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Abstract 

Unmanned Aerial Vehicles (UAVs) are now common place and their sensor solutions are 

producing ever increasing volumes of data. Typically the data is based around the theme 

of remote sensing of the Earth, and is gathered by a multitude of sensors for differing 

applications. The requirement to process the data gathered into useful information grows 

as does the demand for intelligent systems to assist with this. The most common, cost 

effective and readily available sensor solution is through standard camera photography, 

and offers the most usable data format without specialist tools. This also allows for proven 

methods to process the data gathered by a UAV thorough image processing and 

computation vision. One consistent theme in computer vision research is the drive for the 

ability to accurately reconstruct 3D scenes from 2D imagery through the process of 

Structure from Motion (SfM). This thesis details the research into the use of this 3D 

imagery, specifically aiding the ability to detect temporal change in dynamic scenes. This 

work presents a new technique to increase probability of detection and reduce 

computation required for such a process, the 3D Structure and Colour (3DSAC) 

differencing technique. The technique also goes to present a visualisation ability that best 

uses the algorithm for additional end user analysis beyond that of mathematics. Three 

scenarios where complex non-uniform changes are presented, of which assess and 

validate this technique to offer a capability to cope with dynamic scenes. The weighted 

3DSAC algorithm gives the end user the ability to configure with emphasis being placed 

more within either structural or colour changes. Finally, through the implementation and 

evaluation of other current state of the art techniques for describing 3D points, the 

research shows the 3DSAC technique is more performant with imagery gathered by low 

altitude UAVs. 
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Introduction 

The presence of Unmanned Aerial Vehicles (UAVs) has grown rapidly in the last 

decades, both in military and in commercial markets, making them easily accessible. The 

ability to utilise the data that can be gathered by their various sensors is paramount to 

their successful use. This could be leisure flying with a simple First-Person View (FPV) 

camera to advanced military radar and LIDAR systems.  

As sensor systems have become more complex, data is gathered with a higher volume, 

variety, velocity and veracity (the four V’s of big data). To maximise the potential 

effectiveness of data, the systems that process and analyse it must also be developed. This 

results in a drive for intelligent systems and computational assistance, with many tasks to 

aiming to become semi or even fully autonomous.  

This chapter gives an introduction to some of the topics discussed throughout this thesis, 

specifically walking through basics of light, colour, and vision, and then into 

photogrammetry, aerial imagery and computer vision. This gives an understanding for 

the justification of this research, stating the aims, objectives and constraints faced 

throughout.  
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1.1 Light, Colour and Vision 

The nature and effects of light have been postulated over the ages from the early Greek 

philosophers to modern scientists and visual perception is one of our most invaluable 

senses for understanding our surroundings.  Light refers to the visible section (to the 

human biological eye) of the electromagnetic spectrum (Figure 1-1).  

 

Figure 1-1 - Electromagnetic and visible spectrum 

It was in 1021 that Alhazen empirically demonstrated the pinhole camera model through 

use of the camera obscura (Figure 1-2). He proved that light travels in straight lines by 

projecting it though a small pinhole. Newton later demonstrated that light is the source of 

colour, publishing Optiks in 1704. His experiments showed that natural light could be 

dispersed using a prism into its constituent colours rather than objects themselves being 

the source of colour. A typical trichromatic human vision system can detect wavelengths 

of 390 to 700nm. We perceive variation in wavelength (and hence colour) with the cone 

cells in the eye. There are three main types of cone that are each sensitive to different 

wavelengths of light; short (blue), medium (green) and long (red). To mathematically 

quantify and relate this with the visible electromagnetic spectrum, the International 

Commission on Illumination created the CIE1931 colour spaces; CIE1931 RBG and 

CIE1931 XYZ (CIE, 1931). The CIE colour standards and colour spaces are discussed in 

further detail in Section 3.3.1. 
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1.2 Pinhole Camera Model 

As discussed in Section 1.1, it was Alhazen’s work in the 11th century that demonstrated 

the pinhole camera model. The pinhole camera model is the simplest model of the camera, 

involving no lens and hence no lens distortion. It describes the projecting a 3D scene onto 

a 2D image plane of which is referred to as the perspective projection. 

 

 

 

 Figure 1-2 – Camera Obscura 

Seen above in a diagram of a camera obscura, the size of the object on the image plane is 

dependent on the distance of this from the pinhole, known as the focal length. The pinhole 

in this model is referred to as the camera centre or optical centre, C. The line passing 

through the optical centre that is also perpendicular to the image plane is referred to as 

the optical axis or principle axis. The intersecting point of this and the image plane is 

referred to as the principle point. It can be seen that the image shown on the 2D image 

plane is inverted. To rectify this, the image plane can theoretically be taken forward of 

the optics/pinhole.  
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1.3 Photogrammetry, Remote Sensing and Aerial Imagery 

The ability to survey scenes from a higher elevation or viewpoint gives a massive 

advantage to the area that can be observed. This enables sensing the earth (or subject) 

remotely with applications such as assisting mapping, resource identification, or as a 

visual early warning. 

The first known aerial photograph is dated 1852, where Gaspard-Félix Tournachon, 

commonly known as “Nadar”, used a tethered balloon to give his heavy camera altitude. 

Unfortunately Nadar’s earliest photos did not survive, with the oldest surviving aerial 

photo attributed to JW Black’s view of Boston in 1860 (Figure 1-3). 

 

Figure 1-3 - Balloon View of Boston (Black, 1860) 

Another very famous early aerial photograph was taken by George Lawrence after the 

1906 San Francisco earthquake and fires. He used a series of 17 kites to lift a large format 

camera to circa 2000 feet altitude. With a curved film plate he captured in exquisite detail 
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the scene and subsequent devastation. This showed just how useful aerial photography 

can be in gaining a scene understanding. It wasn’t long until the scientific and military 

potential was realised. Aerial photography and remote sensing became and continues to 

be a key method for gaining an information advantage. 

 

Figure 1-4 - San Francisco Panorama (Lawrence, 1906) 
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1.4 Digital Imagery and Computer Vision 

The initial concept of the digital camera was borne by Eugene Lally of the Jet Propulsion 

Laboratory in 1961 when he considered a solution to help navigate in space. It was nearly 

a decade before sensors were developed to realise the theory. The first of these was the 

Charged Couple Device (CCD) and was developed by George Smith and Willard Boyle 

of Bell Laboratories (Boyle and Smith, 1970). A series of light sensitive elements in the 

CCD detect the light and this is converted into pixel data. The first CCD had a resolution 

of 100 x 100 pixels and used a simple 8-bit shift register.  

By 1975, Kodak engineer Steven Sasson had developed the first black and white digital 

still camera. This weighed in at nearly 4kg and comprised of a Fairchild 100 x 100 CCD, 

taking around 23 seconds to capture a digital photograph. This long capture time would 

constrain the photograph to movements which are relatively static in that time period. The 

performance and weight of digital cameras now far exceeds that making many more 

applications viable such as where many images are required or size and weight is a 

consideration as in this research. 

As we know, our brains are incredibly complex and we often take for granted how 

effortlessly most of us see the world through our vision. It’s often said that the eye and 

visual system are the most complex biological systems. There is a distinct two part 

process whereby external light enters the eye and is projected onto a plane, and the 

process of our brains reconstructing this to give depth perception and understanding of 

the scene. 

When this is moved into the digital and computation domain, many overlapping and 

interlocking disciplines work together to create a computer vision capability. Figure 1-5 

gives a non-exhaustive visual overview of some of these. The disciplines cover a wide 

range of subjects, from classification, feature extraction, signal processing to pattern 

recognition and object recognition and machine learning to name a few. Research began 

in the late 60s, and was originally thought of as a relatively simple problem. As more has 

been researched in to the problem space, the understanding is that vision is actually a 

highly complex problem with many avenues. 
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As our understanding has evolved, so have the types of imagery being produced. From 

simple light sensors, through to sensors of most levels of the electromagnetic spectrum. 

More recently the advent of 3D imagery has become a hot topic, from the cinema to 

medical imagery, now people are able to capture this through their smartphones either 

through multiple cameras of the movement of the camera, known as Structure from 

Motion.  

  

Figure 1-5 – Example of Computer Vision Disciplines 
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1.5 Structure from Motion (SfM) 

SfM allows the reconstruction of a 3D scene that has been captured by a series of 2D 

images. By using multiple viewpoints of the same point captured in the series of 2D 

images, a 3D point model is created. The data is transformed from a structured uniform 

2D matrix of pixels with colour data, to 3D points in space with colour data.  

Figure 1-6 gives a systematic process of a generalised SfM technique. 2D images are 

captured, the features can be detected and described. From these, the correspondence 

between those matching in different images can be found and any outliers removed.  

 

Figure 1-6 – Generalised SfM Process Flow 

By taking the projections of these points, the epipolar geometry can be found and the 

essential and fundamental matrices estimated. Finally the points can be brought together 

to form a 3D reconstruction of captured scene.  
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1.5.1 Epipolar Geometry 

Epipolar geometry describes the geometric relationship between two perspective 

viewpoints. This is easiest to understand visually, and Figure 1-7 shows two cameras 

viewing the same point, P, and their relative optical centres, C and C’. The plane between 

these three points forms the epipolar plane (green shaded region), and the lines where this 

intersects the image planes are called the epipolar lines (l and l’ respectively). The line 

joining the camera centres (points C and C’) is named the baseline, and the points where 

it intersects the image plane are called the epipoles (e and e’). 

 

Figure 1-7 - Epipolar Geometry 

Epipole e’ is the projection of camera centre C on image plane ∏’, and vice versa, e is 

the projection of C’ on image plane ∏. This means, point p must lie on the epipolar line 

e associated with point p’, and vice versa. This relationship is called the epipolar 

constraint and forms the basis for epipolar geometry. 
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1.5.2 Projection Matrix 

In Figure 1-7, the principle point is where the principle axis intersects the image plane. 

For simplicity in this model, this is located at the centre of the image plane, central 

projection, and the mapping from 3D to 2D may be expressed by: 

(

𝑋
𝑌
𝑍
1

) ⇒ (
𝑓𝑋
𝑓𝑌
𝑍

) = [
𝑓 0

𝑓 0

1 0

](

𝑋
𝑌
𝑍
1

)   (1) 

The 3x3 matrix used to map from 3D to 2D is called the projection matrix, M, and the 

homogenous 2D and 3D coordinates can be denoted by p and P respectively.  This enables 

Equation 1 to be represented simply as: 

𝑝 = 𝑀𝑃     (2) 

1.5.3 Essential and Fundamental Matrix 

To calculate the epipolar geometry, two matrices need to be derived, the essential matrix 

(calibrated case) and the fundamental matrix (uncalibrated case). The essential matrix 

contains the information defining the location of the second camera from the first camera 

(or vice versa). More specifically, that is, the rotation and translation between the 

projected points of P on the image planes, p and p’ respectively. This gives 5 degrees of 

freedom. The fundamental matrix relates the rotation and translation of point p and p’, 

and the camera intrinsics. This gives a total of 7 degrees of freedom.  

Let’s first look at the essential matrix. If we define the left camera, C, as the origin, camera 

C’ is said to be at location T. The projection of P onto the right hand camera is said to be 

p’, and this can be described as:       

𝑝′ = 𝑅(𝑝 − 𝑇)    (3) 

Using the cross product of P and T, an equation for all the possible points of p through T 

may be defined as: 

(𝑝 − 𝑇)𝑇(𝑇𝑝) = 0    (4) 
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Rewriting Equation 3 with this in mind gives, 

(𝑝 − 𝑇) =  𝑅𝑇𝑝′    (5)  

Substituting this back into Equation 4 yields: 

(𝑅𝑇𝑝′)𝑇(𝑇𝑝) = 0    (6) 

Rewriting the cross product as a matrix allows us to define matrix S: 

𝑇 ∗ 𝑝 = 𝑆𝑝 ⇒ 𝑆 = [

0 −𝑇𝑍 𝑇𝑦

𝑇𝑧 0 −𝑇𝑥

−𝑇𝑦 𝑇𝑥 0
]   (7) 

Matrix S is a singular matrix of rank 2, unless T = 0.  

Substituting this in to Equation 4 allows us to relate p and p’: 

𝑝′𝑇𝑅𝑆𝑝 = 0     (8) 

This can further be simplified, where RS is the essential matrix, E: 

𝑝′𝑇𝐸𝑝 = 0     (9) 

Next the fundamental matrix will be defined. This takes the essential matrix and adds the 

relationships of the camera intrinsics. For this point we look back to Equation 2, and 

substitute p for q and the intrinsics that relates to it.  This shows that point 𝑞 = 𝑀𝑝, and 

inversely 𝑝 = 𝑀−1𝑞. Substituting this into Equation 8 gives: 

𝑞′𝑇(𝑀′−1)𝑇𝐸𝑀−1𝑞 = 0    (10) 

Simplifying this to define the fundamental matrix as: 

𝐹 = (𝑀′−1)𝑇𝐸𝑀−1    (11) 

Gives: 

𝑞′𝑇𝐹𝑞 = 0     (12) 

The fundamental matrix inherits the cross product S matrix (Equation 8) making this also 

a rank 2 matrix.   
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1.6 Visual Change Detection 

“Detection, a binary decision to determine the presence of a signal (target), based upon 

sensor measurements.” Waltz (1990).  

The capability to visually detect change is through a comparison of two or more epochs. 

In temporally dynamic scenes change detection allows focus of attention. It enables the 

detecting entity to focus on to only those regions that have changed. Humans naturally 

detect movement and salient change in a scene, which draws our attention and allows us 

to cognitively make a decision - if it’s pertinent, we analyse that further, or discard it as 

background and uninteresting noise.  

Computationally this is significant, as once change is detected at a macro level, at a micro 

level it reduces the need to process an entire dataset. An example of this could be 

analysing a changing coast line and understanding the impacts this has on the 

environment. Here it is only the change that is relevant, and the rest of the area that is 

known to be the same is hence irrelevant (or at least within a threshold). Resources can 

then be focussed into understanding the change, such as what its composition is and how 

fast it is changing.  

Another example could be detecting that an Improvised Explosive Device (IED) has been 

placed at the side of the road and deciding to deviate a convoy’s path. Detecting that 

something has changed and being able to differentiate this from the normal scene allows 

us to investigate further. This is paramount to making decisions, it forms the first part to 

understanding the change and instigate a reaction. This holds true of any advanced 

artificially intelligent system and is not limited to visual change detection.  

Change detection is a converse problem to similarity, whereby something can be detected, 

recognised and identified from a library data that have already been learnt. That being 

said, once a change has been detected, using similarity of that change to other objects or 

change can give it context.   
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1.7 Research Motivation 

As discussed, aerial imagery has become a more prevalent and accessible media, the 

ability to use this to inform decisions without large amounts of human analysis becomes 

pertinent. It’s evident that the volume of data created through aerial surveying is great, 

and this in turn requires extensive processing and computation. Detecting change in 

imagery accurately and consistently in complex environments is a challenging problem 

and facilitates important decision making processes. From ecological and environmental 

study through to surveillance and intelligence gathering. Data volumes gathered from 

UAVs is growing considerably and requires the additional automatic processing to reduce 

human overhead. Automating this process presents detections that would not easily have 

been made by human analysis alone.  

Traditional 2D imagery is formed by a regular matrix of light sensitive sensors of which 

quantises data into a matrix of pixels. Converting this data into the 3D point clouds 

through SfM enriches data with an extra dimension and reduces the quantised effect of a 

digital camera. This presents a different and enhanced opportunity to utilise that data. 

Combining aerial photography with knowledge of projective geometry allows for precise 

measurement in both 2D and 3D. This has become a successful tool in cartography and 

other surveying. Harwin and Lucieer’s research identifies the potential uses for aerial SfM 

and highlights that this is as a highly desired capability for environmental monitoring 

(Harwin and Lucieer, 2012). 

To date, 3D change detection has focussed solely on structural change, using positional 

change as the discriminator. It discards useful colour information that could be further 

used to increase performance in the change detection process. These extra dimensions of 

colour information could provide vital information when structural change is very small, 

and hence forms one of the motivations for this research. Importantly, the process of 

gaining a 3D scene understanding from 2D imagery is a non-perfect one that introduces 

errors in the form of positional and colour noise and other artefacts such as shadows. 

Aerial imagery presents further complexities due to the extended distance to the subject 

and the free movement and vibrations in all axis of the platform.   
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1.8 Research Aim and Objectives 

1.8.1 Research Aim 

This research is broken down into a clear and simple aim and subsequent objectives to 

achieve this. At the very highest level, this research questions the most effective way to 

detect changes captured through 2D aerial imagery once processed into richer 3D data 

that has more context.  

The ultimate aim is to understand what real change in the presence of noise is and the best 

way to detect this in a complex environment. This work will contribute to the field of 3D 

change detection to compare and contrast other point descriptor techniques, and present 

the most effective way of presenting the end user with true change.  

1.8.2 Objectives 

To enable and meet this the aim, a series of objectives are presented. These are now 

defined and discussed.  

Objective 1 

Develop realistic scenarios of challenging dynamic environments.   

To detect change in realistic dynamic real world scenes, this research will go to gather 

2D data from highly challenging scenarios whereby change is difficult to detect. 

Specifically, dynamic real-world environments with small changes.  Scenarios should be 

designed to fulfil each of the combinations of structure and colour to form a detectable 

change. To enable these specific situations and to constrain other unwanted variables, 

discrete scenarios should be considered, planned and data gathered as part of this research. 

That being: 

 Scene changes with complex and non-uniform structural change and very little 

change in colour. 

 Scene changes with combinations of structural changes and colour changes. 
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 Scene changes with very little structural change but changes in colour.  

Creating and capturing data allows full control over the magnitude of change, type of 

change and allows the change to be measured accurately. This is in contrast to publically 

available datasets where this is not a controlled source and the specific requirements of 

the scenario are not able to validate the aim. 

Objective 2 

Process 2D captured data into accurate 3D data that can be used efficiently to allow 

accurate change detection. 

Data gathered from a traditional 2D cameras is required to be processed into 3D imagery 

in the form of point clouds. This process is a computationally expensive one and 

introduces noise. An effective method must be researched and developed where 

necessary. This is then to be applied to create the 3D data required to assess the potential 

of accurate change detection. Consistency of methodology should be maintained 

throughout this.  

Objective 3 

Accurately define ground truth models to enable performance assessments.  

As the key facilitator of performance measurement, the ground truth should be of a high 

fidelity. The creation of this must be carefully considered and performed to enable 

successful and valid assessment of any of the experiments. For this, a technique should 

be researched and developed where required. This should demonstrate error and the 

methods used to reduce this where possible.  

Objective 4 

Develop or propose a change detection process and framework 

The development of a change detection process and framework is required so that each 

of the algorithms and methods being evaluated against can have a baseline methodology 

and be unbiased. This will also make it much simpler to use a common framework 

whereby algorithms can be swapped out for each other. This means data input into the 

system and the subsequent analysis will be modular and reuse is possible. Where a 
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consistent process or framework cannot be used, for example due to the inherent nature 

of the technique of change detection, it should be ensured that each of the evaluations are 

non-discriminatory and of unbiased.  

Objective 5 

Develop a novel change detection technique that utilises 3D structure and colour.  

The development of a novel change detection technique is to enable the detection of any 

said change. This should utilise the 3D structure that is derived from the 2D imagery 

through the structure from motion process and also utilise the colour information. Ideally 

this should be a tuneable technique that can be adaptable to different situations or 

scenarios. This could involve the development of a 3D descriptor in its own right or a full 

end to end change detection technique.  

Objective 6 

Propose a technique to quantitatively and qualitatively detect change.  

A robust quantitative technique should fulfil the capability to detect change in its own 

right. This on its own will form a solution, but understanding this within the context of 

the 3D models produced is important, particularly where numbers alone cannot easily 

describe any outliers or behaviours of an algorithm. Visualising this will offer far more 

context, particularly when there are such large volumes of multidimensional data.  

Objective 7 

Compare, contrast and critique the novel technique to other state of the art descriptors. 

This entire process will require a robust performance assessment whereby true change 

and false positive can be measured accurately. Where possible this should use common 

performance assessment techniques and metrics that can be used in other research pieces. 

Where these are not suitable or a better technique can be offered, these should be 

developed and understood. If a new method is proposed to best solve this problem, it 

should be compared with an evaluation of those most prominent techniques used for 3D 

description to discriminate change. 
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1.9 Limitations and Constraints  

As with any research or development, limitations and constraints shape what is 

achievable. The limitations and constraints for this work have been split into three 

categories as follows: 

 Regulatory (safety and law), 

 Technical Limitations and Challenges, 

 Human Resource. 

1.9.1 Regulatory 

Regulations exist for flying UAVs in the UK, specifically the Civil Aviation Authority 

CAP722 (Civil Aviation Authority, 2010). This limits anyone flying UAVs to do so safely 

and is adhered to through this research. They key point to take from this regulation is that 

to fly in the UK (where it will be most practicable for this research), there is a maximum 

altitude above the surface of 120m (400ft).  

 

Figure 1-8 - CAP 722 Generalisation from CAA 

 

In simple terms, these regulations state that: 

 you are responsible for flying your UAS in a safe manner  

 you must keep the UAS in your direct sight at all times while it is 

flying, so that you can ensure that it does not collide with anything, 

especially other aircraft  

 you must not endanger anyone, or anything with your UAS, including 

any articles that you drop from it 

 you must not fly more than 400ft above the surface.  If flying over 

hilly/undulating terrain or close to a cliff edge, this may be 

interpreted as being a requirement to remain within a distance of 

400ft from the surface of the earth 

 you must not fly within the Flight Restriction Zone of a protected 

aerodrome 

 if your UAS weighs more than 7kg, additional rules apply if you fly 

in certain types of airspace. 
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1.9.2 Technical Limitations and Challenges 

Technical challenges and limitations also exist, and mostly around the ability to gather 

and process data.  

Gathering data 

The gathered data has quality and characteristics that are determined by the quality of 

apparatus, the accuracy/precision of gathering techniques and the conditions 

(environmental and geometrical) of the experiment. The quality of the gathered data is 

determined by the stability of the platform, and this is due to environmental conditions, 

platform control systems, and platform vibration.   

The camera and UAV will be fixed models during this research. This is a high grade of 

Commercial Off The Shelf (COTS) that can be acquired at the time of research. The 

camera properties such as its resolution are discussed more fully in Section 3.2.1. 

Data gathering techniques will be formed from current best practice and to be consistent. 

Where possible, the latest known to maximise performance and the efficacy of the UAV 

and subsequent processing will be used (as discussed in Section 3.2). 

Processing data 

To be able to process any data, computation is required and as more data and more 

complex calculations are performed, more computation power is required. This limits the 

amount of data or datasets that are to be analysed for this research and also ties into the 

resource section of the limitations. These computational limitations will play a part of this 

solution, where only what is capable of being processed within a “useful time” for 

operational use is considered appropriate, i.e. hours not months. 

To limit this research to the state of the possible, the full chain of computation is to be on 

one node (i.e. has to be processed on a single computer). While it could be distributed 

across a network for collaborative computation, this is out of scope of this project. This 

research will focus on the computation on only one device rather than employing cloud 

or high performance computing clusters over multiple nodes. 
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1.9.3 Human Resource 

One of the constraining factors of any research is its duration and the number of hours 

available of human resource (and skill of that resource). Planning of the research to fulfil 

the objectives takes this into account and puts direct limitations on the scope of the 

research. To enable the objectives, some of the key phases of the research are as follows 

(note these may be on going and in parallel): 

 Investigative period (identifying aims, objectives and project scope) 

 Literature reviews and research 

 Skills identification and learning 

 Preliminary Design  

 Implementation 

 Data production and gathering 

 Data processing and analysis 

 Evaluation and write-up.  

