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Three-Dimensional Guidance Method with Course Modification

for Altitude Shaping in Endoatmospheric Interception

Namhoon Cho

Abstract

This study presents a three-dimensional guidance law for the interception of an endoatmospheric

target. The proposed method takes an empirical design approach which first specifies the structure of the

lateral acceleration command as that of a linear optimal guidance law for zero-effort-miss nullifcation.

Then, the direction of pursuit and the guidance gain are designed in accordance with the physical under-

standings of the motion characteristics of an aerodynamically-controlled interceptor. More specifically,

the proposed method induces an intentional increase in the flight altitude around the initial phase while

respecting the maximum altitude constraint, all of which are realised through modification of the desired

flight path angle in the vertical plane. The proposed guidance method does not rely on explicit definition

of design elements such as engagement planes, guidance phases, complicated time-to-go estimation, and

waypoints. Moreover, the proposed design approach of modifying the desired course based on the collision

courses naturally facilitates smooth handover to the terminal phase near the collision condition. Numerical

simulation shows that the proposed guidance method is effective in intercepting a nonmanoeuvring target

over a wide range of engagement conditions to the target in comparison to the existing guidance laws

developed for homing and midcourse flight.

Index Terms

course modification, final speed, guidance, interception, three-dimensional

I. INTRODUCTION

The intention behind the observed motion of a flying object like aircraft that can manoeuvre in both

longitudinal and lateral directions cannot be perfectly known in a non-cooperative setting. For this reason,

aerodynamically-controlled missiles for interception of endoatmospheric aircraft targets should be able

to perform a large manoeuvre that exceeds the manoeuvre capability of the target in the terminal homing

Namhoon Cho is with the Centre for Autonomous and Cyber-Physical Systems, School of Aerospace, Transport and

Manufacturing, Cranfield University, Cranfield, MK43 0AL, Bedfordshire, United Kingdom. e-mail: nhcho91@gmail.com

h.binning
Text Box
IEEE Transactions on Aerospace and Electronic Systems, Volume 59, Issue 6, December 2023, pp. 9775-9791
DOI: 10.1109/TAES.2023.3296566


h.binning
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works




2

phase. This is necessary to cancel out the effect of imperfect target trajectory prediction in the midcourse

phase and to form an advantageous engagement geometry. In these respects, increasing the final speed

of an interceptor is generally accepted as desirable for increasing the kill probability even in the case of

the target performing manoeuvres.

The flight time is relatively long for long-range anti-air missiles that should counteract targets ap-

proaching from far distances. Large errors are unavoidable in the predicted trajectories of the missile

and the target for the time-to-go that are necessary to accurately compute the ideal collision course at

each instance. This is because the prediction error accumulates over time in proportion to the length

of the prediction horizon and the amount of speed change experienced by the missile throughout the

boost and glide phases is quite significant. Therefore, it is not reasonable to apply various guidance laws

developed mainly for the terminal homing situation by leveraging finite-horizon linear quadratic optimal

error regulation formulations to the midcourse phase of a long-range flight. Many different engineering

approximations can be introduced to reduce the trajectory prediction error and to obtain closed-form

expressions for the integrals such as time-to-go that appear in the prediction equations. However, the

design complexity of approximate solution methods is high while the expected performance is hardly

good enough due to the accumulated effect of nonlinear models of thrust, aerodynamics, and atmosphere.

In summary, accurate prediction of the impact point is very difficult if the duration of the flight is long.

Trajectory prediction using numerical integration at each instance is not realistic. Also, convexification-

based online trajectory optimisation still requires more research on its reliability.

Maintaining the altitude at a high level where the air density is low enough for reducing drag is

desirable to increase the final speed of endoatmospheric interceptors. However, the maximum altitude

should be limited under a specified ceiling since aerodynamic control becomes ineffective due to the thin

air at altitudes higher than about 30km above the ground. One possible strategy for the design of the

midcourse guidance algorithm is to place a waypoint at the point of maximum altitude below the ceiling

and set the desired incidence direction to be parallel to the ground surface. However, this methodology

requires a massive offline trajectory optimisation process to compute the waypoint as a table indexed

by the position of the predicted impact point (PIP). Also, the offline trajectory optimisation needs to be

repeated whenever the model data for missile dynamics is updated.

Various approaches have been developed to address the midcourse guidance problem, especially for

anti-air missiles. Characteristics of the optimal trajectories depending on the choice of performance index

and the distance to the target were examined in [1]. A heuristic design approach that entails the manoeuvre

pattern to deliberately increase the altitude considering the aerodynamic effects was investigated in [2]–

[8]. The issues arising from the trajectory prediction error implicit in the basic proportional navigation
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guidance law (PNG) were addressed. Singular perturbation control approach was applied to the midcourse

guidance problem in [9]–[11]. The analytical design of kappa guidance laws based on simplifying

approximations and the linear optimal control theory was presented in [12], [13]. Optimal-control-based

midcourse guidance laws were also studied in [14]–[17] without considering the physical dependencies of

aerodynamics on flight altitude. More recently, methods for maximisation of final speed were developed

in [18] based on online sequential convex programming and in [19] based on the combination of offline

trajectory optimisation and waypoint guidance for online implementation.

