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Abstract. The complexity of hybrid-electric aircraft propulsion systems is also characterized
by the greater number of degrees of freedom of the energy management system, whose objective
is to split the required power to fly the aircraft to the different available powertrains (i.e., gas
turbines, electric motors, fuel cells, etc.). Typically, a single design mission is considered for
assessing the performance of a hybrid-electric propulsion system, often with a simple constant
split power between the batteries and gas turbine. A probabilistic set-based design space
exploration methodology is used and allows us to study the effects of lifecycle analysis of
the battery pack of a hybrid-electric 50-seater turboprop, while different mission scenarios
are considered. Using this approach, it is possible to flexibly find multiple families of energy
management strategies that can satisfy battery capacity requirements and the reduction of
emissions simultaneously. Furthermore, the generated data can help the designers to understand
the hierarchy of the requirements that drive the design of the propulsion system for a range
of operating scenarios, with emphasis on the energy storage system. Hence, the airliners are
offered enhanced operational flexibility of the aircraft for different and desirable mission profiles.

1. Introduction
Green and sustainable aviation has become one of the predominant research topics in the last 20
years. Aeroplanes achieving zero emissions have been set as a long term goal by stakeholders such
as NASA, European Union and ICAO by the year 2050. Within the transition period, hybrid-
electric propulsion is proposed as a viable solution for reducing the impact of regional aviation
by the year 2030. However, these concepts pose significant challenges as they present complex
systems consisting of multiple energy sources and paths, new technological challenges [1], thermal
management requirements [2] and energy management strategies [3].

Previous work pertaining to the interaction between optimal energy management strategies
and hybrid-electric aircraft propulsion has been published by the authors [4]. Energy
management strategies were defined as continuous piecewise linear functions of degree of
hybridisation (DOH) for each mission phase, where DOH is the fraction of the required power
supplied by the electrical powerchain. Results indicated that piecewise functions composed of
two lines were enough to capture the Pareto front, and more degrees of freedom would not yield
further improvement. Furthermore, it was found that the reduction of fuel burn was sensible to
DOH in the longest mission phase (cruise), while the reduction of NOx emissions was determined
mostly by the average level of hybridisation. Finally, the amount of available battery energy,
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Figure 1

Table 1: Parameters of the Hybrid-Electric Aircraft

Maximum Take-Off Mass [kg] 21000 Electric Motor Efficiency 0.98
Operating Empty Mass [kg] 11550 Power Electronics Efficiency 0.985
Payload Mass [kg] 5000 Cable Distribution Efficiency 0.996
Gearbox Efficiency 0.99 Pack-to-Cell Mass Ratio 1.5
L/D (Climb) 16 Pack Energy Density [Wh/kg] 500
L/D (Cruise) 14.5 Cell Total Capacity [Ah] 7.2
Propeller Efficiency (Climb) 0.73 Cell Nominal Voltage [V] 3.7
Propeller Efficiency (Cruise) 0.86 System Nominal Voltage [V] 500

which was limited by the take-off mass, affected both the wideness of the trade-off and the overall
reduction of fuel consumption and emissions over the baseline. However, the study was limited
by the ”rubber” battery pack model (i.e. the battery pack mass was determined by the energy
density and required energy alone) and the consideration of a single design mission. The battery
pack is one of the limiting technologies for hybrid-electric aircraft, which spawned multiple efforts
to overcome it alongside battery health monitoring and sustainability [6]. The work presented
in this paper overcomes these limitations by introducing a battery pack model based on an
equivalent circuit model of the cells and two off-design missions are analysed alongside the
design one.

2. Methodology
The P-DOPT (Probabilistic Design and OPTimisation) Framework [4] which has been developed
in FutPrint50 is applied to identify the feasible energy management strategies in the design
point and the off-design operating conditions. This framework is capable of identifying the areas
of the design space, which are most likely to satisfy the set of requirements by evaluating each
subspace with a probabilistic surrogate model, trained on the full model. The least feasible
areas are discarded, reducing the computational cost of optimisation when searching for the
best designs [5].

