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Abstract

Self-optimizing control (SOC) constitutes an important class of control strategies for real-

time optimization (RTO) of chemical plants, by means of selecting appropriate controlled

variables (CVs). Within the scope of SOC, this paper develops a CV selection methodology

for a global solution which aims to minimise the average economic loss across the entire

operation space. A major characteristic making the new scheme different from existing ones

is that each uncertain scenario is independently considered in the new solution without relying

on a linearised model, which was necessary in existing local SOC methods. Although global

CV selection has been formulated as a nonlinear programming (NLP) problem, a tractable

numerical algorithm for a rigorous solution is not available. In this work, a number of measures

are introduced to ease the challenge. Firstly, we suggest to represent the economic loss as a

quadratic function against the controlled variables through Taylor expansion, such that the

average loss becomes an explicit function of the CV combination matrix, a direct optimizing
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algorithm is proposed to approximately minimize the global average loss. Furthermore, an

analytic solution is derived for a suboptimal but much more simplified problem by treating

the Hessian of the cost function over the entire operating space as a constant. This approach

is found very similar to one of existing local methods, except that a matrix involved in the

new solution is constructed from global operating data instead of using a local linear model.

The proposed methodologies are applied to two simulated examples, where the effectiveness

of proposed algorithms are demonstrated.

Nomenclature

B arbitrary nonsingular matrix

c controlled variables

d disturbance variables

ec, eu deviation of c and u from the optimum

f plant output model

F gain matrix between optimal outputs and d

F̃ intermediate matrix

g process constraints

Gy, Gyd gain matrices of y for u and d

H, h CV combination matrix/vector

J cost function

Jcc, Juu, Jud second order sensitivity matrices

L, Llav, Lgav loss function, local and global average loss

L̄gav, ¯̄Lgav approximated global average loss in Algorithm 1 and 2

Ld, Ln loss caused by d and n

N number of sampled disturbance scenarios

Md, Mn intermediate matrices

n measurement errors/noises

u manipulated variables

Wd, Wn magnitude matrices for d and n
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ym, y measured and true measurement variables

Y, Ỹ optimal measurement matrix and extended measurement matrix

Convention

(·)nom variables at the nominal point

(·)fb variables under closed-loop control

(·)(i) variables for the ith disturbance scenario

∆ deviation of a variable from the nominal point

(̊·) optimal variable values under different distrubance

Introduction

Chemical plants are often initially operated with satisfactory performances, which however, tend

to decay with time. The main reason for such performance degradation is the occurrences of uncer-

tainties/disturbances (e.g. equipment aging, raw material composition variation, heat exchanger

fouling, etc), thus changing the process characteristics. When such a change occurs, the original

operating policy is no longer appropriate and causes unnecessarily poor operation performance.

To keep competitive in the global market, it is heavily desired for chemical factories to gain more

profit by performing real-time optimization (RTO), which reoptimizes the process operation under

changing operating conditions.

In the field of RTO, various approaches have been developed to improve process operation. Ac-

cording to Chachuat et al.,1 these approaches can be classified into three categories, namely the

model-parameter adaptation (two-step approach), modifier adaptation,2 and direct input adapta-

tion,3,4 based on their own routines of realizing RTO. Among various approaches, self-optimizing

control (SOC)3 within the third class was demonstrated to be a promising one, which refers to

a control strategy that when feedback controllers tracking constant set-points of some carefully

selected controlled variables (CVs), the plant operation is automatically maintained as optimal
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or near optimal without re-optimization in the present of various uncertainties. Furthermore, if

the economic loss is acceptable, there is no need to activate an optimization layer, which plays an

important role in a traditional hierarchical control structure. Several important characteristics of

SOC are as follows:

• The motivation of SOC is using a simple control structure to achieve an acceptable economic

performance, the operation is not guaranteed to eventually converge to the exact optimum,

as compared to other RTO realizations.1,3 In contrast, an acceptable loss is pursued.

• Parametric uncertain systems are considered. That is, the rigorous nonlinear process model

with uncertain parameters (disturbances) are known, however, the true values of disturbances

are unknown to operators during on-line operation. Structural plant-model mismatch and

unexpected disturbances are not directly addressed in SOC.

• The optimizing speed of SOC is fast, which is attributed to the feature that control policy of

SOC is designed off-line, whilst on-line, the plant operates under simple feedback loops. One

does not need to extract necessary information by conducting on-line experiments, which are

probably time consuming.

The key issue of SOC is the CV selection, which was revealed to be highly relevant to the economic

performance of plant operation. In the past years since proposed, the methodology of CV selection

has been developed in diverse directions to achieve better RTO performance, which is summarized

as follows.

1. CV selection methodology for static optimization. This direction was the most in-

tensively studied area of SOC. Halvorsen et al.5 characterized CV selection as a non-linear

programming (NLP) problem for economic operation of chemical plants. However, due to the

complicacy of the formulated NLP, they alternatively derived an exact local method for CV

selection . Furthermore, an approximate minimum singular value rule was also introduced
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for quick screening CV candidates. Besides using single measurements as CVs, combina-

tions of measurements were also advocated to give better performances later on. Alstad and

Skogestad6 proposed a null space method for selecting linear combinations of measurements,

c = Hy, which achieves locally zero loss caused by disturbances. The null space method

was later extended to reduce the economic loss caused by implementation error using extra

measurements.7 In parallel, Kariwala8 and Kariwala et al.9 developed eigenvalue decomposi-

tion approaches to minimize the local worst-case loss and the local average loss. A common

feature of these methods is that they rely on a linearized model around the nominal operat-

ing point, thus leading to the self-optimizing performance only locally satisfactory. Recently,

some global SOC approaches addressing process non-linearity were also considered. Ye et al.10

proposed a necessary conditions of optimality (NCO) approximation method, where the CVs

are selected as measurement functions to approximate the NCO. Since the information of

the entire operation region is used, this approach is globally valid in contrast to those local

SOC approaches. Jaschke and Skogestad11 derived polynomial combinations of measurements

as CVs, the unknown disturbances are eliminated using elimination theory. However, this

method requires both the economic function and process models defined in a polynomial ring

such that the cumbersome symbolic computations may become infeasible for more general

non-linear processes, which restricts its practical usage to certain extent.

2. Dynamic SOC. Extensions to self-optimizing control dynamic systems have also been re-

ported. Dahl-Olsen et al.12 used maximum gain rule for CV selection of batch processes,

where single measurement as CV was considered. Hu et al.13 formulated dynamic SOC as an

optimal control problem, a local perturbation control approach was proposed to determine

the CV candidates. Jaschke and Fikar14 and Ye et al.15 controlled the Hamiltonian func-

tion to achieve SOC of batch processes, nonetheless, the Hamiltonian function requires to be

analytically derived in their approaches.

