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Abstract  

In the present work, a robust L∞ convex pose-graph optimisation solution for UAVs monocular 

motion estimation with loop closing is presented. Most solutions proposed in literature 

formulate the pose-graph optimisation as a least-squares problem by minimising a cost 

function using iterative methods such as Gauss-Newton or Levenberg Marquardt algorithms. 

However, with these algorithms, there is no guarantee to converge to a global minimum as 

they, with high probabilities, converge to a local minimum or even to an infeasible solution. 

The solution we propose in this work uses a new robust convex optimisation pose-graph 

technique, which efficiently corrects the UAV's pose after loop-closures detections. 

Uncertainty estimation using derivative method and its propagation through multiview 

geometry algorithms are included in the developed solution. The detection of the visual loop 

closures, in appearance-based navigation, is achieved with our innovative, fast and efficient 

method based on Bayes Decision Theory with Gaussian Mixture Model (GMM) in combination 

with the KD-Tree data structure. Our navigation solution has been validated using real-world 
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data in both indoor and outdoor environments acquired by a UAV equipped with monocular 

system. 
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Features uncertainties. 

1. Introduction 

Unmanned and micro aerial vehicles will shortly 

be as crucial asset to use in important operations, 

such as inspection, reconnaissance, surveillance 

and search and rescue. Moreover, they are 

expected to achieve similar performances as 

manned aircraft. GPS and other satellite navigation 

systems may offer valuable assist for these aerial 

vehicles to accomplish their tasks. However, 

relying solely on satellite-based navigation systems 

is not fully reliable especially in crucial and rapid 

operations. Urban and indoor environment 

operations present real handicaps to these 

navigation systems where its availability is 

extremely limited or even does not exist at all. 

Inertial Navigation System (INS) or GPS-aided 

INS system might be used in these situations. 

However, eventual growth in INS errors is 

prohibitive to these applications. Therefore, 

investigating other alternative solutions, such as 

visual systems, has become a priority for many 

research programs. Indeed, vision systems are 

relatively more convenient for Unmanned Aerial 

Vehicles (UAVs) due to their light-weight, low-

cost and the great quality of information they 

provide.   

On the same wavelength, in this work we 

address the problem of UAVs localisation in 

unknown environments using monocular visual 

systems as the only information source. However, 

the inherent difficulties in UAVs localisation in 

unknown environments relying on visual sensing 

impose great research challenges especially when 



big area coverage from higher altitudes capability 

is required.  

In literature, many studies have been focussing 

on using vision as a perception means for UAVs 

navigation
1,2

 or even as guidance tool for safely 

landing of aerial vehicle
3
. Visual navigation 

approach has been widely studied in the last years 

as an alternative navigation solution for 

autonomous aerial systems. It estimates the pose of 

moving UAVs using visual inputs only with single 

camera, stereo cameras or multi camera systems 

4,5,6
. An aided INS with stereo vision system may 

be used in a cooperative Visual Simultaneous 

Localisation and Mapping (VSLAM) design for 

multiple UAVs in which INS localization errors 

are corrected in a combination with vision 

algorithms
7
. In addition, 3D texture mapping 

models for UAV applications are used as well
8
. 

Stereo systems exploit the known distance 

between the two cameras, usually called the 

baseline, to remove any ambiguity in motion 

estimation. These systems, however, present an 

important drawback when this baseline is relatively 

too small regarding the distance to the scene in 

consideration. In reality, for aerial systems, the 

scene in consideration has to be observed from a 

sufficiently large baseline which is unpractical for 

UAVs exploring large areas from higher altitudes. 

Therefore, observing scenes from much greater 

altitude in comparison to the cameras’ baseline 

reduces a stereo setup to almost a bearing-only 

sensor suffering similar depth estimation problems 

as the monocular case (using one single camera). 

This evidence spurs more research to focus on 

monocular systems. 

Indeed, monocular systems become an 

unavoidable solution for autonomous aerial 

navigation systems since it is practical and offers 

cheap and compact installations. In these systems, 

the multiple view geometry of a moving UAV is 

created by distributing frame sequences over time. 

Correspondences between two or more frames 

along with the camera calibration parameters are 

then used to estimate the motion parameters. 

However, one of the challenging issues of the 

monocular visual odometry based solution is the 

scale ambiguity due to the projective effects. One 

way to tackle this problem is to use pre-knowledge 



information about the real world as a scaling 

factor. Few algorithms have successfully been 

implemented to deal with this issue, where initially 

known landmarks are used to build a well scaled 

map 
9
. 

Nutzi et al. presented  an approach to estimate 

the unknown absolute scale in a monocular SLAM 

frames by fusing through an Extended Kalman 

Filter (EKF) data from an Inertial Measurement 

Unit (IMU) with vision 
10

. However, this method is 

tested only on simulated two-meter-cube data 

which limits its applicability. I. Estiban et al
11

, 

presented a monocular visual odometry algorithm 

relying on a linear computation of the scale ratio 

between frame pairs. A more robust solution using 

based on H∞ filter framework and only scene 

visual data is presented as well 
12

.  

In practice, and similarly to other navigation 

systems, errors in UAVs position estimates for 

aerial visual navigation are continuously growing 

due to the integration of noisy measurements over 

time and imperfect computational techniques. This 

unavoidable drift in motion estimation due to 

inherent inaccuracy of the devices as well needs to 

be corrected. Thus, providing additional correction 

tools would have a crucial impact on the final 

estimates of the navigation solution. During the 

last years, visual loop closures have been given 

more attention and thought of as a powerful and 

practical tool for motion drift correction. Indeed, 

after a long navigation into unknown environment, 

detecting that the autonomous aerial platform has 

returned to a previously visited place offers the 

opportunity to correct and to increase the accuracy 

and the consistency of the vehicle motion estimate. 

To achieve this, the scientific community started 

thinking of providing efficient techniques for 

visual loop closures detection.   

 

Figure 1: A typical pose-graph representation. The UAV 

navigates around unknown environment. Poses are connected 

through constraints (blue dashed arrows). Constraints depict a 

rigid body transformation between poses.  
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Solving the problem of detecting loop closure 

will positively improve the localisation algorithm's 

performances. On the other hand it also induces 

additional computational charges. Hence, an 

efficient real time visual loop closure detection 

solution is crucial. Most solutions in literatures use 

classical appearance information only relying on 

visual Bag-of-Words (BoW) based on SIFT or 

SURF features 
13

. However, these solutions present 

a number of drawbacks, which can be summarized 

in the compulsory offline learning and the 

perceptual aliasing problem caused by clustering 

14
. Alternatively, in this work, we propose to use a 

fast and efficient method for loop closures 

detection relying on a combination of Gaussian 

Mixture Model (GMM) with the KD-Tree data 

structure. In addition and while all other methods 

use one single feature space to describe images, 

SIFT features usually, our method adds local 

colour histograms as a second feature space in 

order to avoid problems that shape-based 

description features have. 

