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Abstract 

The development of Digital Twin (DT) has become popular. A 

dominant description of DT is that it is a software representation that 

mimics a physical object to portray its real-world performance and 

operating conditions of an asset. It uses near real-time data captured 

from the asset and enables proactive optimal operation decisions. 

There are many other definitions of DT, but not many explicit 

evaluations of DT performance found in literature. The authors have 

an interest to investigate and evaluate the quality and stability of 

appropriate DT techniques in real world aircraft Maintenance, Repair, 

and overhaul (MRO) activities. This paper reviews the origin of DT 

concept, the evolution and development of recent DT technologies. 

Examples of DTs in aircraft systems and transferable knowledge in 

related vehicle industries are collated. The paper contrasts the 

benefits and bottlenecks of the two categories of DT methods, Data-

Driven (DDDT) and Model-Based (MBDT) models. The paper 

evaluates the applicability of the two models to represent vehicle 

system management. The authors present their methodological 

approach on Predictive Maintenance (PM) development basing on 

reliable DT models for vehicle systems. This paper contributes to 

design, operation, and support of aircraft/vehicle systems. 

Introduction 

Aviation is seen as technology-intensive because of the digital 

transformation that has been taking place throughout the industry for 

decades. This unveils an urgent need of effective, fast, and accurate 

data management and analysis method to ensure the sustainable 

reliability and safety of aircraft platforms throughout their lifecycles 

[1]. The connections between the physical asset and its digital version 

include information flows and data that includes physical sensor 

flows between the physical and virtual objects and environment. 

There exist debates on what a DT is and how it benefits for aircraft 

cycle, from design, manufacture, to fleet-level management and 

individual aircraft operation monitoring and health management. The 

debates proposed different understandings of DTs. Some researchers 

believe that the DT research should focus on simulation. Some argue 

that the DT should contain three dimensions: physical, virtual and 

connection parts. Hence, two dominant categories of DTs then 

occurred, Data-Driven DT (DDDT) using simulation, and Model-

Based DT (MBDT) implemented based on Hardware-in-loop (HIL) 

and physical-digital-physical loop.  

Background 

Physical Twin: 

NASA’s Apollo space program was the first program to use the 

“Twin” concept [2]. Two identical space vehicles were built in the 

program, so that the space vehicle on earth can mirror, simulate, and 

predict the conditions of the other one in space. The vehicle remained 

on earth was the twin of the vehicle that executed missions in the 

space. 

Digital Twin 

The concept and model of the DT was first publicly introduced in 

2002 by Michael Grieves as a technique for Product Lifecycle 

Management (PLM) . Initially, DTs are recognized as an information 

system. The motivation of creating DTs is to develop a life-long asset 

information visualizing technique for asset-intensive industries. This 

is why a DT is described, in many research articles, as the virtual 

information integration of a physical asset. Then in 2012, the concept 

of DTs was revisited and further defined by the NASA as a multi-

physics, multiscale, probabilistic, ultra-fidelity simulation that 

reflects, in a timely manner, the state of a corresponding twin based 

on the historical data, real-time sensor data, and physical model [2]. 

According to Gabor [3, 4], DTs can be multi-scaled simulations built 

based on the expert knowledge and real data collected from existing 

system, to realize a more accurate simulation and representation of 

the system. The DT integrates sensor data from the vehicle’s on-

board IVHM system, maintenance history and all available historical 

and fleet data. By combining this information, the DT continuously 

forecasts the health of the vehicle or system, the Remaining Useful 

Life and the probability of mission success. 

Therefore, this paper aims at understanding DT technology, having 

sense of up-to-date research and applications in aviation and relevant 

manufacturing industries. This consolidates the basis for the author’s 

research project on applying DT technology to flight control 

electrical actuator health management. 

Evolution and Development 

The need for an accurate and efficient health management system has 

become exceedingly important in safety-critical and mission-critical 

aerospace systems [5]. The most important goal of health 

management is to constantly monitor the performance of these 

aerospace systems, identify faults (diagnosis), predict possible 

failures in the near future, and quantify the Remaining Useful Life 

(RUL, prognosis) in order to aid online decision-making. These 

component-level mathematical models can be constructed either 

using laws of physics (physical-based models) or using data collected 

through component-level testing (data-driven models) and are used 

for both system-level diagnostics and prognostics. 
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Based on above discussion, it is clear that DTs have been extensively 

applied in the context of the Prognostics Health Management (PHM) 

techniques. Moreover, the DT-driven PHM shows great advantages 

over the traditional PHM methods in terms of four respects, i.e., 

model, data, interaction, and decision making. The traditional PHM 

mainly focuses on the geometric modeling and physical modeling, 

while it rarely considers the behavior modeling and rules modeling. 