The aeroplane is a parallel hybrid-electric 50-passenger turboprop where the gas turbine and
the electric motors provide their energy to the propeller through a gearbox, as shown in Figure
1a. Details regarding the parameters of the system are presented in Table 1.

The gas turbine is modelled as a thermodynamic equivalent of the PW127 turboprop engine
using TURBOMATCH [7]. For simplicity, no thermal management system has been included
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in the model. The battery pack is modelled by simulating the behaviour of a cell discharging
with an Equivalent Circuit Model [8] fit on experimental data. The battery pack is composed of
branches of cells in series, satisfying the system nominal voltage, laid in parallel to satisfy the
energy required to fly the design mission at the specified energy management strategy (Figure
1b). It is assumed that the pack is balanced, that all the cells discharge at the same rate,
and no degradation effects have been included. To compare with the previous studies, the
battery pack is assumed to have an energy density of 500 Wh/kg. This value is an optimistic
projection. Current best values observed in aeronautic applications are around 150 Wh/kg [11].
The mission analysis code performs two types of analysis: sizing and simulation. In sizing mode,
the code finds the battery pack size (number of cells in series and in parallel) which allows flying
the mission at the selected energy management strategy without over-discharging the cells. In
simulation mode, the battery pack size is given and the code discharges the battery pack by
flying the mission with the given energy management strategy. It returns the final state of the
cells and if the mission is feasible or not.

This study is carried out in two steps. First, sizing the battery pack with the design mission
and then selecting the optimal one from the available results. Then, the optimisation framework
is used to find the optimal energy management strategy in missions different than the sizing
one. In this situation, the battery pack will operate in an off-design condition and the EMS will
be tasked in recuperating as much optimal performance as possible without overdischarging the
cells.

3. Test Cases
This study includes three different missions: a design mission to size the battery pack and
two operating missions for exploring feasible energy management strategies under off-design
conditions. Figure 2a presents the flight profile of the design mission, which has been obtained
from FutPrint50 published work [9]. For the scope of battery pack sizing, only the main
portion is hybridised with electrical power. The mission presented in Fig. 2b is modelled after
a one-day operation of an ATR-42 between Aberdeen and Sumburgh by Loganair in Scotland.
Two sets of return trips are carried out, one in the morning and one in the afternoon. It is
assumed the battery pack is fully charged at the beginning of the day and recharged only at the
end. Refuelling is allowed on the basis that the aircraft is stopped for a minimum 30-minute
turnaround. Finally, the mission presented in Fig. 2c is modelled after a commuter flight with
multiple stops in Portugal, between the cities of Bragança and Portimão, by the airline Sevenair.
Also, in this case, it is assumed the battery pack is fully charged at the beginning of the day
and recharged only at the end. However, no refuelling is permitted during stops as these are
short layovers for embarking or disembarking passengers only.

The energy management strategy is defined as a linear function of the degree of hybridisation,
the percentage of how much of the power provided to the propeller comes from the electrical
source, for each mission phase (climb and cruise). This function is fully defined with two points,
as shown in Figure 3. In the case of multiple flights in the same mission, the same EMS is used
for all the flights.

The overall optimisation problem is shown in Equation 1. The framework is tasked to find
the energy management strategies that produce the least fuel consumption and NOx emissions
given the constraints on Take-Off Mass (TOM) and Depth of Discharge (DOD) of the battery
pack. The selected probability for the exploration phase is 0.5, while the input parameters were
discretised with 6 levels total producing 1296 different subspaces.
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Figure 2: Missions considered for this study.

