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Abstract
The ever-increasing market demands to produce better products, with reduced costs 

and lead times, has prompted the industry to look for rigorous ways of optimising its 

designs. However, the lack of flexibility and adequacy of existing optimisation 

techniques in dealing with the challenges of engineering design optimisation, has 

prevented the industry from using optimisation algorithms. The aim of this research 

is to explore the field of evolutionary computation for developing techniques that are 

capable of dealing with three features of engineering design optimisation problems: 

multiple objectives, constraints and variable interaction.

An industry survey grounds the research within the industrial context. A literature 

survey of EC techniques for handling multiple objectives, constraints and variable 

interaction highlights a lack of techniques to handle variable interaction. This 

research, therefore, focuses on the development of techniques for handling variable 

interaction in the presence of multiple objectives and constraints. It attempts to fill 

this gap in research by formally defining and classifying variable interaction as 

inseparable function interaction and variable dependence. The research then proposes 

two new algorithms, GRGA and GAVD, that are respectively capable of handling 

these types of variable interaction.

Since it is difficult to find a variety of real-life cases with required complexities, this 

research develops two test beds (RETB and RETB-II) that have the required features 

(multiple objectives, constraints and variable interaction), and enable controlled 

testing of optimisation algorithms. The performance of GRGA and GAVD is 

analysed and compared to the current state-of-the-art optimisation algorithm (NSGA- 

II) using RETB, RETB-II and other ‘popular’ test problems.

Finally, a set of real-life optimisation problems from literature are analysed from the 

point of variable interaction. The performance of GRGA and GAVD is finally 

validated using three appropriately chosen problems from this set. In this way, this 

research proposes a fully tested and validated methodology for dealing with 

engineering design optimisation problems with variable interaction.
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Chapter 1. Introduction

1 INTRODUCTION___________________________

The ever-increasing market demands to produce better products, with reduced costs 

and lead times, has prompted industry to look for rigorous ways of optimising its 

designs. Traditional trial-and-error method of design optimisation is not capable of 

meeting the industrial demands. Industries are, therefore, looking for automating the 

optimisation process using algorithms and computational techniques. However, the 

complexity of engineering design optimisation problems, coupled with limited 

flexibility and adequacy of existing optimisation techniques in dealing with the 

challenges of these problems, has prevented industry from adopting the optimisation 

algorithms. This research focuses on developing optimisation algorithms based on 

the Evolutionary Computing (EC) approach to address the complexities of 

engineering design optimisation problems. It has the broad aim of making the 

optimisation algorithms more popular in industry. This research is carried out as part 

of a project called ‘FLEXO’, titled ‘Flexible Optimisation within CAD/CAM 

Environment’ (Engineering and Physical Sciences Research Council (EPSRC) Grant 

No. GR/M 71473). This chapter attempts to address the following.

To introduce ‘FLEXO’: the parent project of this research

To present the thesis layout.
Ml, I» "|||"WII H"I|I»I HHI I'WI 11 'JI » I <

1.1 Definition and Classification o f Engineering 

Design Optimisation Problems

Optimisation can be defined as the process of selecting a superior design, based on 

some pre-defined criteria, from a set of feasible alternative designs. The engineering
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Chapter 1. Introduction

design optimisation problems are the real-life problems that, as opposed to the 

theoretical problems (test cases), are encountered in industry. Some examples of 

these problems are the design of aerospace structures for better aerodynamics, the 

surface design of automobiles for improved aesthetics, the design of mechanical 

components for maximum performance, and the design of pumps, turbines and heat 

transfer equipment for maximum efficiency (Rao, 1996). There are a number of ways 

in which these optimisation problems can be classified. Some of the commonly used 

classification schemes are as follows.

1.1.1 Based on Number of Variables

The engineering design optimisation problems can be classified as single and multi­

dimensional based on the number of variables involved in the problem. Consider the 

problem of optimising the design of the rectangular cantilever beam, shown in Figure

1.1, for given material and loading conditions. An example of single-dimensional 

optimisation problem is the design of this beam when the cross-section is fixed 

leaving the length as the only variable. The same problem is classified as multi­

dimensional if more than one dimension of the beam can be varied.

h
' i r

Figure 1.1: Rectangular Cantilever Beam (Length =  I, Breadth = b and Height =  h) 

1.1.2 Based on Existence of Constraints

An engineering design optimisation problem can be classified as constrained or 

unconstrained depending on whether constraints exist in the problem [Rao, 1996; 

Schwefel, 1995]. The optimisation of rectangular cantilever beam shown in Figure 

1.1 is classified as unconstrained if there are no bounds and pre-defmed relationships
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involving its variables (beam dimensions). The same problem is called constrained if 

it has bounds and/or relationships concerning beam dimensions.

1.1.3 Based on Number of Objective Functions

Depending upon the number of objective functions in the engineering design 

optimisation problem, it can be classified as single-objective and multi-objective 

(Rao, 1996). The optimisation problem of Figure 1.1 is classified as single-objective 

if it has only one objective, say, the minimisation of end deflection under the given 

constraints. On the other hand, it is classified as multi-objective if  it involves a 

number of conflicting objectives that need to be simultaneously optimised. An 

example could be the simultaneous minimisation of end deflection, maximum stress 

along the beam length and cost involved.

1.1.4 Based on Nature of Objective Functions

The objective functions involved in an engineering design optimisation problem may 

be either quantitative or qualitative in nature. Some examples of quantitative 

objective functions for the beam design problem of Figure 1.1 are those involving the 

end deflection, maximum stress along the beam length and cost. On the other hand, 

the qualitative objective functions involve issues like manufacturability and 

designers’ special preferences (Rogero et a l, 2000). Based on the nature of objective 

functions, the optimisation problems can be classified as quantitative, qualitative or 

hybrid. These categories of optimisation problems involve quantitative, qualitative 

and a combination of quantitative and qualitative objective functions respectively.

1.1.5 Based on Separability of Functions

A function is said to be separable if  it can be expressed as the sum of single-variable 

functions. An alternative definition of separability relaxes the above definition to 

include decomposition into functions that involve groups of variables rather than just 

a single variable. Inseparability manifests itself as cross-product terms, and makes 

the effect of a variable on the function dependent on the values of other variables in
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the function. The engineering design optimisation problems can be classified as 

separable and inseparable based on the separability of objective functions. 

Inseparability causes difficulties for an optimisation algorithm by requiring it to 

update all decision variables in a unique way in order to converge to an optimum 

solution. Suppose the problem of Figure 1.1 requires the minimisation of the end 

deflection (ô) of the cantilever beam. This becomes an inseparable optimisation 

problem since the equation for ô  involves cross-product terms among its variables 

(beam dimensions) (Equation 1.1).

S  = 4^Pl1 /3Eb2h2, Equation 1.1

7T,P,E => Constants.

On the other hand, the problem is classified as separable if it requires the 

minimisation of the sum of all edge lengths (5) of the beam (Equation 1.2).

S = 4{l + b + h). Equation 1.2

1.1.6 Based on Dependence among Variables

Variable dependence occurs when the variables are functions of each other, and 

hence cannot be varied independently. Here, the change in one variable has an 

impact on the value of the other. This causes additional problems for an optimisation 

algorithm due to the requirement that all dependency relationships need to be 

satisfied while searching for an optimum solution. This has an effect of constraining 

the search space. The optimisation of the rectangular cantilever beam, shown in 

Figure 1.1, is classified as a dependent-variable optimisation problem if it involves 

relationship(s) among its variables (beam dimensions) that need to be satisfied. 

These relationships may arise due to some physical/practical requirements or due to 

designers’ special preferences. An example of these relationships is shown in 

Equation 1.3 in which the designer prefers those designs that have the cross-section 

aspect ratio as defined by him/her.

Cross — section_Aspect Ratio =$>hlb = 0.7. Equation 1.3

EC Techniques for Handling Variable Interaction 4



Chapter 1. Introduction

The same problem is called an independent-variable problem if none of these 

relationships exist, thereby allowing the variables to vary independently of each 

other.

1.1.7 Based on Nature of Search Space

The nature of search space also defines an important classification of engineering 

design optimisation problems. Based on this, the two categories that are identified 

are known search space and unknown search space optimisation problems. The real- 

life optimisation problems in which the designers lack prior knowledge about the 

shape of search space, and about the location and performance of optimal points are 

classified as unknown search space optimisation problems (Rogero et al., 2000). As 

opposed to this, most theoretical problems (test cases), being lab-designed, are 

classified as known search space optimisation problems. The problem of Figure 1.1 

can be classified as a known search space problem. Chapter 9 discusses the design of 

a turbine blade cooling system, which is an example of an unknown search space 

optimisation problem.

The nature of search space also classifies the engineering design optimisation 

problems as uni-modal and multi-modal based on the number of optimal solutions 

that the problem has. The problem of Figure 1.1 for minimising the end deflection 

under the given constraints is a uni-modal problem.

1.1.8 Miscellaneous Classifications

There are several other classifications of engineering design optimisation problems 

besides the ones mentioned above. Some of these miscellaneous classifications are 

outlined below (Rao, 1996).

♦ Based on Nature of Equations Involved: This classification is based on the nature 
of expressions that represent the objective functions in the optimisation problem. 
According to this classification, the engineering design optimisation problems 
can be classified as linear, non-linear, geometric and quadratic. Based on this 
criterion, the engineering design optimisation problems can also be classified as
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continuous and discontinuous depending on whether the equations involved in 
the problem have any discontinuities.

♦ Based on Nature of Design Variables: Based on the nature of design variables, 
the engineering design optimisation problems can be classified as static and 
dynamic. In parameter or static optimisation problems, the design variables are 
independent of each other whereas in trajectory or dynamic optimisation 
problems, the design variables are all continuous functions of some other 
variable(s). Another perspective of this classification is provided by Schwefel 
(1995), based on time-dependence of the optimisation problems.

♦ Based on Permissible Values of Design Variables: Depending on the values 
permitted for design variables, the engineering design optimisation problems can 
be classified as integer-valued, real-valued and hybrid (that involve both integer 
and real variables).

Table 1.1: Classification Schemes for Engineering Design Optimisation problems

Classification Schemes
Based on Number of Parameters • Single-dimensional

• Multi-dimensional

Based on Existence of Constraints • Constrained
• Unconstrained

Based on Number of Objective Functions • Single-objective
• Multi-objective

Based on Nature of Objective Functions
• Quantitative
• Qualitative
• Hybrid

Based on Separability of Functions 
(for Quantitative and Hybrid Problems)

• Separable
• Inseparable

Based on Dependence among Variables • Independent-variable
• Dependent-variable

Based on Nature of Search Space

• Known Search Space
• Unknown Search Space
• Uni-modal
• Multi-modal

Based on Nature of Equations Involved 
(for quantitative and hybrid problems)

• Linear
• Non-linear
• Geometric
• Quadratic
• Continuous
• Discontinuous

Based on Nature of Design Variables • Parameter or Static
• Trajectory or Dynamic

Based on Permissible Values of Design Variables
• Integer-valued
• Real-valued
• Hybrid

The summary of classification schemes, described in this section is given in Table

1.1. These classifications enable the categorisation of problems based on their
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prominent features. This facilitates the choice of a suitable algorithm for a given 

engineering design optimisation problem.

1.2 Introduction to EC Techniques as Efficient 

Optimisers

In the natural world, evolution has created an unimaginably diverse range of designs, 

having much greater complexity than mankind could ever hope to achieve. Inspired 

by this, researchers have started using the EC techniques that use the principles of 

evolution to guide the optimisation process. There are a number of benefits of 

evolutionary-based optimisation that justify the effort invested in this area. The most 

significant advantage lies in the gain of flexibility and adaptability to the task in 

hand, in combination with robust performance and global search characteristics 

(Back et a l, 1997). The evolutionary-based optimisation techniques use a population 

of solutions in each iteration, instead of a single solution. This enables them, in 

principle, to identify multiple optimal solutions in their final population.

These characteristics of the EC techniques also make them a suitable candidate for 

handling a combination of multiple features of engineering design optimisation 

problems in a single run. These features include the presence of multiple objectives, 

constraints and interaction among decision variables. As a consequence, the EC 

techniques are better suited to deal with engineering design optimisation problems as 

compared to their classical counterparts. This research, therefore, focuses on EC 

techniques for the development of optimisation algorithms for engineering design.

The majority of current implementations of evolutionary algorithms descend from 

four strongly related but independently developed approaches: Genetic Algorithms 

(GAs), Evolutionary Programming (EP), Evolution Strategies (ESs) and Genetic 

Programming (GP) (Back et a l, 1997). These approaches are defined below.

♦ The GAs are a type of search and optimisation algorithms that are based on the 
mechanics of genetics and natural selection.
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♦ The EP, which was originally offered as an attempt to create artificial 
intelligence, relies on transformations depending upon a finite set of states and 
state transition rules.

♦ The ESs, which were initially designed for solving complex optimisation 
problems, involve the modification of behavioural traits of solutions.

♦ Finally, the GP is an automated method for creating a working computer program 
from a high-level problem statement of a problem. The GP does this by 
genetically breeding a population of computer programs using the principles of 
Darwinian natural selection and biologically inspired operations. (Deb, 2001).

Over the last decade, the GAs have been extensively used as search and optimisation 

tools in various problem domains, including engineering design. The primary reasons 

for their success over other EC techniques are their broad applicability, ease of use 

and global perspective (Goldberg, 1989). This is the main reason that has led to the 

choice of GAs as the principal EC technique for this research.

1.3 Introduction to GAs

The GAs are robust search and optimisation techniques that mimic natural evolution. 

They were introduced by Holland, and subsequently studied by De Jong, Goldberg, 

and others such as Davis, Eshelman, Forrest, Grefenstette, Koza, Michalewicz, 

Mitchell, Riolo, and Schaffer, to name only a few (Back et al., 1997). Because of 

their robustness, the GAs have attracted a vast interest among the researchers all over 

the world (Goldberg, 1989).

