based intermittent 

fault detection

Gaussian process regression- based

 intermittent fault prediction

Conclusions and

future work

(Machine learning method)

Machine learning method)(

Figure 1.3: Thesis Structure.

30



Chapter 2

Literature Survey

2.1 Introduction
It is essential in the early stage of this thesis to explain and identify available tech-

niques for the main purpose of this research, the intermittent fault detection, isolation
and prediction to reduce the NFF rate, to substantiate the appropriateness of the chosen
methods.

Hence, in this chapter, a broad overview of the current methodologies and techniques
in the field of fault detection and prediction is presented instead of an in-depth study of
a specific method.

This chapter is organized as follows: an introduction to the machine learning and arti-
ficial intelligent techniques in fault detection and prediction are given in 2.2 Intermittent
fault is briefly introduced in Section 2.3. . Then the current fault detection and predic-
tion methods are then addressed in Sections 2.4- 2.5 respectively while the discussions
and conclusions are given in Section 2.6.

2.2 Machine learning and artificial intelligent
Machine learning (ML) tools are very important methods for fault detection and pre-

diction in complex systems with huge amount of information and data because these
methods are able to process many data and are engine of decision-making support for
fault diagnosis. The most important machine learning techniques between the available
methods are Support Vector Machine (SVM), Artificial Neural Network (ANN), Deci-
sion Trees (DT), Bayesian Network (BN) (Lo et al., 2019).

2.2.1 Support vector machine
Support vector machine is a new computational learning technique on the statistical

theory. Because of it’s great generalization capability, SVM becomes more attractive
than other traditional techniques such as neural network in machine learning. In the fault
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diagnosis problem, this method is used for understanding and classification of specific
patterns from the signal, based on the fault occurrence in the system (Widodo & Yang,
2007).

2.2.2 Artificial neural network
Artificial neural networks are inspired from biological neural networks of the human

brains (Haykin & Network, 2004). In the modelling of artificial neural networks, knowl-
edge are introduced as numeric values which are known as weights. Weights are then
used to build the relationships between the input and the output parameters of the sys-
tem under investigation. The most frequently used ANN is the Multilayer Perception
(MLP) method. In this method which is a typical back propagation ANN, there are an
input layer, hidden layer and an output layer. The MLP is normally trained by the back
propagation of errors between targeted outputs and the obtained outputs from the ANN
by using gradient descent or conjugate gradient algorithms (Mekki et al., 2016). These
errors are then used to detect the faults in the physical system.

2.2.3 Decision trees
A Decision Tree (DT) is a diagram or chart which is used to explain a set of actions

with an statistical probability and is very papular in the online fault detection and isola-
tion applications and is a rule based method. Each branch of the decision tree performs
a possible decision, outcome, or reaction. The farthest branches on the tree shows the
final outcomes (Samantaray, 2009).

2.2.4 Bayesian network
BN also is known as probability network or Bayesian Belief Network (BBN) is the

tool to estimate certainties of events that are unobservable or costly to observe where
evidence/information are given (Lou et al., 2020). BN is explained in more details in
section (2.4.4).

2.3 Intermittent fault
Fault in a system is an external input that causes a deviation from the normal be-

haviour of the system (Baghernezhad & Khorasani, 2016). Faults can occur in the actu-
ators, process components or the sensors as shown in Figure (2.3), and are categorized
accordingly (Witczak, 2003). Each of these faults and their effects is briefly described
below.

Component faults
Component faults appear in the components of the system. These faults change the
physical parameters of the system which results in a change of its dynamical properties
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Figure 2.1: Fault types.

consecutively. Wear and tear, ageing of components, etc. are usually the ordinary rea-
sons for component faults. Leakages in tanks, breakages or cracks in gearbox system,
change in friction due to lubricant deterioration are some example of these faults. Since
component faults may result in irregularity and instability of the operation, it is very
valuable to detect these faults (Li & Xu, 2010; Armaou & Demetriou, 2008; Moraes
et al., 2006).

Actuator faults
To transform control signals into suitable actuation signals such as torques and forces
to drive the system, actuators are needed and a fault in an actuator may cause greater
energy usage. Hence, it is very important to detect actuator faults. Stuck-up of control
valves, faults in pumps, motors etc. are examples of these faults (Li & Yang, 2016; Ar-
maou & Demetriou, 2008; Theilliol et al., 1998).

Sensor faults
In a system which is a closed loop, the measurements are usually obtained by sensors.
These measurements are then used to set up the control inputs. Therefore, any fault
in sensors may cause degradation in the performance (loss of accuracy) of the system.
Hence, it is very valuable to detect these faults. Bias, drift, loss of accuracy in the per-
formance, sensor freezing and calibration error are some examples of these faults (Wang
& Song, 2014; Sharma et al., 2010; Wang & Xiao, 2004).

Faults can also be categorized based on how these are modelled into:

• Additive faults: where the faults are defined as fictive inputs which act on the
system the same as any unknown external unknown inputs (disturbances) (Zhang
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& Basseville, 2014; Yang & Stoustrup, 2000).

• Multiplicative faults: often describe systems with parametric faults (i.e., abnormal
variations of some model parameters)(Rotondo et al., 2016; Ferdowsi & Jagan-
nathan, 2013; Abdelghani & Friswell, 2007)

Actuator and sensor faults are more easily modelled as additive faults, whereas compo-
nent faults are modelled as multiplicative faults (Boulkroune et al., 2011; Ferdowsi &
Jagannathan, 2011).

Furthermore, faults are also classified based on whether they have grown slowly dur-
ing the operation of a system (incipient fault) (Parlangeli et al., 2007); arisen suddenly
like a step change as a result of a sudden breakage (abrupt faults) (Ukil & Zivanovic,
2015); or develop in discrete intervals assigning to component degradation or unknown
system interactions (intermittent faults) (De Kleer, 2009).

Incipient faults develop gradually and causing degradation of equipment. Therefore,
their gently changing performance makes it hard to detect them (Parlangeli et al., 2007).

Abrupt faults have more serious influence and may cause damage to equipment.
However, these faults are straightforward to detect (Ukil & Zivanovic, 2015).

Intermittent fault

An intermittent fault is defined as one which persists in a system for a limited time,
and then a system recovers from the intermittent fault and can perform as before without
going through any maintenance actions. Intermittent faults are difficult to diagnose and
usually are repeating (De Kleer, 2009). Hence, intermittent fault puts an ever-increasing
challenge in the maintenance of electronic, mechanical and hydraulic equipment (Ah-
mad, 2017). An electronic circuit with loose solder joints subjected to a vibration that
causes intermittent fault (open circuit) is an example of these faults (Cai et al., 2016;
Kim, 2014; Incarbone et al., 2014).

When the persistent fault appears in a system it will not disappear and may cause a
major breakdown to the systems operation. Also, while the transient fault appears in the
system it will be disappear shortly and it is very less likely to appear again. However,
unlike these types of faults, the intermittent faults will appear as a set of discrete intervals
in the system and if left unattached it may get longer in duration and larger in amplitude
(Khan et al., 2014a).

Based on these definitions, intermittent fault can be modelled as a combination of
impulses at discrete intervals:

fi(t) =



dd1 for t0 ≤ t1
dd2 for t1 ≤ t < t2
dd3 for t2 ≤ t < t3

...
ddn−1 for tn−2 ≤ t < tn−1

ddn for tn−1 ≤ t < tn

(2.1)

where ddi =Ai−Ai−1 for (i= 1, · · · ,n), are constants and t indicates the time (see Figure
2.2).

34



CHAPTER 2: LITERATURE SURVEY

Time
0

Amplitude

Dynamic of the Intermittent Fault

A1

A0

A2

A3

t 0

t1
t 2 t3 t4

t 5
t 6

Figure 2.2: Intermittent fault dynamic.

In the real world, the intervals between the intermittent faults, the duration of each
interval and the amplitudes are unknown like any other faults.

However, the intermittent fault typically tends to worsen with time, until it eventually
becomes substantial enough that it can be detected with conventional test equipment’s.
Hence, developing the capability for early detection and isolation of the intermittent
fault is very valuable (Zhao et al., 2009).

2.4 Fault detection methods

For years, to assurance normal functionality of the system, different methods have
been introduced for detecting possible issues in dynamic systems. The designer selects
one out of several Fault Detection (FD) methods, based on the specifications of the
system and the nature of possible faults (Basseville et al., 2000). Some methods are
more suitable for off-line FD test. One example is introduced in (Liberatore et al., 2006;
Chen & Patton, 1999) in which the off-line FD method is used for health monitoring of
mechanical structures, such as bridges. Other methods aim at detecting faults on-line
(Yan et al., 2017).
Fault detection methods have several overlapping taxonomies. Some are more oriented
toward control engineering approach, other to mathematical, statistical and AI approach.

Interesting divisions are described in (Miljkovic, 2011) and the references therein as
follows Figure (2.3):

• Model-based methods

• Experience-based methods

• Data driven-based or data-driven methods
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2.4.1 Model-based methods
Among all the methods for online fault diagnosis, one of the particular interesting

techniques is the model-based FD approach. This method is very effective in detecting
sensor, actuator and component faults in the system (Chen & Patton, 2012; Lee et al.,
2003; Venkatasubramanian et al., 2003).
The considerable benefit of the model-based FD approaches is that additional hardware
components are not needed to recognize the FD algorithm and a model-based FD algo-
rithm can be achieved via software on a process control computer. In many cases, the
measurements which are needed to control the action are also adequate for the FD algo-
rithm, hence, additional sensors are not needed to be installed. Analytical redundancy
makes use of a mathematical model of the system under investigation and it is therefore
often referred to as model-based approach for fault diagnosis (Basseville, 1997).
Moreover, the model-based FD techniques, make use of analytical models for a residual
generation. These can broadly be classified into (Basseville, 1997):

• Parity space FD

• Parameter identification based FD

• Observer-based FD.

Parity space approach

In this approach, a set of accurately modified system equations in terms of the transfer
function (also called parity relations) is derived according to the measured signals from
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the process. These parity relations decouple the residuals from the system states and also
from each other. Then the inconsistency in the parity relations indicates the presence of
fault (Ye et al., 2004).

Parameter identification-based approach

In this approach, fault detection is performed according to the on-line parameter es-
timation. The information of the fault can be obtained by comparing the estimated pa-
rameter with the nominal process parameter. Any difference between the two indicates
fault (Wang et al., 2010).

Observer-based approach

The observer-based technique is one of the mostly applied model-based schemes for
detecting the faults in a system (Abid, 2010). Observer-based methods rely on the ability
to produce an exact model of the system without influence from unknown inputs (exter-
nal disturbances). The difference between the outputs of the model and the real world
system, often called the observer-based residual, which is used to assess the condition
of the real world system as shown in Figure (2.4).

Unknown Input Observers (UIO)s (Zhang et al., 2015), Luemberger/high gain ob-
servers (Prasov & Khalil, 2012), feed-forward observers (Ruderman, 2013), sliding
mode observers (Rı́os et al., 2017) and Kalman filters (Barrau & Bonnabel, 2016) are a
few of the many types of observers, also known as state estimators, and can be used as a
residual generation function for detection and isolation of faults (Garcia-Alvarez et al.,
2011; Li & Jaimoukha, 2009).

When the system is performing exactly as modelled then the observer-based residual
is equal to zero and any significant deviation from this will be due to a fault in the sys-
tem. However, in practice, this will not be the case due to the noise, disturbances, and
modelling errors which are accruing over time and the cumulative effect of modelling
errors can lead to a large difference between the model and system.
Hence, the designed observer-based FD filter should be robust against disturbances and
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measurement noises which led the researchers to the area of robust Fault Detection and
Isolation (FDI) algorithms. First, Frank (Schneider & Frank, 1996) used the robust
observer-based fault detection schemes for instrument faults. Later robust Unknown
Input Observers (UIO) were introduced in (Guang-Ren & Patton, 2001) and then con-
siderable contribution was made.

Note that in model-based FD, unknown inputs or disturbances are types of uncertainty
to the system.

2.4.2 Unknown input observers:
Finding systematic design method for systems subjected to unknown disturbances

and model uncertainties has been proven to be difficult, (Chen & Patton, 1999). In
(Xuhui & Ziyi, 2012), the Nonlinear Unknown Input Observer (NUIO) is established
by radial basis function neural network to guarantee the stability of model free adaptive
control with the bounded disturbances where (Martinez-Gardea et al., 2015) presents a
nonlinear observer design for both linear and nonlinear systems subject to disturbances
for a laboratory antilock braking system but not experiencing faults.
The main idea of UIO/NUIO was to make the residual signal decoupled of the external
unknown inputs (Zhang et al., 2018b; Yan et al., 2016).

It was later observed that the existence condition for the unknown input observer
are very hard, which were then relaxed by introducing the so-called matrix principle
approach. In this approach, attempts were made to make the residual signal insensitive
to unknown inputs instead of decoupling of estimated states from the unknown inputs
(Ahmadizadeh et al., 2013).

Some recent results aiming at this goal for linear time invariant systems are reported.
See (Guo & Xu, 2015; Qning et al., 2014; Liu & Yang, 2005; Ding & Ding, 2000) and
the references therein.

Aldeen & Sharma (2008) by decoupling the faults and unknown disturbances through
some state and output transformation, develop an observer which can be used to estimate
the unknown input (disturbance) state and fault signals simultaneously.

Later, (Sharma & Aldeen, 2011) present a fault and unknown input reconstruction
technique based on utilization of a network of two interconnected sliding-mode ob-
servers.

By using the inherent features of sliding-mode observers, (Yan & Edwards, 2008)
propose a fault reconstruction scheme which can be implemented online for a class of
nonlinear systems with uncertain parameters.

Moreover, (Castillo et al., 2012) propose a robust FDI system by using a state estima-
tor which is capable of dealing with both bounded uncertainties and parameters while
(Bejarano et al., 2011) address the state observation problem for a class of switched
linear systems with unknown inputs.

Furthermore, (Gao & Lin, 2012) investigate the problem of active fault tolerant con-
trol for a reusable launch vehicle with an actuator fault using both adaptive and sliding-
mode techniques and (Zhu & Yang, 2013) developed a new fault reconstruction method
based on a high-order high-gain sliding-mode observer to achieve the FDI objective.

In (Eddine & Belkhiat, 2015) the FDI problem has been solved by minimization of
the norm of the Hin f and maximization of the Hindex for a class of switched linear systems
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subject to sensor faults and bounded unknown inputs with selecting a suitable trade off
between the robustness to disturbances and the robustness to sensor faults.
Moreover, for observer-based FDI, many design methods have been developed under
the assumption that the observer matching condition is satisfied, (Chen & Chowdhury,
2010; Zhang et al., 2010; Alwi et al., 2009; Yan & Edwards, 2008; Edwards & Tan,
2006).

For instance, (Alwi et al., 2009) propose a design method of sliding-mode observers
for sensor fault reconstruction under the assumption that the observer matching condi-
tion is satisfied.

Then, for linear parameter varying systems, (Alwi & Marcos, 2012) present observer
schemes for actuator sensor fault reconstruction by using a virtual system comprising
the system matrix and a fixed input disturbance matrix while (Said et al., 2013) presents
structural information-based residual generation for industrial application.

However, in systems subject to faults and disturbances, since both disturbances and
faults contribute to the residual generated by the FD observer, some small faults cannot
be detected by a pre-designed threshold (Andrade et al., 2016).

A perfect or ideal FD observer should minimize the maximal undetectable fault size
in the worst case as its goal. However, this criterion is not adopted for FD observer de-
sign directly. The philosophy behind this criterion is that a FD observer should be robust
to disturbances but sensitive to faults, (Liu & Yang, 2005; Ding & Ding, 2000). They
demonstrate how the matching rank method can be used to select the most appropriate
matching that leads to residual computational sequences.

Moreover, by transforming the system into two subsystems, (Chen & Chowdhury,
2010) achieve the purpose of early detection of incipient faults based on sliding-mode
observers .

Recently, the issue of the observer matching condition was discussed in some existing
literature. For example, (Raoufi & Zinober, 2010) present a scheme to design robust
sliding-mode observers to satisfy the observer matching condition by using linear matrix
inequality optimization.

Later (Ng et al., 2012) present a disturbance decoupled fault reconstruction scheme
using cascaded sliding-mode observers when the observer matching condition is not
satisfied.

(Liu & Zhang, 2014) also deals with the estimation of states for a class of linear
systems while the bounded uncertainty exists in the both states and outputs.

Furthermore, all the discussions in, (Alwi & Marcos, 2012; Chen & Chowdhury,
2010; Alwi et al., 2009), are carried out under the assumption that the observer matching
condition is satisfied.

Observer-based residual

.
The FD consists essentially of two steps (Wan et al., 2016; Wang et al., 2009),

• Residual generation

• Residual evaluation
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The purpose of the first step is to generate a signal, the residual, which is supposed to be
nonzero in the presence of a fault and zero otherwise. However, the residual is almost
always nonzero due to unknown inputs (disturbances) and model perturbations, even if
there is no fault (Li & Jaimoukha, 2009; Sedighi et al., 2013).
The purpose of the second step of the FD algorithm is thus to evaluate the residual and
draw conclusions on the presence of a fault. This is done by comparing some function
of the residual to a threshold (Wan et al., 2016; Khan et al., 2008).

Threshold

The threshold is obtained based on the residual dynamics in the fault-free case. Hence
the value of threshold gives an explicit bound on the fault-free case and thus provides a
valuable guideline for robust threshold selection (Wang & Wang, 2007; Al-Salami et al.,
2010; Puig et al., 2012).

There are different methods to define threshold such as fixed threshold design (Bali-
gar et al., 2006) and adaptive threshold design (Abdo et al., 2011a). The adaptive thresh-
old is related to the main factors including system input, output, unknown inputs (dis-
turbance) and parameters drifting over time (Zhang et al., 2018b; Abdo et al., 2011b;
Al-Salami et al., 2010).

2.4.3 Experience-based methods

In recent time there is a trend towards experience-based and artificial intelligence
methods. It presents an expert system that uses a combination of object-oriented mod-
elling, rules, and semantic networks to deal with the most common faults, such as bias,
drift, scaling, and dropout, as well as system faults, (Shen & Chouchoulas, 2000; Jiang
& Maskell, 2015).

In (Cecati, 2015) the current experience/knowledge-based techniques for the fault de-
tection has been demonstrated. Although, these approaches are very valuable and useful
when the experiences are complete, but in the case of intermittent fault detection cannot
be accurate because the knowledge about IF characteristics usually are not complete.

One important characteristic this method relies on is the experience obtained. Expe-
rience should be complete and adequate to cover all possible status of failures. This can
be crucial to obtain for new systems.

Furthermore, for systems that need safety, such as nuclear plants or aircraft, there
can be a dearth of knowledge regarding some extraordinary events due to their rare
occurrence.

Hence, data-driven based reasoning can be beneficial when the understanding of the
system is poor but knowledge of previous cases and actions taken is acceptable (Magoun,
2000).
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2.4.4 Data driven-based methods (model-free based methods)
One of the promising method for fault detection in complex systems which are intro-

duced by linear and nonlinear models is the model-free or data-driven method. One of
the characteristic of this method is that the parameters of the system under investigation
may be unknown (lack of experience or information).

In general, data-driven fault detection systems rely on historical data known about
previous operations taken for specific fault symptoms. So this method uses captured
experience to solve new problems (Zhao et al., 2018; Jiang et al., 2014; Naik, 2010).

Different data-driven methods has been introduced such as Principal Component
Analysis (PCA) (Abdi & Williams, 2010), partial least squares (PLS)(Hair Jr et al.,
2016; Barker & Rayens, 2003), neural network (NN) (Kalchbrenner et al., 2014) and
BN (Cheng & Greiner, 2001).

Among all of these methods, BN is one of the data-driven based reasoning methods
which have been successfully used to assist problem solving in a wide range of disci-
plines including information technology, engineering, medicine, and more recently bi-
ology and ecology. BNs are particularly useful for diverse problems of varying size and
complexity, where uncertainties are inherent in the system (Nannapaneni et al., 2016;
Marcot, 2012; Deng, 2002). Such uncertainties may occur from:

• The natural variability,

• Measurement error,

• Model error,

• Hypothesis testing error,

• Error in inference or

• Any optimization approximation,

The established theory of probability makes BN an appropriate method (engine) for
reasoning and decision making under such uncertainty (Hosseini et al., 2019).

(Rohmer, 2020) presents the uncertainties in structure and parameters of BNs. The
author suggested that for decreasing the uncertainty representation and propagation in
BNs alternative frameworks can be compare including approaches using probabilities,
or interval-valued or Dempster–Shafer structures, possibility distributions, Fuzzy sets.

Bayesian network

BN is well established as a representation of relations among a set of random vari-
ables that are connected by direct edges and given Conditional Probability Table (CPT)
at each variable (Friedman & Koller, 2003).

The most suitable method used to solve the network can depend on the size of the
network, the type and amount of data available to populate the network, and the type of
information is needed to obtain from the network.

The choice of the BN representation depends on the type of variables which are deal-
ing with. In general, BNs may categorize based on their variables dependency on time
as (Cheng & Greiner, 2001):
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Conditional probability Pr(B|A)

Joint probability Pr(A,B)=Pr(A|B).Pr(B)

Figure 2.5: Bayesian network probabilities.

• Static BNs (SBN)s: all the variables are discrete.

• Dynamic BNs (DBN)s: all the variables are continuous (time-dependent).

• Hybrid DBNs (HDBN)s: variables are the combination of discrete and continuous.

However, the wrong set of variables can cause a smearing effect or give rise to an incor-
rect solution.

Causal relations in BNs are represented as a directed edge/arc/ link between variables
(nodes), leading from the cause variable to the effect variable (Figure 2.5).

Nodes and links create the qualitative part of the network, i.e. its structure, while the
quantitative part is represented by the probability associated with the variables.

To construct a BN two main tasks need to be done:

1) Qualitative task: find the Direct Acyclic Graphs (DAG)s with random variables
known as nodes (La & Vuong, 2019; Sedighi & Varga, 2019),

2) Quantitative task: assign the prior probabilities to each random variable based
on measurements, human experts, textbooks and any other reliable information
(Sedighi, 2019a; Wan & Freitas, 2015).

Qualitative task: structure or graphs

BBNs or BNs are probabilistic graphical models represented as DAG, G = (Y,L).
These are used in many areas where reasoning under uncertainty is needed. The net-
works are constructed of nodes (Y ), representing random variables X with n states,
(Xi = X1, · · · ,Xn), of interest (i.e., the occurrence of an event or a component of a sys-
tem), and links (L) joining the nodes, representing causal relations among the variables.
The only constraint on the arcs allowed in a BN is that there must not be any directed
cycles: it cannot return to a node simply by following directed arcs. Such networks are
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Figure 2.6: Bayesian network variables.

called directed acyclic graphs, or simply dags. The direct causal relation between two
components shows that the corresponding components will have a great influence on the
system rather than others (Cai et al., 2018; Jensen & Nielsen, 2007).

There are several steps that a knowledge engineer must undertake when building a
BN graph (bou, n.d.; Kwoh & Gillies, 1996) (Figure 2.6):

• Identify hypothesis variables/nodes

• Identify mediating variables (Mediation is introduced to have more refined net-
work model of the domain)

• Identify information/evidence variables/nodes

• Identify the direct links between variables/edges

• Specify CPTs or Conditional Probability Distributions (CPD)s for each variable

The edges or casual represent a direct link between variables, leading from the parent
(cause) variable to the child (effect) variable (Figure 2.5).

Quantitative task: assigning probabilities

Each node has a finite number of comprehensive and mutually exclusive states. More-
over, every node with a direct ancestor (parent) is combined with a CPT that hold the
probability of each state of the node for any possible combination of the states of its
parents (Cai et al., 2018; Wang & Druzdzel, 2013).

For the nodes with no parents (root nodes), the CPT indicates the probability of being
in each of the states of the associated variable (Wang & Druzdzel, 2013).
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In general, BNs assigning prior probabilities to the variables based on the informa-
tion, before any data is collected. In case of not enough information, all possible values
of the parameters have equal prior probabilities (Nguyen-Trang & Vovan, 2017).

When the states of some of the variables in a network are known, it is possible to
calculate the updated probability, of the remaining unknown variables, given the new
evidence. Assessing this probability, known as posterior probability, is the main task of
BN.

However, it is important to note that in the real-world their process is not so simple
because assigning the prior probability is not straight-forward (Macci, 1996).

BN learning could be the structure learning (links), parameters learning or the com-
bination of both.

Structural learning is much harder problem compared to the parameter learning since
the number of candidate network grows super-exponentially when the number of vari-
ables increases (Chickering, 2013).
Note that to specify the graph structure it is needed to specify the size and type of the
nodes. The nodes are either discrete where their size is the number of possible values
each node can take on (binary) or continuous which may be presented as a vector and its
size is the length of the vector.

The physical systems in the real world, commonly, comprises both continuous and
discrete quantities, and to introduce the time variable in the framework of a probabilistic
model there are two options:

• Disceretize the continuous variables into several discrete states. This approach
can cause several problems including (Ghanmi et al., 2011):

– Increasing the number of defined intervals in discretization to achieve more
accuracy which can cause a heavy cost of computational and complexity.

– Characteristic of the continuous variable is fundamentally different from
those of a discrete variable (loss of generality).

• Using DBN or HDBN:

– DBNs/HDBNs extend BNs from static domains into dynamic domains which
are more reasonable in describing the random changes of a dynamic process.

Dynamic Bayesian network

BNs that models sequences of variables are called DBNs which consists of a limited
number of BNs, each of which corresponds to a particular time intervals. The connec-
tions between adjacent BNs represent how the state of domain evolve over time (Brand-
herm & Jameson, 2004).
For example, (Brandherm & Jameson, 2004) assumed that the system states can be rep-
resented by a set of variables, Xi, each of these variables can be either continuous or
discrete. The continuous variables are partitioned into two subsets: one of the subsets
is the variables that are measurements, i.e., their value is known to us; the remaining
subset is unobserved variables.
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Figure 2.7: Dynamic Bayesian network representing a feedback loop.

Hence, the system is modelled as evolving in discrete time steps.
In general, there are two main assumptions for constructing DBNs (Murphy & Rus-

sell, 2002):

1) Network structure will not change over time, thus a DBN is constructed by an
unrolling two-slice temporal BN (2TBN).

2) The DBN satisfies the Markov property (see Appendix B): given state at time t,
the state of a variable at time t +1 is independent of the states prior to time t ( see
Appendix B, equation B.5).

In Figure (2.7), node A at t1 affects node B at current time slice t1 , but is in turn
affected by node B in the next time slice, t2. This presents a feedback loop, since A
affects B and B affects A (at time t2)(Zhang et al., 2006). In general the DBNs evolves
(Iamsumang, 2015):

• Prior probability, Pr(X0), at t = 0.

• Transition probability distribution, Pr(Xit |Xit−1). The transition probabilities for
any variable are determined completely by the value of the variables in the cur-
rent, t, and previous, t−1, time steps, Monte Carlo Markov Chain (MCMC), (see
Appendix B). This Markov assumption requires to model explicitly any variables,
such as failures, that induce long term correlations on the system state.

• Observed probability likelihood, Pr(XEt |Xt).

where t indicates the time.
To build a DBN it is necessary to insert a certain number of regression nodes repre-

senting the values of given variables at previous time instances where nodes are repeated
at each time-slice. The number of regressions for each variable depends on the particular
dynamic system considered (Iamsumang, 2015).

In the presence of discrete parents, the model is known as HDBN.
In HDBN if a given variable is continuous the node is also continuous and the prob-

ability distribution is usually Gaussian. If the variable is discrete then the node is also
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a discrete and the probability is uniformly distributed, unless other information is avail-
able (Li et al., 2012).

In case of failure presence, variables that represent failure nodes of the system are
typically boolean, the two states representing the normal and fault behaviour respectively
(Li et al., 2012).

Bayesian network approaches for intermittent fault detection and isolation

In (Cai et al., 2018) and Cai et al. (2017), an specific data-driven methods, BNs, has
been reviewed for fault diagnosis. In their work they have presented the fault diagno-
sis modelling using BNs and reviewed different methods for each step. The general
algorithms for fault detection presented in this paper are organized as: BN constructing
including structure and parameter modelling, BN inference, fault identification, valida-
tion and verification.

Fault diagnosis in a qualitative sense is the reasoning of the cause-effect or fault-
symptom relations and in almost all cases single symptom will be caused by several
faults, while a single fault will exhibit several symptoms (Azarian, 2009).

Every fault and even symptom is modelled by a random variable in the network with
a probability distribution.

In fault diagnosis application, variable, X, may be interpreted as the hypotheses of
fault and evidence, XE , is the observed symptoms.

When observed symptoms (evidence) are input to the network, probabilities of every
fault are computed according to the Baye’s rule equations in Appendix B, (B.3 and
B.4). So, the ranking of different faults with the given symptoms and the eliminating of
potential fault candidates is possible (Cobb & Shenoy, 2012; Mori & Mahalec, 2016).

In general, there are two methods for Bayesian Network Fault Detection (BNFD)
(Cai et al., 2016) as follow:

• Model-based BNFD: This method is an alternative approach to the model-based
FD, where BN is adopted to diagnose the failure. The goal is to detect and localize
faulty components in the system. Hence, the model should incorporate structural
information about the system and mathematical modelling is such a representa-
tion. The performance of these methods will be greatly impaired when a poor
model is used. In model-based BNFD the main structure of BN comes from the
structure of the preliminary process model (Cai et al., 2016).

• Data-driven BNFD: In this method, the structure of BN learns from the data. How-
ever, the accuracy of the learned BN is largely affected by the ”richness” of the
data and the prior knowledge of the network order. The crucial step in data-driven
based BNFD process is to find the DAG (Yamaguchi et al., 2012).

A fault variable in belief state takes into consideration all the evidence available up to
the present time to determine a probability distribution of the considered fault. However,
in a simplistic network, the fault node influences all measurements.

The BNFD can be applied to localise multiple faulty components that are correlated
to exert a single symptom since it is the strength of BN (Gasse et al., 2014; Deng, 2002).
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2.5 Fault prediction methods

The increase of complex and expensive systems for use in intense environments has
resulted in new challenges in maintenance, planning, decision-making and monitoring
which results in increasing the uncertainties in the system fault prediction techniques.

Moreover, online system measurements may occur on various time scales from each
other or only be available in specific system configurations (Lorton et al., 2013; Ebden
et al., 2008; Williams & Rasmussen, 2006).

Hence, it is important that a prognosis methodology considering the uncertainty com-
ing from many sources such as variability, information uncertainty, and model uncer-
tainty.

In most cases, prognosis about the future is based on the diagnosis of the current
state; therefore it should account for uncertainty in diagnosis (i.e. uncertainty in damage
probability, detection, isolation, and quantification). (González et al., 2013; Ebden et al.,
2008; Williams & Rasmussen, 2006). It must be known that a key distinction between
a system model capable of diagnosis and one capable of prognosis is that a prognostic
model can estimate the evolution of damage in the future while a diagnosis model only
needs the ability to infer the current state of damage. Diagnostic procedures based on
fault signatures or pattern recognition are examples of this. While they may be able to
detect and isolate damage, they do not necessarily have any ability to model progressive
damage mechanisms such as crack growth, wear, and corrosion (Lefebvre, 2014; Ebden
et al., 2008; Williams & Rasmussen, 2006).

Hence, on-line fault prognosis of a system is a very essential part of modern control
and supervision system (Lin & Li, 2006), and one of the challenges of prognosis is de-
veloping accurate and comprehensive physics of failure models (Chookah et al., 2011).
These damage mechanisms are complex, varying with system design and dynamics, and
can interact in many ways.

There are different prognosis techniques which can be classified as:

• Statistical methods include statistical process control (Vlasselaer & Meert, 2012),
logistic regression (Pampel, 2000), survival models (Martinussen & Scheike, 2006),
and stochastic process models (Klimenko et al., 2015).,

• Model-based methods using system models to estimate Remaining Useful Life
(RUL) or other relevant metrics (Ebden et al., 2008; Williams & Rasmussen,
2006). Such methods rely on accurate physics-based models for prediction (Lor-
ton et al., 2013). These include physical failure models (Tinga, 2010), filtering
models (Nguang & Lin, 1999), and statistical models (Jablonski, 1985).

• Data-driven methods or data driven-based methods consist of machine learning
methods (support vector machines (Djeffal et al., 2017), relevant vector machines
(Joachims, 2005), Neural Networks (Wang & Huang, 2001)) and graphical models
such as DBNs (Cai et al., 2016), Hidden Markov Models (HMM)s (Elliott et al.,
2008) and Gaussian Process (GP) (Wang et al., 2005).

• Hybrid methods , such as a combination of data-driven and model-based ap-
proaches (Skima et al., 2016; Ebden et al., 2008; Williams & Rasmussen, 2006)).
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In the machine learning context, supervised learning is concerned with inferring the
values of one or more outputs, or response variables, for a given set of inputs that have
not yet been observed, or predictor variables (Lewis & Catlett, 1994).

These predictions are based on the training samples of previously solved cases de-
pending on whether the output is continuous or discrete.

Traditional approaches to solving this kind of problem usually consist of parametric
models, on which the behaviour of data is described by a previously defined model and
the parameters of this model are learned from the training data (Vapnik, 1998). More-
over, many of the classical machine learning algorithms fit the following pattern while a
training set of sample from some unknown distribution are given (Murphy, 2012),

• To find the single best-fit model for the data, solve a convex optimization problem,
and

• To make the best-guess predictions for future test input points, use this estimated
model.

where a convex optimization is a problem of minimizing a real-valued function defined
on an interval (convex) over the convex set (Murphy, 2012).
By adjusting these parameters, it is possible to fit the model to the data. Once this is
done, it should be straightforward to use the model and predict the output if new inputs
are provided.