Design of a midcourse guidance algorithm that is suitable for long-range anti-air missiles is challenging

because of the necessity to address multiple requirements at the same time. First, the complexities in

predicting impact points for a target located at a long distance from the launch position demand to avoid

too heavy dependence on the highly uncertain PIP. Second, the difficulties in generating closed-loop

trajectory that maintains high-altitude cruising in the middle without exceeding the maximum altitude

limit, intercepts the target at the final time, and promotes higher final speed demand to have a separate

control over altitude. Lastly, computationally efficient and simple algorithm is much preferred in practice.

To the best of author’s knowledge, an algorithm taking all of the above requirements into account

is hardly found in the open literature. The guidance laws based on zero-effort-miss formulation and

optimal control such as those presented in [3], [4], [8], [12]–[15] provide analytical expression for the

lateral acceleration command which is desirable for implementation and verification. However, most of

the midcourse guidance methods introduced above rely on an externally supplied PIP for their operation.

Regarding the shaping of altitude, Sec. VII-B in [3] discussed an idea for vertical-axis control to meet a

given maximum altitude with the zero-effort trajectory. However, the idea cannot be applied identically

as a means to limit the altitude to other methods that perform vertical manoeuvres to increase the flight

path angle in the initial phase instead of tracking the zero-effort trajectory. Also, the section on “Modified

Guidance Formulation” in [4] described a guidance law that introduces an additional flight path angle

with respect to the so-called generalised collision course as a heuristic for increasing the final speed.

However, the guidance law was developed without considering satisfaction of the maximum altitude limit.

With this background, this study aims to devise a guidance method which can deal with multiple

aspects of the long-range midcourse guidance problem for moving target interception. More specifically,

this study places emphasis on the following design considerations:

• Generation of a curved path in vertical plane with altitude shaping to increase final speed

• Generation of a near-straight path in horizontal plane to reduce flight time for greater final speed

• Satisfaction of a maximum altitude limit to avoid loss of aerodynamic control effectiveness

• Independence from explicit specification of manoeuvre plane, guidance phases, and waypoints
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• Applicability to a wide range of flight distances

• Applicability to vertical launch condition

• Smooth switching of manoeuvre strategy to the PNG

The main contribution of this study is to present a simple three-dimensional guidance law that can

be applied to a wide range of engagement conditions for long-range anti-air missiles. The proposed

approach exploits the command structure similar to that of linear optimal guidance laws for zero-effort-

miss nullification. The specific novelty of the proposed approach lies at the combination of heuristic

modifications introduced into the design of the vertical course correction algorithm for altitude shaping

and the feedback gain. The modification considers the trajectory characteristics of aerodynamically-

controlled interceptors. The desired course direction is updated at each instance in the vertical plane by

modifying the ideal collision course computed using a simplified kinematic model, e.g., constant velocity

model. Also, the proposed method is structured so that the modified desired course direction gradually

approaches the ideal collision course as the trajectory prediction horizon becomes short enough to validate

the modelling approximation. It does not demand the interceptor to follow the ideal collision course from

the beginning of long-distance midcourse guidance phase.

Overall, the proposed method is more reasonably understood as a practical approach that involves

empirical/heuristic design choices rather than as a result of theoretically rigorous design. It is intended

to achieve certain balance between many requirements. This study presents a numerical experiment

for different initial positions and headings of the target to validate the proposed method. A three-

dimensional point-mass dynamics model introducing the angular velocity of lift acceleration is used

to provide sufficient fidelity to assess the performance of three-dimensional guidance laws. The test case

of the simulation also includes comparison of the proposed method with the pure PNG and the course

modification guidance law of [4].

II. GUIDANCE METHOD

This section presents a three-dimensional guidance law based on the pursuit of the desired flight

direction vector. The desired flight direction vector for the midcourse phase is constructed by computation

of the ideal collision course followed by modification of the desired vertical flight path angle to allow

for the objective of increasing final speed as well as the maximum altitude limit. Lateral acceleration

command is then generated in the direction to align the current missile velocity vector with the desired

flight direction vector.
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Fig. 1. Definition of Coordinate System and Variables for Three-Dimensional Point-Mass Model

A. Problem Formulation and Basic Concepts

Consider the coordinate system and the variables defined as shown in Fig. 1. The ground-fixed

coordinate system follows the East-North-Up convention, and the flat earth model is considered for

simplicity of guidance law design and performance analysis. Subscripts M and T refer to the missile

and the target, respectively. Also, V , γ, and χ denote speed, vertical flight path angle, and horizontal

flight path angle, respectively.

The real aircraft target performs longitudinal/lateral manoeuvres as needed to avoid dangers or to fulfil

its mission. However, it is impossible to perfectly identify the intention behind the manoeuvre of a non-

cooperative target. For the aircraft propelled by an air-breathing engine, cruising speed variation is not

large and the range of possible variation in the velocity direction appears to be approximately symmetric

with respect to the velocity. In this sense, the trajectory predicted by assuming that the aircraft target does

not perform lateral manoeuvre can be roughly viewed as an average of all possible predicted trajectories.