3. Measurement subset selection. For practical usage, measurement subset selection for

constructing CVs is of paramount importance. A general conclusion is that with more mea-
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surements, better self-optimizing performance can be expected. However, the gained profit

gradually decreases with using more measurements. Therefore, it is a reasonable way to

use a few rather than all measurements to derive CVs while still achieves a similar perfor-

mance. Due to the combinational nature of subset selection problem, the branch and bound

(BAB) method was demonstrated to be the most suitable algorithm. Kariwala and Skoges-

tad16 provided a BAB algorithm for CV selection using minimum singular value rule. Cao

and Kariwala17–19 published a series of bidirectional BAB algorithms that were particularly

efficient for screening CV candidates based on different criterions. In another work,20 the

BAB algorithm was further extended to deal with the regression based NCO approximation

method, which is also applicable to general regression problem. Besides BAB, the Mixed Inte-

ger Quadratic Programming (MIQP) algorithm was also considered to select a measurement

subset.21

4. Other issues. Although most SOC methods were developed on basis of invariant active

constraints, in the work of Manum and Skogestad,22 the nullspace method was extended

to cover the situation with active set changes. In another work,23 CV selection approach

was proposed to minimize the local average loss while ensuring all the constraints satisfied

over the allowable set of uncertainties. Ye et al.24 proposed a data-driven SOC strategy,

where the process model was identified from the historical operating data. SOC in the

framework of a hierarchical control structure were also reported. For example, Jaschke and

Skogestad25 developed a control hierarchy where the lower layer implements SOC while the

upper layer performs NCO tracking.26 Ye et al.27 devised a scheme to make the CVs adaptive

to operating conditions in a new hierarchical control structure, hence improving the optimizing

performance.

This paper is within the scope of SOC. Particularly, a new CV selection methodology for static

optimization is proposed, which is devoted to deal with the SOC problem by minimizing the global

average loss. A major characteristic that makes the new scheme different from other existing SOC

approaches is that during the developments, each disturbance scenario within the entire operation

6



region is independently considered, rather than relying on a single linearized model, as was done in

previous local SOC methods. Similarly to local SOC approaches, the numerical algorithm developed

in this work uses a quadratic model to evaluate the loss. Nevertheless, the difference is that the

quadratic model in the new algorithm is derived to fit data representing the whole operating region.

The reminder of this paper is organized as follows: Section 2 firstly presents some background

knowledge of the SOC, particularly, a local SOC algorithm is reviewed.7 Section 3 presents the SOC

problem as a nonlinear programming (NLP) problem, which aims to minimize the global average

economic loss in the entire uncertain space. Two algorithms are proposed to search optimal CVs.

In Section 4, the proposed methodology is applied to two simulated examples. Finally, Section 5

concludes this paper.

Local self-optimizing control

Problem formulation

Consider a static optimization problem

min
u

J(u,d) (1)

s.t. g(u,d) ≤ 0

with measurements

y = f(u,d) (2)

ym = y + n (3)

where J is a scalar cost function to be minimized, u ∈ Rnu , d ∈ Rnd , n, ym and y ∈ Rny are

the manipulated variables, disturbances, measurement noise, measured and theoretical measure-
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ments, respectively. g : Rnu×nd → Rng and f : Rnu×nd → Rny are the operational constraints and

measurement models, respectively.

Assuming that at the optimal point, a subset of the operational constraints, say ga (i.e. active

constraints), should be satisfied. The active constraints are generally directly measured and con-

trolled as the CVs, which consume the same number of the degrees of freedom. Furthermore, in

this paper, the active set is assumed to keep unchanged in the whole operating region. We deal

with the minimization problem of scalar cost function J with respect to the remaining degrees of

freedom in the reduced unconstrained subspace. Hence, an unconstrained optimization problem

can be equivalently stated as follows

min
u

J(u,d) (4)

Note, in the above equation, for simplicity, we use the same notation u as in the original problem (1)

for the remaining unconstrained manipulated variables. Obviously, the necessary condition of

optimality for this unconstrained problem is that the first order derivatives of J with respective to

u, Ju = 0. However, Ju is generally hard to measure on-line because of the unknown disturbances.

Moreover, direct evaluation of Ju may not be tractable due to the complexity of process model

equations implicitly embedded in the cost function, J .

As an alternative to enforcing Ju = 0, SOC achieves this goal by tracking constant set-points of

some particularly chosen CVs, which are combinations of measurements, denoted as c = Hy. Here,

H is a (nc × ny)-dimensional combination matrix as

H =


h1

...

hnc

 =


h11 · · · h1ny

...
...

hnc1 · · · hncny
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where hi (i = 1, . . . , nc) is a row vector of coefficients to be designed for an individual CV. Here, we

generally have nc = nu to form a square control problem. Besides, we require nc ≤ ny, otherwise,

the system is over-determined hence perfect control for c cannot be realized.

Local self-optimizing control methods

To make the self-optimizing control problem tractable, the first effort was to simplify the process

model through linearisation around a reference point, where for a nominal disturbance, dnom, the

input is nominally optimal, ůnom = ů(dnom) and the corresponding measurement is, ẙnom. (In this

paper, we use (̊·) to represent those variables under optimal operation and (·)nom as those under the

nominal condition.) Due to the linearisation involved, the controlled variables to be determined

is only locally valid within a small region around the reference point, so that methods developed

based on linearisation are referred to as local SOC methods such as.5–9,21 The linearised process

model is as follows.

∆y = Gy∆u + Gyd∆d (5)

where Gy and Gyd are the gain matrices of y associated with u and d respectively, the symbol

“∆” denotes the deviation of a variable from its nominal optimal value i.e. ∆y = y − ẙnom,

∆u = u − ůnom and ∆d = d − dnom. In the following, we outline some basic results of SOC

methodology, a complete summary of local SOC methods can be found in a recent book by Rangaiah

and Kariwala, see ref.28

Evaluation of economic loss

As a criterion for CV selection, an economic loss is defined as

L = J(u,d)− J̊(d) (6)
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In principle, L should be calculated from its original definition in (6). However, the calculation is

often not straightforward, particularly, when the plant is operated in closed-loop. Alternatively, it

is approximated through Taylor expansion of L with respect to some free variables, for example,

either u or c.

L in terms of u. Applying second-order Taylor expansion of L around the nominally optimal

point ůnom, L can be locally approximated as

L ≈ 1

2
eT
uJuueu (7)

where eu := ufb − ůnom is input deviations from the nominally optimal point under closed-loop

control, ufb represents the location of u after controlling the selected CVs. Juu is the Hessian

matrix of J with respect to u evaluated at ůnom.

Using the linear relationship of (5), eu can be derived in terms of ∆d and n as5

eu = (J−1uuJud − (HGy)
−1HGyd)∆d + (HGy)

−1Hn (8)

where Jud is a matrix representing the sensitivity of Ju with respect to d.

L in terms of c. For a given H, the nominally optimal CV value is c̊nom = Hẙnom. Similarly, under

ufb, the measurements after feedback control are yfb and the corresponding CVs are cfb = Hyfb.

With these notations, the loss can also be represented as a quadratic function in terms of c.

L ≈ 1

2
eT
c Jccec (9)

where ec := cfb − c̊nom is defined as the CV deviations around the nominally optimal point. Jcc is

the Hessian matrix of J with respect to c evaluated at c̊nom

Jcc = (HGy)
−TJuu(HGy)

−1 (10)
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and ec can be further calculated from ∆d and n based on the linear model (5) and the actual

measurement equation (3).

ec = (−HGyJ
−1
uuJud + HGyd)∆d + Hn (11)

Remark 1 In above presentations, L is evaluated in terms of two different references, u and c.

In the local SOC methods, ec and eu can be mutually converted with a linear relationship, namely

ec = (HGy)eu. In such a situation, the choice of loss evaluation is not critical. In reported local

SOC works, L in terms of u was typically used. However, for the global CV selection to be studied

in this work, we do not rely on a linearized model hence such simple linear relationship no more

holds. Then, it can be shown that the choice of reference for evaluating L is critical in the context

of global SOC. This effect will be discussed again in the next section.