Both linear (Hahne et al., 2014) and nonlinear (Sadler, 1975) regression techniques
have been extensively used for this purpose, using different estimation techniques to fit
the data, namely several different flavors of the least-squares algorithms (Zhang et al.,
2011), ridge regression (Ming, 2014), etc.

Despite all the advantages of these traditional regression techniques, in all of them, it
is necessary to make assumptions about the smoothness of the model.

While incorporating prior knowledge in the model that correctly describes the evo-
lution of the available data can be of great value, sometimes this information is just not
available. And using a model that does not correctly characterizes the data is likely to
lead to poor results (Ostrom, 2010).

2.5.1 Gaussian process regression for prognosis
Unlike classical learning algorithm, Bayesian algorithms do not attempt to identify

best-fit models of the data (or similarly, make best-guess predictions for new test in-
puts). Instead, they compute a posterior distribution over models (or similarly, compute
posterior predictive distributions for new test inputs). These distributions provide a use-
ful way to quantify the uncertainty in model estimates, and to exploit the knowledge of
this uncertainty to make more robust predictions on new test points (Doshi-Velez, 2012;
Ebden et al., 2008; Williams & Rasmussen, 2006).

One of the Bayesian algorithms, Gaussian Process (GP), is by definition, a collection
of random variables with the property that the joint distribution of any of its sub-set is
joint Gaussian distribution. GPs are the powerful non-parametric technique with explicit
uncertainty models, that are mainly used in regression and classification problems (Wang
& Neal, 2012; Vanhatalo et al., 2009).
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Note that a clear distinction between a Gaussian distribution and a GP is that multi-
variate Gaussian distributions are useful for modelling finite collections of real-valued
variables because of their nice analytical properties (Ebden et al., 2008).

However, GPs are the extension of multivariate Gaussian to infinite-sized collections
of real valued variable (Wang et al., 2005). In particular, this extension allows to think
of GPs as distributions not just over random vectors but in fact distributions over random
functions.

In order to get an intuition for how GP work, consider a simple zero-mean GP
(Anilkumar, 1994; Ebden et al., 2008; Williams & Rasmussen, 2006),

f (x)∼ gp(0,k(x,x′)) (2.2)

defined for functions f : X → R. k(x,x′) represents the selected covariance function
which is explained in more details in Chapter 8.

2.6 Conclusions and discussions
This chapter introduced a short survey of literature in the field of intermittent fault

detection, isolation and prediction.
Research shows that early fault detection and prediction can minimize plant down-

time, extended equipment life, increase the safety and reduce manufacturing costs and
NFF. A number of issues must be considered when choosing particular fault detection
method. Most important are

• Type of failures,

• Description of process structure,

• Process dynamics,

• Available process signals,

• Process complexity,

• Available amount of process input-output data,

• Process suitability for description in terms of rules.

Among the available fault detection methods, model-based fault detection includes
process dynamics and nonmeasurable state variables (a set of the variable to describe
the mathematical states of dynamic systems), however (Zhu & Jin, 2016),

• Requires accurate models and is easier to apply for well-defined processes such as
electrical and mechanical than for thermal and chemical processes.

• These approaches are not well suited to handle uncertain systems. One solution is
to model the uncertainties as unknown inputs and used the prescribed approaches.
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• Another problem in these approaches is if the fault lies in the same subspace of
the disturbances, then upon decoupling the disturbances, the residual will also be
insensitive to a fault, which is not the objective of a detection filter. Moreover,
the existence conditions for decoupling the unknown inputs are quite strict, which
limits the use of these approaches.

• Moreover, designing an appropriate threshold to improve the fault detection mech-
anism is important. One author mentioned in this research presented the sensor’s
intermittent fault detection method for the class of uncertain linear systems. The
considered system is subjected to the parameter uncertainty and limited resolution
(Tao et al., 2015). They used the upper bound of the minimized error at each step
to detect the intermittent faults. However, the designed threshold cannot distin-
guish between the transient faults, measuring errors and intermittent faults that
may raise false/miss alarms.

How to deal with these problems is explained in details in Chapters 5 and 6 .

Furthermore, if the basic relationship between faults and symptoms is known in the
form of rules, experience (knowledge)-based methods are then the choice for the suc-
cessful fault detection. However, when a large number of process input-output data can
be obtained, but the process structure is unknown or too complex to be modelled, data-
driven-based methods are more appropriate.

In this chapter, several studies have been introduced that used data-driven-based FD.
One of the presented literature used the data-driven hoteling T2 statistic (T2 control
chart) method to detect the intermittent faults (Zhao et al., 2018). In their work to detect
permanent faults by using the historical data, they were able to improve the detectability,
however, for the intermittent fault detection, they need to derive sufficient conditions to
guarantee the detectability of intermittent faults. Moreover, in their designed method,
to detect the intermittent faults with small magnitude and short duration the optimal
window length should be equal to the time duration of the intermittent fault, otherwise,
they may miss the detection.

(Zhou et al., 2020) in their recent publication reviewed present techniques into diag-
nostics of IFs for dynamic systems while compared and discussed their strengths and
limitations. In their work they mentioned that the model-based IF detection is appro-
priate for systems with clear functional dependencies. However, when systems are very
complex, then a deep and fundamental understanding of the system becomes very diffi-
cult. Hence, the model-based methods can not make an accurate IF detection which limit
the application of model-based methods in real physical systems. The other considered
approaches in the filed of the IF detection in this research are the data-driven approaches
which have provided efficient solutions for IF detection in the complex industrial sys-
tems. This paper also claims that the current research in the field of IF detection needs
more development because there are many unsolved problems which needs to be an-
swered.

furthermore, (Lo et al., 2019) and (Cai et al., 2018) review applications of ML meth-
ods and different BNs in fault diagnosis respectively. These papers explain that although
that the ML approaches are quite useful in the field of fault detection and diagnosis but
a single ML method may not solves all the available issues in the fault diagnosis of a
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HDBN DBN SBN Model-
based

Knowledge-
based

Other
data-driven
based

Graphical Yes Yes Yes No Partly No
Solution Confi-
dence

Yes Yes No Partly Yes No

Nonlinearity Yes Yes Yes Yes Partly Partly
Complexity Yes Yes Yes Partly No Partly
Time-
dependence

Yes Yes No Yes Partly Partly

No discretization Yes Yes No Yes Partly Partly
Discrete variables Yes No Yes Yes Yes Yes
Data from differ-
ent sources

Yes Yes Yes No Partly No

Uncertainty Yes Yes Yes Partly No Partly
Feedback loop Yes Yes Yes Yes Partly Partly
Hypothesis
updating

Yes Yes Yes No Partly No

Table 2.1: Comparison of the hybrid dynamic Bayesian network method with others to
detect and isolate intermittent faults. In this table, HDBN indicates the hybrid dynamic
Bayesian network, DBN indicates the dynamic Bayesian network and SBN indicates the
static Bayesian network, (Zhou et al., 2020; Lo et al., 2019; Cai et al., 2018; Salmerón
et al., 2018; Cai et al., 2017)

physical system. However, some methods can complement other methods on an specific
system. A compression of different fault detection techniques has been demonstrated in
Table (2.1).

Moreover, the problem of intermittent fault detection for complex systems with a
combination of discrete and continuous variables is a crucial one, especially when the
system dynamics are not deterministic, all conditions of the system is not directly ob-
served, and the sensors are subject to noise and disturbance.

One of the possible solution to this task is proposed based on the framework of
HDBNs. This model contains both continuous variables representing the state of the
system and discrete variables representing discrete changes such as failures. It can also
model a variety of faults, including intermittent faults, burst faults, measurement errors,
and gradual drifts.

The characteristics of the HDBN method is presented in Table (2.1) compared with
other methods. The table is a compilation of commonly accepted characterization col-
lected from the literature.
In (Salmerón et al., 2018) the most important approaches for HDBN inference has been

demonstrated. The authors explain that how the presence of the time-dependent vari-
ables along with the increasing number of variables can add to the inference complexity
in complex dynamic systems which boost the need for approximate inference instead of
exact inference.
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This method along with some of these characteristics are presented in details in Chap-
ter 7.

The final objective in this research is related to the intermittent fault prediction. Dif-
ferent fault prediction methods have been discussed in this chapter, however, not many
of them have been developed to predict the intermittent fault in a complex dynamic
system.

In this thesis, the Gaussian Process Regression (GPR) method has been selected for
the intermittent fault prediction because GPR model is an example of a flexible, prob-
abilistic, nonparametric Bayesian model with uncertainty predictions. It offers a range
of advantages for modelling from data and has been therefore used for dynamic systems
identification and time-series modelling.

Moreover, a completely different approach is given by GPs, by neglecting the para-
metric model viewpoint and instead define a prior probability distribution over all pos-
sible functions directly.

The reasons for choosing GPR for intermittent fault prediction over other methods in
this thesis are summarised as:

• As Bayesian methods, GPR models allow one to quantify uncertainty in predic-
tions resulting not just from intrinsic noise but also the errors in the parameter
estimation procedure. Furthermore, many methods for model selection and hy-
perparameter selection in Bayesian methods are immediately applicable to GPs.

• GPR is non-parametric and hence can model essentially arbitrary functions of the
input points.

• GPR models provide a natural way to introduce kernels into a regression mod-
elling framework. By careful choice of kernels, GPR models can sometimes take
advantage of structure in the data.

Furthermore, in addition to their use in regression, GPs apply to integration, global opti-
mization, mixture-of-experts models, unsupervised learning models, and more. GPs do
also allow the data to speak very clearly about themselves. This method is explained in
depth in Chapter 8.

In the next chapter, the emphasis will be on the selected methodologies and solutions
presented in this research.
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Chapter 3

Methodology

3.1 Methodology and solutions
The work addressed in this thesis incorporates the development of the path to achiev-

ing the Intermittent Fault Detection and Prediction (IFDP) system capable of reliably
detecting and predicting intermittent faults as they occur and to classify the location of
the faults to aid in the maintenance of said systems. Hence, in order to achieve this,
it is necessary to develop various stages of modelling to eventually achieve the goal of
creating a robust IFDP filter (Figure 1.2). The sequence of development leading to this
goal is detailed in the list below:

(a) Develop a mathematical presentation of the intermittent fault.

(b) Design two novel observers, NUI and feed-forward observers, for fault detection
in general nonlinear systems (not only Lipschitz nonlinear systems, see Appendix
A) with unmatched uncertainties where the uncertainties (unknown inputs) are
not in the same channel as outputs necessarily. The designed observers are more
sensitive to the uncertainties (unknown inputs) and consequently more robust to
the intermittent faults. The designed observers have less limitations compare to
other nonlinear observers and will give more degrees of freedom to the designer.
As a result, more systems are capable of using these observers for robust fault
detection.

(c) Create the nonlinear mathematical model of the systems under consideration in
Matlab and validate them against the real system (nonlinear system modelling).

(d) Develop the state-space equations to represent the main dynamics of key compo-
nents of the system models under investigation.

(e) Use the nonlinear state-space equations to design the observer-based FD filters for
intermittent fault detection in the said systems.

(f) Develop improvements to the designed FD filters by using the residual evaluation
and novel adaptive threshold design. The designed adaptive threshold presented
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in this research considers the nonlinearity and unmatched uncertainty (unknown
input) of the system in its design process to be more robust in comparison with
the static thresholds or adaptive thresholds which do not consider those factors
(residual and adaptive threshold design).

(g) Construct and compare probabilistic data-driven fault detection filters to detect
and isolate intermittent fault in the experimental fuel rig system.

(h) Apply an appropriate non-parametric and probabilistic data-driven method, GPR,
for the fuel rig system to predict the forthcoming intermittent faults for the steps
ahead ( intermittent fault prediction).

(i) Combine the intermittent fault detection and prediction techniques to create the
IFDP system to detect and predict intermittent faults for the experimental fuel rig
system (novel IFDP technique(s), Figure1.2).

3.2 Case studies
The efficiency of the proposed methodologies are mainly examined by an experimen-

tal fuel rig based in the Integrated Vehicle Health Management (IVHM) Centre Labo-
ratory, at Cranfield University. The test rig nominally represents a Unmanned Aircraft
Vehicle (UAV) fuel system consisting of several pipes, valves, pump, sensors and tanks.

This test rig is used to provide experimental data to develop and validate the proposed
techniques. Moreover, the rig provides an opportunity to introduce intermittent fault
behaviour for validation of the FD and Fault Prediction (FP) methods.

Furthermore, there are other case studies such as car suspension presented in this re-
search which are used to present other model-based fault detection methods. Finally, the
presented techniques enable the designer to choose the most appropriate fault detection
filter for the system under investigation.

3.3 Software and toolboxes
In the first stage of this research, the model has been implemented and simulated in

MATLABr environment.
In the second stage of this research, the probabilistic data-driven methods are devel-

oped in BNT version 5.2 or newer in MATLABr (versions 5.0 and 5.1 have a memory
leak which seems to sometimes crash BNT). Some of the advantages of BNT over other
software are:

• Very good implementation of the inference algorithms.

• The possibility of implementing dynamic BNs.

• The possibility to work with discrete nodes that have continuous parents (thanks
to softmax CPDs).
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• Good computational power.

• Easy to manipulate the data, for training and testing, generated with the Matlab
m-files and Simulink models.

However, the BNT is slower than its equivalent written in C.
Furthermore, GPML toolbox version 4.2.2. in MATLABr environment is used for

further analysis and decision making.

3.4 Conclusions
The presented methods in this research are used to detect, isolate and predict the

intermittent fault when the system subjected to the uncertainty. In this research

• First the model-based fault detection filters are developed to detect the intermit-
tent faults in the complex systems subjected to the uncertainty (unknown inputs).
Although these methods are very promising in detecting the faults but were per-
formed poorly when the complexity of the system increases.

• Then the probabilistic data-driven methods were deployed to detect, isolate and
predict the intermittent faults. Nevertheless, all the information captured from
the model-based techniques were adopted in the data-driven methods as available
reliable knowledge about the system under investigation.

• Finally, the effectiveness of the presented methods are validated using appropriate
application systems.

The main application system, the experimental IVHM fuel rig, to validate the proposed
techniques is presented in the next chapter.
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Introduction to the Application System

4.1 Introduction
This chapter provides a full description of the existing fuel rig and it’s functioning

in full as this is necessary, as background, for the data generating and mathematical
modelling of the rig which are presented in the next chapters.

Fuel systems are some of the most critical subsystems of an Unmanned Aerial Vehicle
(UAV), being responsible of delivering the required amount of flow to the engine(s) in
order to ensure the accomplishment of the UAV mission(s). They need therefore to be
continuously monitored during the mission in order to be able to capture fuel system
failure modes and their symptoms during different operating conditions.

The rig on which this research project has focused is the IVHM centre fuel system test
bed which can accommodate component and sensor specific faults and also it is capable
of emulating different types of missions with the typical format of ramp up to taxi1 -
taxi1 - take off - cruise - landing- taxi2 - ramp to shut down. As part of the rig design,
sensors are placed in the system. The logic associated with each sensor set is capable of
identifying every failure mode in the fuel system. Each of the sensors, interrogated by
the diagnostic rules, requires a clear definition regarding the threshold between normal
and abnormal conditions.

The capability of the system and the model to show effects on the sensor output of
different faults with varying degrees of severity have been explored. The results of these
trials in both normal and faulty operation show that the test system has excellent repeata-
bility of measurements within the defined operational range (Niculita et al., 2013).

This rig is then used in to collect hybrid data (discrete and continuous) in differ-
ent phases from ramp up to shut down when the system is stable and controlled by a
feedback controller. These data are then used for the validation and evaluation of the
developed methods and algorithms for the intermittent fault detection, isolation and pre-
diction.

This chapter is organized as follows: in section 4.2 the full description of the fuel
rig is presented. Then Section 4.3 is given the fuel rig functional description. Finally,
the model of the rig’s components, the experimental conditions and the discussions are
presented in Sections 4.4, 4.5 and 4.6 respectively.
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4.2 IVHM experimental fuel rig description
The IVHM experimental fuel rig is responsible for delivering the appropriate quantity

of fuel to the engine(sump tank).
The fuel rig in this research is sufficiently simple to be readily represented in software

and to be easily realised in the laboratory. When the fuel rig is in its engine feeding
mode, then the fuel will be transfer from the main tank to the sump tank via pipes
between these two tanks. The external gear pump will help to move the fuel when the
pressure before the pump is lower than the pressure after the pump. When the fuel rig is
in its recirculation mode, the valve 2 and valve 4 will be open and some of the fuel will
be returned to the main tank on it’s way to the sump tank which is considered as a leak
to the fuel system.

A connection between the drain valve of the sump tank and the refill valve of the
main tank has been considered in order to realize a general reset of the test rig.

The considered example system in this research contains all the important compo-
nents of an UAV fuel system; including valves, pumps, pipes, storage tanks; arranged
in a configuration representative of that used in a large aircraft. It will not use real fuel,
but initially water. A fluid such as hydraulic oil which has similar viscosity and density
characteristics to real fuel is also acceptable.

The fuel rig also contains sufficient instrumentation (e.g. pressure sensors, flow me-
ters, leak detectors and vibration sensors) so as to be able to develop tests and damage
parameter measurements to diagnosis and prognosis developing system faults.

Moreover, it is capable of producing data for five different faults (Niculita et al.,
2013):

1) Clogged filter

2) Faulty gear pump

3) Faulty solenoid (shut off) valve

4) Leaking pipe

5) Clogged pipe .

Generally, the rig consists of the following representative components (Figure 4.1):

• Main and sump tanks,

• External gear pump,

• Filter,

• Polyurethane tubing,

• Solenoid shut-off valve, direct proportional valves,

• Non-return valve,

• Control modules for the pump, direct proportional valves and shut-off valve In-
strumentation.
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Figure 4.1: Fuel system test bed.

A connection between the drain valve of the sump tank and the refill valve of the main
tank has been considered in order to realize a general reset of the test rig.

To control and acquire data from the fuel system, a system using National Instruments
LabView virtual instrumentation has been developed using a CDAQ 9172 device with
five compact modules: NI 9485, NI 9205, NI 9472, NI 9401 and NI 9263 (Figure 4.2).

Also, National Instruments LabView software version 8.6 is used to customize the
control for the entire system. There are three main controls in the system:

• Pump control unit: manual or mission profile selection; speed; feedback loop,

• Valve control unit: shut-off valve position control,

• Direct proportional valve control unit: operated via the filter and gear pump fault
sliders.

Moreover, the rig is operated in two modes:

• Engine feeding mode (Figure 4.3)

• Recirculation mode (Figure 4.4),

Moreover, the presented data to the user are from three parts:

• Pump speed in the pump control unit,

• Pressures in different points of the system (e.g. before filter, after filter, after
pump, after shut-off valve),

• Time traces of pump speed, pressure, flow for both operational modes.
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Figure 4.2: Fuel rig controls and data capture.

And these values are displayed according to running mode selection.
For pump control the user has two options: to run the pump manually by adjusting

the pump speed or to set a couple of parameters (time, speed) in order to run the rig
through a mission profile. This profile consists of UAV flight sectors: accelerate to taxi1
- taxi1 - take-off - cruise - landing - taxi2 - decelerate to shut-down.

From the hardware and software point of view, the control system is ready to accom-
modate all initially planned five failure modes in a plug and play manner although in this
thesis only faulty solenoid shut-off valve, which has been installed and ready to provide
data is considered.

4.3 IVHM fuel rig functional description
It is important to understand the functioning of the individual elements of the system,

along with the sensors and the control system before considering the operation of the
whole.

It is worth mentioning that these are low-cost components and sensors so all the
operational data and equipment characterisation is not as readily available from manu-
facturers as it would be for flight worthy equipment (Niculita et al., 2012).

4.3.1 Sensors
The instrumentation on the rig has a suite of nine sensors:

• Four gauge pressure sensors,

• Two absolute pressure sensors,

• Two flow meters,

and each of these elements can introduce an error in measurement.
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Figure 4.3: Fuel system demonstrator, engine feed mode.
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Figure 4.4: Fuel system demonstrator, recirculation mode.
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GE Druck PMP 1400 industrial gauge pressure sensors

These sensors were initially specified and ordered for the rig. During experimental
trials, it was realized that the pressure before the pump could drop below atmospheric.
For this reason, a set of two absolute pressure sensors were obtained. Typical accuracy
is rated at ±0.15% of span covering a range of (0− 4) bar with a 0.5 V output. More
information about these sensors can be found in (Niculita et al., 2012).

IMP absolute pressure sensors

The IMP industrial pressure transducer has a piezo-resistive ceramic pressure sensor
giving it resistance to different fluids. The housing is made from stainless steel to ensure
the product is suitable for a wide range of applications. Accuracy is rated as smaller than
±0.25% FS, Best Fit Straight Line (BFSL), covering the range (0−5) bar with (0−5)
V output. More information about these sensors can be found in (Niculita et al., 2012).

Omega engineering flow meters

The FLR 1011 series of flow meters from Omega Engineering is capable of measuring
flows of (0−2) l

min . Omega FLR 1011 flow meters used in the recirculation and engine
modes has the characteristics in error terms introduced in (Niculita et al., 2012).

4.3.2 External gear pump

For this rig, an Oberdorfen external gear pump with internal relief valve, model num-
ber N999R, was used. The data-sheet can be found in (Niculita et al., 2012). The pump
housing and gears are made of top quality bronze, shafts are 3030 stainless steel. Bear-
ings are designed of high-performance carbon graphite selected for wear resistance and
long service life. The gear pump is a positive displacement pump. Each shaft revolution
displaces a definite amount of liquid relatively unaffected by the back pressure in the
discharge line. According to the manufacturer, shaft rotational speed and volumetric
flow rate are directly proportional. This has been measured on the rig without any other
elements (valves, etc.) being present and the results are presented in Figure (4.5).

Figure (4.5) presents the variation of volumetric flow rate with rotational speed. The
straight line between the measured points corresponding to 100rpm, 200rpm, 300rpm,
400rpm, and 500rpm shows the direct proportionality between volumetric flow rate and
rotational speed by the instrumentation response.

Moreover, as shown in (Niculita et al., 2012), the characteristics of volumetric flow
and absolute pressure before and after the pump at 300rpm are not constant. As this
test was conducted in (Niculita et al., 2012) at 300rpm the frequency for one gear pump
rotation is 5 Hz and the time between peaks should be 0.2 seconds. The sampling fre-
quency for all measurements is set to 1 kHz, samples to read set to 500, and acquisition
mode being set to continuous. Volumetric flow rates are varying between 0.605 and 0.61

l
min , pressure rates before and after pump are following a repetitive cycle synchronized
with pump speed.
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Figure 4.5: Pump characteristic.

4.3.3 Piping

Initially SMC clear pipe with 6mm/4mm OD/ID was used on the rig. Tests demon-
strated that this tubing dilated under pressure and once a certain pressure was exceeded
the tubing did not rapidly recover to its original dimensions, i.e. starting at 200rpm with
an excursion to 500rpm upon return to 200rpm significantly different results were ob-
tained. In order to deal with this issue, SMC polyurethane black tubing with 6mm/4mm
OD/ID and a maximum pressure of 8bar was chosen. This has an operating tempera-
ture range of −20◦C to 60◦C and a minimum bending radius of 15mm. A simple way of
checking functionality is to measure pressure drop against rotational speed for 1m and
0.5m lengths of this type of pipe, results shown in (Niculita et al., 2012). It is clear that
pressure losses increase directly with pipe length, if the length doubles then the pressure
loss also doubles, as expected across the (0−500)rpm range. Further testing has shown
equally good, repeatable, results with this tubing.

4.3.4 Direct proportional valves

In order to simulate component degradation, some of the elements of the fuel sys-
tem test rig (e.g. the filter) were replaced with Burkert 2833 Direct-acting Proportional
Valves (DPV)s, 4mm internal diameter when fully open. These direct-acting propor-
tional valves can be used as flow control valves and are characterized by low loss, low
hysteresis, high repeatability and high sensitivity. These valves were characterized by
measuring volumetric flow rate and pressure loss through the valve against valve opening
positions, the opening positions being (0−100)% for (0−10) Volts. More information
about these sensors can be found in (Niculita et al., 2012).
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Reservoir: 3 arm
Property Value
Branch 1 Inflow Loss Coefficient 1e−08
Branch 1 Pipe Diameter 0.004m
Branch 1 Height above Base 0.4m
Branch 2 Outflow Loss Coefficient 1e−08
Branch 2 Inflow Loss Coefficient 1e−08
Branch 2 Pipe Diameter 0.004m
Branch 2 Height above Base 0.4m
Branch 3 Outflow Loss Coefficient 1e−08
Branch 3 Inflow Loss Coefficient 1e−08
Branch 3 Pipe Diameter 0.004m
Branch 3 Height above Base 0
Height of Top above Base 0.4m
Base Level above Base 0m
Horizontal Cross-Section Area 0.15m2

Surface Pressure 1.01325 bar
Initial Liquid Level 0.05m
Initial Temperature Not Set
Initial Pressure Not Set

Table 4.1: Main tank parameters.

4.3.5 Shut-off valve

The shut-off valve introduces a pressure loss in the system. At zero rpm, the pressure
on the inlet side of the shut-off valve is smaller than the outlet side because the pump
inserts a bigger pressure loss in the system compared with the flow-meter. The pipes
to the main tank have almost similar lengths so the pressure loss introduced by them is
balanced on both sides of the shut-off valve.

4.4 Models of the fuel rig components

4.4.1 Main tank

The tank is represented in rig by the reservoir: 3-arm component. The parameters
that need to be set for this component are: branch out flow/in flow loss coefficient,
branch pipe diameter, branch height above base, and height of the top above base, base
level above reference system, horizontal cross-sectional area, and initial liquid level (see
Table 4.1).
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Valve: Ball
Property Value
Diameter 0.003m
Valve Opening 1 ratio
Loss Coefficient vs Opening Ball Valve Loss Coefficient
Correction for Re<= 10000 Laminar/Turbulant Loss Coefficient
Results On/Off 1.On

Table 4.2: Shut-off valve parameters.

Valve: Ball
Property Value
Diameter 0.004m
Valve Opening 1 ratio
Loss Coefficient vs Opening DP Valve Loss Coefficient
Correction for Re<= 10000 Laminar/Turbulant Loss Coefficient
Results On/Off 1.On
Volumetric Flow Rate Not Set
Mass Flow Rate Not Set
Gas Flow Factor vs Valve Opening Not Set
Flow Coefficient vs Valve Opening Not Set
Joule Thomson Surface Not Set

Table 4.3: Direct proportional valve parameters.

4.4.2 Valves

Shut-off valve

The shut-off valve is presented by a valve: Ball component. For this component,
the internal diameter and the opening ratio has to be set along with the loss coefficient
versus valve opening (see Table 4.2).

Direct proportional valve

The direct proportional valves are modelled as control Ball valves generic compo-
nents. For these type of components input parameters needing setting are (see Table
4.3):

• The internal diameter,

• The opening ratio,

• The loss coefficient versus valve opening.
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Pipe: Cylindrical Rigid
Property Value
Length 0.04m
Diameter 0.004m
Pipe Profile Not Set
External Pressure vs Time Not Set
Results On/Off 1.On
Friction Data (Cylindrical Pipe) Sub Form

Sub-Form
Property Value
Friction Option 1. < 1 >::Colebrook-White Equa-

tion Approximate
Unsteady Friction Option Not Set
Absolute Roughness 0.1mm
Hazen-Williams Friction Coefficient 110
Friction Factor 0.02

Table 4.4: Pipe parameters.

4.4.3 External gear pump
The Oberdorfen N999R external gear pump model was built through experimental

trials to determine the pump characteristic.
Tests have been done across the whole established pump operational range and model

is returning volumetric flow rates values with an error smaller than 0.1% compared
with the data acquired on the rig (e.g. for the pressure rise value across the pump of
0.527595 bar and rotational speed of 500.0083rpm on the test rig it has been measured
a volumetric flow rate value of 0.913354 l

min . While the model using the pressure rise
value 0.5276 bar and rotational speed of 500.008rpm returns a volumetric flow value of
0.914785 l

min ).

4.4.4 Pipes
A pipe is characterized by the pipe cylindrical rigid component and length, absolute

roughness and internal diameter parameters have to be set. Additionally, friction data
parameters were introduced (see Table 4.4).

The pump model was used to generate the volumetric flow rate used for pipe testing.
The test observed the pressure drop variation with the change of the pipe length for the
pipe model.

4.5 experimental conditions
As mentioned earlier the fuel rig can be configured to run in two different modes,

engine feed mode and recirculation mode. The analysis presented in this thesis will only
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Component Failure mode
Shut-off valve Stuck mid range
Gear pump Degraded – less flow for the

same pump speed
Pipe 3 (pipe before the shut-
off valve)

Leaking

pipe 4 (pipe after the shut-off
valve)

Leaking

Nozzle Clogged
Filter Clogged

Table 4.5: Failure modes considered for investigation

consider the engine feed mode. There are five pressure sensor sets in this fuel rig and
the logic associated with each sensor set is capable of identifying every failure mode
considered into the analysis.

The overall function of the IVHM fuel system, under engine feed operation mode,
will be to provide fuel where:

• Input flows are considered to be voltage and representing electrical energy as a
discrete signal.

• Output flow is volume and representing liquid material.

For the overall function case, the voltage is selected for the electric energy along with
the signal type of flow, and the volume option is selected as output flow for material.
The justification for these selections is that they describe the fuel system’s main task
which is to deliver a specific amount of fuel by setting control values (pump speed,
valve positions) and powering several components.

In general, five components are considered to be affected by a particular failure mode
:filter, gear pump, shut-off valve, one of the pipes and nozzle (see Table (4.5)).

For each of the failure modes, various degrees of severities can be simulated in real
conditions on the fuel system by making use of direct-acting proportional valves.

4.5.1 parameter and data collection
The data for the experiments presented in this thesis was captured using NI Labview

Interface which is a systems engineering software. The goal was to observer the pressure
changes in all pressure sensors (outputs) when IF (shut-off valve clogging) was injected
to the system undre the following conditions:

• Steady state conditions were used during the experiments carried out to obtain the
data (pump running at 400 rpm)

• The fuel rig system is a Single Input-Mmulti Output (SIMO) system

• The input parameter is the pump speed
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• The output being represented by the volumetric flow rate, and the pressure rates at
five different locations (pressure sensors 1−5) as continuous values

• The characteristic of the valves (open, closed, partly closed) were captured as
discrete values

• The sampling time for collecting the discrete data was 0.001

• To inject the IF into the fuel rig the status of the shut-off valve (controller) was
changed manually

• Input pressure to the pipe at the end of the run is the atmospheric pressure

• The fuel in this rifg is water at room temperature

• The transition rate for valves (time between opening and closing:(0− 90%)) is
around 20 mls

The corresponding simulation results of this experiment is presented in Chapter 6 for
further analysis.

4.6 Discussions
This chapter has introduced the IVHM fuel rig and its operational capabilities.
This fuel rig is build and used in IVHM centre, Cranfiel university for assessment of

various fault diagnostic software tools and techniques. The IVHM Centre fuel rig has
been fully commissioned and a verification and validation process was carried out. Tests
considered both component and system level approach. Control and data acquisition
software was verified as well and the initial requirements have been met. Filter blockage
and faulty pump type of faults have been simulated and their effects on pressure and flow
rates at defined locations at a range of fault severities have been monitored and the results
can readily be used for diagnostic test purposes (Niculita et al., 2013).

Since the IVHM Centre fuel rig meets the initial requirements of a demonstrator for
the diagnostic and prognostic research area, then the intermittent fault diagnosis of this
rig where no changes were made on the hardware of the system was performed for this
research (Sedighi et al., 2015). The process and the results of the IF detection, isolation
and prediction using this rig is presented in the following chapters.
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Chapter 5

Model (Observer)-Based Intermittent

Fault Detection

5.1 Introduction
In this chapter, two novel model (observer)-based FD filters are introduced as follows:

1) NUIO-based FD: the existing theory on the NUIO design to a wider class of non-
linear systems with general nonlinearity is extended, which are subject to bounded
unmatched unknown inputs (disturbances) and experiencing intermittent faults.
In the proposed method, first, the nonlinearities, unknown inputs (disturbances)
and sensor noises are estimated from the available known parameters, and their
corresponding error equations are obtained. Subsequently, the system error is
written in terms of other parameter errors. If each error is stable, then the stability
of the system error will be achieved. This approach provides a straight-forward
technique in designing NUIO, which can reduce the state estimation errors against
the unmatched unknown inputs (disturbances).
Then the robust FD problem of the considered system is studied when a nonlinear
unknown input observer is provided and sufficient conditions are given to make
the observers asymptotically stable .
Note that in model-based FD the terms uncertainty, unknown input and distur-
bance are the same.

2) Feed-forward observer-based FD: provided an approach to design feed-forward
observer for nonlinear systems with Lipchitz nonlinearity and bounded unknown
inputs (disturbances/uncertainties) to ensure the sensitivity against intermittent
faults. The proposed observer design guarantees the system error stability. Some
variables and scalars are also introduced to design observer’s parameters, which
bring more degrees of flexibility available to the designer. The designed observer
is used to propose a precision fault detection scheme including an adaptive thresh-
old design to detect intermittent faults. The efficiency of the considered approach
is examined by the intermittent failure case in the suspension system of a vehicle.
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This chapter is organized as follows: Section 5.2 presents the mathematical descrip-
tion of the nonlinear system of interest to this thesis. The design of the NUIO and feed-
forward observer along with theorems and error dynamic stability analysis are addressed
in Sections 5.3-5.6 respectively. The residual and appropriate adaptive threshold is de-
signed in Section 5.7 while the numerical examples and simulation results are presented
in Sections 5.8 and 5.9. Finally, the conclusions are given in Section 5.10.