Hence, this study assumes a constant velocity motion model for target trajectory prediction.

The kinematic equations for the motion of the missile and target can be described as

ṙM = vM

v̇M = aM = −c (t)vM + uM + g

ṙT = vT

v̇T = 0

(1)

In Eq. (1), r, v, and a represent position, velocity, and acceleration vectors, respectively, and the overdot
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notation indicates the derivative with respect to time t. The term −c (t)vM represents the component of

acceleration vector due to thrust and drag which is parallel with vM , uM denotes the lateral acceleration

command that should be achieved by generating lift which is perpendicular to vM , and g is the constant

gravitational acceleration.

Integrating the second row of Eq. (1) from the current instance t to some final moment τ yields

vM (τ) = ϕ (τ, t)vM (t) +

∫ τ

t

ϕ (τ, ξ) (uM (ξ) + g) dξ (2)

where

ϕ (τ, t) = exp

[

−

∫ τ

t

c (η) dη

]

(3)

Substitution of Eq. (2) into the first row of Eq. (1) followed by integration from the current instance t

to some final moment tf gives

rM (tf ) = rM (t) +

∫ tf

t

vM (τ) dτ

= rM (t) +

∫ tf

t

[

ϕ (τ, t)vM (t) +

∫ τ

t

ϕ (τ, ξ) (uM (ξ) + g) dξ

]

dτ

= rM (t) +

∫ tf

t

ϕ (τ, t) dτvM (t) +

∫ tf

t

∫ τ

t

ϕ (τ, ξ) dξdτg +

∫ tf

t

∫ τ

t

ϕ (τ, ξ)uM (ξ) dξdτ

(4)

Integrating the third row of Eq. (1) from the current instance t to some final moment tf considering

nonmanoeuvring target model with constant vT yields

rT (tf ) = rT (t) + vT tgo (5)

where tgo := tf − t. By defining the relative position of the target with respect to the missile which

is often called the line-of-sight vector as r = rT − rM , the relative position at tf corresponds to the

interception error and it can be written as

r (tf ) = r (t) + vT tgo −

∫ tf

t

ϕ (τ, t) dτvM (t)−

∫ tf

t

∫ τ

t

ϕ (τ, ξ) dξdτg −

∫ tf

t

∫ τ

t

ϕ (τ, ξ)uM (ξ) dξdτ

(6)

The interception error that will be attained when the missile does not perform any manoeuvre for

course correction during the time interval [t, tf ] corresponds to the zero-effort-miss (ZEM). The ZEM

vector z (t) defined with respect to the prediction at the instance t is the r (tf ) obtained by substituting

uM = 0 in Eq. (6), which can be expressed as

z (t) = r (t) + vT tgo −

∫ tf

t

ϕ (τ, t) dτvM (t)−

∫ tf

t

∫ τ

t

ϕ (τ, ξ) dξdτg (7)

The ideal collision course is defined as the direction of missile velocity calculated at each instance t

along which the missile can intercept the target at tf without accelerating in the lateral direction to
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perform path correction manoeuvres. Provided that all other variables remain fixed, the ideal collision

course vector at t can be obtained by finding the missile velocity that nullifies the ZEM vector as

vICC (t) =
r (t) + vT tgo −

∫ tf
t

∫ τ

t
ϕ (τ, ξ) dξdτg

∫ tf
t

ϕ (τ, t) dτ
(8)

B. Design of Guidance Law Based on Approximations

From this point onward, the design approach will introduce rough approximations and simplifications

considering the physical response characteristics rather than adhering to the theoretical rigour to prioritise

the achievement of the guidance objectives.

1) Consideration of Speed Variation: Although g in Eq. (1) has a component in the direction parallel

to vM , neglecting its presence leads to an approximate relation given by c (t) ≈ − V̇M

VM
. Note that the

same approximation was employed in [4]. With this approximation, the following relation also holds.

ϕ (τ, t) ≈ exp

[

−

∫ τ

t

−
dVM (η) /dη

VM (η)
dη

]

= exp

[∫ τ

t

dVM (η)

VM (η)

]

=
VM (τ)

VM (t)
(9)

Let us define the time average of the missile speed for the interval [t, tf ] as

V̄M (t) =
1

tgo

∫ tf

t

VM (τ) dτ (10)

The definite integral of ϕ (·, ·) which is necessary to evaluate Eq. (8) can be obtained by leveraging the

integration of Eq. (9) along with Eq. (9) as

∫ tf

t

ϕ (τ, t) dτ ≈
1

VM (t)

∫ tf

t

VM (τ) dτ =
V̄M (t)

VM (t)
tgo (11)

By substituting Eq. (11) into Eq. (8) and neglecting the effect of gravitational acceleration, the collision

course corresponding to the straight-line flight model for the predicted missile motion can be obtained

as

vSCC (t) =
r (t) + vT tgo

V̄M (t)
VM (t) tgo

(12)