Once a loop closure is detected, which means 

the UAV has returned to a previously visited place; 

the challenge is to ensure a consistent map 

representation despite of the drift. In the recent 

years, pose-graph optimisation has become a great 

technique for loop closure correction where 

relative constraints, between poses, are used 

especially those imposed in the loop closure. In 

visual odometry, each node of the graph represents 

a vehicle pose. Constraints between these poses are 

represented by edges between the nodes (Figure 1). 

These constraints are defined from observations 

which depict a rigid body transformation between 

poses. Obviously these constraints are affected by 

noise and drift (Figure 1). The main objective of 

the optimisation algorithm then is to recover the 

optimal configuration of the nodes that best 

satisfies the constraints (maximises the observation 

likelihood determined in the constraints) 
15

. 

Therefore, this involves solving a large error 

minimisation problem. In other words, the 

principal aim is to jointly optimise the vehicle 

poses in order to minimise the errors dictated by 

the constraints (Figure 1). 

Pose-graph representation was first proposed 

by Lu and Milios in 1997 
16

. However, this 



approach took many years to become a solution for 

solving error minimisation problems 
17

. This work 

was followed by Gutmann and Konolige who 

proposed a graph construction technique by 

including loop closures constraints 
18

. In literature, 

optimisation techniques that recover the optimal 

poses given the constraints are usually called back-

ends. In contrast, front-ends techniques recover the 

input data to obtain the constraints that are the 

basis for the optimisation. 

Optimisation plays an important role into 

delivering the accuracy required in motion 

estimation based visual navigation. Over the last 

decade, numerous optimisation algorithms have 

been recommended. These algorithms can be 

classified into two main categories: 

The first category employs linear approaches, 

which are based on least squares minimisation. In 

this approach, Singular Value Decomposition 

(SVD) is usually adopted where an algebraic cost 

function is minimised. These methods have the 

advantage of offering a closed-form solution with a 

simple implementation. However, the quantity 

being minimized is not geometrically or 

statistically meaningful.  

The second category relies on iterative 

estimation techniques where a cost function is 

minimised using iterative algorithms such as 

Levenberg-Marquardt, Gauss-Newton, gradient 

descent or conjugate gradient. The cost function 

here is geometrically interpretable and can 

statistically be optimal under an assumption of 

Gaussian noise. Commonly, this category is the 

adopted technique as a solution for pose-graph 

optimisation problems.  

In order to have a deep sight on this technique, 

let us consider this example (Figure 1). Let 

𝑋 = (𝑥1, ⋯ , 𝑥𝑖) be a vector where its entries 

represent the poses of a moving UAV. Let 𝑧𝑖𝑗  and 

Ωij represent the measurements and their 

covariance between the nodes 𝑖 and 𝑗. Let 

�̂�𝑖𝑗(𝑥𝑖 , 𝑥𝑗) encodes the measurement prediction 

given the poses 𝑥𝑖and 𝑥𝑗 which is the relative 

transformation between the two poses. Let 𝑒𝑖𝑗 be 

the error between the predicted observation �̂�𝑖𝑗  and 

the real observation 𝑧𝑖𝑗 . The main aim of the 



optimisation problem is then to find the 

configuration of the nodes 𝑋∗ that minimises the 

negative log likelihood 𝐹(𝑋) of all observations, 

where 𝐹(𝑋) is defined as: 

𝐹(𝑋) = ∑𝒆𝑖𝑗
⟙𝜴𝑖𝑗𝒆𝑖𝑗  (1) 

This leads to solve the following optimisation 

problem: 

𝑋∗ = argmin 𝐹(𝑋) (2) 

Here, the optimisation problem is formulated as 

a non-linear least squares problem, where the error 

is the squared L2 norm. The error function is 

approximated by its first order Taylor expansion 

around the current initial values �̆�, which are 

selected usually by guess. This leads to solve a 

linear system of the following form: 

𝐴∆𝑥 = −𝑏 (3) 

Here ∆𝑥 is the increment of the system. Then, 

the solution 𝑋∗ is obtained by adding the recovered 

increments to the initial values: 

𝑋∗ = �̆� + ∆𝑥 (4) 

Algorithms of this category iterate the solution 

in (3) and update the equation (4). In each iteration, 

the previous solution is used as the initial guess. 

This procedure is repeated until a satisfactory 

convergence standard is achieved. Usually, until a 

predefined termination criterion is met. However, 

and notwithstanding of their dependency on good 

initialisation guess, these algorithms present high 

probabilities of convergence to a local minimum or 

even an infeasible solution. As a valid alternative 

and to get around the drawbacks of linear and 

iterative techniques, we present a third manner to 

solve the pose graph optimisation problem for 

visual navigation. This alternative is the convex 

optimisation through more robust norm such as the 

L∞ norm.  

The remainder of the paper is structured as 

follows: Convex optimisation section provides an 

overview of the convex optimisation. Overview of 

the proposed solution section details the general 

navigation solution pipeline. Monocular motion 

estimation module section presents the solution 

adopted for motion estimation. Loop closure 

module section explains our loop closure detection 

technique. The Pose optimisation module section 

describes the implementation design for pose-



graph convex optimisation. Experimental 

validations are given followed by giving the main 

conclusions of this work in the last two sections. 

2. Convex Optimisation 

In contrast to linear and iterative methods, convex 

optimisation ensures getting a single global 

minimum, and the cost function is geometrically 

meaningful. One more extremely important feature 

of convex optimisation in a pose-graph 

representation is the possibility of adding 

constraints to the optimisation problem allowing to 

the designer to incorporate any prior knowledge 

about the solution into the optimisation problem. 

This certainly would increase the convergence 

speed 
19

.  

2.1 Convex optimisation formulation 

A convex optimisation problem has the form: 

𝐦𝐢𝐧𝑥  𝑓0(𝑥) 

(5) 

Subject to 𝑓𝑖(𝑥) ≤ 0 , 𝑖 = 1,⋯ ,𝑚 

It is basically the problem of finding an 𝑥 that 

minimises 𝑓0(𝑥) among all 𝑥 that satisfy the 

constraints 𝑓𝑖(𝑥) ≤ 0. The vector 𝑥 ∈ ℝn is the 

optimisation variable. The function 𝑓0 ∶  ℝn ↦

ℝ is the objective function and the inequalities 

𝑓𝑖(𝑥) ≤ 0 are called the inequality constraints. All 

functions here are convex. 

The particular convex optimisation problems 

where the objective function 𝑓0 is linear and the 

constraints are of the form: ‖𝐴𝑖𝑥 + 𝑏𝑖‖2 ≤ 𝑐𝑖
𝑇𝑥 +

𝑑𝑖 are called Second-Order Cone Programming 

(SOCP). Therefore, a SOCP is an optimisation 

problem of the form: 

𝐦𝐢𝐧𝑥 𝑓⟙𝑥 

(6) Subject to ‖𝐴𝑖𝑥 + 𝑏𝑖‖2 ≤ 𝑐𝑖
⟙𝑥 + 𝑑𝑖      for 𝑖 = 1,… ,𝑚 

 𝑔𝑖
⟙𝑥 = ℎ𝑖                                  for 𝑖 = 1,… , 𝑝 

Where vectors 𝑥, 𝑓, 𝑐𝑖 , 𝑔𝑖 ∈ ℝ𝑛, scalars 𝑑𝑖 , ℎ𝑖 ∈

ℝ, matrix A𝑖 ∈ ℝ(𝑛𝑖−1)×𝑛 and 𝑏𝑖 ∈ ℝ𝑛𝑖−1. 