All these subjects take both time and effort. As with any evidence based science, the 

quantity and quality of data gathered helps prove any theory and detect the envelopes of 

performance. This research is being performed by a single research student within the 

required timelines of a PhD research thesis. The number of datasets that can be gathered 

is limited by this time, but must also be significant to verify and validate the research 

question and subsequent proposed solution.   
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1.10 Structure of thesis 

This thesis contains six chapters, of which are organised in the following structure: 

Chapter 2 

This chapter forms a literature review of feature matching, structure from motion, 

photogrammetry, UAV imagery and change detection. This offers an understanding of 

the existing research that is relevant to this study.   

Chapter 3 

A comprehensive discussion into the methodologies used within this research and the 

decision making process that led to their development and/or use. This chapter gives a 

full understanding of the how and why of this research.  

Chapter 4 

This chapter presents the results of the research for each of the datasets. This comprises 

the entirety of data capture through to analysis and visual representation of data.  

Chapter 5 

The fifth chapter of this research details the analysis and interpretation of the results and 

any discussion points around the entire research.  

Chapter 6 

Finally chapter six concludes the thesis and research. Here, a summary of the findings 

and the resulting conclusions are presented, and further work is also identified.  

 

 

 



Chapter 2 
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Literature Review 

The chapter discusses the relevant works surrounding the topic of this research. It has 

been broken down into sections to better allow an understanding of the topics of research 

that have taken place and how they are each extensive in their own right. This thesis goes 

to discuss those that are state of the art in these fields and those that are most significant 

in the development of the subject.   

2.1 Feature descriptors 

A feature descriptor is used to create a portrayal of a point and its surroundings. Usually 

a set of keypoints should have been detected and are required to be described. Generally 

this description of the point is through a numerical algorithm and used to recognise that 

unique point in other images or differentiate from other points. Feature descriptors can 

usually be split into two categories, local and global. One to describe a point and its local 

neighbourhood and the other for a global context of any point. This research focusses on 

point to point analysis and hence local descriptors are of more interest. That being said, 

global descriptors are also evaluated so that other applications of them can be considered. 

Descriptors are also split into the type of imagery it is to describe; 2D and 3D. While this 

research focusses on the analysis of 3D imagery, it is 2D descriptors that are used to create 

the 3D point clouds. Also these were the first to develop the techniques and their 3D 

descendants are usually based on their 2D counterparts, and hence are still of significance 
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to this research. Also the more recent advent of using machine learning to optimise and 

even learn descriptors is becoming more established. As this is not specifically the 

fundamental descriptor itself, the topic warrants its own section in this research (Section 

2.4).  

2.1.1 2D Descriptors 

Research into feature descriptors stemmed from 2D imagery analysis, particularly the 

correspondence of points between images and their flow. This forms part of the SfM 

pipeline and as such, these will be discussed first. The Horn–Schunck (Horn and Schunck, 

1981)and Lucas–Kanade (Lucas and Kanade, 1984) methods were some of the key early 

techniques to explain the optical flow problem, both being widely used methods that 

considered pixel and its local neighbourhood. While much has changed in the fields of 

image processing and computer vision, these presented primary pathways for the need for 

features to be described. (Shi, 1994) went to look at some of the features that were 

available and which of those were good to track and is a key work to understand what is 

required from a feature. At the time, this offered the first look at what is a good descriptor. 

This was written agnostically to the application and hence still is very relevant today to 

understanding what a good feature is.  

It wasn’t until the major breakthrough came in 1999 when David Lowe presented the 

Scale-Invariant Feature Transform, SIFT (Lowe, 1999) and shifted from relatively simple 

sum of squared distance techniques. SIFT has turned out to be one of the key research 

findings in 2D feature descriptors and image processing as a whole, spurring a large 

amount of other research and feature detector techniques. (Mikolajczyk and Schmid, 

2005) gives an extensive study into the performance of feature descriptors, attempting to 

rationalise the many descriptors that had been presented and was a key baseline paper in 

feature detection and description performance. The fast moving nature of research into 

this field quickly rendered this paper out of date, with newer and faster methods being 

developed with different purposes. One significant method inspired by SIFT, is Speeded 

Up Robust Features, SURF (Bay et al, 2006). This lowered the computational cost of 

feature detection, and the SURF’s Fast-Hessian detector is said to be about three times 

faster than the Difference Of Gaussian (DOG) method used in SIFT, and about five times 
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faster than Hessian-Laplace. SURF offers one of the most usable descriptors, particularly 

when computational performance is paramount, with little sacrifice in accuracy. 

(Tuytelaars & Mikolajczyk, 2008) again looked at the performance of feature detection 

and description, and gives a precise definition of what exactly features and descriptors 

are. (Juan and Gwun, 2009) also looks at performance, specifically comparing SIFT, 

SURF and PCA-SIFT (Ke and Sukthankar, 2004). Here, it is concluded that although 

SURF is by far the fastest, SIFT is more invariant to rotation, scale and affine 

transformations. Since the arrival of SIFT and SURF, there have been diverse 

interpretations of implementation resulting in varied performance. This causes obvious 

problems when considering the performance of descriptors against others. (Abeles, 2012) 

researched the ambiguities in eight of the most commonly used SURF libraries, and found 

within CPU implementations an order of magnitude in their computational efficiency. 

The OpenCV library (Bradski, 2000) provides one of the most complete sets of algorithms 

for feature detection and description, also giving a very complete documentation into their 

implementations. (Krig, 2016) provides the most credible and up to date and in-depth 

survey of 2D feature descriptors and raises discussion on the recent advent of 3D 

descriptors and the extension of 2D feature descriptors for this. This is the current baseline 

for 2D descriptor use.  

2.1.2 3D Descriptors 

LIDAR and SfM has meant that 3D imagery has become a much more common medium 

in the last decade, and the description of these points is also required. As with 2D 

descriptors, 3D Descriptors are generally used for the correspondence of points between 

either a recognition library or for tracking between frames of 3D imagery.  

One of the early adopters from 2D description to 3D description was 3DSIFT (Scovanner, 

Ali and Shah, 2007) for the application of action recognition. 3DSIFT has notably been 

used successfully for object recognition in CT scanners (Flitton, 2010) and medical 

imagery (Allaire, 2008). (Tombari, Salti and Di Stefano, 2013) performs an evaluation 

into the performance of 3D keypoint detectors, with a heavy emphasis on 3D shape 

retrieval and 3D object recognition. It appears there is a common theme in research led 

by real world requirements, whereby 3D descriptors are used for retrieval and recognition. 
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(Zhong, 2009) presents the Intrinsic Shape Signatures (ISS) method, again a technique 

primed for recognition. ISS is primed to facilitate fast pose estimation though identifying 

shape patches from different viewpoints. While this proves useful in the SfM process and 

specific tasks for 3D pose estimation, it appears this is not optimal for understanding 

differencing. (Filipe, 2014) compares 3D keypoint descriptors in RGB-D datasets, 

focusing on their invariance to rotation, scale and translation, concluding that 3DSIFT 

out performs other prevalent 3D descriptors (Harris3D, SUSAN, ISS3D, Lowe, Noble 

and KLT). An analysis into learning a descriptor specific 3D keypoint detector in (Salti, 

2015) found that there is a lack of complimentary detectors and descriptors. The topic of 

machine learning is discussed in more depth in Section 2.4. (Alexandre, 2012) gives a 

comparative evaluation of 3D object recognition using 3D descriptors. It gives an 

excellent overview of the implementation of descriptors and concludes that there are wide 

variations on descriptor performance depending on the application so they should be 

carefully matched to the task. The paper identifies colour being of particular use as an 

extra discriminator and offers a performance advantage for object recognition. It also goes 

to note that CSHOT or SHOT Colour (Tombari. 2011) provides a good overall balance 

of recognition performance. From Tombari’s CSHOT paper, the addition of colour to the 

SHOT descriptor (Tombari, 2010) is said to improve the accuracy of SHOT, later 

confirmed in (Salti, 2014). While developing CSHOT, extensive testing of colour spaces 

in L1 norm found the CIELab to be the most effective. This is of particular interest to this 

research and taking colour into context with the 3D descriptor is key to the investigation. 

(Blauensteiner, 2006) and (Ganesan, 2010) had earlier confirmed this when reviewing 

colour spaces for change detection applications.  

(Hana et al., 2018) gives a comparative and comprehensive overview of the 3D descriptor 

field (13 in total - 8 local and 5 global). This gives a very useful indication of the most 

common descriptors, and discusses their applications and downfalls such as the sensitivity 

and robustness of those for the application of recognition. That said, it is not as 

comprehensive as its title suggests, paying attention to only those that are the most 

common. For most applications though, this gives a really good insight into what is out 

there. SHOT, CSHOT and PFH (Rusu et al., 2008) are evaluated to offer the best 

performance in the recognition scenarios. (Guo et al., 2016) looks at a performance 

evaluation of just local 3D descriptors and is hence more relevant to this research. Also it 
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extends beyond recognition and retrieval into 3D shape and 3D modelling context. Here, 

10 local descriptors are evaluated, finding FPFH (Rusu et al., 2009) to the best for time-

critical applications with SHOT again providing a more accurate solution. This paper is 

the current baseline for 3D descriptor evaluation. While most research and these 

evaluative research papers focus on recognition tasks, a decision is made to compare and 

contrast those found to be most performant at that. Hence the following descriptors are 

chosen in this research for the comparative evaluation in change detection: 

 PFH 

 FPFH 

 SHOT 

 CSHOT/SHOT Colour 

The Point Cloud Library (PCL) (Rusu et al, 2011) is an open project for 3D image and 

point cloud processing. It contains many of these most prevalent 3D point descriptors 

such as PFH, FPFH, SHOT and CSHOT.  

2.2 Structure from Motion 

As discussed in Chapter 1, SfM is a process of discrete steps that each have their own 

research space. Although it was generally understood that 3D vision is achieved by 

binocular disparity in humans, (Wallach and O'Connell, 1953) was the first to fully 

explore how 3D form could be established using monocular vision. (Ulman, 1979) 

pioneered motion based reconstruction and the computational application of this. 

(Oliensis, 2000) reviews modern approaches for SfM and puts forward a framework for 

designing algorithms within this research space. (Schonberger and Frahm, 2016) again 

looks to review the entire end to end process, and identifies some of the downfalls with 

SfM that introduce noise and inconsistency. Specific use cases of SfM for aerial imagery 

and its subsequent accuracy is discussed in Section 2.3. (Forsyth and Ponce, 2011) gives 

a comprehensive overview of the generalised process and some of the algorithms 

involved. (Hartley and Zisserman, 2003) is considered one of the key texts in multiple 

view geometry and offers in-depth algorithmic level explanation of the process. This is 
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the most complete text available regarding multiple view geometry and offers 

comprehensive understanding of a majority of the SfM process. The process follows a 

structured flow to creating a 3D scene understanding from 2D imagery and detailed in the 

diagram below (Figure 2-1). Each process forms their own topics of research and are 

discussed. 

 

Figure 2-1 - Structure from Motion Process Flow 

2.2.1 Feature Matching 

Once features have been detected and described in a scene, they can be matched to those 

from another scene. This is a computationally expensive process and different methods 

have been presented to try and solve this. (Szeliski, 2010) splits this problem into two 

components, matching strategy and, data structure and algorithms. The simplest method, 

linear matching, goes about calculating the distance from one feature point to the other 

points in the index, keeping an updated history of the nearest point. This is defined as 

nearest neighbour searching, and a few different techniques have stemmed from this. 

(Arya et al, 1998) presents a method using the approximate nearest neighbour (ANN), 

increasing the speed of this practice with only minor loss in the accuracy. Later, (Muja 

and Lowe, 2009) investigate some of the techniques used for ANN and also propose their 

own, “searching hierarchical k-means trees with a priority search order”. In their paper, 

they conclude that a there is no one best method for ANN, and so propose a system where 
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the best algorithm can be selected automatically and configured appropriately depending 

on the dataset. This library was coined, Fast Library for Approximate Nearest Neighbours 

(FLANN).  

2.2.2 Essential and Fundamental matrices 

Once features have been detected, described, matched and outliers removed, the 

arrangement of epipolar geometry can be estimated. This can be described in two ways; 

by the essential matrix in a calibrated system and by the fundamental matrix in an 

uncalibrated system. (Longuett-Higgins, 1981) and (Tsai and Huang, 1984) proposed the 

simplest solution to calculating the essential matrix by means of the 8-point algorithm. 

Here, 8 or more known point correspondences from two calibrated camera views are used 

to solve a set of linear equations. The elements in this can then be factorized by Single 

Value Decomposition (SVD) to give a unique solution (Hartley and Zisserman, 2003). 

This relatively simple method makes implementation easy and computation fast. 

(Faugeras, 1992) and (Hartley, 1992) show this method can also be applied to an 

uncalibrated camera to solve the fundamental matrix. Early analysis in (Bolles et al, 1987) 

goes to criticise the stability of the 8-point algorithm, stating “his technique has some 

stability problems and does not seem to have won over many photogrammetrists.” This 

is attributed to the high sensitivity to noise as the algorithms inputs are assumed to be 

perfect. (Ma et al, 2004) discusses methods for optimal reconstruction by applying least 

squares criterion the 8-point algorithm. This allows more than 8 points to be considered. 

(Hartley, 1997) also discusses least squares, and goes to demonstrate that there was a 

common misconception about the use of the 8-point algorithm. He proposes the noise 

sensitivity can be solved by a simple preconditioning of the points by transformation, 

coined the normalized 8-point algorithm, and appropriately titles his paper “In Defence 

of the 8-point Algorithm.” Although the 8-point method is the simplest solution to 

estimating epipolar geometry, non-linear approaches may be applied to solve the 

fundamental matrix. As seen in Section 1.5.3, the fundamental matrix has 7 degrees of 

freedom. This allows it to be solved with only 7 point correspondences enforcing the rank 

2 constraint (Luong et al, 1993) and (Hartley, 1997). Although the method applied to this 

is similar to the 8-point algorithm, the fundamental matrix is always solved to either 1 or 
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3 solutions when using the 7-point algorithm. One advantage to using fewer points is that 

there is less chance of selecting noisy correspondences. (Armangué et al, 2002) goes 

about comparing these methods in calculating the fundamental matrix offering an overall 

view of the subject. 

2.2.3 RANSAC: Inliers and Outliers 

As discussed in Section1.5.1, the epipolar geometry of a corresponding pair of features 

can be used to calculate the essential and fundamental matrices. This assumes that the 

data being input is correct, while the nature of the Approximate Nearest Neighbour 

(ANN) matching technique gives light that this is not always true. This brings forth the 

task of deciding which of the proposed match’s inliers are and which of those outliers to 

this model are. (Fischler and Bolles, 1981) introduced, RANdom SAmple Consensus 

(RANSAC), ideally suited to this problem within image processing. This is a robust 

estimation algorithm using an iterative technique for “interpreting/smoothing data 

containing a significant percentage of gross errors.” (Hartley and Zisserman, 2004) gives 

an overview of this algorithm and also describes other methods such as Least Median of 

Squares (LMS), along with their advantages and disadvantages. Philip Torr has continued 

to investigate this field and has proposed MSAC (Torr and Murray, 1997), MLESAC 

(Torr and Zisserman, 2000) and IMPSAC (Torr and Davidson, 2003), to try and resolve 

some of RANSACs shortcomings. (Chum and Matas, 2002) looks specifically to reduce 

the average computation time, proposing Randomized RANSAC (R-RANSAC). (Nistér, 

2005) describes R-RANSAC and standard RANSAC as depth-first methods whereby one 

hypothesis evaluation is completed before the next is initiated. Nistér builds on this and 

finds another method more appealing whereby only a set number of hypotheses are 

considered. (Nistér, 2005) describes this as a breadth-first pre-emption method, and coins 

it, Pre-emptive RANSAC. He proposes this is “powerful enough to enable structure and 

motion estimation in real-time”. Since its arrival in 1981, there have been many proposed 

extensions and improvements to RANSAC, (Meer, 2006) goes about documenting some 

of these, and also considers some of RANSACs shortcomings. (Raguram et al, 2008) 

gives a fuller analysis and comparison of some of the more prominent RANSAC 

algorithms. Here, pre-emptive RANSAC is noted as being non-adaptive, and being 
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subject to a good estimation of the inlier ratio. (Raguram et al, 2008) proposes a solution 

to this, Adaptive Real-Time Random Sample Consensus (ARRSAC), describing the 

method as partially depth-first. (Frahm et al, 2010) uses this to good effect in large scale 

scene reconstructions with time constraints in mind. (Choi et al, 2009) also looks at 

comparing the RANSAC family, and rationally suggests that algorithms should be 

tailored to their application as there will always be a trade-off between accuracy, speed 

and robustness (as seen in Figure 2-2). 

 

Figure 2-2 - RANSAC Family (taken from Choi, 2009) 

2.2.4 Bundle Adjustment 

When a large number of images are considered to reconstruct from, the process of bundle 

adjustment can be applied to reduce pose error across the whole set and is generally said 

to be the last process in SFM. It refers to the bundles of light rays leaving an object and 

gathering on the camera centres. To reduce the pose error in the calculation of the camera 

centres, bundle adjustment uses a process of non-linear least squares. The most popular 

technique for this is to use the Levenberg–Marquardt (LM) algorithm, (Levenberg, 1944) 

and (Marquardt, 1963). A key modern paper on bundle adjustment, (Triggs et al, 2000), 

provides a survey of methods and the theory behind them. One of the aims of the paper 

was to address a misconception that the bundle adjustment process is computationally 

expensive. (Lourakis and Argyros, 2009) describes the design and implementation of a 

generic sparse bundle adjustment software package, SBA, of which has now become very 
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popular based around the LM algorithm. (Agarwal et al, 2011) provides a look at the use 

of bundle adjustment in very large scale image collections, and propose a method better 

suited for this application, although also conclude that SBA is of very high quality.  

2.2.5 SfM Software 

Since the relatively recent advent of having the computational power to create accurate 

and large scale models by using SfM, various off the shelf software packages have been 

presented encapsulating the techniques discussed above and optimising them for use with 

GPUs. (Gómez-Gutiérrez, 2015) looks at two of the most common of these packages; 

123D Catch (Autodesk, 2016) and Agisoft Photoscan (Agisoft, v1.3.3, 2017). Gómez-

Gutiérrez found that Photoscan produced more accurate and denser point clouds in 11 out 

of 12 cases. This paper is discussed further in Section 0 for the techniques used to compare 

the performance of these point clouds. (Verhoeven, 2011) uses Photoscan for their 

surveying in aerial archaeological work to good effect but do not go to measure its 

performance. (Peterson, 2015) presents a whitepaper on SfM for the U.S. Bureau of 

Reclamation. Here, seven different cases of the use of Photoscan are discussed, from 

small scale to very large scale. From its aerial survey case, data is gathered using very 

high quality cameras from helicopters at 800ft altitude. They found accuracy of GPS 

markers to be as high as 3.4cm rms. (Kersten, 2012) goes to compare SfM software for 

archaeological work, including open-source Bundler/PMVS2 (Furukawa and Ponce, 

2010), Autodesk 123D and Photoscan. There appears to be very little accuracy 

performance difference between all three but their work seems flawed as only one dataset 

is computed using Photoscan. (Brutto, 2012) produces a baseline model using LIDAR 

and compares SfM software. Again Photoscan appears to be consistently most accurate. 

To maintain consistency in the processing throughout this research, a single solution is 

required. For this purpose and from the research discussed, Photoscan is down selected 

to fulfil this. (Bianco, Ciocca and Marelli, 2018) evaluates the performance of SfM 

pipelines and looks to identify and increase efficiency of its components. Research and 

Development into SfM is a continuous process currently with regular software updates, 

including that to Photoscan. To reduce the effect shifting processing accuracy in different 
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versions, a single baseline version is consistently used throughout this research (Agisoft, 

v1.3.3, 2017). 

 

2.3 Photogrammetry and Aerial Imagery 

The use of SfM for photogrammetry is now a viable approach due to the accessible and 

affordable software and accuracy of results. The matching of this with small UAVs with 

lightweight cameras makes for low cost solutions to large area photogrammetry. (Smith, 

2015) confirms this, reviewing SfM for photogrammetry in physical geography from 

aerial imagery. They conclude that SfM has revolutionised photogrammetry and at lower 

altitudes (under 100m), SfM is comparable to Terrestrial Laser Scanning (TLS). This 

presents SfM as a viable data gathering technique for 3D imagery in this research.  They 

also note some of the shortcomings of using SfM for photogrammetry, such as areas 

devoid of features (such as ice and water) and shiny surfaces giving low point densities. 

Some other particular limitations noted is that they do not favour dynamic environments, 

such as those with wind effects on vegetation or changes in lighting conditions. This 

identifies an additional constraint into this research whereby consistent environmental 

conditions should be used to reduce this effect. That noted, it’s unlikely that a small UAV 

will be flown in conditions where there is any significant wind. (Westoby, 2012) again 

reviews SfM for aerial photogrammetry as a low cost tool. It notes the significant 

advantage that aerial imagery has for remote or inaccessible regions. (Ostrowski, 2014) 

analyses the point cloud generation from three anonymous SfM packages specifically 

designed for aerial photogrammetry. The 36 Megapixel imagery data is gathered from 

altitudes of 135m, and while it is frustrating to not know which packages they were, it 

confirms that point accuracy from this range is around 10cm. (Harwin and Lucieer, 2012) 

assesses the accuracy and applicability of aerial SfM for photogrammetry in three natural 

landscape scenarios. The research concludes that using 12 Megapixel images subsampled 

to 3 Megapixels to reduce computation costs can yield accuracy of 2.5-4cm from a range 

of 40-50m. It also recognises that SfM based aerial photogrammetry could become very 
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useful for monitoring changes such as that in coastal erosion. This is highly significant to 

this research, as it not only identifies SfM being accurate at low altitudes, but also its 

potential use for monitoring changing scenes. The paper has serious limitations in that the 

research presents only a qualitative analysis through visualisation. There is no explanation 

of why this is, but by pure assumption it would either be through lack of time or it could 

be due the difficulty in creating a credible ground truth model. Nevertheless, the limitation 

is identified and highlights that this is something that should (and in this research is) 

quantitatively analysed.  

2.4 Change Detection 

Change detection allows us to identify differences in an object or phenomenon by 

observing it at different times (Singh, 1989). The ability to detect change allows us to 

focus on a specific area rather than looking at a larger picture. This is true for our visual 

perception and offers the end user of computation systems to identify areas of interest. 

(Lu, 2004) and later (Hussain, 2013) gives an in-depth review of generalised change 

detection techniques and breaks them down into 6 levels of increasing complexity as 

follows; Algebra, Transformation, Classification, Advanced Models, GIS and Visual 

Analysis. The research then goes to break these levels into further levels, starting from 

pixel image differencing and ending at human visual interpretation offering a the reader 

a good understanding of what change detection is and how it can be analysed. Further to 

this, the selection of thresholds for these methods are discussed, along with their accuracy 

and finally concludes that all methods of change detection are dependent on the 

prerequisite geometrical registration, correction and normalisation of their input data.  

Due to its high accuracy, there are many recent instances of change detection using 

LIDAR imagery for geotechnical analysis. (Zavodny, 12) offers a change detection 

system for aerial LIDAR data in urban environments. In this full study, two methods are 

considered for detecting the changes; the first uses the octrees to compare segments of 

the scene and the second looks to compare the points themselves and thresholds an area 

where change is larger than the rest. (Xiao, 12) also goes to detect changes in aerial 
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LIDAR imagery, particularly changes in vegetation in urban environments. Here trees are 

detected and compared by the shape of their convex hulls. (Olsen et al, 12) uses a 

combination of LIDAR and optical imagery for real-time for earth movements. Here the 

LIDAR Change Engine (Lichen) framework is used for point-by-point comparison of a 

scene and a threshold used classify if points are out of bounds. Reviewing this literature, 

it is found while the technique of change detection in LIDAR imagery will be similar to 

using optical imagery, many of the constraints of noise are not present. (Barber, 08) again 

uses aerial LIDAR imagery as a dataset for point cloud comparison. Here octrees are used 

to detect changes in two models, with “some limited success”. The report documents 

many “insignificant” changes such as that in vegetation growth and change related to 

errors in data gathering. 