Local average loss minimization

Let d and n be scaled as ∆d = Wdd
′ and n = Wnn

′ where Wd and Wn are diagonal matrices

containing the expected magnitudes of the disturbances and the measurement noises such that the

allowable range for d′ and n′ are, for uniform distributions,

∥∥∥∥∥
[
d′T n′T

]T∥∥∥∥∥
∞

≤ 1, or, for Gaussian

distributions

[
d′T n′T

]T
∼ N(0, 1). Throughout this paper, we assume that all elements in d and

n are independently and identically distributed.

In previous works, both the worst case loss and average loss in the allowable range of uncertainties

have been proposed and used as the criteria for CV selection. Kariwala et al.9 derived expressions

of local economic loss for both worst case and average loss under different distributions. Practically,

the average loss is of more interest and more appropriate to be minimized. Actually, as demon-

strated in,9 minimizing the average loss simultaneously minimizes worst case loss. In this paper,

11



we aim to minimize the average loss. Follow the approach proposed in,7 write

∆ẙ = F∆d (12)

where F is defined as the sensitivity of optimal measurements with respect to the disturbances eval-

uated at the nominally optimal point, which can be numerically calculated through finite differences

against d or through the following analytical expression

F = −GyJ
−1
uuJud + Gyd (13)

Based on the exact local method,5 the local average loss Llav was represented as7

Llav =
1

2
‖ [Md Mn] ‖2F (14)

Md = J1/2
uu (HGy)

−1HFWd, Mn = J1/2
uu (HGy)

−1HWn (15)

After introducing an augmented sensitivity matrix F̃ ,

[
FWd Wn

]
and a constraint of HGy =

J
1/2
uu , the following optimization problem for CV selection is formulated to minimize the local average

loss7

min
H

Llav = min
H

1

2
‖F̃THT‖2F (16)

s.t. HGy = J1/2
uu

Analytical solutions to problem (16) are referred to, e.g.,7.21

Remark 2 The trick to include a constraint utilizes the fact that the solution for optimal H is non-

unique. One can verify this by checking the equivalence of using H and BH as the combination

matrix (B is an arbitrary nc × nc non-singular matrix). This property allows the designer to

consider some additional requirements by imposing certain constraint for H. For example, Alstad
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and Skogestad6 proposed to enforce HGy = I, which achieves a decoupled steady-state response from

u to c. The same constraint was adopted in.23 Alstad et al.,7 also in,21 further considered using

HGy = J
1/2
uu , which actually achieves Jcc = I (see equation (10)), thus significantly simplifying the

loss calculation. This constraint will be adopted in the present work due to its convenience.

Global self-optimizing control

In this paper, we consider the self-optimizing control problem in the whole operating region, which

is spanned by all expected uncertainties (disturbances d and measurements noises n). Prior to

introduction of global average loss, a feature of CV selection is reviewed as follows.

Property 1 Arbitrary CVs with nonzero setpoints (cs) can be generalized as CVs with zeros set-

points as follows: define an augmented measurement vector ȳ =

[
y0 yT

]T
, where y0 = 1 is a

constant. With ȳ as the measurements, the set-points of CVs can be unified to 0 by using an

augmented combination matrix H̄ =

[
h0 H

]
, where h0 = −cs.

The correctness of Property 1 can be easily verified through rearrangement of the CV equation

Hy = cs. To simplify the notation, we use y for ȳ and, H for H̄ in the reminder of this work.

Dimensions of y and H became (ny + 1) and (nc)× ny + 1, respectively. Since we have ny ≥ nc, H

is a strict “fat” matrix in the present work. Using Property 1, arbitrary CVs can be expressed as

c = Hy with their setpoints at 0 without loss of generality.

Remark 3 In local SOC methods, cs is naturally determined by evaluating the CV values at the

nominally optimal point to achieve locally zero loss. However, from the global operation point of

view, the locally zero loss is not necessary if the overall aim is to achieve the global average loss

corresponding to the entire operation range minimised. Therefore, in this paper the economic loss

at the nominal point is not necessarily 0. Instead, cs is a decision variable to minimize the global

average loss, which is further incorporated in the combination matrix H̄, as indicated by Property 1.
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Global average loss

The average value of economic loss in the whole uncertain space can be expressed as an expectation

form

Lgav(H) = E[L(d,n,H)] =

∫
d∈D,n∈N

ρ(d)ρ(n)L(d,n,H) dndd (17)

where E[·] and ρ(·) represent the expected value and the probability density of a random variable,

respectively. D and N are the spaces spanned by d and n, respectively. As seen from eq (6), L is

originally defined as a function of u and d in open loop. However, since the closed loop performance

is considered here, the feedback result of ufb has to be identified, which depends on d and n for

specific CVs, so that L is also a function of d, n and H (implicitly defined). To calculate L, ufb

(or yfb) have to be determined over the region where the explicit function L lies.

Values of ufb and yfb are determined in a closed-loop operation, which is governed by the following

equations including the rigorous non-linear process model and linear CVs functions

yfb = f(ufb,d) (18)

cfbm = Hyfbm = H(yfb + n) = 0 (19)

where cfbm is the “measured” CVs assuming to be perfectly maintained at zero through feedback

control. The above analysis indicates that directly evaluating the loss requires to solve a set of

non-linear equations for a given H. The computation involved is cumbersome.

The formulation of minimizing the average loss for SOC design by taking (17) as the cost func-

tion and both (18) and (19) as constraints has been proposed by Halvorsen et al..5 However, the

formulation was generally considered as intractable, hence had not been pursued any further in

the literature due to cumbersome computations involved as explained above. Instead, two main

simplifications were adopted in5 and other later works to make the problem tractable. The first

simplification was to approximate L by a second-order Taylor expansion and the second one is to
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replace f by a linear model (5), so that L can be represented as an explicit function of H.

Concerning the two simplifications mentioned above, the linear approximation of process model is

more likely to result in a large loss when the operating condition drifts far away from the nominal

point. In contrast, for a well-designed SOC structure, the average loss over the entire operating

range should be reasonable small. Therefore, by taking the reference point to track the optimal

operation conditions, a second-order approximation for L is generally acceptable even over the

entire operating range. These observations fund the basis for the approaches to be developed in

this work.

Loss evaluation using a nonlinear model

To simplify the global SOC problem with non-linear process model (18), it is important to explicitly

link the loss with the combination matrix, H. However, this cannot be achieved by taking u as the

independent variable for the Taylor expansion because in this formation, L is implicitly dependent

on H through ufb determined in non-linear equations (18) and (19).

To address this issue, we choose to evaluate L in terms of c with L ≈ 1
2
eT
c Jccec, which makes L

an explicit function of {d, n, H}, as illustrated as follows. By definition, the CV deviations from

the optimum with feedback control is ec = cfb − c̊. Furthermore, since cfb = Hyfb = H(yfbm − n)

and the feedback result Hyfbm = 0, we have cfb = −Hn. Meanwhile, the optimal CV values can be

simply obtained as c̊ = Hẙ. Therefore, ec can be calculated in a simple form, as

ec = −H(̊y + n) (20)

For Jcc, it is given as

Jcc = (HGy)
−TJuu(HGy)

−1 (21)
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Note that for a particular nominal point, Gy and Juu in (21) are the same as those in local SOC

methods. However, for the global CV design problem, we intend to evaluate it over the entire

operation space, not only at a single operating point. In other words, above Gy and Juu, as well

as ẙ, which depend solely on d, can be obtained via off-line optimization for any given scenario of

uncertainties. Based on above results, L is evaluated explicitly as

L ≈ 1

2
(̊y + n)THTJccH(̊y + n) (22)

where Jcc is computed from equation (21).

