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Abstract: High mass loading (ca. 30 mg/cm2) electrodes were prepared with carbon recovered
from catalytic methane cracking (MC). As-fabricated supercapacitors displayed 74% of capacitance
retention from 6 mA/cm2 to 60 mA/cm2 and a Ragone plot’s slope of −7 Wh/kW (compared
to 42% and −31 Wh/kW, respectively, for high mass loading devices fabricated with commercial
carbon). The high-rate capability of the MC-recovered carbon is attributed to the presence of carbon
black and carbon nanotubes produced during the reaction, which likely increased the electronic and
ionic conductivity within the electrode. These results suggest that the by-product of this hydrogen
generation route might be a suitable active material for supercapacitors.

Keywords: supercapacitors; carbon nanotubes; porous nanocarbon-based electrodes; methane crack-
ing; rate capability; electrochemistry; electrochemical impedance spectroscopy

1. Introduction

To avoid unreversible climate change, the IPCC has recently stressed the need to
urgently decarbonize our society [1]. This has renewed the interest in hydrogen as a clean
energy vector [2]. However, ca. 97% of the hydrogen is currently obtained via steam
methane reforming, which is a CO2-emitting process [3]. Catalytic methane cracking (or
“methane pyrolysis”) does not present this problem since, in the absence of oxygen, the only
by-product is solid carbon [4]. However, for this particular H2 generation route to become
a bridge to the hydrogen economy [5], it is important to find a suitable application for the
large amounts of solid carbon that will be generated as a by-product upon this technology’s
upscaling. If all the hydrogen generated in the world in 2020 (ca. 90 Mt) had been obtained
via methane cracking, ca. 45 Mt of solid carbon would have been produced (and, to meet
the goal of net zero emissions by 2050, this figure should double until 2030) [6].

Supercapacitors, an energy storage technology with a growing demand for high-power
applications, could be an interesting route for draining this by-product, since carbon is the
main component of their electrodes [7]. The features of the carbon obtained upon catalytic
methane cracking depend on the reaction parameters (e.g., temperature) and on the nature
of the catalyst (which is used in order to bring down the reaction temperature) [8,9]. Carbon-
based catalysts appear to favor the formation of carbon black, whilst metal oxide-based
catalysts have been shown to generate carbon nanotubes (CNT) more often [10]. Either
way, both carbon black and CNTs are useful additives for carbon-based supercapacitor
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electrodes: both enhance electrical conductivity [11], and the latter also facilitates ionic
transport within the electrodes [12].

These improvements are particularly relevant for thick electrodes, where the increased
impedance usually precludes an effective utilization of all the theoretically active mass,
especially when working at high current densities [13] (Figure 1).
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results, the gravimetric performance of commercial supercapacitors is evaluated for the 
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upon the conversion process. Similarly, Krishnamoorthy et al. [18] fabricated 
supercapacitors from the spent catalyst of MDR, and the symmetric device (carbon-coated 
siloxane/Ni foam electrodes in 1M of TEABF4) demonstrated a good rate capability but 
also a lower specific capacitance (ca. 25 F/g). Notwithstanding, in both cases, although the 
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toxic [19]. Moreover, the supercapacitors fabricated with the reactions’ waste carbon had 
low mass loadings, and thus, their performances are hardly comparable to those of 
commercial devices.  

Figure 1. Schematic variation of the electrolyte-accessible region with the current density for low—
(a,b)—and high—(c,d)—mass loading electrodes. z1 and z2 are the thicknesses of the low and high
mass loading electrodes (z2 > z1). tL and tH are the charging times at low and at high current densities
(tL > tH). x(tL) and x(tH) are the electrolyte penetration depths enabled by charging times tL and tH,
(x(tL) > x(tH)).

As a result, the specific capacitance of the as-fabricated cells is smaller and, at high
rates, their energy density is low because of the large fraction of “dead weight” [14]. Due
to these problems, most widely published studies resort to electrodes with very low mass
loadings (<5 mg/cm2) and reach artificially high performances, which do not reflect the
behavior that the material would display in a commercial device [15]. Industries typically
use high mass loading electrodes (ca. 10 mg/cm2) since, unlike the literature-reported
results, the gravimetric performance of commercial supercapacitors is evaluated for the
whole device (i.e., including the masses of the current collector, separator, casing, etc.) [16],
and thus, if the active material’s mass were too low (compared to the overall mass), the
gravimetric performance would be unacceptable. In a nutshell, low mass loadings lead
to low energy and power densities in commercial devices, but high mass loadings do not
allow for high energy densities at high power densities. Using the nanocarbons-enriched
by-product of methane cracking (MC) in thick supercapacitor electrodes could increase
their ionic and electronic conductivities and thus circumvent this impasse.