(Shi, 2011) identifies how useful low cost aerial imagery can be for the purposes of 

change detection and proposes the use of 2D SIFT features for object based change 

detection.  This appears effective to detecting the change but no performance metrics are 

given. Also it is noted that the datasets used in this research appear to have been pre-

processed to be well aligned in both scale and rotation. (Champion, 2007) focusses on 2D 

building change detection and utilises ROC curve analysis for determining the 

performance of the binary classification problem.  

Ground based change detection technology seems to be more refined, both because the 

platform gathering the data can remain static, and because there are no weight constraints 

both serving to reduce noise. A key paper in 3D point cloud change detection, (Girardeau-

Montaut, 2005) uses ground based LIDAR (Terrestrial Laser Scan) for the change 

detection in building sites. Three strategies are put forward using octrees as a data 

structure; average distance, best fitting plane orientation and Hausforff distance. (Lague, 

2013) another TLS example, coins this and similar methods Cloud-To-Cloud (C2C) 

comparison. This research also describes a Cloud-To-Mesh (C2M) used for comparing 

the resultant point clouds to a reference 3D mesh or theoretical model, stating that his 

isn’t always possible either due to not having a mesh, or the process of creating one too 

noisy due to surface roughness. The paper aim to solve this by proposing the Multiscale 

Model to Model Cloud Comparison (M3C2) technique, which takes the local distance 

between two point clouds along the normal surface direction. This provides a very good 
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solution to the high fidelity TLS data quoting an order of magnitude reduction in the 

errors found from C2C methods.  

 

Figure 2-3 –C2M and M3C2 Change Detection Techniques  

A) Cloud to Mesh (C2M) B) Multiscale Model to Model Cloud Comparison (M3C2) – (Taken from Barnhart 2013) 

 (Barnhart, 2013) goes to compare the C2M and M3C2 methods in TLS data and finds 

that M3C2 offers a better understanding of the uncertainty in roughness and scan 

registration in TLS imagery. This brings us back to (Gómez-Gutiérrez, 2015) mentioned 

in Section 2.2.5. This paper no only goes to compare the SfM software packages as 

discussed, but also compares C2C and M3C2 techniques with both TLS and SfM gathered 

data. It concludes that both C2C and M3C2 offer similar change detection performance 

in 12 of the 12 scenarios performed. (Kromer, 2015) later goes to confirm this is with 

TLS data only.  

From the analysis of current literature in the field of change detection, particularly that 

with reference to SfM and aerial imagery, there appears to be very little research into 3D 

change detection from UAVs using SfM. The research that has taken place in this field to 

date has simply looked to use SfM as a tool to gather 3D data from aerial imagery and 

not further attempt to implement change detection from this.   
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2.5 Machine Learning 

An explosion of developments in Machine Learning (ML) in the last two decades is 

revolutionising computer vision. In many areas of research and its subsequent 

applications, there is a shift away from exclusively using statistical and image processing 

techniques to the additional use of machine learning. This is particularly evident in the 

field of image and object detection. To better understand the context of machine learning 

in this research, it is categorised into two types: 

 Classification and recognition 

 Machine Learning for change detection 

2.5.1 Classification and recognition 

(Krizhevsky, Sutskever and Hinton, 2012) won the 2012 ILSVRC (ImageNet Large-Scale 

Visual Recognition Challenge) whereby contestants train on the ImageNet dataset (Deng 

et al., 2010) for object recognition. This is one of the most significant papers in the field 

and was the first to use Convolutional Neural Networks (CNN) in the ILSVRC. The 

performance error of recognition over large datasets was found to be reduced from 26% 

previously to 15%. Following this, CNNs have become widespread in their use with 

image processing. The continuing trend of a more active use in recognition tasks is also 

common in the use of machine learning, and this is emphasised by the inherent nature of 

machine learning.  

(Ioannidou et al., 2017) surveys some of the most recent advances in computer vision 

with 3D data, again with the specific applications of classification. It identifies that while 

machine learning had mainly been used for 2D applications in object recognition, the 

advent of using similar methods in 3D imagery is relevant and viable but at a substantial 

computation expense. Another key theme identified is that of the use of colour 

information in 3D description of points and that it presents a significant advantage for 

recognition of objects. It is noted that this comprehensive analysis of machine learning 

and 3D data does not discuss any change detection methodologies or application.  
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2.5.2 Machine learning for change detection 

More recently CNNs are appearing to be used to facilitate change detection in imagery. 

(de Jong and Bosman, 2018) explores Unsupervised Change Detection in Satellite Images 

Using Convolutional Neural Networks and through image differencing using CNNs 

achieves a 91% change detection accuracy for very high quality 2D imagery containing 

little noise. (Varghese et al., 2019) again utilises CNNs for change detection in 2D 

imagery but for ground based datasets. For a performance assessment, Receiver 

Operating Characteristic (ROC) curves are used to present a 98% accuracy and 89% area 

under the ROC curve. These papers present a viable and performant method for change 

detection in 2D imagery, both from the ground and in aerial imagery.  

(Zhang et al., 2018) further expands the use of CNNs in aerial imagery. A unique data 

creation approach is presented whereby 2D imagery is processed into 3D point clouds 

through SfM. This is then transformed into a grayscale Digital Surface Model (DSM) and 

back into 2D image patches. A change detection accuracy of 86% is presented and notes 

fast computation times in the actual change detection through CNNs, but the arduous 

transformations are noted and their computation costs described as expensive. The 

reduction of rich 3D colour models to greyscale 2D image patches allows for the efficient 

CNN computation, but at a cost of losing informative colour data and introducing 

additional error in transformation processes.  
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Methodology 

This chapter describes the analysis, design and decisions made during the research and 

development process. The techniques used for gathering and producing both synthetic 

datasets and real world datasets are discussed. Following this, the methodology for 

describing points in the 3D point clouds are discussed, followed by the 3D Structure and 

Colour (3DSAC) methodology.  

First, an activity chart of the end to end process is presented, breaking down high level 

activities and their design into four main areas as follows: 

 Data Gathering 

 3D Description 

 Change Detection 

 Performance Assessment  

Each of these are comprehensively discussed followed by a visualisation technique for a 

qualitative assessment.  

Finally a full end to end example of the data analysis technique is described. This 

demonstrates the large quantities of data and analysis that is required for each descriptor.  
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3.1 Activity Flow Chart 

To better understand the process of activities performed from end to end, a simple flow 

chart is presented below in Figure 3-1. Planning as a flow chart allows for the separation 

of activities so they can be broken down further into their components for design and 

implementation. It can be seen that an interchangeable data source can feed into the rest 

of the change detection process. In this methodology, one being a real world data source 

(through SfM) and one being a synthetic data source and are discussed in Sections 3.2.1 

and 3.2.2 respectively.  

A unique combination of both 3D structure and colour (3DSAC) is used with a mean 

differencing technique to compare the descriptors. A method for measuring this is also 

presented, whereby the performance can be reduced down to single values and hence 

descriptors can easily be compared and contrasted. Each of these subjects are discussed 

in more detail over the following chapter. 

 

Figure 3-1 - Change Detection Process Flow Chart 
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3.2 Data Gathering and Production 

This section discusses the methods used to gather and produce data. Data that is fed into 

the rest of the system is either real world data or synthetic modelled data.  

It was evident from the review of literature and analysis of datasets that for real world 

data, most were for object recognition and featured sets of many objects. For the specific 

use cases defined in this research, data was required to be gathered through carefully 

planned and bespoke exercises for this research. This enables the exacting understanding 

of what the changes are and how these can then be converted into truth models.  

This section discusses the apparatus and the process used to gather 2D aerial imagery data 

and then process to 3D point clouds. For the measurement and performance assessment 

of change detection methodologies, a careful consideration of what change shall be 

introduced is required. Finally, this section discusses the process used to create a 3D scene 

reconstruction of each of the datasets.  

3.2.1 Synthetic Data Production 

To enable fast prototyping and debugging of the software and algorithms, a reduced 

dataset is produced with the same data structures as expected in the real world datasets 

(XYZ position and RGB colour). The arrangement of this data set is to show an 

incremental increase in change so that differing levels of change can be detected, 

measured, compared and displayed, both in colour and structure. It should be noted that 

this model is not representative of real world data, and hence purely for development and 

is not a model for performance evaluation. A synthetic data set allows the system to be 

fully constrained and with no variables other than those desired. As this is produced 

computationally, it requires no lengthy data capture process or SFM.  
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Baseline Model 

This model consists of a square 10,000 point matrix (i.e. 100 by 100). All points are 

coplanar in the z axis and evenly distributed in a Cartesian grid in the x-y axis. All points 

are defined as only red (i.e. RGB = 255, 0, 0) as seen in the figure below (Figure 3-2).  

. 

Figure 3-2 - Synthetic Data Baseline Model 

Change Model 

This synthetic change model again consists of a grid of 10,000 points, although this time 

a random but increasing weighted value was given to the z values and all points coloured 

blue (i.e. RGB = 0, 0, 255). This gives a slight wedge shape seen in the diagram below 

(Figure 3-3). This allows for an understanding of various distances for change detection 

measurements in a single axis.  

 

Figure 3-3 - Synthetic Data Change Model 

3.2.2 Varying Lp for distance measurement 

The synthetic dataset baseline and change models are perfectly aligned and contain 

exactly the same number of points, making it simple to compare and detect change. 

Although this is a simple scenario, there are high levels of randomness from point to point 

and proves valuable in testing the ability to distinguish levels of change. It has been used 

as a preliminary assessment of the methods of distance measurement and the effect this 

has on the ability to discriminate distances and change distribution. Here the p-norm is 

varied between value of one to four and the histograms of these can be seen in Figure 3-4. 
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Figure 3-4 - Histograms of variations in Lp distances with Synthetic Data Set 

The effect of varying the Lebesque p value has the effect of either bunching or spreading 

the change as seen in the histograms. As the p value is increased, the distribution of 

change is focused, and at a lower p, the values are spread out. As the points measured are 

in a 3D space, it would be suitable to keep the measurement to the Euclidean norm of L2. 

While increasing the p value would have the effect of creating a higher change value and 

a lower noise floor in comparison, it could reduce the ability to detect smaller change and 

emphasise only larger change. A lower p value would have the contradictory effect of 

increasing the dominance of the smaller change and increase the presence of noise and 

artefacts. This also offers a logical Euclidean space which is coupled with the space that 

the 3D points are described in. As identified in Chapter 2 this is the most common method 

for measuring distance between any two points, and as this has been used elsewhere 
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presents the best comparative measure to other research. For this reason the L2 distance 

will be used throughout for distance measurements.  

3.2.3 Real World Data Gathering 

As an overview of the process, real world data gathering first takes place where a series 

of UAV flights are completed gathering the 2D aerial imagery. These datasets of photos 

are transformed into 3D point clouds through the use of SFM and then aligned. Once 3D 

point clouds have been obtained, a description of each point and its local neighbourhood 

may take place and then compared with each other. This presents what is considered 

change and can then be assessed against what is the true change. 

3.2.3.1 Apparatus 

The gathering of real world data first appears simple but careful considerations must be 

taken to reduce as many variables in the data as possible. If too many variables are 

introduced, (such as different variations on equipment or environments) the analysis 

becomes complex and solid conclusions harder to make. The apparatus used in this 

research remains the same throughout all gathering activities. The UAV used to fly the 

scenarios is an AscTec Falcon 8 as show below.  

 

Figure 3-5 - AscTec Falcon 8 UAV 

The relevant AscTec specification for this is as follows: 

 Payload of 500 g 

 Flight time (max. payload) 16-18 min 

 Total flying weight of 1.8 kg 
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This is a GPS stabilised UAV with accuracy specified as ±3m. This is dependent on the 

number of satellites detectible to the receiver.  

The camera configuration is a Panasonic Lumix LX-5 with a max resolution of 3648 x 

2736 (10.1MP) for stills and 1280 x 720 at 25fps for video. These are compact lightweight 

cameras with built-in image stabilisation that fulfils many of the requirements for UAV 

use.  

 

Figure 3-6 - Panasonic Lumix LX-5 

3.2.3.2 Flight Planning 

For the planning of data gathering, the flight time is pertinent as a single flight is preferred 

to reduce changing factors in the process. To enable the maximum feature correlation 

between images in the SfM process, overlap is required between images. The more 

images taken of a particular point, the higher the accuracy of that point can be with the 

trade-off that the more images there are the higher the computation time. As the sizes of 

area surveyed are different and of different shape, the numbers of images taken will vary. 

To enable consistency, where possible a constant velocity of the UAV is maintained with 

a consistent rate of image gathering.  

During the flight planning is where the consideration of what change shall take place. 

This needs to be carefully planned and controlled so that it can be measured and used for 

performance determination. For this research, three challenging scenarios have been 

picked each with different arrangement and magnitude of change.  

Linking back to the objectives of this research, they are as follows: 

 Scene changes with complex and non-uniform structural change and very little 

change in colour. 

 Scene changes with combinations of structural changes and colour changes. 

 Scene changes with very little structural change but changes in colour.  
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Finally, to gather the data, the UAV must be flown within the regulations of that country. 

For this research flights are in the UK, so UAV operation is governed by the CAA 

document CAP722 (Civil Aviation Authority, 2010).  

3.2.4 Dataset 1 – Bunker 1 

Dataset 1 is planned to implement scene changes with complex and non-uniform 

structural change and very little change in colour. It is a scenario comprising two epochs 

of data, 1A and 1B respectively. The scene contains a medium sized golf course bunker 

on an early March morning in the south of the UK. The surrounding area is rough long 

grass and the surface sand within the bunker is pitted and hardened from rain. To enable 

non-uniform changes with little change in colour, the sand is used as fluid material that 

can be moved without changing colour in comparison to its background.  

Imagery data was gathered from an altitude of 50m with a variance of ±5m due to gusts 

of wind and GPS error. 

The first flyover of the area (Figure 3-8A) created an imagery dataset containing 171 

photos and the second flyover (Figure 3-8B), 15 minutes later, was gathered containing 

187 photos respectively. All photos are of resolution 3648 x 2736 pixels (10MP).  

The scene for the second flyover was disturbed by a small hole being dug in the sand. The 

change in scene consists of the hole itself and the sand displaced by this. The hole while 

non-uniform in shape was roughly 15cm at its deepest point and 40cm in diameter. The 

displaced sand took slightly more volume due to the loosening of the sand. Secondly, the 

spade used to dig the hole was placed away from the hole and partially occluded with 

sand. The spade is of a low profile, a maximum of 3cm at its deepest point as seen in the 

figure below and highlighted overleaf in the scene.  

 

Figure 3-7 - Dataset 1 - Spade object 
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Figure 3-8 - Dataset 1A and 1B - Changes introduced between datasets 1A and 1B  

The images above show the first and second flyovers with the changes highlighted. The 

large ellipse shows the sand change, and the smaller the spade.   

Dataset 1A 

Dataset 1B 
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3.2.5 Dataset 2 – Bunker 2 

Dataset 2 is planned to implement scene changes with combinations of structural changes 

and colour changes. It features a two epoch dataset comprising 2A and 2B (Figure 3-9). 

The scene is a large golf bunker that has undergone groundworks for new buildings. This 

has resulted in undulations and changing textures. The granularity of substrate goes from 

sub-millimetre sand to chalk rocks of diameter of around 20cm. The parameters of 

resolution and altitude of flight is the same as Dataset 1 to give continuity of measurement 

accuracy. Dataset 2A contains a series of 97 photos and 2B a set of 67. Two simultaneous 

changes were introduced in the second epoch of data, one with a more significant 

structural change and one with a more significant colour change to the background scene. 

Firstly a chalk rock was moved. By visual inspection this would be almost impossible to 

detect due to little change in colour to the background. Secondly a red strap was placed 

into the scene. While this does not have a large structural footprint and volume, this is to 

stimulate the colour element of change detection within the scene.  
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Figure 3-9 - Dataset 2A and 2B - Changes introduced between 2A and 2B 

  

Dataset 2A 

Dataset 2B 
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3.2.6 Dataset 3 – Ditch 1 

Dataset 3 is planned to implement scene changes with very little structural change but 

changes in colour. It features a long ditch of about 100m in length, 3m in width and 1m 

in depth and fairly straight. At either end are small footbridges. As with the other datasets, 

flight and photographic parameters are kept consistent. Dataset 3A contains a series of 

210 images and dataset 3B contains 198 images.   

One change was introduced into the second epoch of data whereby a plastic sheet in the 

ditch was moved further towards the centre of the scene (Figure 3-10). This has a very 

small structural volume, but a relatively high colour change in the location of the change.  

 

Figure 3-10 - Dataset3A and 3B – Changes introduced between datasets 3A and 3B 

  

Dataset 3B Dataset 3A 
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3.2.7 3D Reconstruction 

Once 2D imagery data has been gathered, it can be go through the SfM process for 3D 

reconstruction. From the literature review, it became evident that Photoscan was the most 

widely used and most likely the best software for aerial SfM. As discussed, this software 

was selected to compute the 3D point clouds due to its accuracy, computation efficiency 

and other proven uses in aerial imagery. This process involves firstly detecting and 

matching key points to create a sparse cloud for each epoch of data. The two epochs need 

to then be aligned and scaled to each other through an Iterative Closest Point (ICP) 

algorithm. 

3.3 3D Description 

Once point clouds have been computed, each point and its relevant neighbours can be 

described. From the process of SfM, XYZ points are computed along with their RGB 

values.  

The Point Cloud Library (PCL) was identified in Section 2.1 to contain the most prevalent 

3D point descriptors. Some of these descriptors are designed for the application of global 

model analysis and some for local model analysis. For this research, we are looking for 

point to point analysis and hence the local descriptors are those of which have been 

considered. The following descriptors were specifically identified in the literature review 

due to their application, precision and computational efficiency: 

 PFH 

 FPFH 

 SHOT 

 CSHOT/SHOT Colour 

Due to the maturity of library and its community PCL was identified as a credible set of 

implementations of these algorithms.  These implementations will be used to describe the 

points derived by the data gathering process. As the descriptors are designed for the 
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application of key points (i.e. subset of points of interest), it was found that this can be 

computationally expensive and take large amounts of time and as the experiments went 

on, this was taken into consideration.  

This section now discusses the techniques use to derive the supporting data and the 

specifics around descriptor techniques.  

3.3.1 Colour 

Each point is attributed a RGB value from the SfM process. While the RBG colour space 

is convenient for display, the literature review performed in this research noted that this 

is not an optimal space for understanding the difference between colours. The 

development of descriptors also utilising colour took this into consideration and 

employed both the CIE XYZ and CIE Lab colour spaces as a discriminator for changes. 

CIE XYZ is specifically designed to imitate that of humans colour understanding and so 

presents a good method for presenting colour. CIE Lab goes to linearly separate colour 

differences mathematically that we perceive visually. Due to their specified design 

application for differencing analysis the RBG colours will be converted into CIE XYZ 

space as the central baseline colour space. The following conversion algorithm achieves 

this: 

Where M is the conversion matrix with the following parameters: 

 [
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] (14) 

As stated, this offers a baseline colour space whereby other colour spaces can be 

calculated. To mathematically measure distance between colours, below is the transform 

of this into CIE LAB from the XYZ space. To measure the distance between any two CIE 

Lab points, Euclidean distance is used.  

 
L = 116 fy – 16 

a = 500(fx – fy) 

b = 200(fy – fz) 

(15) 

 [
𝑋
𝑌
𝑍
] = [𝑀] [

𝑅
𝐺
𝐵
] (13)  



- 
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3.3.2 Normals 

Surface normals form the basis for many of the other point descriptors and are commonly 

used for computer graphic lighting calculation. From the PCL implementation of normal 

estimation, the surface normal is approximated by estimating the normal of a plane 

tangent to the surface. (Rusu, 2010) describes this process in full, but a generalisation is, 

for each point pi the covariance matrix C is calculated as follows: 

 𝐶 =  
1

𝑘
∑. (𝑝𝑖 − �̅�). (𝑝𝑖 − �̅�)𝑇 , 𝐶. 𝑣𝑗⃑⃑⃑  

𝑘

𝑖=1

=⋋𝑗. 𝑣𝑗⃑⃑⃑  , 𝑗 ∈ {0,1,2} 

 

(16) 

Where k is the number of point neighbours to point 𝑝𝑖, and �̅� represents the 3D centroid 

of those neighbours. ⋋𝑗 is the 𝑗-th eigenvalue of the covariance matrix, and 𝑣𝑗⃑⃑⃑   the 𝑗-th 

eigenvector. The direction of the normal can be resolved to two possible outcomes, and 

Principal Component Analysis (PCA) is used to solve this.  
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3.3.3 Point Feature Histogram (PFH) 

The PFH descriptor (Rusu, 2008) goes to capture the geometry surrounding a point by 

analysing the difference between the orientations of their normals (Figure 3-11). First all 

the points are paired with its neighbours and their neighbours and then for each pair, a 

fixed Darboux coordinate frame is calculated. From this, the difference between the 

normal is found and placed with the Euclidean distance between the point pairs. Finally, 

this is binned into a histogram and then presented by a concatenation of the histogram 

pairs.  

 

u=ni 𝑣 = 𝑢 ×
(𝑝𝑗 − 𝑝𝑖)

‖𝑝𝑗 − 𝑝𝑖‖2

 w=u×v 

α = v ∙ 𝑛𝑗 ∅ = 𝑢 ∙
(𝑝𝑗 − 𝑝𝑖)

𝑑
 𝜃 = tan−1(𝑤 ∙ 𝑛𝑗 , 𝑢. 𝑛𝑗)   

 

Figure 3-11 - Fixed coordinate frame and angular features (Rusu 2008) 
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3.3.4 Fast Point Feature Histogram (FPFH) 

The FPFH descriptor (Rusu, 2009) builds upon PFH and goes to optimise this calculation 

due to it being so computationally expensive. It reduces computation by considering only 

direct connections between key points and their neighbours, removing the second 

neighbour link. This simplification reduces complexity from O(nk2) to O(nk) creating a 

Simplified Point Feature Histogram (SPFH). A second step check the nearest neighbours 

again and used this to weight the final histogram as follows: 

 𝐹𝑃𝐹𝐻(𝑝𝑞) = 𝑆𝑃𝐹𝐻(𝑝𝑞) + 
1

𝑘
∑

1

𝜔𝑘

𝑘

𝑖=1

. 𝑆𝑃𝐹𝐻(𝑝𝑘) 

 

(17) 

Where the weight 𝜔𝑘 represents a distance between the query point 𝑝𝑞 and a neighbour 

point 𝑝𝑘 in some given metric space.  

3.3.5 Principal Curvatures Estimation (PCE) 

PCE estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal 

surface curvatures for a given point cloud dataset containing points and its normals. A 

projection matrix is created from the normal of the query point and nearest neighbours 

projected onto this plane. The centroid of this plane is computed and then Eigen 

decomposition is performed to give the resultant directions, k1 and k2.  
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3.3.6 Signature of Histograms Of Orientations (SHOT) 

SHOT (Tombari, 2010) builds a spherical ball structure around each query point for local 

surface description. The search volume is be divided (into 32 to be precise) separate 

segments and the cosine of the normal of the key point and the points within each volume 

calculated (Figure 3-12). These angles are then binned into a histogram to create the final 

descriptor. According to (Tombari, 2010), the result gives a rotation invariant solution 

due to its dependence on the local reference frame.  

 

Figure 3-12 - SHOT support structure (Tombari, 2010) 

3.3.7 SHOT Colour 

SHOT Colour (Tombari, 2010) builds upon the SHOT algorithm, adding an additional 

context of CIELab colour. This extra dimensionality is integrated into the histogram of 

orientations. 
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3.4 Change Detection 

Once models have been created using SfM, and all the points described using the different 

algorithms discussed, change detection may take place. This is generalised in Figure 3-13 

below, whereby it can be seen that cloud 1 is represented blue, cloud 2 in orange and the 

difference between these in green. Where required, this section discusses the design and 

implementation of each of the processes.   