Solving the equality condition given by ∥vSCC (t)∥ = VM (t) for tgo leads to the following relation.

tgoSCC
=

vT · r (t) +
√

(vT · r (t))2 +
(

V̄ 2
M (t)− V 2

T

)

∥r (t)∥2

V̄ 2
M (t)− V 2

T

(13)

The speed change due to thrust and drag can be estimated with explicit numerical integration using

the dynamic model information. However, repeating online prediction of the trajectory until the final

time at each guidance command update cycle demands a substantial amount of computation. Also, the

integration error accumulates over time in any case when the length of the prediction horizon is long

because of the long distance to the true target that can perform manoeuvres. As a consequence, in the
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case of an unpredictably manoeuvring aircraft target, the performance in terms of interception error will

not always be improved even if the speed of the missile can be predicted accurately. In this regard, online

computation of the average future speed V̄M (t) at each instance is impractical.

Meanwhile, it is desirable for the long-range anti-air missiles to fly along a near-straight course on

the horizontal plane before the seeker can capture the target. This requirement is motivated from the

viewpoint of energy management to reduce the amount of flight time and the horizontal manoeuvre. It

is well-known that the straight line collision course obtained by assuming constant velocity motion for

both the target and the missile, i.e., the model which verifies V̄M (t) = VM (t), corresponds to the ideal

collision course of the PNG. If the PNG that considers the true target as the aiming point is applied as

the horizontal guidance algorithm from the beginning of the midcourse phase, the horizontal path flown

by the missile will be a curve if the speed of the missile varies over time even if the true velocity of

the target is constant. By considering a pre-computed PIP as a virtual stationary target in the horizontal

guidance algorithm before switching over to the homing phase, the path from the launch point to the

PIP may appear to be close to a straight line on the horizontal plane. However, this design approach

relies on the computation of the PIP for a wide range of engagement conditions. Also, the missile cannot

accurately achieve a favourable engagement geometry for homing guidance at the end of the midcourse

phase if the pre-computed PIP involves large discrepancies from the actual target motion.

In summary, physically consistent determination of V̄M that enters into Eq. (13) by viewing it as one of

the design parameters instead of the accurate value for the average future speed will suffice the purpose

of generating a near-straight horizontal course toward a nonmanoeuvring target during the majority of the

midcourse phase. To this end, one possible approach is to set V̄M (t) to be a nominal speed Vnominal, e.g., a

value similar to (maximum fire range) / (maximum flight time), until the missile approaches sufficiently

close to the target, and then switch its value to VM (t) within a specified distance from the target to

perform more accurate homing by similarly moving in space as it has been guided by the PNG. One

specific example is as follows:

V̄M (t) = f lin
sw

(

∥r (t)∥

∥r (t0)∥
; ρsw0

, ρswf

)

Vnominal +

(

1− f lin
sw

(

∥r (t)∥

∥r (t0)∥
; ρsw0

, ρswf

))

VM (t) (14)

where f lin
sw is a linear switching function which is defined as

f lin
sw (x;xmax, xmin) = max

(

min

(

x− xmin

xmax − xmin
, 1

)

, 0

)

(15)

Note that the switching action of f lin
sw in Eq. (14) begins as soon as ∥r (t)∥ becomes smaller than

ρsw0
∥r (t0)∥ and ends when ∥r (t)∥ reaches ρswf

∥r (t0)∥.
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2) Modification of Collision Course Vector: Provided that the lateral acceleration command is gen-

erated in the direction to align the missile velocity vector with the direction of the collision course

computed at each update cycle, climbing and descending manoeuvres in the vertical plane can be achieved

by modifying the vertical flight path angle of the collision course. The pattern of the vertical plane

motion that increases altitude in the initial phase to fly through thin air and then starts descending as the

missile approaches the target is desirable for increasing the final speed of the missile. By approximately

incorporating the effect of gravitational acceleration that was neglected in the derivation of straight

collision course in Eq. (12) and using tgoSCC
given by Eq. (13), the gravity-assisted collision course can

be obtained as follows:

vGCC (t) =
r (t) + vT tgoSCC

− 1
2gt

2
goSCC

V̄M (t)
VM (t) tgoSCC

(16)

Equation (16) shows that the gravity-assisted collision course always has a larger component in the

Z-axis of the ground-fixed coordinate system as compared to the straight collision course, thus pointing

at a higher direction. Therefore, reduction of the lift acceleration with the aid of gravitational acceleration

utilised for turning as well as altitude increase effect can be achieved by aligning the velocity with vGCC .

However, reduction of the interception error should be more prioritised as the missile approaches close to

the target, even at the cost of sacrificing the lift acceleration reduction or the altitude increase effects. The

curved zero-effort trajectory following the direction specified by vGCC is to perform projectile motion

subject to gravity and drag for interception. For this reason, pursuit of vGCC prefers the motion with

absolute acceleration of 1g in the downwards direction. Prioritising certain direction of lateral acceleration

is not desirable to deal with uncertainties in the end of engagement.