Remark 4 The difference of choosing appropriate variables for evaluating L can be understood

from the perspective of whether the system is operated in open loop or close loop. Using u is

appropriate for the situation when the system is in open loop, because u are the “free” variables.

However, since the loss here is evaluated for a closed-loop operation, c is preferable because the

feedback results can be directly utilized.

Proposition 1 The average loss Lgav for a given H can be decomposed as

Lgav(H) = E(Ld) + E(Ln) (23)

where

Ld =
1

2
ẙTHTJccHẙ, Ln =

1

2
tr(W2HTJccH) (24)

tr(·) stands for the trace of a matrix, W2 = E(nnT ) is diagonal provided that n are mutually

independent.

Proof : See Appendix A for a proof.

In above proposition, Ld can be seen as the loss induced by disturbances d, whilst Ln is the effect of
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measurement errors. Note that n has no influence on Ld, however, d has not been fully decoupled

from Ln because the non-linear term Jcc is embedded in Ln. For W2, it is easy to show that for

Gaussian distributions of n, W2 = W2
n whilst for uniform distributions, W2 = 1

3
W2

n, where Wn

is the expected magnitudes of measurement errors as defined earlier. Also see9 for a proof.

A direct optimizing algorithm

As can be seen from (57), the effect of n can be exactly estimated via a constant matrix W2. This

happens because n is an additive terms imposed on y, which further causes a linear deviation of c.

However, y and Jcc are nonlinear functions of d, they do not obey particular distributions, rather,

they heavily rely on the process characteristics. Consequently, for general nonlinear processes, both

expectations of Ld and Ln cannot be analytically calculated, to the best knowledge of the authors.

Due to the complexity of nonlinear mapping functions, the global average loss can be evaluated

through Monte Carlo simulation based on its original definition as indicated below,

Lgav(H) = E(Ld) + E(Ln)

=

∫
ρ(d)(Ld + Ln)dd

≈ L̄gav(H) ,
1

N

N∑
i=1

[Ld(i) + Ln(i)] (25)

where N is the total number of sampled disturbance scenarios, the subscript (·)(i) indicates those

terms associated with the ith disturbance scenario d(i), as sampled randomly from expected dis-

tributions. Comparing to (17) in the very beginning of definition of Lgav, here we just need to

integrate the loss in the space of d, because the impact of n has been analytically derived, which

significantly simplifies the problem.

For those processes with discrete disturbance scenarios, which is also possible in real applications,

L̄gav is an exact expression of Lgav. However, the more general case of continuous disturbances
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are considered in this work, in which case L̄gav indicates an approximation of Lgavthrough Monte

Carlo simulation.29 Let d(i) be sampled obeying its own distribution. Then, the approximation

error approaches to 0 as N →∞, as supported by the law of large numbers.

Remark 5 The continuous disturbance space is proposed to be sampled with N finite scenarios and

each of them is solved as an NLP problem to minimize the cost. To ensure the global optimality

of the CV derived, a reasonably large N is required, which may however make the problem compu-

tationally intense. Therefore, to ensure the approach proposed is tractable, it is assumed that an

optimization model is readily available such that the global minimum can be solved off-line for all of

these scenarios. Since the larger the N , the less the influence of N on the optimality, it is possible

to determine an appropriate N off-line. For example, a common way is that we gradually increase

N until the difference between successive cases is less than a small tolerance, whist the computation

burden is maintained within an acceptable level.

To sum up, L̄gav is calculated as follows. Given the distributions of uncertainties (d and n). Let

{d(i)}, i = 1, ..., N be a sequence of disturbance scenarios which are randomly sampled through

Monte Carlo simulation. For each d(i), the optimization problem of minimizing the cost function

J is performed, and ẙ(i), Juu,(i) and Gy,(i) are respectively evaluated at the optimum. Their values

are stored for calculating the L̄gav using (58) and (25). Then, the following non-linear programming

(NLP) problem is solved for CV selection.

min
H

L̄gav(H) = min
H

1

N

N∑
i=1

(Ld(i) + Ln(i)), i = 1, . . . , N (26)

s.t. HGy,(k) = J
1/2
uu,(k)

Here, the kth disturbance scenario d(k) is selected as a particular reference point to form the

constraint HGy,(k) = J
1/2
uu,(k). Typically, we can select the reference point as the nominal point to

formulate this constraint. (Strictly speaking, there is no a particular nominal point in the context

of global SOC. However, for the sake of comparison with local SOC methods, in this work, we
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inherited the term “nominal operating point” and referred it to a particular operating point, which

is treated as the nominal one in local SOC approaches.) Based on above developments, the NLP

problem in (26) can, in theory, be solved via certain numerical algorithms directly, as proposed in

the next.

Algorithm 1: direct numerical optimization. The optimal H minimizing L̄gav is directly

solved using numerical optimization algorithms, such as the sequential quadratic programming

(SQP), interior-point, etc. The detailed procedure is summarized in Table 2.

Table 2: Procedure of implementing Algorithm 1

Step 1: Preparations
1.1 Sampling N finite disturbance scenarios through Monte Carlo simulation
1.2 For each d(i), calculate and store ẙ(i), Juu,(i) and Gy,(i) with off-line optimization (minimizing J)

1.3 W2 = W2
n or 1

3W
2
n for Gaussian and uniform n, respectively.

Step 2: Performing optimizing scheme
2.1 Define the objective function L̄gav from (58) and (25)

2.2 Define the constraint: HGy,(k) = J
1/2
uu,(k), where Gy,(k) and J

1/2
uu,(k) are evaluated at the nominal point

2.3 Select initial values for H, which can be selected from random guesses, or CV candidates from other SOC methods
2.4 Apply a numerical optimization solver: SQP, interior-point, etc.

A major drawback for Algorithm 1 is the non-convexity of the NLP problem, which may probably

lead to a local optimum. The non-convexity mainly comes from the dependence of Jcc on H as shown

in (21). To find the true optimal solution of the NLP, we have to use global optimization tools, such

as the Global Optimization Toolbox in MATLAB, LINGO, etc. However, these tool are either not

efficient, for example the Global Optimization Toolbox, which is based on the genetic algorithm

and pattern search,30 or bespoke based on the divide and conquer principles.31 Fortunately, SOC

does not pursue true optimal, but an acceptable performance. Hence, a solution is acceptable as

long as it is good enough, particularly if it is better than a local SOC solution although it cannot

been proven whether this solution is globally optimal. To achieve this, a local SOC solution can

be used as an initial guess for a NLP solver. This will ensure any solution obtained from the NLP

solver will be better than the initial local SOC solution.

Remark 6 It turns out that the constraint HGy,(k) = J
1/2
uu,(k) not only guarantees the uniqueness of
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optimal CVs, but also facilitate solving the optimization problem. In the case studies, the algorithm

can be successfully solved with random initial values for searching optimal H, even though we are

not able to prove the convexity of the optimization problem. In contrast, when other constraints

are used, the algorithm encounters local optima. The underlying reason can be explained by the

fact that this constraint attempts to restrict Jcc as a constant, which eliminates, at least in certain

extent, the major non-linear source in the loss function.

A simplified algorithm

In this subsection, we demonstrate that with a further approximation, a sub-optimal solution

to problem (26) can be analytical derived in the reformulated framework. Briefly speaking, the

algorithm developed here uses a single quadratic model for the loss function as was done in local

SOC methods. The quadratic model, however, is fitted using those data sampled from the whole

operating region instead of using a linearised model.