 

Figure 3-13 - Change Detection Data and Processing Chain 

To detect temporal change between two epochs of data, each and every point in the 

baseline model (cloud 1) is processed to determine its difference from the changed model 

(cloud 2).  

A threshold is then applied to distinguish what is considered change and what is not 

considered change. This can then be presented visually or statistically.  



 

56  

The process detailed in is broken down as follows: 

1) Define Search Point. 

2) Find k nearest neighbours. 

3) Determine difference between descriptors of search point and the nearest 

neighbours. 

4) Create single distance value for difference. 

5) Threshold difference to determine if it is change.  

This process is iterative, and once a search point is complete, the next is calculated until 

the entire cloud has been processed.  

3.4.1 Finding Nearest Neighbours 

Firstly the nearest neighbour points to the search being considered must be identified. As 

the magnitude of points being compared is in the tens of millions, a computationally 

optimised approach is required. As expected, this problem has had many solutions 

proposed, some being more efficient at different dimensionality. In this research, all the 

points will be in the three-dimensional Euclidean space, which narrows down the 

applicable solutions. One of particular interest is that of the binary space partitioning 

solution. This is a method for recursively dividing a space with hyperplanes to create 

smaller spaces. This allows the organisation of the data points into a tree structure 

whereby the nearest neighbour can be searched efficiently. One specific binary space 

partitioning solution, the k-d tree, is whereby the hyperplanes are constrained to be 

perpendicular to the axis of the hypercube and form a tree structure for searching (Figure 

3-14). The space is initially split in two by a hyperplane shown a red. The tree defines 

those points to the left of the plane as the left of the tree, and those to the right as the right 

of the tree. A second hyperplane is introduced perpendicular to the first, shown as green, 

that further splits the tree into a series of left and right points, and then a further plane is 

added, coloured blue. This creates the tree structure whereby the points can be searched 

efficiently. 
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Figure 3-14 - k-d tree hypercube 

For each search point, the k nearest neighbours (k-NN) between each point in the two 

point clouds are identified (Figure 3-15). The k number of nearest neighbours will be 

varied to enable simple outlier smoothing, and for the purpose of performance 

assessment. This results in each point having a set of k nearest neighbours.  

 

Figure 3-15 - Finding nearest neighbours and distances between two point clouds  

A) Point cloud 1 with search point highlighted B) point cloud 1 and 2 overlaid C) nearest neighbours in point cloud 2 

from search point in Point cloud 1. 

 

 

A B C 
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3.4.2 Descriptor Comparison and distance measurement 

When the nearest neighbours have been identified for any search point, they are indexed 

and their descriptors retrieved. The nearest neighbour descriptors are to be compared to 

the search point descriptor and the relative distances computed. A single distance value 

is given between each two sets of points, and as discussed earlier, if there is more than 

one nearest neighbour, the mean of these distances are taken. This is presented as a final 

distance metric for each of the points. If the first distance is equal to 0, the other distances 

are negated and an overall distance of 0 is returned due to having a perfect match between 

the two models. This prevents points that have not moved/changed reporting a changed 

distance. If there has been a change detected, this is saved as a new point cloud which 

presents the difference between cloud 1 and cloud 2.  

3.4.3 3D Structure And Colour 

This research looks at a new method using both the structure and colour data output from 

the SfM process, coined the 3D Structure and Colour difference (3DSAC).  

To achieve this, the Euclidean Squared XYZ distance between two points and the 

Euclidean Squared distance in CIELab Colour between the two points are calculated. This 

is a simple sequence of operations. A configurable weighting is applied that allows for a 

high or lower ratio of XYZ distance to Colour distance to be applied. This permits tuning 

of the algorithm dependent on the application. This could even take place in real time as 

does a radar operator adjusting its sensitivity. If a large light variation between the 3D 

point clouds is expected (e.g. time of data light intensity variation), the colour weighting 

can be reduced and vice versa. Finally the maximum of these two values is taken as the 

distance between the two points. This can be described with the equation below: 

 
3𝐷𝑆𝐴𝐶 = 𝑀𝑎𝑥(𝑊1 ∗  𝛥𝑋𝑌𝑍,𝑊2 ∗  𝛥𝐶𝐼𝐸𝐿𝑎𝑏) 

 

 

(18) 

 

Where W1 represents the weighting applied to the XYZ distance and W2 represents the 

weighting applied to the CIELab distance.  
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3.4.4 Detection Thresholding 

To decide what can be considered change and what is considered the same, a threshold is 

set to filter those believed to be change and that which is not.  

For the performance assessment, this is governed by the maximum distance measured and 

forms the maximum detection threshold value. At this point, the 0% threshold, all point 

are considered to be detections. At the other end of the spectrum is the 100% threshold 

whereby no points are considered change. This is then split into a thresholding routine of 

1000 steps to give granularity over the change detection performance measurement (e.g. 

0.0%, 0.1%, 0.2% etc.). For each of the 1000 threshold points, a point cloud is produced 

so that it can be analysed visually and statistically.  
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3.5 Performance and Correctness Assessment 

To develop, analyse and make conclusions on the effectiveness of any design, an element 

of performance assessment must take place and may be assessed in two ways; 

quantitatively and/or qualitatively. This research will take advantage of both methods, 

with an emphasis on quantitative performance assessment due to the subjective nature of 

qualitative assessment.  

3.5.1 A unique technique for deriving estimated ground truth 

To measure the performance of each descriptor, a reliable and effective method must be 

used to find the true change in the data. This itself is not a simple task, and requires 

mapping the real-world change to those points in the models that represent that change. 

To achieve this, the exacting knowledge of the change introduced between the two epochs 

of data is needed and an accurate method for then deriving those points in the model. 

Careful attention was paid during the planning and gathering of the data to only introduce 

measurable change that could be derived.   

To estimate the true change, multiple estimates are used in aggregation to reduce the error 

in this process. The method to derive this takes the 3D point cloud of which has had 

change introduced, and removes those points that are not change to create a new model. 

This process is independently repeated to create a series of model estimates of the true 

change.  

During these estimations, it is equally possible to have errors both estimating too many 

points (larger than the real object) and too few points (smaller than the real object). Figure 

3-16 goes so illustrate this whereby each of the following a represented: 

 An overestimation i.e. a positive error (outside blue dotted line)  

 An underestimate i.e. a negative error (inside blue dotted line) 

 The estimated mean truth i.e. zero error (middle green line) 
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Figure 3-16 - Truth model errors 

By multiple estimate instances, there will be a variance of over and under estimations to 

the true truth. Adding all these up in a single mass of all the points creates a total set of 

all estimations. This will be vastly over estimated model and represents the all the 

overestimations compounded into one model. It is also noted that many of the points will 

be duplicated.  

A scoring mechanism is then used to count the number of occurrences of each point in 

the set. Following this, a threshold is applied to filter only those that have appeared in 

more than an incrementing number of the estimates. 

This will create a series of point clouds. There will be the same number of these point 

clouds as there were original instances of estimates. The first with a threshold of attaining 

just 1 instance will contain all the points (i.e. the maximal or +ve error model). As the 

threshold is increased, less of the points will be present in the models. All the way through 

the threshold with the maximum number of instances. This will create a set of the point 

that are present in all the models, and hence common to all. This is the minimal or –ve 

error model.  

By calculating the error of each of the point clouds to both the geographical midpoint and 

the statistical midpoint of the –ve model and the +ve model, the best estimate of the true 

truth model can be found. From this exercise it is evident that this quantitative analysis 

will offer an error margin. As there are more instances, it should be possible to pick the 

closest model to the midpoint. From this, a final model of true change is made. By 

independently estimating the true change multiple times, the error in this processes is 

greatly reduced.   
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3.5.2 Quantitative Assessment 

This section provides some definition to how a point is classified, the rates of these 

classification and methods for measuring or scoring the accuracy and performance of the 

algorithms. (Power, 2011) provides an in-depth evaluation on performance measurement 

techniques covering precision, recall, F-measure to ROC, informedness, markedness and 

correlation. This section goes to define and discuss those techniques used in this research.  

3.5.2.1 True Positive (TP) 

The ability to measure when a change has been detected truthfully is paramount to 

measuring the effectiveness of a binary classifier and forms the basis of measuring the 

performance of each of the algorithms evaluated. 

3.5.2.2 True Negative (TN) 

When a point has been correctly identified and not being change, it is deemed a TN.  

3.5.2.3 False Positive (FP) 

When a point has been attributed as being a change falsely, i.e. not a real change, it is 

deemed a FP.  

3.5.2.4 False Negative (FN) 

When a point has been incorrectly identified as not changing, i.e. not detecting change, it 

is deemed a FN. 

3.5.2.5 Confusion Matrix 

A confusion matrix simply brings all these four together into one chart as below 

TP FP 

FN TN 

Figure 3-17 - Confusion Matrix 
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3.5.2.6 True Positive Rate (TPR) 

TPR, also known as Recall, Sensitivity or Probability of Detection (Pd) in radar theory, 

gives a measurement of the proportion of positives that have been correctly identified. It 

can be defined as follows: 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(19) 

3.5.2.7 True Negative Rate (TNR) 

TNR, also known as specificity, measures the proportion of measuring TNs and can be 

defined as follows: 

 𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑁 + 𝐹𝑃
 (20) 

3.5.2.8 False Positive Rate (FPR) 

FPR, also known as Probability of False Alarm (Pfa) or a type I error, measures the 

proportion of incorrect positive measurements. That is, to falsely present a finding when 

it is truly not there and can be defined as follows: 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (21) 

3.5.2.9 False Negative Rate (FNR) 

FNR, also known as sensitivity or a type II error, measures the proportion of measuring 

FNs, or more simply as missing a TP, and can be defined as follows: 

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (22) 
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3.5.2.10 Receiver Operating Characteristic (ROC) 

ROC analysis was developed during World War II for classification theory and 

performance assessment of radar and is now widely used machine learning. A ROC curve 

gives a visual representation of the relationship between TPR and FPR at various 

thresholds, offering a simple overview of system performance. As this is a visual 

performance indicator, is can become subjective and (Fawcett, 2005) goes to analyse and 

address this by providing a guide to a standardised ROC analysis.  As seen in the figure 

below, as the trend line tends towards the top right i.e. a higher TPR than FPR, the system 

can be regarded as being better performing and conversely vice versa.  

 

Figure 3-18 - ROC Curve Performance 

As discussed, the ROC curve offers a great visual method for assessing performance that 

is universally used, although can be interpreted subjectively. One way to turn this into a 

metric is to measure the area under this graph, known as the Area under ROC curve 

(AuROC). Proposed by (Hanley 1982), this offers a single value that can be used as a 

discriminator in the performance of systems. A trapezoidal numerical integration is used 

to calculate the AuROC. This approximates the integration over an interval by the 

common method of using trapezoids. As we have many discrete values (1000), this proves 

an accurate method for estimating the AuROC. 
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3.5.2.11 Matthews Correlation Coefficient (MCC) 

The MCC (Matthews, 1975) offers a single measure of classification accuracy taking the 

entire confusion matrix into account (TP, TN, FP and FN) and hence offers a balanced 

measure.  

There is a substantial calling to use the MCC over other metrics in machine learning due 

to its ability to handle disproportionate and unbalanced confusion matrices (Boughorbel, 

Jarray and El-Anbari, 2017).  

(Chicco, 2017) goes further and states the following: 

“We strongly encourage to evaluate each test performance through the Matthews 

correlation coefficient (MCC), instead of the accuracy and the F1 score, for any binary 

classification problem.” 

It gives a single value between -1 and +1 whereby -1 represents a system with perfect 

disagreement between truth and prediction, and 1 gives a perfect agreement, with 0 being 

randomised and calculated as follows: 

 𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 (23) 

3.5.2.12 TPR minus FPR 

Finally a very simple metric is proposed, a disparity between the True Positive Rate and 

the False Positive Rate. This can range from -1 to 1, whereby a -1 represents a system 

where there is a certain reporting of False Positive, and a 1 whereby a system reports a 

certain True Positive. This takes all the components of the confusion matrix into 

consideration and is very easy to interpret. This performance assessment value is given 

as some variance is expected in the results in the two previous methods. This offers an 

additional and instantaneous understanding of the difference in the TPR and FPR, also 

giving assess scores by a quorum. Additionally its computation is very simple and 

reversed to derive its components if required.  
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3.5.2.13 Probability of False Alarm at 90% Probability of Detection 

This is a single figure statistic that is frequently used to describe the performance of a 

radar system. It simply offers the probability of a false alarm (False Positive) when there 

is a 90% probability of an object (or point) being correctly detected. This is commonly 

used to compare different systems without having to perform ROC analysis.   
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3.5.3 Qualitative Assessment 

The true usefulness of the system is how well the end user can interpret what it outputs. 

Statistical analysis alone will not be sufficient to understand how well change has been 

detected and will take an element of visual inspection. The shape and, granularity and 

distribution of the change across an algorithms surveillance volume gives the end user 

confidence that the change is true and not a false alarm. With the knowledge of true 

mathematical change, a visualisation of the data must also form part of the solution. As 

discussed in the previous section, another element is ROC analysis whereby the shape of 

the curve will give different characteristics through the use of a detection algorithm.   

3.5.3.1 Visualisation of data 

Once change between the two models in a dataset has been calculated, displaying it in a 

useful form gives the processed data context. As the data has been normalised into a 

scaled distance of 0 to 1, this will make the salient change once visualised. As visual 

interpretation is a subjective case, it depends on the visual ability and understanding of 

the viewer.  

To give the best understanding, differentiation between high change and low change 

should be attainable. This means taking the single distance value for each point and 

assigning it with a colour that enables the viewer to understand the change. Many 

engineers and scientists use a baseline grayscale for this, as it is and understood baseline 

so this will form one of the visualisation techniques. Grayscale alone may not offer the 

best discrimination between changes and suit all end users. For this reason, the 

visualisation should be customisable and able to be mapped to any colour map. For 

presentation in this research, two methods are presented, one being a linear grayscale 

colour map for generic understanding. The other being a 90% of the full HSV colour 

spectrum to give a maximal spreading of change levels and hence the largest discriminator 

without risk of colour wheel wrap around.  

This can be achieved by converting the distance scale to an angle of 0 to 324 and taking 

this as the hue variable in the HSV colour space. If the saturation and value variables are 

set to 1, the 0 to 324 hue values can be seen as the circumference of the top surface in a 

HSV colour cone. A distance scale of 0 would be represented by red, a distance of 1/3 by 
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green and 2/3 by blue, and all the colours in between. Once the HSV value is converted 

to an RGB colour space, these values can be attributed to each point in the baseline model. 

The resulting models give a colour map of change. The two distance scales and 

representative colour maps are shown below.  

 

 

 

Figure 3-19 – Grayscale and colour bars for distances 
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3.6 Dataset 1 Example Walkthrough 

To give clarity over the full change detection and performance assessment process, an 

example walkthrough is now given. Due to the vast amount of data and graphing required, 

it would not be possible to display this for each of the descriptors and dataset in the full 

results chapter. The output of this consistent and repeatable process are performance 

metrics defined as earlier in this chapter. The walkthrough details the change detection 

and then performance assessment using Dataset1 and Euclidean change detection. It starts 

when two point cloud models have been gathered and a truth model has been determined 

using the process in Section 3.5.1. Note, this does not consider the analysis of this data, 

purely the techniques used to produce the results. 

Dataset 1 Euclidean Change Detection Walkthrough 

Firstly, each search point is iterated over and the nearest neighbour identified. The 

distance between this and the search point is calculated using the Euclidean distance 

between the two. The maximum value of distance is then used to normalise all the 

distances for a value of 0 to 1 for ease of comparison. Figure 3-20 shows the distances 

relative to their index within the point cloud and also the values sorted by their distance. 

The position of the change within the point cloud can be identified in the graph as the 

spikes, and how this compares to the rest of the background. This is then performed for 

each of the k values required for the k nearest neighbours. A red example threshold of 0.2 

or 20% has been placed on the graph whereby all points above would be considered as 

detected change. 

 

Figure 3-20 – Graph of unsorted distances (threshold = 0.2) 
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A histogram of distances measured shows that the values that have change are low in 

number (i.e. a small area of change) and a large in comparison to the background change 

(Figure 3-21). The large peak here shows these smaller  

 

Figure 3-21 - Histogram of Normalised Distances 

Next, each of the 1000 threshold values is incremented over, from 0 to 1 and the results 

output to new subset as a point cloud for analysis. As expected, the number of detections 

decrease as the threshold is increased as seen below (Figure 3-22).  

 

Figure 3-22 – Graph of Total Number of Detections 
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Dataset 1 Euclidean Performance Assessment Walkthrough 

From the previous section, we have all the data required to compare against the Truth 

Model for performance assessment. Using the Truth Model, the points from each of the 

1000 threshold models can be compared. Each of the points in the truth model are iterated 

over and their nearest neighbours found in the threshold models. If distance = 0, a match 

is found and can be determined as a TP. If distance > 0, the change detected is a FP. The 

TNs and FNs can also then be found and a full confusion matrix is available for that 

threshold. The next threshold is then calculated until all 1000 are complete.  

As the number of point of real change is known from the truth model, the probability of 

detection or TPR is calculated (Figure 3-23).  

 

 

Figure 3-23 - Graph of Probability of Detection / TPR 
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The converse of this is also required, whereby the FPs are grouped and the Probability of 

False Alarm / FPR is calculated as seen below (Figure 3-24). It can be seen with a lower 

threshold there is a much higher probability of false alarm.  

 

Figure 3-24 - Graph of Probability of False Alarm (PfA) / FPR 

Now that both the TPR and FPR are known for all the threshold values, they can be 

analysed against each other by creating a Receiver Operating Characteristic curve 

representation of TPR against FPR (Figure 3-25).  

 

Figure 3-25 - Graph of Receiver Operating Characteristic (ROC) Curve 
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With the ROC curve graph and an understanding of Figure 3-18, we can immediately 

contrast the performance of the system for the different k values. The area under this curve 

(Section 3.5.2.10) is computed for each value of k and again is graphed for analysis 

(Figure 3-26). The maximum value of this set of values displayed by the red dotted line 

is the maximum performance found when using this technique for performance 

assessment.  

 

Figure 3-26 - Area under ROC curve, limited axis 

As a confusion matrix is available for each threshold value, both the MCC and TPR-FPR 

can be calculated and their respective maximum values located (Figure 3-27 and Figure 

3-28).  

To calculate the value of PfA @ 90% Pd (Section 3.5.2.13), the nearest values to the 90% 

Pfa value are located using a nearest neighbour search and then interpolated to estimate 

the value.  
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Figure 3-27 - Graph of TPR - FPR 

 

Figure 3-28 - Graph of MCC 
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Results 

This Chapter displays a summary of results from the methodology described in Chapter 

3.  

First the truth model results and calculations are presented for each of the three datasets.  

Following this, each of the three datasets and corresponding descriptors are sequentially 

detailed. With the aid of this, each algorithms performance measures are presented 

statistically with additional examples of visualisations to assist where relevant.  

Within each dataset and to simplify understanding, a summary of results limited to only 

the maximal descriptor performance are displayed in tabular and graphical form (Section 

4.6).  

The in-depth analysis and discussion of these results follow in Chapter 5.  
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4.1 Creation of Estimated Ground Truth Models 

As discussed in Section 3.5.1, the truth model pays a key part in the credence of any 

performance assessment. Here the calculations of these truth models are presented with 

their subsequent errors.  

For comparative purposes and to understand error, each truth estimate also has the 

following statistics displayed: 

• Distance to mean. 

• % deviation from mean. 

This will allow for the highlight of any outliers and to understand the general error when 

analysed. Here the signage is kept as this shows if this is an over estimation or an 

underestimation of points as described in Section 3.5.1. 

Also the coefficient of variation is presented to give a generalised understanding of 

relationship between the magnitude of the standard deviation and the mean of the dataset. 
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4.1.1 Ground Truth - Dataset 1 

To calculate the Dataset 1 estimated ground truth model, eight unique estimates of truth 

were taken in isolation. As detailed in the methodology, each of these consist of a manual 

analysis of the imagery in combination with analysis of the point clouds generated.   

Table 4-1 - Dataset 1 ordered ground truth estimates 

numb of points distance to mean % deviation from mean 

27226 -3647 -11.82 

27415 -3458 -11.20 

29742 -1131 -3.67 

30488 -385 -1.25 

31697 823 2.67 

32797 1923 6.23 

32912 2038 6.60 

34713 3839 12.44 

 

Table 4-1 shows the individual iterations of estimated truths. Taking the mean of these 

presented in Table 4-2, their corresponding distances to the mean are also detailed and 

the magnitude of this is also presented as a percentage. Visualisation of each of these 

models is presented in Figure 4-1. 

Table 4-2 - Dataset 1 ground truth estimate descriptive statistics 

Total sum of all points 246990 

Unique points 34713 

Mean 30874 

standard deviation 2499 

Coefficient of variation 0.081 

 

Adding all the points together into a single cloud (with duplicates) gives a total of 246,990 

points with 34,713 of these being unique points (Table 4-2).  

Using the full sum of all the points with duplicates, the number of instances of each unique 

point is calculated. A threshold is then applied to filter and create models to those that 

contain eight instances (is present in every estimate), through to a model that has only 

one occurrence of each point (the entire set of unique points). The statistics for this are 

displayed in Table 4-3. 
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Table 4-3 – Dataset 1 ground truth models with threshold occurrences 

threshold 

occurrences 

unique 

points 

probability 

of unique 

points 

distance 

to mean 

% deviation 

from mean 

distance from half 

range 

1 34713 1.00 3930 12.77 3572.5 

2 32912 0.95 2129 6.92 1771.5 

3 32798 0.94 2015 6.55 1657.5 

4 31238 0.90 455 1.48 97.5 

5 30257 0.87 -525 -1.71 -883.5 

6 28564 0.82 -2218 -7.21 -2576.5 

7 28211 0.81 -2571 -8.35 -2929.5 

8 27568 0.79 -3214 -10.44 -3572.5 

 

Table 4-3 shows each of the models created from the entire set when the threshold is 

applied to individual point occurrences. It can be seen that as a threshold of 1 has the 

same number of unique points as presented in Table 4-2. As the threshold is increased, 

the number of points decreases. By taking the mean (Table 4-4), their respective distance 

to mean and percentage deviation to mean is also presented. Also by calculating the range 

(max – min) and half of this (Table 4-4), the midpoint geographically between the two 

extremes can be identified. The respective distance to this for each of the models is also 

presented. It can be seen that the closest model to the central point (defined as the truth) 

is when at least 4 occurrences are found of each of the points in the sum model. A 

visualisation of this can be seen in Figure 4-2. Here an over estimation of points is found 

at 1.48% to the mean. This give us the error for this truth model to the actual truth.  

Table 4-4 - Dataset 1 ground truth models descriptive statistics 

mean 30783 

standard deviation 6812 

coefficient of variance 0.221 

range 7145 

half range 3573 

 

From Figure 3-16, it can be seen that the model with the least error is closest to the mean. 

In this instance, a threshold of at 4 occurrences gives the closest to that boundary, and 

hence presents the estimated ground truth model for Dataset 1. Here there are 31,238 

unique points, with a predicted error of 1.48% from the actual truth.  
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Figure 4-1 - Dataset 1 estimate truth attempts 

Figure 4-1 shows each of the eight estimates of truth. The set is ordered by number of 

points to illustrate the variance in the estimates. 
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Figure 4-2 - Dataset 1 estimate truth models instances 

Figure 4-2 above visualises each of the models created by counting the number of 

instances of each point and thresholding these into separate models. As the lightness of 

point colour increases (the white value), the number of instances also increases. This is 

to show that at the lowest number of instances (minimal model) is smaller than that of all 

of the points (maximal model).  
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4.1.2 Ground Truth - Dataset 2 

To calculate the Dataset 2 estimated ground truth model, seven unique estimates of truth 

were taken in isolation. Again as detailed in the methodology, each of these consist of a 

manual analysis of the imagery in combination with analysis of the point clouds 

generated.  