In our solution for pose-graph convex 

optimisation, we adopted the L∞ optimisation that 

is formulated as a min-max form: 

find 𝐦𝐢𝐧𝒙     𝐦𝐚𝐱
𝑖

 
‖𝐴𝑖𝑥 + 𝑏𝑖‖2

𝑐𝑖
⟙𝑥 + 𝑑𝑖

 

(7) 

Subject to 𝑐𝑖
⟙𝑥 + 𝑑𝑖 > 0 



This problem may be transformed into an 

equivalent problem by incorporating a new 

variable δ: 
19,20

: 

find 𝐦𝐢𝐧𝒙,δ δ 

(8) 

Subject to ‖𝐴𝑖𝑥‖2  ≤  δ 𝑐𝑖
⟙𝑥 

For a given value of 𝛿 ∈ ℝ, our optimisation 

problem will become a sequence of SOCP 

feasibility problems 
19,20

. This leads toward using a 

bisection search to find a minimum value δ∗ for 

which the optimisation problem still feasible 
20,21

. 

If the SOCP problem is feasible then there must 

exist a more optimal solution δ∗ ≤ δ. However, if 

the SOCP is infeasible, then the optimal solution 

must be greater than δ (δ∗ > 𝛿).  

Thus, any problem that could be formulated as 

the problem in (8) can be solved as a SOCP 

sequence. 

2.2 Robust convex optimisation 

formulation 

Extracting feature points is the first step for our 

solution for pose-graph optimisation. Since the 

detected feature points, regardless the nature of the 

detector, have some uncertainty 
22,23

, we propose in 

this work to include these uncertainties in our 

pose-graph optimisation problem. We then solve it 

using robust L∞ convex optimisation via the 

Second-Order Cone Programming (SOCP). In 

addition to uncertainties in feature positions, our 

solution takes as well into account the rotational 

and the translation motion uncertainties, which are 

estimated through the propagation of feature 

position uncertainties via multiple view geometry 

algorithms 
24

. Most researchers avoid uncertainty 

due to the added complexity in constructing the 

robust optimisation model and to the lack of 

knowledge of the nature of these uncertainties 

especially their propagation. On the contrary, our 

work proposes new robust solutions via convex 

optimisation along with estimating the 

uncertainties in every step of the algorithm.  

Robust optimisation, in general form, deals 

with two sets of entities: decision variables and 

uncertain variables. Here, the first aim of worst-

case robust optimisation is to recover the optimal 

solution on the decision variables such that the 

worst-case objective function is minimised and the 



constraints are robustly feasible. This is done while 

the uncertainty is allowed to take arbitrary values 

in a defined uncertainty set 
25

. The general form of 

this robust optimisation is given by: 

 𝐦𝐢𝐧 
𝑥

  𝐦𝐚𝐱
𝜔

 𝑓(𝑥, 𝜔) 

(9) 

 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑔(𝑥, 𝜔) ≤ 0  ( ∀ω ∈ 𝒲) 

Here 𝜔 is the uncertain variable, 𝒲 is the 

uncertainty set and 𝑥 is the decision variable. 

Similarly to (5), this problem can efficiently be 

recast and solved using Second-Order Cone 

Programming (SOCP)
26

. 

3. Overview of the Proposed 

Solution 

The overall of the proposed solution is described in 

Figure 2. The setup consists on an Unmanned 

Aerial Vehicle (UAV) equipped with a fully 

calibrated monocular system with known intrinsic 

parameters 𝐾 capturing sequences of images as it 

moves. In a loop closure scenario, the UAV 

navigates around a cycle and returns close to an 

already visited position. Unfortunately and because 

of the drift, there is an error between the final 

UAV pose and its estimate. The whole solution can 

be divided into three sub-tasks (Figure 2): First, we 

 

Figure 2: A block diagram showing the main architecture of the proposed solution. The setup consists on an UAV equipped with a 

monocular system capturing sequences of images and estimating its own motion as it moves (Monocular Motion Estimation 

Module). When the UAV navigates around a cycle and returns close to a visited position (Loop closure Module); the convex Pose-

graph Optimisation Module will be triggered to optimise the UAV poses around the loop. 
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estimate the motion using a monocular visual 

navigation algorithm (The Monocular Motion 

Estimation Module). Second, we detect that a place 

is revisited (Loop Closure Module). The output of 

this module is a geometric constraint between two 

camera keyframes, which typically belong to the 

same place.  Third, we correct the drift in the final 

pose estimate by distributing the error around the 

loop. 

Therefore, the main steps of the solution can be 

defined as follows: 

 Acquisition of image sequences from the 

onboard camera. 

 Keyframe selection based on the amount of the 

translation regarding the previous selected 

keyframe. 

 Calling the Monocular Motion Estimation 

Module (MMEM) using the Monocular visual 

navigation algorithm 
12

. 

 In parallel, a Loop Closure Module (LCM) is 

launched. This module processes the data 

asynchronously, as they arrive, in order to 

detect previously visited places. This module 

uses Bayes Decision Theory with Gaussian 

Mixture Model (GMM) in combination with 

the KD-Tree data structure. 

 If the output of the LCM is positive, which 

means the vehicle has returned to an already 

visited location, a convex Pose-graph 

Optimisation Module (POM) will in turn be 

triggered to optimise the vehicle poses around 

the loop. And continuously, the whole 

trajectory is updated accordingly. 

4. Monocular Motion 

Estimation Module 

The Monocular Motion Estimation Module 

(MMEM) estimates the UAV's rotations and 

translations as it moves from visual input alone. 

For this purpose we propose to adopt and extend 

our previously presented algorithm
12

 where an 

UAV equipped with a fully calibrated monocular 

system with known intrinsic parameters 𝐾 is used. 

The final goal of this module is to estimate the 

UAV pose at each time step relying only on the 



captured images and the incorporation of the 

uncertainties. The main steps of this algorithm are: 

─ Extraction of image feature points using SIFT 

detector and estimating their uncertainties. 

─ Estimating the initial relative rotations 𝑅𝑖 and 

the translation 𝑡𝑖 via the essential matrix. 

─ Estimation of the propagated uncertainties to 𝑅𝑖 

and  𝑡𝑖 through the normalized 8-point 

algorithm and SVD. 

─ Estimation of the 3D scene points using convex 

optimisation along with their uncertainties. 

─ Optimising the motion using robust L∞ convex 

optimisation taking in consideration all sources 

of uncertainties with a sequence of camera 

resectioning /triangulation. 

─ Computing the unknown absolute scale ratio 

using robust least squares approach. 

The outputs of this module at time step 𝑘 are 

the UAV's absolute positions 𝑷 = (𝑃1, ⋯ , 𝑃𝑘) 

where 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)
⟙ and the relative-pose 

estimates 𝑿 = (𝑋12, 𝑋23, ⋯ , 𝑋𝑘−1,𝑘) between the 

selected keyframes. These relative transformations 

are in reality the relative rotation and translation 

(𝑅𝑘−1,𝑘 , 𝑡𝑘−1,𝑘) between the consecutive selected 

keyframes. 