The GAs work on a population of individuals, which represent alternative solutions 

to the given optimisation problem. For each of these individuals, a score called 

fitness value is allocated based on the objective function defined in the problem. The 

population for the next generation is created by applying selection, crossover and 

mutation operators (genetic operators) to the current population. The high performing 

individuals are selected for the mating pool, where they reproduce with other 

individuals to produce offspring. Through this process, the members of new 

generation attain a higher proportion of the characteristics possessed by the ‘good’ 

members of previous generation. As a result, each new generation stands a relatively
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higher chance of finding the optimal value of the objective function (Goldberg, 

1989).

When a GA is used, the first task is to encode the solutions in a way that is easy to 

store and manage. The representation of a solution is termed as chromosome. 

Chromosomes are often developed as binary strings or a list of real numbers. Based 

on this, the GAs are classified as binary-coded and real-parameter, the latter being 

ideally suited for handling problems with continuous search spaces. The genetic 

operators work on chromosomes to produce a new set. The crossover operation is 

performed by exchanging genetic information between two randomly selected 

chromosomes. After crossover, the mutation operator is individually applied to each 

chromosome. It randomly alters a small part of the chromosome to produce a new 

individual. Mutation can help the optimisation process by introducing new search 

areas that crossover alone might not reach (Goldberg, 1989). Figure 1.2 gives a 

schematic description of the GAs.

Generation (I) Mating Pool Generation (i * 1 )

Genetic
Operations

Fitness
Evaluation Selection

Figure 1.2: Schematic Description o f GAs (Source: Jared et ah, 1998)

1.4 ‘FLEXO’: Parent Project o f this Research

Optimisation algorithms do not find popular use in industry. There are a number of 

factors that are responsible for this situation. There is a general lack of robust 

optimisers that are capable of handling the complexity of engineering design
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optimisation problems. Further, most of the currently available optimisation 

packages are not integrated within CAD/CAM systems, making their use 

cumbersome. To further augment this situation, all optimisation algorithms work on 

mathematical models of real-life designs, which attract little confidence from 

designers in the industry (Roy et a l, 2001). ‘FLEXO’ targets these inhibitors that 

prevent the use of optimisation algorithms in industry (Roy et al., 2000a).

1.4.1 Previous Work

In the recent past, some work has been carried out in the field of flexible 

optimisation. Roy et a l (1998), Jared et a l (1998) and Mussa et a l (1998) 

specifically addressed the issue of enhancing the optimisation capabilities of existing 

CAD/CAM systems. Roy (1997), and Bentley and Wakefield (1998) also 

demonstrated the feasibility of developing a generic evolutionary design system. 

Keane (1996), Parmee (1996) and Greene (1998) have further attempted to develop a 

compact ‘tool box’ of robust optimisation techniques. However, the above- 

mentioned work has limited scope in terms of the robustness of optimisation 

techniques employed, their integration with CAD/CAM systems, and enhancement 

of designers’ confidence. In contrast to the previous work that has only attempted to 

solve a specific optimisation problem in hand, ‘FLEXO’ adopts a holistic view of 

flexible optimisation within CAD/CAM environment (Rogero et ah, 2000).

1.4.2 Brief Description o f 6FLEXO9

‘FLEXO’ is funded by EPSRC, which is the largest of the seven UK Research 

Councils. It funds research and postgraduate training in universities and other 

organisations throughout the UK (EPSRC, 2001). The industrial sponsors of 

‘FLEXO’ are Nissan Technical Centre -  Europe (NTC-E), UK and Structural 

Dynamics Research Corporation (SDRC), UK. NTC-E (UK) is one of the main 

technology centres of Nissan in Europe. It is responsible for carrying out research 

and development activities in the area of vehicle development to improve design, 

performance and costs of Nissan automobiles (Nissan, 2001). SDRC, which includes 

Nissan as one of its customers, is a major provider of CAD/CAM/CAE software. It
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constitutes a part of the Product Lifecycle Management (PLM) Solutions of EDS, 

and includes I-DEAS and IMAGE WARE as its main products, with both having a 

vast client base (SDRC, 2001). ‘FLEXO’ involves the author and a fellow researcher, 

Mr. Olivier Munaux. The research detailed in this thesis is carried out by the author, 

and is a part of his contribution to the project.

‘FLEXO’ aims to develop a framework for flexible optimisation within Computer 

Aided Designing (CAD) / Computer Aided Manufacturing (CAM) environment 

using EC techniques. This framework would enable a CAD/CAM environment to 

select appropriate techniques and parameters for an optimisation task. The flexible 

optimisation wheel, shown in Figure 1.3, depicts the different combinations that are 

possible within this framework. This would provide a platform for dealing with 

various settings of tools and evaluation techniques, geometric modellers and 

optimisation algorithms (Roy et a l, 2000a).

Tools and Geometric
Evaluation Techniques Modellers

W ire-fram eCAM
CFD

Surface SolidCAD
FEA

E volutionary
A lgorithm s

Design o f 
Experi-

Classical
A lgorithm s

Optimisation
Algorithms

Figure 1.3: Flexible Optimisation Wheel (Source: Roy et al, 2000)

The research objectives of ‘FLEXO’ can be summarised as follows (Roy et a l,

2000a).

♦ To identify the key industrial requirements on a flexible optimisation 
environment.

♦ To develop a ‘tool box’ of flexible optimisation techniques.

♦ To establish the core functionality required of a CAD system’s Application
Programming Interface (API) to support such an environment.
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♦ To implement the findings of the research through a prototype decision support 
system.

1.4.3 ‘FLEXO’ Methodology

The ‘FLEXO’ framework is developed on the basis of the industrial requirements for 

flexible optimisation. The project involves the development of a ‘tool box’ 

containing flexible optimisation algorithms, capable of solving a variety of 

engineering design optimisation problems. The decision of developing the ‘tool box’ 

was guided by the No Free Lunch (NFL) theorem, which states that it is not possible 

to develop a single optimisation technique that is capable of simultaneously handling 

multiple features of optimisation problems in an efficient manner (Wolpert and 

Macready, 1997). Furthermore, the robustness of EC techniques has led to their use 

in this project for constructing the ‘tool box’. The performance of this ‘tool box’ is 

also validated using a representative set of case studies reported in the literature. In 

order to provide the optimisation capability online, this ‘tool box’ is integrated with 

the CAD/CAM environment. This involves the development of generic Application 

Programming Interface (API) and a wrapper software for integrating the API with 

CAD system IMAGEWARE. Finally, the findings of this project are implemented 

through a prototype decision support system using an industrial case study on surface 

development. This case study provides the surface designers with an interactive tool 

for the attainment of aesthetic geometry (Rogero et a l, 2000; Roy et al., 2000a).

The key industrial deliverables of ‘FLEXO’ are as follows (Roy et al., 2000a).

♦ Compilation of industrial requirements for optimisation.

♦ A ‘tool box’ of optimisation techniques that is suitable for the framework.

♦ An API specification to support optimisation.

♦ A prototype decision support system using a standard CAD/CAM environment.

1.5 Problem Statem ent and Motivation

The problem statement of this research is as follows.
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Development of tools and techniques that are capable of dealing with

The development of robust optimisers enables the handling of the features of 

engineering design optimisation problems, such as multiple measures of performance 

(objectives), constraints and interaction among decision variables. This enhances the 

effectiveness of optimisation algorithms by giving them the capability of dealing 

with a wide variety of problems. In this way, one of the main inhibitors to their 

industrial use is addressed, and their popularity and relevance for industry could be 

enhanced. This is the main motivation for this research. Furthermore, the 

development of evolutionary-based optimisation techniques for engineering design 

optimisation problems makes a direct contribution to ‘FLEXO’, as discussed below.

‘FLEXO’ is an inter-disciplinary project involving design, geometric modelling and 

optimisation (Roy et al., 2000a). The area and data flow perspectives of ‘FLEXO’, 

shown in Figure 1.4, depict the interactions between its three areas. This research 

deals with the optimisation aspect of ‘FLEXO’, shown as shaded area in Figure 1.4.

Geometric
Modelling

Geometric
Definition

Geometric
Parameters

Optimisation Design
N D esign^  
Properties

CADVariational
Design Geometric

Modelling
FLEXO’

Optimisation! Design

Design
Optimisation

Figure 1.4: Perspectives o f FLEXO ’ -  (a) Area Perspective (b) Data Flow 

Perspective (Source: Roy et. al., 2000a)

The flexible optimisation ‘tool box’, which defines the shaded areas in Figure 1.4, 

optimises the model parameters based on prior problem knowledge, constraints and 

evaluation functions provided by the designers. Figure 1.5 presents the relative
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location and the details of this ‘tool box’. This research aids the creation of this ‘tool 

box’ through the development of evolutionary-based optimisation techniques for 

engineering design optimisation. In this way, the research directly contributes to the 

objectives and industrial deliverables o f ‘FLEXO’.

Design
Evaluation

USER

CAD Definition ^

\ /

c•ssr
\ t

Updated
Model

(a)

Evaluation

Functions Constraints

Model Optim ised

Param eters

Prior Problem  

Know ledge

(b)

Figure 1.5: Flexible Optimisation ‘Tool Box’ -  (a) Location (b) Details

1.6 Thesis Layout

The layout of this thesis is developed based on the story of this research. This story, 

which is pictorially depicted in Figure 1.6, aids the identification of individual 

chapters. A brief description of these chapters is given below.

Chapter 1 discusses the background of this research, briefly explaining the aim and 

objectives of its parent project, ‘FLEXO’. It presents the problem statement and 

motivation for this research, and describes its contribution to ‘FLEXO’.

Chapter 2 provides a survey of literature in the area of engineering design 

optimisation. It presents a critical analysis of the state-of-the-art evolutionary-based 

optimisation techniques and of the test problems used for the evaluation of these 

techniques.
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Chapter 3 gives a brief description of this research, outlining its aim, objectives and 

scope. It also discusses the methodology that is adopted for ensuring that the aim and 

objectives of this research are attained.

Chapter 4 grounds the research within the industrial context based on the results of 

an industry survey.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5 SE

Chapter 6

Chapter 7

Chapter 8

Chapter 9 IE

Chapter 10 IE

Industrial
Context

Industrial
Context

Research Aim and Objectives

Validation Using 
Real-life Case Studies

Discussion, Conclusions 
and Future Research

Performance Analysis 
Using Proposed Test Bed'

Industry and Literature Survey

Developing a Technique to Handle 
Variable Dependence

Literature Survey of Test Beds’ for 
Optimisation Algorithms

Developing a Technique to Handle 
Inseparable Function Interaction

Literature Survey of Optimisation Techniques 
for Engineering Design

Developing a Test Bed' for 
Simulating Engineering Design 

Optimisation Problems

P ro b le m  S ta te m e n t: D e v e lo p m e n t o f  T e c h n iq u e s  
fo r  E n g in ee rin g  D e s ig n  O p tim is a tio n

Figure 1.6: Thesis Layout

Chapter 5 develops a technique to handle a form of variable interaction, called 

inseparable function interaction, in multi-objective optimisation problems. It also 

compares the performance of the proposed algorithm with other high performing 

novel optimisation algorithms.

Chapter 6 proposes a technique to handle the second form of variable interaction, 

called variable dependence, in multi-objective optimisation problems. It also
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evaluates the proposed algorithm with respect to other state-of-the-art optimisation 

algorithms.

Chapter 7 proposes a test bed that is capable of controlled and systematic simulation 

of the characteristics of engineering design optimisation problems, especially with 

respect to variable interaction. It compares the proposed test bed with the existing 

ones, and validates its behaviour using case studies.

Chapter 8 analyses the performance of the proposed optimisation algorithms 

(Chapters 5 and 6) using the test bed that is developed in Chapter 7. It also presents a 

discussion of the results that are obtained from these tests.

Chapter 9 validates the research using three industrial case studies: designs of a 

welded beam, a machine tool spindle and a turbine blade cooling system. The 

proposed optimisation algorithms are applied on these problems, and the results thus 

obtained are analysed, compared and discussed.

Chapter 10 concludes this thesis with a discussion on the generality of this research, 

contribution to knowledge, and limitations of the research methodology, proposed 

algorithms and test bed. It finally discusses the future research directions that could 

follow from this research.
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2  A REVIEW OF LITERATURE______________

Optimisation refers to the process of finding one or more feasible solutions that 

correspond to the extreme values of one or more objectives. The need for finding 

such optimal solutions in a problem comes mostly from an extreme purpose, such as 

designing a solution for minimum possible cost of fabrication or for maximum 

possible reliability or others. Because of such extreme properties of optimal 

solutions, the optimisation algorithms are of great importance in practice, particularly 

in engineering design. The aim of this chapter is to give an overview of techniques 

for solving engineering design optimisation problems, and the test beds for 

evaluating these techniques. It attempts to achieve the following.

♦ To classify and describe the main EC techniques for handling three 
features of engineering design optimisation problems: multiple 

objectives, constraints and variable interaction.

2.1 Engineering Design Optimisation Approaches

Design can be considered to represent a process that begins with recognition of the 

need and the conception of an idea to meet this need. Thus, in design decision 

making the main aim of the designer is to find a design solution that meets or closely 

meets the performance requirements of the design, while satisfying all the 

constraints. That defines a concept of ‘optimum design’ as a design that is feasible 

and also superior to all other feasible alternative designs. As mentioned in Chapter 1, 

optimisation is the process of selecting this ‘optimum design’, based on some pre­

defined criteria, from a set of feasible alternative designs.
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2.1.1 Manual versus Algorithmic Approaches to Optimisation

There are two ways to obtain an optimum design: through a manual process or by 

using an algorithmic approach (Roy, 1997). The manual process improves a design 

by repeated modifications. The design variables are changed one at a time. Designers 

often use their previous experience to decide changes in the design variables. They 

may easily improve a design involving few variables. If the design involves many 

variables this can pose a great challenge to the human designer, especially if he or 

she needs to consider variable interaction. If the designer does not have prior 

knowledge about the design the manual process can simply become a trial-and-error 

exercise. Thus, the manual approach can be very time-consuming and tedious.