Table 4-5 - Dataset 2 ordered ground truth estimates 

Num of points distance to mean % deviation from mean 

2293 -695.14 -0.23 

2300 -688.14 -0.23 

2471 -517.14 -0.17 

2906 -82.14 -0.03 

2938 -50.14 -0.02 

3257 268.86 0.09 

4752 1763.86 0.59 

 

Table 4-5 shows the individual iterations of estimated truths. Taking the mean of these 

presented in Table 4-6, their corresponding distances to the mean are also detailed and 

the magnitude of this is also presented as a percentage. Visualisation of each of these 

models is presented in Figure 4-3 and Figure 4-4 (object 1 and 2 respectively).  

Table 4-6 - Dataset 2 ground truth estimate descriptive statistics 

total sum of all points 20917 

unique points 5335 

mean 2988 

standard deviation 794 

Coefficient of variation 0.266 

 

Adding all the points together into a single cloud (with duplicates) gives a total of 20,917 

points with 5,335 of these being unique points. 

Using the full sum of all the points with duplicates, the number of instances of each unique 

point is calculated. A threshold is then applied to filter and create models to those that 

contain at least seven instances (is present in every estimate), through to a model that has 

at least one occurrence of each point (the entire set of unique points). The statistics for 

this are displayed in Table 4-7. 
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Table 4-7 - Dataset 2 ground truth models with threshold occurrences 

threshold 

occurrences 

unique 

points 

probability of 

unique points 

distance to 

mean 

% 

deviation 

from mean 

distance 

to half 

range 

1 5335 1.00 5168 32.81 3318 

2 4285 0.80 4118 26.15 2268 

3 3338 0.63 2224 14.12 1321 

4 2551 0.48 -137 -0.87 534 

5 2292 0.43 -1173 -7.45 275 

6 1815 0.34 -3558 -22.59 -202 

7 1301 0.24 -6642 -42.17 -716 

 

Table 4-7 shows each of the models created from the entire set when the threshold is 

applied to individual point occurrences. It can be seen that as a threshold of 1 has the 

same number of unique points as presented in Table 4-6. As the threshold is increased, 

the number of points decreases. By taking the mean (Table 4-8), their respective distance 

to mean and percentage deviation to mean is also presented. Also by calculating the range 

(max – min) and half of this (Table 4-8), the midpoint geographically between the two 

extremes can be identified. The respective distance to this for each of the models is also 

presented. It can be seen that the closest model to the central point (defined as the truth) 

is when at least 4 occurrences are found of each of the points in the sum model. A 

visualisation of this can be seen in Figure 4-5 and Figure 4-6 (objects 1 and 2 

respectively). Here an under estimation of points is found at 0.87% to the mean. This give 

us the error for this truth model to the actual truth.  

Table 4-8 - Dataset 2 ground truth models descriptive statistics 

mean 2988 

standard deviation 1321 

coefficient of variance 0.442 

range 4034 

half range 2017 

 

From Figure 3-16, it can be seen that the model with the least error is closest to the mean. 

In this instance, a threshold of at 4 occurrences gives the closest to that boundary, and 

hence presents the estimated ground truth model for Dataset 2. Here there are 2,551 

unique points, with a predicted error of 0.87% from the actual truth.  
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Figure 4-3 - Dataset 2 estimate truth attempts – Object 1 

 

Figure 4-3 shows each of the seven estimates of truth for object 1 (the rock). This has 

been separated from object 2 due to the geographic separation and hence difficulty to 

visualise as one image at a suitable scale. The set is ordered by number of points to 

illustrate the variance in the estimates. 
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Figure 4-4 - Dataset 2 estimate truth attempts – Object 2 

Figure 4-3 shows each of the seven estimates of truth for object 2 (the red strap). As 

discussed for object 1, this is isolated due to the geographic separation between the 

objects.  
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Figure 4-5 - Dataset 2 estimate truth models instances – object 1 

Figure 4-5 and Figure 4-6 visualise each of the models created by counting the number 

of instances of each point and thresholding these into separate models.  

 

 

Figure 4-6 - Dataset 2 estimate truth models instances – object 2 
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4.1.3 Ground Truth - Dataset 3 

To calculate the Dataset 3 estimated ground truth model, six unique estimates of truth 

were taken in isolation. Again as detailed in the methodology, each of these consist of a 

manual analysis of the imagery in combination with analysis of the point clouds 

generated.  

Table 4-9 - Dataset 3 ordered ground truth estimates 

Num of points distance to mean % deviation from mean 

4777 -4112 -46.26 

5426 -3463 -38.96 

6765 -2124 -23.90 

9389 499 5.62 

11597 2707 30.46 

15383 6493 73.05 

 

Table 4-9 shows the individual iterations of estimated truths. Taking the mean of these 

presented in Table 4-10, their corresponding distances to the mean are also detailed and 

the magnitude of this is also presented as a percentage. Visualisation of each of these 

models is presented in Figure 4-7. Here the geographic separation can be seen to scale of 

the object before and after change.  

Table 4-10 - Dataset 3 ground truth estimate descriptive statistics 

total sum of all points 53337 

unique points 18207 

mean 8890 

standard deviation 3723 

coefficient of variance 0.419 

 

Adding all the points together into a single cloud (with duplicates) gives a total of 53,337 

points with 18,207 of these being unique points.  

Using the full sum of all the points with duplicates, the number of instances of each unique 

point is calculated. A threshold is then applied to filter and create models to those that 

contain at six instances (is present in every estimate), through to a model that has only 
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one occurrence of each point (the entire set of unique points). The statistics for this are 

displayed in Table 4-11. 

Table 4-11 - Dataset 3 ground truth models with threshold occurrences 

threshold 

occurrences 

unique 

points 

probability of 

unique points 

distance 

to mean 

% deviation 

from mean 

distance to 

half range 

1 18207 1.00 9318 104.81 10588 

2 11484 0.63 2595 29.19 3865 

3 8795 0.48 -95 -1.06 1176 

4 6717 0.37 -2173 -24.44 -902 

5 5165 0.28 -3725 -41.90 -2454 

6 2969 0.16 -5921 -66.60 -4650 

 

Table 4-11 shows each of the models created from the entire set when the threshold is 

applied to individual point occurrences. It can be seen that as a threshold of 1 has the 

same number of unique points as presented in Table 4-10. As the threshold is increased, 

the number of points decreases. By taking the mean (Table 4-12), their respective distance 

to mean and percentage deviation to mean is also presented. Also by calculating the range 

(max – min) and half of this (Table 4-12), the midpoint geographically between the two 

extremes can be identified. The respective distance to this for each of the models is also 

presented. It can be seen that the closest model to the central point (defined as the truth) 

is when at least 3 occurrences are found of each of the points in the sum model. A 

visualisation of this can be seen in Figure 4-8 and Figure 4-9. Here an under estimation 

of points is found at 1.06% to the mean. This give us the error for this truth model to the 

actual truth.  

Table 4-12 - Dataset 3 ground truth models descriptive statistics 

mean 8890 

standard deviation 4953 

coefficient of variance 0.557 

range 15238 

half range 7619 

 

From Figure 3-16, it can be seen that the model with the least error is closest to the mean. 

In this instance, a threshold of at 3 occurrences gives the closest to that boundary, and 

hence presents the estimated ground truth model for Dataset 3. Here there are 8,795 

unique points, with a predicted error of 1.06% from the actual truth.  
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Figure 4-7 - Dataset 3 estimate truth attempts 

Figure 4-7 shows each of the six estimates of truth. The separation between the objects 

has been kept so that the scale between them is understandable.  
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Figure 4-8 - Dataset 3 estimate truth models instances – object before 

Figure 4-8 and Figure 4-9 visualise each of the models created by counting the number 

of instances of each point and thresholding these into separate models. As the lightness 

of point colour increases (the white value), the number of instances also increases. This 

is to show that at the lowest number of instances (minimal model) is smaller than that of 

all of the points (maximal model).  

 

  

Figure 4-9 - Dataset 3 estimate truth models instances – object after 
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4.2 3D Model Creation 

This section documents the reconstruction results of taking the 2D aerial imagery and 

applying SfM techniques with Photoscan to transform into 3D point clouds. Each of the 

datasets models are presented with some statistics of their composition.   

4.2.1 Dataset 1 

Dataset 1 contained 171 images for the first epoch (1A) and 187 for the second (1B). 

These were processed through the SfM pipeline to produce an output of 2,103,311 points 

in 1A and 2,389,536 points in 1B. The coloured point cloud created in Dataset 1A can be 

seen in the diagram below (Figure 4-10). 

 

Figure 4-10 - Dataset1A Point cloud 
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4.2.2 Dataset 2 

The 97 photos from Dataset 2A created a point cloud with 2,513,525 points and the 67 
photos from 2B created a point cloud with 2,465,878 points respectively. While this is 
similar to Dataset 1, the area surveyed is larger and hence the resolution of the area 
represented by each point slightly less. Below (Figure 4-11), shows a bird’s eye view of 
the point cloud from 2A.  

 

Figure 4-11 - Dataset2A Point Cloud Bird’s eye view 
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4.2.3 Dataset 3 

The output of the SFM process created 3,973,265 points in 3A and 3,157,423 points in 

3B. Below shows the full point clouds of both 3A and 3B and the change identified 

(Figure 4-12).  

 

 

Figure 4-12 - Dataset3 Bird's eye view of both 3A and 3B point clouds 
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4.3 Change Detection - Dataset 1 

This section covers the results for the applications of each of the algorithms identified for 

change detection in dataset 1. Here both the statistical results and where appropriate 

visualisations are presented. An initial analysis of these results is provided in this results 

section, with further analysis and discussion in Chapter 5. 

As a visual overview of detected change, Figure 4-13 shows each of the following 

descriptors from an equivalent view using a colour map to represent that change: 

 Colour XYZ  

 Euclidean  

 FPFH  

 3DSAC  

 SHOT  

 SHOT Colour 

The changes introduced can be clearly identified with varying levels of noise and artefacts 

surrounding it. As an initial look at this - Colour, Euclidean and 3DSAC present the 

easiest analysis and identification of the change object. FPFH presents a middle ground 

where the object can be identified with substantial noise, and SHOT and SHOT Colour 

much more difficult to interpret. That said, next to the other images, it still offers an 

understanding of where the change is within the image.  

An equivalent view of this is also presented in Figure 4-14 with a greyscale mapping. 

This is immediately much harder to interpret and the shapes of the changes harder to 

recognise. With this visualisation it is still possible to identify the change areas of the 

scene.  
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Figure 4-13 - Dataset 1 Descriptors with Colour Map Visualisation. 

a) Colour XYZ b) Euclidean c)FPFH d)3DSAC e)SHOT f) SHOT Colour 
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Figure 4-14 - Dataset1 Descriptors with Grayscale Map Visualisation 

b) Colour XYZ b) Euclidean c)FPFH d)3DSAC e)SHOT f) SHOT Colour 
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4.3.1 Euclidean 

Following the overview, a more comprehensive result set for the Euclidean descriptor is 

given. Figure 4-15 presents a graph of the performance metrics against the number of 

neighbours used to create a mean differencing. The AuROC curve seems to vary very 

little, followed by the TPR-FPR and then the MCC metrics. By close inspection, a small 

peak at very low k values can be identified in the TPR-FPR and MCC metrics. This 

suggests the maximal performance will be here. The FPR@90TRP metric is not 

comparable to the others, but appears to have little change and a magnitude similar to the 

AuROC metric.  

 

Figure 4-15 - Dataset 1 Euclidean Performance Scores 

Table 4-13 shows the corresponding metrics to the graph. Here each of the descriptors 

numerical values can be seen as the number of nearest neighbours are varied. The variance 

in these is low but backups the earlier assertion that there is a peak in performance at a 

lower k value and then performance drops of very slowly.  
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Table 4-13 – Bunker 1 Euclidean Performance Measures 

K nearest 

neighbours 

FPR @ 90% 

TPR 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

1 0.0015 0.9716 0.9088 0.9991 

2 0.0014 0.9759 0.9096 0.9992 

5 0.0013 0.9793 0.9108 0.9993 

10 0.0012 0.9796 0.9119 0.9994 

20 0.0012 0.9789 0.9138 0.9994 

30 0.0011 0.9781 0.9151 0.9994 

40 0.0011 0.9774 0.9158 0.9994 

50 0.0011 0.9771 0.916 0.9993 

200 0.0031 0.9659 0.8874 0.9986 

1000 0.0237 0.9118 0.7454 0.9877 

 

4.3.2 Colour 

This section looks at the results for using colour only as a differentiator between the two 

epochs of data across Dataset 1. Here the three descriptors LAB, RGB and XYZ are 

compared with the performance metrics for each of these listed. Table 4-14 shows the 

results for each of these against the chosen metrics. The XYZ colour space appears to 

offer the best performance numerically across all measurement techniques.  

Table 4-14 - Dataset1 Colour Performance Measures 

Colour 

Space 

FPR @ 90% 

TPR 

(Pfa @ 90%Pd) 

Max TPR- FPR 
Max 

MCC 

Max AuROC 

Curve 

LAB 0.6958 0.4468 0.1694 0.7756 

RGB 0.666 0.4295 0.1517 0.7732 

XYZ 0.4331 0.4878 0.1814 0.826 

 

 

Figure 4-17 shows the point cloud visualisation of these results with the colour maps and 

corresponding measured differences in the key at the bottom of the figure. Fragments A, 

C and E show the full data set before thresholding. Fragments B, D and F show a threshold 

has been applied giving a subset of 15,000 points with the largest distances. It’s hard to 

visually discriminate between the three techniques, but it is noted that the spade object is 
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much more prevalent than the hole that has been dug. Figure 4-16 shows the specific 

example of the XYZ differencing with a grayscale mapping. Here it is again evident that 

the space is more prominent. 

  

 

 

Figure 4-16 - Dataset1 XYZ Difference 
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Figure 4-17 - Dataset1 - Colour Differencing 

A)LAB– No filter B) LAB – largest 15,000 points C) RGB – No filter  D)RGB – largest 15,000 points  E) XYZ – No 

filter F)XYZ – largest 15,000 points 
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4.3.3 PFH 

This section looks at the results for using the PFH descriptor as a differentiator between 

the two epochs of data across Dataset 1. Figure 4-18 shows a graph of the performance 

metrics against the number of neighbours used to create a mean differencing. Here, the 

TPR-FPR, MCC and AuROC metrics start low and dip even further before giving a steady 

positive gradient. This shows a poor performance at low k values but increasing as more 

neighbours are used. FPR@90TPR verifies this with a high peak at low k values 

coincident with the dips of the other metrics.  

 

Figure 4-18 - Dataset1 PFH Performance Scores 

Table 4-15 shows the corresponding metrics to the graph. Here each of the descriptors 

numerical values can be seen as the number of nearest neighbours are varied. The TPR-

FRP, MCC and AuROC values hit their lowest values at 10 nearest neighbours and then 

steadily increase with maximums at 200. The extreme computation cost of describing the 

models with this descriptor limited the number of neighbours that could be considered. It 

appears that as more neighbours are introduced more performance can be expected. The 
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limit of where this becomes a maximal performance could not be found due to the 

limitation of computational costs. The FP@90%TP also mirrors this with a steady 

decrease as more neighbours are added.  

Table 4-15 – Bunker 1 PFH Performance Measures 

K nearest 

neighbours 

FP @ 90% TP 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

5 0.8428 0.0456 0.0121 0.5273 

10 0.8873 0.0357 0.0117 0.5179 

20 0.8607 0.0447 0.014 0.522 

50 0.8354 0.086 0.04 0.5687 

200 0.7179 0.3766 0.2122 0.7451 
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4.3.4 FPFH 

This section looks at the results for using the FPFH descriptor as a differentiator between 

the two epochs of data across Dataset 1. Figure 4-19 shows a graph of the performance 

metrics against the number of neighbours used to create a mean differencing. Here, the 

TPR-FPR, MCC and AuROC show different trends to the performance with all starting 

off very low representing poor performance at very low numbers of neighbours. The 

AuROC curve shows an immediate and sharp increase though to about 500 nearest 

neighbours where it levels off. The TPR-FRP also shows an immediate but slower 

increase followed by a level off (and a slight dip at 2000 nearest neighbours). The MCC 

curve has a much more varied shape to its value, with an immediate increase followed by 

a few peaks and troughs. It appears to steadily decline after a k value of 2000. The 

FRP@90TRP rapidly declines with a level off mirroring the AuROC curve.  

 

Figure 4-19 - Dataset1 FPFH - Performance Scores 
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Table 4-16 – Bunker 1 FPFH Performance Measures 

K nearest 

neighbours 

FP @ 90% TP 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

5 0.8679 0.0354 0.0118 0.5232 

10 0.8718 0.0331 0.0104 0.5191 

20 0.8492 0.1099 0.0285 0.5766 

50 0.779 0.2373 0.0889 0.6652 

200 0.4924 0.5348 0.3413 0.8487 

1000 0.0606 0.8404 0.6785 0.9722 

2000 0.012 0.9131 0.7373 0.9887 

5000 0.0126 0.9554 0.708 0.9954 

10000 0.0116 0.9557 0.7673 0.9958 

20000 0.0042 0.9495 0.8301 0.9957 

50000 0.0068 0.9817 0.7706 0.998 

 

Table 4-16 shows the corresponding metrics to the graph. Here each of the descriptors 

numerical values can be seen as the number of nearest neighbours are varied.  
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4.3.5 PCE 

This section looks at the results for using the PCE descriptor as a differentiator between 

the two epochs of data across Dataset 1. Figure 4-20 shows a graph of the performance 

metrics against the number of neighbours used to create a mean differencing. Here, the 

TPR-FPR and MCC scores maintain a low level throughout, with a very slight incline 

when k values are more than 200. The AuROC appears to mirror this but at an additional 

level of around 0.5. The FPR@90TPR starts high and stays high throughout with a slight 

decline. Taking all these into considerations suggests the performance does not gain much 

as k values are increased.  

 

Figure 4-20 - Dataset1 PCE – Performance Scores 
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Figure 4-21 - Dataset 1 PCE Visualisation 

A visual representation in Figure 4-21 shows a pattern of higher change detected around 

the banks of the golf bunker. It is still possible to recognise the change introduced but this 

is less prevalent than that of the banks.  

Table 4-17 – Dataset 1 PCE Performance Measures 

K nearest 

neighbours 

FP @ 90% TP 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

5 0.8985 0.0043 0.0011 0.4999 

10 0.8965 0.0133 0.0039 0.5089 

20 0.8932 0.0147 0.0036 0.5088 

50 0.8911 0.018 0.0048 0.5119 

200 0.8893 0.0132 0.0047 0.4998 

1000 0.8731 0.0425 0.0119 0.5233 

 

Table 4-17 shows the corresponding metrics to the graph and visualisation. Here each of 

the descriptors numerical values can be seen as the number of nearest neighbours are 

varied.   
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4.3.6 SHOT 

This section looks at the results for using the SHOT descriptor as a differentiator between 

the two epochs of data across Dataset 1. Figure 4-22 shows a graph of the AuROC 

performance metric against the number of neighbours used to create a mean differencing 

across various radii. Here the initial peak is seen when the k value is 2 and then decreases 

through to k values of 10 where it stabilises and levels off. .The highest performance is 

seen at a radius of 0.5 and this decreases as the radius is decreased. There is a crossover 

between the performance of descriptor using radius of 0.01 and 002. Table 4-18 shows 

the corresponding data to this graph.  

 

Figure 4-22 Dataset1 SHOT - Graph of AuROC Curves 

Table 4-18 – Dataset1 SHOT AuROC Values 

AuROC Radius 

K Nearest Neighbour 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.4421 0.4261 0.4944 0.6299 0.7767 0.8266 

2 0.5454 0.5903 0.739 0.8445 0.9013 0.9126 

5 0.4808 0.4816 0.6247 0.7812 0.8757 0.9062 

10 0.4579 0.428 0.5519 0.7522 0.8823 0.9172 

50 0.478 0.4705 0.5888 0.7741 0.8923 0.9238 
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Figure 4-23 shows a graph of the TPR-FPR performance metric against the number of 

neighbours used to create a mean differencing across various radii. Here again the initial 

peak is seen when the k value is 2 and then decreases through to k values of 10 where it 

stabilises and levels off. .Table 4-18 shows the corresponding data to this graph. Here it 

is evident again that maximal performance is found at a higher radius value and this is 

decreases as the radius is decreased. Table 4-19 shows the corresponding data to this 

graph.  

 

Figure 4-23 Dataset1 SHOT - Graph of TPR-TPR metrics 

 

Table 4-19 – Dataset1 SHOT Max TP Rate – FP Rate 

TP Rate - FP Rate Radius 

K Nearest Neighbour 0.01 0.02 0.05 0.1 0.2 0.5 

1 0 0.0016 0.0148 0.228 0.4532 0.5424 

2 0.0757 0.1551 0.4174 0.6204 0.7119 0.8513 

5 0.0029 0.048 0.251 0.5105 0.6674 0.7588 

10 0.0066 0.0579 0.1533 0.4284 0.666 0.7708 

50 0.0224 0.0587 0.1677 0.444 0.6673 0.7786 
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Figure 4-24 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing across various radii. Here the initial peak 

is seen when the k value is 2 and then mostly decreases through to k values of 10 where 

it stabilises and levels off. .Its noted this are consistently low. Table 4-20 shows the 

corresponding data to this graph.  

 

Figure 4-24 Dataset1 SHOT - Graph of MCC metrics 

 

Table 4-20 – Dataset1 SHOT Max MCC 

MCC Radius 

K Nearest Neighbour 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.0001 0 -0.0304 0.0555 0.1146 0.1369 

2 0.019 0.0388 0.104 0.1765 0.233 0.2908 

5 0.0033 -0.0332 0.061 0.1358 0.2117 0.2438 

10 0.0016 0 0.042 0.111 0.2149 0.2578 

50 0.0055 0 0.0425 0.1197 0.2204 0.2613 
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Figure 4-24 shows a graph of the FPR@90%TPR performance metric against the number 

of neighbours used to create a mean differencing across various radii. Here the initial 

trough is seen when the k value is 2 and then mostly decreases through to k values of 10 

where it stabilises and levels off. Table 4-21 shows the corresponding data to this graph.  

 

Figure 4-25 Dataset1 SHOT - Graph of Area FPR @ 90% TPR metrics 

 

Table 4-21 – Dataset1 SHOT FPR @ 90% TPR 

FPR @ 90% TPR 

(Pfa @ 90% Pd) 
Radius 

K Nearest Neighbour 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.9393 0.9699 0.919 0.7234 0.458 0.3577 

2 0.852 0.7774 0.5216 0.286 0.1893 0.1193 

5 0.9075 0.8971 0.7151 0.4179 0.2355 0.1546 

10 0.932 0.9585 0.8587 0.5322 0.2499 0.1412 

50 0.9296 0.9533 0.8278 0.5302 0.2509 0.1362 
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Figure 4-26 shows each of the performance metrics on one graph for comparative 

analysis for a radius of 0.5. As seen in the previous graph, the performance has a slight 

peak at k values of 2 and then levels off. This suggests there is little extra performance 

to be gained by additional nearest neighbours.  

 

Figure 4-26 Dataset 1 SHOT - Performance Scores @ Radius 0.5 

Figure 4-27 shows the visual representation of the change detection data. Here the pre-

threshold data is displayed in image 27a and a threshold applied in 27b. It can be seen 

that most of the change is present around contours in the image but no additional present 

around that of the changes implemented.  