Recall that in local SOC, ec,(i) is linear in terms of d and Jcc,(i) is a constant for all disturbances

(given a specific H). This paper mainly addresses the non-linearity where both ec,(i) and Jcc,(i)

are non-linear mapping functions of d(i). To further ease the CV selection problem, we will relax

one restriction in later developments, by considering Jcc,(i) constant over all disturbance scenarios,

similar to local SOC methods. However, ec,(i) is still calculated using a non-linear model. This

way makes sense because L ≈ 1
2
eT
c Jccec is an Euclidean norm of a vector ec with a weighting

factor Jcc. Generally, the Euclidean distance itself is more important than the weighting factor.

Note, relaxation of Jcc,(i) as a constant matrix means that the loss is approximated by a quadratic

function in terms of the CVs, just as in local SOC. However, the difference is that the approach

here linearizes the system differently in the whole operating region and the summation of norm of

ec,(i) is minimized.

As described below, Jcc = I is adopted to simplify the loss function. However, it is worth to point

out that this condition, equivalent to HG = J
1/2
uu , is an assumption added to the loss function
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L̄gav, not explicitly enforced in the optimization problem. Therefore, to ensure the uniqueness of

solution, as well as to enforce all Jcc close to I, an extra constraint, HGy,(k) = J
1/2
uu,(k) at a selected

reference point is still required. The nominal point is selected as the reference point in the reminder

of this paper.

By approximating Jcc = I, let us firstly consider the expectation of Ln

E[Ln] =
1

2
E[tr(W2HTH)] =

1

2
E[tr(HW2HT)] =

1

2
‖WHT‖2F (27)

which is an explicit function of H and irreverent to d.

For E(Ld) with Jcc = I,

E(Ld) =
1

2
E [̊yTHTHẙ] ≈ 1

2N

N∑
i=1

ẙT
(i)H

THẙ(i) (28)

Furthermore, in a matrix form, define the following measurement set

Y =



ẙT
(1)

ẙT
(2)

...

ẙT
(N)


=



1 ẙ1,(1) · · · ẙny ,(1)

1 ẙ1,(2) · · · ẙny ,(2)

...
...

...

1 ẙ1,(N) · · · ẙny ,(N)


(29)

whose ith row vector corresponds to the noise-free measurements sampled at the optimal status

under d(i). It can be verified that the E(Ld) in (28) equals to

E(Ld) =
1

2N
tr(HYTYHT) =

1

2N
‖YHT‖2F (30)

Let ¯̄Lgav denote the further approximated average loss under all uncertainties with an enforced
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condition Jcc = I. It is derived as follows

¯̄Lgav(H) = E(Ld) + E(Ln) =
1

2N
‖YHT‖2F +

1

2
‖WnH

T‖2F

=
1

2
‖ỸHT‖2F (31)

where the extended matrix Ỹ is defined as

Ỹ =

 1√
N

Y

Wn

 (32)

To sum up, the following optimization problem is formulated with constraint

min
H

¯̄Lgav(H) =
1

2
‖ỸHT‖2F (33)

s.t. HGy,(k) = J
1/2
uu,(k)

where Gy,(k) and J
1/2
uu,(k) can be typically selected as those values evaluated at the nominal point.

This optimization problem is convex with an available analytical solution. Precisely, by making an

analogy of above optimization problem to the local SOC approach as presented in equation (16)

in Section 2, the only difference is that in global approach, we construct an extended matrix Ỹ to

replace F̃T as in the local SOC approach.7 Therefore, the next two propositions solving (33) readily

follow.

Proposition 2 The analytical solution solving (33) is given as7

HT = (ỸTỸ)
−1

Gy,(k)(G
T
y,(k)(Ỹ

TỸ)−1Gy,(k))
−1J

1/2
uu,(k) (34)

Remark 7 In the work of ,7 above result is not applicable to noise-free cases when ny > nd. This

is because when Wn = 0, F̃F̃T loses rank hence the inverse of F̃F̃T does not exist. However, in

the new global approach, ỸTỸ still remains full rank for noise-free cases as long as N > (ny + 1)
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for non-linear systems, which can be easily achieved by increasing the sampling number. Therefore,

the proposed approach is also applicable to noise-free case hence more general.

Proposition 3 A more concise yet equivalent expression for optimal CVs is given as21

HT = (ỸTỸ)−1Gy,(k) (35)

This follows by simply choosing a transformation matrix B = (GT
y,(k)(Ỹ

TỸ)−1Gy,(k))
−1J

1/2
uu,(k),

which implies that analytical CVs can be obtained without knowing Juu,(k). However, if we want to

obtain the numerical value of ¯̄Lgav, Juu,(k) is still required to calculate H matching the constraint.21

The following algorithm is summarized for minimizing ¯̄Lgav.

Algorithm 2: Let Ỹ be constructed as in (32) and (29), the optimal H minimizing ¯̄Lgav are given

as (34) or (35). The detailed procedure of Algorithm 2 is summarized in Table 3.

Table 3: Procedure of implementing Algorithm 2

Step 1: Preparations
1.1 Sampling N finite disturbance scenarios through Monte Carlo simulation
1.2 For each d(i), calculate ẙ(i) with off-line optimization (minimizing J)

1.3 Evaluate Gy,(k), Juu,(k) (optional) at the nominal point

1.4 W2 = W2
n or 1

3W
2
n for Gaussian and uniform n, respectively.

1.5 Constructing Ỹ from (32) and (29)

Step 2: Performing optimizing scheme
2.1 H is given as (34) or (35)

Summary and discussions

Approximations in proposed methodology

Within the scope of SOC, a CV selection methodology is developed to minimize the global average

loss for non-linear processes. However, due to the problem complexity, several approximations are

introduced in the proposed methodology to make the problem tractable:

23



• The loss function is evaluated with a second-order Taylor expansion with respect to c.

• For those processes with continuous disturbances, the average loss is approximated based on

N finite samplings from the disturbance space through Monte Carlo simulation. However,

since CVs are designed off-line, we are able to increase N to reduce the approximation error,

as long the algorithm can be completed in an affordable time.

• In the simplified Algorithm 2, Jcc is considered to be constant for all sampled disturbance

scenarios, which is reasonable, however, introduces some extra errors.

Differences and links to local SOC

At this stage, it is necessary to make a comparison to local SOC methods, based on which some

of the results presented in this paper are built. The major difference between the methodology

developed in this paper and those local SOC methods is that, we do not rely on a linearized model

∆y = Gy∆u + Gyd∆d but the rigorous non-linear process model y = f(u,d). This treatment

is more accurate and helps improve self-optimizing performances for practical plants. Another

merit of the proposed approach worth mentioning is that it is more likely to guarantee feasibility

when controlling the obtained CVs in the whole operating region. This is because the process

is more likely to be operated toward optimum for all occurred disturbances, where feasibility is

guaranteed upon optimality. Nevertheless, some challenges to seek a global solution for SOC have

to be highlighted as follows:

1. The linear relationship between eu and ec no more holds. Therefore, choosing the right form

of loss evaluation is critical, which was not the case in local SOC methods.

2. The analytical expectation of loss induced by disturbances Ld cannot be easily derived, owing

to the uncertain distributions of ẙ and Jcc, which are nonlinear mappings of d. Therefore,

the average loss is calculated from its original definition with finite sampling in the whole

disturbance space. On the other hand, the effect of measurement/implementation errors are
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handled in the same fashion as local SOC methods, because their statistic influences can be

exactly estimated.