On the other hand, the second approach (i.e. use of algorithms for optimisation) can 

simultaneously determine all the design variables so as to satisfy a set of constraints 

and optimise a set of objectives. To solve an optimisation problem, a computable 

design model is required. Many aspects of a design process can be represented by a 

formal model and are thus computable. However, some of the required designer’s 

knowledge can be abstract and complex, and thus difficult to formalise. A design can 

therefore involve computable or quantitative formal knowledge as well as qualitative 

or abstract knowledge. In the absence of a formal model of the design process or at 

least a partial model, the manual approach may often become the only choice.

2.1.2 Algorithmic Approaches to Optimisation

Literature suggests a number of optimisation techniques for solving modelled 

optimisation problems. These techniques can be classified into two broad categories: 

classical and evolutionary.

Most classical algorithms use a point-by-point deterministic procedure for 

approaching the optimum solution. Such algorithms start from a random guess 

solution. Thereafter, based on a pre-specified transition rule, the algorithm suggests a 

search direction, which is often arrived at by considering local information. A uni­

directional search is then performed along the search direction to find the best 

solution. This best solution becomes the new solution and the above procedure is
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continued for a number of times. Figure 2.1 illustrates this procedure. Algorithms 

vary mostly in the way the search directions are defined at each intermediate solution 

(Deb, 1995).

Figure 2.1: Classical Optimisation Algorithms (Source: Deb, 2001)

Classical optimisation methods can be classified into two distinct groups: direct 

methods and gradient-based methods. In direct search methods, only the objective 

functions and the constraint values are used to guide the search strategy. Some 

examples of these methods are the Simplex Search Method (Spendley et a l, 1962), 

Hooke-Jeeves Pattern Search Method (Hooke and Jeeves, 1961) and Powell’s 

Conjugate Direction Method (Powell, 1964). On the other hand, the gradient-based 

methods use the first- and/or second-order derivatives of the objective functions 

and/or constraints to guide the search process. Some examples of these methods are 

Cauchy’s (Steepest Descent) Method (Cauchy, 1847), Marquardt’s Method 

(Marquardt, 1963) and Conjugate Gradient Method (Fletcher and Reeves, 1964). 

Since derivative information is not used, the direct search methods are usually slow, 

requiring many function evaluations for convergence. For the same reason, they can 

also be applied to many problems without a major change in the algorithm. On the 

other hand, gradient-based methods quickly converge near an optimal solution, but 

are not efficient in non-differentiable or discontinuous problems. In addition, there 

are some common difficulties with most classical direct and gradient-based 

techniques, as mentioned below (Deb, 1995).

♦ The convergence to an optimal solution depends on the chosen initial solution.

O ptim um

F e a s i b l e  
d e c i s i o n  s p a c e  %

C o n s t r a i n t s
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♦ Most algorithms tend to get stuck to a sub-optimal solution.

♦ An algorithm that is efficient in solving one optimisation problem may not be 
efficient in solving a different optimisation problem.

♦ Algorithms are not efficient in handling problems having a discrete search space.

♦ Algorithms cannot be efficiently used on a parallel machine.

The above-mentioned drawbacks of classical optimisation techniques have led to the 

growth of research in the field of evolutionary computation. The EC techniques can 

handle most of the drawbacks of classical algorithms, and as discussed in the 

previous chapter, the characteristics of the EC techniques, especially their robustness, 

make them suitable for dealing with the features of engineering design optimisation 

problems. This research, therefore, focuses on EC for the development of 

optimisation algorithms.

2.1.3 Optimisation Approaches to Handle Uncertainty

Designers typically require a lot of information for design decision making. 

Information is collected from the laws of physics, previous experiences, available 

literature, logical deductions and designers’ intuition. Some of the information may 

be imprecise and ambiguous, whereas some may be precise and structured. The 

designer often faces a challenge to manipulate this combination of precise and 

imprecise information in order to reach a decision. To achieve good decisions, the 

designers must be able to take an overview of the possible alternative actions at any 

point in the design process. The designers can then predict the results of more than 

one selected course of action. The predictions can be heavily influenced by various 

other industrial factors and also the market environment. For example, predictions 

about a design action can be affected by the impact of that decision on the 

manufacturing organisation responsible for implementing the decision and on the end 

user (that is the customer). The impact of the decision on the overall market (that is 

the market environment within which the industry operates) also needs to be 

assessed. With the dynamic nature of the industrial and market environment in many 

cases it becomes almost impossible to predict the outcome of a decision very
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precisely. Design decisions that use precise information from historical data, 

scientific evidence, etc. can be said to be virtually certain. The decisions that involve 

designers’ knowledge, intuition and judgement involve a certain degree of 

uncertainty. Uncertainty can also be caused due to the complex dynamic interactions 

within the industry, between the industry and the market environment, imprecision 

involved in the designers’ knowledge and vagueness involved in the designers’ 

language (Roy, 1997).

All the optimisation techniques discussed previously consider the design variables as 

deterministic which means that the parameters used in the optimisation problem have 

precise values. These approaches therefore do not take into account any uncertainty 

related to design variables. In order to address uncertainty, probability theory has 

been widely accepted and applied in engineering design. In this theory, some 

statistical knowledge of random variables such as their mean values and standard 

deviations is used to address uncertainty. The first application of random variables in 

optimisation problems was studied by Chames and Cooper (1959), in which a 

stochastic optimisation problem is converted into an equivalent deterministic one by 

using the chance constraint programming technique. Although there are many 

successful applications of this technique in the literature, it is not sufficient for 

problems that have highly non-linear performance functions. A number of methods 

are proposed in the recent past to overcome the weaknesses of this technique 

(Nikolaidis and Burdisso, 1988; Reddy et a l, 1994; Wang and Grandhi, 1996; 

Kaymaz et ah, 1998). The method proposed by Kaymaz et al. (1998) has a strong 

potential for dealing with real-life optimisation problems. This algorithm combines 

the response surface method with Monte Carlo simulation. The polynomial function 

(the response function) reduces the number of repetitions of an expensive analysis 

method such as Finite Element Analysis (FEA) (McMahon and Meng, 1996), and 

direct Monte Carlo simulation carries out the reliability calculation within the 

optimisation process.

EC Techniques for Handling Variable Interaction 21



Chapter 2. A Review o f  Literature

2.1.4 Optimisation Approaches involving FEA/CFD

It is very common in engineering design optimisation problems to have the 

involvement of computationally expensive analysis techniques such as the FEA and 

Computational Fluid Dynamics (CFD). A number of researchers have discussed the 

integration of these techniques with the computer-based design systems (Kaymaz et 

a l, 1998; Tilley and Burrows, 1995). Literature reports some techniques for reducing 

the number of repetitions of these analyses during the optimisation process. The 

Monte Carlo method is one of the most widely used simulation approximations. The 

approach involves generating a sufficiently large set of observations to reproduce the 

statistical characteristics of the underlying population that the observations are taken 

from. The demerit of the approach is its computational cost, since the accuracy of the 

result largely depends on the number of samples used. Presently, there are efforts to 

improve the technique in two respects. One is to find approaches to reduce the size of 

sample as far as possible, such as the importance sampling technique in reliability 

analysis (Melchers, 1989). The second is to simplify the model or function that will 

be called many times in the sampling process. The influence surface method is one 

such approach to reduce the computational effort spent on the calculation of the 

function. An influence surface (or response surface) replaces a real analysis, and is 

often a surface in hyperspace identified by pre-analysis or experiment before 

implementing multiple analyses (e.g., in a simulation) (Meng and McMahon, 1998).

2.1.5 Sensitivity Analysis

Information concerning the sensitivity of engineering designs can be essential for 

engineering decision making. Sensitivity analysis provides the information on the 

performance of a design when there is some minor change in the values of the design 

variables. Sensitivities of a design can be defined in terms of the following (Emch 

and Parkinson, 1993; Sundaresan et a l, 1993).

♦ Design Solution Sensitivity: This refers to the sensitivity of a design solution 
performance within a defined neighbourhood.
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♦ Design Variable Sensitivity: This is the effect of each design variable on the 
design solution performance within a defined neighbourhood.

♦ Constraint Sensitivity: Violations of constraints within the neighbourhood of a 
design define the constraint sensitivity of the design.

The study of the effect of varying the independent variables on a dependent variable 

requires the relationship between the dependent and independent variables to be 

known. An empirical method, known as design of experiments, is sometimes used to 

establish such relationship. For an empirical study all possible combinations of the 

values of the independent variables (also known as factors) are required to define the 

relationship using a statistical technique. This method of exhaustive trials is known 

as full factorial experiments.

In many cases, it is too expensive to run a full factorial experiment, for example a 

multi-dimensional real-life problem. In this situation, a fractional factorial

experiment can be performed where a fraction of the full factorial experiments is

considered. The price of running a fractional factorial experiment is the loss of some 

information regarding the independent variables and their relation to the dependent 

variable. Taguchi (1987a, 1987b) advocates a systematic approach and has

developed several standard orthogonal metrics to define the fractional factorial

experiments (Phadke, 1989). The use of the orthogonal metrics involves the least 

amount of information loss, especially if the variables do not interact with each other.

Taguchi’s methodology (1987a, 1987b) assumes no interaction among variables. 

Thus, the analysis can be very reliable provided there is no or very little interaction 

among the design variables in the neighbourhoods of the design variables. One way 

of checking for the presence of interaction is to validate the additivity principle in the 

region. The additivity principle assumes that the result of each experiment is the 

superposition of the single factor effects plus the error due to this assumption and 

any repetition of the tests.
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2.1.6 Engineering Design Support System

Chandrasekaran (1990) describes a design problem as a search problem in a large 

space for objects that satisfy multiple constraints. An object in the design space is 

equivalent to an acceptable value of a design variable. Only a very small number of 

objects in this space constitute satisfying, not to mention optimal, solutions. In order 

to make design decisions, practical strategies that radically shrink the search space 

are needed. A good design decision support tool can assist a designer in the search 

space reduction. The first step towards the search space reduction is to separate the 

information required for a design into two categories: formal and non-formal. The 

information obtained from the laws of physics, design catalogues, and design 

archives is structured and probably computable. Thus the information can be 

considered as contributing towards formal knowledge. The designer’s experience, 

intuition and judgement can be abstract, unstructured and incomplete, thus they 

constitute the non-formal knowledge.

The optimisation approaches discussed above can reduce the search space by 

providing the designer with multiple preferred solutions. However, most of these 

approaches deal with formal knowledge only. During the last decade, some 

researchers have developed frameworks that can deal with both formal and non- 

formal knowledge. Yang and Sen (1994) describe an interactive multiple objective 

decision making procedure. The process describes a multi-objective preliminary 

design problem as a non-linear vector maximisation problem. The technique defines 

the design model using some computable functions. The methodology is a learning- 

oriented interactive technique that supports the designer in easily searching for 

preferred solutions following an adaptive approach. The technique allows designer’s 

preferences to be progressively articulated with the generation of efficient design 

solutions. Through designer interaction the technique also makes sure that no 

unacceptable solutions is selected as a preferred design. Roy et al. (1996) propose an 

Adaptive Search Manager (ASM) that integrates a GA with knowledge-based 

software. The developed approach allows utilising both quantitative and qualitative 

information in engineering design decision making.
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Most engineering design optimisation problems involve multiple objectives, 

constraints and interaction among decision variables. This chapter, therefore, 

provides a detailed description of the state-of-the-art evolutionary-based optimisation 

techniques that are reported in literature for dealing with these features of 

engineering design optimisation problems.

2.2 Evolutionary-bas&d Techniques for Multi­

objective Optimisation

Most engineering design optimisation problems are multi-objective in nature since 

they normally have several conflicting objectives, say, cost and performance, that 

must be satisfied at the same time. This has encouraged the growth of research in the 

field of multi-objective optimisation using evolutionary algorithms. The considerably 

large number of open questions in this area has provided a further impetus to the 

field (Coello, 2001). This section gives an overview of Evolutionary-based Multi­

objective Optimisation Techniques (EMOTs) in terms of their types and features.

2.2.1 Problem Statement

Multi-objective optimisation, also known as multi-criteria, multi-performance or 

vector optimisation, can be defined as the problem of finding “a vector of decision 

variables, which satisfies constraints and optimises a vector function whose elements 

represent the objective functions.” (Osyczka, 1985). This problem can be formally 

stated as follows (Coello, 2001).

Find a vector 3c* = [jq *, x2 *,..., xn *]r , which satisfies the J inequality constraints,

Equation 2.1

the K equality constraints,

hk (x) = 0,k = Equation 2.2

and optimises the vector function,
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f ( x )  = [/, (x), / 2 (x),..., / „  (x)]r . 2.3

where 3c = [x1,x2,...,x7J r is the vector of decision variables, and each variable has 

upper and lower limits such that x\L) < x i < x f ] ; i =  1,2, .. . ,  n.

As can be seen from this definition, the principles of multi-objective optimisation 

differ widely from those of single objective optimisation. The main goal in a single 

objective optimisation problem is to find the best solution (Deb, 1995). On the 

contrary, in a multi-objective optimisation problem, there are many objective 

functions, each of which may have a different individual optimal solution (Steuer, 

1986). The interaction among different objectives gives rise to a set of compromised 

solutions, none of which can be considered to be better than the others without any 

further consideration (Deb, 1999a). These optimal solutions are called non-inferior, 

non-dominated or Pareto-optimal solutions. The boundary of the feasible region on 

which these solutions are located is called the Pareto front. A related concept that is 

used by many multi-objective optimisation algorithms for comparing alternative 

solutions is called the concept of domination. This concept is defined as follows 

(Coello, 1999).

A solution x (1) is said to dominate the other solution x (2), if  both the following 

conditions are true.

♦ The solution x (1) is strictly better than x (2) in at least one objective.

♦ The solution x (1) is no worse than x (2) in all objectives.

In general, it is mathematically difficult to find an analytical expression of the Pareto 

front. So, iterative computation techniques are normally used for solving multi­

objective optimisation problems (Coello, 1998). The two primary goals that these 

techniques must achieve are as follows (Deb, 1999a).

♦ To guide the search towards global Pareto-optimal region.