5. Loop Closure Module 

After long navigation, the drift would affect the 

estimated positions from the monocular motion 

estimation module. Even though drift during 

exploration is unavoidable, it is important to keep 

it as small as possible. This drift is due to the 

integration of noisy measurements over time and to 

imperfections and inherent inaccuracy of the 

devices. Consequently, complementary 

information to overcome these cumulative drift 

errors would become crucial. As a great correction 

tool, our solution relies on visual loop closures 

detection. This is modelled through position 

constraints given by the Loop Closure Module 

when the vehicle returns to a previously visited 

place. Recognizing previously optimised locations 

would restore correct estimates and certainly 

allows generating consistent maps and reduces 

their uncertainty. 



5.1 Image description 

For loop closures detection, most methods 

presented in the literature rely on just one single 

feature space to describe images. The vast majority 

of them use SIFT features
27

. However, SIFT 

features present some drawbacks related to their 

modest robustness to illumination and affine 

changes. On the other hand, colours in images 

provide great and valuable information about the 

scene. Therefore, and in order to compensate the 

issues of SIFT descriptor, our solution uses local 

colour histograms descriptors as a second space 

along with SIFT features. For this second feature 

space, images are decomposed into regular-sized 

subareas. Then, the normalized hue histograms in 

the Hue Saturation Value (HSV), which are 

divided into 37 bins, are used as features
28

. Our 

navigation solution uses this additional feature 

space descriptor in order to ensure the required 

visual feature processing robustness especially in 

less structured environments.  

5.2 KD-trees Structure 

After feature extraction, all visual loop-closures 

detection approaches rely on their matching as a 

way to compare between candidate images for loop 

closure. The most used technique for that is the 

nearest neighbour search 
29,30

. Adopting a more 

robust and efficient matching technique is essential 

especially when dealing with high-dimensional 

descriptors (which is the case in our solution: 128 

and 37-dimensional descriptors for SIFT and 

colour features respectively). Tree structures have 

the ability to decrease the search complexity from 

linear to logarithmic by comparing one dimension 

of the features each time so they avoid the distance 

computations
31

. In addition, tree structures are able 

to provide already sorted neighbours by traversing 

the tree just once.  

In order to exploit their properties, our solution 

uses two separate set of KD-trees containing 

descriptors of each feature space of all previously 

selected images (i.e. places already visited). In 

parallel, an inverted index, which refers each 

feature to the image where it was extracted, is also 

created. In case of a query keyframe, KD-tree 



provides the top nearest neighbours' features 

among all images already inserted in the tree. 

5.3 Gaussian mixture modelling (GMM) 

Our method also adopts Gaussian Mixture 

Modelling (GMM) with Bayesian theory for loop 

closure detection. The aim is  to classify a query 

image into previously seen images whose GMM 

parameters are accumulated and stored into some 

GMM dictionaries built up for each feature space. 

When a keyframe arrives to the Loop Closure 

Module, after image description, a GMM will be 

fitted to their descriptors. The GMM modelling 

outputs, for each keyframe, are the mean 𝜇𝑘, the 

covariance 𝛴𝑘  and the mixture weight 𝜋𝑘 , 

𝑘 = 1,2,⋯ , 𝐾 where K is the number of mixtures. 

These parameters will be inserted into the GMM 

dictionaries 𝜇, 𝛴, 𝜋, which will be used as input to 

the Bayesian loop closure detection algorithm. 

5.4 Loop closure detection pipeline using 

combination of GMM with KD-Trees 

This combination takes advantages of the 

robustness of the KD-Trees in features matching 

and the efficiency of the GMM representation. All 

previously proposed KD/Tree-based solutions 

compare the descriptors of a query keyframe to all 

descriptors in all already selected keyframes. In 

these solutions, the tree is continuously 

incremented with all descriptors of any new 

keyframe. Then, the keyframe that contains the 

most matched features with the query keyframe 

will be declared as a loop closure after obviously a 

second step of further verification. The big 

problem with these solutions is the significant 

increase of the size of the tree especially for 

vehicles navigating for long distances. This makes 

the nearest neighbours search a lot costly in terms 

of computational time, even with KD-Tree 

structures. This issue limits their adoption in real 

life applications. 

Our solution, however, does not insert all the 

descriptors of the new keyframes into the tree 

structure. Instead of that, a Gaussian Mixture is 

modelled for each new keyframes, and only the 

means 𝜇 of these mixtures are inserted into the 

KD-Tree. Therefore, the descriptors of a query 

keyframe are compared to just the means of the 

descriptors of all keyframes already selected (i.e. 



inserted into the tree). Hence, a significant 

reduction of the size of the tree would be achieved. 

Consequently, the search time for the nearest 

neighbours would be considerably reduced as well. 

Our solution may be divided into three main 

stages:  

 Stage 1: KD-Tree with Gaussian mixture Model: 

─ First, for any new keyframe and after image 

description (features extraction), a Gaussian 

mixture model will be fitted to their 

descriptors, where a KD-Tree is updated over 

the means 𝜇𝑘. 

─ An index vector is created which maps the 

means 𝜇𝑘 to their corresponding images from 

which they are modelled. 

─ Given a query keyframe, a nearest neighbours 

search to their descriptors in the already built 

up KD-Tree is performed. The top 𝑃 nearest 

frames from the sorted images are returned. 

 Stage 2: Full representation technique:  

─ A new KD-Tree of all the descriptors, this 

time, of the 𝑃 frames is constructed. 

─ Then, a search through this new KD-Tree for 

nearest neighbours with query keyframe is 

done. 

─ Every nearest neighbour votes for the image it 

comes from. The frames with higher scores 

will be selected for the third stage. 

 Stage 3: geometric consistency check: 

 
(a)                                   (b) 

Figure 3: Convex pose-graph optimisation problem. (a) Solid 

line shows the recovered trajectory of the UAV before 

optimisation. Nodes represent UAV's poses and edges 

represent constraints. After loop closure detection -between 

nodes 𝑘 (red) and 𝑙 (gray)-, the loop-closure relative pose 

constraint 𝑡𝑐  (green) is estimated indicating that node 𝑘 is 

supposed to be in �̂�. Clearly, the angular error between 𝑡𝑐  

and 𝑝𝑘𝑙 is considerable while it is not between 𝑡𝑖𝑗 and 𝑝𝑖𝑗. 

Convex pose-graph optimisation corrects the trajectory 

(dashed line) by distributing the drift error (or the angular 

error) around the loop. (b) Depicts the geometry of the 

convex optimisation for angular error minimisation for one 

constraint.  

 

 

Absolute 

Poses 

Drift 

error 

𝒑𝒌𝒍 

 

𝜃𝑘𝑙  

�̂� 

 

𝒕𝒄 𝒑𝒌𝒍 

tan 𝜃𝑘𝑙  

 
 

 

 

 

 

 
𝒕𝒄 

 
 

 

 

  

  

2 
1 

l+1 

k-1 

i 

𝒕𝒊𝒋 
𝒑𝒊𝒋   j 

 �̂� 

 

 l 

 
k 

 
k 

 l 



─ The selected frames for this stage will be 

confirmed or rejected by a further condition 

derived from multiple-view geometry. The two 

images are declared as a loop closure if they 

satisfy the epipolar geometry constraint. 