3. The non-convexity of optimization problem (26) may cause failure (not always but just a

risk) if an initial value or numerical optimizing algorithm is not appropriately chosen. On

the other hand, the simplified Algorithm 2 is convex where an analytical optimal solution

exists, at the price of introducing some extra error. Nevertheless, Algorithm 2 is still stronger

than local SOC in the sense that the non-linear term ec is preserved, which is generally more

important than Jcc when evaluating a loss.

In the next, it is of interest to illustrate that, when the methodology is applied to a linear plant,

it will reduce to a local SOC method. To show this, it is firstly noted that for a linear plant,

Jcc remains constant for a specific H, hence minimizing ¯̄Lgav (Algorithm 2) is a special case of

minimizing L̄gav (Algorithm 1) proposed in this paper. Meanwhile, observing (16), (33) and the

definitions of Ỹ and F̃, it is found that the effect of measurement errors is the same. Thus, we just

need to check the equivalence of 1
2
‖ 1√

N
YTHT‖2F (or E[Ld]) and 1

2
‖(FWd)

THT‖2F .

For a linear system, we have

ẙ = F∆d + ynom (36)

therefore

E(Ld) =
1

2
E (̊yTHTHẙ) =

1

2
E[tr(̊yẙTHTH)]

=
1

2
E{tr[(F∆d∆dTFT + F∆d(ynom)T + ynom(F∆d)T + ynom(ynom)T)HTH]} (37)

where since the expectation of ∆d is 0, the middle two terms vanish. Furthermore,

E[tr(ynom(ynom)THTH)] = (ynom)THTHynom = 0 (38)
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The equality holds because in the linear case, we select H such that at the nominal point the loss is

0. Note, we complement the set of measurements with a constant 1, the set-points are also decision

variables in H. Consequently,

E(Ld) =
1

2
E[tr(F∆d∆dTFTHTH)] =

1

2
‖(FWd)

THT‖2F (39)

which proves the equivalence.

The only restriction is that in the proposed algorithms, E(Ld) is estimated via finite sampling.

However, this approximation error is small when N is large. On the other hand, it is very rare for a

practical process to be exactly linear. Hence, the profit gained by non-linear treatment is generally

larger than the extra economic loss induced by finite sampling.

Case studies

A toy example

Consider the following toy example

J =
1

2
(u− d)2 (40)

where both u and d are scalars. Two measurements are available as follows

y1 = u (41)

y2 =
1

4
u2 + d (42)

The nominal disturbance is dnom = 0. Correspondingly, the optimal point is then defined by

unom = 0, where Jnom = 0, ynom1 = 0 and ynom2 = 0. The possible variation of d is uniformly

distributed between −1 and 1, i.e. d ∈
[
−1 1

]
. Measurement noises are not considered in this
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toy example. For self-optimizing control of this toy example, we consider

c = hy = h0 + h1y1 + h2y2 (43)

as the controlled variable.

To more clearly illustrate the proposed algorithms, let us firstly consider a naive scenario by selecting

N = 3. Furthermore, the disturbance range is evenly discreted as d(i) ∈ {−1, 0, 1}. Since the

optimum of this toy example is given as ů(i) = d(i). The optimal measurements ẙ and their first

order derivatives Gy for each scenario are easily obtained. For all scenarios, Juu = 1.

Y =


ẙT
(1)

ẙT
(2)

ẙT
(3)

 =


1 −1 −0.75

1 0 0

1 1 1.25

 ,


GT
y,(1)

GT
y,(2)

GT
y,(3)

 =


0 1 −0.5

0 1 0

0 1 0.5

 (44)

Note an augmented measurement y0 = 1 is added.

(1) Algorithm 1. The objective function is given as L̄gav = 1
6

∑3
i=1 (̊yT

(i)h
TJcc,(i)hẙ(i)), where

Jcc,(i) = (hGy,(i))
−TJuu(hGy,(i))

−1. Using the values in (44), L̄gav is rearranged as

L̄gav =
1

6

{
(h0 − h1 − 0.75h2)

2

(h1 − 0.5h2)2
+
h20
h21

+
(h0 + h1 + 1.25h2)

2

(h1 + 0.5h2)2

}
(45)

The constraint is selected as hGy,(2) = Juu, i.e. h1 = 1. The SQP method is used for minimizing

L̄gav, the solution gives a CV as

c1 = 0.1348 + y1 − 0.9201y2 (46)

with the minimal L̄gav = 0.005561.

(2) Algorithm 2. Since no measurement errors involved, the extended measurement set Ỹ is a
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constant factor 1√
3

of Y. Using Proposition 2, the optimal CV minimizing ¯̄Lgav is

c2 = 0.1633 + y1 − 0.9796y2 (47)

with the minimal ¯̄Lgav = 0.006803.

Comment: For Algorithm 2, different solutions will be obtained when other reference points are

used to enforce the constraint. However, such differences are generally small. Here, in the case

of using the other two points (i = 1, 3), the calculated self-optimizing performances are almost

identical to using the nominal point (relatively less than 0.8%).

(3) Local SOC. Since there are no measurement noises, the local null space method is applied,6

the resultant CV is

cloc = y1 − y2 (48)

(4) Analytical optimal CV. For this toy example, the analytical optimal CV can actually be

derived using Matlab Symbolic Toolbox32

cana = 0.0705 + y1 − 0.9231y2 (49)

Above results are summarized in Table 4, from which the following results can be observed: (1)

As expected, among 4 CVs, Algorithm 1 and Algorithm 2 minimizes L̄gav (0.005561) and ¯̄Lgav

(0.006803), respectively. (2) Both Algorithm 1 and Algorithm 2 are effective as compared to the

local SOC method, the true average loss (analytically calculated for this toy example) for them are

0.005431 and 0.006344, respectively. The performance of Algorithm 1 is better than Algorithm 2.

On the other hand, the local SOC gives a big average loss as 0.01831. (3) There are still some loss

between the true average loss and the proposed algorithms, which can be improved by increasing

N .

The performances of increasing N from 3 and 30 are shown in Figure 1. For Algorithm 1, it
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Table 4: Performance comparisons for toy example

Algorithms CV L̄gav
¯̄Lgav Lgav

Algorithm 1 c1 0.005561 0.008179 0.005431
Algorithm 2 c2 0.007624 0.006803 0.006344
Local SOC cloc 0.04630 0.02083 0.01831

Analytical optimal cana 0.009213 0.0136 0.002778
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Figure 1: Performance validation of increasing N
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does not have multiple local optima in a wide range of the solution space. For various starting

points, the algorithm converges to the same optimal solution. Both the losses L̄gav and true

average loss Lgav gradually decrease as we increase N . At N = 30, L̄gav (0.002783) is almost

identical to the true optimal 0.002778, where the slight difference stems from the approximation

error of Taylor expansion. For Algorithm 2, it is noted that ¯̄Lgav gradually decreases, however,

Lgav decreases at first but slightly increase when N continues to grow. This can be explained

by different effects imposed on the estimated average loss by N and treating Jcc as a constant.

Increasing N is generally beneficial, hence all the losses decrease except Lgav for Algorithm 2, which

is due to the enforced condition Jcc = I, the true global loss increases in spite of the decreasing

simplified loss, ¯̄Lgav. However, such a behaviour is not general, but case dependent. For this toy

example, interpretation can be provided as follows: according to (17) and the calculation of L̄gav,

Algorithm 1 is equivalent to implementing Algorithm 2 but with samples obeying a distribution of

ρ̃(d) = ρ(d)Jcc(d)∫
ρ(d)Jcc(d)dd

. Simulation result shows that Jcc(d) monotonically grows with d and its mean

around d = 0.7. Hence, using data generated under original uniform distribution, the true global

loss may increase when N increase. This is because more samples under a wrong distribution cause

more errors. Nevertheless, the final loss (0.003995) is still much smaller than the local SOC method

(0.01831).