♦ To maintain population diversity in the Pareto front.
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2.2.2 Classical versus Evolutionary Approaches

The classical ways of tackling multi-objective optimisation problems have primarily 

ignored the second goal mentioned above. Most methods, such as Weighted Sum 

Approach, s-perturbation Method, Tchybeshev Method, Min-max Method and Goal 

Programming Method, convert multiple objectives into one objective using different 

heuristics (Miettinen, 1999; Sen and Yang, 1998; Steuer, 1986). Since multiple 

objectives are converted into one objective, the resulting solution to the single­

objective optimisation problem usually depends on the parameter settings, for 

example, weights chosen for each objective in the Weighted Sum Approach. Since 

most classical methods use point-by-point approach, it is expected that one unique 

solution (hopefully a Pareto-optimal solution) will be found in each run of the 

optimisation algorithm. Thus, in order to find multiple Pareto-optimal solutions, the 

chosen optimisation algorithm needs to be used a number of times. Furthermore, the 

ability of a classical optimisation method to find a different Pareto-optimal solution 

in each simulation run is found to be dependent on the convexity and continuity of 

the Pareto-optimal region. Finally, the classical methods are not reliable in problems 

that involve uncertainties or stochasticities (Deb, 1999a).

Evolutionary approaches can successfully handle most of the above-mentioned 

drawbacks of classical algorithms. Since they use a population-based approach, it is 

intuitive that a number of Pareto-optimal solutions can, in principle, be obtained in a 

single simulation run. Therefore, these techniques have the potential of dealing with 

a variety of multi-objective optimisation problems (Coello, 2001).

2.2.3 Classification of EMOTs

Since the pioneering work of Rosenberg (1967), the research in the field of 

evolutionary multi-objective optimisation has grown considerably, especially in the 

last decade. In the recent past, a number of researchers have attempted to summarise 

the studies in this field. Notable among these are Fonseca and Fleming (1995), 

Tamaki et a l (1996), Horn (1997), Coello (1998), Fonseca and Fleming (1998a), 

Veldhuizen and Lamont (1998), Coello (1999), Deb (1999a), Zitzler and Thiele
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(1999), and Deb (2001). The two main classifications of EMOTs that are commonly 

used by researchers are outlined below.

2.2.3.1 Function-based Classification

The function-based classification, which is the most commonly used, divides 

EMOTs based on the way the search is guided. Most of the researchers, who use this 

classification, also check for the presence of mechanisms for maintaining population 

diversity in the Pareto front. Some of the main diversity-preserving mechanisms that 

are reported in literature are Diversity through Mutation, Preselection, Crowding 

Model and Sharing Function Model, among many others (Deb, 2001). Fonseca and 

Fleming (1995), Tamaki et a l (1996), Coello (1998), and Fonseca and Fleming 

(1998a) have used this classification in their work. Another form of Function-based 

Classification is presented by Deb (2001), who classifies EMOTs based on the 

presence/absence of elitism in each of the techniques. As the name suggests, elitism 

favours the elite of a population by giving them an opportunity to be directly carried 

over to the next generation. In this way, a good solution is never lost unless a better 

solution is discovered, thereby ensuring that the fitness of the population-best 

solution does not deteriorate.

The function-based classification divides the EMOTs into three broad categories that 

are discussed below (The presence of a diversity-preserving mechanism and an elite- 

preserving operator is checked in each of the EMOTs.).

♦ Plain Aggregating Approaches: In these approaches, the multiple objectives are 
artificially combined, or aggregated, into a scalar function according to some 
understanding of the problem, and then the evolutionary algorithm is applied.

♦ Population-based Non-Pareto Approaches: In these approaches, the
selection/reproduction, while applying the evolutionary algorithm, is performed 
by treating the objective functions separately. Therefore, these approaches do not 
use the concept of Pareto domination in carrying out the optimisation process.

♦ Pareto-based Approaches: In these approaches, the selection/reproduction, while 
applying the evolutionary algorithm, is performed by referring not only to the 
objective values themselves but also to their Pareto dominance property.
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2.2.S.2 User-based Classification

User-based classification has been used by Horn (1997), Fonseca and Fleming 

(1998a), and Veldhuizen and Lamont (1998) for classifying EMOTs. Since these 

techniques provide the user with a set of optimal solutions, the final choice has to be 

made by him/her based on some understanding of the problem. This classification 

divides the EMOTs into three categories based on the stages in the optimisation 

process when the user makes the final decision. These three categories are outlined 

below.

♦ A Priori Preference Articulation (First Decide then Search): In this case, the user 
gives his/her preferences for the objectives prior to the optimisation process.

♦ Progressive Preference Articulation (Search and Decide Together): Here, the 
decision making and the optimisation processes are intertwined. Partial 
preference information is provided by the user during the optimisation process.

♦ A Posteriori Preference Articulation (First Search then Decide): In this case, the 
user makes a choice from a set of efficient candidate solutions provided to 
him/her after the optimisation process.

2.2.3.S Hybrid Classification

This research proposes a hybrid classification, which combines the two schemes 

discussed above. The aim of this classification is to provide both the researcher and 

the user with a clear understanding of various EMOTs in terms of their function and 

use. In this classification, each of the three categories of user-based classification is 

sub-divided based on the way the search is guided. Finally, the presence of a 

diversity-preserving mechanism and an elite-preserving operator in the technique is 

checked. Table 2.1 divides some of the important EMOTs using hybrid 

classification. D and E in this table respectively represent the presence of a diversity- 

preserving mechanism and an elite-preserving operator in the technique. The 

computational complexities of some of the main techniques listed in this table are: 

VEGA - 0(N/M), HLGA - 0(MN2), MOGA - G(MN2), NSGA -  larger of 

0(MN2)/0(nN2), NPGA - 0(MN2), REMEA - 0(MN2), NSGA-II - G(MN2), DPGA 

- 0(M r|2), SPEA - 0(MN2), TDGA - 0(N3) and PAES - 0(MN2d); where M is the
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number of objectives, N is the population size, n is the number of variables, r| is the 

current size of the elite set, and d is a user-defined parameter in PAES.

Table 2.1: Hybrid Classification ofEMOTs

EMOTS A Priori 
(Before)

Progressive
(During)

A Posteriori 
(After)

»
• Evolutionary Weighted 

Sum Approach 
(Syswerda and 
Palmucci, 1991)

• Evolutionary Goal 
Programming (Wienke et 
al., 1992)

• Hajela’s and Lin’s GA- 
HLGA (D)(Hajela and 
Lin, 1992)

• Random Weighted GA- 
RWGA (D)(Murata and 
Ishibuchi, 1995)

• Lexicographic Selection 
(Fourman, 1985)

• Vector Evaluated GA- 
VEGA (D)(Schaffer, 
1985)

• Non-generational GA (D) 
(Valenzuela-Rendon and 
Uresti-Charre, 1997)

• Predator-Prey ES-PPES 
(Laumanns etal., 1998)

• Tchebycheff Method 
(Steuer, 1986)

• Multi-Objective GA- 
MOGA (D)(Fonseca and 
Fleming, 1993)

• Evolutionary Co-design- 
EvoC (Hu, 1996)

• Vector-Optimised ES- 
VOES (D)(Kursawe, 
1990)

• Niched Pareto GA- 
NPGA (D)(Horn and 
Nafpliotis, 1993)

• Non-dominated Sorting 
GA-NSGA (D)(Srinivas 
and Deb, 1994)

• Distance-based Pareto 
GA-DPGA 
(D,E)(Osyczka and 
Kundu, 1995)

• Thermo-Dynamical GA- 
TDGA (D,E)(Kita et ai, 
1996)

• Strength Pareto 
Evolutionary Algorithm- 
SPEA (D,E)(Zitzler and 
Thiele, 1998a)

• Multi-Objective Messy 
GA-MOMGA 
(D,E)(Veldhuizen, 1999)

• Fast Elitist Non­
dominated Sorting GA- 
NSGA-II (D,E)(Deb et 
al., 2000)

• Pareto-Archived ES- 
PAES (D,E)(Knowles 
and Corne, 2000)

• Rudolph’s Elitist Multi­
objective Evolutionary 
Algorithm-REMEA 
(EXRudolph, 2001)

The hybrid classification gives a holistic view of the EMOTs, making the

classification relevant for both the researcher and the user. It also aids in 

identification of a suitable EMOT for a given problem by matching the features of 

each category with the problem characteristics. Further, the classification draws
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attention to the research trends and to the most popular group of techniques. In the 

following discussion, the features of three most commonly used categories of 

EMOTs (shown as shaded regions in Table 2.1) are discussed in order to identify 

their relative strengths and weaknesses in dealing with multi-objective optimisation 

problems.

2.2.4 Plain Aggregating A Priori Approaches

The main EMOTs that are classified as Plain Aggregating A Priori Approaches are 

Evolutionary Weighted Sum Approach and Evolutionary Goal Programming. These 

techniques, which have strong roots in classical methods, require aggregation of 

objective functions prior to the application of evolutionary algorithms. If the 

combination of objectives is possible, these are one of the most computationally 

efficient techniques.

The main strength of these approaches is that they are easy to understand and 

implement. These approaches are computationally efficient and guarantee that the 

results would be at least sub-optimal in most cases. They, however, require a priori 

problem knowledge for combining the objectives. This information is difficult to 

obtain in most real-life cases. They also require accurate scalar information on the 

range of objectives, which is computationally very expensive to obtain. Since these 

approaches aggregate the objectives, they produce only one unique solution (perhaps 

a Pareto-optimal solution) in a single run. Therefore, these algorithms need to be run 

a number of times to obtain multiple Pareto-optimal solutions. This, however, does 

not guarantee the diversity of solutions.

Some applications of these approaches that are reported in literature include solution 

of task planning and transportation problems, optimisation of the designs of plane 

trusses and planar mechanisms, generation of hyper-structures from a set of chemical 

structures, and solution of pollution containment problems (Coello, 1998).
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2.2.5 Population-based Non-Pareto A Posteriori Approaches

The main techniques that fall in the category of Population-based Non-Pareto A 

Posteriori Approaches are VEGA, Non-generational GA and PPES. These 

techniques, which were initially developed to overcome the weaknesses of plain 

aggregating approaches, involve alternative population strategies ideally suited for 

solving those problems in which approximate optimal solutions are required in 

simple search spaces.

Since these approaches are easy to implement and are computationally less 

expensive, a number of their successful applications are reported in the literature. 

They also seem to overcome most of the weaknesses of Plain Aggregating 

Approaches. However, their main drawback is that the solutions they produce are 

mostly sub-optimal and are sensitive to the values of the control parameters. Most of 

these algorithms also have a bias towards individuals that excel in different aspects 

of performance, a problem that in genetics is known as ‘spéciation’. Another 

weakness of some of these techniques, like VEGA, is their inability to produce 

Pareto-optimal solutions in the presence of non-convex search spaces (Coello, 1998). 

Therefore, prior knowledge regarding the shape of search space is required for the 

application of these algorithms.

The main applications of these techniques reported in the literature are the solution of 

groundwater pollution containment problem, optimisation of gas supply networks 

and development of preliminary airframe designs (Coello, 1998).

2.2.6 Pareto-based A Posteriori Approaches

The main techniques that can be classified as Pareto-based A Posteriori Approaches 

are VOES, NPGA, NSGA, DPGA, TDGA, SPEA, MOMGA, NSGA-II, PAES and 

REMEA. The techniques in this category, being capable of tackling a vast variety of 

problems, form the centre-stage of research in the area of evolutionary-based multi­

objective optimisation.
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The main strength of these techniques is that in most cases they satisfy the two 

principal requirements of multi-objective optimisation: convergence to the Pareto- 

optimal front and maintenance of population diversity across the front. Another 

strength of these techniques is that they can handle multiple variables involved in 

optimisation problems. A number of researchers have confirmed that, in solving 

multi-objective optimisation problems, these techniques perform better than most 

others (Zitzler et a l, 1999). However, their main weakness is that the algorithms they 

use for checking non-dominance in a set of feasible solutions are computationally 

very expensive, and exhibit serious degradation of performance as the population 

size and the number of objectives is increased. In a number of cases, the 

performance of these approaches is also dependent on the values of control 

parameters. Finally, in most cases the application of diversity-preserving 

mechanisms to these techniques makes it necessary to evaluate the sharing factor, 

which is generally difficult to compute (Coello, 1998).

Of the vast variety of applications of these approaches reported in the literature, 

some are as follows: minimisation of the back scattering of aerodynamic reflectors, 

design of an electromagnetic system, optimisation of the investment portfolio and 

design of laminated ceramic composites (Coello, 1998).

2.2.7 Examples o f EM OTs

A brief description of three state-of-the-art EMOTs is presented here. All these are 

Pareto-based A Posteriori Approaches, and involve the use of both diversity- 

preserving mechanisms and elite-preserving operators.

2.2.7.1 Thermo-Dynamical GA (TDGA)

The TDGA minimises Gibb’s free energy term, constructed by using a mean energy 

term representing a fitness function and an entropy term representing the diversity 

term needed in a multi-objective optimisation problem. The fitness function is used 

as the non-domination rank of the solution obtained from the objective function 

values. By carefully choosing solutions from a combined parent and offspring
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population, the algorithm attempts to achieve both the goals of an ideal multi­

objective optimisation algorithm (Kita et a l, 1996).

The overall complexity of one generation of the TDGA is 0(N3), where N is the 

population size. This complexity is higher than that of a number of other EMOTs. 

Further, the performance of this algorithm is strongly dependent on the setting of 

control parameters (Kita et a l, 1996).

2 .2 .7.2 Strength Pareto Evolutionary Algorithm (SPEA)

The SPEA also maintains a separate elite population, which contains the fixed 

number of non-dominated solutions found till the current generation. The elite 

population participates in the genetic operations and influences the fitness 

assignment procedure, which in this case is easy to calculate. A clustering technique 

is used to control the size of the elite set, thereby indirectly maintaining diversity 

among the elite population members. This clustering algorithm is parameter-less, 

which makes it attractive to use. In the absence of this clustering algorithm, the 

SPEA exhibits a convergence proof (Zitzler and Thiele, 1998a).