5.2 System description

State-space equations are a set of differential equations make use of the notions of
states, inputs, outputs and dynamics to describe the behaviour of a system (Adhyaru,
2012).
The state is a collection of variables that summarize the past of a system for prediction
of the future. For an engineering system the state is composed of the variables required
to account for the conservation of mass, momentum and energy (Samadi & Saif, 2017).
For system modelling the state variables are gathered in a vector, x ∈ Rn called the state
vector, the control variables are represented by another vector u ∈ Rp and the measured
signals by the vector y ∈ Rq. Then a system can then be represented by a set of differ-
ential equation (Mattei, 2001):

ẋ = hx(x,u)
y = hy(x,uy) (5.1)

where ẋ = dx
dt .

A model of this form is called a state space model and the dimension of the state
vector is called the order of the system (Choi & Chung, 1996).
The model consists of two functions. The function hx gives the velocity of the state vec-
tor as a function of state x and control u, and the function hy gives the measured values
as functions of state x and control u, (Mutoh, 2009).
The system is called time-invariant because the functions hx and hy do not depend ex-
plicitly on time t. It is possible to have more general time-varying systems where these
functions do depend on time. A linear state-space system can then be represented by

ẋ = Ax(t)+Bu(t)
y = Cx(t)+Duy(t) (5.2)

where A, B, C and D are constant matrices.
A more general system is obtained by letting the output be a linear combination of the
states of the following system,

y = cnx1 + cn−1x2 + · · ·+ c1xn +d1uy, (5.3)
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where this system can be modeled in the state-space form as (Koenig, 2005):

d
dt


x1
x2
...

xn−1
xn

=


1 0 0 · · · 0
0 1 0 · · · 0
. . . . . . . . . . . . 0

0 . . . . . . . . . 1
−an −an−1 · · · · · · −a1

x+


0
0
...
0
1

u

y =
(

cn cn−1 · · · c1
)

x+d1uy. (5.4)

Now, consider a class of nonlinear systems defined by the following state-space form
(Peñarrocha et al., 2009)as follows:

ẋ(t) = hx(x,u,µ)

y(t) = hy(x,µy). (5.5)

If the nonlinear function hx(x,u,µ) is differentiable with respect to x, then this class
of the system may be expressed in terms of a linear unforced part, and nonlinear state
dependent controlled parts, (Rajmani, 1998) as follows:

ẋ(t) = Ax(t)+Bu(t)+Dµ(t)+Sg(x,u, t)

y(t) =Cx(t)+Dyµy(t) (5.6)

where x ∈ Rn, u ∈ Rm and y ∈ Rp present state, input and output vectors, respec-
tively; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and S ∈ Rn×s are known matrices correspond-
ingly; D ∈ Rn×q and Dy ∈ Rp×r are referred to the known distribution matrices of the
unknown input (disturbance) and sensor noise, respectively; µ(t) ∈ Rq and µy(t) ∈ Rr

are the unknown bounded vectors which describe the unknown input and/or any kind of
modeling uncertainty such as noise, time-varying term, and parameter variation in both
component/ actuators and sensors, respectively.
This chapter treats general nonlinearities that depend on unmeasured states, but for il-
lustration, a nonlinearity of the form g(x,u, t)∈Rs has included in the design procedure.
Note that to analyze the error stability the error estimation equation should be perform
in fault-free case, where fi(t) = fis(t) = 0 while fi ∈ Rri and fis ∈ Rrs are the actua-
tor/component and sensor faults correspondingly.
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5.3 Nonlinear unknown input observer design
Prior to presenting the NUIO design, the following assumptions are made:

Assumption 1 • No measurement depends directly on one of the states, which is

affected by the unknown input (disturbance): CD = 0.

• Matrices D, S and Dy are full column rank matrices.

• The output y(t) and its derivative ẏ(t) are available, where ẏ(t) could be estimated

using a robust differentiator from the output y.

Assumption 2 • The unknown input (disturbance) is bounded to some positive con-

stant d,

‖µ(t)‖ ≤ d. (5.7)

• The sensor noise, µy(t), is not constant and

‖µ̇y(t)‖ ≤ κ‖ex(t)‖ (5.8)

where κ is a positive constant and ex(t) is the state estimation error vector which

will define later.

The NUIO is usually designed such that its state estimation error vector ex(t), ap-
proaches to zero asymptotically, regardless of the presence of the unknown input (dis-
turbance) in the system. To design such an observer normally the rank condition,
rank(CD)=rank(D), must be satisfied, (Mondal et al., 2009; Chen & Saig, 2006a,b).
However, for the system under investigation this rank condition is not satisfied since
CD = 0 (see Assumption 1).

Hence to avoid the effect of the unknown input/disturbance term, µ(t), on the error
estimation of the system, the novel observer of the following form is given

ż(t) = Nz(t)+Ly(t)+Gu(t)+HSg(x̂,u, t)+HDµ̂(t)+HµDyµ̂y(t)
x̂(t) = z(t)−Ey(t) (5.9)

where z∈Rn is the state observer and x̂(t)Rn, g(x̂,u, t)Rs, µ̂(t)Rq and µ̂y(t)Rr are the
estimations of x(t), g(x,u, t), µ(t) and µy(t) respectively. Matrices N ∈Rn×n, L∈Rn×p,
G ∈ Rn×m, H ∈ Rn×n, Hµ ∈ Rn×p and E ∈ Rn×p should be determined as explained
below.
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It is desired to design an observer such that the estimated states x̂(t) tend to actual states
x(t) eventually. Hence the error equation of the form

ex(t) = x(t)− x̂(t) = x(t)− z(t)+Ey(t) (5.10)

is defined for system (5.6) and observer (5.9) in terms of x.
Then, estimation error (5.10) is rewritten as follows:

ėx(t) = ẋ(t)− ż(t)+ECẋ(t)+EDyµ̇y(t)
= Nex(t)+(HA−NH−LC)x(t)+(HB−G)

u(t)+HS(g(x,u, t)−g(x̂,u, t))+HD(µ(t)−
µ̂(t))+HµDy(µy(t)− µ̂y(t))+EDyµ̇y(t) (5.11)

where
H = In +EC (5.12)

and
Hµ =−(NE +L). (5.13)

By constructive design, the following matrix equations give a NUIO:

HD 6= 0 (5.14)

HB−G = 0 (5.15)

HA−NH−LC = 0. (5.16)

The error equation given in (5.11) is rewritten as:

ėx(t) = Nex(t)+AgHSeg(t)+AdHDeµ(t)+AiHµDyei(t)+EDyµ̇y(t)
(5.17)

where eg(x,u, t) = g(x,u, t)−g(x̂,u, t), eµ(t) = µ(t)− µ̂(t) and ei(t) = µy(t)− µ̂y(t)
denote the nonlinearity, unknown input and sensor noise errors, respectively. Matrices
Ag, Ad , and Ai are design matrices which will be defined later in Section (5.4).
In order to write (5.9) in well-known NUIO form, the gain matrix K is introduced in
such a way that

N = HA−KC. (5.18)

For stability, K must be chosen such that N is Hurwitz, where poles of all elements of N
have negative real part, which is always possible under the detectability assumption of
the pair (HA,C). If strengthen the detectability assumption to observability of (HA,C),
then the eigenvalues of N can be placed arbitrary, see (Darouach et al., 1994; Chen et al.,
1996).
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Then the procedure to design the observer (5.9), can be summarized as follows:

• Select a full rank matrix D1 ∈ Rn×d1 which for each d1 ≤ m satisfies

CD1 6= 0,

HD1 = 0, (5.19)

and rank(CD1)= rank(D1). Matrix D1 should also make the pair (HA,C) de-
tectable.

• Substitute (5.12) into (5.19), to obtain matrix E of the form

E =−D1(CD1)
++Γ(Id1− (CD1)(CD1)

+). (5.20)

Since D1 is a full column rank one necessary condition for ECD1 =−D1 to have
solution is that CD1 is also of full column rank. If CD1 is full column rank, then
all possible solutions of ECD1 = −D1 must have the form (5.20) where (CD1)

+

is the pseudo-inverse of (CD1) and Γ is an arbitrary matrix.

• Using (5.20), H can be found out from equation (5.12).

• Substitute matrix H into (5.15) to obtain matrix G.

• Assume that the pair (HA,C) is an observable pair and P0 is a Symmetric Positive
Definite (s.p.d.) solution of the following Algebraic Riccati Equation (ARE),

(HA)T P0 +P0(HA)−P0CT R−1CP0 =−Q0 (5.21)

where Q0 ∈ Rn×n and R ∈ Rp×p are arbitrary s.p.d. matrices. Then by selecting
the gain matrix K = P0CT R−1, the matrix N = HA−KC is an stable matrix.

• Once K is obtained, substitute N, K and (5.12) into (5.16) to achieve the observer
gain L as:

L =−HAE +K(Ip +CE). (5.22)

5.4 Sufficient conditions for existence of the NUIO
To show that the observer given in (5.9) is indeed a NUIO, it is desired to achieve the

stability of the errors eµ(t), eg(x,u, t) and ei(t) to make the error dynamics of the system
(5.17) stable.
In the next subsections, the stability of these errors will be investigated.
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5.4.1 Stability analysis of the nonlinearity error eg(x,u, t)

The nonlinearity g(x,u, t) could be estimated from the available known signals,

g(x̂,u, t) = G11y(t)+G12ẏ(t)+G13x̂(t)+G14 ˙̂x(t)+G15u(t) (5.23)

where matrices G11 ∈ Rs×p, G12 ∈ Rs×p, G13 ∈ Rs×n, G14 ∈ Rs×n and G15 ∈ Rs×m

should be designed in order to obtain g(x̂,u, t), (Imsland & Fossen, 2007; Liu & Peng,
2002).

Moreover, from Equation (5.6), g(x,u, t) is given by

g(x,u, t) = S+ẋ(t)−S+Ax(t)−S+Bu(t)−S+Dµ(t). (5.24)

By substituting equations (5.23) and (5.24) into eg(x,u, t), the nonlinearity error is pre-
sented as

eg(x,u, t) = g(x,u, t)−g(x̂,u, t)
= −(S+A+G11C)x(t)+(S+−G12C)ẋ(t)−

(S+B+G15)u(t)−S+Dµ(t)−G12Dyµ̇y(t)
−G11Dyµy(t)−G13x̂(t)−G14 ˙̂x(t). (5.25)

which could be modified into the following form

eg(x,u, t) = −(S+A+G11C+G13)x(t)+(S+−G12C
−G14)ẋ(t)− (S+B+G15)u(t)−S+Dµ(t)
−G12Dyµ̇y(t)−G11Dyµy(t)+G13ex(t)+
G14ėx(t). (5.26)

To verify the stability of eg(x,u, t), the following conditions must hold

G13 =−S+A−G11C

G14 = S+−G12C

G15 =−S+B

S+D = 0

−G11Dy = 0

−G12Dy = 0 (5.27)
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Therefore, the error eg(x,u, t), will have the following form

eg(x,u, t) = (−S+A−G11C)ex(t)+(S+−G12C)ėx(t)
= G13ex(t)+G14ėx(t). (5.28)

which is a function of ex(t). Since ex(t)→ 0, then eg(x,u, t)→ 0 is asymptotically stable.

5.4.2 Stability analysis of the unknown input (disturbance) error

eµ(t)

The unknown input (disturbance) µ(t), can also be estimated from the available
known signals as

µ̂(t) = M11y(t)+M12ẏ(t)+M13x̂(t)+M14 ˙̂x(t)+M15Sg(x̂,u, t)+M16u(t)
(5.29)

where matrices M11 ∈ Rq×p, M12 ∈ Rq×p, M13 ∈ Rq×n, M14 ∈ Rq×n, M15 ∈ Rq×n and
M16 ∈ Rq×m should be designed.
The unknown input (disturbance) µ(t), clearly is given from the states equation (5.6),

µ(t) = D+ẋ(t)−D+Ax(t)−D+Bu(t)−D+Sg(x,u, t). (5.30)

By using (5.29) and (5.30), the unknown input (uncertainty) error equation, becomes

eµ(t) = µ(t)− µ̂(t)
= −(D+A+M11C)x(t)+(D+−M12C)ẋ(t)− (D+

B+M16)u(t)−D+Sg(x,u, t)−M15Sg(x̂,u, t)
−M13x̂(t)−M14 ˙̂x(t)−M12Dyµ̇y−M11Dyµy.

(5.31)

Since ex(t) = x(t)− x̂(t), then (5.31) could be rearranged as

eµ(t) = −(D+A+M11C+M13)x(t)+(D+−M12C−
M14)ẋ(t)− (D+B+M16)u(t)− (D++M15)S
g(x,u, t)+M13ex(t)+M14ėx(t)+M15S(G13

ex(t)+G14ėx(t). (5.32)

Now, if the following conditions hold

M14 = D+−M12C
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M13 =−D+A−M11C

M16 =−D+B

M15 =−D+

M12Dy = 0

M11Dy = 0 (5.33)

then Equation (5.32) can be rewritten as

eµ(t) = (M15SG13 +M13)ex(t)+(M15SG14 +M14)ėx(t). (5.34)

Equation (5.34) shows that the unknown input (disturbance) error, eµ(t) is a function of
ex(t). Obviously if ex(t)→ 0, then eµ(t)→ 0, is asymptotically stable.

5.4.3 Stability analysis of the sensor noise error ei(t)

Similarly, the sensor noise µy(t), could be estimated from the available known signals
as follows

µ̂y(t) = F11y(t)+F13x̂(t) (5.35)

where matrices F11 ∈ Rr×p and F13 ∈ Rr×n need to be designed.
Rearranging Equation (5.6), will also give µy(t),

µy(t) = D+
y y(t)−D+

y Cx(t). (5.36)

By substituting equations (5.35) and (5.36) into the sensor noise error, ei(t) is expressed
as

ei(t) = µy(t)− µ̂y(t) =

D+
y y(t)−D+

y Cx(t)−F11y(t)−F13x̂(t). (5.37)

Equation (5.37) could be modified by substituting x̂(t) = x(t)− ex(t) of the form

ei(t) = (−F11C−F13)x(t)+D+
y Dyµy(t)−F11Dyµy(t)+F13ex(t). (5.38)

Thus, if the following conditions hold

(Ir−F11Dy) = 0

F13 +F11C = 0 (5.39)
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where Ir is an identity matrix of size r, the sensor noise error equation (5.38) could be
represented as

ei(t) =−F11Cex(t)

= F13ex(t). (5.40)

This equation shows that the sensor noise error, ei(t) is a function of ex(t), and will
converge to zero if ex(t) tends to zero asymptotically.

5.4.4 Sufficient conditions for NUIO existence

By substituting errors (5.28), (5.34) and (5.40) into the error equation (5.17), the error
dynamic of the system could be reformulated as a linear equality of the form

M̄ėx(t) = Ḡex(t)+EDyµ̇y(t) (5.41)

with
M̄ = In−AdHD(M15SG14 +M14)−AgHSG14, (5.42)

and
Ḡ = N +AdHD(M15SG13 +M13)+AgHSG13 +AiHµDyF13, (5.43)

where In is an identity matrix of size n.
Since M̄ is a nonsingular matrix, Ad ∈Rn×n, Ag ∈Rn×n and Ai ∈Rn×n should be selected
in order to make M̄−1Ḡ Hurwitz. The error equation (5.41) can then be rewritten as

ėx(t) = M̄−1Ḡex(t)+ M̄−1EDyµ̇y(t). (5.44)

To show the asymptotic stability of the error equation (5.44), the following theorem
needs to be made.
Note that to simplify the notations, the index x will be omitted henceforth.

Theorem 1: The error system (5.44) will be asymptotically stable if the following
Matrix Inequality (MI)

N̄1P+PN̄1 + ε1P2 +
κ2

ε1
N̄2N̄T

2 < 0 (5.45)

for some ε1 > 0, has the s.p.d. solution P where N̄1 = M̄−1Ḡ and N̄2 = M̄−1EDy.

Proof: By substituting the error equation (5.44) into the time derivative of Lyapunov
equation, V (e) = eT Pe, the following will be obtained

V̇ = eT
(

N̄1
T P+PN̄1

)
e+ eT PN̄2µ̇y(t)+ µ̇

T
y (t)N̄

T
2 Pe. (5.46)
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Since for any matrices X , Y and any positive number ε > 0, if

ε

(
1
ε

X−Y
)T (1

ε
X−Y

)
≥ 0

then
XTY +Y T X ≤ 1

ε
XT X + εY TY, ∀ε > 0

hence for any ε1 > 0,

eT PN̄2µ̇y(t)+ µ̇y(t)T N̄T
2 Pe≤ ε1eT PPe+

1
ε1

N̄T
2 ‖µ̇y(t)‖2

≤ (ε1P2 +
κ2

ε1
N̄2N̄T

2 )‖e(t)‖2. (5.47)

see Assumption 2.
Therefore the following inequality will be satisfied

V̇ ≤ e(t)T [(N̄T
1 P+PN̄1)+ ε1P2 +

κ2

ε1
N̄2N̄T

2 ]e(t)< 0. (5.48)

Corollary 1: Assume that the conditions of Theorem 1: are satisfied and P is the s.p.d.
solution of

N̄1P+PN̄1 =−Q (5.49)

with an appropriate s.p.d. matrix Q.
Then the error equation (5.44) is asymptotically stable if there exists ε1 > 0 such that

λmin(Q)> ε1λ
2
max(P)+ω1 (5.50)

where ω1 = κ2

ε1
σM(N̄2), and σM represents the maximum singular value of the corre-

sponding matrix.
It is easy then to show that (5.48) gives

V̇ ≤ e(t)T [−Q+ ε1P2 +
κ2

ε1
N̄2N̄T

2 ]e(t)

≤ [−λmin(Q)+ ε1λ
2
max(P)+

κ2

ε1
σM(N̄2)]‖e(t)‖2 < 0 (5.51)

which also satisfies (5.50).

Hence the asymptotic stability of the system error estimation (5.17) and the existence
of the NUIO given by (5.9) are guaranteed.
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5.5 Nonlinear feed-forward observer design

Consider the nonlinear system described in (5.6). Prior to feed-forward observer de-
sign, the following assumptions are made:

Assumption 3 • The pair (A,C) is observable.

• Nonlinearity g(x,u, t) is assumed to be globally Lipschitz in x (see Appendix A)

with Lipschitz constant κ , i.e.

‖g(x,u, t)−g(x̂,u, t)‖ ≤ κ‖x− x̂‖. (5.52)

• Measurement depends directly on one of the states, which is affected by the un-

known input (uncertainty), CD 6= 0.

• The disturbance is bounded to some positive constant α , ‖ µ(t) ‖≤ α .

The nonlinear feed-forward observer is designed such that its state estimation error vec-
tor ex(t) approaches to zero asymptotically, regardless of the presence of the unknown
input term in the system. Hence the observer of the following form is introduced:

ż(t) = Nz(t)+Ly(t)+Gu(t)+HSg(x̂,u, t)+Ων

x̂(t) = z(t)−Ey(t) (5.53)

where z ∈ Rn is the state observer, with matrices N ∈ Rn×n, L ∈ Rn×p, G ∈ Rn×m, H ∈
Rn×n, and E ∈ Rn×p which should be obtain. The x̂ is an estimate of x. Ω ∈ Rn×m is
the feed-forward injection map and ν ∈ Rm is an external feed-forward compensation
signal. Note that Ω is selected such as CΩ to be a nonsingular matrix. It is desired to
design the observer such that x̂ tends to x eventually.
Hence the state estimation error equation of the form

ex(t) = x(t)− x̂(t) = x(t)− z(t)+Ey(t) (5.54)

is defined for the system (5.6) and observer (5.53) in terms of x(t).
It is straightforward to rewritten equation (5.54) as follows:

ėx(t) = Nex(t)+(HA−NH−LC)x(t)+(HB−G)u(t)+
HDµ(t)+HS(g(t,u,x)−g(x̂,u, t))−Ων (5.55)

80



CHAPTER 5: MODEL (OBSERVER)-BASED INTERMITTENT FAULT DETECTION

where
H = In−EC. (5.56)

If the following conditions hold:
HD 6= 0 (5.57)

HB−G = 0 (5.58)

HA−NH−LC = 0 (5.59)

then the error equation (5.55) will find the following form:

ėx(t) = Nex(t)+HS(g(x,u, t)−g(x̂,u, t))+HDµ(t)−Ων

(5.60)

Equation (5.60) shows that the error, ex(t), is sensitive to both unknown input and the
nonlinearity.

To design the feed-forward observer the following definitions and assumption are
given:

1) Define the output error ey(t) as:

ey(t) = y(t)− ŷ(t) =Cex(t).
(5.61)

2) Define ν as:

ν = Θ
y(t)− ŷ(t)
‖y(t)− ŷ(t)‖

= Θ
Cex(t)
‖Cex(t)‖

(5.62)

where Θ ∈ Rm×m is a diagonal matrix which satisfies

λmin(Θ)≥ α ‖ F ‖, (5.63)

and F ∈ Rm×m will be defined later.

3) Let P be the s.p.d. solution of the Lyapunov equation

NP+PNT =−Q f (5.64)

Where Q f is an arbitrary s.p.d. matrix. Hence the feed-forward injection map can

81



CHAPTER 5: MODEL (OBSERVER)-BASED INTERMITTENT FAULT DETECTION

be present as
Ω = P−1CT

Θ
−1. (5.65)

Assumption 4

Assume that there exists a matrix F ∈ Rm×m, such as:

HD = ΩF = P−1CT
Θ
−1F. (5.66)

Then in order to design the observer (5.53) the following steps are made:

• From the Assumption 3 and condition (5.56), Matrix E will be obtain as:

E = (ΩF−D)(CD)+. (5.67)

where (CD)+ is a pseudo inverse of CD.

• Next by substituting matrix E into (5.56) matrix H is obtained.

• Then by substituting H into (5.58) matrix G is given.

• Assume that the pair (HA,C) is an observable pair and P0 is the s.p.d. solution
of the following ARE, then the gain matrix K is selected to make the matrix N =
HA−KC stable,

(HA)T P0 +P0(HA)−P0CT R−1CP0 =−Q0 (5.68)

where Q0 ∈ Rn×n and R ∈ Rp×p are arbitrary s.p.d. matrices. Hence by selecting
K = P0CT R−1 the matrix N will be an stable matrix.

• Once K is calculated, by substituting N, K and H into (5.59) the observer gain L
could be achieved of the form

L = HAE +K(Ip−CE) (5.69)

where Ip ∈ Rp×p indicates an Identity matrix of size p.

Eventually all the design matrices for constructing the observer (5.53) are obtained.

5.6 Stability analysis of the error system
In this section, the behaviour of the error system (5.55) in the fault-free case is stud-

ied. To analyze the error stability the following theorem is defined:
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Theorem 2: Assume that the conditions (5.56)-(5.59) are satisfied and there is no
fault in the system, then the error system (5.60) is asymptotically stable if the following
matrix inequality:

P1N +NT P1 + ε1P2
1 +

κ2

ε1
ST HT HS < 0 (5.70)

for some positive number ε1, has a s.p.d. solution P1.

Corollary 2: If P1 is a solution of the following ARE

NT P1 +P1N + ε1P2
1 +

κ2

ε1
σM(HS) =−QΘ (5.71)

where QΘ is the appropriate p.s.d matrix and σM(HS) is the maximum singular values
of the corresponding matrix respectively, then the error system (5.60) is asymptotically
stable.
Note that for simplicity the index x will be omitted from ex .

Proof: Consider the following Lyapunov equation

V = e(t)T P1e(t) (5.72)

where P1 is an s.p.d. matrix.

The time-derivative of Lyapunov equation (5.72) is

V̇ = e(t)T P1ė(t)+ ė(t)T P1e(t)
= e(t)T (NT P1 +P1N

)
e(t)+(g(x,u, t)−g(x̂,u, t))T ST HT P1e(t)+ e(t)T

P1HS(g(x,u, t)−g(x̂,u, t))+2e(t)T HDµ(t)−2e(t)T P1Ων . (5.73)

Since for any matrices X , Y and any positive number ε > 0 the following inequality
satisfies

ε

(
1
ε

X−Y
)T (1

ε
X−Y

)
≥ 0

then
XTY +Y T X ≤ 1

ε
XT X + εY TY, ∀ε > 0
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hence for any ε1 > 0,

e(t)T P1HS(g(x,u, t)−g(x̂,u, t))+(g(x,u, t)−g(x̂,u, t))T ST HT P1e(t)

≤ ε1e(t)T P1P1e(t)+
1
ε

HSST HT‖(g(x,u, t)−g(x̂,u, t)‖2

≤ ε1e(t)T P1P1e(t)+
κ2

ε1
HSST HT‖x(t)− x̂(t)‖2

= (ε1P2
1 +

κ2

ε1
HSST HT )‖e(t)‖2. (5.74)

Then by substituting (5.62), (5.65), (5.66) and (5.74) into (5.73),

˙V (t) ≤ e(t)T [(NT P1 +P1N
)
+ ε1P2

1 +
κ2

ε1
σM(HS)

]
e(t)+2e(t)TCT

Θ
−1Fµ(t)

− 2e(t)TCT Ce(t)
‖Ce(t) ‖

≤ −e(t)T QΘe(t)+2 ‖ e(t)TCT ‖ (α1 ‖ F ‖
λmin(Θ)

−1)

≤ −λmin(QΘ) ‖ e(t) ‖2 (5.75)

which implies that (5.75) is negative definite. Therefore the error system (5.60) in
fault free case is asymptotically stable if there exists an s.p.d. P1 satisfying (5.70).

5.7 Model (observer)-based intermittent fault detection
The FD consists essentially of two steps, residual generation and residual evaluation

including threshold, see (Chen et al., 2015; Qning et al., 2014)
The purpose of the first step is to generate a signal, the residual, which is supposed to be
nonzero in the presence of a fault and zero otherwise. However, the residual is almost
always nonzero due to disturbances and model perturbations, even if there is no fault.

The purpose of the second step of the FD algorithm is thus to evaluate the residual and
draw conclusions on the presence of a fault. This is done by comparing some function
of the residual to a threshold, see (Frank, 1995; Emami-Naeini & Rock, 1988).

5.7.1 Residual generation
Consider the nonlinear system (5.6) with the intermittent fault fi(t),

ẋ(t) = Ax(t)+Bu(t)+Dµ(t)+Sg(x,u, t)
y(t) = Cx(t)+Dyµy(t)+Ks fis(t) (5.76)

where Ks ∈ Rp×rs is the known distribution matrix of the intermittent fault fis ∈ Rrs .
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For effective fault detection, the effect on sensitivity due to the disturbance in the residual
vector must be small while the sensitivity due to the faults should be large. Hence, the
generated residual r(t) should be as sensitive as possible to the fault fis(t) and as robust
as possible to unknown input (disturbance) µ(t) and sensor noise µy(t).
Then the fault detection filter for system (5.76) may have the following form:

ż(t) = Nz(t)+Ly(t)+Gu(t)+HSg(x̂,u, t)+HDµ̂(t)+
HDyµ̂y(t)

x̂(t) = z(t)−Ey(t)
ŷ(t) = Cx̂(t)+Dyµ̂y

r(t) = ξ (y(t)− ŷ(t)) = ξ (Cex(t)−DyF11Cex(t)+Ks fis(t))
= ξCω̄ex(t)+ξ Ks fis(t) (5.77)

where ξ ∈ Rnξ×p is a weighting matrix which should be designed and

ω̄ = In−DyF11. (5.78)

The problem can be stated as finding ξ , such that the following aims are achieved,
(Ahmadizadeh et al., 2014):

• The effect of the unknown input (disturbance) signals on the residual signal are as
small as possible while the effect of the fault signal is as large as possible.

• The effect of parametric uncertainties on the residual signal is as small as possible.

• The fault detection system is robust and stable in the presence of exogenous sig-
nals and uncertainties.

In other words, the main objection is to show that the residuals are away from zero when
faults have occurred; however, the residual tends to zero in ”no-fault” situation.

5.7.2 Residual evaluation

A common choice of evaluation signal is the following 2-norm,

reval = ‖r‖2 ,

√∫
∞

0
|r(τ)|2dτ. (5.79)

Since evaluation of (5.79) cannot be easily realized, because the value of ‖r‖2 is not
known until t = ∞, and it is reasonable to assume that the faults could be detected, if
occurs over the finite time interval, therefore (5.79) could be modified to

reval = ‖r(t)‖2 ,

√∫ t

0
|r(τ)|2dτ (5.80)
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where τ is the time window and it is finite, (Puig et al., 2012). Benefit of using the
2-norm is that it is then straight-forward to optimize the residual generator to minimize
the influence of unknown input (disturbance) µ(t). For simplicity the index 2 will be
ignored from this point.
For the evaluation signal (5.80), the occupancies of faults can be alarmed if

‖r(t)‖> Tr =⇒ A f ault is detected (5.81)

and
‖r(t)‖ ≤ Tr =⇒ No f ault is detected. (5.82)

where, Tr, indicates the threshold. Hence the value of threshold gives an explicit
bound for the fault-free case and thus provides a valuable guideline for robust threshold
selection, (Qning et al., 2014; Puig et al., 2012; Wang & Wang, 2007).

Adaptive threshold:

Since with a fixed threshold it is most likely that the false alarms occur (Wu et al.,
2017), for instance, due to the dynamics of the system, and this can be seen as a breach
in the fixed threshold where no fault exists, hence an adaptive threshold, Tr, is obtained
based on the residual dynamics in fault-free case to minimize the false negative and false
positive alarms.
To design the adaptive threshold for nonlinear system (5.76) and evaluation signal (5.80),
the residual r(t) = ξCω̄ex(t)+ξ Ks fis(t) should be redefined as follows

r(t) = re(t)+ r fis (t), (5.83)

where re(t) = r(t) |µ(t)=0,µy(t)=0, fis(t)=0 and r fis (t) = r(t) |µ(t)=0,µy(t)=0 are the residuals
due to the state errors and intermittent fault respectively.

To design Tr, it is also needed to define the residual due to the unknown input (dis-
turbance), rµ(t) = r(t́) | fis(t)=0 where t = [0, t1, · · · , ti, · · · , tn] and t́ = [ti, · · · , tn], where t́
is the time when the system is stable.
Therefore Tr could be express as follows:

Tr = sup‖rµ(t́)‖+‖re(t)‖ ≥ 0. (5.84)

Since the unknown input (disturbance) is bounded to a positive scalar d (see Assumption
2), then

sup‖rµ(t́)‖= δd ≥ 0 (5.85)

where δd is a positive constant number. Hence from (5.84), ‖re(t)‖ = Tr− δd , which
results that

‖re(t)‖ ≤ Tr. (5.86)

In other hand to show that Tr is the upper bound of residual ‖r(t)‖, consider (5.83) as
follows:

‖r(t)‖= ‖re(t)+ r fi(t)‖. (5.87)
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In faulty case ‖r fi(t)‖ > β > 0, where β is a positive constant. Consequently ‖r(t)‖ =
Tr +β > 0 which conclude ‖r(t)‖> Tr.
If there was no fault in the system, then ‖r fi(t)‖ = 0, therefore from (5.87), ‖r(t)‖ =
‖re(t)‖ which results in ‖r(t)‖ ≤ Tr.
Hence according to the obtained results the designed residuals and adaptive thresholds
are able to detect intermittent faults while occurred.

5.8 NUIO-based intermittent fault detection example

To illustrate the effectiveness of the NUIO designed in this chapter, the model of a
three-phase current motor is used, see (Brik & Zeitz, 1988; Nikoukhah, 1995). The state
equations of this system are given by

ẋ1 = x2

ẋ2 = A1x1 +A2x2 +A3x3 +D1µ(t)
ẋ3 = u+A4x3 +S1g(x,u, t) (5.88)

where x = (x1,x2,x3)
T is the state vector, u is the control input and A1, A2, A3, A4, D1

and S1 are constants (see table (5.1)).
The intermittent fault fis(t) is generated as a combination of impulses at different

amplitudes which will be occurred in discrete intervals. Thus, the fault can be modelled
as:

fis(t) =



0×dy for 0≤ t < 3s
1×10−1×dy for 3s≤ t < 5s

0×dy for 5s≤ t < 8s
2.5×10−1×dy for 8s≤ t < 12s

0×dy for 12s≤ t < 15s
5×10−1×dy for 15s≤ t < 21s

0×dy for 21s≤ t < 26s
7×10−1×dy for 26s≤ t < 35s

0×dy for 35s≤ t < 40s
9×10−1×dy for 40s≤ t < 50s

(5.89)

where dy > 0 is constant and t indicates the time. The outputs of the system are given
by

y(t) =Cx(t)+Ks fis(t). (5.90)

Moreover, the unknown input (disturbance), µ(t) is an unknown function which is
bounded to some positive constant, d = 0.001 (see Assumption 2) and the nonlinear-
ity function is , g(x,u, t) = 1

2 sin(x1). The numerical values of the different parameters
are listed in Table (5.1).

Using the parameter values given in Table (5.1), the following state-space matrices
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Parameter Numerical value
A1 -0.2149
A2 -0.2703
A3 -1.1990
A4 -0.3222
D1 1.00
S1 1.9

Table 5.1: Numerical values of the system parameters

are established for the example system (5.88),

A =

 0 1.0 0
−0.2149 −0.2703 −1.1990

0 0 −0.3222

 , B =

 0
0
1

 ,

C =

(
1 0 0
0 0 1

)
, D =

 0
1
0

 , S =

 0
0

1.90

 , Ki =

(
0
1

)
.