Evaporator

A forced-circulation evaporator is investigated, which was modified from its original version, 33 as

shown in Figure 2. This example has also been investigated in several papers,9,21,23 however, some

results provided here are new. The process involves 3 state variables and 20 process variables,

which are explained in Table 5 with their nominal values. For more process descriptions and model

equations, we also refer readers to other publications.9,33
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Figure 2: Evaporator

Table 5: Process variables and nominal values for evaporator process

Variable Physical description Nominal value Unit
F1 Feed flowrate 9.469 kg·min−1

F2 Product flowrate 1.334 kg·min−1

F3 Circulating flowrate 24.721 kg·min−1

F4 Vapor flowrate 8.135 kg·min−1

F5 Condensate flowrate 8.135 kg·min−1

X1 Feed composition 5 %
X2 Product composition 35.5 %
T1 Feed temperature 40 ◦C
T2 Product temperature 88.400 ◦C
T3 Vapor temperature 81.066 ◦C
L2 Separator level 1 meter
P2 Operating pressure 51.412 kPa
F100 Steam flowrate 9.434 kg·min−1

T100 Steam temperature 151.52 ◦C
P100 Steam pressure 400 kPa
Q100 Heat duty 345.292 kW
F200 Cooling water flowrate 217.738 kg·min−1

T200 Inlet cooling water temperature 25 ◦C
T201 Outlet cooling water temperature 45.550 ◦C
Q200 Condenser duty 313.210 kW
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The objective function is described as

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (50)

with manipulated variables and disturbances as

u =

[
F200 F1

]T
(51)

d =

[
X1 T1 T200

]T
(52)

where the variation ranges for disturbances are defined as ±5% for X1 and ±20% for T1 and T200

(uniform) of their nominal values, respectively. Here, the considered u is a subset of original

manipulated variables, other degrees of freedom are used to satisfy the active process constraints.

In the present work, we consider the reduced unconstrained optimizing problem.

The following measurements are available

y =

[
P2 T2 T3 F2 F100 T201 F3 F5 F200 F1

]T
(53)

with expected noise magnitudes of 2%, 2.5% and 1◦C (uniform) for flowrates, pressures and tem-

peratures, respectively. At the nominal point, the following matrices are obtained

Juu =

 0.0056 −0.1334

−0.1334 16.7366

 ,

Gy =

−0.093 −0.052 −0.047 0 −0.001 −0.094 −0.032 0 1 0

11.678 6.559 5.921 0.141 1.115 2.170 6.594 0.859 0 1


T

(54)

which are incorporated into the constraint condition for the combination matrix of CVs.

In this evaporator case study, we investigate the measurement subset selection problem via applying

Algorithm 2, where ¯̄Lgav is used as the criterion for subset screening. This is because the analytical
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minimal ¯̄Lgav can be computed in one step, once the matrix Ỹ has been constructed, through which

means one can quickly find promising measurement subsets. For this scale of problem, exhaustive

search for optimal subset is quickly completed, note that, faster MIQP and BAB algorithms are

also available.19,22

Table 6: Best measurement subset selection for self-optimizing control of evaporator

ny Best subset (minimal ¯̄Lgav) ¯̄Lgav Best subset (minimal 1
2
‖F̃THT‖2F ) ¯̄Lgav

2 [F100 F200] 19.150 [F3 F200] 20.694
3 [F2 F100 F200] 4.0214 -a -
4 [F2 F100 F5 F200] 3.5303 [F2 T201 F3 F200] 13.706
5 [F2 F100 F3 F5 F200] 3.1190 [F2 F100 T201 F3 F200] 3.6269
6 [F2 F100 F3 F5 F200 F1] 3.0742 [F2 F100 T201 F3 F5 F200] 3.1005
7 [P2 F2 F100 T201 F3 F5 F200] 3.0389 - -
8 [P2 F2 F100 T201 F3 F5 F200 F1] 3.0153 [P2 T2 F2 F100 T201 F3 F5 F200] 3.0328
9 [P2 T2 F2 F100 T201 F3 F5 F200 F1] 3.0106 - -
10 [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] 3.0083 - -

a The two approaches give the same optimal measurement subset

The disturbance space is randomly sampled by N = 1000 uniformly distributed scenarios, which

is tested to be enough for this example. Using the number of measurements ranging from 2–

10, the best subsets with minimal ¯̄Lgav are obtained. The best measurement subsets and their

corresponding ¯̄Lgav values are given in Table 6. Detailed CVs are provided in Appendix B (Table

8).

Basically, using ¯̄Lgav as the criterion for subset selection leads to some similar conclusions as revealed

earlier with a local SOC method.9 That is, the loss index gradually decreases as the number of

measurements ny increases from 2 to 10, as shown in Figure 3. Using 2 measurements is not

good enough for self-optimizing controlling this evaporator, which gives an average loss of 19.150.

This can be explained by the fact that there are 3 disturbances affecting the process, hence using 2

measurements is not enough to achieve good self-optimizing performance. On the other hand, when

ny ≥ 3, the loss can be substantially reduced as expected. Among all, ny = 10 gives the minimal

average loss of 3.0083. Nonetheless, it is obvious that using all measurements is not necessary, in

contrast, ny = 3 or 4 gives a relatively good trade-off between the economic performance and CV

complexity.
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Figure 3: Minimal average losses obtained from Algorithm 2 with 2 to 10 measurements

For comparisons, the best measurement subsets are also identified by using the local SOC method,

where 1
2
‖F̃THT‖2F is used as an index for subset selection. The results are compared in Table

6. Firstly, the obtained subsets with a local SOC analysis are the same as in,21 where a Mixed

Integer Quadratic Programming (MIQP) algorithm was used for subset selection. However, when

compared to the results obtained by the algorithm proposed in this paper, some differences can

be observed. When ny = 2, 4, 5, 6, 8, the proposed algorithm gives different optimal measurement

subsets, as shown in Table 6. For other cases when ny = 3, 7, 9, 10, they gave the same optimal

subsets.

In all scenarios, the proposed method suggests include F100 and F200, instead of F3 and F200 as en-

couraged by a local SOC analysis. With non-linear model verification of 100 random uncertainties,

we find that the average loss can be reduced from 20.032 to 15.857 by using [F100, F200] instead of

[F3, F200]. In the work of,9 [F100, F200] is the third best subset when 2 individual measurements are

controlled. However, they did not identify it as the best choice and implement it for non-linear

model verification.

The largest discrepancy occurs when ny = 4, the proposed approach recommends using [F2 F100 F5 F200]

with a minimal ¯̄Lgav = 3.5303. In contrast, the local SOC method gives a subset of [F2 T201 F3 F200],
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whose ¯̄Lgav index is calculated to be 13.706, indicating that it is a bad choice for 4-measurement

subset. Actually, these two subsets have been investigated in,9 they verified that [F2 T201 F3 F200]

results in a poor performance although it has a locally minimal loss. Alternatively, they found

that [F2 F100 F5 F200] is a very promising candidate via an ad hoc search, where they reported

a non-linear model evaluated average loss of 2.808. In this paper, we further confirm it as the

best subset using the ¯̄Lgav index. For other cases where the two algorithms give different subsets

(ny = 5, 6, 8), the ¯̄Lgav values differ not much.