The overall complexity needed in each generation of the SPEA is Q(MN2), where M 

is the number of objectives and N is the size of the population. The SPEA introduces 

an extra parameter, the size of the external population, which influences its 

performance. In this algorithm, since non-dominated sorting of the whole population 

is not used for assigning fitness, the fitness values do not favour all non-dominated 

solutions of the same rank equally. Moreover, in the SPEA fitness assignment, an 

external solution, which dominates more solutions, gets a worse fitness. This is 

justified when all dominated solutions are concentrated near the dominating solution. 

Since in most cases this is not true, the crowding effect should come only from the 

clustering procedure to prevent a wrong solution pressure for the non-dominated 

solutions (Zitzler and Thiele, 1998a).
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2.2.7.3 Fast Elitist Non-dominated Sorting GA (NSGA-II)

The NSGA-II carries out a non-dominated sorting of a combined parent and 

offspring population. Thereafter, starting from the best non-dominated solutions, 

each front is accepted until all population slots are filled. This makes the algorithm 

an elitist type. For the solutions of the last allowed front, a parameter-less crowded 

distance-based niching strategy is used to resolve which solutions are carried over to 

the new population. This algorithm also has a crowded distance metric, which makes 

it fast and scalable to more than two objectives. The convergence of NSGA-II 

(without crowded comparison operator) can be proved. (Deb et a l, 2000).

The overall complexity of the NSGA-II is at most 0(MN2), where M is the number 

of objectives and N is the population size. This algorithm loses its convergence 

property when the crowded comparison is used to restrict the population size. 

Further, the non-dominated sorting needs to be performed on a population of size 2N, 

instead of a population of size N, as required in most algorithms (Deb et a l, 2000).

2.2.8 Summary

This section can be summarised with the following remarks.

♦ The two main goals of multi-objective optimisation are convergence to the Pareto 
front and maintenance of diversity across the front (Deb, 1999a).

♦ The concept of Pareto domination is a powerful way of encouraging convergence 
of solutions to the Pareto front.

♦ The spread of solutions can be encouraged by using diversity-preserving 
mechanisms with EMOTs.

♦ The use of elitism ensures that the ‘good’ solutions are not lost after being 
located once.

♦ In general, elitist EMOTs, such as NSGA-II, that use Pareto domination and 
diversity-preserving operators perform better than other multi-objective 
optimisation techniques.
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2.3 Evolutionary-based Constrained Optimisation 

Techniques

Constraints are common in most engineering design optimisation problems. They 

arise due to practical/physical requirements or due to designers’ special preferences. 

Whereas evolutionary computation techniques assume the existence of evaluation 

functions for feasible individuals, there is no uniform methodology for handling 

infeasible ones (Michalewicz, 1995). This section analyses the different types of 

Evolutionary-based Constrained Optimisation Techniques (ECOTs), together with 

their strengths and weaknesses.

2.3.1 Problem Statement

Constrained optimisation can be defined as the problem of locating optimal solutions 

in the presence of constraints in the search space. Typically, a constrained 

optimisation problem can be written as follows (Equation 2.4) (Deb, 2001).

Minimise/Maximise => f m(x),m = 1,2,...,M; Equation 2.4

Subject _to  => gj (x) > 0,y =1,2,..., J ; 

hk (x) = 0,k = 1,2,...,Æ;

X{L) < Xi < X;t/), Z = 1,2,..., 72.

Any evolutionary computation technique, applied to a particular constrained 

optimisation problem, should address the issue of handling infeasible individuals. In 

general, a search space S  consists of two disjoint subsets of feasible and infeasible 

subspaces, F  and U, respectively. A constrained optimisation technique should be 

able to locate the feasible optima without making any assumptions regarding the 

shape and connectivity of the subspaces. Since in constrained optimisation process, 

both feasible and infeasible individuals are encountered, the algorithm must be able 

to handle the following issues (Michalewicz, 1995).

♦ Comparison of two feasible individuals.

♦ Comparison of two infeasible individuals.
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♦ Comparison of a feasible with an infeasible individual.

♦ Treatment of infeasible individuals: eliminate, repair or penalise.

2.3.2 Classical versus Evolutionary Approaches

In addition to the drawbacks mentioned Section 2.2.2, the classical approaches (e.g. 

Complex Method (Box, 1965), Sequential Linear Programming (Cheney and 

Goldstein, 1959) etc.) suffer from the following limitations in dealing with 

constraints in optimisation problems (Deb, 1995).

♦ These algorithms suffer from serious limitations in dealing with constraints in the 
presence of multiple objectives.

♦ Most of these algorithms demand some knowledge about the shape, size and 
nature of F  and U subspaces. Further, the performance of a number of these 
algorithms is sensitive to the shape of constraint boundaries.

♦ These algorithms are not suitable for solving the problems that have a 
discontinuous feasible sub space (F).

♦ Finally, they are not reliable in the presence of uncertainties or stochasticities in 
constraints.

2.3.3 Classification of ECOTs

Richardson et a l (1989) claimed, “Attempts to apply GAs with constrained 

optimisation problems follow two different paradigms (1) modification of the genetic 

operators; and (2) penalising strings which fail to satisfy all the constraints.” This is 

no longer the case as a number of methods, which use different methodologies for 

handling constraints, have been proposed. A survey of constraint handling techniques 

in evolutionary computation is provided by Michalewicz (1995) for single objective 

optimisation, and by Deb (2001) for multi-objective optimisation.

Based on the algorithm for constraint handling, most ECOTs that are reported in 

literature can be classified into five main categories for both single- and multi­

objective optimisation (Table 2.2) (Michalewicz, 1995; Michalewicz and 

Schoenauer, 1996; Michalewicz et a l, 2000; Roy et a l, 2000b; Deb, 2001). Each of 

these categories is briefly discussed in this section.
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Table 2.2: Classification ofECOTs

ECOTs Single-objective
Optimisation

Preserving5Feasibility of 
Solutions

• Baldwinian Method (Liu et al., 
2000)

• Lamarckian Method (Deb and 
Goel, 2001)

• Baldwinian Method (Liu et al., 
2000)

• Lamarckian Method (Deb and 
Goel, 2001)

• Static Penalty Method (Homaifar 
et al., 1994)

• Dynamic Penalty Method (Joines 
and Houck, 1994)

• Dynamic Penalty Method 
(Michalewicz and Attia, 1994)

• Static Penalty Method (Srinivas 
and Deb, 1994)

• Static Penalty Method (Deb, 
1999a)

• Behavioural Memory Method 
(Schoenauer and Xanthakis, 
1993)

• Powell and Skolnick’s Method 
(1993)

• Death Penalty Method 
(Michalewicz, 1995)

• Deb’s Method (2000)

• Jimenez-Verdagay-Gomez- 
Skarmeta’s Method (Jimenez et 
al., 1999)

• Death Penalty Method (Coello 
and Christiansen, 1999)

• Constrained Tournament Method 
(Deb, 2000)

• Ray-Tai-Seow’s Method (Ray et 
al., 2001)

• Koziel and Michalewicz’s Method 
(1998)

• Koziel and Michalewicz’s Method 
(1998)

• Method of Waagen et al. (1992)
• Co-evolutionary Approach 

(Paredis, 1994)
• Method based on Multi-objective 

Optimisation Techniques 
(Michalewicz, 1995)

• Barbosa's Co-evolutionary 
Approach (Barbosa, 1996)

• Method based on Multi-objective 
Optimisation Techniques 
(Michalewicz, 1995)

2.3.3.1 Methods based on Preserving Feasibility of Solutions

In this approach, two feasible solutions, after recombination and mutation operations, 

create two feasible offspring. Here, one decision variable is manipulated using an 

equality constraint, either implicitly or explicitly. In the explicit case, the value of 

one of the decision variable is calculated using the constraint function, thereby 

allowing the GA to use one variable less. In the implicit case, the GA uses all the 

variables, but estimates the value of one using the constraint function. In both single- 

and multi-objective optimisation, there are two ways of handling this new value. In 

the Lamarckian Method, the new value is substituted in the individual vector, while 

in the Baldwinian Method, it is not. However, both the methods use the new values 

to compute objective functions and other constraints. Although the Lamarckian 

Method of repairing an infeasible solution seems desirable (Deb and Goel, 2001), the 

Baldwinian Method is found to be more efficient in some problems (Liu et a l, 2000).
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These method that are based on preserving feasibility of solutions, though 

computationally inexpensive and easy to implement, have limited practical 

significance due to their inability in handling inequality constraints.

2.3 3.2 Methods based on Penalty Functions

In many algorithms, an exterior penalty term (Deb, 1995; Reklaitis et a l, 1983), 

which penalises infeasible solutions, is used. In most of these cases, the penalties are 

based on the degree of constraint violations (Richardson et a l, 1989). In general, the 

penalty functions can be classified as static or dynamic based on their relationship 

with the generation number. In addition, there are adaptive penalties that can be 

incorporated in the chromosome structures (Michalewicz, 1995). In this way, these 

penalties are treated as variables of the problem. They adaptively take suitable values 

as the population grows.

Static penalties are independent of the generation number (Michalewicz, 1995). 

However, there are two main difficulties associated with them. Firstly, the users 

require extensive experimentation to find the values of the penalty parameters that 

would steer the search towards the feasible region. Secondly, the inclusion of the 

penalty term distorts the objective function space, making it difficult for the GA to 

locate the optimum (Deb, 1995). An example of an ECOT that uses static penalties 

for solving single-objective optimisation problems is that proposed by Homaifar et 

a l (1994). Most of the studies in multi-objective evolutionary optimisation use 

carefully chosen static penalties (Srinivas and Deb, 1994; Deb, 1999a).

In the case of dynamic penalties, which were introduced to tackle the drawbacks of 

static penalties, the penalty parameter is changed with the generation number 

(Michalewicz, 1995). Some methods that fall in this category are those of Joines and 

Houck (1994), and Michalewicz and Attia (1994). The use of these penalties is not 

trivial and only partial analysis of their performance is available. Further, all these 

methods require exogenous parameters, which must be tuned for each problem 

(Michalewicz, 1995).
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2.3.3.3 Methods based on Feasible over Infeasible Solutions

In these methods, a clear distinction is made between the feasible and infeasible 

solutions in the search space. In the simplest of these methods, called the Death 

Penalty Method (Michalewicz, 1995; Coello and Christiansen, 1999), the infeasible 

solutions are completely rejected. In both single- and multi-objective optimisation, 

this methods works only when F  has a simple shape, and constitutes a reasonable 

part of S (Michalewicz, 1995). In the Behavioural Memory Method (Schoenauer and 

Xanthakis, 1993), which deal with constraints in single-objective optimisation, all the 

constraints are considered in a sequence. In another approach (Powell and Skolnick, 

1993), which is also a constrained single-objective optimisation technique, a 

heuristic rule (suggested earlier by Richardson et al., 1989) that states, “every 

feasible solution is better than all infeasible solutions”, is used to process infeasible 

solutions. A recent study (Deb, 2000) suggested an approach that does not need any 

penalty parameter. One fundamental difference between this approach and the 

approach of Powell and Skolnick (1993) is that here the objective function value is 

not computed for any infeasible solution. This method uses a niched binary 

tournament selection operator, where two solutions are compared in a tournament 

only if their Euclidean distance is within a pre-specified limit. Niching is used here to 

maintain diversity among the feasible solutions. In this tournament selection, the 

following scenarios are always assured (Deb, 2001).

♦ Any feasible solution is preferred to any infeasible solution.

♦ Among two feasible solutions, the one having a better objective function is 
preferred.

♦ Among two infeasible solutions, the one having a smaller constraint violation is 
preferred.

This Constrained Tournament Method (Deb, 2000) can also be extended to deal with 

multi-objective optimisation problems. Jimenez-V erdegay-Gomez-Skarmeta’s 

Method (Jimenez et a l, 1999) and Ray-Tai-Seow’s Method (Ray et a l, 2001) are 

two other constrained multi-objective optimisation algorithms that fall in the
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category of ‘Methods based on Feasible over Infeasible Solutions’. The description 

of all these three methods is provided later in this section.

2.3.5.4 Methods based on Decoders

The infeasible individuals could be repaired for either evaluation or replacement 

(Orvosh and Davis, 1993). In this strategy, a chromosome stores information about 

how to fix an infeasible solution. For example, the chromosome may keep 

information about the ordering of decision variables, which may be altered to make a 

solution feasible. In some instances, a decoder imposes a mapping between a feasible 

solution and a decoded solution. One such example (for both single- and multi- 

objective optimisation) is the use of a homomorphous mapping between an n- 

dimensional cube and a feasible search space (Koziel and Michalewicz, 1998). These 

algorithms are particularly interesting for combinatorial optimisation problems due to 

the relative ease of repairing an infeasible solution in these problems.

2.3.5.5 Hybrid Methods

There are two types of hybrid methods. In the first type, a classical constrained 

optimisation method is combined with the existing operators of an evolutionary 

algorithm. Three such techniques that are reported in literature for single-objective 

optimisation are discussed here. In the method suggested by Waagen et a l (1992), 

the Hooke-Jeeves Pattern Search Method is combined with evolutionary algorithms. 

Paredis (1994) suggested another approach, called the Co-evolutionary Approach. 

Here, a population of decision variable vectors is evolved along with a population of 

constraints, with fitter solutions satisfying more constraints and fitter constraints 

being violated by fewer solutions. A different twist to this approach suggested by 

Barbosa (1996), uses a population of solutions and a population of Lagrange 

multipliers.

In the second type, the given objective function(s) and constraint violation measures 

are both treated as objectives of a multi-objective optimisation problem. One of the 

EMOTs (Section 2.2) can then be used to locate the optimal solutions (Michalewicz,
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1995). This Method based on Multi-objective Optimisation Techniques can be used 

to solve both single- and multi-objective optimisation problems.

In the following discussion, three main algorithms that specialise in handling 

constraints in multi-objective optimisation problems are described.