It is clear that for this system assumption 1 is satisfied and CD = 0. As this assump-
tion is satisfied to design the NUIO for the illustrated system the following steps should
be carried out.

• First, select D1 =
(

0 1 0
)T which satisfies the rank condition

rank(CD1) = rank(D1) = 1

and makes HD1 = 0 and CD1 6= 0.

• Second, substitute D1 into equation (5.20), matrix E will be then driven as:

E =

 0 0
0 0
0 −1

 .

• Then substitute E into (5.12) to establish matrix H

H =

 1 0 0
0 1 0
0 0 0

 .

• Next from N = HA−KC and ARE (5.21), matrix N and control gain K are ob-
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tained as follows:

N =

 −0.3466 1.0 0.0662
−0.3905 −0.2703 −0.6922
0.0662 0 −1.1878

 ,

K =

 0.3466 −0.0662
0.1756 −0.5068
−0.0662 1.1878

 .

• Finally by substituting N and K into (5.22), the observer gain L is given

L =

 0.3466 0
0.1756 −1.1990
−0.0662 0

 .

The obtained parameters satisfy the conditions (5.27), (5.33) and (5.39), and guarantee
the existence of the designed NUIO for the system under investigation.
Matrices M̄ and Ḡ are also obtained from the equations (5.42) and (5.43)

M̄ =

 1 0 0
0 1.010 −0.0200
0 0 1

 ,

(M̄)−1 =

 1 0 0
0 0.9901 0.0198
0 0 1

 ,

Ḡ =

 −0.3466 1.000 0.0762
−0.3927 −0.2730 −0.7142
0.0662 0 −1.1878

 .

Since detM̄ 6= 0, therefore M̄ is invertible. Hence, in order to make M̄−1Ḡ Hurwitz the
following design matrices are selected

Ad =

 −0.01 0 0
0 −0.01 0
0 0 −0.01

 ,

Ai =

 −0.01 0 0
0 −0.01 0
0 0 −0.01

 ,

Ag =

 −0.02 0 0
0 −0.02 0
0 0 −0.02

 .
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Figure 5.1: States error responses (e = x− x̂).

Hurwitz matrix: An square matrix M̄−1Ḡ is called Hurwitz or stable matrix when all of
its eigenvalues have strictly negative real parts ‖Re(M̄−1Ḡ)‖ < 0. Hence, By selecting
these design matrices, M̄−1Ḡ becomes

M̄−1Ḡ =

 −0.3466 1 0.0762
−0.3875 −0.2703 −0.7306
0.0662 0 −1.1878

 .

where every eigenvalue of M̄−1Ḡ has strictly negative real part,

λe1 = −0.2869+0.6482i
λe2 = −0.2869−0.6482i
λe3 = −1.2308

(5.91)

λe presents the eigenvalues of M̄−1Ḡ and the negative real part of these eigenvalues
demonstrate that M̄−1Ḡ is Hurwitz.

To see the capability of the proposed NUIO in detecting intermittent fault, simula-
tion results are presented in Figures (5.1)-(5.5). From Figure (5.1), which shows the
states error’s responses, it can be seen that the observers perform as expected and the
state estimation errors do tend to zero asymptotically. It also demonstrates that the pro-
posed design approach minimizes the effects of the unknown inputs (disturbances) to
the state estimation errors and gives a straightforward way to design a robust observer
for intermittent fault detection where the bounded unknown inputs (disturbances) exist.

Moreover, figures (5.2)-(5.5) show that the intermittent fault has been detected using
the designed adaptive threshold for both choice of outputs.
When an adaptive threshold is designed, as shown in Figures (5.2)-(5.5), the system

dynamics do not breach the threshold, (Sedighi et al., 2013). Moreover, the proposed
adaptive threshold is insensitive to faults of specific amplitude. The adaptive threshold
approach provides the capability to ignore small intermittent disturbances that manifest
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Figure 5.2: Residual and adaptive threshold responses to detect the intermittent faults
(first choice of output, y1).
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Figure 5.3: Residual and adaptive threshold responses to detect the intermittent faults
(first choice of output, y1), zoom on the first few seconds of Figure 5.2.

as system noise and do not have a serious impact on the system performance.

5.9 Feed-forward observer-based intermittent fault de-

tection example

To demonstrate the efficiency of the outcomes achieved in sections 5.5− 5.7, con-
sider the dynamic characteristics of a car suspension system. The system is treated as a
Mass-Spring-Damper (MSD) system where n masses, springs, and dampers are linked
in series (Figliola & Beasley, 2014; Wang et al., 2007; Patton et al., 1989).
Since the study of a full-suspension model is truly complex including all four suspen-
sions (tire) systems working individually, then the quarter-car suspension system is ex-
pressed in the three levels of complexity.

The one-degree of freedom model shown in Figure (5.6a) considers displacement,
r1, of the sprung mass, m1, of the vehicle and the primary suspension stiffness, k1, and
damping, c1, only. Here the unsprang mass (mass of the wheels and other components
such as lower control arms) and the mass of the tires are not considered.
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Figure 5.4: Residual and adaptive threshold responses to detect the intermittent faults
(second choice of output, y2).
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Figure 5.5: Residual and adaptive threshold responses to detect the intermittent faults
(second choice of output, y2), zoom on the first few seconds of Figure 5.4.
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Figure 5.6: The model vehicle suspension system.

The two degrees of freedom model shown in Figure (5.6b) accounts for the dynam-
ics of the unsprang mass and introduces the second equation of motion and degrees of
freedom for the displacement, r2, of the unsprang mass, m2, springs and dampers with
k2 and c2. In this model, the tires are massless.

A three-degree of freedom, the model is shown in Figure (5.6c) where the dynamics
of the tires are added to the analysis by treating them as a mass-spring-damper (Genta,
1997; Gillespie, 1992).
A MSD model is normally designed by a series of differential equations. The model

consists of a finite number of masses, springs, and dampers on a line. It is assumed that
n masses, springs and dampers are connected serially.

Note that the system which will be designed in this chapter may be extended. Hence,
the designer can choose any number of masses, springs and dampers to build the desired
system with more complexity.

In Figure (5.7), two springs, dampers and masses were linked together in series (Wang
et al., 2007) where x1 and x2 indicate the position and velocity of the first mass and x3
and x4 indicate the position and velocity of the second mass, respectively. Anl is a
nonsingular damping device whose damping force is FAnl = Cnlsign(x2) ln(1+ | x2 |),
with Cnl ≥ 0.

An arbitrary and unknown force, w, is enforced on the second mass. The known input
forces, u1 and u2 are applied to both masses 1 and 2, subsequently. The state variables
x1 and x4 are measurable, hence to estimate the state variables x2 and x3 the observers
are designed.
The state equations of the model are given such as,

ẋ =


0 1 0 0

−k1+k2
m1

−b1+b2
m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2
− b2

m2




x1
x2
x3
x4
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Figure 5.7: The mass-spring-damper system.

,

+


0
− 1

m1
0
0

ρ(x2)+


0 0
1

m1
0

0 0
0 1

m2

( u1
u2

)
+


0
0
0
1

m2

w, (5.92)

ρ(x2) =Cnlsign(x2) ln(1+ |x2|). (5.93)

The output of the model is presented as, y =Cx+ηy, while C ∈ℜn×n. And ηy indicates
an additive offset (intermittent sensor fault/output error) on each output.

5.9.1 Intermittent fault detection

Collapsing suspension because of coil spring failure sounds to be a growing issue,
created by a combination of latter harsh winter conditions and weight-saving designs.
A plastic layer is coating the coil springs while they are built to decrease the risk of
corrosion. Over time, contact between coils when the spring is compressed frequently
in service may cause damage to this coating. Regularly the failure of the coil spring
appears to be created by corrosion, is accelerated by salt enforced to the roads in winter.
Consequently, the electrolytic action between the salt solution, created by road salting,
and the iron in the spring produces free hydrogen atoms which enter the steel and can
cause microscopic cracking. Cracks propagate and combine, eventually leading to the
spring failure, http://www.theaa.com.
Cracks and corrosion both can be classified as intermittent faults. Assume that at each
failure, the length of spring will change suddenly. Hence, a fault in the position i, is
defined as a change in the length of the i-th spring, L f = (L0 + fisL0), while in all other
parts of the model the length of the springs will remain as L f = L0, where L0 indicates
the initial length of the spring.
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The fault, fis(t) is a time varying of the form fis(t) = ddiync(t), where the constants, ddi,
for i = [1, · · · ,4], indicate the maximum fault amplitudes. The selected output is shown
by ync where nc = 1, · · · , n and the time is defined by t.
Consequently, for the model under the investigation the intermittent fault, fis(t), is pre-
sented as,

fis(t) =



0 for 0≤ t < 5s
dd1 for 5s≤ t < 7s

0 for 7s≤ t < 11s
dd2 for 11s≤ t < 14s

0 for 14s≤ t < 18s
dd3 for 18s≤ t < 25s

0 for 25s≤ t < 28s
dd4 for 28s≤ t < 40s

(5.94)

with constants, dd1 = 0.0025, dd2 = 0.01, dd3 = 0.15 and dd4 = 0.25.

5.9.2 Simulation results

Assume that the model parameters have got the following values, m1 = 5kg, m2 =
1kg, k1 = 30N

m , k2 = 10N
m , b1 = 4Ns

m , b2 = 2Ns
m , Cnl = 5N and w(t) = 0.04sin(t)+ 2N,

then to design the appropriate observer (5.53), the following matrices are obtained,

E =


0 0
0 0
0 0
0 −1

 , G =


0 0

0.2 0
0 0
0 0

 , H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,

L =


−0.3501 0
−4.5838 0.4000
0.2936 1.000
−0.8632 0

 , K =


−0.3501 0.7234
−4.5838 −0.2351
0.2936 1.4022
−0.8632 0.500

 ,

N =


0 1 0.3501 −0.7234

−8.000 −1.200 6.5836 0.6351
0 0 −0.2936 −0.4022
0 0 0.8632 −0.5000

 .

From (5.71) the s.p.d. matrices QΘ and P1 are obtained as follows:

QΘ =


4.7840 −16.1760 1.6550 2.3160
−16.1760 69.7660 −6.2630 −9.0150

1.6550 −6.2630 0.6920 0.9280
2.3160 −9.0150 0.9280 1.3031

 ,
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Figure 5.8: The error estimation responses in presence of unknown inputs.
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Figure 5.9: The residual and fixed threshold responses in presence of the intermittent
fault.

P1 =


3.0828 −2.7134 −0.0139 −0.4510
−2.7134 37.7228 −1.6128 −1.1082
−0.0139 −1.6128 0.4494 0.5322
−0.4510 −1.1085 0.5322 2.2219

 .

Select ε1 = 1×10−5, then λmin(QΘ) = 0.0125, which satisfies equation (5.75) to be
definite negative. Hence, the error stability of the MSD model is also guaranteed.

Figure (5.8) shows the behaviour of the state errors and demonstrates that the errors
between the actual and estimated states are stable and converge to zero asymptotically
even though uncertainties within the system exist. Figure (5.8) also shows that the de-
signed observer satisfies the stability of the error regardless of any bounded uncertainties
in the absence of faults.
Figures (5.9) and (5.10) show the residual and fixed threshold responses when the sys-
tem is influenced by unknown input with the known bound. Figure (5.10) shows that
with a fixed threshold false alarm can occur due to the dynamics of the system. This can
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Figure 5.10: The residual and fixed threshold responses in presence of the intermittent
fault (first few seconds).
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Figure 5.11: The residual and adaptive threshold responses in presence of the intermit-
tent fault.
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Figure 5.12: The residual and adaptive threshold responses in presence of the intermit-
tent fault (first few seconds).
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be seen as a breach in the fixed threshold at the beginning of the operation of the system
where no fault exists.
In this case, faults can be detected more precisely if an adaptive threshold is designed.
When an adaptive threshold is designed, as shown in Figures (5.11) and (5.12) the same
system dynamics do not breach the threshold. The adaptive threshold approach, there-
fore, provides the capability to ignore small intermittent disturbances that manifest as
system noise and do not have a serious impact on the system operation.
The simulation results also show that the proposed design approach was minimizing
the effects of any uncertainties and has presented a sufficient method to design a robust
observer for intermittent fault detection where the bounded disturbances exist.

5.10 Conclusions
In the first part of this chapter, a novel robust NUIO for a class of nonlinear systems

with bounded unmatched unknown inputs (disturbances) was proposed. Furthermore,
the fault detection filter for this class of nonlinear systems with the adaptive threshold
design was also provided. The results show that the designed error dynamics are stable.
In this method, sufficient design parameters (D1, Gi, Mi, and Fi, i = 1, · · · ,n), where n
is the number of states, and the nonunique design matrices Ag, Ad and Ai provide extra
degrees of freedom to design NUIO.
The advantages of the presented NUIO are summarized as follows:

• First, The restriction of the NUIO rank condition has been ignored without losing
the design convenience by introducing auxiliary disturbance’s distribution matrix
D1.

• Second, there is no need to consider only the Lipschitz nonlinearity. It could be
applied to the wider class of nonlinear systems with any form of general nonlin-
earity.

• Finally, the sensor fault detection method by designing the adaptive threshold is
developed.

However, the main advantage of the proposed method is the possibility to convert the
nonlinear system to the linear system by applying the linear equality mentioned in the
design procedure, and thus makes the difficult NUIO design problem an easy task for
the considered class of nonlinear systems.
The effectiveness of the techniques is illustrated with the help of a numerical example.
The simulation results show that the designed NUIO can indeed make the state estima-
tion errors to asymptotically converge to zero regardless of the bounded unknown inputs
(disturbances).
Through this work, if the existing conditions of NUIO were satisfied, the detection of
the intermittent faults using adaptive threshold can be achieved for descriptor systems.

Moreover, in the second part of this chapter, a robust nonlinear feed-forward observer
has been designed for a class of nonlinear systems whose nonlinear function satisfies
Lipschitz condition, and the unknown input term is bounded. In this approach, a design
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matrix has been proposed to provide extra degrees of freedom to the designer to develop
the residual.
The main advantage of the proposed approach is the intermittent fault detection by de-
signing a residual and an appropriate adaptive threshold while the designed threshold
should be highly sensitive to the intermittent faults only.
Eventually, the effectiveness of the technique is shown by the help of a numerical ex-
ample. The simulation results also demonstrate that the generated residual and adap-
tive threshold can indeed detect the intermittent faults regardless of the bounded distur-
bances/unknown inputs.

5.10.1 Limitations
Although, there are some limitations for this work such as,

• the simulation results demonstrate that the performance of the model (observer)-
based fault detection techniques decrease significantly as system complexity in-
creases (see Appendix E).

• When the intermittent faults are very small, as small as disturbance, hence they
are almost impossible to detect and if the threshold has been designed to be that
sensitive, then there is a possibility to detect the noises and disturbances as well,

• If the intermittent fault appears for a very short period and then goes into the rest
period (deactivate period) then there is a possibility that the designed adaptive
threshold was not able to detect the fault or may detect it with some delays,

But, the proposed method could make the difficult intermittent fault detection an easier
task for the considered class of nonlinear systems.

In the next chapter, one of these fault detection methods will be applied to detect
intermittent fault in the experimental fuel rig example system under consideration.
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Chapter 6

Model (Observer)-Based Intermittent

Fault Detection Application

6.1 Introduction
In this chapter, the main objective is to discuss the application of observer-based

intermittent fault detection technique for the experimental fuel rig system.
Complete design sequences for the intermittent fault detection of actuators, components,
input and output sensors of the fuel rig described in Chapter 4, are developed in this
chapter.
The approach to be used here is the nonlinear unknown input (NUI) observer-based FDI
methodology (described in deep in the previous chapter) to detect any system, actuator
or sensor intermittent fault.

To validate the results of this approach, the collected experimental data from the fuel
rig, described in Chapter 4 will be used.

This chapter is organized as follows: Section 6.2 the mathematical modelling of the
fuel rig system is presented. In Section 6.3 the intermittent fault which has been injected
to the fuel rig system artificially. and the design procedure to detect it, is proposed.
Finally, the simulations results along with the discussions and conclusions are presented
in Sections 6.4 and 6.5 respectively.

6.2 System modelling
As explained in Chapter 4, pipes’ length and diameter, pump characteristics, loss

coefficient versus valve opening characteristics, shut-off valve pressure drop when fully
opened and tank’s capacity has been identified within the design phase by carrying out
various scenarios in a controlled simulation environment. Volumetric flow rates in the
mainline and pressure rates at five different locations were also calculated using the
physical model.
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Figure 6.1: The statuses of all valves in the fuel rig.

For the healthy state of the fuel system (Figure 4.3), the DPVs were set as follows
(Figure 6.1):

• DPV1 - fully open,

• DPV2 - fully closed,

• DPV3 - fully open (the faulty valve),

• DPV4 - fully closed

• DPV5 - fully open.

Pressure sensors data were recorded for 360 seconds to have a good estimation. The
pump rotational speed was set at 400rpm (Figure 6.2) and the feedback loop of the pump
control unit was active, so the pump speed was constant for the entire testing session.

Moreover, there was no flow into the system, Qin = 0 and it is assumed that the fuel
temperature is constant during the operations. Note that the fluid dynamic phenomena
connected to flows through pipes is neglected. On the rig, the main tank supply fluid
through a pump with an array of the valves connected to the pump.

The modelling will focus on the fluidic side of the rig and the approach used here,
is mechanistic/physical modelling based-on the hardware of the fuel rig and the fluid
properties.

Each element in this system is modelled as a subsystem and the overall model consists
of all such models to represent the overall system. It should be noted that while some of
the pipes depicted are very short they are included in the model of the system to make
the overall model equations solvable.
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Figure 6.2: Gear pump speed.

6.2.1 Mathematical modelling of the physical functions

Tank model

The overall system process is a non-self-regulator because in this process a positive
displacement gear pump is used to drain the water from the tank and the tank along with
the discharge valves cannot maintain the process.

The mathematical equations provide a pressure output for a given height which in turn
is dependent on the flow in and flow out of the tank (Young, 2018; Meenatchisundaram,
2015; Marshall, 1978). A fluid capacitor (tank) has increasing fluid storage with increas-
ing pressure, and is defined by the volume of the water in the tank which is defined by:

V = Ath (6.1)

Where V indicates the volume of the liquid, At and h indicate the cross-sectional and
hight of the liquid in the tank respectively. Moreover, dV

dt shows the rate of change of
liquid volume in the tank. Hence,

dV
dt

= Qin−Qout (6.2)

Then from (6.1) and (6.2) the following equation is obtained:

h(t) =
∫
(Qin−Qout)dt

At
(6.3)
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Figure 6.3: The Tank model.

The height and pressure of the fluid in the tank under investigation are then defined by
equations (6.3) and (6.4).

Pt = ρgh(t) (6.4)

Substitute equation (6.3) into (6.4) where Qin = 0, will give:

Ṗt =CtQout (6.5)

With Ct =−ρg
At

. Q, At , h, ρ , P and g present volumetric flow (m3

s ), tank cross-section
(m2), height (m), density (Kg

m3 ), pressure (Pa) and gravity (m
s2 ) respectively (see figure

6.3).

Valve model

The valve equation below gives the volumetric flow rate from the valve for a given
pressure differential across the valve (Marom et al., 2012).

Q(t) =CvAv

√
2
ρ

∆P (6.6)

where Q, ρ , ∆P, Cv and Av present volumetric flow (m3

s ), density (Kg
m3 ), pressure

difference (Pa), valve conductance (m2) and proportional valve opening respectively.
The equation (6.6) for fast opening valves is nonlinear and could be rewritten as

∆P = RQ2 (6.7)

where R = ρ

2C2
v A2

v
.
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Pump model

The pump, motor and gearbox are represented in the model based on results found by
practical experiment (Civelek, 2006). The ramp of pump time is equal to valve transition
time. It means that the pump will reach the maximum voltage when the valve reach
it’s state. The pump is also required to validate the pipe and valve model as it is the
only physically measurable input signal available to drive the pipe and valve subsystem
models.
For a pump with positive displacement,

Powerin = τω

Powerloss = f ( f riction, viscous, e f f ects, · · ·)
Powerout = ∆P×Q. (6.8)

where τ and ω represent nominal displacement and rotational (shaft) speed respectively.
τω is considered as input speed of the pump in (rpm).
Moreover, equations (6.8), could be represented as follows

Powerout = ηmPowerin (6.9)

where ηm is the pump volumetric efficient and typically gear pumps have efficiencies
around 85% . Hence the following equation is obtained for pressure difference around
the gear pump:

∆P =
ηmτω

Q
(6.10)

Pipe model

The defining equation for the pipe subsystem model is based on the compressibility
of fluid in the system due to the pressure acting upon it (Figure 6.4) and is shown in
following equations, (Analysis, 2004).

Figure 6.4: The pipe model.

Consider an incompressible fluid element flowing down a pipe with constant cross
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sectional area A based on Newton’s motion law:

F = F1−F2 = (P1−P2)A (6.11)

= m
dV
dt

= ALρ
dV
dt

P1−P2 = I
dQ
dt

(6.12)

This equation shows that the net force, (F),causes the mass, (m), to accelerate, (a), where

F = ma = PA (6.13)

is the Newton’s motion law and I = ρL
A . L and A are the length and cross-section

of the corresponding pipe respectively, Q = AV , m = ρLA P, and V0 = A×ΣL present
volumetric flow (m3

s ), mass, pressure (Pa) and original volume of pipe (m3) respectively.

6.2.2 Overall system model
When constructing the overall model presented in Figure (6.5) the subsystems are

simply parameterized and connected to represent the complete system. For parameteri-
zations of the component models, information was taken from measurement, data-sheets
and based on an experiment.

Figure 6.5: The fuel rig system demonstrator. This is a transparent engine-mode version
of Figure (4.3) in Chapter 4 when there is no return of fuel/fluid to the main tank.

Figure (6.5) shows that there is only one capacitor in the system which makes the
fuel rig a Single-Input Multi-Output (SIMO) system. Hence the system is presented
with the second-order differential equation. Similarly, the state space equations of this
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system replace the second-order differential equation with a single first-order matrix
differential equation ( equation 6.23).
To obtain the state-space equations of the fuel rig presented in Figure (6.5), the system
is divided into subsystems and the equations for each subsystem is defined.

The total pressure change in different parts of the fuel rig could be presented as,

∆P = Pstart−Pend (6.14)

where Pstart presents the starting pressure of the system and Pend presents the final pres-
sure. So, to estimate the pressure of the fifth sensor, the starting point could be the main
tank and the final point is the pressure sensor 5 at the end of the fuel rig, hence, equation
(6.14) is rewritten as:

∆P = P1−P5. (6.15)

Similarly, to estimate the pressure sensor 1, the starting point can be started from valve
1 and the final point is the pressure sensor 1. The same method is repeated to estimate
all of the five pressure sensors.

To obtain (6.15), the system is divided into subsystems where the pressure difference
for each subsystem is presented as follows:

• The pressure difference for the pipe 1 is:

∆P1 = I1
dQt

dt
(6.16)

• The pressure difference for the valve 1 is:

∆P2 = R1Qt (6.17)

• The pressure difference for the pipe 2 and the pump is:

∆P3 = I2
dQt

dt
+KuUt (6.18)

where Ku =
ηm
Qp

. Qp represents the flow through the cross section of the inlet port
of a pump and U = τω is the input to the system. Note that the gear pump is a
positive displacement. They will produce the same flow at a given speed (rpm)
no matter the discharge pressure because they are constant machines and Qp is a
constant value.

• The pressure difference for the valve 2 and the valve 3 is:

∆P4 = (R2 +R3)Qt (6.19)
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• The pressure difference for the valve 4 and the pipe 3 is:

∆P5 = R4Qt + I3
dQt

dt
, (6.20)

• Consequently, equation (6.14) could be represented as

∆P = ∆P1 +∆P2 +∆P3 +∆P4 +∆P5

(I1 + I2 + I3)Ct
d2P
dt2 +(R1 +R2 +R3 +R4)Ct(

dP
dt

)+P

= KuU(t). (6.21)

Note that from the equation (6.21) and afterwards ∆P is replaced by P for simplicity.
Finally, the related state-space equations could have taken the following form,

x1 = P

x2 = ẋ1 =
dP
dt

ẋ2 =
d2P
dt2

= −(R1 +R2 +R3 +R4)

(I1 + I2 + I3)
x2−

1
(I1 + I2 + I3)Ct

x1 +
Ku

(I1 + I2 + I3)Ct

U(t). (6.22)

Consequently equation (6.22) could be rewritten in matrix form as follows,

ẋ(t) = Ax(t)+Bu(t)+Dµ(t)+Sg(x,u, t)+Ks fis(t)
y(t) = Cx(t) (6.23)

where D ∈ Rn×q is referred to the known distribution matrix of the unknown input (un-
certainty), and µ(t) ∈ Rq is an unknown vector but bounded to a positive constant d,

‖µ(t)‖ ≤ d, (6.24)

which describes the unknown input and/or any kind of modelling uncertainty such as
random noise, time-varying term, modelling errors, and parameter variation, etc.,.

The value of the upper bounds of the unknown inputs for each pressure sensor are
presented in Table (6.1) (Niculita et al., 2013).

The state-space matrices are then presented as:

ẋ =
(

ẋ1
ẋ2

)
,
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Pressure sensor (PS) Upper bound of unknown in-
put (d)

PS1 0.0105
PS2 0.0099
PS3 0.4463
PS4 0.0949
PS5 0.0499

Table 6.1: The upper bound of unknown input (disturbance) for each pressure sensor
(Niculita et al., 2013)

A =

(
0 1

− 1
(I1+I2+I3)Ct

− (R1+R2+R3+R4)
(I1+I2+I3)

)
(6.25)

x =
(

x1
x2

)
, B =

(
0
Ku

(I1+I2+I3)Ct

)
The Reynold number, Re, of the fuel in the system under investigation is less than

2000, and the fuel is laminar.
Reynold number: Reynold number is a dimensional number expressing the ratio

between the inertia and the viscous forces (Connor, 2020):

Re =
ρV d

µ
(6.26)

where ρ , V ,d, and µ indicate the density, mean velocity of the fluid, a characteristic
linear dimension, (travelled length of the fluid), and dynamic viscosity of the fluid re-
spectively.

If Re < 2000 then the flow is laminar, if Re > 4000 then the flow is turbulent and if
the 2000 < Re < 4000 then the flow is transition flow.

In the system under investigation, the pipe diameters is, d = 0.4m, the friction factor
for water is 0.2, ρ = 997Kg

m3 , the the dynamic viscosity of the water is µ = 1.002NSm2

(Fowler, 2007) and the tank surface pressure is 1.01325bar (Niculita et al., 2013). More-
over, V = Q

A , where Q = 0.784 l
min = 0.000013m3

s is the flow meter through the pipe and
A is the pipe cross sectional area (m2).

by substituting these values in the above equation, the Re number for the water in
the system under investigation is obtained: Re = 4.14 < 2000 which shows the flow is
laminar.

This indicates that the system acts linearly. However the fast opening of the DPVs
causing nonlinear responses in the system.

The nonlinear characteristic of a DPV is modelled and explained in (Zhu & Jin, 2016).
The nonlinear factors in DPV are the orifice area and the solenoid forces. Although the
solenoids used in the DPVs are termed ‘proportional’, but the solenoid forces are not
completely linear with coil current and the spool displacement. Moreover, the nonlinear-
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ity model of the orifice area A(x), must be approximated by the method of linearization
based on the Taylor series expansion which makes the nonlinearity of the DPV obvious.
The other source of nonlinearity in pipes with the fast-opening DPV is the water ham-
mering effect (Zhu & Jin, 2016). Quick opening DPV, can lead to the nonlinear water
hammer effect when water stops or changes directions suddenly.

Hence a general form of the Lipschitz nonlinearity, g(x,u, t) = x2
i ∈ Rs, due to fast

opening valves behaviour (Niculita et al., 2013), is added to the state-space equations to
cover the nonlinear responses of the valves.

S =

(
0
1

)
, g =

(
1
x2

2

)
, D =

(
1
0

)
,

and the outputs of the fuel rig are ,

y =
(

P1 P2 P3 P4 P5,
)

(6.27)

where each output is analyzed individually. For example the fifth pressure sensor output
is presented as:

y = P5 = x2, C =
(

0 1
)
.

The controllability and observability matrices for this system is of full rank (rank=2)
which demonstrate that the system is both controllable and observable :

Obs =
(

C
CA

)
= 1×104


0.0001 0

0 0.0001
0 0.0001

−7.4595 −0.0001



Cont =
(

B BA
)
= 1×10−6

(
0.0 −0.3337

−0.3337 0.0

)
If all five pressure outputs were evaluated at the same time, then the output of the system
is presented as

y =Cx

where y is presented in equation (6.22) and C is:

C =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (6.28)

Which makes the system unobservable, because the matrices A in (6.21) and C in
(6.23) have not the same number of columns.
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It is clear that for this system ( if only component disturbances were considered) then
the Assumption 1 in the previous chapter is satisfied and CD = 0. Hence the following
steps should be carried out.

• First, select D1 =
(

0 1
)T which satisfies the rank condition

rank(CD1) = rank(D1) = 1

and makes HD1 = 0 and CD1 6= 0.

• Second substitute D1 into the equation (5.20), matrix E will be then driven as:

E =

(
0 0
0 −1

)
.

• Then substitute E into (5.12) to establish matrix H

H =

(
1 0
0 0

)
.

• Next from N = HA−KC and ARE (5.21), matrix N and control gain K are ob-
tained as follows:

N =

(
−0.3782 0.7614
−0.2386 −0.7876

)
,

K =

(
0.3782 0.2386
0.2386 0.7876

)
.

• Finally by substituting N and K into (5.22), the observer gain L is given

L =

(
0.3782 1
0.2386 0

)
.

The obtained parameters satisfy the conditions (5.27), (5.33) and (5.39), and guarantee
the existence of the designed NUIO for the system under investigation.

Matrices M̄ and Ḡ are also obtained from the equations (5.42) and (5.43)

M̄ =

(
1.03 0

0 1.21

)
,

(M̄)−1 =

(
0.9709 0

0 0.8264

)
,
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Ḡ =

(
−0.4212 0.7614
−0.2386 −1.0476

)
.

Since detM̄ 6= 0, therefore M̄ is invertible. Hence, in order to make M̄−1Ḡ Hurwitz the
following design matrices are selected

Ad =

(
−0.01 0

0 −0.2

)
,

Ai =

(
−0.013 0

0 −0.05

)
,

Ag =

(
−0.02 0

0 −0.01

)
.

By selecting these design matrices, M̄−1Ḡ becomes

M̄−1Ḡ =

(
0.4089 0.7392
−0.1972 −1.2198

)
.

and every eigenvalue of M̄−1Ḡ has strictly negative real part which demonstrate that
M̄−1Ḡ is Hurwitz.

Note that by considering the sensor disturbances in the system, the NUIO design
becomes straight-forward as the condition CD 6= 0 is satisfied.

Next, the an intermittent fault has been injected to the system.

6.3 Intermittent fault detection

In our example system to show the better applicability of the proposed method, the
intermittent fault artificially has been injected into the system. In the experimental fuel
rig system, the intermittent fault, fis(t), is considered as a fault in DPV 3.

fis(t), is defined as a time varying function of the form fis(t) = ddiync(t), where ddi,
the maximum fault amplitudes, and ync is the designer’s choice of output (nc = 1, · · · ,5).
Hence the intermittent fault, fis(t), could be modelled as follows,

fis(t) =



fis1 for 0≤ t < 30s
fis2 for 30s≤ t < 40s
fis3 for 40s≤ t < 100s
fis4 for 100s≤ t < 160s
fis5 for 160s≤ t < 200s
fis6 for 200s≤ t < 260s
fis7 for 260s≤ t < 280s
fis8 for 280s≤ t < 360s

(6.29)

where ddi ≥ 0, for (i = 1, · · · ,n) are constants and take the values in Table (6.2), and t
indicates the time in seconds (Figure 6.6).
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dd Value
dd1 0
dd2 0.0020
dd3 0
dd4 0.0035
dd5 0
dd6 0.0050
dd7 0
dd8 0.080

Table 6.2: Numerical values for ddi

Residual design

As mentioned earlier, the intermittent fault detection system in general consists of two
parts: residual generation and residual evaluation including thresholds. The residual for
this system is generated as explained in (5.77) as follows:

r(t) = ξ (y(t)− ŷ(t)) = ξCω̄ex(t)+ξ Ks fis(t) (6.30)

The design matrix, ξ , should be define to achieve the following aims the way that:

• ξ HD = 0.

• ξ HS = 0.

• ξ Ks 6= 0.

Hence by choosing
ξ =

(
0 1

)
all of these conditions are satisfied. In the next section the effectiveness of the designed
threshold to evaluate these residuals are demonstrated.

6.4 Simulation Results and Discussions
The model has been implemented and simulated in MATLAB/Simulinkr environ-

ment. To assess the model performance, simulation results have been compared with
experimental data obtained from a fuel rig system while the intermittent fault has been
injected manually. The intermittent fault was considered as shutoff valve is getting
clogged gradually with some rest periods in-between. Eventually, the shutoff valve clog-
ging is reached to 80% approximately.

The numerical values of the different parameters for the simulations are listed in Table
(6.3) and the simulation results, which highlight the modelling capability, are illustrated
in the following figures.