As a result, the model cannot achieve high precision. In contrast, the 

DT-driven PHM can integrate the four dimensions of modeling to 

depict a practical situation more accurately. The ultra-fidelity can 

enhance the effectiveness of the PHM. 

Data-Driven Digital Twin (DDDT) 

A Data-Driven Digital Twin (DDDT) is a digital representation of a 

real-world system, process, or product that is powered by data and 

analytics. It is a virtual model of a physical entity that is constantly 

updated with real-time data from sensors and other sources. The goal 

of a DDDT is to provide a virtual replica of the real-world entity that 

can be used for a variety of purposes, such as monitoring, prediction, 

optimization, and simulation. By constantly updating the DDDT with 

real-time data, organizations can gain a better understanding of the 

performance and behavior of their systems and use this information 

to make data-driven decisions and improvements. 

Model-Based Digital Twin (MBDT) 

A Model-Based Digital Twin (MBDT), on the other hand, is a digital 

representation of a real-world system or process that is based on a 

mathematical or computational model. It is a virtual replica of the 

real-world system that is built using principles of physics, 

engineering, or other scientific disciplines. The goal of a MBDT is to 

simulate and predict the behavior of the real-world system in order to 

optimize its performance, improve efficiency, and reduce costs. By 

building a virtual model of the real-world system, organizations can 

test and optimize different scenarios and configurations to identify 

the best course of action. This can help organizations make more 

informed and accurate decisions and improve the efficiency and 

performance of their operations. 

One key difference between DDDT and MBDT is the source of the 

data used to build and update the DTs. A DDDT is powered by real-

time data from sensors and other sources, whereas a MBDT is based 

on a mathematical or computational model. This means that a DDDT 

is constantly updated with new data, while a MBDT relies on the 

accuracy and validity of the underlying model. 

Another difference is the level of complexity and detail that can be 

captured by the DTs. A DDDT is able to capture more detailed and 

granular data, as it is based on real-time measurements from sensors 

and other sources. This can make it more accurate and useful for 

predictive and optimizing the performance of complex systems and 

processes. However, a MBDT may be more suitable for simulating 

and optimizing the performance of simpler systems or processes, as it 

relies on a computational model that may be easier to build and 

maintain. Ultimately, the choice between a DDDT and MBDT will 

depend on the specific needs and goals of the organization. 

DT Application in Industries 

DT for Aircraft 

DT application for aircraft can be split into multiple categories by 

levels of application scenarios. 

For aircraft maintenance perspective, DT-based Predictive 

Maintenance (PM) can significantly add value to condition-based 

Maintenance under the Integrated Vehicle Health Management 

(IVHM) by offering data supporting normal, degradation and 

abnormal operations [6]. 

For aircraft system operation recurrence DTs, Li et al. [7] proposed a 

concept developing a prognostics DT based a dynamic Bayesian 

network to monitor health status of aircraft wings. Seshadri and 

Krishnamurthy [8] focused on structure status monitoring and health 

assessment management and developed a DT-based Structural Health 

Management (SHM) tools, which enables accurate detection. It also 

provides a foundation to employ on-board and in-flight condition 

monitoring and prognostics. Tuegel [9] also assessed an Airframe 

Digital Twin in assisting of designing and maintaining airframes. Xu 

et al. [10] proposed a DT-driven analysis framework for optimizing 

gas exchange system of 2-stoke heavy fuel aircraft engine. Within 

this DT framework, multiple modules interact with their targeted 

physical entities of engines and work collaboratively within the 

group. 

DT for Manufacturing Industries 

Modern manufacturing requires physical and digital interaction in a 

closed-loop manner and the digitalization of manufacturing systems 

consolidate the basis of smart manufacturing [11]. Manufacturing is 

treated as one of the most encouraging industries where the DTs may 

be successfully applied for solid benefits in terms of maintenance and 

operations monitoring and optimization [12]. As discussed by 

Kritzinger et al. [13], the DT can help simulate and optimize the 

production system, from single components to whole assembly. In 

detail, DTs support production planning, control, and maintenance, as 

well as manufacturing platform layout planning to gain increased 

competitiveness, productivity and efficiency. A lot of new concepts 

and proposals are being adapted to manufacturing phase. 