2.3.4 Jimenez-Verdegay-Gomez-Skarmeta’s Method

Jimenez et a l (1999) suggested a systematic constraint handling procedure that lies 

in the category of ‘Methods based on Feasible over Infeasible Solutions’. Here, the 

feasible and infeasible solutions are carefully evaluated by ensuring that no infeasible 

solution gets a better fitness than any feasible solution. This algorithm uses the 

binary tournament selection in its core. In this case, as long as the decisions can be 

made with the help of feasibility and dominance of solutions, they are followed. 

However, when both solutions enter a tie with respect to feasibility and dominance 

considerations, the algorithm attempts to satisfy the second task of multi-objective 

optimisation by using a niching concept to encourage a less crowded solution.

This algorithm has 0(N2) complexity, where N is the population size. This is 

comparable to that of other algorithms. Another advantage is that it uses the 

tournament selection operator, which has better convergence properties than 

proportionate selection operator.

This algorithm could be improved by restricting the niching computations to the 

members of the chosen comparison set, instead of the entire population. This would 

reduce its computational complexity. Further, by explicitly preserving diversity 

among infeasible solutions, this algorithm sacrifices the progress towards the feasible 

region. It also has a couple of additional parameters that a user must set right. In 

order to make the non-domination check less stochastic, a large comparison set is 

also needed here. Furthermore, this algorithm does not explicitly check the 

domination of participating solutions in a tournament.
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2.3.5 Constrained Tournament Method

The Constrained Tournament Method, which also falls in the category of ‘Methods 

based on Feasible over Infeasible Solutions’, was proposed by Deb (2000). The 

original version of this method for dealing with single-objective optimisation 

problems is given in Section 2.3.3.3. Here, the modified version of this method for 

multi-objective optimisation is discussed.

In this algorithm, the definition of domination is modified. Before comparing two 

solutions for domination, they are checked for their feasibility. If one solution is 

feasible and the other is not, the feasible solution dominates the other. If the two 

solutions are infeasible, the solution with the smaller normalised constraint violation 

dominates the other. On the other hand, if both the solutions are feasible, the usual 

domination principle is applied. This Constrain-domination Principle can be applied 

with any EMOT. Its formal definition is given below.

A solution 3c(0 is said to ‘constrain-dominate’ a solution x {j), if any of the following 

conditions is true.

♦ Solution x 0) is feasible and solution x 0) is not.

♦ Solutions x (,) and x U) are both infeasible, but solution x {l) has a smaller 
constraint violation.

♦ Solutions x (0 and x 0) are both feasible, and solution x (,) dominates solution 

x U) in the usual sense of Pareto domination, as defined in Section 2.2.1.

This is a penalty-parameter-less constraint handling approach. It does not require any 

extra computational burden, other than the constraint violation computations. 

Further, this strategy is generic and can be used with any EMOT. Since it forces an 

infeasible solution to be always dominated by a feasible one, no other constraint 

handling strategy is required here.

In solving simple problems, this algorithm exhibits better performance as compared 

to other constraint handling techniques. Moreover, since this approach requires 

domination checks to be performed with the constraint violation values, it has a 

slightly higher computational expense as compared to other techniques.
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2.3.6 Ray-Tai-Seow’s Method

Ray et al. (2001) suggested a more elaborate constraint handling technique, which is 

also a ‘Method based on Feasible over Infeasible Solutions’. Here, the constraint 

violations of all constraints are not simply added together; instead, a non-domination 

check of the constraint violation is made. In this case, three different non-dominated 

sorting procedures are used. In addition to a non-dominated sorting of the objective 

functions, a couple of non-dominated sortings using the constraint violation values 

and a combined set of objective function and constraint violation values are needed 

to construct the new population.

The overall complexity of this algorithm is 0((M+J)N2), where J is the number of 

constraints, M is the number of objective functions and N is the population size. This 

method emphasises the solutions that violate different constraints. In this way, the 

diversity is maintained in the population.

In a later generation, when all population members are feasible and belong to a sub- 

optimal non-dominated front, the algorithm stagnates. The performance of this 

algorithm is also dependent on the choice of appropriate values for its parameters. 

Further, the algorithm has a tendency of losing the diversity in its population. 

Finally, three non-dominated ranking and head-count computations make the 

algorithm more computationally expensive than the other algorithms discussed so 

far.

2.3.7 Summary

The following points summarise this section.

♦ There are only a few specialised techniques for handling constraints in multi­
objective optimisation problems.

♦ The ease of understanding and implementation of penalty function approaches 
make them the most popular techniques for handling constraints in optimisation 
problems.

♦ Incorporation of constraint violations in the definition of Pareto domination is a 
powerful way of handling constraints in multi-objective optimisation problems.
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♦ Niching can also be used with the above strategy to encourage diversity among 
solutions.

♦ Techniques, such as Constrained Tournament Method, that use the above 
concepts achieve better convergence and diversity of solutions as compared to 
other approaches.

Interaction among decision variables is inherent to a number of engineering design 

optimisation problems. In spite of its immense potential for real-life problems, lack 

of systematic research has plagued this field for a long time. The main reason for this 

was that no sophisticated technique was available in the past for effectively dealing 

with variable interaction. Inadequate hardware and software technologies also 

hampered the growth of research in this computationally complex field. However, in 

the last two decades, with the growth of these technologies, some research has been 

carried out in this area, especially in the fields of probability (Scott, 1992) and 

statistics (Draper and Smith, 1998). This has been further augmented in the recent 

past with the growth of computational intelligence techniques like EC, Neural 

Networks (NN) and Fuzzy Logic (FL) (Pedrycz, 1998).

In an ideal situation, desired results could be obtained by varying the decision 

variables of a given problem in a random fashion independently of each other. 

However, due to interaction this is not possible in a number of cases, implying that if 

the value of a given variable changes, the values of others should be changed in a 

unique way to get the desired results. The interaction among decision variables can 

be classified into two broad levels: inseparable function interaction and variable 

dependence. The EC techniques for handling both these types of variable interaction 

are discussed in this chapter.

2.4  Evolutionary-based Techniques for Handling 

Inseparable Function Interaction

This section presents a literature survey of the Evolutionary-based Techniques for 

handling Inseparable Function Interaction (ETIFIs) in optimisation problems.
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2.4.1 Problem Statement

Inseparable function interaction is a form of variable interaction. It occurs when the 

effect that a variable has on the objective function depends on the values of other 

variables in the function (Taguchi, 1987a; Taguchi, 1987b). This concept of 

interaction can be understood from Figure 2.2. Figure 2.2(a) shows the case of no 

interaction between two variables A and B. Here, the lines representing the effect of 

variable A for the settings and B2 of variable B are parallel to each other. Figure 

2.2(b) and Figure 2.2(c) show two examples of the presence of interaction. The type 

of interaction in Figure 2.2(b) is sometimes called synergistic interaction and the one 

in Figure 2.2(c) is called anti-synergistic interaction (Phadke, 1989).

y

Figure 2.2: Examples o f Interaction -  (a) No Interaction (b) Synergistic Interaction 

(c) Anti-synergistic Interaction (Phadke, 1989)

The above discussion reveals that this interaction depends on the definition of 

objective functions, and manifests itself as cross-product terms. As an example, 

assume y  in Figure 2.2 stands for A2+B2, having no cross-product terms. Here, y3-yi 

is equal to y 4-y2 (Equation 2.5), making the two lines parallel and implying that there 

is no interaction between A and B in the given function.

y = A2 + B1 Equation 2.5

cross-product term AB. Here, ys-yi is not equal Xoy4-y2 (Equation 2.6). This makes

Ai Ai A,

t3- T i = ( 4 2 + 5 i2) = C82 ~ A 2X

T4 - T 2 =M 2 + B 2 ) - ( A 2 + B l2 )  =  ( B 2 ~ B l2 ) -

Let us take the other case in which y  in Figure 2.2 stands for A2+B2+AB, having a 
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the two lines non-parallel implying interaction between variables in the given 

function.

y = ^  + ̂  + .Egwafm» 2 6

y  3 ~y\  = (^i + Bi + A B  2) ~(^\ + B\ + AB\ )

— (^2 ~B\ +A{B2

y4 - y 2 =(^i +bI + a2b2)-(aI  +bI +^ 2̂ i )
= (B2 — B\ + A2B2 — A2B\).

In GA literature, the inseparable function interaction, as defined above, is termed as 

epistasis. The GA community defines epistasis as the interaction between different 

genes in a chromosome (Beasley et a l, 1993). In other words, it determines the 

extent to which the contribution to fitness of one gene depends on the values of other 

genes. Beasley et a l (1993) put forward the following three levels of epistasis.

♦ Level 0 indicates no epistasis.

♦ Level 1 indicates synergistic epistasis, where a particular change in one gene 
always produces a change in fitness of the same sign.

♦ Level 2 indicates anti-synergistic epistasis in which a change in one gene causes 
a change in fitness that varies in sign and magnitude depending on the values of 
other genes.

An alternative definition of epistasis is given by Reeves and Wright (1995a), who 

define it in terms of alleles. In this sense, the term epistasis is used to denote the 

effect of a combination of alleles on the chromosome fitness that is not merely a 

linear function of the effects of individual alleles. In general, epistasis can be thought 

of as expressing the degree of cross-terms in the fitness function.

Davidor (1991), and Reeves and Wright (1995a and 1995b) argued that 

understanding the distribution and level of epistasis is often an indicator of the 

difficulty of an optimisation problem. Davidor (1991) introduced the epistatic 

variance as a tool for the evaluation of interdependencies between genes, thus 

possibly giving clues about the difficulty of optimising functions with a GA (Fonlupt 

et a l, 1998). In recent years, Reeves and Wright (1999) have also attempted to put 

Davidor’s methodology (Davidor, 1990; Davidor, 1991) on a firmer footing by
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drawing on existing work in the field of Experimental Design (ED), which can be 

used to give insights into epistatic effects.

A number of real-life examples can be found in literature that involve this level of 

interaction. For example, the temperature (7) of an ideal gas varies with its pressure 

(P) and volume (V) as T=kPV, where k is the constant of proportionality (Equation 

2.7). This equation has cross-product term PV  clearly demonstrating the interaction 

between P  and V in the definition of T (Tiwari et a l, 2001a).

T = kPV. Equation 2.7

2.4.2 Classical versus Evolutionary Approaches

Section 2.2.2 listed a number of drawbacks that classical approaches face in dealing 

with multi-objective optimisation problems. The discussion in the previous section 

revealed that the presence of complex inseparable function interaction further 

enhances the challenges for multi-objective optimisation algorithms (Deb, 1999b). 

Since the classical approaches suffer from inherent drawbacks in handling complex 

interaction among decision variables, it becomes even more important to explore the 

field of EC for solving these optimisation problems. This is also supported by the 

fact that the EC can handle most of the drawbacks of classical algorithms, and has 

the potential of handling inseparable function interaction in optimisation problems.

2.4.3 Classification of ETIFIs

The success of a GA depends on its capability to grow ‘good’ building blocks 

(Thierens, 1995). In the presence of complex inseparable function interaction, it 

becomes difficult for a GA to meet this requirement. In these cases, it is essential to 

provide the simple GA with some additional features that can enable it to support the 

growth of ‘good’ building blocks. A number of techniques are reported in the 

literature that attempt to achieve this by preventing the disruption of important partial 

solutions.
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Table 2.3: Classification ofETIFIs

ETIFIs Classification of ETIFIs
Methods that Manipulate 

Representation of 
Solutions

Methods that Use 
Specialised Reproduction 

Operators

Methods that Avoid Race 
between Linkage Evolution 

and Allele Selection
• Method of Bagley (1967)
• Method of Rosenberg 

(1967)
• Method of Frantz (1972)
« Method of Holland (1975)
• Method of Goldberg and 

Lingle (1985)
• Method of Schaffer and 

Morishima (1987)
• Method of Goldberg and 

Bridges (1990)
• Method of Levenick (1995)
• Method of Paredis (1995)
• Method of Smith and 

Fogarty (1996)
• Linkage Learning GA 

(LLGA) (Harik, 1997)

• Partially Mapped 
Crossover (PMX) 
(Reported by Harik, 1997)

• Edge Recombination 
(Reported by Harik, 1997)

• Enhanced Edge 
Recombination (Reported 
by Harik, 1997)

• Order Crossover 
(Reported by Harik, 1997)

• Molecular GA Crossover 
(Reported by Harik, 1997)

• messy GA (mGA) 
(Goldberg et at., 1989)

• Gene Expression Messy 
GA (GEMGA) (Kargupta, 
1998)

No Interaction Pairwise Interaction Multiple Interaction

• Population Based 
Incremental Learning 
(PBIL) algorithm (Baluja, 
1994)

• Univariate Marginal 
Distribution Algorithm 
(UMDA) (Muhlenbein and 
Paab, 1996)

• Stochastic Hill Climbing 
with Learning by Vectors 
of Normal Distributions 
(SHCLVND) (Rudolf and 
Koppen, 1996)

• compact GA (cGA) (Harik 
eta!., 1997)

• Technique of Servet et at. 
(1997)

• Extended PBIL for 
continuous domain (PBILC) 
(Sebag and 
Ducoulombier, 1998)

• Method of Baluja and 
Davies, 1997

• MIMIC (De Bonet et a/., 
1997)

• Bivariate Marginal 
Distribution Algorithm 
(BMDA) (Pelikan and 
Muhlenbein, 1999)

• Factorised Distribution 
Algorithm (FDA) 
(Muhlenbein and Mahnig, 
1999a; Muhlenbein and 
Mahnig, 1999b )

• Bayesian Optimisation 
Algorithm (BOA) (Pelikan 
et at., 1999)

• Learning FDA (LFDA) 
(Muhlenbein and Mahnig, 
1999a; Muhlenbein and 
Mahnig, 1999b )

• Extended Compact GA 
(ECGA) (Harik, 1999)

• Polytree Approximation of 
Distribution Algorithms 
(PADA) (Soto et at., 1999)

• Continuous-domain EDA 
using a Flexible 
Probability Density 
Estimator (Gallagher et 
al., 1999)

• Multi-objective Mixture- 
based Iterated Density 
Estimation Evolutionary 
Algorithm (MIDEA) 
(Thierens and Bosman, 
2001)

As shown in Table 2.3, ETIFIs can be classified into two broad categories based on

the approach that are used for the prevention of building block disruption. The first 

class of these techniques manages the race between the building block growth and 

mixing (Harik, 1997). The second class attempts to model promising solutions for 

extracting some information from them in order to generate new solutions (Pelikan et 

a l, 1998). This section provides a brief overview of the techniques belonging to both 

of these categories.
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2.4.4 Managing Race between Linkage Evolution and Allele 

Selection

Linkage is defined as the logical grouping of building block components to facilitate 

their growth and mixing. This strategy handles epistasis on the basis of the 

observation that the force that causes the evolution of linkage is, in effect, in a race 

against the force of allele selection. Therefore, a GA may fail if it is unable to control 

this struggle between the building block growth and mixing. In order to make the GA 

successful, this strategy proposes ways of managing this race (Harik, 1997). Most of 

the techniques that fall in this category work on single-objective optimisation 

problems in binary domains. These techniques can be classified as follows.