Some authors have already explored the capabilities of the carbon derived from a
methane-to-hydrogen conversion process as an active material for supercapacitor electrodes.
Zhang et al. [17] employed a charcoal-supported K2CO3 catalyst to obtain syngas (H2 and
CO) by methane dry reforming (MDR) and used the waste carbon as a supercapacitor
material. The device, which worked with a KOH electrolyte, achieved a remarkable specific
capacitance of 133 F/g @ 1 A/g, attributed to the carbon fibers formed upon the conversion
process. Similarly, Krishnamoorthy et al. [18] fabricated supercapacitors from the spent
catalyst of MDR, and the symmetric device (carbon-coated siloxane/Ni foam electrodes in
1M of TEABF4) demonstrated a good rate capability but also a lower specific capacitance
(ca. 25 F/g). Notwithstanding, in both cases, although the hydrogen generation did not
release any greenhouse gases, it emitted CO, which is highly toxic [19]. Moreover, the
supercapacitors fabricated with the reactions’ waste carbon had low mass loadings, and
thus, their performances are hardly comparable to those of commercial devices.

Herein, we report that ultra-high mass loading supercapacitors (ca. 30 mg/cm2)
fabricated with MC-recovered carbon from a clean and non-toxic H2 generation route
achieved, at high current densities, a higher performance than analogous devices prepared
with commercial carbon.
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2. Results and Discussion

Figure 2 shows a micrograph, taken at a×10,000 magnification, for the carbon collected
after the MC, where long filaments corresponding to carbon nanotubes wrapped around
smaller particles (possibly carbon black) are visible.
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Figure 2. MC-recovered carbon at ×10,000. The yellow marks identify filaments corresponding to
some of the longest CNTs, wrapped around smaller particles, possibly carbon black, also obtained
during MC.

Figure 3 shows, both for commercial carbon and for MC-recovered carbon, voltam-
mograms obtained at increasing scan rates (Figure 3a,b, respectively) and galvanostatic
charge–discharge curves obtained at increasing current densities (Figure 3c,d, respectively).
At low rates, the voltammograms of commercial carbon (Figure 3a) are fairly rectangular
and have a larger area; however, as the scan rate increases, their shape approaches that of
an elongated ellipse (suggesting a high resistivity). Similarly, the charge–discharge curves
show that whilst, at low current densities, commercial carbon cells have a longer (dis)charge
period (which indicates a higher capacitance), their performance decreases rapidly with
increasing current densities (resulting in large ohmic drops). On the contrary, the cells
prepared with MC-recovered carbon manage to retain highly rectangular voltammograms
(even at 100 mV/s), and their charge–discharge plots have consistently lower ohmic drops.
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Figure 3. Voltammograms obtained at increasing scan rates for the commercial carbon (a) and for
the MC-recovered carbon (b) and galvanostatic charge–discharges obtained at increasing current
densities for the commercial carbon (c) and for the MC-recovered carbon (d).
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Figure 4 shows almost the same information represented in Figure 3, but enhancing
the results obtained exclusively at very high rates (which are the ones that matter the most
in this context). Comparing the two plots in Figure 4a, it becomes clear that only the cells
fabricated with the MC-recovered carbon manage to retain a good capacitive behavior at
high scan rates (100 mV/s). This is also demonstrated in Figure 4b, where the “fill factors”
represent how close the voltammograms are to an ideal rectangle.
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Figure 4. (a) Voltammograms at 100 mV/s (voltammograms at 100 mV/s for all the cells are provided
in the ESI), (b) “Fill Factors” at increasing scan rates, (c) galvanostatic charge–discharge plots at ca.
60 mA/cm2 and (d) ohmic drops at increasing current densities obtained for cells fabricated with
MC-recovered carbon (green) and commercial carbon (black).