Mainly the principal output of this module is 

the loop closure constraint of the current pose of 

the vehicle. This pose constraint 𝑋𝑐 = (𝑅𝑐 , 𝑡𝑐) 

indicates the relative rotation 𝑅𝑐 and the relative 

translation 𝑡𝑐 between current keyframe and the 

keyframe that closes the loop with it. This pose 

constraint is estimated using multiple view 

geometry algorithms. This constraint, in fact, 

evaluates the drift in motion estimation.  In other 

words, this pose constraint tells us where the 

vehicle should be located (Figure 3). 

6. Pose Optimisation Module 

Once a loop-closure is detected, convex pose-

graph optimisation module performs the correction 

of any drift occurred during the monocular motion 

estimation. In this section, we present a new 

convex pose-graph optimisation approach, which 

robustly corrects the rotation and the translation 

drift at loop closures. 

Let 𝑿 = (𝑋12, 𝑋23, ⋯ , 𝑋𝑖𝑗 , ⋯ , 𝑋𝑘−1,𝑘)  be the 

relative pose estimates and 𝑷 = (𝑃1, ⋯ , 𝑃𝑘) be the 

UAV's absolute positions estimated from the 

Monocular Motion Estimation Module, where 𝑘 is 

the index of the current pose (Figure 3.a). When a 

loop closure is detected, assuming between nodes 

𝑘  and 𝑙, then the loop-closure constraint is 

estimated. This constraint defines the relative pose 

between the two keyframes of the loop closure: 

 𝑋𝑐 = (𝑅𝑐  , 𝑡𝑐) (10) 

In our case 𝑋𝑐 =  𝑋𝑘𝑙 = (𝑅𝑘𝑙  , 𝑡𝑘𝑙). The aim of 

the pose-graph optimisation is to find the optimal 

configuration of the UAV's positions �̂� =

(�̂�𝑙 , ⋯ , �̂�𝑘) ∈  ℝ3𝑛 that satisfies all the constraints 

including the loop closure constraints. In reality, 

this configuration would be obtained by an optimal 

distribution of the drift error over all relative 

constraints. 

Most solutions proposed in literature formulate 

this pose-graph optimisation as a least-squares 

problem by minimising a cost function similar to 



one given in equation (2) above. Most of these 

solutions use iterative estimation methods for 

minimisation such as Gauss-Newton or Levenberg 

Marquardt algorithms 
16,17,18,32

. However, with 

these methods there is no guarantee of 

convergence to the global minima. Furthermore, 

they could lead to an infeasible solution. As such, 

these methods are also very dependent on good 

initialisation. 

In contrast, our solution recovers the optimal 

positions configuration by using convex 

optimisation through the adoption of a more robust 

norm such as the L∞ norm. Contrarily to linear and 

iterative optimisation methods, convex 

optimisation guarantees convergence to a single 

and global minimum. 

6.1 Convex pose-graph optimisation 

formulation 

Throughout this section, we consider the scenario 

in which a loop closure between the keyframes 

with indices 𝑘 and 𝑙 is confirmed (Figure 3.a). In 

this case, the Pose Optimisation Module extracts, 

from the Monocular Motion Estimation Module, 

all the UAV's absolute positions 𝑷 = (𝑃𝑙 , ⋯ , 𝑃𝑘) 

involved in the loop along with their relative 

poses 𝑿 = (𝑋𝑙,𝑙+1, ⋯ , 𝑋𝑘−1,𝑘), from index k back 

to index 𝑙 (Figure 3.a). In addition to that, the loop 

closure constraint 𝑋𝑐 =  𝑋𝑘𝑙  (which is the relative 

pose between the loop-closure keyframes 𝑘 and l) 

is extracted as well from the Loop Closure Module 

(red dashed arrows in Figure 2). These poses will 

serve as inputs to the Pose Optimisation Module. 

Among all the extracted absolute positions 

𝑷 = (𝑃𝑙 , ⋯ , 𝑃𝑘), let us consider first the two 

consecutive positions 𝑃𝑖  and 𝑃𝑗 and their relative 

pose 𝑋𝑖𝑗 = (𝑅𝑖𝑗  , 𝑡𝑖𝑗), where 𝑙 ≤ 𝑖 < 𝑗 ≤ 𝑘. Let us 

now consider the two 3-vectors 𝑝𝑖𝑗  and 𝑡𝑖𝑗, where 

𝑝𝑖𝑗 = (𝑃𝑗 − 𝑃𝑖) represents a vector linking the two 

absolute positions 𝑃𝑖  and 𝑃𝑗 and the 3-vector 𝑡𝑖𝑗 is 

the relative translation vector in the relative 

pose 𝑋𝑖𝑗 which was estimated by the Monocular 

Motion Estimation Module. The relative constraint 

between these two nodes may be defined as: 

𝑡𝑖𝑗 ≡ 𝑝𝑖𝑗  (11) 

This relative constraint in (11) means that 

vectors 𝑡𝑖𝑗  and 𝑝𝑖𝑗  are identical and have exactly 



the same orientation or superposed (Figure 3.a). In 

our scenario of a loop closure, this remains valid 

for all frames 𝑖 and 𝑗 where 𝑖, 𝑗 = 𝑙,⋯ , 𝑘. 

However, due to error drift, this is not the case for 

the loop closure constraint between 𝑘 and 𝑙: 

𝑡𝑘𝑙 ≢ 𝑝𝑘𝑙  (12) 

This inequality (or drift error) can be expressed 

as angular error 𝜃𝑘𝑙 between the two vectors. This 

is illustrated in Figure 3.b. It is clear that, due to 

the drift error, the node 𝑘 should be moved into the 

node �̂� in order to satisfy the loop closure 

constraint. To do that, we have to minimise the 

angle 𝜃𝑘𝑙. However, minimising 𝜃𝑘𝑙 will imply 

changing all the graph's nodes around the loop. 

Thus, the job of convex pose-graph optimiser is to 

find the optimal nodes' positions. 

Note that each relative translation 𝑡𝑖𝑗, including 

the loop closure relative translation  𝑡𝑘𝑙, forms a 

cone in ℝ3 with vertex the node 𝑗, axis  𝑡𝑖𝑗  and 

angle determined by 𝜃𝑖𝑗 (Figure 3.b). The aim of 

the Pose-graph Optimisation Module is then to 

distribute this angular error around the loop. 

Hence, closing the loop as illustrated in Figure 3.a 

(dashed line). In other words, the objective of the 

optimisation is to modify all the absolute 

positions 𝑃𝑖, in a way such that all angular errors 

(cones' angles) are as close to zero as possible. To 

do that, we consider all the relative constraints in 

(11) and the loop closure constraint in (12) as 

measurements (constants) and the new vehicle's 

positions �̂� = (�̂�𝑙 , ⋯ , �̂�𝑘)  ∈  ℝ3𝑛 is our 

optimisation variable where 𝑛 is the number of 

nodes involved in the loop.  