2.4.4.1 Methods that Manipulate Representation of Solutions

Various studies have shown that the struggle between linkage evolution and allele 

selection can be easily overcome when a problem’s building blocks are tightly linked 

(Goldberg et a l, 1992; Goldberg et a l, 1993). The methods in this category attain 

this by manipulating the representation of solutions in the algorithm, in order to 

make the interacting components of partial solutions less likely to be broken by 

recombination operators. These methods evolve a problem’s ordering alongside its 

solution, thereby enabling the GA to smooth the path of building block mixing. Some 

of the important studies in this area of dynamic adjustment of building block linkages 

were undertaken by Bagley (1967), Rosenberg (1967), Frantz (1972), Holland 

(1975), Goldberg and Lingle (1985), Schaffer and Morishima (1987), Goldberg and 

Bridges (1990), Levenick (1995), Paredis (1995), and Smith and Fogarty (1996). One 

of the latest algorithms in this category is Linkage Learning GA (LLGA). It was 

developed by Harik (1997). In this algorithm, the decision variables are mapped onto 

a circle. Their mutual distances evolve during optimisation, grouping together those 

with strong interaction so that recombination is less likely to disrupt them.

Many of the above-mentioned studies were undertaken before the logistics of 

building block mixing were well understood. They were inspired by a more holistic 

view of the GAs operation that considered the exploitation of tight building blocks
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the Holy Grail to GA optimisation. The main drawback of these techniques is that the 

reordering operators that they use are often too slow and lose the race against 

selection, resulting in premature convergence to low quality solutions. Reordering is 

not sufficiently powerful in order to ensure a proper mixing of partial solutions 

before these are lost. This line of research has resulted in algorithms that evolve the 

representation of a problem among individual solutions (Harik, 1997).

2 .4A 2 Methods that Use Specialised Reproduction Operators

Some binary permutation operators, such as Partially Mapped Crossover (PMX), 

Edge Recombination, Enhanced Edge Recombination, Order Crossover and 

Molecular GA Crossover, have the potential of speeding-up the rate at which linkage 

evolution occurs (Harik, 1997). These crossover operators are directly useful for 

those optimisation problems that are naturally encoded as permutation, such as 

combinatorial optimisation problems. However, since the ordering problem can be 

considered as a combinatorial optimisation problem that the GA must tackle, these 

operators are potentially useful even within the confines of traditional GA 

optimisation.

2A.4.3 Methods that Avoid Race between Linkage Evolution and Allele 

Selection

There are a number of techniques that entirely avoid the race between linkage 

evolution and allele selection. In the messy GA (mGA) (Goldberg et ah, 1989), the 

steps of building block identification and mixing are separate. In the first phase, the 

important building blocks are identified. This is done by simply applying the 

selection operator to them. The remaining solution components are substituted from 

a special solution called the template. The template is updated every few generations. 

In the second phase, the identified building blocks are mixed using selection and 

crossover operators. In the Gene Expression Messy GA (GEMGA) (Kargupta, 1998), 

the interaction in a problem is identified by manipulating individual solutions. These 

are used in order to improve the effects of recombination.
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2.4.5 Modelling Promising Solutions

A different way to cope with the disruption of partial solutions is to change the basic 

principle of recombination. In this approach, instead of implicit reproduction of 

important building blocks and their mixing by selection and two-parent 

recombination operators, new solutions are generated by using the information 

extracted from the entire set of promising solutions. Global information about the set 

of promising solutions can be used to estimate their distribution, and new solutions 

can be generated according to this estimate. A general scheme of the algorithms 

based on this principle is called the Estimation of Distribution Algorithm (EDA) 

(Muhlenbein and Paab, 1996). A typical EDA approach to optimisation is illustrated 

in Figure 2.3.
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Selection of Se<N individuals
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Figure 2.3: Estimation o f Distribution Algorithm (EDA) Approach to Optimisation

(Source: Larranaga et al, 1999)

In EDA, the better solutions are selected from an initially randomly generated 

population of solutions like in the simple GA. The distribution of the selected set of 

solutions is estimated. New solutions are generated according to this estimate. The 

new solutions are then added into the original population, replacing some of the old
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ones. The process is repeated until the termination criteria are met. However, 

estimating the distribution is not an easy task. There is a trade-off between the 

accuracy of the estimation and its computational cost (Larranaga et a l, 1999). The 

techniques that fall in this category can be classified as follows.

2.4.5.1 No Interaction

The simplest way to estimate the distribution of ‘good’ solutions is to consider each 

variable in a problem independently, and generate new solutions by only preserving 

the proportions of the values of all variables independently of the remaining 

solutions. This is the basic principle of the Population Based Incremental Learning 

(PBIL) algorithm (Baluja, 1994), the compact GA (cGA) (Harik et a l, 1997) and the 

Univariate Marginal Distribution Algorithm (UMDA) (Muhlenbein and Paab, 1996). 

There is theoretical evidence that the UMDA approximates the behaviour of the 

simple GA with uniform crossover (Muhlenbein, 1997). It reproduces and mixes the 

building blocks of order one very efficiently. The theory of UMDA, based on the 

techniques of quantitative genetics, can be found in Muhlenbein (1997). Some 

analysis of PBIL can be found in Kvasnicka et a l (1996). The PBIL, cGA and 

UMDA algorithms work well for problems with no significant interaction among 

variables (Muhlenbein , 1997; Harik et a l, 1997; Pelikan and Muhlenbein, 1999). 

However, partial solutions of order more than one are disrupted, and therefore these 

algorithms experience a great difficulty to solve problems with interaction among the 

variables.

2.4.5.2 Pairwise Interaction

First attempts to solve the problems that have interaction among variables were 

based on covering some pairwise interaction, for example, the incremental algorithm 

using the so-called dependency trees as a distribution estimate (Baluja and Davies, 

1997), the population-based MIMIC algorithm using simple chain distributions (De 

Bonet et a l, 1997), or the Bivariate Marginal Distribution Algorithm (BMDA) 

(Pelikan and Muhlenbein, 1999). In the algorithms based on covering pairwise 

interaction, the reproduction of building blocks of order one is generated. Moreover,
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the disruption of some important building blocks of order two is prevented. 

Important building blocks of order two are identified using various statistical 

methods. Mixing of building blocks of order one and two is guaranteed, assuming the 

independence of the remaining group of variables. However, covering pairwise 

interaction does not preserve higher order partial solutions. Moreover, interaction of 

higher order does not necessarily imply pairwise interaction that can be detected at 

the level of partial solutions of order two. Therefore, covering only pairwise 

interaction has been shown to be insufficient to efficiently solve problems with 

interaction of higher order (Pelikan and Muhlenbein, 1999).

2.4.5.3 Multiple Interaction

The Factorised Distribution Algorithm (FDA) (Muhlenbein and Mahnig, 1999a; 

Muhlenbein and Mahnig, 1999b) is capable of covering the interaction of higher 

order, and combining important partial solutions effectively. Here, a factorisation of 

the distribution is used for generating new solutions. The distribution factorisation is 

a conditional distribution constructed by analysing the problem decomposition. The 

FDA works very well on additively decomposable problems. The theory of UMDA 

can be used in order to estimate the time to convergence of the FDA. However, the 

FDA requires prior information about the problem in the form of problem 

decomposition and its factorisation. As input, this algorithm gets a complete or 

approximate information about the structure of a problem. Unfortunately, the exact 

distribution factorisation is often not available without computationally expensive 

problem analysis. Moreover, the use of an approximate distribution according to the 

current state of information represented by the set of promising solutions can be very 

effective even if it is not a valid distribution factorisation. However, by providing 

sufficient conditions for the distribution estimate that ensure a fast and reliable 

convergence on decomposable problems, the FDA is of great theoretical value. 

Moreover, for problems in which the factorisation of the distribution is known, the 

FDA is a very powerful optimisation tool.

The Bayesian Optimisation Algorithm (BOA), proposed by Pelikan et a l (1999), is 

also capable of covering higher order interaction. It uses techniques from the field of
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modelling data by Bayesian networks in order to estimate the joint distribution of 

promising solutions. The class of distributions that are considered is identical to the 

class of conditional distributions used in the FDA. Therefore, the theory of the FDA 

can be used in order to demonstrate the power of this algorithm to solve 

decomposable problems. However, unlike the FDA, the BOA does not require any 

prior information about the problem. It discovers the structure of a problem, and 

identifies, reproduces and mixes building blocks up to a specified order very 

efficiently. Some other optimisation algorithms that have been proposed in the recent 

past to handle higher order interaction, while at the same time addressing the 

drawbacks of the FDA, are the Learning Factorised Distribution Algorithm (LFDA) 

(Muhlenbein and Mahnig, 1999a; Muhlenbein and Mahnig, 1999b), Extended 

Compact GA (ECGA) (Harik, 1999) and Polytree Approximation of Distribution 

Algorithms (PADA) (Soto et a l, 1999).

It should be noted here that most of the EDAs mentioned here are proposed for 

combinatorial optimisation problems in binary domains. Literature also reports a few 

EDAs for continuous-domain problems. These include the Stochastic Hill Climbing 

with Learning by Vectors of Normal Distributions (SHCLVND) (Rudolf and 

Koppen, 1996), extended PBIL for continuous domain (PBILC) (Sebag and 

Ducoulombier, 1998) and the technique of Servet et a l (1997). A major drawback of 

these algorithms is that they fail in problems that have any significant interaction 

among their decision variables.

2.4.6 Examples of ETIFIs

It is evident that most of the ETIFIs discussed so far in this section work on single­

objective optimisation problems in binary domains. However, for these techniques to 

be of any practical significance, they should be able to work in continuous domains 

in the presence of multiple objectives. Some attempts have been made by the 

researchers in the recent past to address these issues. In the following discussion, two 

new ETIFIs are analysed. Both work on continuous domains, but the first is a single-
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objective optimisation technique and the second is a multi-objective optimisation 

technique.

2.4.6.1 Continuous-domain EDA using a Flexible Probability Density 

Estimator

Gallagher et al. (1999) extended the PBIL technique to real-valued search spaces. 

They proposed a powerful and general algorithmic framework that enables the use of 

arbitrary probability estimation techniques in evolutionary optimisation. To illustrate 

the usefulness of this framework, they also developed and implemented an 

evolutionary algorithm that uses a Finite Adaptive Gaussian Mixture Model Density 

Estimator. This method offers considerable power and flexibility in the forms of the 

density that can be effectively modelled. However, it is not suitable for those 

problems that have complex inseparable function interaction. It also cannot deal with 

multi-objective optimisation problems.

2.4.6.2 Multi-objective Mixture-based Iterated Density Estimation 

Evolutionary Algorithm (MIDEA)

Thierens and Bosman (2001) proposed a Multi-objective optimisation algorithm 

using a Mixture-based Iterated Density Estimation Evolutionary Algorithm 

(MIDEA). The MIDEA algorithm is a probabilistic model building evolutionary 

algorithm that constructs at each generation a mixture of factorised probability 

distributions. The use of a mixture distribution gives a powerful, yet computationally 

tractable, representation of complicated interaction. In addition, it results in an 

elegant procedure to preserve the diversity in the population, which is necessary in 

order to be able to cover the Pareto front. The algorithm searches for the Pareto front 

by computing the Pareto dominance among all solutions. As specific instantiations of 

the proposed algorithm, Thierens and Bosman (2001) have successfully implemented 

a mixture of universal factorisations and a mixture of tree factorisations for discrete 

multi-objective optimisation, and a mixture of continuous univariate factorisations 

and a mixture of conditional Gaussian factorisations for continuous optimisation 

problems. However, similar to other ED As, this algorithm also specialises in binary

EC Techniques for Handling Variable Interaction 56



Chapter 2. A Review o f Literature

domains. The application of this algorithm to continuous domains requires it to be 

customised for each problem, especially with respect to the clustering algorithm. 

This customisation is mostly done based on trial-and-error. As Thierens and Bosman 

(2001) admit, this algorithm is still at an early stage of development, and is currently 

being developed for generalising it to enable its wider testing on a variety of 

problems.

2.4.7 Summary

The discussion in this section can be summarised can follows.

♦ A number of research questions need to be answered regarding the theory of 
epistasis, its measurement and its relationship with the difficulty of an 
optimisation problem.

♦ Most of the current research in the field of inseparable function interaction 
(epistasis) deals with single-objective optimisation in discrete domain.

♦ The few ETIFIs that are available for dealing with continuous search spaces have 
limited capability in handling any significant inseparable function interaction.

♦ The development of ETIFIs for dealing with real-valued, multi-objective 
optimisation problems is an important area of research. It needs to be addressed 
in order to develop techniques that can handle the challenges of engineering 
design optimisation problems.

2.5  Evolutionary-based Techniques for Handling 

Variable Dependence

This section presents a survey of Evolutionary-based Techniques for handling 

Variable Dependence (ETVD).

2.5.1 Problem Statement

Variable dependence, which is a form of variable interaction, occurs when the 

variables are functions of each other, and hence cannot be varied independently. 