At product level, process monitoring, and virtual modeling are 

aspects addressing researchers’ attention. Zheng et al. [14] 

established a three-layer DT model for geometric feature inspection 

of car body-in-white. The environmental consists of a DT workshop 

layout as data object and source controller, a DT real-time mapping 

module as data collector and simulator, and a DT pattern recognition 

module as data transformer and demonstrator. Botkina et al. [15] 

developed a DT of a cutting tool by collecting data throughout the 

production lifecycle. The data format and structure, information 

flows between physical tool object and the DT assets are main 

aspects the authors focused on. Zhang et al. [16] applied a DT-based 

solution to the hollow glass production line by merging, transforming 

and distributing real-time data to generate an authoritative DT model. 

At the level of manufacturing platform, Tao and Zhang [17] proposed 

a virtual shop-floor concept by establishing a DT expanding its four 

key components: physical shop-floor, virtual shop-floor, shop-floor 

service system, and shop-floor DT data. 

Discussion 

The development of DT now has become prosperous in various 

industries as discussed. While it helps to shape a “better” or “way” to 

develop DTs by understanding both benefits and shortcomings that 
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current DTs face. In this section, the authors discussed about pros and 

cons DTs equip in multiple levels of operations within the aviation 

domain. 

Pros 

Improved decision-making and optimization. Another main 

advantage of DTs is that it allows organizations to make more 

informed and accurate decisions. By constantly updating the DT with 

real-time data from sensors and other sources, organizations can gain 

a better understanding of the performance and behaviour of their 

systems, processes, and products. This information can be used to 

optimize operations, identify inefficiencies, and make data-driven 

decisions that improve the overall performance of the real-world 

entity. Virtual test platform helps accelerate verification and 

validation process and take down the overall time consumption of 

development cycles. 

Improved maintenance and repair. As a critical potential solution 

and trend of implemented PM technique, it benefits with its ability to 

improve maintenance and repair processes. By using a DT to monitor 

the performance and condition of aircraft systems and components, 

OEMs, airlines, or third-party operators can identify potential issues 

and schedule maintenance before problems occur. This can help 

reduce downtime and improve the reliability of aircraft, leading to 

increased customer satisfaction and lower costs for operators. For 

example, as discussed in application section, DTs can be employed to 

monitor the wear and tear of aircraft engines, identifying potential 

issues and scheduling maintenance before a failure occurs. This can 

help reduce the risk of unexpected engine failures and improve the 

overall reliability of the aircraft. 

Enhanced safety and risk management. Similarly, DTs can also 

trigger the improvement of safety and risk management in aviation by 

constantly monitoring the performance and condition of aircraft 

systems and components. Operators can then identify potential safety 

issue and take proactive measures to prevent accidents and incidents. 

DTs can also assist on improving risk management by predicting and 

mitigating the impact of potential disruption, such as weather events 

or equipment failures. 

DTs also show advantages in aircraft/aircraft fleet operations. 

Optimized flight operations can be achieved by applying DTs. By 

using a DT to monitor and analyze data on flight routes, fuel 

consumption, weather patterns, and other factors, operators can 

identify opportunities to reduce costs and improve efficiency. Other 

aspects of flight operations, such as crew scheduling, aircraft 

utilization, and passenger experience are also worth researching on. 

Also, thanks to the real-time information fed to the aircraft, it helps 

improve customer experience. Operators can modify front-end 

passenger experience based on DTs-provided information. Another 

potential solution to enhance customer experience is to understand 

one customer from pre-flight to after-flight. For example, a DT can 

be used to track and analyze data on passenger preferences and needs, 

allowing airlines to tailor their products and services to individual 

customers. 

Cons 

Aircraft safety redundancy is one of essential factors that regulate 

the design, development, and implementation of aircraft systems. It 

criticizes the employment of new techniques by challenging in 

several aspects. However, the representability of DTs to one aircraft 

subsystem and compatibility between DT and developing-PM 

techniques for such asset are rarely addressed in literature. 

Data quality and accuracy is another potential challenge of DTs for 

PM. In order to be effective, DTs must be powered by high-quality 

data that accurately reflects the performance and condition of the 

real-world system or equipment. If the data is inaccurate or 

unreliable, DT may provide misleading or incorrect predictions, 

leading to incorrect maintenance decision, which can have serious 

consequences, such as component failures or downtime. Ensuring the 

quality and accuracy of the data used to build and update DTs is 

therefore critical to its effectiveness. According to Badea et al. [18], 

an average Boeing 737 can generate 40 terabytes of information per 

hour, given the operation under six-hour flight between 2 cities. 