These results suggest an enhanced electric and ionic conductivity, also supported by
the lower ohmic drop at extremely high current densities (Figure 4c,d). However, it is
still quite high. This can be attributed to the ultra-high mass loadings (most literature-
reported supercapacitor electrodes have mass loadings of <2 mg/cm2 [20], whilst these have
30 mg/cm2) combined with the usage of an ultra-high current density. It is worth noting
that supercapacitors are usually not tested above 50 mA/cm2 (when high gravimetric
current densities are reported, these are often due to very low mass loadings).

Figure 5 shows impedance measurements and respective fittings.
As shown in Figure 5, the data are well fitted to the equivalent electric circuit shown

in the inset (similar to those used by Köps et al. [21] and Dsoke et al. [22]). Circuit fitting is
not a straightforward task, and it often requires a trial-and-error approach. An equivalent
electric circuit should be sophisticated enough to simulate the real behavior of the system
as accurately as possible but also simple enough to remain intelligible and to enable the
attribution of some physical meaning to its components.

The physical meaning of an impedance measurement is deeply tied to the frequency
at which it was collected. Since each frequency is associated with a certain rate of
charge/discharge, which, in turn, enables a certain level of ionic penetration within the
electrode, the set of generated impedances provides information about different parts of
the electrode|electrolyte system.
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Figure 5. Nyquist plots (solid lines) and respective fittings (dashed) obtained with the equivalent
electric circuit shown in the inset for cells fabricated with MC-recovered carbon (green) and with
commercial carbon (black). The Nyquist plots and respective fitting parameters of all the cells are
provided in the ESI.

At ultrahigh frequencies (>50 kHz), the supercapacitor behaves basically as a resistor
(R1). This resistance (often called “series resistance”, since it is mostly the result of extrinsic
contributions) includes not only the wiring and ohmic junctions (e.g., the contact resistance
between the crocodile clips and the cell’s terminals) but also the resistivity of the bulk
electrolyte [21]. At lower—but still high—frequencies (between 100 Hz and 50 kHz), the
Nyquist plot of the device shows approximately a semi-circle.

This behavior is usually modeled by a capacitor in parallel with a resistor (R2) [23].
Since, at these high frequencies, the ions are still not allowed enough time to diffuse
deep within the electrode, only the outmost pores (directly in contact with the electrolyte)
contribute to capacitance, and thus, the obtained values are typically a few orders of
magnitude below the nominal capacitance. Under these conditions, the formation of the
double-layer is mostly limited by the mobility of the electrons within the electrode. R2
is thus mainly influenced by the thickness of the electrode and by its overall resistivity,
which, in turn, is affected by the conductivities of the carbon particles and by the contact
resistances between adjacent grains and between these and the current collector [22]. CNTs
(and carbon black as well) are significantly more conducting than activated carbon, and
thus, their presence in the MC-recovered carbon likely explains the large reduction in R2
(0.6 Ω vs. 3.4 Ω, as displayed in Table 1).

Table 1. Fitting parameters obtained for the equivalent electric circuits of the cells prepared with
MC-recovered carbon and with commercial carbon.

MC-Recovered Commercial
ca

R1 (Ω) 1.8 1.5
R2 (Ω) 0.6 3.4

CPE (sN/Ω) 8.0 × 10−5 2.1 × 10−5

N 0.9 0.9
W (
√

s/ Ω) 0.36 0.29
R3 (Ω) 1.9 2.1
C (F) 1.1 1.6

As for the “capacitor” in parallel with R2, given the imperfect nature of the double-
layer, it is actually more accurately modeled by a constant phase element (CPE). This
circuit component has two features: its magnitude and its dispersion coefficient (N). The
latter varies between 0 and 1: for N = 0, the element behaves like a perfect resistor, whilst,
for N = 1, it behaves like a perfect capacitor [24]. In this case, N is quite high (N = 0.9),
meaning that the magnitude of the CPE (in this case, represented as an admittance) can be
roughly correlated with a capacitance. Because the magnitude of the CPE is larger for the
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MC-recovered carbon than for the commercial carbon, this suggests that the former has a
higher capacitance at high frequencies (which further confirms the higher rate capability of
this material).