6.2 The optimisation problem 

To minimise the angular error 𝜃𝑘𝑙, we may instead 

minimise the tangent of this angle. Then the error 

residual associated with all 𝑡𝑖𝑗 is 𝜖 = 𝑡𝑎𝑛 𝜃𝑖𝑗 

where 0 < 𝜃𝑖𝑗 <
𝜋

2
. These error residuals give the 

error vector: 

𝜖 = (휀𝑙,𝑙+1, ⋯ , 휀𝑘−1,𝑘, 휀𝑘𝑙)
⟙

  (13) 

In minimising the angular errors, the most 

important part of 𝑡𝑖𝑗 is its orientation, which 

indicates the direction between nodes. Therefore, 

using unit vectors divided by its norm is more 

appropriate. The estimated �̂� is then the one that 



minimises the norm of this error vector. In our 

solution, we adopted L∞ norm. Thus, the cost 

function is defined as: 

𝐹(𝑥) = ‖𝜖‖∞ = max𝑖,𝑗|휀𝑖𝑗| =  max𝑖,𝑗 tan 𝜃𝑖𝑗  (14) 

This may be formulated as the min-max 

optimisation problem: 

find       𝐦𝐢𝐧�̂�     𝐦𝐚𝐱𝑖,𝑗       tan 𝜃𝑖𝑗   (15) 

This means that we perform a min-max 

optimisation over all the cones of the graph. As 

detailed in section  2.1 2.A above, this may be 

reformulated as the problem 
20,21

: 

find   𝐦𝐢𝐧�̂�,𝜹 𝛿  𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 tan 𝜃𝑖𝑗 ≤ 𝛿 ∀ 𝑖, 𝑗(16) 

In order to solve this problem as a SOCP 

sequence, it has to be formulated as the problem 

in (8). To do that, let us reformulate tan 𝜃𝑖𝑗. Note 

that the dot product of the two vectors that form the 

angle 𝜃𝑖𝑗, 𝑡𝑖𝑗 and 𝑝𝑖𝑗, is 𝑡𝑖𝑗
⟙. 𝑝𝑖𝑗 = ‖𝑡𝑖𝑗‖‖𝑡𝑖𝑗‖ cos 𝜃𝑖𝑗 , 

and their cross product's length is ‖𝑡𝑖𝑗 × 𝑝𝑖𝑗‖ =

‖𝑡𝑖𝑗‖‖𝑡𝑖𝑗‖ sin 𝜃𝑖𝑗 . Therefore, dividing the cross 

product's length by the dot product yields: 

tan 𝜃𝑖𝑗 =
‖𝑡𝑖𝑗×𝑝𝑖𝑗‖2

𝑡𝑖𝑗
⟙.𝑝𝑖𝑗

 (17) 

tan 𝜃𝑖𝑗 =
‖𝑡𝑖𝑗×(�̂�𝑖−�̂�𝑗)‖2

𝑡𝑖𝑗
⟙(�̂�𝑖−�̂�𝑗)

 (18) 

tan 𝜃𝑖𝑗 =
‖[𝑡𝑖𝑗]×

(�̂�𝑖−�̂�𝑗)‖
2

𝑡𝑖𝑗
⟙(�̂�𝑖−�̂�𝑗)

 (19) 

Thus, the optimisation problem in (16) may be 

rewritten as: 

𝐦𝐢𝐧�̂�,𝛿 𝛿 

(20) Subject to ‖[𝑡𝑖𝑗]×(�̂�𝑖 − �̂�𝑗)‖
2
≤ 𝛿 (𝑡𝑖𝑗

⟙(�̂�𝑖 − �̂�𝑗)) 

 𝑡𝑖𝑗 . (�̂�𝑖 − �̂�𝑗) > 0   for each 𝑡𝑖𝑗  

This falls exactly under the desired SOCP form 

(8) with 𝐴𝑖 = [𝑡𝑖𝑗]×. 

This problem with the form in (20) is only 

solvable up to a translation and a scale. We use the 

constraint �̂�1 = 𝑃1 to remove the translation 

ambiguity. More importantly, to deal with scale 

ambiguity we exploit the known initial absolute 

positions before optimisation 𝑃𝑖  so: (�̂�𝑖 − �̂�𝑗) ≤

(𝑃𝑖 − 𝑃𝑗). Hence, our optimisation problem (20) 

may be rewritten as: 

𝐦𝐢𝐧�̂�,𝜹 𝛿 

(21) 

Subject to ‖[𝑡𝑖𝑗]×(�̂�𝑖 − �̂�𝑗)‖
2
≤ 𝛿 (𝑡𝑖𝑗

⟙(�̂�𝑖 − �̂�𝑗)) 



 𝑡𝑖𝑗 . (�̂�𝑖 − �̂�𝑗) > 0      for each 𝑡𝑖𝑗 

 (�̂�𝑖 − �̂�𝑗) ≤ (𝑃𝑖 − 𝑃𝑗) 

The minimisation in (21) is as the desired form 

(8), which may be solved via a sequence of SOCP 

feasibility problems as described in Section  2 
20

. 

6.3 Robust Convex pose-graph 

optimisation formulation 

In the previous section, the convex optimisation 

problem is formulated with the assumption that 

image keypoints have been extracted perfectly with 

no uncertainties. However, detected feature points, 

regardless of the feature detector, have some 

uncertainty in their positions. The common way of 

expressing this uncertainty information is in terms 

of covariance matrices. 

In our scenario of loop closure between nodes 

𝑘 and 𝑙, the input to pose-graph optimisation are 

the relative poses 𝑋 = (𝑋𝑙,𝑙+1, ⋯ , 𝑋𝑘−1,𝑘) where 

 𝑋𝑖𝑗 = (𝑅𝑖𝑗  , 𝑡𝑖𝑗) and the loop-closure relative pose 

 𝑋𝑐 =  𝑋𝑘𝑙 = (𝑅𝑘𝑙  , 𝑡𝑘𝑙). Therefore, since image 

keypoints correspondences are used to estimate 𝑡𝑖𝑗; 

let  Δ𝑡𝑖𝑗
 be its uncertainties which are estimated 

through the propagation of feature position 

uncertainties via multiple view geometry 

algorithms 
24

. 

Thus, the optimisation problem in (20) 

becomes: 

𝐦𝐢𝐧�̂�,𝛿 𝛿 

(22) 

Subject to:  

‖([𝑡𝑖𝑗]× +  Δ𝑡𝑖𝑗) (�̂�𝑖 − �̂�𝑗)‖
2
≤ 𝛿 ((𝑡𝑖𝑗 +  Δ𝑡𝑖𝑗)

⟙
(�̂�𝑖 − �̂�𝑗)). 

(𝑡𝑖𝑗 +  Δ𝑡𝑖𝑗) . (�̂�𝑖 − �̂�𝑗) > 0   for each    𝑡𝑖𝑗 . 

This again is of the desired form in (8) 

with  𝐴𝑖 = [𝑡𝑖𝑗]× +  𝛥𝑡𝑖𝑗
 which can be solved using 

a sequence of robust SOCP. 