112



CHAPTER 6: MODEL (OBSERVER)-BASED INTERMITTENT FAULT DETECTION

APPLICATION

0 50 100 150 200 250 300 350 400

time(seconds)

20

30

40

50

60

70

80

90

100

fa
u
lt
y
 v

a
lv

e
 s

ta
tu

s
 (

%
)

Faulty valve response

Faulty valve status

Figure 6.6: Intermittent fault dynamic of the faulty shut-off valve.

Parameter Value Unit
ρ 999.0479 kg

m3

g 9.8 m
s2

At 0.15 m2

ht 0.4 m
Cd1 0.77 −
Cd2 0.05 −
Cd3 0.77 −
Cd4 0.77 −
Av1 0.004 m
Av2 0.003 m
Av3 0.004 m
Av4 0.004 m
Lp1 0.4 m
Lp2 0.4 m
Lp3 0.4 m
Ap1 0.004 m
Ap2 0.004 m
Ap3 0.004 m
ηm 85% −
Qp 0.784 l

min
ωτ 400 rpm

Table 6.3: Numerical values of the system parameters
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Figure 6.7: The real outputs of the pressure sensors with the initial conditions mentioned
in Table (6.4).

Pressure initial condition
Pre-filter pressure, P01 0.901
Post-filter pressure,P02 0.852
Pre-valve pressure,P03 0.326
Post-valve pressure,P04 0.229
End pressure,P05 0.121

Table 6.4: Pressure sensors initial conditions where P0 indicates the initial pressure for
each sensor respectively.
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Figure 6.8: State errors in fault free case. In this figure, e1 = y1− ŷ1 indicates the first
pressure error, e2 = y2− ŷ2 indicates the second pressure error, e3 = y3− ŷ3 indicates
the third pressure error, e4 = y4− ŷ4 indicates the fourth pressure error, and e5 = y5− ŷ5
indicates the fifth pressure error.

Figure (6.7) shows the real noisy and faulty outputs out of the five pressure sensors of
the fuel rig system. These data are then used to design the NUIO fault detection filters
for these sensors to detect the intermittent faults.

Figure (6.8) shows the accuracy of the mathematical modelling of the fuel rig system.
This figure indicates the errors between the real outputs of the system and the estimated
outputs from the mathematical modelling in the fault-free case. In Figure (6.8) the state
errors tend to zero asymptotically which means that the real outputs of the system, (y),
and their estimated outputs, (ŷ), merge towards each other quickly.

Figure (6.9) shows the errors of all five pressure sensors in the presence of an inter-
mittent fault. The non-zero values in these errors indicate the presence of the intermittent
fault in the system.

The errors in Figure (6.9) are then used to design the observer-based residuals and
thresholds for each pressure sensors.

Figure (6.10) shows the effectiveness of the proposed observer-based fault detection
method to detect intermittent fault using fixed thresholds. As this figure shows, in the
third and fourth subfigures, the fixed threshold is not able to detect the intermittent fault
and/or detect it very late.

The reason behind it could be because of the size of unknown inputs or disturbances
in these sensors (see Table 6.1) .

The fixed threshold is the upper bound of available unknown inputs and if these
boundaries become significantly huge at some point, then the effect of the faults will
be masked by the disturbances and a fixed threshold is not able to detect the fault and
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Figure 6.9: State errors in the presence of intermittent fault. In this figure, error1 =
y1− ŷ1 indicates the first pressure error, error2= y2− ŷ2 indicates the second pressure
error, error3= y3− ŷ3 indicates the third pressure error, error4= y4− ŷ4 indicates the
fourth pressure error, and error5 = y5− ŷ5 indicates the fifth pressure error.
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Figure 6.10: The system residuals along with the fixed thresholds. In this figure T
indicates the threshold and r is the corresponding residual.
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Figure 6.11: The system residuals along with the adaptive thresholds. In this figure T
indicates the threshold and r is the corresponding residual.
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Figure 6.12: The system residual along with the adaptive thresholds for the pressure
sensor 3 (pre-clogged valve sensor).
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will increase the rate of false-positive (and NFF) significantly.
One solution to this problem could be designing an adaptive threshold. Figure (6.11)

shows that in all five subfigures the intermittent fault was detected before it makes a ma-
jor breakdown to the system responses. This figure also indicates that pressure sensors
which are closer to the fault location show severe changes in its output in compare with
sensors which are far from the fault location.

The third and fourth subfigures which show the residual of the pre and post clogged
filter, demonstrate the most changes in their responses in comparison to others because
they are closer to the fault position, although, the fixed threshold missed the fault in
these parts of the system.

Moreover, the third sensor in this figure (pre clogged valve sensor), which is the
closest sensor to the fault location had the best intermittent fault detection by the use
of a designed adaptive threshold. The fault is detected as quickly as it started to make
changes to the sensor output. The better view of the designed observer-based residual
and adaptive threshold of this sensor is shown in Figure (6.12).

In this figure, the non-zero variable on the observer-based residual in the first few sec-
onds is due to the unknown inputs (measurement errors). This Figure clearly shows that
the designed adaptive threshold is sensitive to the fault only and did not detect the un-
known inputs due to the disturbances, measuring errors, etc., instead of the intermittent
fault.

The presented simulation results demonstrate that the designed adaptive threshold is
reducing the false and miss alarm rates in comparison with the fixed thresholds signifi-
cantly and Figures (6.11) and (6.12), show that the proposed FDI method along with the
designed adaptive threshold is successfully detected the intermittent fault in the fuel rig
system.

The simulation results also show that the proposed NUIO approach minimising the
effect of the unknown inputs (uncertainties) to the state estimation errors and will give
a straightforward way to design a robust observer-based residual and adaptive threshold
for intermittent fault detection where bounded uncertainties exist.

6.5 Conclusions
Although the effectiveness of the proposed method to accurately detect the intermit-

tent fault has been shown in this chapter but one main limitation to these methods is
that in mathematical modelling the diagnostic system is sensitive to the modelling error.
Usually, for the very complex systems, these errors are quite considerable and the effect
of these modelling errors obscure the effect of fault (intermittent fault) and may cause
false/miss alarms.

One solution to this problem could be to employ data-driven methods, particularly
when the system under investigation is complex or the mathematical modelling of the
system is difficult or costly to obtain.

In data-driven based fault diagnosis methods the precise mathematical model is not
needed and is capable of dealing with incomplete information. Hence when the systems
are more complex it is more appropriate to use data-driven based fault detection methods
such as Bayesian networks.
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In the next chapter the BN-based fault detection method is presented. The goal is to
detect the intermittent fault and localize faulty components.
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Chapter 7

Bayesian Network-Based Intermittent

Fault Detection

7.1 Introduction
Systems, in real-world, are often dynamic and their variables and parameters change

continuously with time. Hence, sensors in practice are capable of providing much more
information, such as how the measured variable varies over time ( i.e: the reading could
be continuous over time rather than simply a static reading). However, considering
dynamic factors in the system when performing fault detection adds difficulties to the
task (Marrison, 1992).

Furthermore, in real-world, fault detection algorithms have to make decisions based
on uncertain data or uncertain models (Oblak et al., 2007) which are not usually mea-
surable but will make the fault detection process more complicated.

BN, is considered as one of the methods which can handle the uncertainties as the
inherent uncertainties in the system can be absorbed into the conditional probabilities
(Figueroa & Sucar, 1999). BN is also capable of learning missing data entries (Jackman,
2000).

In this chapter, how the BNs (Static BN (SBN) and HDBN) can detect intermittent
faults in a system are investigated.

This chapter aims to introduce a method that could apply to intermittent fault detec-
tion in systems with some dynamic aspects.

Therefore, the method is first described in a general way and then is demonstrated on
the fuel rig system outlined in Chapter 4.

The diagnostic model in this chapter is built in two phases as follows:

• In the first phase, an SBN is developed and studied for the fuel rig system to detect
and identify all possible root causes of intermittent fault.

• In the second phase, an HDBN is presented for the fuel rig system to create a
network to represent the intermittent fault detection system which can handle the
temporal dynamics in the system.
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The developed networks results are then evaluated and compared.
In general, a Bayesian Network Fault Detection (BNFD) system may carry out the

following steps after constructing the network in order to define the fault probability and
faulty components:

• First, the prior probability distributions when no evidence is propagated to the
network is identified.

• Second, the posterior probability distribution through the BN with given evidence
is given to each component.

• Third, the ranking of the faulty components can be achieved (components with
higher posterior probability with regards to their prior probability have higher
rank).

• Finally, the faulty component will be localized and represent as hypothesis vari-
ables.

If the physical systems under investigation comprise both continuous and discrete
quantities, then to introduce the time-dependent variables along with the discrete vari-
ables in the framework of probabilistic models, HDBN is introduced (Gasse et al., 2012).
In HDBN fault detection method if the given variable is continuous (has temporal dy-
namic), the corresponding node is also continuous and its probability distribution is
supposed to be Gaussian (normal) (see Appendix C), (Iamsumang, 2015).

This chapter is organized as follows: in Section 7.2, BN is presented. Then BNFD
is introduced in Section 7.3 and intermittent fault detection in the fuel rig using BNFD
systems along with their simulation results, discussions and sensitivity analysis are pre-
sented in Sections 7.4 and 7.5 respectively. Finally, conclusions and the limitations of
the proposed methods are presented in Section 7.6.

7.2 Bayesian network
In general, BNs approaches consist of the following steps:

• Finding DAG (structure of the network), denoted by G

• Finding CPT/CPD, one for each node ate G

The diagnostic inference is then possible by looking at the CPT/CPD when some vari-
ables values are known (priors). During the calculation, if some state of the nodes is
not known, the propagation of priors finds the best hypothesis consistent with the actual
data (Xiang et al., 1990).

To build a DBN/HDBN, it is necessary to insert a certain number of regression nodes
representing the values of given variables at previous time instants. The regression
means a return to a former or less developed state and the regression nodes are all the
nodes represented in the previous time slice (Qian & Dougherty, 2016). This number
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of regressions for each variable depends on the particular dynamic system under con-
sideration and is very much rely on the nature of the event which is investigated by the
corresponding network.

Since the dynamic behaviour of some system components is abnormal for short time
intervals and the occurrence and the length of these intervals are unpredictable which
makes it difficult to react appropriately, hence the correct and appropriate number of
regressions is very important. In cases such as intermittent fault detection, it is easy to
miss the fault at the early stages. Hence, the number of regressions must be selected
carefully. The expert knowledge or any available reliable information could help to
choose this number.

7.2.1 Finding DAG
Finding the best DAG is the crucial step in BN design. Construction of a graph

to describe a BN commonly could be achieved based on probabilistic methods using
databases of records (Li & Chen, 2014) such as:

• Search and score approach: in this approach, a search through the space of pos-
sible DAGs is performed to find the best DAG. The number of DAGs, f (nn), as
a function of the number of nodes, nn, grows exponentially with nn (Lee & van
Beek, 2017),

f (nn) =
nn

∑
i=1

(−1)i+1(
nn

i
)2i(nn−i) f (nn− i). (7.1)

Hence for the system with nn = 16, using equation (7.1), there is 8.38× 1046

possible DAGs and exhaustive search on the space of all DAGs is not practical.
In practice, search and score is an initial approximation of the network structure
from data. However, the accuracy of the learned BN is then largely affected by
the richness of the data and the prior knowledge of the network ordering.

• K2 algorithm: in this algorithm initially each node has no parents. Then the parents
are added incrementally (the score of the resulting structure will increase). When
the addition of a single parent does not increase the score, it stops adding parents
to the node. Before the algorithm started, the possible parents of every variable
must be defined (order) based on the experience, human knowledge and other
available evidence. If the order is known, a search over this order is more efficient
than searching over all DAGs (Lerner & Malka, 2011).

• MCMC algorithm: it is a stochastic process, where the current state depends only
on the past state. By applying MCMC algorithm, the chain is the sequence of
DAGs in which the search for the best DAG is performed. The MCMC pro-
cess finds a very complex function, the DAG, that best agreed with the evidence
contained in the database by applying a probabilistic approximation (Roberts &
Rosenthal, 2009).

The MCMC algorithm starts at a specific point in the space of DAGs. The search
is performed through all the nearest neighbours, as it moves to the neighbour that
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has the highest score. If no neighbour (the graph that can be generated from the
current graph by adding, deleting or reserving a single arc) has the highest score
than the current point, a local maximum has been found and the algorithm will
stop (Andrieu & Atchade, 2007; Hoshino, 2008).

In this research, the model-based FD along with the mathematical modelling of the
system, help the network designer to record all the variables of interest (the variables
which are difficult, expensive and sometimes impossible to monitor by the sensors but
important for the fault detection) to construct the network structure (Figure 7.1). The
model-based FD method is also helpful to avoid unnecessary complexity and uncertainty
due to the increasing number of variables and hidden layers.

7.2.2 Finding CPT/CPD
the conditional probabilities are the probability distributions of a node given its par-

ents and are calculated based on the resulting structure. Usually, the nodes with no
parents (root nodes) correspond to the prior probabilities (Probabilities before any ev-
idence is given) and the nodes with parents correspond to the conditional probabilities
(Xiang et al., 1990).

The computation of conditional probability, Pr(XF |XE), where XF , is the variable
of interest (eg., fault cause) and XE , is the variable or set of variables that have been
observed ( eg., sensor observations) are called inference.

There are many different algorithms for calculating the inference in the network,
which apply different trade-offs between speeds, complexity, generality and accuracy
such as:

• Variable Elimination Algorithm (VEA), (Jung et al., 2009) which allow the infer-
ence calculation with a generic structure

• Maximum Posterior Likelihood Algorithm (MPLA), (Dempster et al., 1977)

• Monte carlo algorithm(Mau, 1996)

• Junction tree algorithm(Xia & Prasanna, 2008)

• Gibbs sampling algorithm(Lawrence, 2005)

In this research, the Junction Tree inference algorithm was applied.
In general, BNs in addition to their simple causal graphical structure, have some other

appealing properties:

• The ability to update initial beliefs about the values of each variable (prior proba-
bilities) in the face of new evidence via Bayes’ theorem.

• A BN can perform different types of inference: deductive (top-down, forward,
predictive), diagnostic (bottom-up, inverse, explanatory). This is useful since the
same BNs can be used for both the detection (assessment) and the evaluation.

• Analysts can make probability judgments consistent with the direction of causal-
ity.
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Model (observer)-Based

Fault Detection
Expert Knowledge/
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Structure of BN
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Diagnosis

Probability of

Faulty Components

Figure 7.1: Flow chart of the BNFD network for fault diagnosis.

• Evidence can be entered into the model, and the effect on the other variables
(nodes) can be observed (improving or worsening, and by what magnitude).

• BNs can work with data of different types and sources: they handle a mix of
subjective and objective data, hence, supplement traditional experimental and sta-
tistical methods.

7.3 Intermittent fault detection using BNs

The complete sequence of intermittent fault detection approach using BN consists of
the following steps:

• Data collection (historical data, laboratory data, environmental data, knowledge-
based data).

• identifying the key variables, the failures and the operating modes.

• Describing casual relationships (static, dynamic).

• Construction of the network: a BN for the fault detection may be built,

– Traditionally, by intuition (expert knowledge): the resulting network model
may be incomplete and casual relationships may be incorrect;

– By learning through data (structure learning): the richness of data, the prior
knowledge about the process and other FDI methods results such as model-
based FDI guarantee the accuracy;
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Figure 7.2: BN-based fault detection structure.

– Combination of both: when using a combination of data and expert knowl-
edge to construct the BN, usually the edges which are the same in all algo-
rithms are kept and the remaining edges are removed based on the experi-
ence, expert knowledge and other evidence. For example, independent sen-
sor edges among sensors can be removed because their values are always ob-
served. Then the remaining edges are compared with the relationship among
variables on the process.

• Arrange the groups of variables in layers. In the designed BN for FDI in Figure
(7.2):

– Variables which exhibit significant changes when the fault occurs present the
output sets or evidence (fault signatures)

– Variables that are independent of the faults are the input sets (hypothesises
or fault causes)

– Variables, the hidden nodes, which through them the relations between all
the other nodes are learned (mediating or fault type/fault feature).
The mediating variables are often introduced to facilitate the acquisition of
CPDs/CPTs. If the introduction of mediating variables serves no purpose,
then they should eliminated from the model; otherwise, they may add unnec-
essary complexity to the network and cause the designed network performs
poorly (Kwoh & Gillies, 1996).

• Calculation of conditional probabilities: the BNFD is now ready to infer probabil-
ities of faulty components. The system measurements are propagated to the BNFD
system as evidence and the probability distribution for each hypothesis variable is
inferred, where, hypothesis variables contains all the possible hypothesises on
failure sources or conditions.

• Finally, the subsequent results through ranking the faulty components by their
corresponding probability distribution is given.

In the complex systems subject to the noise or disturbances and the intermittent faults,
it is very difficult to determine which hypothesis is the root cause of the intermittent
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fault. There are many possible hypothesis variables at each time step of DBN/HDBN,
and prune away the wrong hypothesis often is not possible until several time steps after
the hypothesises are generated.

The presented approach may also be used to localize multiple faulty components that
will be correlated to produce a single symptom.

7.4 Intermittent fault detection in the experimental fuel

rig system using BNs
In this research, the IVHM fuel rig ( and its equivalent mathematical model in Matlab)

is used to generate data. The simulation time is about 360 seconds and the sampling time
is 0.001 seconds.

In the considered experimental fuel rig all the sensor readings and their related pres-
sure changes are continuous with the Gaussian distribution and there are also some dis-
crete variables related to the valve statuses, tank water measurement, pipe statuses, etc.
The values related to the presented intermittent faults are also Boolean (True/False).
Hence with this variety of data types, detecting the intermittent fault in this system is
challenging.

The control system and data collection can best be described with reference to the
graphical user interface (GUI), National Instruments LabVIEW software version 8.6.
Referring to Chapter 4 there are three main controllers:

• Pump control unit: manual or mission profile selection; speed feedback loop

• Valve control unit: shut off valve position control

• Direct proportional valve control unit: operated via the filter and gear pump fault
sliders

And the data presented to the user in the GUI are as follows:

• Pump speed in the pump control unit,

• Pressures in different points of the system (e.g. before filter, after the filter, after
the pump, after shut-off valve)

• Time traces of pump speed, pressure, flow for both operational modes. These are
displayed according to running mode selection.

The designed BNs to address this FDI problem are developed in Matlab using Bayesian
Network Toolbox (BNT) written by Kevin Murphy (http://www.ai.mit.edu/~murphyk/
Software/BNT/bnt.html).

This toolbox was chosen due to its very good implementation of the inference algo-
rithms, the possibility of implementing real DBNs, the possibility to work with discrete
nodes that have continuous parents and its computational power. Also being written
in Matlab makes it much easier to manipulate the data and model-based FDI results,
generated in Matlab/Simulink earlier for the purpose of training and testing data.
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Sensor Mean=Mode Standard Devia-
tion

Pressure Sensor 1 (PS1) 0.9012 0.014
Pressure Sensor 2 (PS2) 0.8522 0.015
Pressure Sensor 3 (PS3) 0.3261 0.0036
Pressure Sensor 4 (PS4) 0.2292 0.02
Pressure Sensor 5 (PS5) 0.1220 0.03

Table 7.1: mode and mean values for each sensor data

7.4.1 Experimental fuel rig conditions and assumptions
In order to detect intermittent fault in the experimental fuel rig under investigation

the following conditions are satisfied:

1) The potential components to be faulty in the fuel rig system based on expert
knowledge (Niculita et al., 2013), mathematical modelling, model-based FDI and
other available evidence are:

• Filter (DPV1): clogged.

• Gear pump: Degraded (less flow for the same pump speed).

• Shut-Off Valve (SOV): clogged and stuck mid-range.

• pipe 4: leaking.

• pipe 3: leaking.

• Nozzle (DPV5): clogged.

However, from the hardware and software point of view, the control system is
ready to accommodate all initially planned failure modes in a plug and play man-
ner although in the present research only one of them (clogged shut-off-valve (S-
O-V)), is considered.

The user has control over pump speed and shut-off valve position in manual or
mission profile mode and direct proportional valve position in order to be able to
inject the intermittent fault into the system.

2) The fuel rig data are also collected in both steady-state condition where the pres-
sures and flows, etc., are constant over time (more or less) at pipelines, and the
transient condition when the variables may change rapidly.

3) The temperature is not set but is considered as room temperature.

4) All the sensors are perfectly reliable (Niculita et al., 2013). So, in this research,
the fault associated with each sensor is not considered as one of the possible root
causes of the intermittent fault.

Sensor Faults: sometime the sensors which are collecting data/evidence are faulty.
One of the fault to be considered is that they might be stuck over time. A stuck
sensor node represents the stuck state of a sensor. In this situation, the sensor’s
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reading is the same over some time, regardless of what the underlying process
state is. The sensor fault node does not share the same components (nodes) as
the corresponding sensor node in the network but its value is updated using the
current sensor value.

In the designed SBN and HDBN a direct casual relation (direct link) between
hypothesis nodes and sensor nodes means that component has more/grater effect
or influence on that sensor. The sensor faults usually have a direct link to its
corresponding sensor.

5) The system has two operating modes, the engine-feeding mode which is active,
and recirculation mode which is inactive. In this research, the engine-feeding
mode is investigated.

6) The fuel rig system with the intermittent fault is also subjected to the uncertainty,
and the following are the key issues, which can significantly affect the formulation
of the hypotheses,

• The time that the symptoms of the fault appear.

• Their duration,

• The time that the observation/measurements are made,

• The time that the faults are induced.

Hence, the model must be able to update the system given that observation. Also,
the evidence must be made over time to capture the evolution of the system as it
changes over time.

7) All the root nodes except ′′No water′′ have two states as follows:

• State 1: being faulty.

• State 2: not faulty.

The root node ′′No water′′ has two states as follows:

• State 1: true (there is no water, or fuel available).

• State 2: false (there are enough water or any other fuel available in the sys-
tem).

The intermediate node ′′Intermittent fault′′ has two states as follows:

• State 1: true (the system is faulty).

• State 2: false (the system is healthy).

The intermediate node ′′Pressure change′′ has two states as follows:

• State 1: true (there is a pressure change in the system).

• State 2: false (there is no pressure change in the system).

The evidence node ′′Sensors′′ has five states as follows:
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• State 1: PS1 is true (Pressure sensor 1 is evidence to the system).

• State 2: PS2 is true (Pressure sensor 2 is evidence to the system).

• State 3: PS3 is true (Pressure sensor 3 is evidence to the system).

• State 4: PS4 is true (Pressure sensor 4 is evidence to the system).

• State 5: PS5 is true (Pressure sensor 5 is evidence to the system).

8) The probability density function associated with the data provided by each sensor
is characterized by a Gaussian (Normal) distribution (Table 7.1).

Assumptions:

In order to detect intermittent fault in the experimental fuel rig under investigation
the following assumptions are made:

1) The fuel (water, oil) is always available.

2) Root nodes are orthogonal, meaning there are no interactions between them.

3) In this research to avoid exponentially increase the size of the network, decrease
the compute time for the inference and manage the size of needed memory, a sin-
gle class of faults which is the intermittent fault is considered. The fault variables
are usually considered as Boolean variables where their nodes are represented by
two states only (faulty and healthy).

7.4.2 Graph construction (finding DAG)
To design the BN for the IVHM fuel rig the nodes must always be numbered in

topological order: parents (ancestors) before the child (descendants). Then to specify
the graph structure, the size and type of the nodes (discrete or continuous) must be
specified. The size of discrete nodes are the number of possible values each node can
take on (binary) and the continuous nodes can be presented as a vector and their size are
the length of that vector.

The first attempt of designed BN for the fuel rig system in a one-time slice is pre-
sented in Figure (7.3). However, the presented BN can be improved and simplified
(Ockham’s razor rule) by accommodating the expert knowledge, and other available
reliable information.

Occam’s razor is a principle from philosophy which is very useful in BN and is an-
other reason why BNs are applicable for many complex systems. Occam’s razor princi-
ple states that ” unnecessarily complex models should not be preferred to simpler ones.”
Note that the simpler models mean fewer parameters to train, so faster computations and
more generalisations and BNs automatically and quantitatively embody Occam’s razor
(MacKay, 1992). Thus the complex BN for the fuel rig system presented in Figure (7.3)
is simplified and build based on the combination of the expert knowledge and data. The
final SBN network is presented in Figure (7.4).

Moreover, The same DAG is used to design HDBN. The designed HDBN (Figure
7.5) is solved at time, (t = 0), with prescribed initial conditions (prior probabilities).
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BN for Fuel-Rig
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Figure 7.3: The static BN for the fuel rig (first attempt).

The results of this analysis will give the values which are used in computing of the
network probabilities in the second time slice. The number of slices (regressions) in this
system is 360 due to the sensitivity of the intermittent fault detection and this process is
repeated over the whole time of the process.

In general, for the designed HDBN, the following probabilities need to be calculated:

• Prior probabilities: the prior probability of an uncertain quantity is the probability
distribution that would express one’s belief about this quantity before some evi-
dence is taken into account, Pr(X0), which are defined based on the knowledge
of experts, other FDI algorithm such as model-based fault detection, and other
available evidence. This probability is the state prior probability at time t = 0.

• Temporal probabilities or interslice probabilities: dynamic networks are merely
static networks straddling time periods or time slices. The future state of some
nodes can be influenced by their prior state (feedback nodes). Some nodes can also
affect other nodes in other time slices, Pr(Xt |Xt−1), which are the set of parents
of X i

t , that can be either in the current time slice (t) or previous time slice (t−1).
This is the probability between different slices.

• Posterior (Conditional) probabilities: for each time slice any new information is
propagated to the model to update current priors, Pr(Yt |Xt), where Yt indicates
the evidence. When the posterior probability of a node are higher than its prior
probability, then the abnormality shows itself (hypothesis variables).
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Figure 7.4: The SBN for the experimental fuel rig system.
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Figure 7.5: The HDBN for the experimental fuel rig system. In this figure, nodes 1- 10
represent the S-O-V, gear pump, pipe 3, pipe 4, nozzle, filter, intermittent fault, no water
in the tank, pressure change and sensors at time slice (t-1) respectively, and nodes 11-20
represent the S-O-V, gear pump, pipe 3, pipe 4, nozzle, filter, intermittent fault, no water
in the tank, pressure change and sensors at time slice (t) respectively. Nodes 10 and 20
are the pressure sensors in two different time slices which are the only dynamic nodes
in this network.
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7.4.3 Finding probability

To detect intermittent fault root causes in the experimental fuel rig system, prior prob-
abilities are important to obtain the diagnostic inferences and the conditional probabili-
ties. If some states of the nodes are not available, the propagation of the priors finds the
best hypothesis consistent with the actual data.
As prior, it is easiest to give equal failure probability to all the components (which have
the potential to be the fault cause) unless other information is available. However, in the
real world, the prior probabilities of all the components in a network are not the same.
In this research, the prior probabilities have been assigned to each root node using a
combination of expert knowledge elicitation and data.
Then the components whose their posterior probabilities have increased with respect to
their prior probabilities could be the potential root causes of the intermittent fault which
are represented as hypothesis variables in the network.

Hence, in order to generate an initial fault candidate’s set, a probability distribution,
which is computed through the SBN and/or HDBN with given evidence, is attached to
each component and then ranking of the faulty components is achieved.

When the observed information variables (sensors) is abnormal (faulty), then the
probabilities of all the hypothesis variables will increase. The probabilities of the hy-
pothesis variables which have direct casual relation with the given evidence/information
(sensor) may be higher.

7.5 Simulation results and discussions

7.5.1 Prior probability

To obtain the prior probabilities for the root nodes (S-O-V, gear pump, pipe 3, pipe
4, nozzle, filter and no water), the expert knowledge and available literature on the fuel
rig is used by setting a Beta priors as x∼ Beta(a,b) =Uni(0,1), (see Appendix D). The
results are summarized in Figures (7.7-7.13) and Table (7.2).

In Figure (7.6) if we take the average of all the Beta fits (see Appendix D) then the
prior mean, M, will be M = 0.15.

However, one of the prior fits is very different from the others with high variance, V,
(M5 = 653,V5 = 0.0017).

Hence, it is needed to ignore the Beta fits which are very different from others es-
pecially if they have high variance. In this Figure by eliminating M5, the average beta
prior mean is M = 0.0560 which is closer to the expectation. The same method is used
in this chapter to define the prior probabilities for all the root nodes of the experimental
fuel system.

In Figures (7.7-7.13), M presents the prior mean and V presents the prior variance for
each root node.
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Components ( root nodes) Prior probabilities
Shut-off valve 0.05
Gear pump 0.02
Pipe 3 (pipe before the shut-
off valve)

0.005

pipe 4 (pipe after the shut-off
valve)

0.004

Nozzle 0.0002
Filter 0.012
No Water (no water in the
tank)

0.0001

Table 7.2: Root nodes and their state 1 prior probabilities in SBN
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Figure 7.6: Beta prior for discrete nodes.
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Figure 7.7: Beta prior for the S-O-V.
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Figure 7.8: Beta prior for the gear pump.
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Figure 7.9: Beta prior for the pipe 3.
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Figure 7.10: Beta prior for the pipe4.
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Figure 7.11: Beta prior for the nozzle.
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Figure 7.12: Beta prior for the filter.
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Figure 7.13: Beta prior for the no water.

7.5.2 Posterior probabilities using SBN

By assigning the prior probabilities to the SBN, (Figure 7.4), and propagated evi-
dence, PS1-PS5, the posterior probabilities of each node is obtained.

Figures (7.14-7.18) show the posterior probability of the root nodes when PS1-PS5
were propagated to the network respectively. These figures demonstrate how the poste-
rior probabilities of each root node were changing when different evidence was spread
to the network.

Figures (7.14) and (7.18) identify the pipe 4 with higher posterior probability as the
main root cause of intermittent fault when PS1 and PS5 are the evidence to the system.
Although, Figures (7.15), (7.16) and (7.17) present S-O-V as the main root cause of
intermittent fault when PS2, PS3 and PS4 are the evidence to the network respectively.

The results obtained from Figures (7.14-7.18) are summarized in Table (7.3). This
Table shows that the sensors which were closer to the fault location, (S-O-V), show the
greater changes rather than others. Moreover, the posterior probability of the S-O-V was
significantly changing when PS3, PS4 and PS5 were evidenced to the system. However,
PS1 and PS5 which were far from the S-O-V location detected pipe 4 as the main root
cause of intermittent fault. These results also demonstrate that the sensors which were
closer to the fault position have shown more changes.

Moreover, Figures (7.19-7.25) compare the posterior and prior probabilities of the
root nodes obtain for all evidence.

Figures (7.19) and (7.20) show that the posterior probabilities of S-O-V and gear
pump with evidence PS2, PS4 and PS5 has been increased, despite PS1 and PS5. How-
ever, Figures (7.21), (7.22) and (7.24) show that the posterior probabilities of the pipe
3, pipe 4 and filter for all the evidence have been increased. It means that with every
evidence propagated to the SBN, pipe 3, pipe 4 and filter are detected as the main root
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Posterior probabilities for the root nodes, evidence = PS1

1 2 3 4 5 6 7

Root nodes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

ba
bi

lit
ie

s

0.0176

0.0035

0.0088

0.0703

0.0352
0.0369

0.0001

Figure 7.14: Posterior probabilities for the root nodes when pressure sensor 1 is the
considered evidence to the network. In this figure, 1 represents the S-O-V, 2 represents
the gear pump, 3 represents the pipe 3, 4 represents the pipe 4, 5 represents the nozzle,
6 represents the filter and 7 represents no water in the tank.

Posterior probabilities for the root nodes, evidence =PS2
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Figure 7.15: Posterior probabilities for the root nodes when pressure sensor 2 is the
considered evidence to the network. In this figure 1 represents the S-O-V, 2 represents
the gear pump, 3 represents the pipe 3, 4 represents the pipe 4, 5 represents the nozzle,
6 represents the filter and 7 represents no water in the tank.
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Posterior probabilities for the root nodes, evidence =PS3
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Figure 7.16: Posterior probabilities for the root nodes when pressure sensor 3 is the
considered evidence to the network. In this figure 1 represents the S-O-V, 2 represents
the gear pump, 3 represents the pipe 3, 4 represents the pipe 4, 5 represents the nozzle,
6 represents the filter and 7 represents no water in the tank.

Posterior probabilities for the root nodes, evidence =PS4
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Figure 7.17: Posterior probabilities for the root nodes when pressure sensor 4 is the
considered evidence to the network. In this figure 1 represents the S-O-V, 2 represents
the gear pump, 3 represents the pipe 3, 4 represents the pipe 4, 5 represents the nozzle,
6 represents the filter and 7 represents no water in the tank.
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Components
( root nodes)

Prior
proba-
bilities

Posterior
proba-
bilities
(ev:PS1)

Posterior
proba-
bilities
(ev:PS2)

Posterior
proba-
bilities
(ev:PS3)

Posterior
proba-
bilities
(ev:PS4)

Posterior
proba-
bilities
(ev:PS5)

Shut-off-
valve

0.05 0.0176 0.0568 0.0904 0.0854 0.0183

Gear pump 0.02 0.0035 0.0227 0.0362 0.0342 0.0037
Pipe 3 (pipe
before the
shut-off
valve)

0.005 0.0088 0.0057 0.0090 0.0085 0.0091

Pipe 4 (pipe
after the shut-
off valve)

0.004 0.0703 0.0045 0.0072 0.0068 0.0731

Nozzle 0.0002 0.0352 0.0002 0.0004 0.0003 0.0365
Filter 0.012 0.0369 0.0239 0.0380 0.0350 0.0384
No Water (no
water in the
tank)

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 7.3: Root nodes, their prior probabilities and their posterior probabilities using
SBN. In this table ev:PS1 indicates that the evidence is pressure sensor 1, ev:PS2 indi-
cates that the evidence is pressure sensor 2, ev:PS3 indicates that the evidence is pressure
sensor 3, ev:PS4 indicates that the evidence is pressure sensor 4, ev:PS5 indicates that
the evidence is pressure sensor 5.
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Posterior probabilities for the root nodes, evidence = PS5
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Figure 7.18: Posterior probabilities for the root nodes when pressure sensor 5 is the
considered evidence to the network. In this figure 1 represents the S-O-V, 2 represents
the gear pump, 3 represents the pipe 3, 4 represents the pipe 4, 5 represents the nozzle,
6 represents the filter and 7 represents no water in the tank.

causes of the intermittent fault. Although, the S-O-V and gear pump are detected with
PS2, PS3 and PS4 only.