Hence, it is reasonable to switch the collision course from vGCC to vSCC in a similar manner to the

switching structure designed for V̄M (t) when the distance to the target becomes sufficiently small. One

example design that applies the switching concept can be represented as

vCC0 (t) =











vSCC (t) if ∥r (t)∥ < ρswf
∥r (t0)∥ and |γSCC (t)− γGCC (t)| < ϵCC

vGCC (t) otherwise

(17)

where γSCC and γGCC are the vertical flight path angles for the collision course vector of Eqs. (12) and

(16), respectively, and ϵCC is a small positive constant that defines a threshold for switching. Note that

the vertical flight path angle can be expressed as

γ(·) = atan2

(

v(·) · k̂,

√

(

v(·) · î
)2

+
(

v(·) · ĵ
)2

)

, for (·) ∈ {SCC,GCC,CC0} (18)

The maximum altitude should be constrained below a certain threshold since the aerodynamic control

surfaces lose effective control power for an altitude above 30km. To limit the maximum altitude, if the
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vertical flight path angle γCC0 (t) that corresponds to the collision course vCC0 (t) has a positive value

at a high altitude, the vertical flight path angle reference can be modified to reduce its value as the

gap between the current altitude and certain altitude limit Zmax decreases so that it becomes zero at

Zmax. It is sufficient to prevent only excessive climbing without the necessity to restrict descending. A

logic designed for modifying the desired vertical flight path angle from γCC0 to γMCC is described in

Algorithm 1. Note that n, Zact, and L in Algorithm 1 are the design parameters introduced to allow some

degrees-of-freedom for trajectory shaping where Zact < Zmax, and f lin
sw is the linear switching function

defined in Eq. (15). At each instance, the modification in Algorithm 1 applies a multiplicative correction

to the original desired vertical flight path angle γCC0 if γCC0 ≥ 0 and ZM ≤ Zmax. Here, the correction

factor fhlim
attains its value between 0 and 1 depending on the region where ZM lies due to the activation

of switching function f lin
sw . For ZM ≤ Zact, we have fhlim

= 1, hence no correction is applied to γCC0.

As ZM increases above the activation threshold Zact, we have fhlim
< 1, which leads to the modified

flight path angle satisfying γMCC < γCC0 for reducing the desired ascending rate. The correction factor

satisfies fhlim
= 0 at ZM = Zmax. If γCC0 ≥ 0 and ZM > Zmax, Algorithm 1 prioritises altitude control

to meet the maximum altitude constraint by specifying a negative value for γMCC .

Algorithm 1: Desired Vertical Flight Path Angle

Output: γMCC (t)

1 fhlim
= cos2

({

f lin
sw (ZM (t) ;Zmax, Zact)

}n π
2

)

2 if γCC0 (t) ≥ 0 then

3 if ZM (t) ≤ Zmax then

4 γMCC (t) = fhlim
γCC0 (t)

5 else

6 γMCC (t) = − arcsin
(

min
(

ZM (t)−Zmax

L
, 1
))

7 end

8 else

9 γMCC (t) = γCC0 (t)

10 end

With no further modification applied to the desired horizontal flight path angle, the unit vector in the

direction of the modified collision course that incorporates the modified desired vertical flight path angle

can be obtained as

v̂MCC (t) = cos γMCC (t) îMCC (t) + sin γMCC (t) k̂ (19)
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where

îMCC (t) =

(

k̂× vCC0 (t)
)

× k̂
∥

∥

∥

(

k̂× vCC0 (t)
)

× k̂

∥

∥

∥

(20)

with vCC0 (t) given by Eq. (17) and k̂ =
[

0 0 1
]T

representing the unit vector in the upward direction,

i.e., Z-axis of the ground-fixed coordinate system.

3) Construction of Command and Feedback Gain: Finally, the lateral acceleration command can be

constructed to have the same structure as the pursuit guidance law which steers the missile velocity vM

to the modified collision course v̂MCC as

uMcmd0
(t) = k (t) (vM (t)× v̂MCC (t))× vM (t) (21)

where k (t) represents the feedback gain.

Considering vertical launch, a sufficiently large lateral acceleration command should be generated i)

to perform the initial turn during the boost phase following launch, and ii) to enable sufficiently fast

tracking of the desired vertical flight path angle which is modified to satisfy the maximum altitude limit.

However, if the gain is designed as k (t) = N
∥r(t)∥ for a given constant N , which corresponds to the

case of the pure PNG, the feedback gain attains a small value in the initial phase due to the large initial

distance to the target, and as a consequence, the lateral acceleration command also becomes small. For

this reason, the magnitude of the feedback gain should be greater than or equal to a certain minimum

value even in the initial phase to apply the guidance command of Eq. (21) throughout the entire flight

from the beginning of boost phase.