In the following, we further explore the the cases of ny = 2 and 4 using best measurement subsets

identified in this paper, by applying both Algorithm 1 and 2, as well as the local SOC method. Their

non-linear model evaluated average losses with 100 groups of random disturbances and measurement

errors are tabulated in Table 7. When ny = 2, these algorithms give almost identical results, with

negligible differences. When ny = 4, the proposed algorithms behave relatively better with smaller

average losses, as shown in Table 7. Above results are actually not surprising, because the model

between identified measurements (F100, F200) and system inputs can be verified to be very linear. In

this situation, the differences among various algorithms are not significant. Besides, for the case of

ny = 4, the overall average loss L̄gav for different CVs (e.g. obtained by Algorithm 1) is decomposed

as Ld = 0.809 and Ln = 3.531, which indicate that the measurement errors contribute most of the

economic loss. Since the Algorithm1 and 2 are mainly proposed to reduce the loss caused by the

disturbances, the overall economic performance is only slightly improved. Nevertheless, it is the

new algorithm proposed in this work that identifies these good subsets successfully.

Table 7: Average loss evaluations with 100 groups of random disturbances and measurement errors
for ny = 2 and 4

ny Measurement subset Algorithm 1 Algorithm 2 Local SOC
2 [F100 F200] 15.859 15.857 15.866
4 [F2 F100 F5 F200] 3.760 3.802 3.921

With further explorations, we demonstrate that even with comparable average losses, Algorithm

1 and 2 still give more reliable estimate of the economic loss. For the simulated 100 groups

of random uncertainties, we calculate the single loss using different formulas (with the same H
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Figure 4: Differences between loss estimates from various algorithms and the true evaluated losses
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results from Algorithm 2 for illustration), namely L1 = 1
2
(̊y + n)THTJccH(̊y + n) (Algorithm 1),

L2 = 1
2
(̊y + n)THTH(̊y + n) (Algorithm 2) and, Lloc = 1

2
eT
uJuueu, where eu is calculate from (8).

Their differences between the true non-linear model evaluated loss are shown in Figure 4, where

in the case of ny = 2, the standard deviations of the loss difference are 1.266, 1.267 and 4.200

for Algorithm 1, 2 and the local SOC, respectively. In the other case of ny = 4, the standard

deviations are 1.356, 1.361 and 4.857. These results show that both L1 and L2 provide much more

accurate estimation of the true economic loss, in other words, the relative good performance of local

SOC method stems partially from the fact that, the effects of those not well estimated losses are

counteracting with each other, because this evaporator behaves somewhat “symmetrically” around

the nominal point. However, this feature may not be generally expected for other plants.

Finally, as a summary for this evaporator case study, we demonstrate that the proposed method-

ology is more suitable for measurement subset selection. Besides, it gives more reliable estimate of

economic loss by using the formula as presented in this paper.

Conclusions

This paper proposed a global solution of the self-optimizing control problem, which aims to minimize

the average loss under uncertain operating conditions. A major characteristic of the methodology

developed in this paper is that we do not rely on a linearized process model, rather, we use the

original non-linear model. During the developments, the economic loss was proposed to be evaluated

in terms of c, such that the loss can be expressed as an explicit function of combination matrix.

Two algorithms for solving the global SOC problem were developed, namely a direct optimizing

scheme and an analytical approach by treating Jcc under all scenarios as the same. Differences and

links of the proposed methodology to local SOC approaches were also discussed.

Two case studies were provided with applications of the presented methodology. The results showed

that both the algorithms proposed were effective in the context of global SOC problem. In the
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simulated chemical process, Algorithm 2 exhibited no worse (even better) performances than Al-

gorithm 1, even though the former is a further simplified formulation. Since the analytical optimal

solution can be readily derived, Algorithm 2 is also particularly suitable for applying SOC strat-

egy, namely, CV selection to fast screening of measurement subset candidates, as was done in the

evaporator example.
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Proof for Proposition 1

Based on (22), the average loss Lgav is expected as

Lgav(H) = E[L(d,n,H)]

=
1

2
E
{

(̊y + n)THTJccH(̊y + n)
}

=
1

2
E
{

tr[(̊y + n)(̊y + n)THTJccH]
}

=
1

2
E [̊yTHTJccHẙ] +

1

2
E[tr(̊ynTHTJccH)] +

1

2
E[tr(nẙTHTJccH)] +

1

2
E[tr(nnTHTJccH)]

(55)

For the second term,

E[tr(̊ynTHTJccH)] = E[nTHTJccHẙ] = 0 (56)
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This is because both Jcc and ẙ are functions of d, but independent from n (note that n does

not affect the location of optimum). Therefore, nT and HTJccHẙ are independent and their

inner product vanishes (expectations for n are 0). Similarly, for the third term, the trace of

covariance matrix between n and ẙTHTJccH also vanishes. Lastly, for the fourth term, since nnT

is independent from HTJccH,

E[tr(nnTHTJccH)] = tr[E(nnT)E(HTJccH)] = tr[W2E(HTJccH)] = E[tr(W2HTJccH)] (57)

Combining above results, we have

Lgav(H) =
1

2
E [̊yTHTJccHẙ] +

1

2
E[tr(W2HTJccH)] (58)

based on which Proposition 1 follows.

Numerical CVs for the evaporator

Table 8: Best measurement subset and numerical CVs for the evaporator using Algorithm 2

ny Best subset (minimal ¯̄Lgav) ¯̄Lgav H

2 [F100 F200] 19.150

[
−14.291 −0.0288 0.0673
−28.160 3.669 −0.0286

]
3 [F2 F100 F200] 4.0214

[
−8.434 −49.129 6.177 0.0732
−16.547 −97.402 15.971 −0.017

]
4 [F2 F100 F5 F200] 3.5303

[
−9.659 −50.810 4.788 2.078 0.072
−20.436 −102.737 11.563 6.596 −0.0211

]
5 [F2 F100 F3 F5 F200] 3.1190

[
−6.219 −52.050 3.8896 0.1459 2.3275 0.0757
−11.951 −105.797 9.348 0.360 7.211 −0.0118

]
6 [F2 F100 F3 F5 F200 F1] 3.0742

[
−6.314 −52.650 3.744 0.147 2.055 0.0756 0.4727
−12.400 −108.62 8.665 0.365 5.931 −0.0123 2.224

]
7 [P2 F2 F100 T201 F3 F5 F200] 3.0389

[
6.738 0.0919 −52.513 3.646 −0.199 0.164 1.833 0.0658
19.631 0.2254 −106.901 8.751 −0.485 0.402 6.004 −0.0358

]
8 [P2 F2 F100 T201 F3 F5 F200 F1] 3.0153

[
6.124 0.0877 −52.781 3.588 −0.190 0.164 1.724 0.0662 0.256
15.063 0.195 −108.895 8.317 −0.420 0.402 5.200 −0.0330 1.678

]
9 [P2 T2 F2 F100 T201 F3 F5 F200 F1] 3.0106

[
3.637 0.0637 0.0591 −52.762 3.569 −0.206 0.163 1.696 0.0654 0.2054
9.548 0.1412 0.1310 −108.854 8.276 −0.456 0.398 5.138 −0.0346 1.633

]
10 [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] 3.0083

[
2.378 0.0521 0.0483 0.0436 −52.753 3.560 −0.214 0.162 1.682 0.0651 0.1955
6.758 0.1155 0.1071 0.0967 −108.834 8.256 −0.473 0.397 5.108 −0.0354 1.611

]
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