Furthermore, Figure (7.23) shows that the prior probability of the nozzle was in-
creased with all evidence except PS2. However, the probability of the nozzle being the
root cause of intermittent fault was increase significantly with PS1 and PS5.

Finally, Figure (7.25) shows that the ′′No ware′′ prior probability didn’t change with
any of the evidence. This figure demonstrates that this node does not have a direct
relation to intermittent fault and it cannot increase the posterior probability of this node.

Finally, the presented simulation results show that the proposed SBN is not successful
to detect intermittent fault and when the propagated evidence or sensor reading in the
network is far from the fault location, then it may detect false root causes for intermittent
fault.

Hence, although SBN is computationally faster than DBN or HDBN and perhaps are
easier to develop and maintain due to significantly fewer parameters involved, because
of the nature of the intermittent faults, for the better results, a continuous detection
algorithm, HDBN, is also presented in this chapter.

7.5.3 Posterior probabilities using HDBN

The posterior probabilities of the root nodes, S-O-V, gear pump, pipe 3, pipe 4, noz-
zle, filter and intermittent fault when pressure sensors are given as the evidence to the
HDBN are presented in Figures (7.26-7.30).
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Prior and posteriors for S-O-V
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Figure 7.19: Prior and posterior probabilities for the S-O-V. In this figure 1 indicates the
prior probability of the S-O-V, 2 indicates the posterior probability of the S-O-V when
PS1 is the evidence to the SBN, 3 indicates the posterior probability of the S-O-V when
PS2 is the evidence to the SBN, 4 indicates the posterior probability of the S-O-V when
PS3 is the evidence to the SBN, 5 indicates the posterior probability of the S-O-V when
PS4 is the evidence to the SBN and 6 indicates the posterior probability of the S-O-V
when PS5 is the evidence to the SBN,
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Prior and posteriors for the Gear pump
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Figure 7.20: Prior and posterior probabilities for the gear pump. In this figure 1 indicates
the prior probability of the gear pump, 2 indicates the posterior probability of the gear
pump when PS1 is the evidence to the SBN, 3 indicates the posterior probability of the
gear pump when PS2 is the evidence to the SBN, 4 indicates the posterior probability of
the gear pump when PS3 is the evidence to the SBN, 5 indicates the posterior probability
of the gear pump when PS4 is the evidence to the SBN and 6 indicates the posterior
probability of the gear pump when PS5 is the evidence to the SBN,

143



CHAPTER 7: BAYESIAN NETWORK-BASED INTERMITTENT FAULT DETECTION

Prior and posteriors for the pipe 3
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Figure 7.21: Prior and posterior probabilities for the pipe 3. In this figure 1 indicates the
prior probability of the pipe 3, 2 indicates the posterior probability of the pipe 3 when
PS1 is the evidence to the SBN, 3 indicates the posterior probability of the pipe 3 when
PS2 is the evidence to the SBN, 4 indicates the posterior probability of the pipe 3 when
PS3 is the evidence to the SBN, 5 indicates the posterior probability of the pipe 3 when
PS4 is the evidence to the SBN and 6 indicates the posterior probability of the pipe 3
when PS5 is the evidence to the SBN,
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Prior and Posteriors for the pipe 4
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Figure 7.22: Prior and posterior probabilities for the pipe 4. In this figure 1 indicates the
prior probability of the pipe 4, 2 indicates the posterior probability of the pipe 4 when
PS1 is the evidence to the SBN, 4 indicates the posterior probability of the pipe 4 when
PS2 is the evidence to the SBN, 4 indicates the posterior probability of the pipe 4 when
PS3 is the evidence to the SBN, 5 indicates the posterior probability of the pipe 4 when
PS4 is the evidence to the SBN and 6 indicates the posterior probability of the pipe 4
when PS5 is the evidence to the SBN,
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Prior and posteriors for the nozzle
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Figure 7.23: Prior and posterior probabilities for the nozzle. In this figure 1 indicates the
prior probability of the nozzle, 2 indicates the posterior probability of the nozzle when
PS1 is the evidence to the SBN, 3 indicates the posterior probability of the nozzle when
PS2 is the evidence to the SBN, 4 indicates the posterior probability of the nozzle when
PS3 is the evidence to the SBN, 5 indicates the posterior probability of the nozzle when
PS4 is the evidence to the SBN and 6 indicates the posterior probability of the nozzle
when PS5 is the evidence to the SBN,
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Prior and posteriors for the Filter
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Figure 7.24: Prior and posterior probabilities for the filter. In this figure 1 indicates the
prior probability of the filter, 2 indicates the posterior probability of the filter when PS1
is the evidence to the SBN, 4 indicates the posterior probability of the filter when PS2 is
the evidence to the SBN, 4 indicates the posterior probability of the filter when PS3 is
the evidence to the SBN, 5 indicates the posterior probability of the filter when PS4 is
the evidence to the SBN and 6 indicates the posterior probability of the filter when PS5
is the evidence to the SBN,
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Prior and posterior probability for the no water in the tank
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Figure 7.25: Prior and posterior probabilities for the no water in the tank. In this figure
1 indicates the prior probability of the no water in the tank, 2 indicates the posterior
probability of the no water in the tank when PS1 is the evidence to the SBN, 4 indicates
the posterior probability of the no water in the tank when PS2 is the evidence to the
SBN, 4 indicates the posterior probability of the no water in the tank when PS3 is the
evidence to the SBN, 5 indicates the posterior probability of the no water in the tank
when PS4 is the evidence to the SBN and 6 indicates the posterior probability of the no
water in the tank when PS5 is the evidence to the SBN,
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Sensors S-O-V Gear
pump

Pipe 3 Pipe 4 Nozzle Filter

PS5 9.11×10−6 4.9×10−7 1.7×10−6 6.67×10−6 3.08×10−7 8.31×10−7

PS4 1.52×10−5 7.19×10−7 1.7×10−6 6.3 ×10−6 3×10−7 6.7×10−7

PS3 1.6×10−5 8.3×10−7 1.9×10−6 8.3×10−6 3.6×10−7 8.3×10−7

PS2 8.7×10−6 4.8×10−7 1.3×10−6 8.3×10−6 3×10−7 4.6×10−7

PS1 7.9×10−6 4×10−7 9.9×10−7 4×10−6 2×10−7 4.2×10−7

Table 7.4: Root nodes and intermittent fault prior probabilities using HDBN. In this
table, PS1 indicates the pressure sensor 1, PS2 indicates the pressure sensor 2, PS3
indicates the pressure sensor 3, PS4 indicates the pressure sensor 4, and PS5 indicates
the pressure sensor 5. The prior probabilities are learned from training data.

These prior and the posterior probabilities are also summarized in Tables (7.4 ) and
(7.5) respectively.

Figure 7.26: The posterior probability of the root nodes and intermittent fault when the
pressure sensor 1 is the evidence to the HDBN.

These figures clearly show that for all five evidences propagated to the HDBN, the
S-O-V has been detected as the main root cause of intermittent fault. However, the
evidences PS3 and PS4 will increase the posterior probability of S-O-V significantly,
because they are closer to the fault location.

Moreover, intermittent fault has higher probability when evidences PS3, PS4 and PS5
were propagated to the HDBN. Theses sensors are closer to the fault location and hence,
show more changes.
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Figure 7.27: The posterior probability of the root nodes and intermittent fault when the
pressure sensor 2 is the evidence to the HDBN.

Figure 7.28: The posterior probability of the root nodes and intermittent fault when the
pressure sensor 3 is the evidence to the HDBN.
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Figure 7.29: The posterior probability of the root nodes and intermittent fault when the
pressure sensor 4 is the evidence to the HDBN.

Figure 7.30: The posterior probability of the root nodes and intermittent fault when the
pressure sensor 5 is the evidence to the HDBN.
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Sensors S-O-V Gear
pump

Pipe 3 Pipe 4 Nozzle Filter Intermittent
fault

PS5 0.03176 0.001725 0.006176 0.02336 0.001082 0.002916 0.9562
PS4 0.05294 0.002525 0.005966 0.02239 0.001054 0.002356 0.9659
PS3 0.05578 0.002949 0.006668 0.0294 0.00126 0.002915 0.9757
PS2 0.3069 0.001712 0.0045 0.0294 0.001054 0.001622 0.9747
PS1 0.0279 0.001404 0.003509 0.014 0.0007024 0.001475 0.9757

Table 7.5: Root nodes and intermittent fault posterior probabilities. In this table, PS1
indicates the pressure sensor 1, PS2 indicates the pressure sensor 2, PS3 indicates the
pressure sensor 3, PS4 indicates the pressure sensor 4, and PS5 indicates the pressure
sensor 5.

7.5.4 Sensitivity analysis
A combination of the data-driven and knowledge-based approaches were utilised in

this study for the construction and evaluation of the proposed HDBN model (the HDBN
structure) to identify the main root causes of intermittent fault.

The emerging root causes were detected using the bottom-up inference in the pro-
posed HDBN (Sedighi, 2019b). Theses probabilities explore the relationships between
different nodes and their roles individually in spreading intermittent fault, particularly
to identify those which have the highest impact.

Next, to provide a measure of the severity of intermittent fault the top-bottom infer-
ence was performed (sensitivity analysis).

Outcomes are then given to show the applicability of HDBN to diagnose the high-
impact root-causes of intermittent fault in the fuel rig system.

The following steps were performed in order to achieve the presented results for the
proposed sensitivity analysis:

• After that the HDBN graph was constructed and the prior probabilities were elicited
from the available literature and data, the HDBN updated the prior probabilities
every time that new information (evidence) was propagated to the network.

• Each node has the upper, estimated and lower bounds. So the proposed HDBN
was running several times to compute the posterior probabilities of the interested
variables for all three bounds of each node and different node combinations (dif-
ferent scenarios). This computation allows handling the uncertainty due to the
lack of information in selecting the priors (See Tables 7.6).

There are seven root nodes in the proposed HDBN (Figure 7.5). The root node, no water,
is always constant with the very low probability of 0.0001, hence, it was neglected for
sensitivity analysis. The prior probabilities of the other root nodes are a function of the
time and have been changed in a bounded range (higher bound, estimated, lower bound).
The possible combinations for all the six root nodes in these three different ranges are
equal to 63 = 216. Hence, the HDBN has been run for 216 times and at each time
the components with the higher posterior probabilities have been ranked. Finally, the
components which have been selected the most are considered as the sensitivity set.
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Because of the lack of expert knowledge and reliable information and enough his-
torical data for intermittent fault in this experimental fuel rig system, the lower bound
has been considered as (estimated priors ∗ 0.1) and the higher bound is considered as
(estimated priors ∗ 10) for all nodes. Table (7.6) shows the different combinations of
priors for all six root nodes.

Figure 7.31: The probability of the root nodes and intermittent fault when the pressure
sensor 1 is the evidence to the HDBN and the root nodes prior probabilities are in their
higher bound.

The posterior probabilities of the root nodes, S-O-V, gear pump, pipe 3, pipe 4, noz-
zle, filter and intermittent faults when the pressure sensors data were propagated to the
proposed HDBN as evidences and their prior probabilities were in their higher and lower
bounds are presented in Figures (7.31-7.35) and (7.36-7.40) respectively.

These results are also summarized in Tables (7.7) and (7.8) respectively.
The obtained results from Figures (7.31-7.40) and Tables (7.7-7.8) demonstrate that

the sensitivity set for this system is:

Sensitivity set = [S−O−V, Pipe3, Pipe4], (7.2)

because these nodes had the highest posterior probabilities with regard to their priors in
most of the combinations presented in Table (7.6).

Figure (7.41) and Table (7.10) show that if the S-O-V as the first component identi-
fied with the sensitivity analysis, become intermittently faulty, how the different pressure
sensors will react. In fact, in this figure the top-bottom inference of the proposed HDBN
is performed and the figure shows that the sensors closer to the S-O-V in the experimen-
tal fuel rig system will show greater effect rather than other sensors.

Figure (7.42) and Table (7.42) show the pressure sensors’ reactions when S-O-V, pipe
3 and pipe 4 are intermittently faulty at the same time.
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S-O-V G Pump Pipe 3 Pipe 4 Nozzle Filter
E E E E E E
H E E E E E
H H E E E E
H H H E E E
H H H H E E
H H H H H E
H H H H H H
L E E E E E
L L E E E E
L L L E E E
L L L L E E
L L L L L E
E H E E E E
E H H E E E
E H H H E E
E H H H H E
E H H H H H
E L E E E E
E L L E E E
E L L L E E
E L L L L E
E L L L L L
E E L L L L
E E H H H H
E E L L L E
E E H H H E
E E L L E E
E E H H E E
E E L E E E
E E H E E E
E E E E E L
E E E E E H
...

...
...

...
...

...

L L L L L L

Table 7.6: Different combinations for the prior probabilities of the root nodes to define
the sensitivity set. In this table, E indicates the estimated prior probability, H indicates
the higher bound of the prior probability and L indicates the lower bound of the prior
probability.
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Figure 7.32: The probability of thereto nodes and intermittent fault when the pressure
sensor 2 is the evidence to the HDBN and the root nodes prior probabilities are in their
higher bound.

Figure 7.33: The probability of the root nodes and intermittent fault when the pressure
sensor 3 is the evidence to the HDBN and the root nodes prior probabilities are in their
higher bound.

155



CHAPTER 7: BAYESIAN NETWORK-BASED INTERMITTENT FAULT DETECTION

Figure 7.34: The probability of the root nodes and intermittent fault when the pressure
sensor 4 is the evidence to the HDBN and the root nodes prior probabilities are in their
higher bound.

Figure 7.35: The probability of the root nodes and intermittent fault when the pressure
sensor 5 is the evidence to the HDBN and the root nodes prior probabilities are in their
higher bound.
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Sensors S-O-V Gear
pump

Pipe 3 Pipe 4 Nozzle Filter Intermittent
fault

PS5 0.25 0.0144 0.0513 0.1897 0.0090 0.0244 0.8013
PS4 0.4167 0.0211 0.0496 0.1818 0.0088 0.0197 0.8095
PS3 0.4386 0.0246 0.0554 02386 0.0106 0.0244 0.8176
PS2 0.2412 0.0143 0.0379 0.2386 0.0088 0.0135 0.8168
PS1 0.2193 0.0117 0.0292 0.1136 0.0059 0.0123 0.8176

Table 7.7: Root nodes and intermittent fault posterior probabilities when their priors are
in their higher bounds. In this table PS1 indicates the pressure sensor 1, PS2 indicates
the pressure sensor 2, PS3 indicates the pressure sensor 3, PS4 indicates the pressure
sensor 4, and PS5 indicates the pressure sensor 5,

Sensors S-O-V Gear
pump

Pipe 3 Pipe 4 Nozzle Filter Intermittent
fault

PS5 0.0033 0.0002 0.0006 0.0024 0.0001 0.0003 0.9775
PS4 0.0055 0.0003 0.0006 0.0023 0.0001 0.0002 0.9875
PS3 0.0057 0.0003 0.0007 0.0030 0.0001 0.0003 0.9975
PS2 0.0032 0.0002 0.0005 0.0030 0.0001 0.0002 0.9965
PS1 0.0029 0.0001 0.0004 0.0014 0.0001 0.0002 0.9975

Table 7.8: Root nodes and intermittent fault posterior probabilities when their priors are
in their lower bounds. In this table PS1 indicates the pressure sensor 1, PS2 indicates the
pressure sensor 2, PS3 indicates the pressure sensor 3, PS4 indicates the pressure sensor
4, and PS5 indicates the pressure sensor 5.

Figure 7.36: The probability of the root nodes and intermittent fault when the pressure
sensor 1 is the evidence to the HDBN and the root nodes prior probabilities are in their
lower bound.
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Figure 7.37: The probability of the root nodes and intermittent fault when the pressure
sensor 2 is the evidence to the HDBN and the root nodes prior probabilities are in their
lower bound.

Figure 7.38: The probability of the root nodes and intermittent fault when the pressure
sensor 3 is the evidence to the HDBN and the root nodes prior probabilities are in their
lower bound.
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Figure 7.39: The probability of the root nodes and intermittent fault when the pressure
sensor 4 is the evidence to the HDBN and the root nodes prior probabilities are in their
lower bound.

Figure 7.40: The probability of the root nodes and intermittent fault when the pressure
sensor 5 is the evidence of to the HDBN and the root nodes prior probabilities are in
their lower bound.
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Figure 7.41: The posterior probability of each pressure sensor when the A: S-O-V, on
its first state (being faulty), is the evidence to the HDBN.

Condition(s) PS1 PS2 PS3 PS4 PS5
S-O-V: 1 0.008164 0.02279 0.3245 0.3176 0.3269

Table 7.9: The posterior probability of all five pressure sensors when the S-O-V is in its
first state (being faulty). In this table PS1 indicates the pressure sensor 1, PS2 indicates
the pressure sensor 2, PS3 indicates the pressure sensor 3, PS4 indicates the pressure
sensor 4, and PS5 indicates the pressure sensor 5.

Condition(s) PS1 PS2 PS3 PS4 PS5
S-O-V: 1
Pipe 3 =1
Pipe 4 =1

0.008164 0.02266 0.3246 0.3176 0.3269

Table 7.10: The posterior probability of all five pressure sensors when the S-O-V, pipe
3 and pipe 4 are in their first state (being faulty). In this table PS1 indicates the pressure
sensor 1, PS2 indicates the pressure sensor 2, PS3 indicates the pressure sensor 3, PS4
indicates the pressure sensor 4, and PS5 indicates the pressure sensor 5.
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Figure 7.42: The posterior probability of each pressure sensor when the sensitivity set,
A: S-O-V, C: pipe 3 and D: pipe 4, on their first state (being faulty), are the evidences to
the HDBN.

Moreover, Figure (7.11) and Table (7.11) show the posterior probabilities of the pres-
sure sensors when S-O-V, pipe 3 and pipe 4 are in their second states (not faulty) and
other root nodes, gear pump, nozzle and the filter are in their first states (are faulty).

Although, in these figures, the posterior probability of the PS1, PS2 and PS3 de-
creased, the value of their probabilities are still significantly considerable.

Figure (7.44) shows the posterior probability of the pressure sensors when all the root
nodes are in their second states and they are healthy. This figure shows that the proba-
bility that any of the sensors detect intermittent fault in the system under investigation is
almost zero. As it is shown in Figure (7.44), when all the root nodes are in their healthy
states and there is no fault in the systems, then all the pressure sensors show no evidence
of intermittent fault in the system.

7.6 Conclusions

The presented model in this chapter is able to detect and isolate intermittent fault in
a system. The model demonstrates the influence of key components upon the risk of
intermittent fault in the fuel rig system.

The presented results from SBN and HDBN, suggest that S-O-V along with pipe 3
and pipe 4 are the main risk factors of intermittent fault.

Moreover, it is concluded that applying the HDBN modelling approach that endoge-
nous uncertainty, can act as a better decision support tool for intermittent fault detection
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Figure 7.43: The posterior probability of all five pressure sensors when, A: S-O-V, C:
pipe 3 and D: pipe 4 are on their second state (not faulty) and the root nodes B: gear
pump, E; nozzle and F: filter are on their first state (being faulty) are the evidence to the
HDBN.

condition(s) PS1 PS2 PS3 PS4 PS5
S-O-V: 2
Pipe 3 =2
Pipe 4 =2
G Pump =1
Nozzle =1
Filter=1

0.07653 2.4×10−5 0.3435 0.2485 0.3314

Table 7.11: The posterior probability of all five pressure sensors when S-O-V, pipe 3
and pipe 4 are in their second states (not faulty) and other root nodes, gear pump, nozzle
and the filter are in their first states (are faulty). In this table PS1 indicates the pressure
sensor 1, PS2 indicates the pressure sensor 2, PS3 indicates the pressure sensor 3, PS4
indicates the pressure sensor 4, and PS5 indicates the pressure sensor 5.
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Figure 7.44: The posterior probability of each pressure sensor when all the root nodes
are on their second states (no fault) are the evidence to the HDBN.

and isolation than SBN.

Some of the characteristics of the HDBN method over other methods are listed as
follows:

• Solution confidence: Since the HDBN method deals with the probability distribu-
tions it has the ability to perform multiple solutions in the solution space. More-
over, the proposed HDBN explored and displayed casual and complex relation-
ships between key factors and final outcomes in a straight-forward and under-
standable manner.

• Nonlinearity: The HDBN can model nonlinear dependence between nodes. So,
the nonlinear relations between the pressure sensor readings, intermittent faults
and root causes are modelled by the proposed HDBN method.

• Feedback loop and complexity: By modelling time dynamic, HDBN can accom-
modate feedback loops which makes it capable of capturing complex relation-
ships which is useful for explaining unobserved nodes, may exist in the pathway
between observed inner and outer nodes.

• No discretization: The HDBN, as well as DBN, does not require the discretiza-
tion of continuous variables which can cause several issues including missing the
intermittent fault during the discretization process.

• Data from different sources: This approach works with data from the variety of
sources and handles a mix of subjective and objective data and can incorporate
variables which differ across the contexts.
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• Uncertainty: The proposed HDBN is also used to calculate the effectiveness of the
interventions where the uncertainties associated with these casual relationships at
the same time.

• Hypothesis updating: HDBNs are a reasonable supplement to traditional experi-
mental and statistical methods since, traditional reliability analysis methods can-
not update hypothesises with new information added in, while HDBNs can update
the system reliability when evidence is added during the analysis.

7.6.1 Limitations
In spite of the remarkable power of BNs there are some inherent limitations that some

of them are listed below:

• Poorly defined states and variables may mask the impact of a particular scenario
or decision (Woodberry et al., 2004).

• Poor representation of initial conditions and structured networks will not provide
an insight into the issue of concern (Woodberry et al., 2004).

• In the absence of empirical data, causal relationships can be specified based on
expert opinion. The sheer volume of questions to be answered and probabilities
to be filled in will pose a considerable cognitive barrier for the expert (Woodberry
et al., 2004).

Furthermore, various assumptions are made in the proposed HDBN model which are a
consequence of either lack of complete knowledge on how intermittent fault really works
and/or poor data (uncertainty about the accuracy, provenance, method of collection, are
other features of the data). However, the model could be developed to address some
of these assumptions. This is likely to result in longer computational times and more
resources to collect data and theories on intermittent fault mechanisms.

Nevertheless, the current model represents satisfying results in detecting and isolating
intermittent faults.
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Chapter 8

Gaussian Process Regression-Based

Intermittent Fault Prediction

8.1 Introduction

The early and precise fault prediction in a system and knowing where faults are ex-
pected to arise play an important role in determining the health of a system, reducing
maintenance costs and improving the quality of system performance.

The main challenge of fault prediction is to minimize the uncertainty on available
information about the system such as operating environment and loading conditions,
computational resources, and time horizon. Furthermore, the involvement of physics of
failure models is also important in fault prediction.

In this chapter, the focus is on introducing a kernel-based fully Bayesian regression
algorithm, known as Gaussian Process Regression (GPR) for the intermittent fault pre-
diction in a system along with its simulation results. The main reason for selecting GPR
rather than other Bayesian methods is it’s faster response especially when the size of
data is huge and it is a nonparametric method (Das et al., 2018).

This chapter is organized as follows: in Section 8.2, GPR along with the selection of
the covariance function and hyperparameters are introduced. The prediction using GPR
is explained in Section 8.3 and intermittent fault prediction in the experimental fuel rig
system using GPR along with their simulation results, and discussions are presented
in Sections 8.4 and 8.5 respectively. Finally, conclusions and the limitations of the
proposed method are presented in Section 8.6.

8.2 Gaussian process modelling

The Gaussian Process (GP) is a kernel-based probabilistic model and is described as
a group of random variables that any finite subset have a joint Gaussian distribution. A
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GP is defined as a random process with Gaussian correlated noise:

f (x)∼ gp(m(x),k(x,x′)) (8.1)

where the mean function, m(x), and the kernel function k(x,x′) denote the expectation
value E[ f (x)] and the covariance (kernel) cov( f (x), f (x′)) respectively. Moreover, the
mean function m(x) could be considered as a priori (Shen et al., 2006; Williams &
Rasmussen, 2006; Ebden et al., 2008).

8.2.1 Covariance function
Consider nm observations in an arbitrary data set, y = y1, · · · ,ynm . This data set can

be partnered with a GP. Very often, it is assumed that the mean of this partner GP is zero
everywhere. Also the data are usually noisy, from the measurement errors. Hence, each
observation y can be related to an underlying function, f (x), through a Gaussian noise
model:

y = f (x)+N(0,σ2
nm
), (8.2)

and regression is the search for this function, f (x) where f (x) ∼ GP(0,k(., .)) is the
corresponding underlying function. It means that y related to x nonlinearly through an
unknown function f (x), which, in turn, it is being approximated by a GP.

The covariance (kernel) function, k(x,x′) is what relates one observation to another
observation.

The most commonly-used covariance (kernel) function in GPR is the squared expo-
nential (Guo, 2011; Williams & Rasmussen, 2006; Ebden et al., 2008):

k(x,x′) = σ
2
f exp([

D

∑
dim=1

−(x− x′)2

2l2 ]) (8.3)

where dim indicates the dimension, σ2
f denotes the signal variance ( the maximum al-

lowable covariance) and l presented the typical distance between two peaks (length dis-
tance). This should be high for functions which cover a broad range on the y axis. If
x ≈ x′, then k(x,x′) approaches this maximum, meaning f (x) is nearly perfectly corre-
lated with f (x′). Now if x is distant from x′ then instead k(x,x′)≈ 0, means that the two
points cannot see each other. How much effect this separation has will depend on the
length parameter, l, so there is much flexibility built into (8.3).

For simplicity, the error function (noise), e f = σ2
n δ (x,x′), can be folded into the

covariance function, k(x,x′), (Williams & Rasmussen, 2006) ,

k(x,x′) = σ
2
f exp[

−(x− x′)2

2l2 ]+σ
2
n δ (x,x′), (8.4)

where δ (x,x′) is the Kronecker delta function and σn presents the noise, which usually
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keeps separate from k(x,x′).
In more complicated cases where a long-term downward trend, has some fluctuations,

so a more sophisticated covariance function may present (Melkumyan & Ramos, 2009;
Williams & Rasmussen, 2006; Ebden et al., 2008):

k(x,x′) = σ
2
f1 exp

−(x− x′)2

2l2
1

+σ
2
f2 exp

−(x− x′)2

2l2
2

+σ
2
n δ (x,x′), (8.5)

when the first term takes into account the small vicissitudes of the dependent variable,
and the second term has a longer length parameter (l2 ≈ 6l1) to represent its long-term
trend.

Sometimes the function might looks as if it contain a periodic element, hence, it is
needed to consider another covariance function, with a periodic element:

k(x,x′) = σ
2
f exp(

−(x− x′)2

2l2 )+ exp(−2sin2[νπ(x− x′)])+σ
2
n δ (x,x′), (8.6)

where the first term represents the hill-like trend over the long term, and the second term
gives periodicity with frequency ν . In this case x and x′ can be distant and yet still see
each other.

Since the dependent variable might have other dynamics, hence there is no limit to
how complicated k(x,x′) can be chosen. Covariance functions can be grown in this way
to suit the complexity of the considered data, although, the reliability of the proposed
regression is dependent on how well the covariance function is selected (Haranadh &
Sekhar, 2008; Williams & Rasmussen, 2006; Ebden et al., 2008).

General properties of covariances are controlled by the small number of hyperparam-
eters.

Covariance structures: There are different covariance structure in mixed model
analysis such as Gaussian process including variance components, autoregressive, com-
ponent symmetry, unstructured and structured or Toeplitz. In the structured or Toeplitz
all measurements next to each other have the same correlation, measurements two apart
have the same correlation different from the first, measurements three apart have the
same correlation different from the first two, etc (Kincaid, 2005).

In this thesis the defult choice for the covariance matrix is structured or Toeplitz.
Some of the properties of this matrices are:

• Structured or Toeplitz matrices are positive definite.

• Structured or Toeplitz matrices commute asymptotically. This means they diago-
nalize in the same basis when the row and column dimension tends to infinity.

• The inverse of the nonsingular symmetric structured or Toeplitz has the represen-
tation.

• Structured or Toeplitz matrices are ubiquitous and are one of the most well-studied
and understood classes of structured matrices.
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• Structured or Toeplitz matrices have some of the most attractive computational
properties and are amenable to a wide range of disparate algorithms.

Although, The structured matrix is not the only choice for the covariance matrices and
the covariance functions can grow as much as complex as possible, in this chapter , the
exponential squared covariance function has been chosen because this covariance func-
tion is infinitely differentiable, which means that the GP with this covariance function
has mean square derivatives of all orders, and is thus very smooth (Williams & Ras-
mussen, 2006).

8.2.2 Hyperparameters

The free parameters l, σ f , and, σn in covariance function, are the hyperparameters,
Θ, and are important in the performance of the selected covariance function. The hy-
perparameters can be varied during the regression process and if they were not chosen
carefully, then the outcomes are not accurate enough (Wilson & Adams, 2013; Williams
& Rasmussen, 2006; Ebden et al., 2008).

The length-scale, l, characterizes the distance in input space before the function value
can change significantly. Short length-scales mean that the predictive variance, σ f , can
grow rapidly away from the data points. The noise, σn, that affects the process is sup-
posed to be random, and so no correlation between different inputs are expected, and
usually is only present on the diagonals of the covariance matrix (Sang & Huang, 2012;
Williams & Rasmussen, 2006; Ebden et al., 2008).

The advantage of the probabilistic GP is that the hyperparameters and covariances
can be chosen directly from the training data unlike other models such as splines which
requires cross-validation.

Bayes theorem tells that, assuming there is little prior knowledge about what Θ should
be, this corresponds to maximizing log p(y|x,Θ), given by:

log p(y|x,Θ) =−1
2

yT K−1y− 1
2

log|K|− n
2

log2π. (8.7)

Then by running an appropriate multivariate optimization algorithm (e.g. conjugate gra-
dients (Malandain et al., 2013), Nelder-Mead simplex (Dennis & Woods, 1987), etc.) on
the equation (8.7) a pretty good choice for Θ will be found. In (Williams & Rasmussen,
2006), the detailed methodologies to estimate the hyperparameters Θ are explained in
more details.

8.3 Prediction using GPR

Assume that there are nm noisy observations, y, then the objective is to predict y∗, not
the actual f∗ by GPR. Then the GP is used as Bayesian prior expressing beliefs about
underlying function, f.
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The key assumption in GPR modelling is that the data can be represented as a sample
from a multivariate Gaussian distribution, then(

y
y∗

)
∼ N(0,

(
K KT

∗
K∗ K∗∗

)
), (8.8)

where K presents the covariance function and T indicates matrix transposition. From
(8.8), the steps to prepare a GPR are as follows:

• First step is the covariance function selection.

• Then among all possible combinations, the findings are summarized in three ma-
trices:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x1) · · · k(x2,xn)

...
... . . . ...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

 (8.9)

K∗ =
(

k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)
)

(8.10)

and
K∗∗ = k(x∗,x∗). (8.11)

• Next the conditional probability p(y∗|y) is calculated: given the data, how likely
is a certain prediction for y∗, while the probability follows a Gaussian distribution:

y∗|y ∼ N(K∗K−1y,K∗∗−K∗K−1KT
∗ ) (8.12)

Where the best estimate for y∗ is the mean of the above distribution:

ȳ∗ = K∗K−1y (8.13)

• Finaly, the uncertainty is estimated as follows:

var(y∗) = K∗∗−K∗K−1K−T
∗ . (8.14)

In this process, X = [x1,x2, · · · ,xnm], x∗, y and y∗ are the input training data, test
point, output training data and predicted output respectively.

8.3.1 Numerical example

Assume that there are nm = 6 observations, at

X = [−1.55 −1.00 −0.75 −0.40 −0.25 0.00]

169



CHAPTER 8: GAUSSIAN PROCESS REGRESSION-BASED INTERMITTENT FAULT

PDICTION

y

x

?

x

x

x

x
x x

x1

2

3

4

5

6

-2 -1.55 -1 -0.75 -0.40 -0.25 0.0 0.2

Observation 

Figure 8.1: Given six noisy data points (error bars are indicated with vertical lines), the
interest is in estimating the seventh at x∗ = 0.2.

and the noise is known σn = 0.3. Then σ f and l are selected as ( l = 1 and σ f = 1.27)
and the covariance matrix is designed using (8.9):

K =


1.70 1.42 1.21 0.87 0.72 0.51
1.42 1.70 1.56 1.34 1.21 0.97
1.21 1.56 1.70 1.51 1.42 1.21
0.87 1.34 1.51 1.70 1.59 1.48
0.72 1.21 1.42 1.59 1.70 1.56
0.51 0.97 1.21 1.48 1.56 1.70


For simplicity, the error function (noise), e f , is folded into the covariance function,
k(x,x′), see equation (8.4).

From (8.10) and (8.11):

K∗ =
(

0.38 0.79 1.03 1.35 1.46 1.58
)
, K∗∗ = 1.70.