 

Figure 4-27 Dataset1 SHOT - Change Visualisation at radius 0.5 

a) no threshold applied b) threshold applied 

a b 
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4.3.7 SHOT Colour 

This section looks at the results for using the SHOT Colour descriptor as a differentiator 

between the two epochs of data across Dataset 1. Figure 4-28 shows a graph of the 

FPR@90TPR performance metric against the number of neighbours used to create a mean 

differencing with varied radii. Here, instability a very low k numbers can be seen and 

then a levelling effect through the rest of the data. The best performance appears to be 

from a radius of 0.5 with decreasing performance as the radius is decreased with exception 

to radius 0.01 and 0.02 being reversed. Table 4-22 shows the corresponding data to this 

graph. 

 

Figure 4-28 Dataset1 SHOT Colour - Graph of FPR @ 90% TPR 

 

Table 4-22 Dataset1 SHOT Colour - Table of FPR @ 90% TPR 

FPR @ 90% TPR 

(Pfa @ 90% Pd) 

Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.9236 0.9556 0.8755 0.6548 0.4115 0.3106 

2 0.8788 0.8598 0.6783 0.4378 0.2601 0.1483 

5 0.9101 0.9163 0.8047 0.5697 0.2987 0.1725 

10 0.9142 0.9291 0.7978 0.5339 0.2658 0.1566 

20 0.9137 0.9294 0.8009 0.5284 0.2623 0.1543 

50 0.9139 0.9295 0.8036 0.5251 0.2599 0.1526 
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Figure 4-29 shows a graph of the TPR-FPR performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Again instability a very 

low k numbers can be seen and then a levelling effect through the rest of the data. The 

best performance appears to be from a radius of 0.5 with decreasing performance as the 

radius is decreased. Table 4-23 shows the corresponding data to this graph. 

 

 

Figure 4-29 Dataset1 SHOT Colour- Graph of TPR-FPR metrics 

 

Table 4-23 Dataset1 SHOT Colour - Table of TPR-FPR metrics 

Max TPR - FPR Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.0127 0.0316 0.0679 0.2693 0.4932 0.5914 

2 0.0304 0.0505 0.2762 0.4855 0.6447 0.7652 

5 0.0050 0.0457 0.1667 0.3941 0.6163 0.7299 

10 0.0178 0.0597 0.1762 0.4225 0.6458 0.7485 

20 0.0211 0.0687 0.1793 0.4269 0.6492 0.7515 

50 0.0213 0.0720 0.1810 0.4285 0.6518 0.7537 

 



1 

0.9 

0.8 

0.7 

0.6 

U 
U 0.5 

0.4 

0.3 

0.2 

0.1 

0 

r 

- 0.01 
- 0.02 

- 0.05 
- 0.1 

- 0.2 
- 0.5 

L-

0 100 200 300 400 500 600 700 800 900 1000 
K nearest neighbour 

 

113  

Figure 4-30 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. The instability a very 

low k numbers can be seen and then a levelling effect through the rest of the data. Again, 

the best performance appears to be from a radius of 0.5 with decreasing performance as 

the radius is decreased. Table 4-24 shows the corresponding data to this graph. 

 

 

Figure 4-30 Dataset1 SHOT Colour - Graph of MCC metrics 

 

Table 4-24 Dataset1 SHOT Colour - Table of MCC metrics 

MCC Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.0051 NaN 0.0000 0.0653 0.1252 0.1591 

2 0.0111 0.0144 0.0669 0.1275 0.1940 0.2509 

5 0.0028 -0.0225 0.0412 0.1010 0.1813 0.2359 

10 0.0043 -0.0509 0.0431 0.1085 0.1966 0.2471 

20 0.0053 NaN 0.0440 0.1094 0.1992 0.2490 

50 0.0060 -0.0991 0.0444 0.1100 0.2005 0.2504 
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Figure 4-31 shows a graph of the AuROC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. The instability a very 

low k numbers can be seen and then a levelling effect through the rest of the data. Again, 

the best performance appears to be from a radius of 0.5 with decreasing performance as 

the radius is decreased. Table 4-25 shows the corresponding data to this graph. 

 

Figure 4-31 Dataset1 SHOT Colour - Graph of AuROC metrics 

 

Table 4-25 Dataset1 SHOT Colour - Table of AuROC metrics 

AUC Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

1 0.4839 0.4758 0.5451 0.6697 0.8057 0.8522 

2 0.5225 0.5331 0.6600 0.7859 0.8717 0.9091 

5 0.4955 0.5042 0.6023 0.7486 0.8649 0.9047 

10 0.4997 0.5074 0.6075 0.7630 0.8777 0.9140 

20 0.5013 0.5109 0.6085 0.7648 0.8794 0.9156 

50 0.5017 0.5120 0.6091 0.7659 0.8805 0.9169 
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Figure 4-32 shows each of the performance metrics on one graph for comparative 

analysis for a radius of 0.5. As seen in the previous graphs, instability to low k number 

is seen with a levelling of this through the rest of the series. This suggests there is little 

extra performance to be gained by additional nearest neighbours.  

 

 

Figure 4-32 - Dataset 1 SHOT Colour – Performance Scores @ Radius 0.5 
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4.3.8 3DSAC 

This section looks at the results for using the 3DSAC descriptor as a differentiator 

between the two epochs of data across Dataset 1. Figure 4-33 visualises the change 

detection results across varied weighting of colour to structure. Figure 4-33A shows the 

changes of the hole very clearly with little background noise surrounding it. With this, it 

is identified that the presence of the space cannot be achieved. As colour is introduced in 

Figure 4-33B the spade can be identified and some presence of noise and artefacts around 

the hole can be appreciated. Through Figure 4-33C and Figure 4-33D increases noise can 

be seen with the spade becoming more prevalent. In Figure 4-33E the hole appears to be 

less identifiable with less change detected around this area and increased noise around 

the scene. Finally in Figure 4-33F where no structure weighting is given in place of 

maximum colour weighting, the hole is almost unrecognisable but the spade is easily 

identified.  
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Figure 4-33 – 3DSAC weighting changes 

A) 100% Structure 0% Colour B) 100% Structure 40% Colour C) 100% Structure 80% Colour  

D) 80% Structure 100% Colour E) 40% Structure 100% Colour F) 0% Structure 100% Colour 
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Figure 4-34 Dataset1 3DSAC - Graph of performance metrics 

Figure 4-34 shows a graph of the performance metrics against the weighting used to create 

a differencing for 3DSAC. Here, the TPR-FPR, MCC and AuROC metrics start very high 

when maximum structural change weighting is defined, with a steady but significant 

decrease as colour is introduced in the place of structure. This is mirrored in the 

FPR@90%TPR where little false positive is seen at high structural weighting. This 

decreases as structural weighting is replaced with colour. Table 4-26 shows the 

corresponding data to this graph. 
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Table 4-26 - Dataset1 3DSAC - Table of performance metrics 

Colour to 

Structure Ratio 

FPR @ 90% TPR TPR-FPR MCC AuROC 

0.0000 0.0010 0.9866 0.9202 0.9995 

0.0909 0.0421 0.8614 0.7696 0.9834 

0.1667 0.1044 0.8004 0.6917 0.9646 

0.2308 0.1526 0.7670 0.6396 0.9517 

0.2857 0.1876 0.7420 0.5959 0.9421 

0.3333 0.2191 0.7251 0.5596 0.9344 

0.3750 0.2447 0.7092 0.5273 0.9279 

0.4118 0.2672 0.6969 0.4989 0.9223 

0.4444 0.2868 0.6868 0.4732 0.9173 

0.4737 0.3017 0.6774 0.4503 0.9129 

0.5000 0.3152 0.6709 0.4305 0.9089 

0.5263 0.3307 0.6635 0.4110 0.9049 

0.5556 0.3482 0.6554 0.3894 0.9004 

0.5882 0.3658 0.6463 0.3643 0.8951 

0.6250 0.3821 0.6353 0.3372 0.8889 

0.6667 0.4019 0.6210 0.3091 0.8813 

0.7143 0.4310 0.6025 0.2801 0.8715 

0.7692 0.4614 0.5796 0.2472 0.8584 

0.8333 0.5022 0.5463 0.2076 0.8391 

0.9091 0.5727 0.4807 0.1750 0.8062 

1.0000 0.6888 0.4468 0.1694 0.7756 
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4.4 Change Detection - Dataset 2 

This section covers the results for the applications of each of the algorithms identified for 

change detection in dataset 2. Here both the statistical results and where appropriate 

visualisations are presented. An initial analysis of these results is provided in this results 

section, with further analysis and discussion in Chapter 5. 

As a visual overview of detected change, Figure 4-35 shows each of the following 

descriptors from an equivalent view using a colour map to represent that change: 

 Colour XYZ  

 Euclidean  

 FPFH  

 3DSAC  

 SHOT  

 SHOT Colour 

The change introduced of the rock is most clearly visible in Figure 4-35d representing the 

3DSAC descriptor. The changes are also viable in Figure 4-35a also but much less 

prevalent, and it is noted that the second object (the red strap) can also be detected. Figure 

4-35b enables the visual detection of the rock object with more prevalence than with 

Colour XYZ but less so than 3DSAC. In Figure 4-35c the structural change of the rock 

can be detected amongst large amounts of other noise and artefacts. An equivalent view 

of this is also presented in Figure 4-36 with a greyscale mapping. Again, this is harder to 

interpret and the shapes of the changes harder to recognise. With this visualisation it is 

still possible to identify the change areas of the scene and it is noticed the structural 

change of the rock is most easily visually detected through FPFH and 3DSAC. 
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Figure 4-35 - Dataset2 Descriptors with Colour Map Visualisation. 

a) Colour XYZ b) Euclidean c)FPFH d)3DSAC e)SHOT f) SHOT Colour 
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Figure 4-36 - Dataset2 Dataset1 Descriptors with Grayscale Map Visualisation. 

a) Colour XYZ b) Euclidean c)FPFH d)3DSAC e)SHOT f) SHOT Colour 

a b 
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4.4.1 Euclidean 

Following the overview, a more comprehensive result set for the Euclidean descriptor is 

given. Figure 4-37 presents a graph of the performance metrics against the number of 

neighbours used to create a mean differencing. The AuROC and TPR-FPR metrics start 

high with a low k number and gradually decrease in performance as more neighbours are 

introduced. The MCC metric follows a similar trend with a slightly steeper gradient and 

a lower starting position at low k numbers. The FPR@90%TPR start off very low and 

level until a k value of around 50 whereby it increases gradually to almost 1 by the time 

k is 1000. Table 4-27 shows the corresponding data to this graph. 

 

 

Figure 4-37 - Dataset2 Euclidean – Graph of performance metrics 
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Table 4-27- Dataset2 Euclidean - Table of performance metrics 

K nearest 

neighbours 

FP @ 90% TP 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

1 0.0173 0.9007 0.7022 0.9770 

2 0.0166 0.9013 0.7032 0.9795 

5 0.0154 0.9030 0.6957 0.9799 

10 0.0148 0.9054 0.6918 0.9777 

20 0.0139 0.9052 0.6848 0.9737 

30 0.0145 0.9021 0.6766 0.9699 

40 0.0151 0.9001 0.6708 0.9669 

50 0.0168 0.8984 0.6658 0.9645 

200 0.2074 0.7927 0.5890 0.9239 

1000 0.9379 0.4962 0.1743 0.6815 
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4.4.2 Colour 

This section looks at the results for using colour only as a differentiator between the two 

epochs of data across Dataset 2. Here the three descriptors LAB, RGB and XYZ are 

compared with the performance metrics for each of these listed. Table 4-28 shows the 

results for each of these against the chosen metrics. The XYZ colour space appears to 

offer the best performance numerically across all measurement techniques.  

Table 4-28- Dataset2 Colour - Table of performance metrics 

 
FPR @ 

90% TPR 

TPR-FPR MCC AUC 

LAB 0.6789 0.3977 0.0581 0.7559 

RGB 0.6801 0.4714 0.1874 0.7908 

XYZ 0.3318 0.6288 0.1940 0.9002 

 

Figure 4-39 shows the point cloud visualisation of these results with the colour maps and 

corresponding measured differences in the key at the bottom of the figure. Fragments A, 

C and E show the full data set before thresholding. Fragments B, D and F show a threshold 

has been applied giving a subset of 130,000 points with the largest distances. Figure 4-39 

show a grayscale representation of the XYZ change space. Here the structural change of 

the rock can be identified and also that of the colour change in the red strap.  

 

Figure 4-38 - Dataset2 XYZ Colour Difference Visualisation 
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Figure 4-39 - Dataset2 Colour Point Clouds 

A)CIE– No filter B) CIE – largest 130000 points C) RGB – No filter  D)RGB – largest 130000 points  E) XYZ – No 

filter F)XYZ – largest 130000 points 
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4.4.3 FPFH 

This section looks at the results for using the FPFH descriptor as a differentiator between 

the two epochs of data across Dataset 2. Figure 4-40 shows a graph of the performance 

metrics against the number of neighbours used to create a mean differencing. Here, the 

TPR-FPR, MCC and AuROC all peak at around k values of 1000 with gradual declines 

thereafter. FPR@90TPR seems to mirror this until a k value of 5000 where it begins to 

decline suggesting false positive rate is falling. Table 4-29 shows the corresponding data 

to this graph. 

 

Figure 4-40 - Dataset2 FPFH – Graph of performance metrics 
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Table 4-29- Dataset2 FPFH - Table of performance metrics 

K nearest 

neighbours 

FP @ 90% TP 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

2 0.9401 -0.0232 -0.0020 0.4442 

5 0.8748 0.0289 0.0024 0.5114 

10 0.8697 0.0314 0.0033 0.4929 

50 0.7244 0.3579 0.0532 0.7321 

200 0.2207 0.7274 0.3237 0.9402 

1000 0.0205 0.9034 0.6860 0.9900 

2000 0.1176 0.8371 0.6112 0.9636 

5000 0.4411 0.6484 0.4551 0.8927 

10000 0.4066 0.6413 0.2076 0.9019 

20000 0.3689 0.5475 0.0422 0.8536 
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Figure 4-41 below shows the FPFH descriptor point cloud visualisation with the 

corresponding measured differences in the key at the bottom of the figure. Here two 

values of k for the k nearest neighbours are displayed (200 and 1000 respectively). The 

structural change of the rock can clearly be distinguished in both images, with addition 

of the colour change object in the red strap being viable where k is 200.  

 

 

Figure 4-41 - Dataset2 FPFH A) k =200 B) k = 1000 
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4.4.4 SHOT 

This section looks at the results for using the SHOT descriptor as a differentiator between 

the two epochs of data across Dataset 2. Figure 4-42 shows a graph of the TPR-FPR 

performance metric against the number of neighbours used to create a mean differencing 

across various radii. For lower radii the initial peak is seen when the k value is 20 and 

then decreases. The highest performance is seen at a radius of 0.2 and this decreases as 

the radius is decreased. Table 4-30 shows the corresponding data to this graph. 

 

Figure 4-42 Dataset2 SHOT - Graph of TPR – FPR 

 

Table 4-30- Dataset2 SHOT - Table of TPR - FPR metrics 

TPR-FPR Radius 

K nearest  

neighbour 

0.02 0.05 0.1 0.2 0.5 

2 0.0645 0.2222 0.4840 0.5224 0.2815 

5 0.0794 0.2516 0.4354 0.5136 0.4308 

10 0.1455 0.3580 0.5122 0.5792 0.6178 

20 0.1637 0.3966 0.5883 0.6903 0.6650 

50 0.0539 0.3765 0.6394 0.7955 0.6861 

200 0.0489 0.3310 0.6350 0.8035 0.7041 

1000 0.1647 0.3387 0.5573 0.7638 0.6796 
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Figure 4-43 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing across various radii. Here again the initial 

peak is seen when the k value is 20 and then decreases fairly rapidly. Table 4-31 shows 

the corresponding data to this graph. Here it is evident again that maximal performance 

is found at a higher radius value and this is decreases as the radius is decreased.  

 

Figure 4-43 Dataset2 SHOT - Graph of MCC metrics 

 

Table 4-31- Dataset2 SHOT - Table of MCC metrics 

MCC Score Radius 

K nearest  

neighbour 

0.02 0.05 0.1 0.2 0.5 

2 0.0042 0.0135 0.0320 0.0406 0.0217 

5 0.0049 0.0152 0.0290 0.0372 0.0293 

10 0.0095 0.0217 0.0343 0.0458 0.0571 

20 0.0104 0.0239 0.0383 0.0621 0.1078 

50 0.0040 0.0230 0.0433 0.0840 0.0918 

200 0.0030 0.0202 0.0442 0.0744 0.0704 

1000 0.0099 0.0209 0.0386 0.0615 0.0564 
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Figure 4-44 shows a graph of the AuROC performance metric against the number of 

neighbours used to create a mean differencing across various radii. Here again the initial 

peak is seen when the k value is 20 and then levels off in the case of the highest performer 

(radius 0.2). Other radius value seem to decrease in performance more rapidly as k values 

are increased. Table 4-32 shows the corresponding data to this graph. Here it is evident 

again that maximal performance is found at a higher radius value and this is decreases as 

the radius is decreased.  

 

Figure 4-44 Dataset2 SHOT - Graph of AuROC metrics 

 

Table 4-32- Dataset2 SHOT - Table of AuROC metrics 

AuROC Radius 

K nearest  

neighbour 

0.02 0.05 0.1 0.2 0.5 

2 0.5273 0.6299 0.7559 0.7889 0.6762 

5 0.5457 0.6010 0.6967 0.7549 0.7769 

10 0.6013 0.6969 0.7800 0.8350 0.8371 

20 0.5949 0.7312 0.8301 0.8897 0.8614 

50 0.5289 0.7071 0.8389 0.9066 0.8843 

200 0.5009 0.6669 0.8294 0.9071 0.8859 

1000 0.5440 0.6483 0.7956 0.8954 0.8714 
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Figure 4-45 shows a graph of the FPR@90%TRP performance metric against the number 

of neighbours used to create a mean differencing across various radii. Here again the 

initial peak of performance is seen when the k value is 20 and then levels off in the case 

of the highest performer (radius 0.2). Other radius value seem to decrease in performance 

more rapidly as k values are increased. Table 4-33 shows the corresponding data to this 

graph. Here it is evident again that maximal performance is found at a higher radius value 

and this is decreases as the radius is decreased.  

 

Figure 4-45 Dataset2 SHOT - Graph of FPR @ 90% TPR 

 

Table 4-33- Dataset2 SHOT - - Table of FPR @ 90% TPR 

FPR @ 90% TPR Radius 

K nearest  

neighbour 

0.02 0.05 0.1 0.2 0.5 

2 0.9145 0.7313 0.5322 0.5328 0.7011 

5 0.9006 0.7266 0.7524 0.7494 0.4828 

10 0.7721 0.5736 0.4699 0.4434 0.5853 

20 0.7584 0.5050 0.3151 0.2164 0.4468 

50 0.8977 0.5552 0.2668 0.1443 0.2607 

200 0.9225 0.6264 0.2674 0.1370 0.2538 

1000 0.8728 0.6604 0.3519 0.1584 0.2549 
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4.4.5 SHOT Colour 

This section looks at the results for using the SHOT Colour descriptor as a differentiator 

between the two epochs of data across Dataset 2. Figure 4-46 shows a graph of the 

FPR@90%TPR performance metric against the number of neighbours used to create a 

mean differencing with varied radii. Here, instability a low k numbers can be seen and 

then a levelling effect through the rest of the data. The best performance appears to be 

from a radius of 0.5 and 0.2 with decreasing performance as the radius is decreased. Table 

4-34 shows the corresponding data to this graph. 

 

Figure 4-46 Dataset2 SHOT Colour - Graph of FPR @ 90% TPR 
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Table 4-34 – Dataset2 SHOT Colour - Table of FPR @ 90% TPR 

FPR @ 90% 

TPR 

Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

2 1 0.8838 0.6711 0.4532 0.3347 0.2927 

5 1 0.8807 0.7021 0.5611 0.3903 0.2746 

10 1 0.7776 0.5567 0.4433 0.2886 0.2127 

20 1 0.7595 0.4928 0.3075 0.2019 0.1716 

50 1 0.8560 0.5194 0.2581 0.1558 0.1607 

200 1 0.8877 0.5461 0.2399 0.1410 0.1479 

1000 1 0.8265 0.5471 0.2793 0.1693 0.1777 
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Figure 4-47 shows a graph of the TPR-FPR performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect through the rest of the data. The best 

performance appears to be from a radius of 0.5 and 0.2 with decreasing performance as 

the radius is decreased. Table 4-34 shows the corresponding data to this graph. 

 

Figure 4-47 Dataset2 SHOT Colour- Graph of TPR-FPR metrics 

Table 4-35- Dataset2 SHOT Colour- Table of TPR-FPR metrics 

 Radius 

TPR-FPR 0.01 0.02 0.05 0.1 0.2 0.5 

2 0.0179 0.1596 0.3766 0.5210 0.5983 0.6096 

5 0.0178 0.1668 0.3263 0.4589 0.5608 0.6286 

10 0.0179 0.1960 0.3878 0.5307 0.6277 0.6934 

20 0.0179 0.1745 0.4116 0.5948 0.7022 0.7372 

50 0.0178 0.1005 0.4065 0.6531 0.7735 0.7539 

200 0.0178 0.0829 0.3801 0.6822 0.7993 0.7712 

1000 0.0178 0.1644 0.3933 0.6266 0.7438 0.7363 
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Figure 4-48 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect and steady decline in performance. The 

best performance appears to be from a radius of 0.2 with decreasing performance as the 

radius is decreased. Table 4-46 shows the corresponding data to this graph. 

 

Figure 4-48 Dataset2 SHOT Colour- Graph of MCC metrics 

 

Table 4-36- Dataset2 SHOT Colour- Table of MCC metrics 

 Radius 

MCC 0.01 0.02 0.05 0.1 0.2 0.5 

2 0.0047 0.0106 0.0329 0.0509 0.0566 0.0475 

5 0.0047 0.0114 0.0242 0.0332 0.0505 0.0488 

10 0.0049 0.0141 0.0261 0.0423 0.0580 0.0527 

20 0.0048 0.0124 0.0345 0.0576 0.0682 0.0658 

50 0.0049 0.0093 0.0353 0.0547 0.0796 0.0629 

200 0.0049 0.0209 0.0302 0.0507 0.0878 0.0638 

1000 0.0050 0.0100 0.0240 0.0429 0.0798 0.0572 
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Figure 4-49 shows a graph of the AuROC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect and steady decline in performance. The 

best performance appears to be from a radius of 0.5 and 0.2 with decreasing performance 

as the radius is decreased. Table 4-37 shows the corresponding data to this graph. 

 

Figure 4-49 Dataset2 SHOT Colour- Graph of AuROC metrics 

 

Table 4-37- Dataset2 SHOT Colour- Table of AuROC metrics 

AuROC 0.01 0.02 0.05 0.1 0.2 0.5 

2 0.5089 0.5937 0.7485 0.8372 0.8791 0.8730 

5 0.5089 0.5986 0.7182 0.7918 0.8513 0.8812 

10 0.5089 0.6370 0.7606 0.8262 0.8799 0.9005 

20 0.5089 0.6231 0.7649 0.8589 0.9098 0.9121 

50 0.5089 0.5677 0.7384 0.8589 0.9244 0.9128 

200 0.5089 0.5538 0.7235 0.8548 0.9255 0.9153 

1000 0.5089 0.6012 0.7275 0.8344 0.9033 0.9035 
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4.4.6 3DSAC 

This section looks at the results for using the 3DSAC descriptor as a differentiator 

between the two epochs of data across Dataset 2. Figure 4-51 visualises the change 

detection results across varied weighting of colour to structure. Figure 4-51A shows 

100% structural weighting and the structural changes of the rock can be seen very clearly 

with little background noise surrounding it. The colour change in the red strap is much 

harder to recognise here. As colour weighting is increased through the series of images, 

it become much easier to distinguish. This has the adverse effect that the rock becomes 

harder to detect. By analysis of Figure 4-51F where no structural changes are weighted 

in to the calculation, the rock is almost undetectable.  