6.4 Computational complexity 

This section first illustrates the computational 

complexity advantage of deploying a combination 

of KD-tree structure with GMM where a 

comparison with the complexity methods that use 

KD-tree structure alone is given. Then, we 

compare the L∞ convex pose-graph optimisation 

complexity with the classical Levenberg-

Marquardt algorithm. 



6.4.1 Computational complexity of the 

combination of KD-tree structure 

with GMM solution 

It is well known that the search complexity of 

tree structure is decreased from linear to 

logarithmic. Suppose we are looking for a loop-

closure in 𝑚 previously visited frames in which 

each frame is described with an average of 𝑛 

features (𝑛 in general is between 1000 and 4000), 

then building a KD-tree has 𝒪(𝑛𝑚 log 𝑛𝑚) time 

complexity and 𝒪(𝐾 log 𝑛𝑚) space complexity ( 𝐾 

is the tree dimension). A search for 𝑀 nearest 

neighbours costs closely to 𝒪(𝑀 log 𝑛𝑚). 

However, by introducing Gaussian Mixture 

Modelling (GMM), instead of inserting 𝑛 features 

for each frame, only 𝑘 means 𝜇𝑘 mixtures are 

inserted into the KD-Tree where 𝑘 is the number of 

mixtures (GMM dimension) (in our solution we 

use 5 mixtures). Consequently, in comparison to 

methods that use KD-tree only, the computational 

complexity would be significantly reduced by a 

factor of: 

𝑓 =
𝑛

𝑘

log(𝑛𝑚)

log(𝑘𝑚)
 (23) 

Note that 𝑘 is significantly smaller than 𝑛. 

Then the computational cost of our solution 

becomes: 𝒪(𝑘𝑚 log 𝑘𝑚) plus the cost of the GMM 

modelling. This later modelling is done using the 

Expectation Maximization algorithm where for 

each frame with 𝑛 features, the computational 

complexity is given by: 𝒪(𝑛𝑘𝑑 + 𝑛𝑘) for the E-

step and 𝒪(2𝑛𝑘𝑑) for the M-step (𝑑 is the feature 

dimension). 

6.4.2 Computational complexity of the 

convex pose-graph solution 

For the optimisation problem, Levenberg-

Marquardt algorithm has cubic complexity in the 

number of parameters: 𝒪(𝑁3) per iteration (𝑁 is 

the number of the poses in the graph)
5
. Convex 

pose-graph optimisation, however, is solved by a 

bisection algorithm
21

,
20

. The convex optimisation 

problems given in (21) and (22) are solved at each 

step by a feasibility check. This leads to solve 𝑁 

second order cone feasibility problem. Therefore, 

this problem has a computational complexity of 

just 𝒪(√𝑁) and a memory requirement of 𝒪(𝑁)33
. 



The discussion above concerns the 

computational complexity per iteration. In fact, the 

number of iterations required for convergence is 

extremely important. In our solution, the upper and 

the lower parameters of the bisection algorithm are 

chosen according to the previous optimisation 

parameters where a global solution was found. 

This technique reduces the search area and 

consequently less iterations would be required for 

convergence. 

7. Experimental Validation 

This section discusses the experimental evaluations 

of the proposed solution. Comparison with 

iterative methods based on Levenberg-Marquardt 

algorithm is given as well. We compare our 

convex optimisation with the state-of-the-art 

implementations using the open-source 

implementation
32

 in which pose-graph optimisation 

problem is formulated as a least-squares 

minimisation problem and solved iteratively using 

Levenberg-Marquardt. 

Experiments are performed using an AscTec 

Firefly MAV platform with a fully-calibrated 

forward looking camera. Implementation of these 

techniques is conducted using real-world data in 

both indoor and outdoor environments. Indoor 

experiments are held in our laboratory as shown in 

Figure 4. Ground-truth in indoor experiment is 

collected from an OptiTrack motion-capture 

system that provides absolute position information 

with millimetre accuracy at 100 Hz. 

Implementations to generate the results shown in 

this section is based on a sequence of robust SOCP 

feasibility problem for the convexity task using 

SeDuMi toolbox
34

 and Yalmip
25

 toolbox for 

uncertainties modeling. The estimated UAV 

motions are aligned with the ground truth and the 

Euclidian distance errors on UAV position are 

computed. 

First, we want to illustrate the performances of 

our solution in term of computational complexity 

for loop-closure detection. Here, we compare our 

results to equivalent methods which use tree 

 
Figure 4: Setup used in our indoor experiments. 



structure but with full representation, like the one 

presented in 
31

. In this work, the average time for 

tree building is 16.2ms. This operation is 

equivalent, in our solution, to GMM modelling, 

building KD-tree with GMM parameters and 

building the full KD-Tree of the 𝑃 frames. All 

these operations are done together in just 7.51 ms; 

which is less than half time required for the 

technique that use all frames. Note that our 

solution uses 5 mixtures and an average value of 𝑃 

of 15. Search and indexing take less than 5 ms in 

the proposed solution while it exceeds 10 ms in 

techniques that search in all frames. 

As our global solution is modular, any 

alternative algorithm could be used in any module 

among the three modules of the solution (Figure 

2). Therefore and in order to independently 

compare the performance of each module, two 

comparison scenarios were retained as shown in 

Table 1. These scenarios serve to assess the 

performances of our pose-graph optimisation 

method (CVX) without the influence of the loop 

closure method. In the first scenario, we compare 

our convex pose-graph optimisation (CVX) with 

iterative LM pose-graph optimisation (LM) and for 

loop-closure detection; the same classical bag-of-

words (BoW) method is used. The second scenario 

is similar to the first one but we use our 

GMM/KD-Tree method for loop closure detection 

instead. 

Table 1. The two comparison scenarios  

 Pose-graph method Loop-closure method 

Scenario 1 
CVX + 

BoW 
LM + 

Scenario 2 
CVX + 

GMM/KD-Tree 
LM + 

Investigation on the effect of using a particular 

loop-closure detection method on the global 

performances of the solution is conducted as well 

in this section. Robust convex pose-graph 

optimisation performances, in which uncertainties 

in relative translations are incorporated, are also 

compared to normal convex pose-graph 

optimisation. 



In order to illustrate the final output of our 

solution, let us consider Figure 5 and Figure 6. 

These plots show the outcome of the convex pose-

graph optimisation process after loop-closures 

detection. Trajectories before loop closure are 

shown in red lines. For every loop-closure 

detection, and before resuming monocular motion 

estimation, convex pose-graph optimisation is 

 
(a) Loop closure 1                                                               (b) Loop closure 2                                                (c) Loop closure 3 

 
(d) Sample of loop closure frames 

Figure 5: Convex pose-graph optimisation results on indoor experiment. Blues lines show the ground truth. Red lines show the 

UAV motion estimation before convex pose-graph optimisation and green lines illustrate the corrected estimates after loop 

closure detection. (a) shows results when the vehicle closes the first loop. (b) and (c) depict results after detecting the second and 

the third loop closures. (d) shows a sample of loop closure frames. 