At intermediate frequencies (typically between 100 Hz and 100 mHz), there is a
transition regime which is diffusion-controlled. This behavior is often modeled by a
Warburg element (W). However, because the Warburg element assumes that the diffusion
process can be considered semi-infinite [25] (which is true for some pores but not for others),
adding a resistance in parallel with this element (R3) significantly improves the quality
of the fitting by accounting for the large heterogeneity of time responses. In other words,
while some ions are still freely diffusing across the electrodes, at the same time, others
have already “hit pore walls” (i.e., are already in a bounded-diffusion regime, which is
characteristic of the capacitive behavior). As the frequency decreases, more and more ions
will have enough time to reach the diffusion boundaries and thus present a capacitive
behavior (represented as a nearly vertical line in the Nyquist plot). The fact that R3 is
slightly lower for the MC-recovered carbon than for the commercial carbon suggests that
the transition to the capacitive behavior is easier in the former. This enhanced transport
might also be caused by CNTs acting as “ionic highways” and shortening the diffusion
pathway. The maximum capacitance (obtained at ultra-low frequencies, at around 40 mHz)
is, however, smaller for the MC-recovered carbon than for the commercial carbon. This is
aligned with the results shown in Figure 6a.
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for supercapacitors fabricated with MC-recovered carbon (green) and commercial carbon (black).
Individual CVs can be inspected in the ESI. The inset figure shows the slopes of the Ragone plots
obtained for each cell, and the equations in each plot represent the average trendline of each type
of cell.

Figure 6a shows the average areal capacitances obtained at several current densities
for the symmetric coin cells fabricated with the two types of carbon.

MC-recovered carbon presents a lower areal capacitance (and a lower energy density)
at low current densities, suggesting a lower SSA (confirmed by BET measurements—
Figure S3). The fact that this carbon also contains CNTs (whose specific surface area is
lower than that of activated carbon [26]) and some fragments of quartz wool (which were
used in the inlet and outlet of the furnace and in the MC setup and unintentionally made
their way into the MC-recovered carbon) probably accounts for the lower SSA.

These SiO2 fibers (which could not be completely filtered out from the MC-recovered
carbon) do not contribute to capacitance and thus only count as “dead weight”, hence
bringing down the overall capacitance of the device. Nevertheless, it is worth stressing that
the behavior at high current densities is the most relevant for supercapacitors since these
are expected to work at high rates. Within this range (where the ions are allowed less time
to reach the inner parts of the electrode), the MC-recovered carbon devices outperform
the commercial carbon ones. Moreover, the MC-recovered carbon has a 74% capacitance
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retention from 6 mA/cm2 to 60 mA/cm2 (compared to only 42% for commercial carbon).
In other words, for the device fabricated with commercial carbon, a significant percentage
of its surface area is inaccessible to the electrolyte at high rates, and thus, its performance
becomes unacceptable. MC-recovered carbon devices, however, are still performing at
167 mA/cm2.

The results observed in Figure 6a are reinforced in Figure 6b, which compares the
Ragone plots obtained for the two types of devices. Due to a decrease in the capacitance and
to an increase in the ohmic drop, the energy and power densities of the commercial carbon
device are highly degraded at high rates (the slope of the Ragone plot is −31 Wh/kW). For
MC-recovered carbon, good performance is retained at high rates (the Ragone plot’s slope
is only −7 Wh/kW). This metric is useful in comparing the performances of devices with
similar thicknesses [27]. However, for devices with very different mass loadings (which is
often the case when comparing literature-reported results), it is preferable to compare the
areal capacitances at increasing current densities, as shown in Figure 7. It is worth stressing
that all the areal capacitances reported were normalized by the footprint area (i.e., not by
the BET surface area).
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Among similar devices, MC-recovered carbon is in the top three (despite being, unlike
the others, a non-optimized material that contains SiO2 fibers). This superior rate capability
at high mass loadings can probably be explained both by the additional conductive carbon
black particles (resulting from MC) and by the presence of carbon nanotubes. Indeed, these
appear to have a diameter of ca. 50 nm (which is ca. 50× larger than the size of the solvated
ions) and thus may act as “highways”, enabling fast ionic transport into the inner parts of
the electrode.