 

Figure 4-50 - Dataset2 3DSAC Performance Metrics 

Figure 4-50 shows a graph of the performance metrics against the weighting used to create 

a differencing for 3DSAC. Here, the TPR-FPR, MCC and AuROC metrics start very high 

when maximum structural change weighting is defined, with a steady but significant 

decrease as colour is introduced in the place of structure. The MCC stands out a little with 
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a slightly varied performance of which decreases rapidly as more colour in introduced. 

This levels out around the midpoint between structure and colour. FPR@90TPR appears 

to mirror the TPR-FPR metric. Table 4-38 shows the corresponding data to this graph. 

 

Table 4-38 - Dataset2 3DSAC Performance Statistics 

Colour : Structure Ratio Pfa TPR-FPR MCC AuROC 

0.0000 0.0173 0.9007 0.7022 0.9770 

0.0909 0.0222 0.8962 0.7022 0.9739 

0.1667 0.0215 0.8887 0.6551 0.9726 

0.2308 0.0265 0.8749 0.5570 0.9706 

0.2857 0.0417 0.8592 0.4681 0.9680 

0.3333 0.0653 0.8417 0.3976 0.9654 

0.3750 0.0855 0.8245 0.3373 0.9626 

0.4118 0.0952 0.8064 0.2776 0.9600 

0.4444 0.1033 0.7984 0.2291 0.9575 

0.4737 0.1098 0.7925 0.1692 0.9550 

0.5000 0.1146 0.7871 0.1629 0.9529 

0.5263 0.1215 0.7807 0.1583 0.9506 

0.5556 0.1300 0.7716 0.1522 0.9475 

0.5882 0.1402 0.7641 0.1452 0.9440 

0.6250 0.1497 0.7511 0.1376 0.9397 

0.6667 0.1709 0.7353 0.1290 0.9339 

0.7143 0.1997 0.7170 0.1182 0.9261 

0.7692 0.2319 0.6901 0.1039 0.9153 

0.8333 0.2818 0.6524 0.0859 0.8978 

0.9091 0.3840 0.5853 0.0581 0.8632 

1.0000 0.6789 0.3977 0.0581 0.7559 

 

  



Distance 

S 
0 0.25 0.5 0.75 1 

 

141  

 

 

 

 

Figure 4-51 - Dataset2 3DSAC Change Visualisation 

A) 100% Structure 0% Colour B) 100% Structure 40% Colour C) 100% Structure 80% Colour  

D) 80% Structure 100% Colour E) 40% Structure 100% Colour F) 0% Structure 100% Colour 

  

Movement of  

chalk rock Addition of red  

strap object 
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4.5 Dataset 3 

This section covers the results for the applications of each of the algorithms identified for 

change detection in dataset 3. Here both the statistical results and where appropriate 

visualisations are presented. An initial analysis of these results is provided in this results 

section, with further analysis and discussion in Chapter 5. 

As a visual overview of detected change, Figure 4-52 shows each of the following 

descriptors from an equivalent view using a colour map to represent that change: 

• Colour XYZ  

• Euclidean  

• FPFH  

• 3DSAC  

• SHOT  

• SHOT Colour 

The change introduced is most clearly visible in Figure 4-52b and Figure 4-52d 

representing the Euclidean and 3DSAC descriptors respectively. The changes are also 

viable in Figure 4-52a also but less prevalent.  Figure 4-52c enables the visual detection 

of the object with more prevalence than with but shows a much larger area of change. An 

equivalent view of this is also presented in  

Figure 4-53 with a greyscale mapping. Again, this is harder to interpret and the shapes of 

the changes harder to recognise. With this visualisation it is still possible to identify the 

change areas of the scene and it is noticed the change is most easily visually detected 

through Euclidean and 3DSAC techniques. 
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Figure 4-53 - Dataset3 Descriptors with Grayscale Map Visualisation. 

a) Colour XYZ b) Euclidean c)FPFH d)3DSAC e)SHOT f) SHOT Colour 
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4.5.1 Euclidean 

Following the overview, a more comprehensive result set for the Euclidean descriptor is 

given. Figure 4-54 presents a graph of the performance metrics against the number of 

neighbours used to create a mean differencing. The AuROC and TPR-FPR metrics start 

high with a low k number and very slowly gradually decrease in performance as more 

neighbours are introduced. The MCC metric follows a similar trend with a slightly steeper 

gradient and a lower starting position at low k numbers and more rapidly declines after a 

k value of 200. The FPR@90%TPR start off very low and mains this throughout. Table 

4-39 shows the corresponding data to this graph. 

 

Figure 4-54 - Dataset 3 Euclidean - Graph of performance metrics 
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Table 4-39 - Dataset3 Euclidean - Table of performance metrics 

K nearest 

neighbours 

FPR @ 90% TPR 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

1 0.0002 0.9932 0.8899 0.9995 

2 0.0002 0.9932 0.8893 0.9995 

5 0.0002 0.9933 0.8893 0.9995 

10 0.0002 0.9932 0.8898 0.9995 

20 0.0002 0.9933 0.8905 0.9995 

30 0.0002 0.9933 0.8902 0.9995 

40 0.0002 0.9934 0.8901 0.9995 

50 0.0002 0.9934 0.8897 0.9995 

200 0.0002 0.9935 0.8900 0.9993 

1000 0.0054 0.9710 0.7274 0.9967 

 

  



 

147  

4.5.2 Colour 

This section looks at the results for using colour only as a differentiator between the two 

epochs of data across Dataset 3. Here the three descriptors LAB, RGB and XYZ are 

compared with the performance metrics for each of these listed. Table 4-40 shows the 

results for each of these against the chosen metrics. The LAB colour space appears to 

offer the best performance numerically for TPR-FPR, AuROC and FPR@90%TPR. With 

XYZ offering the best performance using the MCC metric. 

Table 4-40 Dataset3 - Colour performance metrics 

K nearest 

neighbours 

FPR @ 90% 

TPR 

(Pfa @ 

90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

LAB 0.0050 0.9341 0.5256 0.9931 

XYZ 0.0066 0.9142 0.5544 0.9872 

RGB 0.0061 0.9008 0.5523 0.9804 
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4.5.3 FPFH 

This section looks at the results for using the FPFH descriptor as a differentiator between 

the two epochs of data across Dataset 3. Figure 4-55 shows a graph of the performance 

metrics against the number of neighbours used to create a mean differencing. Here, the 

TPR-FPR and AuROC rapidly increase but start to level off around at k values of 5000.  

FPR@90TPR seems to remain flat throughout. The MCC metric offers the largest 

discriminator with a rapid increase and levelling off at 5000 but then a steady increase 

again following k values of 10000. Table 4-41 shows the corresponding data to this graph. 

 

Figure 4-55- Dataset3 FPFH - Graph of performance metrics 
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Table 4-41 - Dataset3 FPFH - Table of performance metrics 

K nearest 

neighbours 

FPR @ 90% TPR 

(Pfa @ 90%Pd) 

Max TP Rate - 

FP Rate 

Max MCC Max AuROC 

Curve 

2 0.9020 -0.0958 -0.0117 0.2827 

5 0.9011 0.3984 0.0329 0.7595 

10 0.9007 0.4480 0.0491 0.7860 

50 0.9005 0.5709 0.0645 0.8619 

200 0.9001 0.6870 0.1104 0.9185 

1000 0.8999 0.8571 0.3924 0.9791 

2000 0.8999 0.9151 0.4619 0.9900 

5000 0.8997 0.9837 0.5567 0.9981 

10000 0.8995 0.9937 0.5529 0.9990 

20000 0.4238 0.9900 0.6410 0.9992 
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4.5.4 SHOT 

This section looks at the results for using the SHOT descriptor as a differentiator between 

the two epochs of data across Dataset 3. Figure 4-56 shows a graph of the TPR-FPR 

performance metric against the number of neighbours used to create a mean differencing 

across various radii. For lower radii the initial peak is seen when the k value is 5 and then 

decreases. The highest performance is seen at a radius of 0.5 and this decreases as the 

radius is decreased. Table 4-42 shows the corresponding data to this graph. 

 

Figure 4-56- Dataset3 SHOT - Graph of TPR – FPR performance metrics 

 

Table 4-42- Dataset3 SHOT - Table of TPR - FPR performance metric 

TPR - 

FPR 

Radius 

K nearest 

neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

1 0.0014 0.0070 0.0071 0.0001 0.0690 0.4380 

2 0.0012 0.1937 0.2337 0.2204 0.2572 0.6084 

5 0.0014 0.1951 0.2695 0.3577 0.5760 0.7830 

10 0.0017 0.1153 0.1567 0.3222 0.5719 0.8101 

20 0.0016 0.0837 0.1188 0.3042 0.5668 0.8154 

50 0.0016 0.0754 0.0873 0.2959 0.5671 0.8198 
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Figure 4-57 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing across various radii. For lower radii the 

initial peak is seen when the k value is 5 and then decreases. The highest performance is 

seen at a radius of 0.5 of which is substantially higher performing and this decreases as 

the radius is decreased. Table 4-43 shows the corresponding data to this graph. 

 

Figure 4-57- Dataset3 SHOT - Graph of MCC performance metric 

 

Table 4-43 - Dataset3 SHOT - Table of MCC performance metric 

MCC Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

1 0.0014 0.0010 0.0013 0.0004 0.0065 0.0316 

2 0.0013 0.0144 0.0169 0.0188 0.0242 0.0615 

5 0.0017 0.0142 0.0221 0.0262 0.0438 0.1290 

10 0.0018 0.0084 0.0125 0.0234 0.0437 0.1421 

20 0.0018 0.0061 0.0093 0.0222 0.0442 0.1433 

50 0.0018 0.0054 0.0063 0.0215 0.0444 0.1454 
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Figure 4-58 shows a graph of the AuROC performance metric against the number of 

neighbours used to create a mean differencing across various radii. For lower radii the 

initial peak is seen when the k value is 5 and then decreases. The highest performance is 

seen at a radius of 0.5 of which does not appear to decrease a values of k are increased. 

Table 4-44  shows the corresponding data to this graph. 

 

Figure 4-58- Dataset3 SHOT - Graph of AuROC performance metric 

 

Table 4-44- Dataset3 SHOT - Table of AuROC performance metric 

AuROC Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

1 0.5006 0.4970 0.4070 0.4327 0.5472 0.7603 

2 0.5006 0.6248 0.6531 0.6350 0.6549 0.8789 

5 0.5006 0.6199 0.6347 0.7092 0.8139 0.9195 

10 0.5006 0.5646 0.5503 0.6653 0.8116 0.9249 

20 0.5006 0.5412 0.5206 0.6502 0.8095 0.9261 

50 0.5006 0.5312 0.4968 0.6401 0.8081 0.9275 
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Figure 4-59 shows a graph of the FPR@90%TPR performance metric against the number 

of neighbours used to create a mean differencing across various radii. For lower radii the 

initial peak performance is seen when the k value is 5 and then decreases. The highest 

performance is seen at a radius of 0.5 of which does not appear to decrease a values of k 

are increased. Table 4-45  shows the corresponding data to this graph. 

 

Figure 4-59 Dataset3 SHOT - Graph of FPR @ 90% TPR 

 

Table 4-45 Dataset3 SHOT - Table of FPR @ 90% TRP 

FPR @ 90% TPR 

(Pfa @ 90% Pd) 

Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

1 1 0.898229 0.971949 0.952526 0.855582 0.462469 

2 1 0.728602 0.702432 0.798905 0.841287 0.306041 

5 1 0.775953 0.752093 0.576797 0.328229 0.166929 

10 1 0.851007 0.891636 0.649819 0.329846 0.152497 

20 1 0.871597 0.911171 0.674634 0.334353 0.150022 

50 1 0.878556 0.924186 0.711023 0.333595 0.14547 

 

 



0.9 

0.8 

0.7 
a.
a. 

0.6 
0 

J0.5 

a. 
IL 

0.4 

0.3 

0.2 

OA  
0 

0.01 
0.02 
0.05 

 0.1 
 02 
— 0.5 

100 200 300 400 500 600 700 800 900 1000 
K Nearest Neighbour 

 

154  

4.5.5 SHOT Colour 

This section looks at the results for using the SHOT Colour descriptor as a differentiator 

between the two epochs of data across Dataset 3. Figure 4-60 shows a graph of the 

FPR@90%TPR performance metric against the number of neighbours used to create a 

mean differencing with varied radii. Here, instability a low k numbers can be seen and 

then a levelling effect through the rest of the data. The best performance appears to be 

from a radius of 0.5 with decreasing performance as the radius is decreased. Table 4-46 

shows the corresponding data to this graph. 

 

Figure 4-60 Dataset3 SHOT Colour - Graph of FPR @ 90% TPR 

Table 4-46 Dataset3 SHOT Colour - Table of FPR @ 90% TRP 

FPR @ 90% TPR 

(Pfa @ 90% Pd) 

Radius 

k 0.01 0.02 0.05 0.1 0.2 0.5 

2 1.0000 0.7409 0.7490 0.6932 0.5213 0.1030 

5 1.0000 0.7758 0.7231 0.5560 0.3116 0.1337 

10 1.0000 0.8315 0.8093 0.5830 0.3029 0.1284 

20 1.0000 0.8461 0.8277 0.5979 0.3007 0.1265 

200 1.0000 0.8525 0.8607 0.6355 0.3079 0.1226 

1000 1.0000 0.8452 0.8642 0.6765 0.4016 0.1208 
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Figure 4-61 shows a graph of the TPR-FPR performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect through the rest of the data. The best 

performance appears to be from a radius of 0.5 with level performance throughout 

variance of k values. Table 4-47 shows the corresponding data to this graph. 

 

Figure 4-61- Dataset3 SHOT Colour - Graph of TPR - FPR Performance metric 

 

Table 4-47 - Dataset3 SHOT Colour - Table of TPR - FPR performance metric 

Max TP 

Rate - FP 

Rate 

Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

2 0.0014 0.2220 0.2445 0.3087 0.4436 0.8537 

5 0.0015 0.2069 0.2469 0.3950 0.6031 0.8324 

10 0.0016 0.1467 0.1589 0.3526 0.6074 0.8420 

20 0.0015 0.1346 0.1383 0.3454 0.6083 0.8452 

200 0.0013 0.1393 0.1125 0.3259 0.6042 0.8503 

1000 0.0015 0.1594 0.1097 0.2869 0.5671 0.8517 
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Figure 4-62 shows a graph of the MCC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect through the rest of the data. The best 

performance appears to be from a radius of 0.5 with level performance throughout 

variance of k values. Table 4-48 shows the corresponding data to this graph. 

 

Figure 4-62- Dataset3 SHOT Colour - Graph of MCC performance metric 

 

Table 4-48 - Dataset3 SHOT Colour - Table of MCC performance metric 

MCC Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

2 0.0014 0.0167 0.0207 0.0263 0.0418 0.1587 

5 0.0016 0.0175 0.0237 0.0303 0.0506 0.3114 

10 0.0017 0.0131 0.0185 0.0258 0.0503 0.3291 

20 0.0016 0.0116 0.0143 0.0251 0.0501 0.3289 

200 0.0015 0.0110 0.0097 0.0238 0.0501 0.3349 

1000 0.0016 0.0123 0.0089 0.0208 0.0477 0.3366 
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Figure 4-63 shows a graph of the AuROC performance metric against the number of 

neighbours used to create a mean differencing with varied radii. Here, instability a low k 

numbers can be seen and then a levelling effect through the rest of the data. The best 

performance appears to be from a radius of 0.5 with level performance throughout 

variance of k values. Table 4-49 shows the corresponding data to this graph. 

 

Figure 4-63- Dataset3 SHOT Colour - Graph of AuROC performance metric 

 

Table 4-49 - Dataset3 SHOT Colour - Table of AuROC performance metrics 

AuROC Radius 

K Nearest 

Neighbour 

0.01 0.02 0.05 0.1 0.2 0.5 

2 0.5006 0.6530 0.6694 0.7116 0.7995 0.9623 

5 0.5006 0.6448 0.6469 0.7333 0.8350 0.9392 

10 0.5006 0.6022 0.5942 0.7065 0.8346 0.9415 

20 0.5006 0.5892 0.5766 0.6972 0.8344 0.9421 

200 0.5006 0.5881 0.5553 0.6821 0.8318 0.9434 

1000 0.5006 0.6016 0.5587 0.6629 0.8101 0.9408 
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4.5.6 3DSAC 

This section looks at the results for using the 3DSAC descriptor as a differentiator 

between the two epochs of data across Dataset 3.  

Figure 4-65 visualises the change detection results across varied weighting of colour to 

structure.  

Figure 4-65A shows 100% structural weighting and the changes can be seen clearly with 

little background noise surrounding it. As structural weighting is decreased and colour 

increased throughout the series, the size of the detected change appears to decrease. It is 

also observed there appears to be less noise as the structural weighting is decreased.  

 

 

Figure 4-64 - Dataset3 3DSAC - Graph of performance metrics 
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Table 4-50 - Dataset3 3DSAC - Table of performance metrics 

Ratio of colour 

to structure 

FPR @ 90% 

TPR 

(Pfa @ 

90%Pd) 

Max TP Rate 

- FP Rate 

Max MCC Max AuROC 

Curve 

0.0000 0.0002 0.9932 0.8899 0.9995 

0.0909 0.0002 0.9932 0.8899 0.9995 

0.1670 0.0002 0.9932 0.8899 0.9996 

0.2310 0.0002 0.9932 0.8894 0.9996 

0.2860 0.0002 0.9932 0.8887 0.9996 

0.3330 0.0002 0.9932 0.8882 0.9996 

0.3750 0.0002 0.9930 0.8873 0.9996 

0.4120 0.0002 0.9929 0.8860 0.9997 

0.4440 0.0002 0.9927 0.8822 0.9997 

0.4740 0.0002 0.9926 0.8756 0.9997 

0.5000 0.0003 0.9925 0.8622 0.9997 

0.5260 0.0004 0.9925 0.8440 0.9997 

0.5560 0.0005 0.9925 0.8210 0.9997 

0.5880 0.0006 0.9923 0.7928 0.9996 

0.6250 0.0008 0.9920 0.7569 0.9996 

0.6670 0.0010 0.9920 0.7104 0.9995 

0.7140 0.0013 0.9921 0.6629 0.9994 

0.7690 0.0018 0.9908 0.6102 0.9992 

0.8330 0.0027 0.9846 0.5582 0.9988 

0.9090 0.0044 0.9632 0.5256 0.9979 

1.0000 0.0050 0.9341 0.5256 0.9931 

 

Figure 4-64 shows a graph of the performance metrics against the weighting used to create 

a differencing for 3DSAC. Here, the TPR-FPR, MCC and AuROC metrics start very high 

when maximum structural change weighting is defined. Only the MCC provides a 

discriminator whereby performance drops off as structure weighting is decreased in 

favour of colour.  FPR@90TPR maintains a relatively constant value. Table 4-50 shows 

the corresponding data to this graph. 
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Figure 4-65 - Dataset3 3DSAC - Weighting Changes 

A) 100% Structure 0% Colour B) 100% Structure 40% Colour C) 100% Structure 80% Colour  

D) 80% Structure 100% Colour E) 40% Structure 100% Colour F) 0% Structure 100% Colour 
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4.6 Summary of Results 

Using the performance assessment techniques from Chapter 3, a single value of 

performance is derived from an analysis of measuring descriptor differences. Each of the 

descriptors is listed with its corresponding performance value. Where appropriate, further 

definition of the descriptor parameters are listed next to the descriptor.  

4.6.1 Dataset 1 

Below is a summary of Dataset 1 results (Table 4-51). Each of the descriptors full results 

are found in Section 4.3. A comprehensive analysis is detailed in Chapter 5. 

Table 4-51 - Dataset 1 summary of performance results 

Dataset 1-  

Descriptors 

FPR @ 90% 

TPR 
Max TPR- 

FPR Max MCC 

Max 

AuROC 

Curve 

Colour 
XYZ 0.4331 0.4878 0.1814 0.8260 

LAB 0.6958 0.4468 0.1694 0.7756 

PFH k = 200 0.7179 0.3766 0.2122 0.7451 

FPFH k = 20000 0.0042 0.9495 0.8301 0.9957 

PCE k = 1000 0.8731 0.0425 0.0119 0.5233 

SHOT 

k=2 

radius = 

0.5 

0.1193 0.8513 0.2908 0.9126 

SHOT 

Colour 

k=2 

radius = 

0.5 

0.1483 0.7652 0.2509 0.9091 

Euclidean k = 40 0.0011 0.9774 0.9158 0.9994 

3DSAC 0% colour 0.0010 0.9866 0.9202 0.9995 

 

The highlighted yellow cell for SHOT Colour Max AuROC curve has one slightly higher 

performance value when using a k value of 50. This gives a max AuROC curve of 0.9169, 

a 0.8% increase. It can be seen from these results that the most performant descriptor in 

this scenario is the 3DSAC technique (highlighted green). Across all metrics this offers 

the highest performance. Conversely the PCE technique offers the lowest performance 

across all the metrics.  
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4.6.2 Dataset 2 

Below is a summary of Dataset 2 results (Table 4-52). Each of the descriptors full results 

are found in Section 4.4 

Table 4-52 - Dataset 2 summary of performance results 

Dataset 2-  

Descriptors 

FPR @ 90% 

TPR 
Max TPR- 

FPR Max MCC 

Max 

AuROC 

Curve 

Colour 
XYZ 0.3318 0.6288 0.194 0.9002 

LAB 0.6789 0.3977 0.0581 0.7559 

FPFH k = 1000 0.0205 0.9034 0.686 0.99 

SHOT 
k=200 

radius =0.5 0.137 0.8035 0.1078 0.9071 

SHOT 

Colour 

k=200 

radius =0.5 0.141 0.7993 0.0878 0.9255 

Euclidean k = 20 0.0139 0.9054 0.7032 0.9799 

3DSAC 0% colour 0.0173 0.9007 0.7022 0.9770 

 

Here it can be seen that the Euclidean technique to change detection is most performant 

in three of the four metrics in this scenario. Only FPFH exceeds this in the AuROC 

metric but is noticeably less performant in the MCC metric. The 3DSAC method 

closely matches the Euclidean metric while using 0% colour. Further analysis and 

discussion of this is detailed in Chapter 5. 
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4.6.3 Dataset 3 

Below is a summary of Dataset 3 results. Each of the descriptors full results are found in 

Section 4.5 

Table 4-53 - Dataset 3 summary of performance results 

Dataset 3-  

Descriptors 

FPR @ 90% 

TPR 

Max TPR- 

FPR 
Max MCC 

Max 

AuROC 

Curve 

Colour 
XYZ 0.0066 0.9142 0.5544 0.9872 

LAB 0.005 0.9341 0.5256 0.9931 

FPFH k = 20000 0.4238 0.99 0.641 0.9992 

SHOT 
k=50 

radius= 0.5 
0.14547 0.8198 0.1454 0.9275 

SHOT 

Colour 

k=2 

radius= 0.5 
0.103 0.8537 0.1587 0.9623 

Euclidean k=20 0.0002 0.9933 0.8905 0.9995 

3DSAC 0.167 0.0002 0.9932 0.8899 0.9996 

 

Note: Highlighted cell for SHOT Colour Max MCC in results shows a significant outlier. 

It is noted performance for this single k nearest neighbour value is substantially lower. 

Where k = 5, Max MCC = 0.3114. Figure 4-62 shows this outlier graphically.  

The most performant descriptor in this scenario is through a Euclidean methodology 

(highlighted green). It achieves the best performance across three of the four metrics (one 

joint with 3DSAC). And hence the 3DSAC method offers the best performance when 

measured across two of the four metrics. Further analysis and discussion of this is detailed 

in Chapter 5. 
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Analysis and Discussion 

This chapter analyses the results described in Chapter 4 to give a fuller understanding of 

their compositions and discusses their relevance.  