 
(a) Loop closure 1                                      (b) Loop closure 2                             (c) Loop closure 3 

Figure 6: Convex pose-graph optimisation results on outdoor experiment. Red lines show the estimated trajectories before convex 

pose-graph optimisation. Green lines illustrate their corrections after loop closures detection. 



performed on all frames included in this particular 

loop as shown in Figure 5.a to Figure 6.c. Clearly, 

robust convex pose-graph optimisation is 

accurately and effectively able to correct any drift 

during navigation in both indoor and outdoor 

environments. These figures confirm that our 

solution is suitable to multiple loop closures as 

well. 

7.1 Assessment of pose-graph 

optimisation with BoW method 

(Scenario 1) 

In this experiment we investigate the performance 

of our convex pose-graph optimisation (CVX) 

against classical method using Levenberg-

Marquardt (LM) where for both methods classical 

Bag-of-Word (BoW) is employed. This experiment 

is conducted on indoor and outdoor data as shown 

in Figure 7. Results obtained using convex 

optimisation look significantly better and for both 

environments. This accuracy of the proposed 

convex optimisation is in accordance with the 

theory as the estimates should be globally optimal. 

Due to its landscape nature, higher errors are still 

noticed after pose-graph optimisation in outdoor 

experiment especially for the LM method.  

7.2 Assessment of pose-graph 

optimisation with GMM/KD-Tree 

method (Scenario 2) 

Similarly to the previous setup, in this experiment 

we use our loop-closure detection method based on 

Gaussian Mixture Modelling (GMM) with 

Bayesian theory and KD-Tree structure to test our 

 
(a) Indoor experiment                                            (b) Outdoor experiment 

Figure 7: Comparison of convex pose-graph optimisation to classical LM method using the same classical loop-closure 

detection technique (BoW). 



convex pose-graph optimisation. Results are shown 

in Figure 8. In this scenario, we want to assess the 

performance of our convex pose-graph 

optimisation with our method of loop-closure 

based on GMM/KD-Tree. Similarly to the previous 

experiment, convex pose-graph optimisation 

outperforms traditional LM optimisation 

technique. The average error in indoor 

environment with convex method does not exceed 

0.28 metres while it is about 0.59 metres for LM 

method. More significant improvement can be seen 

in outdoor experiment where average of Euclidean 

distance errors have dropped from 3.35 metres 

when using for LM method to just 1.15 metres 

with convex optimisation.  

It can be seen, from the Euclidian distance 

errors, and regardless the employed loop-closure 

technique, convex optimisation approach is more 

accurate in all environments than classical 

techniques using Levenberg-Marquardt approach. 

Indeed, convex optimisation with L∞ norm has 

shown its ability to ensure the global minima in 

recovering the motion parameters in comparison to 

iterative least square based methods where a 

predefined termination criterion is set which 

favours convergence to local minima. 

7.3 Effect of loop-closure detection 

method 

We have assessed so far the performance of 

convex pose-graph optimisation regardless the 

employed loop-closure technique. We want to 

investigate, in this section, to what extent using a 

particular loop-closure detection method can affect 

the global performances of the solution. To do that, 

 
(a) Indoor experiment                                           (b) Outdoor experiment 

Figure 8: Comparison of convex pose-graph optimisation to classical LM method using the same GMM/KD-Tree method for loop 

closure detection. 



let us consider Figure 9 where both pose-graph 

optimisation techniques (convex optimisation and 

Levenberg-Marquardt optimisation) are tested 

under the two loop-closure detection techniques 

(GMM/KD-Tree and classical BoW). The top row 

in this figure shows Euclidian distance errors using 

convex pose-graph optimisation with GMM/KD-

Tree (solid blue lines) and classical BoW (dotted 

blue lines) in both indoors and outdoors 

environments. These plots show that camera 

positions can be estimated well with GMM/KD-

Tree for loop-closure detection even this 

improvement is not very considerable in outdoor 

environment. Bottom row in the same figure 

illustrates the effects of GMM/KD-Tree for loop-

closure with Levenberg-Marquardt (LM) pose-

graph optimisation. Similar pattern is noticed here 

as well. 

From these results, we learn that in addition to 

the convex optimisation properties, in which 

solutions are guaranteed to be globally optimal, 

using robust and accurate methods for loop-closure 

 
(a) Using convex pose-graph optimisation 

 
(b) Using Levenberg-Marquardt (LM) pose-graph optimisation 

Figure 9: Effects of loop-closure detection method on the global trajectories estimates. (a) and (b) compare GMM/KD-Tree 

(solid line) to classical BoW technique (dotted line). (a) Convex optimisation is used (blue lines). (b) Levenberg-Marquardt (LM) 

technique is used. 



detection improves remarkably the global 

performances of the solution. 

7.4 Robust Convex pose-graph 

optimisation 

In this section, we investigate the performance of 

our solution when uncertainties are incorporated as 

given in (22). These uncertainties are originally 

from image feature's imperfect positions, due to 

deterministic perturbations, and then propagated 

through multiple views geometry algorithms to the 

relative translations.  

Figure 10 illustrates the outcome of the 

proposed solution when uncertainties are included. 

Even though the improvement in indoor 

experiment is only reasonable (the average error of 

0.20 metres when including uncertainties against 

0.28 metres using normal convex optimisation), it 

demonstrates the robustness of the algorithm 

(Figure 10.a solid green line). This improvement 

can be remarkably seen in outdoor experiment in 

which the average error has dropped even more 

when uncertainties are taken into consideration 

reaching a value of 0.72 metres (was 1.15 metres 

when using normal convex optimisation) (Figure 

10.b solid green line).  

From these results, we learn that taking the 

uncertainties into consideration in the proposed 

method, would lead to robust and more accurate 

estimations than the normal convex optimisation as 

expected since it encodes large intervals in its 

 
(a) Indoor experiment            (b) Outdoor experiment 

Figure 10: Robust convex pose-graph optimisation. Solid green lines plot Euclidian distance errors after performing robust convex 

pose-graph optimisation. Dashed blue line shows errors from normal convex optimisation and dotted red lines shows results from 

classical LM method. 



optimisation and models well the uncertainties. 

8. Conclusions 

In this work, we presented a new robust convex 

pose-graph optimisation solution for UAVs 

monocular motion estimation systems. Through a 

variety of experimental validations which are 

conducted on real-world data from indoor and 

outdoor environments and comparison to state-of-

the-art methods, using convex optimisation in 

pose-graph problems has proven its efficiency in 

motion estimation correction after loop-closures 

detections. 

Even more, including uncertainty estimations, 

based on SIFT derivative approach and their 

propagation through multiple views geometry 

algorithms have contributed in the improvement of 

the global motion estimation. The unavoidable 

drift in motion estimation due to imperfect 

computational tools and to inherent inaccuracy of 

the devices would be robustly and accurately 

corrected using robust convex optimisation. In 

addition, the proposed solution is suitable to 

multiple loop-closures circumstances. 

Furthermore, a solution based on the 

combination of Gaussian Mixture Model (GMM) 

with the KD-Tree data structure has confirmed its 

capability of efficiently detecting loop-closures 

leading to better motion estimates. 
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