Therefore, further studies are needed on big data management. 

Urgent need of underlying-data management for collaborative 

interaction and association. The lack of data standardization across 

different systems and equipment is always a concern among data-

related technology. In order to be effective, DT mush be able to 

integrate and analyze data from a wide range of sources, including 

sensors, maintenance records, and other data sources. However, the 

data generated by different systems and equipment may be structured 

and formatted differently, making it difficult to integrate and analyze. 

To overcome this challenge, organizations may need to invest in data 

standardization and integration technologies to ensure that data from 

different sources can be effectively analyzed and used by DTs. 

Abdallah and Fan [19] proposed an ontology knowledge management 

concept can support full digitization in aircraft operations and 

maintenance. 

High upfront costs. Building and maintaining a DT requires 

significant investment in hardware, software, and data analytics 

capabilities, especially for large, complex systems with many 

components, e.g., ECS and propulsion systems. This can be a 

significant burden for organizations with limited resources and may 

require a long-term commitment in order to see a return on 

investment. In addition, organizations must also consider the 

complexity of the real-world system or components being represented 

by DTs, as well as the complexity of the data sources and analytics 

tools being used. This can make it difficult for organizations to 

effectively implement and maintain a DT for PM. 

DDDT Framework for Electrical Actuation PM 

This paper set up the basis of the authors’ research on applied PM 

methodology approach. A DDDT framework is proposed as a PM 

method (Figure 1). Two simulation models are developed to represent 

different Electrical Actuation (EA) systems and generating data. 

Multiple-step data analyses are applied. For chosen features, value of 

normal operational data status or natural index can be used as 

reference or threshold value. 

In Phase I of the framework development, the lack of open-sourced 

dataset and the limited access to practical and historical operational 

data of two EA systems, Electro-Mechanical Actuator (EMA) and 

Electro-Hydro-Static Actuator (EHSA), the authors decided to 

develop two simulation models as data generators to represent the 

two EAs. In Phase II, a DDDT Framework was proposed by 

combining the two models and algorithms, including data-applied 

pre-processing, feature-extracting, threshold-injecting algorithms. In 
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Phase III, the author aims at accessing data for the framework’s 

validation and verification. 

In terms of the accuracy, precision and granularity, or how the two 

models can highly represent real assets, the author started from 

understanding failure characteristics of the two EAs at subsystem and 

component levels. Referring to handbooks and natural index of 

machines and machineries, it forms a solid basis for the development 

and implementation of models and the framework, shown as  Figure 2 

[20]. 

The framework can contribute to: 

1) Reliable data generator for further research. 

2) Establish failure and fault library base on outcomes. 

3) Real-time health monitoring and improve precision and 

accuracy in RUL estimation. 

 

Figure 1 A DDDT Framework for Electrical Actuation PM and Prognostics 

Proposal.  

 
Figure 2 Fault-Feature-Index Matrix of a fault/failure EA system at 

component level [20]. 

Conclusion 

This paper discussed Digital Twin technique proposed in research 

and industrial applications: 

1) DT has become an ongoing trend to transfer exist dataset to 

a digital replica of a physical asset in several industries and 

contexts. 

2) An understanding of two dominant DTs, DDDT and 

MBDT has been illustrated. A comparison of the two 

methods is conducted. This consolidates the author’s next 

phase plan of building up a DDDT for Flight Control 

electrical actuator prognostics method. 

3) Research activities and industrial applications involved DT 

are discussed. The outcomes imply the DT has huge 

potential in getting mature in data capturing, transforming 

and operation/production recurrence. 

4) Pros and cons of DT applied to aircraft maintenance and 

aircraft operations are detailed discussed. 

5) A briefing about the authors proposed a DDDT framework 

for electrical actuation health management and prognostics 

is provided. 

These helps the author design the DDDT framework and develop 

simulation scenarios in a reliable way. The validated DT model will 

be used to support PM for flight control electrical actuation system 

health management. 
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Definitions/Abbreviations 

DT Digital Twin 

DDDT Data-Driven Digital Twin 

MBDT Model-Based Digital Twin 

HIL Hardware-In-Loop 

PLM Product Lifecycle 

Management 

PM Predictive Maintenance 

IVHM Integrated Vehicle Health 

Management 

SHM Structural Health 

Management 

ECS Environmental Control 

System 

EA Electrical Actuator 

EMA Electromechanical Actuator 

EHSA Electrohydrostatic Actuator 
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