3. Materials and Methods
3.1. Methane Cracking

The MC has been performed in a fluidized bed reactor in an oxygen-free environment,
at 850 ◦C, using an iron-based catalyst and commercial activated carbon as a support, at
an inlet flow rate of 12.5 mL/min. Quartz wool was used at the inlet and outlet of the
furnace. Due to the limited size of the reactor, two runs had to be performed to obtain
enough carbon for the supercapacitor electrodes.

The carbon recovered from MC contained the methane-derived carbon, the carbon-
supported catalyst and also some quartz wool fibers (which could not be completely filtered
out). In each run, the loading of commercial carbon was ca. 4.5 g, and, since the reaction was
performed for ca. 6 h, at an average conversion efficiency of 90%, the average contribution



Inorganics 2023, 11, 316 8 of 11

of methane-derived carbon to the total amount of carbon was estimated to be ca. 33% (i.e.,
approximately 2.2 g of by-product carbon would be produced per run), as detailed in ESI.

To investigate the morphology of the carbon generated upon methane cracking, the
powder was placed on conductive carbon tape on top of aluminum stubs, and the electrical
conductivity of the sample was further improved with a sputter-coated mixture of Au–
Pd. Scanning electron micrographs (SEM) were recorded with a Field Emission Scanning
Electron Microscope, JSM-7800F (by JEOL), at 5 kV in vacuum.

3.2. Electrodes and Coin Cells Preparation

Since the MC-recovered carbon contained some agglomerates, it was further ground
with a mortar and pestle until roughly uniformly sized particles were observable by eye
and then incorporated into a slurry with the following composition: 92.5 wt% of carbon,
5 wt% of PTFE (60 wt% dispersion in water from Sigma Aldrich, UK) and 2.5 wt% of carbon
black (Super C65). The carbon, binder and conductive additive were dispersed in ethanol
(20 mL per gram of dry mixture) and then further mixed for ca. 20 min, using a three-roll
mill (EXAKT 50 I), at the maximum speed (500 rpm).

For comparison, a similar slurry was prepared with commercial supercapacitor-grade
carbon (YP-50F, Kuraray) instead of the MC-recovered carbon. Each slurry was then rolled
into a film with a ca. 600 µm thickness—this was the maximum thickness that could
be achieved while preserving the mechanical integrity of the electrode without having
to increase the binder content. Several identical circles with a 16 mm diameter were
cut out of each film, and then the electrodes were dried overnight in an oven at 115 ◦C.
All the electrodes were weighed, and an average mass loading of 30 ± 3.5 mg/cm2 (1σ)
was determined.

The active surface area of both electrode types (commercial and MC-based) was
estimated by N2 adsorption measurements performed on a Gemini VII 2390 p Series (Mi-
cromeritics), within a set of relative pressures ranging between 0.05 and 0.25 and at an evac-
uation rate of 133 kPa/min. Just before the measurements, the electrodes were degassed
at 300 ◦C for 8 h, using a Micromeritics FlowPrep 060 Sample Degas System, and then
weighed. The specific surface areas of the materials were calculated using the Brunauer–
Emmett–Teller (BET) isotherm. These measurements revealed, for the commercial- and
MC-based electrodes, a Specific Surface Area (SSA) of 1224 ± 30 m2/g and 496 ± 7 m2/g,
respectively (Figures S3–S5, ESI).

3.3. Electrochemical Measurements

Electrochemical measurements were carried out in symmetric CR2032 coin cells (fab-
ricated with the free-standing electrodes soaked in 1 M TEABF4 in acetonitrile), using a
Metrohm-Autolab potentiostat/galvanostat (PGSTAT302N) controlled by NOVA 2.1 soft-
ware. To minimize contact resistances in the system, the connection of the cells’ terminals
to the instrument was reinforced with copper tape. The cells were first stabilized by cycling
voltammetry, with 60 wetting cycles performed at 30 mV/s between 0 and 2.5 V. Next,
each cell was tested within this same range at varying scan rates (5–100 mV/s), and then
galvanostatic charge–discharge tests were carried out (also from 0 to 2.5 V) at several
current densities (0.1–2.5 A/g). Only the 10th voltammogram/charge–discharge cycle
was considered in the calculations. Finally, the cells were also tested by potentiostatic
electrochemical impedance spectroscopy (EIS), at 0 V, with a 10 mV amplitude, from 1 MHz
to 40 mHz.