Next from (8.13) and (8.14), ȳ∗ = 0.95 and var(y∗) = 0.21, which show the best esti-
mation and the variance of the dependent variable at x∗ = 0.2, the 7th observation in the
data set X (Figure 8.1). This was generated from a GPR with the square exponential
covariance function with hyperparameters Θ = (1,1.27,0.3).

This method can be repeated for other points. Although, it could avoid the repetition
by performing the above procedure once with suitably larger K∗ and K∗∗ matrices.

The obtained results will give us the estimated mean value and error bars of the pre-
dicted points for the whole period of the prediction time.
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8.4 Intermittent fault prediction in the experimental fuel

rig system
Fault prediction can be initiated at any time in the life of a system based on the last

available state estimate (Williams & Rasmussen, 2006; Ebden et al., 2008). In general,
the fault prediction framework first uses the system model for fault detection to obtain
information about the current state of the system and then predicts the future states of
the system (Vanhatalo et al., 2009; Williams & Rasmussen, 2006; Ebden et al., 2008).

As explained earlier, because of the nature of IFs, their available historical data, no-
tably when a system is newly introduced to the market, may not contain enough infor-
mation to help the voted prognostic system to predict the upcoming IFs. Hence, the
chosen prognostic method should be

(i) Non-parametric which will give a higher degree of freedom to the prognostic sys-
tem,

(ii) Capable of dealing with lack of information, missing data and/or small data sets
with the help of available reliable information such as expert knowledge,

(iii) Capable of quantifying the prediction uncertainty to make a better-informed deci-
sion.

Moreover, if a prognostic system, whether Bayesian methods or others can make use of
historical data, heuristic information, and sensor readings, etc., then the prognostic sys-
tem can make a better-informed decision than if the data/ information was not available.

In response to the mentioned challenges, in this research, a novel hybrid approach is
designed for IF detection and prediction in a complex system (see Figure 8.2).

Figure 8.2: The two-step intermittent fault detection and prediction process.
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In the first step the suitable NUI model-based FD model is designed to obtain the
actual system response, generate the residual errors, and the corresponding adaptive
threshold for on-line fault detection where t indicates the current time. The types of
fault captured in this research are IFs which are difficult to detect and could provide a
great deviation of the residual signals.

Moreover, when the mathematical modelling of the system is difficult and expensive
due to its complexity or when the needed information is not available, the data driven-
based methods such as Bayesian network is used to detect the intermittent fault in the
first step.

Then, in the second step, a non-parametric Bayesian method is employed to predict
the forthcoming residual error and adaptive threshold, with the estimation of the like-
lihood of system failure over some future time interval. So that the fault is predicted
anytime that the predicted forthcoming residual has reached or passed the forthcoming
predicted adaptive threshold. Next, the obtained results will be injected to the first step
as new data sets to improve the real-time detection process. ( Figure 8.2) .

The development of such diagnostic and prognostic system along with the demon-
stration of its performance in a real-world testbed, an aircraft fuel system simulation rig
which simulates by hardware similarity the components of an aircraft fuel system, are
presented in this chapter.

The proposed method was also verified by the presented simulation results.

8.4.1 GPR model for the experimental fuel rig system
In this chapter to support the theory of the two-step IF detection and prediction ap-

proach, the fuel rig introduced in Chapters 4 is considered as a case study. According
to the presented results in Chapter 6, the mathematical modelling of the fuel rig system
has been verified against its real-world system with an acceptable error and the proposed
results have demonstrated that the shortest intermittent fault activation period in the fuel
rig system lasts for a few seconds.

In the experimental fuel rig system, the probability density function associated with
the data provided by each sensor can be characterized by a Gaussian distribution. The
standard deviation of these distributions (σ) is between 0.001−0.03 bar where the gear
pump speed is 400 rpm at steady-state stage (Table 8.1).

Table 8.1: The standard deviations of the sensors distribution at 400rpm, (Niculita et al.,
2013).

Sensor Standard Deviation (σ )
Pressure Sensor 1 (PS1) 0.014
Pressure Sensor 2 (PS2) 0.015
Pressure Sensor 3 (PS3) 0.0036
Pressure Sensor 4 (PS4) 0.02
Pressure Sensor 5 (PS5) 0.03

To keep the gear pump speed at specific speed, 400rmp, the system is controlled by
an appropriate adaptive controller.
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Data σ f l σn
residual 1 0.11251 0.090441 0.00967
threshold 1 0.102 0.0540 0.0500
residual 2 0.2003 0.0067 0.0300
threshold 2 0.437 0.0078 0.00995
residual 3 0.437 0.3548 0.68
threshold 3 0.0342 0.00548 0.0097
residual 4 0.422 o.o485 0.85
threshold 4 0.0868 0.00654 0.076
residual 5 0.765 0.2387 0.0654
threshold 5 0.0863 0.000786 0.091

Table 8.2: The hyperparameters for residual and adaptive threshold of all five pressure
sensors obtained by GPML toolbox in Matlab.

To design the GPR for the experimental fuel rig system the following steps are per-
formed,

• Identify the number of observed sampling, nm.

• Define the suitable covariance (Kernel) function: the smoothness of the GPR func-
tion is defined by the selected covariance function. In this chapter, the squared
exponential kernel function has been selected because it is one of the most com-
monly used covariance functions and is the default option for GP fitting in GPML
toolbox. The squared exponential kernel function is defined as:

k = σ
2
f exp(

|x1− x2|2

2l2 )+ e f . (8.15)

• Define the hyperparameters (Kernel parameters) from the training data: as men-
tioned earlier, the covariance function is normally parameterized by a set of ker-
nel parameters known as hyperparameters. In this chapter, the hyperparameters
for each sensor reading has been obtained using GPML toolbox in Matlab (Table
8.2) by optimization over the selected kernel function. The optimization has been
repeated several times for different initializations. For example, for the residual
and adaptive threshold 5, the effect of two different sets of hyperparameters are
shown in Figures (8.3) and (8.33). These figures clearly show that the selected
hyperparameters for the residual and adaptive threshold 5 in figure (8.33) are pro-
ducing the GP Mean which is closer to the ground truth. The same process has
been repeated several times to obtain the final hyperparameters presented in Table
(8.2).

These parameters along with the noise variance estimated from the training data
during the GPR model training.
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GPR prediction for the residual and adaptive threshold, evidence : PS5

95% CI for T5
GP Mean for T5
observation points for T5
95% CI for r5
GP Mean for r5
observation points for r5

Figure 8.3: The GPR predictions for the residual and threshold 5. In this figure the
grey areas are the confidence intervals, the yellow and the black solid lines are the
GP mean functions for the residual and threshold respectively. The blue and the red
points are the residual 5 and threshold 5 observation points. In this figure, r5 in-
dicates the residual 5 and T5 indicates threshold 5. The hyperparameters for the
residual and adaptive threshold are Θr = {σ f = 0.862, l = 0.9877,σn = 0.654} and
Θt = {σ f = 0.0291, l = 0.0068,σn = 0.0.051} respectively.
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• Identify the error function e f ,

e f = σ
2
n δn(x1,x2) (8.16)

which is a Gaussian noise with mean 0 and variance δn as mentioned earlier in
Section (8.2.1) .

• Define the length of the prediction, xp. The original simulation time for the fuel
rig under investigation was 6 minutes or 360 seconds. For prediction by GPR,
the obtained data during the 6 minutes simulation was divided into training and
validating data sets. Traditionally, 70% of the data which is around 4 minutes of
simulation has been used for training and the rest ( 30% equal to 2 minutes) were
used for validation. The prediction time then was continued to 10 minutes, xp = 4
minutes.

• Calculate the mean and variance and the corresponding kernel function at each
point for the obtained xp. Because the GPR is a probabilistic model, so, it is
capable of calculating the prediction intervals (variances) and Mean values of GP
function from the trained model.

The covariance matrix along with the selected Mean function which produces the
expected value of f (x) in (8.2), defines the GP.

• Finally, define the confidence intervals or uncertainty as 95% confidence intervals,

ȳ∗ = 1.96
√

var(y∗). (8.17)

where y∗ is the prediction of y.

Figures (8.4)-(8.6) demonstrate the way that GPR predicting the future steps. Figure
(8.4) shows the five samplings from GP priors for Ps3 and the observation points are
presented in Figure (8.5). Then Figure (8.6) shows the effectiveness of the proposed
GPR to predict the PS3 in the fault-free case where the grey area indicates the 95%
confidence intervals.

The same method is carried out to predict the residual and adaptive threshold for each
pressure sensor and the results are presented in the next section.

8.5 Simulation results and discussions
The following simulation results have demonstrated the effectiveness of the proposed

GPR intermittent fault prediction approach obtained from the two-step intermittent fault
detection and prediction process mentioned in Figure (??). In this approach, two GPRs
were designed for the residual and adaptive threshold of the nominated pressure sensor.

Then each time that the predicted residual goes over the predicted adaptive threshold,
an intermittent fault is predicted.

Figure (8.7) shows the five GP sampling for the residual 1. Then the residual 1 is
predicted, Figure (8.8), using the GPR with the selected squared exponential covariance
function and its hyperparameters (summarized in Table 8.2).
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Figure 8.4: Five GP sampling for the pressure 3.
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Figure 8.5: The observation points for pressure 3. In this figure, PS3 indicates the
pressure sensor 3.
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GPR fit and observation points for PS3
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Figure 8.6: the GPR prediction for pressure 3 when there is no fault in the system. In
this figure, PS3 indicates the pressure sensor 3.
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Figure 8.7: Five GP sampling for the residual 1. The sampling points are selected from
these sampling for residual 1. In this figure, r1 indicates the residual 1.
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The same process has been repeated for all five residuals and adaptive thresholds
captured from the intermittent fault detection sections. For each residual and adaptive
threshold a suitable GPR along with its covariance function, hyperparameters and error
function has been designed. Their simulations are presented in Figures (8.9)-(8.26).

Moreover, Figures (8.27)-(8.33) demonstrate the prediction of intermittent fault while
the adaptive thresholds and the residuals were presented in one figure. These figures
clearly show that the intermittent fault in the system was successfully detected and when
the GPR was trained based on available historical data, it was able to predict the next
steps.

However, the simulation results show that anytime that the pressure sensors are closer
to the fault location (shut-off valve, between PS3 and PS4) the uncertainty in prediction
will increase significantly.

Figure (8.12) which presented residual 2 (related to PS2) shows a greater uncertainty
in prediction in compare with residual 1 in Figure (8.12). The reason is that PS2 is closer
to the fault location and has been more affected by the fault than PS1. Furthermore, the
residuals 3 and 4 in Figures (8.16) and (8.20) show even more uncertainties in compare
with residual 2 because PS3 and PS4 are the closest sensors to the fault location. Finally,
in Figure (8.24) the residual r5 has been predicted by GPR and as it shows the GP Mean
is closer to the observations because the PS5 is not as close as PS3 and PS4 to the fault
location.

Also, Figures (8.29) and (8.31) show the highest uncertainty in predicting the inter-
mittent fault and in both the figures the confidence intervals of the adaptive thresholds
have been masked by the confidence intervals of the residuals. However, Figures (8.30)
and (8.32) present the adaptive threshold and their 95% confidence intervals for Ps3 and
PS4 respectively.

Therefore, the simulation results demonstrate that the location of the fault is very
effective in the quality of the observed data and the prediction process (GPR fit and pre-
diction intervals). Because the observed values are not the exact function values, but a
noisy realization of them. So, whenever the observations are very noisy like PS3 and
PS4, then the GPR fit is far from the observations and the standard deviation of the pre-
dicted responses are very large with huge prediction intervals around them. Although,
when the observations are less noisy like PS1, then the GPR fit is very close to the obser-
vation or may cross the observations, and the prediction intervals are very small around
these values.

Finally, all the presented results in this section have been demonstrated the effective-
ness of the proposed GPR in predicting intermittent fault in the fuel rig system under
investigation.

8.6 Conclusions

This chapter presents a two-step model-based/GPR intermittent fault prediction ap-
proach. In the first step, a NUI model (observer)-based FD model was designed to gen-
erate the residual errors and the adaptive threshold to detect the intermittent fault in the
system under investigation (results have been presented in previous chapters). Then, the
forthcoming residual and adaptive threshold were predicted iteratively by GPR. Anytime
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Prediction of r1 using GPR

0 1 2 3 4 5 6 7 8 9 10

Time(min)

-0.02

0

0.02

0.04

0.06

0.08

0.1

r1

95% CI
GP Mean
observations

Figure 8.8: The GPR prediction for the residual 1. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the residual 1 observation points. In this figure, r1 indicates the residual 1.
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Figure 8.9: Five GP sampling for the threshold 1. The sampling points are selected from
these GP sampling for threshold1. In this figure, T1 indicates the threshold 1.
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GP prediction for T1
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Figure 8.10: The GPR prediction for the threshold 1. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the threshold 1 observation points. In this figure, T1 indicates the threshold 1.
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Figure 8.11: Five GP sampling for the residual 2. The sampling points are selected from
these GP sampling for residual 2. In this figure, r2 indicates the residual 2.
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GPR prediction for r2
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Figure 8.12: The GPR prediction for the residual 2. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the residual 2 observation points. In this figure, r2 indicates the residual 2.
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Figure 8.13: Five GP sampling for threshold 2. The sampling points are selected from
these GP sampling for threshold 2. In this figure, T2 indicates the threshold 2.
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GP prediction for T2
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Figure 8.14: The GPR prediction for threshold 2. In this figure the grey areas are the
confidence intervasl, the black solid line is the GP mean function and the red points are
the threshold 2 observation points. In this figure, T2 indicates the threshold 2.
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Figure 8.15: Five GP sampling for the residual 3. The sampling points are selected from
these GP sampling for residual 3. In this figure, r3 indicates the residual 3.
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GP prediction for r3
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Figure 8.16: The GPR prediction for the residual 3. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the residual 3 observation points. In this figure, r3 indicates the residual 3.
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Figure 8.17: Five GP sampling for the threshold 3. The sampling points are selected
from these GP sampling for threshold3. In this figure, T3 indicates the threshold 3.
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GP prediction for T3
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Figure 8.18: The GPR prediction for the threshold 3. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the threshold 3observation points. In this figure, T3 indicates the threshold3.
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Figure 8.19: Five GP sampling for the residual 4. The sampling points are selected from
these GP sampling for residual 4. In this figure, r4 indicates the residual 4.
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GP prediction for r4
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Figure 8.20: The GPR prediction for the residual 4. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the residual 4 observation points. In this figure, r4 indicates the residual 4.
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Figure 8.21: Five GP sampling for the threshold 4. The sampling points are selected
from these GP sampling for threshold 4. In this figure, T4 indicates the threshold 4.
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GP prediction for T4
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Figure 8.22: The GPR prediction for threshold 4. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the threshold 4 observation points. In this figure, T4 indicates the threshold 4.
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Figure 8.23: Five GP sampling for the residual 5. The sampling points are selected from
these GP sampling for residual 5. In this figure, r5 indicates the residual 5.
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GP prediction for r5
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Figure 8.24: The GPR prediction for the residual 5. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the residual 5 observation points. In this figure, r5 indicates the residual 5.
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Figure 8.25: Five GP sampling for threshold 5. The sampling points are selected from
these GP sampling for threshold 5. In this figure, T5 indicates the threshold 5.
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GP prediction for T5
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Figure 8.26: The GPR prediction for the threshold 5. In this figure the grey areas are the
confidence intervals, the black solid line is the GP mean function and the red points are
the threshold 5 observation points. In this figure, T5 indicates the threshold 5.
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Figure 8.27: The GPR predictions for the residual and threshold 1. In this figure the grey
areas are the confidence intervals, the yellow and the black solid lines are the GP mean
functions for the residual and threshold respectively. The blue and the red points are the
residual 1 and threshold 1 observation points. In this figure, r1 indicates the residual 1
and T1 indicates the threshold 1.
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GP prediction for the residual and adaptive threshold, evidence: PS2
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Figure 8.28: The GPR predictions for the residual and threshold 2. In this figure the grey
areas are the confidence intervals, the yellow and the black solid lines are the GP mean
functions for the residual and threshold respectively. The blue and the red points are the
residual 2 and threshold 2 observation points. In this figure, r2 indicates the residual 2
and T2 indicates the threshold 2.

that the predicted residual exceeds the predicted adaptive threshold, the forthcoming in-
termittent faults were predicted.

The results in this chapter show that the reliability of the GPR depends on how well
the covariance (kernel) function, and its hyperparameters, Θ, were selected. If the hy-
perparameters were not chosen carefully, then the results are not accurate and sensible.

Moreover, the selected covariance (kernel) function can also grow to suit the com-
plexity of our data since there is no limit to how complicated the kernel function can be.
In this chapter based on the prior knowledge about the physical process under investiga-
tion, the best covariance (kernel) function among alternative covariance functions was
chosen.

8.6.1 Limitations

Despite the noticeable advantages of GPR, there are some limitations that one of the
important ones is listed below:

• The amount of data is important since too few data makes it difficult to extract
accurate insight, whilst too much data make the model unnecessarily complex.
Moreover, the efficiency of the prediction model is critically dependent on the
quality of the data. Collecting good quality data containing intermittent faults
is very challenging. Collecting data is made more challenging because large
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GP prediction for the residual and adaptive threshold, evidence: PS3
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Figure 8.29: The GPR predictions for the residual and threshold 3. In this figure the
grey areas are the confidence intervals, the yellow and the black solid lines are the GP
mean functions for the residual and threshold respectively. The blue and the red points
are the residual 3 and threshold 3 observation points. In this figure, r3 indicates the
residual 3 and T3 indicates the threshold 3. In this figure, the threshold3 is masked by
the confidence intervals of the residual 3.
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Figure 8.30: The GPR predictions for the residual and threshold 3. In this figure the grey
areas are the confidence intervals, the yellow and the black solid lines are the GP mean
functions for the residual and threshold respectively. The blue and the red points are the
residual 3 and threshold 3 observation points. In this figure, r3 indicates the residual 3
and T3 indicates the threshold 3. In this figure, the masked threshold 3 in Figure (8.29)
is presented.
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Figure 8.31: The GPR predictions for the residual and threshold 4. In this figure the
grey areas are the confidence intervals, the yellow and the black solid lines are the GP
mean functions for the residual and threshold respectively. The blue and the red points
are the residual 4 and threshold 4 observation points. In this figure, r4 indicates the
residual 4 and T4 indicates the threshold 4. In this figure, the threshold3 is masked by
the confidence intervals of the residual 4.
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Figure 8.32: The GPR predictions for the residual and threshold 4. In this figure the grey
areas are the confidence intervals, the yellow and the black solid lines are the GP mean
functions for the residual and threshold respectively. The blue and the red points are the
residual 4 and threshold 4 observation points. In this figure, r4 indicates the residual 4
and T4 indicates the threshold 4. In this figure, the masked threshold 4 in Figure (8.31)
is presented.
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Figure 8.33: The GPR predictions for the residual and threshold 5. In this figure the grey
areas are the confidence intervals, the yellow and the black solid lines are the GP mean
functions for the residual and threshold respectively. The blue and the red points are the
residual 5 and threshold 5 observation points. In this figure, r5 indicates the residual 5
and T5 indicates the threshold 5.

datasets are usually necessary for reliable fault prediction (Malhotra & Bansal,
2012; Schneider, 2015).
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Chapter 9

Conclusions and Future Work

This chapter offers a brief summary of the achievements and conclusions obtained
during this research. It also summarises the main contributions described in previous
chapters, some of which have already been published already. Finally, some further
research directions are presented.

9.1 Review of research objectives
The methodology of this thesis was divided into the tasks of intermittent fault de-

tection, isolation and prediction. In this study, a model-based fault detection filter and
model-free fault detection and prediction systems were developed to detect, isolate and
predict IFs in complex dynamic systems characterised uncertainty.

In Chapter 1, three objectives were stated, and attempt were made to achieve them.
This section revisits each research objective with a discussion of how they were achieved.

The first objective stated in Chapter 1 was to:

1) Identify, test and validate novel model-based methods that can detect faults in the
presence of uncertainties, with a special focus on intermittency. This objective
was addressed in Chapters 5 and 6.

Consistency checking in model (observer)-based methods is normally achieved
using residual quantities, which are computed as differences between the mea-
sured signals and the corresponding signals generated by the mathematical model.
In practice, the most frequently used diagnosis method is to monitor the level (or
trend) of the residual and take action when the signal reaches a given threshold.
Although finding a systematic technique to deal with the unknown input (distur-
bance) and the intermittent faults in a complex nonlinear system is challenging, in
this thesis, a method has been presented to overcome these limitations by design-
ing appropriate observers:

(a) Two novel observers have been presented in this thesis:
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• The NUIO is usually designed such that its state estimation errors ap-
proach zero asymptotically, regardless of the presence of the unknown
input (disturbance) in the system. To design such an observer, normally
the rank condition must be satisfied, which means that the measurements
are directly dependent on the states affected by the unknown inputs (dis-
turbances). However, for the system under investigation, this rank con-
dition is not satisfied, and none of the measurements is directly depen-
dent on the states affected by the unknown inputs (disturbances). Hence,
to minimise the effect of the unmatched unknown inputs/disturbances
on the error estimation of the system, the novel NUIOs are presented in
Chapter 5.
To design this observer:

– First, a dummy full rank matrix is designed to satisfy the rank con-
dition of the observer design,

– Then, the observer gain is selected,
– Next, sufficient conditions for designing the NUI observer are de-

rived,
– Finally, the stability of the errors is ensured.

The proposed NUIO has been claimed as a novel observer because the
existing restriction of the NUIO rank condition has been avoided with-
out losing the design convenience by introducing the auxiliary distur-
bance’s distribution matrix. Moreover, this observer is not only applica-
ble to the limited class of nonlinear systems with Lipschitz nonlinearity.
Instead, the proposed observer has been designed for the more general
form of the nonlinear systems, while the asymptotic stability of the sys-
tem error estimation (5.17) and the existence of the NUIO given by (5.9)
guarantee the applicability of this statement.
Moreover, another advantage of the proposed NUIO is the possibility of
converting the complicated nonlinear system to the linear system by ap-
plying a linear equality (5.41) mentioned in the design procedure, which
makes the difficult NUIO design problem an easy task for the considered
class of nonlinear systems.
• The feed-forward observer, in addition to the NUIO, is another novel

observer designed in Chapter 5. This observer also neglects the rank
condition assumption and hence will give more degrees of freedom to
the designer. The designed feed-forward observer is also effective in
detecting IFs in nonlinear complex systems. These observers are then
used to obtain the system’s state-space equations. These equations are
then used to design the model-based fault detection filter.

(b) State–space equations are a set of differential equations that make use of
the notions of state, inputs, outputs and dynamics to describe a system’s be-
haviour. To formulate these equations, the mathematical modelling of the
system is needed. The main case study investigated in this thesis to test
the effectiveness of the NUI observer-based fault detection filter was the ex-
perimental fuel rig system. The experimental fuel rig in this research was
a SIMO system because it has only one capacitor (one main tank) in the
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system. Moreover, the mathematical model of a Multi Input Multi Output
(MIMO) car suspension system was also designed for the purpose of IF de-
tection using a feed-forward observer.
The main contribution of this part of the objective is that the obtained state-
space equations from the mathematical modelling of the systems provide
a fully functioning system that can be used to test the effectiveness of the
proposed fault detection filters. This has been addressed in Chapter 6.
Furthermore, the main idea of the NUI and feed-forward observers design
was to make the residual signal decouple from the external unknown inputs.
Usually, to achieve this, attempts are made to make the residual signal insen-
sitive to unknown inputs but sensitive to faults.
However, a problem may arise when the intermittent fault lies in the same
subspace as the disturbances; then, upon decoupling the disturbances, the
residual will also be insensitive to the fault, which is obviously not the ob-
jective of a detection filter. Moreover, the existence conditions for decou-
pling the unknown inputs become quite strict, which limits the use of these
approaches. How to deal with these problems is explained by introducing a
novel adaptive threshold.

(c) A novel adaptive threshold has been designed in this research that can adapt
itself to the system’s response. The designed adaptive threshold is claimed
to be novel because it was designed with regards to the effect of nonlinearity
of the system, input and output disturbances while remaining sensitive to the
faults. This has been addressed in Chapters 5 and 6.

Finally, the effectiveness of the proposed methods has been tested and validated
against two physical real systems – an experimental fuel rig and a car suspension
system– and their simulation results were presented in Chapters 5 and 6.

The second objective stated in Chapter 1 was to:

2) Employ, compare and validate model-free approaches to detect and isolate faults
in the presence of uncertainties, with a special focus on intermittency.
This objective has been addressed in Chapter 7 .

The chosen model-free method for detecting and isolating faults in this study was
the probabilistic data-driven, Bayesian network method. The effectiveness of the
Bayesian network in detecting and isolating well-known types of faults, such as
hard or abrupt faults, has been already tested. However, the novelty of employing
Bayesian networks in this research is the methodology of using them to detect and
isolate intermittent faults.

To achieve this objective, two types of BNs were designed to detect and isolate
the intermittent faults in the experimental fuel rig system with the presence of
uncertainty:

• Static BN, and

• Hybrid dynamic BN.
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The effectiveness of the static BN has been demonstrated by its detecting and
isolating the faults. However, when the faults are intermittent, this network is not
powerful enough to detect the fault and its possible root causes. The reason is
that the fuel rig system contains a few continuous variables that may lose their
effectiveness as a result of the discretisation process while using a static Bayesian
network.

Hence, a HDBN was designed to detect and isolate IF on the experimental fuel
rig system. The reason for selecting a HDBN over a dynamic BN is that the sys-
tem under investigation contains both dynamic variables, such as pressure sensor
readings, and static or Boolean variables such as faults. Hence, a HDBN is more
suitable since unlike static and dynamic BNs, it can handle both discrete and con-
tinuous variables.

The effectiveness of the designed HDBN in detecting IF and isolating their root
causes has been tested and validated in Chapter 7, and its performance was com-
pared with that of static BNs.

Moreover, the reliability of the HDBN in detecting and isolating IFs was tested
and validated, and positive results were achieved using sensitivity analysis.

When an IF is diagnosed, it is necessary to determine how that fault will affect
system performance in the future. Hence the third objective stated in Chapter 1
was to:

3) Propose, test and validate model-free approaches to predict faults in the presence
of uncertainties, with a special focus on intermittency. This objective has been
addressed in Chapter 8.

The sequence of development leading to this objective is listed below:

• Apply an appropriate statistical scheme (on the fuel rig system as an example
system) to predict the forthcoming intermittent faults for the steps ahead.

• Combine the intermittent fault detection and prediction techniques to create
the intermittent fault detection and prediction system for the system under
investigation.

To predict the intermittent fault in a complex nonlinear system, a unified and
reliable method is needed. The chosen method in this thesis was the Bayesian
Gaussian process regression method, which is a non-parametric probabilistic data-
driven prediction technique that produces a mean estimate along with an indication
of the uncertainty therein. The novelty of the proposed method was its capability
to predict the intermittent fault in the experimental fuel rig system and quantify its
prediction uncertainties.

Moreover, finding an appropriate covariance matrix for better prediction with less
uncertainty was one of the challenges of this task. The simulation results in Chap-
ter 8 show how different covariance matrices can change the prediction results and
their uncertainty quantification significantly.
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In this thesis, to predict IF, a novel hybrid approach for intermittent fault detection
and prediction in a complex system was presented (Figure (8.2) in Chapter 8). The
first stage of this approach required the development of a mathematical or HDBN
model of the nonlinear system under investigation. This nonlinear model was then
used to create a fault detection filter with a suitable adaptive threshold to detect the
possible faults in the system. Then in the second stage, a probabilistic data-driven
fault prediction method, Gaussian process regression, was implemented to predict
the intermittent faults using all the information captured from the first stage.

The effectiveness of the proposed methodology for the experimental fuel rig sys-
tem was demonstrated and validated using simulation results.

Finally, these objectives have been achieved to honour the main aim of this research
which was:

• To achieve a robust intermittent fault detection and prediction approach for
nonlinear complex systems.

All the work addressed in this thesis incorporates the development of the path to achiev-
ing a fault detection and prediction system capable of reliably detecting and predicting
the intermittent faults as they occur and identifying the location of the fault.

9.1.1 Shortcoming of this research

Although the aim of this research was to design a novel method for intermittent fault
detection and prediction, there are some shortcomings to this work of which the author
is aware, as follows:

1) In this thesis, intermittent fault was infused into the system artificially; however,
in the real world intermittent faults may be more inchoate and vague.

2) The obtained historical data generated for the prediction process are very rich with
the intermittency included. Nonetheless, this is not always achievable in the real
world.

3) The considered case study in this thesis was a mechanical-hydraulic system; how-
ever, intermittent faults are more likely to be developed in electrical or electronic
systems.

9.2 Summary of contributions
A summary of the research contributions is presented in the list below:

1) The novel design of model-based fault detection filters in the presence of uncer-
tainty and intermittency along with the novel design of adaptive threshold to im-
prove the fault detection process (Chapter 5).
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2) The employment of two model-free, data-driven, fault detection methods for in-
termittent fault detection and isolation. The two methods were compared and val-
idated using sensitivity analysis (Chapter 7). In this chapter, the system modelling
approach was used to construct a HDBN model of the system that incorporates
expert opinion, reliability data, mathematical models, operational data and labo-
ratory data. The probabilistic nature of HDBNs allows them to handle uncertainty
in the information used to build them.

Another contribution was, the ability to update the distributions of the variables
when new information injected which makes HDBNs capable of detecting inter-
mittent faults. Finally, the designed HDBN was able to detect the intermittent fault
and its possible root causes in the experimental fuel rig successfully.

3) Introduction of a novel methodology for intermittent fault prediction in the sys-
tem under investigation. The achieved positive results were tested and validated
against a physical system. The simulation results show that the two-step process
performs successfully for intermittent fault detection and prediction of intermit-
tent clogged valve in the experimental fuel rig system (Chapter 8).

Consequently, the work addressed in this thesis incorporates the development of the
path to achieving a fault detection and prediction system capable of reliably detecting
and predicting intermittent faults as they occur and classifying their location. Moreover,
the presented achievements in this thesis apply to any system with the same conditions.

9.3 Future work
The methods proposed in this research thesis addressed the aim and objectives men-

tioned in Chapter 1. However, there is much room for improvement in many directions
in both long-term and short-term future works.

9.3.1 Short-term future work
A number of short-term future works could be carried out to improve the problems

discussed in this thesis, as follows:

• The first part of this thesis, focused on model-based fault detection methods. One
extension to this part of the research could be to study the model-based isolation
techniques and compare their isolation capability against the model-free-based
isolation techniques.

• Moreover, the designed Bayesian networks can be extended to a decision-making-
based Bayesian network. Hence, the user can make the best decision under the
prevailing uncertainty for each action or scenario by comparing their maximum
expected values.

• A further development of this work could be to evaluate the designed fault detec-
tion and prediction method with a piloted in-service aircraft fuel rig system. The
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interest of this work is that a human, the pilot, is also in the loop along with other
reliable available information to detect and predict the fault.

9.3.2 Long-term future work
The possible interesting long-term directions to extend and improve the current re-

search are such as:

• The implementation and improvement of other intermittent fault detection and
prediction methods in comparison to this work.

• Another possible future objective which would be the most important extension to
this research, is the improvement of the intermittent fault prediction methods. In
this research GPR, which is a non-parametric kernel-based probabilistic method,
was used for the purpose of intermittent fault prediction. However, if the appro-
priate historical data are not available or do not contain any form of intermittent
fault, then the GPR prediction is not accurate. To remediate this problem, one of
the suggestions is to combine the GPR method with the Bayesian optimization
method. A Bayesian optimization method is applied to all the Gaussian process
regressors to maximize their prediction by finding the global optimum in a mini-
mum number of steps. In other words, the Bayesian optimization method can be
used to provide more sampling data points from the system’s function to improve
the data sets used by the GPR for prediction.
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Appendix A

Lipschitz Nonlinear Systems

Consider the class of nonlinear systems described by the following equations:

ẋ(t) = Ax(t)+g(x,u, t)
y(t) = Cx(t)

(A.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp present state, input and output vectors, respectively.
Moreover, A ∈ Rn×n, and C ∈ Rp×n are known linear control matrices of the dynamic
system and the pair (A,C) is assumed to be observable.

A nonlinear function g(x,u, t) is said to be Lipschitz in a region Ds enclosing the
origin if there exists a scalar such κ ∈ R that the relation

‖g(x,u, t)−g(x̂,u, t)‖ ≤ κ‖x− x̂‖

holds ∀x, x̂ ∈ Ds, where κ ≥ 0 is the Lipschitz constant (Li, 2017).
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Probability Theory

In statistics the probability is the likelihood that an event will occur. In Bayesian
probability, the mathematical theory of probability is applied to the degree to which
a belief is considered probable. This subsection gives a brief summary of the most
important concepts of probability theory considered under this approach (Maher, 2010).
In order to understanding of information that permits to compute the probability the
following axioms are defined (Chung, 2001):

• Pr(A) indicates the unconditional probability of an event occurring and is non-
negative for all real A, Pr(Re(A))≥ 0.

• Probability of an event A, may range from zero to one, 0≤ Pr(A)≤ 1.

• The probabilities of all possible outcomes (denoted by Ω) must sum to one,

Pr(Ω) = ∑
i

Pr(Ai) = 1.

• Pr(A)+Pr(Ā) = 1, where Ā indicates the complement of event A.

• Pr(A|B) indicates conditional probability. The probability of event A occurring
given that event B occurs.