Assuming that there is no discrepancy between the actual lateral acceleration and the lateral acceleration

command in Eq. (21), gravitational acceleration can be neglected, and the error between the desired and

the current flight path angle is small, the time-derivative of the missile’s vertical flight path angle γM

resulting from the given guidance law can be expressed as follows:

γ̇M (t) ≈ k (t)VM (t) sin (γMCC (t)− γM (t)) ≈ k (t)VM (t) (γMCC (t)− γM (t)) (22)

Given that the closed-loop response of vertical flight path angle approximately follows a linear first-order

lag model, the time constant τγ and the gain k are related as

k (t) =
1

VM (t) τγ
(23)

In light of Eq. (23), k ≥ 1
VMτγmax

should be satisfied to make the effective time constant of the vertical

flight path angle dynamics less than τγmax
. The allowable minimum value of k can be determined from

this condition.
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From the aforementioned discussions, the feedback gain can be designed as

k (t) = max

(

N

∥r (t)∥
,

1

VM (t) τγmax

)

(24)

Lastly, a command limiter can be employed to prevent excessive lateral acceleration command that may

lead the vehicle to instabilities as

uMcmd
(t) = min (∥uMcmd0

(t)∥ , uMmax
(M (t) , ZM (t)))

uMcmd0
(t)

∥uMcmd0
(t)∥

(25)

where uMcmd0
is the original command given by Eq. (21), uMcmd

denotes the magnitude-limited lateral

acceleration command, and uMmax
denotes the table of maximum lateral acceleration given as a function

of Mach number M (t) and altitude ZM (t).

In the following, Algorithm 2 summarises the proposed guidance method.

Algorithm 2: Three-Dimensional Guidance Method for Increasing Final Speed and Satisfying

Altitude Limit
Data: Vnominal, ρsw0

, ρswf
, Zmax, Zact, n, N , τγmax

, uMmax

Input: rM , vM , rT , vT , M

Output: uMcmd
(t)

1 V̄M ← Eq. (14)

2 tgoSCC
← Eq. (13)

3 vGCC ← Eq. (16)

4 vSCC ← Eq. (12)

5 vCC0 ← Eq. (17)

6 γCC0 ← Eq. (18)

7 γMCC ← Algorithm 1

8 îMCC ← Eq. (20)

9 v̂MCC ← Eq. (19)

10 k ← Eq. (24)

11 uMcmd0
(t) ← Eq. (21)

12 uMcmd
(t) ← Eq. (25)

III. NUMERICAL SIMULATION

This section presents numerical simulation results to demonstrate the performance of the proposed

guidance method using a three-dimensional point-mass dynamics model.
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A. Simulation Model

A three-dimensional point-mass dynamics which includes the basic components of the lift and drag

coefficients provides sufficient fidelity as a simulation model to validate the performance of a guidance

algorithm. However, pseudo-measurement information for the angle-of-attack is necessary to evaluate i)

the thrust that acts along the body x-axis rather than the velocity, and ii) the lift and drag coefficients

which are given as tables of data indexed by the Mach number and the angle-of-attack in a point-mass

dynamics model that does not consider rigid-body attitude and rotation. To verify the performance of a

guidance law, the angle-of-attack that corresponds to the instantaneous lift acceleration should be obtained.

This study describes a physically consistent simulation model for the three-dimensional point-mass

dynamics under the assumption of zero aerodynamic bank angle. The procedure to synthetically calculate

the angle-of-attack is more involved in the three-dimensional point-mass dynamics model than the two-

dimensional point-mass dynamics for longitudinal motion.

The proposed modelling approach is to introduce the concept of angular velocity for the three-

dimensional rotation of the lift acceleration. This approach is particularly useful to approximately describe

the autopilot lag in the response of the actual lift acceleration with respect to the commanded lift

acceleration in three-dimensional space for a missile with skid-to-turn configuration since the lag in

the lift acceleration response can be incorporated using a simple model such as the first-order linear

dynamics without resolving the acceleration vector in each coordinate axis.

Algorithm 3 describes the proposed method for evaluating the equation of motion for the missile.

In Algorithm 3, aL and aD denote the lift and drag acceleration vectors, respectively, ωL denotes the

angular velocity of aL, xM :=
[

rTM vT
M ω

T
L

]T

denotes the state vector, Vsnd denotes the speed of

sound, FT denotes the thrust, îB denotes the unit vector in the direction of virtual body x-axis, and τωL

denotes the time constant for the simplified three-dimensional acceleration tracking dynamics. Also, the

functions atmos, interp1, and interp2 represent the altitude-dependent atmospheric model evaluation,

one-dimensional and two-dimensional interpolation, respectively.