The capacitance of each cell C [F], the specific capacitance of the material Csp [F/g],
the areal capacitance Ca [F/cm2], the energy density Esp[Wh/kg] and the power density
Psp[kW/kg] during galvanostatic discharge were calculated, respectively, via Equations
(1)–(5):

C =
i∆t
∆V

(1)
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Csp =
4C
m

(2)

Ca =
C
A

(3)

Esp =
0.5C∆V2

3.6m
(4)

Psp =
3.6Esp

∆t
(5)

where i is the (constant) value of the discharging current, ∆t is the discharge time, ∆V is the
difference between the cell voltage at the end and in the beginning of the discharge (after
the voltage drop), m (in g) is the total mass of both electrodes (i.e., considering carbon and
the binder) and A is the footprint area of the cell (ca. 2 cm2). The “fill factors” (FF) were
obtained with Equation (6):

FF =

∫ tf
t0

i(t)dV(t)

∆V(imax − imin)
(6)

where t0 and tf are, respectively, the instant when the cycle begins and that when it finishes;
i is the instantaneous current and dV is the voltage step (which depends on the scan rate
and which is positive in the forward sweep and negative in the backwards sweep) and imax
and imin are, respectively, the maximum and the minimum currents recorded during the
cyclic voltammetry.

4. Conclusions

Methane cracking is an attractive route for obtaining hydrogen since, besides hav-
ing a lower standard reaction enthalpy than hydrogen combustion (38 kJ/mol of H2
against 286 kJ/mol, respectively [35]), its only by-product is solid carbon. This work has
demonstrated that this by-product may be a suitable active material for high mass loading
supercapacitors operating at high current densities. High mass loading supercapacitors
(ca. 30 mg/cm2) prepared with this carbon showed a high rate capability: 74% of capaci-
tance retention from 6 mA/cm2 to 60 mA/cm2 and a Ragone plot’s slope of −7 Wh/kW
(compared to 42% and −31 Wh/kW, respectively, for high mass loading devices fabricated
with commercial carbon). These promising preliminary results are attributed to carbon
nanotubes (resulting from the MC process), which, despite their relatively low surface area,
may facilitate the charge transport within the electrode. However, this hypothesis should be
further confirmed. One possible way to do this would be to add the same amount of CNTs
to the commercial carbon and assess whether the performance would be comparable to that
of the MC-recovered carbon. Also, very importantly, the suitability of this by-product as a
supercapacitor material should be confirmed, in the future, with cyclability tests. Moreover,
a new furnace design is required to avoid the usage of quartz wool (since it negatively af-
fects the performance of MC-recovered carbon). In case this proves technically challenging
and in case it remains impossible to completely filter out these unintended fibers, these
might be tentatively dissolved (using, for instance, HF/HNO3 [36]). Furthermore, the
MC parameters (reaction time, flow rate, catalyst loading and composition, surface area
of the carbon support, etc.) could be optimized to tailor the properties of the generated
carbon nanotubes (e.g., length, diameter) to enable the fabrication of supercapacitors with
even better performances. Studies of devices with commercial-like mass loadings are
currently in significant demand by the energy storage manufacturing sector (e.g., electric
vehicles) [37], and thus, in the future, it would be interesting to study a range of different
mass loadings and assess their impact on the capacitive performance of cells prepared with
this MC-recovered carbon.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics11080316/s1, Figure S1: Cyclic voltammograms
at 100 mV/s obtained for supercapacitors fabricated with MC-recovered carbon (a–c) and with
commercial activated carbon (d–f). The tables on the right show the areal and gravimetric capacitance
obtained for each cell. Figure S2: Nyquist plots (solid) and respective fittings (dashed) obtained
for MC-recovered (a,b) and commercial carbon (c–e). The inset table contains the resultant fitting
values for the equivalent circuit elements (see Figure 4). Figure S3: Adsorption isotherms obtained for
commercial (black) and MC-recovered (green) carbon electrodes. Figure S4: Pore area distribution for
commercial (black) and MC-recovered (green) carbon electrodes. Figure S5: Pore volume distribution
for commercial (black) and MC-recovered (green) carbon electrodes.
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