First, each dataset is discussed and how this links back to the original aims in creating a 

scenario. An exhaustive list of each of the descriptors performance is analysed in isolation 

and any observations made. The analysis takes into consideration both the quantitative 

and qualitative assessments of the data.  

Following this the results are globally discussed in full with a critical analysis and detail 

what has been learned regarding the technique proposed.  
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5.1 Analysis 

The analysis section of this chapter reviews each of the descriptors in isolation to make 

observations through quantitative analysis and makes a qualitative analysis of their 

visualisation. The multi-coloured map is used for the primary analysis and will form the 

main point for qualitative discussion.  

5.1.1 Dataset 1 

Dataset 1 contains a scene with a circa 1.5% change introduced. Through a robust and 

rigorous truth derivation, and error to the real truth was estimated to be 1.48%. It is noted 

this is an over estimation of the magnitude of change, hence would result in the slight 

underperformance of a change detection measured against this. This noted, it will be 

consistent across all cases of change detection technique. This is deemed as acceptable to 

enable a valid performance assessment of any of those techniques and to enable a 

comparative analysis.  

The change is split across two distinct and separated articles, a non-uniform hole and a 

partially buried spade. The hole presents a highly challenging scenario due to the lack of 

change in colour that would traditionally be the main source to discriminate between 

images. This presents a good scenario to display why 3D change detection is highly 

relevant in aerial imagery. The dominant change in this image is structural change. This 

can be seen in the colour results whereby the statistics of performance measurement are 

less than favourable.  

This scenario fulfils the first scenario aim of: 

 Scene changes with complex and non-uniform structural change and very little 

change in colour. 

By looking at the summary of results in Table 4-51, the single best change detection 

technique by quantitative analysis is the 3DSAC algorithm closely followed by 

Euclidean. The 3DSAC method outperformed all other methods across all the metrics 

considered for performance assessment. The difference in using a Euclidean Squared 
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distance measurement over a Euclidean distance offers a performance increase in this 

scenario and by visual inspection there is a lot less noisy small magnitude change 

scattered around the scene. The only other descriptors suitable for detecting change in 

this scenario is the FPFH algorithm and the Colour based description, both performing 

well enough for positive visual change detection and reasonable statistical performance 

measures.   

The summary of results show that the MCC metric provides a single performance value 

of 0.8301 for FPFH, 0.9158 for Euclidean and 0.9202 for 3DSAC. The area under the 

ROC curves provides 0.9957, 0.9994 and 0.9995 respectively. TPR-FPR provides 0.9495, 

0.9774 and 0.9866 respectively. Significantly, the MCC metric provides a key 

discriminator in the performance of the methodologies, where the other metrics provide 

a validation of this. Their marginal difference between Euclidean, 3DSAC and the FPFH 

values does not discriminate such a large difference in performance.  

Colour 

This section looks at the results for using colour only as a differentiator between the two 

epochs of data across Dataset 1. Here the three descriptors LAB, RGB and XYZ are 

compared with the performance metrics for each of these listed in the results section.   

By visual inspection though the visualisation of the point cloud ( 

Figure 4-17), the hole appears to be less prominent in all 3 of the colour spaces. This is 

expected due to the lack of change in colour. One observation here is that the overturned 

and slightly damper sand that has split over the edge of the spade whilst moving the sand 

is what is mainly detected, other than the spade itself. This is particularly interesting as it 

further points that the lack of colour change in this section of the imagery. The spade 

object is well detected across all three colour spaces. Thresholding of the change down 

to the largest 15,000 points shows a difference in the density of the points attributed to 

being change. Here, the RGB colour space functions the worst across all but one statistic, 

the FPR @ 90% TPR. The best performer across all categories is the XYZ colour space, 

contrary to previous research detailed in a review of literature, but with a lack of colour 

change in the scene this should be negated.  
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Euclidean 

The Euclidean difference of the two epochs provides a very high performance technique 

to measure the change in this scenario. The highest performing metrics of the algorithms 

are split across values of 10 to 50 nearest neighbours, with 40 neighbours achieving the 

best performance. The MCC gives the discriminator with highest variance to provide a 

performance measurement.  

PFH 

The performance statistics from PFH are less than favourable. It was found when 

processing, very large computation times limited the ability to process the data, taking 3 

days to complete the calculations when using 200 nearest neighbours. While the 

performance can be seen to have a positive trend as more neighbours are used, the returns 

from taking this long to compute are minimal. The further use of the PFH algorithm was 

abandoned at this stage in favour of the FPFH algorithm.  

FPFH 

The FPFH algorithm picked up where the PFH algorithm left off. Its optimised 

computational efficiency allowed for many more neighbours to be considered, and in fact 

its performance at the same levels of neighbours outperformed the PFH algorithm at all 

values above a k value of 5. This further validates the decision to revoke the PFH 

descriptor for change detection in other datasets. Above k of 200 the algorithm started to 

perform much better, with the FRP @ 90% TRP dropping off allow more of the noise to 

be filtered out, and hence the other metrics showing it performing more favourably. The 

best performance was found at very large k values. One visual observation is that the 

change detected appears to be focussed around changing contours in the image, and areas 

where there is a higher surface roughness. 

PCE 

The PCE algorithm produced a poor discriminator for change in this scenario. A 

consistent high probability of false alarm with low probability of detection produced an 

almost random ability to detect change. The MCC score hover around the 0 mark, and the 

AuROC curve around 0.5, showing that it is no better at finding change than it is at not 
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finding it. Computation time was also very expensive for this algorithm, and by visual 

analysis of Figure 4-21 the chance can be seen to be grouped around the larger contours 

of the dataset. The algorithm is designed to describe principal curvatures, and hence this 

holds true. From this first dataset, it is evident that this would not be a good candidate for 

change detection in the application of aerial imagery. For this reason, this was not taken 

forward for the other datasets.  

SHOT 

Performance of the SHOT algorithm as a change detector was poor in this scenario. Two 

variables were varied to try and push performance out of the algorithm, and a matrix of 

these changes produced. The input parameters to the algorithm allow the radius of the 

sphere of comprehension to be specified, and this was varied with the number of nearest 

neighbours included in this computation. Initial experimentation found a radius of about 

0.5 became impracticable for computation times, taking up to 2 days per scenario. 

Fortunately by this size, and while there is a positive trend in performance across all 

metrics with increase in radius, the performance appeared to have settled with little more 

to gain from the algorithm. The best performance was found at a radius of 0.5. 

Visualisation of the change in Figure 4-27 shows an interesting distribution of detected 

change. When filtered to the largest change, it appears to have mainly detected this around 

contours of the large true change. This is a feature rich area following the implemented 

change in comparison to the flat relatively featureless sand.  

SHOT Colour 

The SHOT Colour algorithm performs very similarly to the SHOT algorithm, with a 

slightly decreased performance. It is believed this is due to the nature of the change 

introduced having limited colour change.  

3DSAC 

At its extremes of either being only structure or colour, the 3DSAC algorithm performs 

very similarly to either the structure or colour algorithms on their own as expected. As 

the ratio of colour is increased and structure decreased, there is a gradual reduction in 

performance as per the disparity between the two individual algorithms. More 
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interestingly, by visual inspection of the change visualisation, both changes of the hole 

and the spade can distinctly be seen, with best results around 20%-40% colour. While this 

cannot be recognised statistically, by visual inspection this appears to offer the best 

chance of an analyst detecting changes. Figure 4-33A provides a visual representation of 

the change without any thresholding. Here, it can be observed that the detected change is 

focused on the hole, which subsequently is the largest structural change from the scene. 

The much larger change in this appears to flood the change from the spade and any 

minimal spillage of sand in the transfer between the hole dug and the mound created.  

 

5.1.2 Dataset 2 

Dataset 2 contains a scene with a circa 0.1% change introduced. Through a robust and 

rigorous truth derivation, and error to the real truth was estimated to be 0.87%. It is noted 

this is an under estimation of the magnitude of change, hence would result in the slight 

over performance of a change detection measured against this. That being said, this is 

equivalent across all the technique deployed in this scenario.  

The change is split across two distinct and separated articles, the movement of a chalk 

rock amongst other chalk rocks, and the additional placement of a red strap. The rock 

presents a highly challenging scenario with minimal change in colour to the scene, it 

would be almost impossible to detect this by normal visual inspection. The introduction 

of the red strap shows a distinct colour change, while representing little structural change.  

This scenario fulfils the original aim of: 

 Scene changes with combinations of structural changes and colour changes. 

The single best change detection technique by quantitative analysis in this dataset is using 

a standard Euclidean distance with 3DSAC closely following second (with 0% colour 

weighting). Again, the only other descriptor suitable for detecting change in this scenario 

is the FPFH algorithm, scoring acceptably well as a change detection method with all the 

performance metrics.  
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The summary of results show that the MCC metric provides a single performance value 

of 0.686 for FPFH, 0.7032 for Euclidean and 0.7022 for 3DSAC. The area under the ROC 

curves provides 0.99, 0.9799 and 0.9770 respectively. TPR-FPR provides 0.9034, 0.9054 

and 0.9007 respectively. Again, the MCC metric provides a key and significant 

discriminator in the performance of the methodologies.  

Colour 

Within the colour techniques, the LAB colour space functions the worst across all but one 

statistic, the FPR @ 90% TPR. Across the other three performance metrics, LAB 

performs considerably worse. The best performer across all categories again is the XYZ 

colour space. By visual inspection, all seem to pick up the structural change and colour 

change, with CIE and RGB appearing to detect the red colour change better than XYZ.  

Euclidean 

The Euclidean difference of the two epochs again provides a very high performance 

technique to measure the change in this scenario. The highest performing metrics of the 

algorithms are split across the k = 2 to 20 of nearest neighbours, with a linear decease in 

performance after this. The MCC appears to give the best discriminator to provide a 

performance measurement, again with the best performer being k=2 nearest neighbours.  

Figure 4-51 provides a visual representation of the change without any thresholding. 

Here, it can be observed that the detected change is focused on the moved chalk rock, 

which subsequently is the largest structural change from the scene. The minimal structural 

change in the additional object is all but negated showing the limitations of using just 

structure for change detection. 

FPFH 

In dataset 2, the FPFH algorithm presents an acceptable change detection technique 

statistically. By visual analysis it can be seen to discriminate change clearly, although 

many other background features are also considered to be small but significant change. 

Visual analysis in Figure 4-41 of k=200 and k=1000 values show an interesting change 

in detecting the two objects well at k=200 but seems to get seduced onto the larger 

structural change in k=1000. As this descriptor takes only structure into consideration, 
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this follows the trend of the small structural change that this object represents, and hence 

the data is skewed towards that of the larger structural change. 

SHOT 

In dataset 2, the SHOT algorithm again offers a poor performance at detecting true 

change.  

SHOT Colour 

SHOT Colour presents a poor technique for detecting change in this scenario, and 

interestingly offers a worse performance than normal SHOT without colour 

consideration. Visual inspection does show some grouping of larger change value around 

the true change, but there is so much other change of similar magnitude that it cannot 

discriminate this.  

3DSAC 

In dataset 2 the 3DSAC algorithm performed best with using maximum (100%) weighting 

toward only structure (i.e. negating colour). It can be seen by visual inspection of the 

change visualisation that the colour change from the strap object is not detected very 

prominently when only Euclidean differencing is taken (i.e. 0 colour) and as the colour 

ratio is increased it becomes more visible. At its extreme where only colour is present in 

the algorithm, the structural change is difficult to detect. Again, a change value of around 

20-40% offers an additional visually interpreted advantage over pure Euclidean change. 

After this, the performance metrics can be seen to slope off and reduce to a less favourable 

method. Its overall performance is very slightly less than that of Euclidean.  
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5.1.3 Dataset 3 

Dataset 3 contains a scene with a circa 1.3% change introduced. Through a robust and 

rigorous truth derivation, and error to the real truth was estimated to be 1.06%. It is noted 

that this is an under estimation of the number of points and hence the estimated truth 

model is estimated to have less points that that of the real change. As the case in Dataset 

2, this would result in the over performance of any change detection technique that is 

applied to this scenario. This is consistent across all the implementation and hence would 

present equal opportunities for performance analysis.  

 

In this scenario, a single change in made whereby a plastic liner is moved within the ditch. 

This offers a higher colour change in comparison to its background with the plastic liner 

being white. The challenge here is that there is minimal structural change, only the 

movement of a thin sheet of which is nestled within the ditch; also some photos gave an 

occluded view of this due to the contour of the ground further reducing the structural 

change ability.  

This scenario fulfils the original aim of: 

 Scene changes with very little structural change but changes in colour.  

The best change detection technique by quantitative analysis is split between standard 

Euclidean method and 3DSAC (16% Colour) techniques. With 3SAC having a higher 

AuROC metric but lower in MCC. Notably the colour descriptors perform much better in 

this scenario and offer an acceptable visual inspection method for change detection. FPFH 

again scores the next best after the Euclidean and 3DSAC methods.  

The summary of results show that the MCC metric provides a single performance value 

of 0.641 for FPFH, 0.8905 for Euclidean and 0.8899 for 3DSAC. The area under the ROC 

curves provides 0.9992, 0.9995 and 0.9996 respectively. TPR-FPR provides 0.99, 0.9933 

and 0.9932 respectively. Again, the MCC metric provides a key and significant 

discriminator in the performance of the methodologies.  
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Colour 

In dataset 3, the Colour algorithm performs much better than in the other two scenarios. 

This can be attributed to the nature of the change that was introduced as colour is the 

dominant change in the scene. By visual analysis, not much difference can be seen by eye 

between Colour and the Euclidean based structural descriptors.  

Euclidean 

The Euclidean algorithm performs very favourably, keeping false positive low and 

detecting most if not all of the change most of the time. The highest performance is found 

with a k value of 20 and is the best performing method when MCC is taken into 

consideration.  

FPFH 

FPFH statistically proves an acceptable method for detecting change, but at its worst 

across the three scenarios. By visual analysis, it is possible to discriminate the change but 

many artefacts are present and is not immediately clear.  

SHOT 

The SHOT descriptor again performs poorly, not presenting a suitable method to detect 

change.  This can be also said for visual analysis using this technique.  

SHOT Colour 

The SHOT Colour descriptor offers a poor performance in dataset3 is very similar to that 

seen in dataset1, and outperforming dataset2.  

3DSAC 

This is the first scenario whereby the 3DSAC performs its best using a colour weighting. 

This runs true with the scenario aim, and validates this property of the descriptor 

quantitatively. The maximum AuROC is marginally higher than Euclidean distance, and 

by visual inspection the difference between 3DSAC and Euclidean is indistinguishable.  
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5.2 Discussion 

One of the first things noticed from visual inspection of the colour change imagery in 

dataset 1 is that the overturned wet sand (and hence change in colour) was detected. This 

detected change was not accounted for in the creation of truth dataset and presents a flaw 

in the performance analysis metric, adversely effecting any performance figures. While 

the surface disruption was minimal, this was still enough to effect the colour results in a 

negative way. The primary aim for this dataset was to investigate a scene whereby there 

was minimal colour change with a dominant structural change. It is most likely why the 

3DSAC algorithms best performance did not introduce any colour at all in this scenario, 

utilising only its structural change capability. While the colour descriptors with colour 

elements to their calculation (All 3 colour spaces, 3DSAC colour weighting and SHOT 

Colour) would have been adversely effected, the difference in Euclidean and Euclidean 

squared performance was found. It is evident that the Euclidean squared method within 

the 3DSAC change description technique provides a better solution, both by visual 

analysis of Figure 4-13 and by the all the performance metrics. The 3DSAC algorithm 

out performed all the other change detection techniques, with a marginal but measurable 

performance increase over Euclidean change in this scenario.  

Between dataset1 and dataset2, there was an inherent expectation to have been an increase 

in colour change detection performance due to the scenario aim. In reality, performance 

increase was marginal, with relatively very low performance in comparison to using a 

Euclidean structural based descriptor. It is believed the more dominant structural change 

in this scene could have adversely affected the performance measurement of colour within 

all the colour utilising descriptors. The performance of using colour is much better in 

dataset3 and validates that colour is reactive to the scenario aims of introducing colour 

change. Colour on its own still represents a poor method for discriminating change in 3D 

point clouds, but in conjunction with structural change measured with Euclidean distance 

as per 3DSAC, a performance advantage can be found in both qualitative visual 

inspection and by statistical quantitative analysis.  
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Euclidean distance offers an excellent method for detecting and discriminating change, 

and performs consistently across all three scenarios. Its performance can be increased by 

varying the number of nearest neighbours and taking the mean distance. This acts to 

smooth the effect of outliers and surface variation brought around by point clouds in the 

SfM process.  

A notable point in the performance analysis of 3DSAC is that only the nearest neighbour 

was considered. This is a flaw in the experimentation, and should be perused to enhance 

performance as validated by ever other descriptor throughout this research. Where the 

3DSAC method was outperformed by standard Euclidean distance, the difference is 

highly marginal and it believed these would be exceeded by the 3DSAC method.  

Statistically the descriptors calculated many millions of points and their performances 

were consistent. Across the datasets there is little variation, and where there is variation 

is explained by the aims of the research with the exception of colour performing worse 

once more colour change was introduced in dataset 2.  

On an end to end statistical analysis, only 3 datasets were evaluated and this is a limitation 

in this research. The planning of flights to capture data and then process it is considerable, 

this and the prohibitively expensive processing times of the SHOT descriptors made even 

more difficult to end to more scenarios. That being said, the consistency of the descriptors 

give a good evaluation of the methods presented.   

MCC offers best the discriminator in the performance analysis of chance detection, and 

statistics alone not enough to prove that one is better than the other, a visual analysis 

element is also required.  

It is evident through these results that the large computational costs in describing points 

for the purpose of change detection are impractical and also do not present any 

performance advantage. 
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Conclusions and Further Work 

This section provides a review of the objectives set out in the introduction of this research 

and presents conclusions regarding these and any other notable points discovered through 

the research. Following this, the limitations are discussed and additional follow on work 

is discussed. 

6.1 Conclusions  

Chapter 1 defined a set of seven objectives and these will now be discussed. 

Some of these are simple in nature and require little discussion, while some of the more 

key ones that formed the contribution to research (these being Objective 5, 6 and 7).  

Objective 1: Develop realistic scenarios of challenging dynamic environments.   

This research presented three realistic scenarios as follows: 

 Scene changes with complex and non-uniform structural change and very little 

change in colour. 

 Scene changes with combinations of structural changes and colour changes. 

 Scene changes with very little structural change but changes in colour.  

Through careful planning, each of these scenarios successfully presented challenging 

environments to detect change. The scenario development was a strong element of this 

research as it was crucial to validate performance assessment and provided an effective 

discriminator. Some additional considerations of this are discussed for further work.  
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Objective 2: Process 2D captured data into accurate 3D data that can be used efficiently 

to allow accurate change detection. 

2D imagery was processed into 3D date in form of point clouds. As this is a current 

research topic in its own right and would require vast resource to develop a comparable 

technique, this was performed using COTS software. Photoscan was down selected by 

analysis of literature and was a suitable tool to achieve this. The models produced by this 

were of good quality and to a high fidelity.   

Objective 3: Accurately define ground truth models to enable performance assessments.  

Ground truth models were created by developing a robust and meticulous method to 

derive them. Through this it was possible to estimate the truth and the error in this. This 

provided credence to any of the experimentation and the errors measured were 

sufficiently low enough and understood. In retrospect, it could be possible to use a Lidar 

scanner to gather this information. This would present the object of change at a higher 

fidelity than the model but would most likely face similar challenges to separate this from 

the background scene.  

Objective 4: Develop or propose a change detection process and framework. 

For this research, a change detection process was developed that enabled the descriptors 

to be modularly inserted to perform their activities. It was also possible to use a synthetic 

dataset for development of the framework and pipelines which was also modular and 

swappable with real world data.  

Objective 5: Develop a novel change detection technique that utilises 3D structure and 

Colour.  

A simple mean Euclidean distance spread over between 20-50 nearest neighbours 

sometimes offers the best change detection technique when purely discussing structural 

change, but in reality this is not the case as colour change is always present. The 

tuneability of the 3DSAC algorithm allows the variability to introduce more or less colour 

change weighting. It is seen in every example that the 3DSAC algorithm offered an extra 

level of detection awareness over only using the Euclidean method. It offers the end user 

the ability to tune this to tailor suit the scenario or scene. This increase in performance 

over just structural change detection, or just colour change detection, however small, 
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could provide the difference when detecting critical changes such as when on search and 

rescue missions or detecting nefarious activities.  

Objective 6: Propose a technique to quantitatively and qualitatively detect change  

The quantitative detection of change is inherent of the processing framework whereby a 

simple thresholding technique to discriminate between change and non-change was 

implemented.  This enabled the techniques quantify change and present this as a detection 

or to be discarded. Further, a visualisation technique was presented which allowed 

qualitative assessment. This proved very useful and helped understand the algorithms far 

beyond that of pure quantitative assessments.  

Objective 7: Compare, contrast and critique the novel technique to other state of the art 

descriptors 

This research provides an evaluation of some of the most prominent 3D descriptors across 

three challenging scenarios. It proposes the use of colour as well as structure to achieve 

3D change detection from 2D aerial imagery. The research uses a multitude of techniques 

to analyse and measure the performance of each descriptor with the proposed 3DSAC 

algorithm providing the best solution for visual inspection while also maintaining a high 

statistical probability for detecting though the use of only filters or thresholding.  

While many of the other 3D descriptors achieve a sometimes reasonable performance and 

can detect the change, they are not suited over change detection. PFH, FPFH, PCE, SHOT 

and SHOT Colour are not suitable for use as change descriptors in the case of aerial 

imagery.  Changes in dynamic environments are best measured using structural 

differencing techniques, and colour can be used to enhance this.  

 

6.2 Limitations 

As raised in the discussion, a limitation of this research is that only three datasets have 

been implemented. These scenarios are quite open rural environments with limited 
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occlusion to objects. It’s likely that if this was in an urban environment there would be 

much more occlusion. This is a limitation mainly around the data gathering, whereby if 

access was provided to view an area, the 3D model of that could be produced.  

The scenes these show short term temporal differences in a controlled environment. It is 

likely that in a real world environment, there could be many more changes and could 

flood the change detection process. This research has been limited to those controlled 

situations where only relatively minimal change has been introduced. The methodology 

should show the relative change and hence small change in the presence of much large 

changing scenes could be lost among the noise.  

6.3 Further Work 

The work in this paper could be continued to by extending the 3DSAC technique to use 

k nearest neighbours to achieve the performance enhancements shown using other 

descriptors in this research. It is strongly anticipated this would give 3DSAC a hands 

down advantage over all the other change detection techniques in the application of point 

to point change comparison in aerial imagery.  

Furthermore, more experimentation should be continued to give a second validation 

between only Euclidean, 3DSAC and FPFH methods.  

Testing in different environments such as urban spaces would present a different use case, 

but limitations in data gathering under CAP722 make this difficult. With the more 

uniform shapes in urban environments, it is expected that structural change detection to 

be more efficient where suitable models can be created.  

Scenes with more change in the number of objects and the disparity between object sizes 

would test the different techniques ability to discriminate between these and the 

background noise.  

Also testing with larger seasonal change would present an interesting research topic and 

would raise new and different considerations using the methods discussed in this paper. 
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The change of vegetation and lighting conditions would add many more variations, and 

would be more challenging for detecting a salient change.  

Currently there is a human in the loop to look at the change detected to understand this 

and to make decisions upon that information. In an age of increasing AI complexity, an 

understanding of the change could be explored, to identify and recognise the objects that 

have changed. Further to this, the system would be able to resolve if the change is of 

interest and make any future decisions on it, such as supplementary analysis or by 

performing an action.   

Machine learning would also be an interesting follow on work whereby the algorithms 

could be optimised to find their absolute ultimate performances and hence further 

understand their performance envelopes.  
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