• Pr(A∩B) or Pr(A and B) = Pr(A).Pr(B) indicates the joint probability (indepen-
dent events). It is the probability of the intersection of two or more events.

• Pr(A∪B) = Pr(A)+Pr(B)−Pr(A).Pr(B) where A and B are mutually exclusive
propositions (addition rule).

• PrC(A) =
nA
n indicates classic probability where nA is the number of repetition of

A, and n is the total number of the data.

• PrF(A) indicates the frequencies probability is defined as follows

PrF(A) = lim
n→∞

nA

n
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The value of PrF(A) will finally converge to a number which is the probability.

• For a discrete function probability at a single point is, Pr(A) = f (A).
The random outcomes are countable and values between these counts cannot oc-
cur.

• For continuous function, probability at a single point is zero, hence expressed in
terms of an integral between two points, Pr[a≤ A≤ b] =

∫ b
a f (A)dA.

The outcomes and related probabilities are not defined at specific values, but rather
over an interval of values.

B.1 Bayesian probability

Independent events:

If an event occurring, A, does not alter the probability of another event occurring, B,
then these events are independent (Ross, 2003).

Dependent events:

If an event occurring, A, changes the probability of another event occurring, B, then
the probability of event B is dependent on event A, (Ross, 2003).

Exact inference

The task of computing the probability of each variable when other variable’s values
are known. That means once some evidence about variable’s states are asserted into the
network, the effect of evidences will be propagated through the network and in every
propagation the probabilities of adjacent nodes are updated (Butts, 2003).

There are many inference algorithms, such as: junction tree, variable elimination,
Monte Carlo (MC), Gibbs sampling, etc., and each has its own advantages over others
in different situations.

Bayes’ inferences

The Bayes’ theorem gives a criterion for updating belief when new knowledge is
introduced (Albert, 2011).

Diagnostic inferences

Obtaining the conditional probability when some variable values are known (priors).
If some state of nodes is not available, the propagation of priors finds the best hypotheses
consistent with the actual data (Reggia et al., 1985).
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Independencies

Two random variables A and B are independent for all values if,

• Pr(A,B) = Pr(A)Pr(B), which means knowing B provide no change in the prob-
ability for A, or B contains no information about A.

• Pr(A|B) =Pr(A) or Pr(A|B) =Pr(B), which means knowing A provide no change
in the probability for B, or A contains no information about B.

These can generalized to more than two random variables (Butz et al., 2016). In practice
true independence is very rare. Independence is an assumption which is impose on the
model.

Conditional independencies

Two random variables A and B are conditionally independent given C for all value A,
B, C if:

Pr(A,B,C) = Pr(A|C)Pr(B|C)

or
Pr(A|B,C) = Pr(A|C) or Pr(B|A,C) = Pr(B|C). (B.1)

Equation B.1 implies that learning about B, given that we already know C, provide no
change in our probability for A, or B contains no information about A beyond what C
provides (Butz, 2001).
Conditional independencies can generalized to more than two variables:

Pr(A|B,C,D) = Pr(A|D).

The conditional independence statements can be used to simplify the joint probability of
a system under investigation.

Conditional independencies versus independencies

Conditional independencies does not imply independencies. For illustration for

Pr(B|C,A) = Pr(B|C)

and
Pr(A|B,C) = Pr(A|C)

A and B are dependent but are conditionally independent given C.

205



APPENDICES

Chain rules:

There are two main components in BN: the graph structure which show the condi-
tional independencies and assumptions between the variables, and the numerical proba-
bilities for each variable given it’s parents known as conditional probability table (Wang
& Zhao, 2015). Assume that there are n random variables,
(X1,X2 · · · ,Xn), then in general, the Joint Probability Distribution (JPD), for any net-
work, given nodes X = (X1, . . . ,Xn), is presented as:

Pr(X) =
n

∏
i=1

Pr(Xi|parents(Xi)) (B.2)

where parents(Xi) denote the parent set of node Xi. This joint probability is also known
as ”Chain rule”.

Bayes’ rule:

The CPT of variable Xi where all its parents are given, known as posterior probability
or ”Bayes’ rule”, (Kong et al., 2006). For variable X and its evidence Y , the Baye’s rule
is defined as:

postrior probability =
joint probability
prior probability

(B.3)

or

Pr(X |Y ) = Pr(XE |X).Pr(X)

Pr(XE)
(B.4)

where

• Pr(X |XE) is the posterior probability which is the probability of the variable X ,
given the evidence Y .

• Pr(XE |X) = L(X) is the likelihood function. It qualifies the likelihood that the
observed data would have been observed as a function of the unknown model
parameters.

• Pr(X) is the prior probability. It shows what is known before performing the
experiments.

The number of entries in CPTs of a BNs can easily become large and grows expo-
nentially with the number of parents, (i.e., for a variable with m states and n parents, the
CPTs entries are mn), however, some simplification in assumption can help in reducing
it. Also in BN one can use of ”prior domain knowledge” to come up with a BN that
requires fewer probabilities (Slezak, 2009).
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Markov Chain Monte Carlo (MCMC) (MArkov Property):

A Markov chain is a sequence of random variables or vectors, Xi, for i= (0,1, · · · ,N),
with the property that the transition probability

Pr(XN+1|X0, · · · ,XN) = Pr(XN+1|XN). (B.5)

Equation (B.5) means that the future state of the chain does not depend on the entire past
states, but only on the present state of the process (MCMC).
MCMC method is easily applicable to model with a large number of parameters (Balan
(2014)).
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Probability Distribution

C.0.1 Gaussian(Normal, Bell-curve ) Distribution N (µ,σ2)

The probability density of the Gaussian distribution (shown in Figure (C.1)) is defined
by,

Pr(x) = f (x|µ,σ) =
1

σ
√

2µ
e−

(x−µ)2

2σ2

where µ ∈ R indicates the mean (expectation) of the distribution, σ indicates the stan-
dard deviation and σ2 > 0 indicates the variance (Ebden et al., 2008).

If the given variable is discrete, then the corresponding node is also discrete and is
uniformly distributed unless other information is given.

P(x)

Figure C.1: The probability of the Gaussian distribution.
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a b

P(x)

Figure C.2: The probability of the Uniform distribution.

C.0.2 Uniform Distribution U(a,b)/Uni f (a,b)

The probability distribution associated with U(a, b) is defined as follows (Figure
(C.2), (Kritzer et al., 2014))

Pr(x | a,b) = 1
b−a

∀ a≤ x≤ b,

A special case of this distribution, when b = 1
2σ
√

3
and a =−b is given by

Pr(x | σ) =
1

2σ
√

3
∀ −σ

√
3≤ x≤ σ

√
3.
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Beta Distribution

The Beta distribution is a continuous probability distribution that can be used to rep-
resent proportion or probability outcomes,

Pr(a≤ x≤ b) =
∫ b

a
f (x)dx (D.1)

where f (x), the density function, is

f (x) =
xa−1(1− x)b−1

β (a,b)
(D.2)

and a and b are the parameters of Beta distribution and Beta distribution is parameterized
by β (a,b). These parameters are the exponents of the random variable which control
the shape of the distribution. Moreover, a and b describe the probability that Pr, the
probability, gets on certain value. Beta distribution is known as conjugate prior for
the binominal distribution (discrete nodes). It means that if the likelihood function is
binominal, then a beta prior will give a beta posterior (Gupta & Nadarajah, 2004).
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Appendix E

The Performance of Observer-based

Residuals for Detecting Intermittent

Faults: the Limitations

For each system by keeping as many factors as possible the same, such as input u,
residual speed of response, residual design parameters and observer design parameters,
try to simulate the residual performance as system complexity or n increases.

The effectiveness of the nonlinear observer-based residuals is limited by the system
complexity. The evidence has been shown that both residual effectiveness and quality of
residual performance decreases as n increases. Residuals effectiveness can change with
fault position when n is fixed. However, residual effectiveness is not only dependent on
these two factors.(Sedighi et al., 2014).
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Abstract

In this paper a broad nonlinear system is considered. Attention is focused upon both performance of a high-gain observer-based residual and the
investigation of residual e ectiveness for detecting faults in actuators components. Residual performances for di erent fault positions and various
system complexities are compared. Both qualitative and quantitative evidence for selected fault positions indicated the performance and the
e ectiveness of the residuals decrease by ascending the system complexity. The poor performance of residuals in the more complex system may
cause No Fault Found (NFF). The methods may be extended to the more general class of nonlinear systems and di erent observers. E ciency
of the proposed approach is demonstrated through the intermittent failure case in a vehicle suspension system.
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1. Introduction

Faults are generally categorized according to whether they
have developed slowly during the operation of a system usu-
ally characteristic of gradual component wear (incipient fault);
arisen suddenly like a step change as a result of a sudden break-
age (abrupt faults); or accrued in discrete intervals attributed to
component degradation or unknown system interactions (inter-
mittent faults). Intermittent faults can manifest in any system,
mechanical or electronic, in an unpredictablemanner, and if left
unattended over time they may evolve into serious and persis-
tent faults. The assumed unpredictability of an intermittent fault
means that it cannot be easily predicted, detected nor is it neces-
sarily repeatable during maintenance testing, thus faults of this
nature raise many concerns in the realm of through-life engi-
neering of products [1]. However, an intermittent fault, which
is missed during standardised maintenance testing, by its very
definition will reoccur at some time in the future. This there-
fore poses an ever increasing challenge in the maintenance of
electronic, mechanical and hydraulic equipment. A substantial
portion of malfunctions attributed to intermittent faults as tested
healthy and may be categorized as No Fault Found (NFF) [2].
When the fault is not intermittent and the fault symptoms are

consistent (hard fault), it is not di cult to isolate and repair.
However, a fault that persists for a very short duration and man-
ifests itself intermittently and only during a particular set of op-
erational stresses can be extremely di cult to identify and iso-
late [3]. In general, intermittent faults typically tend to worsen
with time, until eventually becoming substantial enough to be
detected with conventional test equipment [4]. Hence, devel-
oping the capability for early detection and isolation of the in-
termittent fault can help to avoid major system breakdowns [5].
Faults can occur in actuators, process components or the sen-
sors. Sensor faults are of particular importance, as they could
a ect the system performance, or result in a catastrophic me-
chanical failure. Model-based fault detection schemes can be
powerful tools in determining sensor and actuator faults. The
concept is to compare the behaviour of an actual process to
that of a nominal fault-free model of the process driven by the
same input signals. Model-based approaches are more power-
ful than data-driven signal-processing-based approaches [6] be-
cause they rely muchmore upon physical knowledge of the pro-
cess and its interactions whereas signal processing techniques
rely on large quantities of data to be recorded that may not be
practical.
A model-based fault detection scheme consists of two main
stages: residual generation and residual evaluation. The ob-
jective of designing residuals is to define a signal that can be2212-8271 c 2014 The Authors. Published by Elsevier B.V.

© 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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compared to the appropriate measurements and estimations
and then evaluated for possible presence of faults [7]. Early re-
search on fault diagnosis, based on software and hardware, have
been given. The robust observer-based method of generating
residuals based on software is well-known. Such residuals have
been designed based on adaptive observers [8], sliding-mode
observers [8], bilinear observers [9], quasi-linear observers
[10], neural-network-based adaptive observers [11], nonlinear
high-gain observers [12], nonlinear canonical form observers
[13] and nonlinear observer based on the existence of lin-
earizing transformations [14]. Robust observer based-residuals,
based on polynomial models, have been found e ective, spe-
cially for hydraulic systems [15, 16] and the residuals generated
by high-gain observers [18], have wide applicability. However,
a wide study of the e ectiveness of the residuals for higher di-
mensional nonlinear systems, with few output measurement has
not been attempted. Limited evidence from a study of multi-
tanks hydraulic benchmark system [19], food chain system and
pipeline system [20] show that residual performances degrades
significantly when system complexity increase. This issue and
its relation to NFF with more details, will be addressed for the
vehicle suspension systems in this paper.
Themain object of the paper is to examine the e ectiveness of a
well established high-gain observer-based residual to detect the
intermittent faults. In addition it is shown that the poor perfor-
mance of residuals for more complex system may cause NFF
events.
This paper is constructed as follows: Section 2 gives a sys-
tem description, derives several models and maps and considers
equilibrium points and control. Design of the observer-based
residual for the considered system is addressed in Section 3
while a numerical example is provided in Section 4 to inves-
tigated the limits to fault detection as system complexity in-
creases. Conclusions are presented in Section 5.

Nomenclature

Cn restoring force of damper
e error
fi intermittent fault
fs sensor fault
Fn restoring force of spring
g gravity
gs nonlinearity
c damper constant
k spring constant
L length of spring
m mass
n number of masses
N dimension of the system
nc choice of output
pn fault position
rn displacement
rs residual
un applied control
y output
y additive o set

Fig. 1: The model vehicle suspension system.

2. System Description

Consider the class of nonlinear systems defined by the state-
space form:

x(t) hx(x u gs fi)
y(t) hy(x fs) (1)

If the nonlinear function hx(x u gs fi) is di erentiable with
respect to the state x(t), then this class of the system may be
expressed in terms of a linear unforced part, and nonlinear state
dependent controlled part [21] and [22]:

x(t) Ax(t) Bu(t) S gs(x u t) Ki fi(t)
y(t) Cx(t) Kss fs(t) (2)

where x(t) n, u(t) m and y(t) p represent the state,
input and output vectors respectively. A n n, B n m,
C p n , S n s, Ki n r and Kss p i are known
matrices, fi and fs present the intermittent and sensor faults
respectively. The function gs(x u t) s represents the known
nonlinearity function.
To illustrate the application of the results obtained in sections
2 4, consider the dynamic characteristics of a model vehicle
suspension system treating it as a Mass-Spring-Damper (M-S-
D) system shown in Figure 1 and 2 where n masses, springs
and dampers are connected together in series [23] and [24].
More thorough analysis of a full suspension system are quite
complex involving all four tire suspension systems acting
independently. The quarter-car suspension model can be
considered in the three levels of complexity shown in Figure 1.
The one-degree of freedom model shown in Figure 1a consid-
ers displacement r1 of the sprung mass m1 of the vehicle and
the primary suspension sti ness k1 and damping c1 only. Here
the unsprung mass (mass of the wheels and other components
such as lower control arms) and the mass of the tires are not
considered. The two degree of freedommodel shown in Figure
1b accounts for the dynamics of the unsprung mass as well and
introduces a second equation of motion and degree of freedom
for the displacement r2 of the unsprung mass m2, springs and
dampers with k2 and c2. In this model, the tires are massless. A
three-degree of freedommodel is shown in Figure 1c where the
dynamics of the tires are added to the analysis by treating them
as a mass spring damper as well (see Figure 2), [25], and [26].

A mass-spring-damper system is usually modeled by a set of
di erential equations. The system comprises of a finite number
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of masses, springs and dampers on a line. In fact it is assumed
that nmasses, springs and dampers are connected together seri-
ally. The model that will be developed here could be extended
so that the user is able to select any number of springs, dampers
and masses to connect together to build the final system.
The dynamic of the n-th mass is given by

r̈n (mn) 1 cn rn rn 1) kn(rn rn 1 Ln)

cn 1 rn 1 rn) kn 1(rn 1 rn Ln 1)

g un gs fi (3)

where mn represents the mass of nth mass, rn represents the dis-
placement from a reference position of the nth mass, cn repre-
sents the restoring force of nth damper, kn represents the sti -
ness of nth spring, Ln represents the length of nth spring, g rep-
resents the gravity, un is the control applied on the nth mass,
gs is the nonlinearity and fi is the possible fault in the system.
Hence the dynamic of the nth mass with n degrees of freedom
may be rewritten in the following form

mnr̈n Fn 1 Cn 1 Fn Cn g un gs fi (4)

where Fn represents the restoring force of the nth spring and Cn
represents the restoring force of the nth damper.
For relatively small displacements, restoring forces in (4), can
be considered as linear function of displacements

Fn kn(rn rn 1 Ln)
Cn cn rn rn 1) (5)

Also a situation in which the spring and damper restoring forces
depend nonlinearly on displacement, hardening spring, where,
beyond a certain displacement, large force increments are ob-
tained for small displacement increments, case (5), can be
rewritten as:

Fn kn1 (xn xn 1 Ln) kn2 (xn xn 1 Ln)3

Cn cn1 xn xn 1) cn2 xn xn 1)3 (6)

see [27].

To obtain the state-space equation of the M-S-D system de-
fine

Xn rn Ln (7)

from Figure (2b), where Xn is the amount of the stretch of the
corresponding spring. Then the displacement r may be repre-
sented as

r WX L (8)

where r r1 rn
T
X X1 Xn

T
L

L1 Ln
T
are extended vectors and

W

1 0 0
1 1 0

1 1 1

(9)

Hence, the the system equation in W-form is presented as

Wẍ M 1( CWX) M 1(K(WX L)) M 1ḡs
M 1g M 1Ū M 1 f̄i (10)

with ḡs gs1 gsn
T
Ū u1 un

T

f̄i fi1 fin
T
and

M

m1 0 0 0
0 m2 0 0

0 0 0 mn

Now define w W(X X̄), where X̄ is the equilibrium point.
Then the system (10) in w-form is

ẅ M 1( Cw) M 1( K(w WX̄)) M 1ḡs
M 1g M 1Ū M 1 f̄i (11)

Note that at equilibrium (U 0, w WX̄ w 0 and ẅ 0),
(11) will find the following form

M 1KWX̄ M 1g (12)

Thus the system equation (11) can be rewritten as

ẅ M 1Cw M 1Kw M 1ḡs M 1Ū M 1 f̄i (13)

or equivalently, in terms of its state space representation

x1
x2

0 In
M 1K M 1C

x1
x2

0
M 1ḡs

0
M 1 f̄i

0
M 1Ū (14)

where x1 w and x2 w. The system output is y Cx y
whereC n n and y is an additive o set (output error sensor
fault) on each output.
When the system is consist of two messes, springs and dampers,
then the system equation (14) without fault terms is presented
as

x1 x2

x2
1
m1
[ k1x1 c1x2 k2x3 c2x4 u1

gs1(x1 x2 x3 x4)]
x3 x4 (15)

x4
1
m2
[k1x1 c1x2 2k2x3 2c2x4 u1 u2

gs1(x1 x2 x3 x4) gs2(x1 x2 x3 x4)]

3. Fault Detection Filter

Not all the states x(t) can be directly measured (as is com-
monly the case), therefore we can design an observer, y(t) to
estimate them, while measuring only the output y(t). The ob-
server is basically a model of the plant; it has the same input
and follows a similar di erential equation. An extra term com-
pares the actual measured output y(t) to the estimated output of
the observer y(t); minimising this error will cause the estimated
states x(t) to tend towards the values of the actual real-system
states x(t). It is conventional to write the combined equations
for the system plus observer using the original state x(t) plus
the error state [19],

e(t) x(t) x(t) (16)

In general the fault detection system consists of two parts, 1)
residual generation, 2) residual evaluation [28].
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Fig. 2: The mass-spring-damper system.

3.1. Residual Generation

While a suitable observer is chosen for every case, if the
error system stability is satisfied, then the following scalar
observer-based residual can be generated for each output to de-
tect the intermittent faults

rs(t) (y(t) y(t)) Ce(t) Kss fs(t) (17)

where n p, is a suitable weighting matrix to be designed.
The problem can be stated as finding , such that the following
aims are achieved [29]:

The e ect of unknown input and disturbance signals on
the residual signal are as small as possible while the e ect
of fault signal is as large as possible.
The e ect of parametric uncertainties on residual signal
are as small as possible.
The fault detection system is robust stable in the presence
of exogenous signals and uncertainties.

The object is to show that the residuals are di ering from
zero when faults have occurred; however, the residual tends to
zero in ”no fault” situation.

3.2. Residual Evaluation

A common choice of evaluation signal is the 2-norm:

rseval rs 2
0
rs( ) 2d (18)

Since the evaluation function (18) can not be realised exactly,
because the value of rs 2 is not known until t , and it
is reasonable to assume that faults could be detected, if they
occur over finite time interval. Therefore equation (18) could
be modified to

rseval rs(t) 2
t

0
rs( ) 2d (19)

where is the time window and it is finite [27].

4. Simulation Outcomes

In this section the object is to investigate several M-S-D sys-
tems with the aim of showing a system dependent phenomenon

which limits the e ectiveness of the observer-based residuals.

4.1. Intermittent fault

Collapsing suspension due to coil spring failure seems to
be a growing problem - caused by a combination of recent
harsh winter conditions and weight-saving designs. A plastic
coating is applied to coil springs when they are made to reduce
the risk of corrosion. Over time, contact between coils as the
spring is repeatedly compressed in service can cause damage
to this coating. Most often coil spring failure seems to be
caused by corrosion, accelerated by salt applied to the roads
in winter. In other hand Electrolytic action between the salt
solution, formed by road salting, and the iron in the spring
generates free hydrogen atoms which enter the steel and can
cause microscopic cracking. Cracks propagate and combine,
ultimately leading to failure of the spring, (www.theaa.com).
Cracks and corrosion both can be classified as Intermittent
faults, which will start with small failure in a short time but
will get stronger and longer until it ends up with complete
spring failure eventually.

Assume that at each failure, the length of spring will change
unexpectedly. In other word a fault in position i is a change in
the length of the i-th spring, so that L (L0 fiL0) in position
i, and L L0 in all other sections of the system, where L0 is the
initial length of the spring.
Also, it is defined that fi(t) is a time varying of the form
fi(t) ddiync (t), where ddi, the maximum fault amplitudes, are
constant and ync is the designers’s choice of output.
Hence the intermittent fault, fi(t), could be generated as combi-
nation of impulses at di erent amplitudes which will occurred
in discrete intervals. We could model the fault as follows

fi(t)

0 for 0 t 55s
fi1 for 55s t 60s
0 for 60s t 120s
fi2 for 120s t 145s
0 for 145s t 190s
fi3 for 190s t 260s
0 for 260s t 270s
fi4 for 270s t 400s

(20)

where dd1 0 0025, dd2 0 01, dd3 0 15 and dd4 0 25
are constants, nc 1 n is the choice of output and t
indicates the time.

4.2. Simulation Conditions

For numerical example a general N 2n dimension M-S-D
system is considered. This system has a maximum of n inputs
and n outputs. There is no disturbances, and the e ect of a
single fault fi(t) depends on the choice of Ki in (2). Here y(t)
is the term defining the sensor fault fs(t) of the form 0sin(t)
and the intermittent fault is of the form (20).
Note that the length of spring, L, is 1m, the mass m is 1Kg and
g 9 8 Nm2 is the gravity.

4.3. Residual e ectiveness investigation

For each system by keeping as many factors as possible
the same, such as input u, residual speed of response, residual
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design parameters and observer design parameters, try to
simulate the residual performance as system complexity or n
increases.
To investigate the residual e ectiveness for increasing n the
following steps are performed:
1 An intermittent fault of the form (20) is applied, in the one
of the springs, pi, (1 i n) .
2 An additive o set (output error), y, is made on each output
yi, so that yi(t) xi(t) y where y 0sin(t).
3 The residual of the form (17) with corresponding observer
is designed.
4 The number 0, bounding the output error, is varied until
the e ect of the fault fi(t) on the residual, denoted by Rfmax
in Table 1, is approximately equal to the e ect of the noise,
y, on the residual denoted by R y in Table 1. This condition
is denoted by Rf max

R max
1. It indicates a limit on the error.

Increasing 0 further means that, if y is present throughout the
time frame, its e ect on the residual (17) would mask the e ect
due to the fault fi(t). This condition may cause No Fault Found
events, [19].
5 Finally the steps are repeated for di erent number of
masses.

4.4. Results of investigation

The numerical results for the system mentioned above are
summarised in Table 1 and Figures 3 7.
For M-s-D system, Figures 3 7 show, some results in graph-
ical form when implementing the residual with a fault fi(t) is
presented. For each case a nearly limited condition for 0 is
chosen. Table 1 is driven from the data and compares some im-
portant numbers for each n. for some cases the residual Rfmax
is so small and that it can not be distinguished from modeling
error and control e ects without filtering action.

Table 1: Rfmax, R y and 0 for fault fi(t), where nc 1 and l 1m.

n Pn Rfmax R ymax
0

Rfmax 0f

2 1 2 67 10 4 0 149 104 0.04
2 2 2 10 10 5 5 86 105 1 2
3 1 3 07 10 4 0 048 104 0.15
3 2 5 82 10 5 0 154 105 0.9
3 3 2 96 10 5 0 405 105 1.2
4 1 3 64 10 4 0 68 104 0.25
4 2 1 062 10 4 0 68 104 0.73
4 3 7 14 10 5 0 14 105 1
4 4 3 66 10 5 0 34 105 1.25
5 1 4 60 10 4 0 65 104 0.3
5 2 1 56 10 4 0 38 104 0.6
5 3 1 13 10 4 0 70 104 0.8
5 4 7 62 10 5 0 14 105 1.1
5 5 3 93 10 5 0 33 105 1.3
6 1 7 05 10 4 0 049 104 0.35
6 2 2 48 10 4 0 24 104 0.59
6 3 1 85 10 4 0 43 104 0.8
6 4 1 43 10 4 0 67 104 0.97
6 5 9 95 10 5 0 11 105 1.1
6 6 5 19 10 5 0 25 105 1.3
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Fig. 3: 0 against n 6, nc n and Pn 2.
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Fig. 4: 0 against n 6, nc n and Pn 5.

Note that a straight line can be fitted to the data as a limiting
line for fault detection (log( 0)). A quadratic curve is more ac-
curate but is poor when extrapolations are made for more com-
plex systems, [19]. Figures 2 and 3 display 0, as the data pair
(log( 0) n) is fitted for each system. These graphs clearly show
that the e ectiveness of the residuals decreases as n increases.
In Figure 2, consider that y is determined as a sensor

fault, then if the magnitude of log 0 is grater than 0 3 or
(equivalently 0 0 0003), a fault in the second position is
only detectable for a system with 2 masses or less. But in
Figure 3, a fault in position 5 is detectable for a system with
5 masses or less. For the system with more masses, residual
cannot detect the fault fi(t), and is masked by the e ect of the
sensor fault fs(t).

Figures 5 7 show that the intermittent faults detection may
be delayed due to the e ect of the sensor faults causing No Fault
Found (NFF). Figures 5 and 7 show that the complete masking
due to the e ect of the sensor fault has been occurred and made
the intermittent fault detection impossible. Figure 6 also show
that a sensor fault has masked part of the intermittent fault.
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Fig. 5: Sensor faults masked the intermittent fault, n 2, nc 1 and Pn 1
for 0 0 1.
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5. Conclusions

The development of state-space models and several trans-
formations for use in satisfying the objectives concerning fault
detection for a nonlinear M-S-D systems have been discussed.
In particular, an observer-based residual has been proposed for
the state space model.
An extensive investigation has been made into the e ectiveness
and performance of the residuals based on an observer design.
For each system and a fixed controller, a specific form of sen-
sor fault and a specific input structure, residual performance has
been investigated for detecting the intermittent faults of di er-
ent positions.
The e ectiveness of a nonlinear observer-based residuals has
been shown to be limited by the system complexity. The evi-
dence has been shown that both residual e ectiveness and qual-
ity of residual performance decreases as n increases. Residuals
e ectiveness can change with fault position, when n is fixed.
However, the residual e ectiveness is not only dependent on
these two factors.
The simulations also show that the sensor fault may be able
to mask the e ect of the intermittent faults in the actua-
tor components, resulting a very late detection of the intermit-
tent faults and NFF.
Future investigation is needed to compare the performance of
di erent observers to detect the intermittent faults as one of the
main root causes of NFF in the presence of the sensor faults and
unknown inputs disturbances.
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Moshe. 2012. A fluid-structure interaction model of the aortic valve with coaptation
and compliant aortic root. Med. biol. engineering and computing, 50(2), 173–182.

Marrison, N. A. 1992. Real time fault detection and diagnosis in dynamic engineering
systems using constraint analysis. Ph.D. thesis, University of Glasgow, UK. British
Library, EThOS.

Marshall, Samuel A. 1978. Introduction to control theory. Macmillan International
Higher Education.

Martinez-Gardea, Marcela, Guzmán, Iordan J Mares, Lua, Cuauhtemoc Acosta, Di Gen-
naro, Stefano, & Alvarez, Ivan Vázquez. 2015. Design of a nonlinear observer for a
laboratory antilock braking system. Journal of control engineering and applied infor-
matics, 17(3), 105–112.

Martinussen, Torben, & Scheike, Thomas H. 2006. Dynamic regression models for
survival data. Springer.

Mashkov, Viktor, Fiser, Jirı́, Lytvynenko, Volodymyr, & Voronenko, Maria. 2019. Di-
agnosis of intermittently faulty units at system level. Data, 4(1), 44.

Mattei, Massimiliano. 2001. An lmi approach to the design of a robust observer with
application to a temperature control problem for space vehicle testing. Automatica,
37(12), 1979–1987.

Mau, B. 1996. Bayesian phylogenetic inference via markov chain Monte Carlo methods.
Ph.D. thesis, Wiscontin University.

228



REFERENCES

Meenatchisundaram, S. 2015 (Nov.). mathematical modeling of liq-
uidlevel systems. https://www.slideshare.net/meenasundar/

class-7-mathematical-modeling-of-liquidlevel-systems.

Mekki, H, Mellit, Adel, & Salhi, H. 2016. Artificial neural network-based modelling and
fault detection of partial shaded photovoltaic modules. Simulation modelling practice
and theory, 67, 1–13.

Melkumyan, Arman, & Ramos, Fabio. 2009. A sparse covariance function for exact
gaussian process inference in large datasets. Pages 1936–1942 of: Boutilier, Craig
(ed), Ijcai.

Miljkovic, Dubravko. 2011. Fault detection methods: A literature survey. Pages 750–
755 of: Mipro. IEEE.

Ming, Yue. 2014. Rigid-area orthogonal spectral regression for efficient 3d face recog-
nition. Neurocomputing, 129, 445–457.

Mondal, Sharifuddin, Chakraborty, G, & Bhattacharyya, K. 2009. Unknown input non-
linear observer for component fault detection and isolation of dynamic systems. In-
ternational journal of automation and control, 3(2-3), 154–170.

Moraes, R, Barbosa, Ricardo, Duraes, João, Mendes, Naaliel, Martins, Eliane, &
Madeira, Henrique. 2006. Injection of faults at component interfaces and inside the
component code: are they equivalent? Pages 53–64 of: 2006 sixth european depend-
able computing conference. IEEE.

Mori, Junichi, & Mahalec, Vladimir. 2016. Inference in hybrid bayesian networks with
large discrete and continuous domains. Expert syst. appl., 49, 1–19.

Murphy, Kevin P. 2012. Machine learning: A probabilistic perspective. Adaptive Com-
putation and Machine Learning. Cambridge, MA: MIT Press.

Murphy, Kevin Patrick, & Russell, Stuart. 2002. Dynamic bayesian networks: represen-
tation, inference and learning.

Mutoh, Yasuhiko. 2009. Simple design of the state observer for linear time-varying
systems. Pages 225–229 of: Filipe, Joaquim, Andrade-Cetto, Juan, & Ferrier, Jean-
Louis (eds), Icinco-spsmc. INSTICC Press.

Naik, Amol Subodh. 2010. Subspace based data-driven designs of fault detection sys-
tems. Ph.D. thesis, Uni Duisburg-Essen.

Nannapaneni, Saideep, Mahadevan, Sankaran, & Rachuri, Sudarsan. 2016. Performance
evaluation of a manufacturing process under uncertainty using bayesian networks.
Journal of cleaner production, 113, 947–959.

Ng, K. Y., Tan, C. P., & Oetomo, D. 2012. Disturbance decoupled fault reconstruction
using cascaded sliding mode observers. Automatica, 48, 794–799.

Nguang, Sing Kiong, & Lin, Chih-Min. 1999. Robust filtering: a model matching ap-
proach. International journal of systems science, 30(10), 1143–1151.

229

https://www.slideshare.net/meenasundar/class-7-mathematical-modeling-of-liquidlevel-systems
https://www.slideshare.net/meenasundar/class-7-mathematical-modeling-of-liquidlevel-systems


REFERENCES

Nguyen-Trang, Thao, & Vovan, Tai. 2017. A new approach for determining the prior
probabilities in the classification problem by bayesian method. Adv. data analysis and
classification, 11(3), 629–643.

Niculita, Octavian, Irving, Phil, & Jennions, Ian K. 2012. Use of cots functional analysis
software as an ivhm design tool for detection and isolation of uav fuel system faults.
In: Proceedings of the prognostic and health management society conference, vol. 3.

Niculita, Octavian, Jennions, Ian K, & Irving, Phil. 2013. Design for diagnostics and
prognostics: A physical-functional approach. Pages 1–15 of: Aerospace conference,
2013 ieee. IEEE.

Nikoukhah, R . 1995. A new methodology for observer design and implementation.
Inria report.

Oblak, Simon, Skrjanc, Igor, & Blazic, Saso. 2007. Fault detection for nonlinear systems
with uncertain parameters based on the interval fuzzy model. Eng. appl. of ai, 20(4),
503–510.

Ostrom, C.W. 2010. Time series analysis: Regression techniques. Thousand Oaks/
Newbury Park, CA: Sage Publications Inc.

Pampel, Fred C. 2000. Logistic regression: A primer. Sage Publications, Inc.

Parlangeli, Gianfranco, Pacella, D., & Corradini, Maria Letizia. 2007. Fault identifica-
tion and accommodation for incipient and abrupt faults. Pages 1003–1008 of: Cdc.
IEEE.

Patton, Ron J, Frank, Paul M, & Clarke, Robert N. 1989. Fault diagnosis in dynamic
systems: theory and application. Prentice-Hall, Inc.
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