Figure 3: Definition of the Energy Management Strategy function

given X = {DOH0cl, DOH1cl, DOH0cr, DOH1cr}
minimise

X
Mfuel, MNOx = f(X)

subject to TOM ≤ 20100 kg

DOD ≤ 0.8

(1)

4. Results
4.1. Design Point
Figure 4 presents the full results of the sizing analysis. The framework identified several sub-
Pareto fronts, with close values of battery pack charge. Interestingly, the points defining the
global Pareto front (Fig. 4b) share the same battery pack capacity, that is they have the same
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battery pack size. The selected layout is 309 packs composed of 136 cells each, yielding 500 V
voltage and 2225 Ah capacity at the battery pack level.
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Figure 4

4.2. One-Day Operations
Figure 5a presents the points capable of carrying out the mission with the energy available in
the battery pack. Few are able to carry out this mission, given that the combined length of
the 4 flights is longer than the design mission. The improvement over the baseline is also quite
limited, with 3% on NOx emissions and 1.5% for fuel consumption.
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mission.
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Figure 5

Introducing a partial recharge after the morning operations (the first two flights) reveals
interesting results. The amount of energy recharged is what is required to complete the remaining
two flights with a fully discharged battery at the end of the day. Figure 5b presents this
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scenario and compares it with the original case. Every identified operating condition performs
better in terms of emissions than the original scenario: for instance, restoring 40% of the total
battery energy allows to reduce the fuel consumption and the NOx emissions by 6% and 12%
respectively. However, increasing the amount of current through the battery pack and charging-
discharging from a state of partial charge to high or low states of charge might increase the
battery aging pack [10]. Further studies should be carried out where battery degradation effects
are taken into consideration when searching for optimal energy management strategies and
aircraft operating conditions. Especially, impact of higher currents and depth of discharge
limits should be investigated in regards to their impact on aging.

Figure 6 presents the full dataset of Fig. 5b with selections highlighting input values defining
the energy management strategies. Particularly, Fig. 6a indicates that strategies with a linearly
decreasing DOH for climb have lower emissions than those with linearly increasing DOH. These
results contrast with a previous find by the authors [4], most likely because the battery pack
modelling of that study did not capture the cell behaviour during discharge. One outlier is
present and is due to the design space framework: the set boundary consisted of a low ”climb
h0” range with a high ”climb h1” range and the optimiser pushed at the limits of the boundary.
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Figure 6: Topology of the Energy Management Strategies.

4.3. Commuter Flight
Figure 7 presents the operating points satisfying the commuter flight mission. For this operating
condition, the aircraft produces fewer emissions than the baseline when at least 55% of the
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battery available energy is used. To operate the return flight with the same energy management
strategy, a partial recharge is required, as discussed in the previous case in 4.2. Furthermore,
when comparing the results of the two scenarios (Fig. 5b and Fig. 7) both present a bigger
improvement in the reduction of NOx emissions compared to the other objective. This result
is a consequence of the type of flights analysed: the predominant phase of commuter flights is
climb which affects the NOx emissions the most since the gas turbine operates at a higher power
setting [4].
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Figure 7: Design points meeting the Commuter Flight mission.

5. Conclusions
A study of energy management strategies of missions with different operating conditions has
been presented. A battery pack model based on an equivalent circuit model was introduced
and sized according to a design mission. With the battery configuration frozen, two scenarios of
operations have been analysed: a single day of regional airline operations consisting of 4 flights
and a commuter flight composed of several stops. From the analysis of the One-Day operations
mission, it was evident that allowing for partial recharge significantly improves the reduction
of emissions. For instance, NOx emissions improved from 3% to 12% reduction with a partial
recharge of the battery by 40%. However, the lifespan of the battery might be affected, as the
current and depth of discharge might increase battery aging. Furthermore, the improved battery
model suggested different energy management strategies in the climb phase than previously
identified. Indeed for this type of short haul-flights, the climb phase plays the biggest role in
the emissions and therefore should be prioritised when allocating the available battery energy.
Future work should include the increasing of the number of degrees of freedom by setting a
specific energy management strategy for each flight, rather than using a common one. Then, as
it was learned from this analysis, battery degradation should be captured and included in the
figures of merit alongside emissions. Finally, a comprehensive study taking into consideration
emissions, aircraft availability and costs, both from direct operations and maintenance, would
provide more insight into this trade-off between short-term performance and battery life.
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