B. Simulation Setup

Numerical simulation is performed considering a constant velocity model for the target motion. The

target is considered to be cruising at a constant altitude. Two simulation cases are considered to validate

the performance of the proposed guidance method for a wide range of initial conditions depending on

the initial position and heading of the target. The initial Y -axis coordinate of the target denoted by YT0

is varied in Case 1, whereas the initial horizontal heading of thed target denoted by χT0
is varied in Case

2. Also, another case is devoted to performance comparison with existing methods. In Case 3, the pure
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Algorithm 3: Three-Dimensional Point-Mass Dynamics

Output: ẋM

1 [ρ (ZM ) , Vsnd (ZM )] = atmos (ZM )

2 Q = 1
2ρ (ZM ) ∥vM∥2, M = ∥vM∥

Vsnd(ZM )

3 aL = ωL × vM

4 CL = m∥aL∥
QSref

5 C table
L

∣

∣

M
= interp2

(

αtable,Mtable, C table
L ;αtable,M

)

6 α = interp1
(

C table
L

∣

∣

M
, αtable;CL

)

7 CD = interp2
(

αtable,Mtable, C table
D ;α,M

)

8 aD = −CDQSref

m
vM

∥vM∥

9 îB = cosα vM

∥vM∥ + sinα aL

∥aL∥

10 aM = aL + aD + FT

m
îB + g

11 aLcmd
= uMcmd

− vM

∥vM∥ ×
{(

FT

m
îB + g

)

× vM

∥vM∥

}

12 ωLcmd
=

vM×aLcmd

∥vM∥2

13 ẋM =











vM

aM
ωLcmd

−ωL

τωL











PNG and the course modification guidance law presented in [4] are tested under the same setting used in

Case 1. All other simulation parameters including the initial condition of the missile, the velocity of the

target, and the tunable design parameters of the guidance algorithm are fixed. The missile is launched

vertically from the ground, and the guidance algorithm is applied throughout the entire flight from the

launch point. Simulation is performed using the fixed-step solver ODE5 with the integration step size of

0.001s. Simulation is stopped if the altitude increases above the upper limit Zmax or decreases below 0.

C. Simulation Results

1) Case 1. Various Initial Target Position: Figures 2-8 show the three-dimensional trajectory, the

two-dimensional trajectory on the horizontal plane, the time histories of approximate time-to-go, speed,

altitude, vertical flight path angle, and lift acceleration, respectively, for all initial distances tested in

Case 1. Also, Figs. 9 and 10 show the detailed plots for two-dimensional trajectory, the vertical flight

path angle command and the corresponding response for Case 1. All variables except the flight path

angle are normalised with respect to their characteristic values. In particular, the altitude shown in Fig.
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6 is normalised by the maximum altitude Zmax. In all cases, the interception error, i.e., the distance

between the missile and the target at the final time, was below 0.3m. The results indicate that the

proposed guidance algorithm generates manoeuvre patterns in both vertical and horizontal motion as

intended in the design process. Notably, Figs. 2 and 6 clearly show that the guidance algorithm satisfies

the maximum altitude limit in all cases. The comparison between Figs. 10a-10e shows that the desired

vertical flight path angle is modified to limit the altitude increase only in the cases of long-range flight.

The vertical plane motion resulting from the proposed guidance method takes the pattern consisting of

ascend-cruise-descend intervals for long-distance targets.

2) Case 2. Various Initial Target Horizontal Heading: Figures 11-17 show the three-dimensional

trajectory, the two-dimensional trajectory on the horizontal plane, the time histories of approximate time-

to-go, speed, altitude, vertical flight path angle, and lift acceleration, respectively, for all initial headings

tested in Case 2. Also, Figs. 18 and 19 show the detailed plots for two-dimensional trajectory, the vertical

flight path angle command and the corresponding response for Case 2. The figures show the normalised

variables as in Case 1. The vertically launched missile sets its course on the horizontal path from the

initial time by the desired course vector tracking action of the proposed method. The results indicate that

the proposed guidance method can achieve succesful interception not only for various initial positions

but also for various initial horizontal headings of the target. The interception performance measured in

terms of final distance between the missile and the target was below 0.3m as in Case 1. The trajectories

did not violate the maximum altitude limit in all cases as shown in Fig. 15.

3) Case 3. Comparison with Existing Methods: The performance of the proposed method is compared

with two existing methods, namely, the pure PNG developed for homing and the course modification

guidance law developed in [4] more specifically for midcourse phase. These methods are tested under

the same simulation condition and the same command limiter defined by Eq. (25). First, the acceleration

command for the pure PNG is given by

uMcmd0
(t) = NΩ (t)× vM (t) = N

{r (t)× (vT (t)− vM (t))}

∥r (t)∥2
× vM (t) (26)

where Ω represents the angular velocity of the line-of-sight vector r (t), and N is the navigation constant.

Next, the set of command equations for the course modification guidance law is given by

t∗goSCC
=

vT · r (t) +
√

(vT · r (t))2 +
(

V 2
nominal − V 2

T

)

∥r (t)∥2

V 2
nominal − V 2

T

(27)

v∗
GCC (t) =

r (t) + vT t
∗
goSCC

− 1
2gt

∗
goSCC

2

Vnominal

VM (t) t
∗
goSCC

(28)
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γ∗GCC (t) = tan−1





v∗
GCC (t) · k̂

∥

∥

∥

(

k̂× v∗
GCC (t)

)

× k̂

∥

∥

∥



 (29)

γe (t) =











γe0
t∗goSCC

−TTG

t+t∗goSCC

if t∗goSCC
> TTG

0 if t∗goSCC
≤ TTG

(30)

î∗MCC (t) =

(

k̂× v∗
GCC (t)

)

× k̂
∥

∥

∥

(

k̂× v∗
GCC (t)

)

× k̂

∥

∥

∥

(31)

v̂∗
MCC (t) = cos (γ∗GCC (t) + γe (t)) î

∗
MCC (t) + sin (γ∗GCC (t) + γe (t)) k̂ (32)

uMcmd0
(t) =

N

VM (t) t∗goSCC

(vM (t)× v̂∗
MCC (t))× vM (t) (33)

where v∗
GCC (t) is the collision course vector for which the vertical flight path angle is given by γ∗GCC (t),

γe (t) denotes the additional elevation angle defined with respect to v∗
GCC (t), and v̂∗

MCC (t) represents

the modified desired course direction. In Eq. (30), γe0 is a design parameter that determines the initial

direction of desired course vector, and TTG is the duration of terminal phase in which no modification

is added to the collision course vector. The values used for Vnominal and N are identical to those used for

the proposed method and the pure PNG, respectively. A fixed value is used for TTG in all cases, and γe0

is set to be γL − γ∗GCC (t0) with a launch angle γL as designed in [4].

Figures 20-24 show the three-dimensional trajectory, and the time histories of speed, altitude, vertical

flight path angle, and lift acceleration obtained by adopting the pure PNG with N = 3. The pure PNG

tends to reduce the heading error with respect to the instantaneous collision course. However, if the ideal

flight path generated by the pure PNG exceeds the maximum altitude limit, the missile cannot produce the

required lateral acceleration for heading error regulation because of the low air density at high altitude

region. This failure mode is observed in Fig. 20 for targets located at long distances from the initial

position where the missile is launched vertically. Comparison with the PNG indicates that the altitude

modulation manoeuvre performed by the proposed guidance method enables the interception of the target

located at a long distance which cannot be reached with the pure PNG.

Figures 25-29 show the three-dimensional trajectory, and the time histories of speed, altitude, vertical

flight path angle, and lift acceleration obtained for the method of [4] with γL = 30deg. In comparison

to the proposed method, the course modification guidance law achieved interception only for targets

flying at short distances and exceeded the maximum altitude limit for longer ranges. In comparison to

the pure PNG, elevation of the course vector by the angle of γe causes the missile to raise its altitude.

Nevertheless, the final outcome and the reason for failure in interception is similar to those resulting

from the pure PNG.
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Overall, the simulation results support that the proposed guidance method has the capability to effec-

tively intercept a nonmanoeuvring target for a wide range of initial conditions. Successful intereception

is achieved even if Vnominal is set to be a representative constant value regardless of the initial distance as

shown in this study. Tuning or scheduling of the nominal speed Vnominal in Eq. (14), which is considered

here as one of the design parameters for the guidance algorithm, may bring more improved horizontal

guidance performance. Comparison to the existing guidance laws for homing and midcourse flight shows

that the modifications introduced into the design elements including time-to-go estimate, desired course

direction, and feedback gain together provides the proposed method with more versatility in interception.

Fig. 2. Case 1. Three-Dimensional Trajectory

IV. CONCLUSION

This study developed a three-dimensional guidance law for endoatmospheric target interception that is

suitable for long-range anti-air missiles. More specifically, the proposed guidance law does not depend

on predefined waypoints, increases altitude in the initial phase as necessary to increase the final speed,

allows for satisfying the maximum altitude limit, and switches over to a terminal homing guidance law

with a small heading error from the collision course. The proposed design approach can be accepted

as an effective empirical method that is based on the physical understanding of the guidance response
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Fig. 8. Case 1. Lift Acceleration History
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(a) YT0
= 0.1 (b) YT0

= 0.2

(c) YT0
= 0.4 (d) YT0

= 0.6

(e) YT0
= 0.8

Fig. 9. Case 1. Detailed Two-Dimensional Trajectory
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Fig. 10. Case 1. Command and Response for Vertical Flight Path Angle
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Fig. 11. Case 2. Three-Dimensional Trajectory
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Fig. 12. Case 2. Two-Dimensional Trajectory
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Fig. 14. Case 2. Speed History
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Fig. 15. Case 2. Altitude History
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Fig. 16. Case 2. Vertical Flight Path Angle History
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Fig. 17. Case 2. Lift Acceleration History

characteristics rather than a theoretically rigorous one. Nonetheless, the behaviour characteristics in the

latter phase are similar to that expected with the PNG since the trajectory prediction based on the constant

velocity model becomes more dominant as the time-to-go tends to zero. Numerical simulation illustrated

that the proposed guidance method is capable of intercepting a nonmanoeuvring target for a wide range

of engagement conditions. As compared to the existing methods, the proposed guidance method achieved

successful interception of the target without violating the maximum altitude limit which is prescribed to

avoid loss of aerodynamic control effectiveness.
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Fig. 20. Case 3. Three-Dimensional Trajectory for Pure PNG
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Fig. 25. Case 3. Three-Dimensional Trajectory for Course Modification Guidance Law
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