Here, change in one variable has an impact on the value of the other. Unlike
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inseparable function interaction that depends on the nature of objective functions, 

variable dependence depends on the nature of variables. Equation 2.8 depicts a 

dependent-variable optimisation problem, having multiple objectives and constraints.

Subject => g j (x) > 0, /  = 1,2,..., J ; 

hk (5c) = 0,k = 1,2,..., K; 

x\L) <  x t <  X;t/), i =  1,2,..., n\
N d = Number _ o f  _ dependent _ variables', 
x  dep = Set _ o f  _ depedent _ variables’, 
x ind = Set _ o f  _ independent _  variables.

A typical example of this type of interaction is the case when the function y  is 

defined as A2+B2, where A is Random(a,b) and#  is f(A)+Random(c,d) (Equation 2.9) 

(Tiwari et al., 2001b).

y  = A 2 +B2, Equation 2.9

A = Random(a,b),
B = f  (A) + Random(c, d).

As can be seen, variable A is fully independent and can take any random value 

between a and b. On the other hand, variable B is not fully independent and has two 

components. The first component that is a function of variable A takes values 

depending on the values of A. The second component is a random number lying 

between c and d. The origin of this random component lies in one of the following 

two reasons or in a combination of both.

♦ This component may arise due to the deficiency of the mathematical model in 
accurately representing the real-life problem.

Minimise / Maximise => f m (x), m = 1,2,..., M; 

x i — dj (x ind XI = 1j2,..., N d ;
Xd

Equation 2.8
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♦ Alternatively, it may represent noise in the data, arising due to the 
measurement/rounding/calculation errors, disturbances from the environment or 
other inaccuracies in the set-up.

It should be noted that in case of no dependence among decision variables, the 

function /  does not exist. Therefore, a and b define the range o f A, and c and d define 

the range of B.

The above example reveals that the presence of dependence among decision 

variables has the following effects on the search process.

♦ Both variables A and B cannot simultaneously take random values in their 
respective ranges. If variable A takes a value Aj, variable B can take only those 
random values that lie between \f(Ai)+c\ and \f(Ai)+d\. With the change in value 
of A, the range of random values that B can take also changes. So, the variables 
cannot be varied independently of each other.

♦ The above discussion implies that the presence of dependence among decision 
variables modifies the shape and location of variable search space. In case of no 
dependence among decision variables, both variables A and B can independently 
take random values in their respective ranges, making the A-B search space 
rectangular in nature. However, the presence of dependence makes the search 
space take the shape and location based on the nature of function f(A).

2.5.2 Classical versus Evolutionary Approaches

Classical optimisation techniques suffer from serious limitations in handling the 

complexity of multi-objective optimisation problems (Section 2.2.2; Section 2.3.2; 

Section 2.4.2). As mentioned in the above discussion, the presence of variable 

dependence may introduce some additional features, such as bias (non-linearity), 

multi-modality, deception and discontinuity, in the optimisation problem. This makes 

it even more difficult for the classical optimisation algorithms to give satisfactory 

results. However, in recent years the growth of research in the fields of probability, 

statistics, EC, NN and FL has improved the situation. Literature reveals the potential 

of EC in removing most of the drawbacks of classical techniques (Deb, 2001). This 

makes the EC more suitable for dealing with dependent variable multi-objective 

optimisation problems than its classical counterparts.
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2.5.3 Classification of ETVD

As discussed below, the evolutionary-based techniques need to follow the given two 

steps for solving optimisation problems that have dependence among their decision 

variables.

♦ Identification of Dependency Relationships (Step 1): In this step, the 
relationships that determine the dependency among decision variables are 
determined. The user may either explicitly know these relationships in the form 
of equations or need to infer them based on the data provided regarding decision 
variables. In both these cases, the user needs to ensure that the dependency 
relationships do not involve any cyclic dependencies.

♦ Classification of Variables (Step 2): The next step in solving these problems is to 
analyse the dependency equations for classifying the variables as independent 
and dependent. This allows the GA to operate on the independent variables, 
varying them independently of each other. For each alternative solution generated 
by the GA, the dependency equations are used to calculate the values of the 
dependent variables. In this way, the whole set of decision variables is 
determined, which is then used for evaluating the objective function(s).

Table 2.4: Classification o f  Techniques for Handling Variable Dependence

n r

• Regression Analysis (RA) (Frees, 1996; Draper and Smith, 1998; Evans 
and Olson, 2000)

• Neural Networks (NNs) (Kolmogorov, 1957; Cybenko, 1989; Hertz et al., 
1991; Bishop, 1996; Richards, 1998; Gershenfeld, 1999)

• Probabilistic Modelling (PM) (Pelikan eta!., 1998; Larranaga eta!., 1999; 
Gallagher eta!., 1999; Pelikan et ai, 1999; Evans and Olson, 2000)

• Tree Diagrams (TDs) ( Banzhaf et ai, 1998; Richards, 1998; Larranaga et 
ai, 1999)

• Direct Analysis (DA) (Gershenfeld, 1999)

Due to the lack of systematic research in the area of variable dependence, the 

literature in the field of optimisation does not report dedicated techniques that can 

deal with these problems. However, the survey of literature in related areas of 

research reveals some techniques that could form part of the above-mentioned two- 

step procedure for solving these problems. This section presents a critical analysis of 

the techniques for each of these steps. A summary of these techniques is provided in 

Table 2.4.
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2.5.4 Techniques for Step 1: Identification of Dependency

Relationships

The optimisation problems that involve variable dependence can be classified into 

two broad categories. In the first category of these problems, the user explicitly 

knows the equations that define the dependence among decision variables. However, 

the user still needs to ensure that the equations that are provided to him/her are free 

of cyclic dependencies. The next sub-section analyses the techniques that can be used 

for identifying the independent variables and removing any cyclic dependencies. In 

the second category, the dependency equations are unknown, but multiple sets of 

variable values are provided to the user from which the dependency relationships can 

be inferred. Literature reveals a number of sophisticated data modelling techniques 

that can be used for deriving the dependency relationships from the given data 

(Gershenfeld, 1999). Here, the use of three most popular data modelling techniques 

is analysed. As mentioned in Section 2.4.5, some of these techniques, especially the 

Probabilistic Modelling (PM), have also been applied in literature to deal with 

epistasis in optimisation problems (Pelikan et a l, 1999). Here, it is worth noting that 

epistasis, referred to as inseparable function interaction, and variable dependence are 

the two categories of variable interaction. As mentioned in the discussion that 

follows, the second step of the solution procedure is carried out based on the choice 

of the data modelling technique.

It should be noted that along with these two categories, there is another category of 

dependent variable optimisation problems, in which neither the dependency 

equations nor the data are available to the user. In these problems, only the 

compound fitness/evaluation model is available to the user. In this compound model, 

the independent input variables define the dependent variables; both of which define 

the objective functions. Since in these problems the relationships among dependent 

and independent variables are known, it is evident that they fall in the first category 

in which the dependency equations are provided to the user.
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2.5.4.1 Regression Analysis (RA)

Regression Analysis (RA) is a tool for building statistical models that characterise 

relationships between a dependent variable and one or more independent variables, 

all of which are numerical (Evans and Olson, 2000). Figure 2.4 depicts a regression 

line through population means, and errors associated with individual observations. 

The non-linear multivariable RA, which is the most generic form of RA, attempts to 

fit a non-linear equation (of pre-defined degree) to the data, having one dependent 

variable and multiple independent variables. In this method, the coefficients of the 

non-linear equation are obtained in such a way that some function of the errors 

between the given values and the predicted values of the dependent variable is 

minimised. The most common approach for doing this is called least-squares 

regression, which minimises the sum of squares of the errors. The non-linear 

multivariable equation, which is attained from this analysis, is used for predicting the 

dependent variable in terms of the independent variables (Frees, 1996).

Advantages

RA is easy to understand and implement in a computer language. It has lesser 

computational expense than other sophisticated non-linear modelling techniques like 

the Neural Networks. Since it derives explicit dependency equations, it also gives 

better insight to the user regarding the relationships among decision variables 

(Draper and Smith, 1998). Further, due to its reasonable computational expense, the 

RA can be repeatedly applied on the given set of data, to determine the dependency 

equation, if any, for each variable. This makes it possible for the RA to identify 

multiple relationships among decision variables. This also lends it the capability of 

classifying the variables as dependent and independent, thereby eliminating the need 

for prior information regarding the nature of variables.
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(b)(a)

Figure 2.4: Illustration o f Regression Model (a) Regression Line through Population 

Means (b) Errors Associated with Individual Observations (Source: Evans and

Olson, 2000

Disadvantages

The accuracy of RA depends on the degree of non-linear equation that is being used 

for modelling the given data. Therefore, this method suffers from limitations in 

modelling data that involve complex relationships (Frees, 1996). Also, each time a 

new set of data is added, the whole RA needs to be repeated with the updated data set 

(including both old and new data). Further, it is also not suitable for dealing with 

excessively noisy information (Evans and Olson, 2000).

2.S.4.2 Neural Networks (NNs)

The study of NNs started as an attempt to build mathematical models that worked in 

the same way that brains do. While biology is so complex that such explicit 

connections have been hard to make outside of specialised areas (Richards, 1988), 

the effort to do so has led to a powerful language for using large flexible non-linear 

models. The spirit of NN or connectionist modelling is to use fully non-linear 

functions (to handle the curse of dimensionality), and use a large number of terms (so 

that model mismatch errors are not a concern). Instead of matching the architecture 

of the model to a problem, a generic model is used, and careful training of the model 

is used to constrain it to describe the data (Gershenfeld, 1999). A typical NN with 

one hidden layer is depicted in Figure 2.5.
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Figure 2,5: NN with One Hidden layer (Source: Gershenfeld, 1999) 

Advantages

Since the NNs can handle the curse of dimensionality and the model mismatch 

errors, they are robust for simulating the dependency among decision variables 

(Gershenfeld, 1999). It has been shown that with one hidden layer a NN can describe 

any continuous function (if there are enough hidden units), and that with two hidden 

layers it can describe most functions (Kolmogorov, 1957 and Cybenko, 1989). Some 

types of NNs can also incorporate new sets of data without needing to recreate the 

whole model. This feature, together with the capability of dealing with noisy data, 

give them the potential of modelling noisy environments, where more information is 

added with time. A single NN also has the capability of modelling multiple 

relationships among decision variables (Bishop, 1996).

Disadvantages

The major drawback of NNs is that due to their huge computational expense, they 

cannot be repeatedly applied, using different sets of dependent and independent 

variables. Therefore, they require prior problem knowledge for classification of 

variables as independent and dependent, making them unsuitable for real-life 

optimisation problems, in which there is lack of prior information about the nature of 

variables (Hertz et a l, 1991). In terms of computer implementation, the NNs are 

more difficult than the RA, and have higher computational expense. Since they do
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not provide dependency equations, they are also not as explicit as the RA (Bishop, 

1996).

2.5.4.S Probabilistic Modelling (PM)

In Probabilistic Modelling (PM), a probability distribution is constructed from the 

data provided by the user. This probability distribution, which acts as the model for 

representing the data, is expressed using a function p(X  = x), called Joint 

Generalised Probability Density Function (JGPDF). In this way, the model provides 

a characterisation of the possible values that its variables may assume, along with the 

probabilities of assuming these values. A typical probabilistic model is shown in 

Figure 2.6 (assuming that p(X  = x) is the JGPDF). This model can be used to create 

new sets of data that have the same relationship among their variables as in the 

original data provided by the user. Evans and Olson (2000) suggest a number of 

probability distributions for PM. These include Bernoulli, Binomial, Poisson and 

Bayesian distributions for discrete variable models, and Uniform, Normal, 

Triangular, Exponential, Lognormal, Gamma, Weibull, Beta, Geometric, Negative 

Binomial, hypergeometric, Logistic, Pareto, Extreme Value and Gaussian 

distributions for continuous variable models.

Figure 2.6: Example o f Probabilistic Modelling (PM) (Assuming that p(X  = x) is

JGPDF)

Advantages

PM is a very powerful data modelling technique since it does not require a priori 

classification of variables as dependent and independent (Pelikan et a l, 1999). Since 

PM provides an implicit model of the data, it is capable of dealing with complex
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relationships among decision variables (Larranaga et a l, 1999). PM also has lower 

computational expense than the NNs but higher than that of the RA. Further, when a 

new set of data is added, it is not required here to re-create the model from scratch. 

PM makes it possible to update the model using just the new data. Therefore, it is 

simple and computationally inexpensive to update the model with the addition of 

more data. This makes the PM suitable for working in those noisy environments in 

which information slowly evolves with time (Pelikan et a l, 1998).

Disadvantages

The intricacy of concepts involved in PM makes it a difficult technique to understand 

and implement in a computer language. By not providing explicit dependency 

equations, it also does not give an insight into the dependency among decision 

variables (Evans and Olson, 2000). Finally, the field of multivariate PM for 

continuous variables is a subject of ongoing development, and a number of issues 

(such as setting of parameters, robustness, etc.) remain unanswered regarding its 

implementation. Some of the methods that fall in this category are Kernel, Mixture 

Model and Nearest Neighbour methods. The Adaptive Mixture algorithm, a type of 

Mixture Model, has the potential of modelling multivariate data from real-life 

problems. However, a number of research questions (such as scalability with number 

of variables and complexity of relationships, robustness, etc.) need to be answered 

before this algorithm could be used for any real-life application (Gallagher et a l, 

1999).

2.5.5 Techniques for Step 2: Classification of Variables

After obtaining the dependency relationships, the user needs to carry out the next 

step, which is to identify the independent variables that form part of the GA 

chromosome. A number of tools are suggested in literature for analysing the 

dependency equations to classify the variables (as dependent and independent) and 

remove any cyclic dependencies. Some of these tools are discussed below.
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2.5.5.1 Tree Diagrams (IDs)

The dependence among decision variables can be graphically represented using TDs, 

in which each node represents a variable in the problem. An example of a TD is 

shown in Figure 2.7. In this example, variable A is dependent on B, C and D, 

variable B on E, variable C on B and F, and variable D on F and G. Stepwise 

construction of TDs from the dependency equations can also be used to identify the 

cyclic dependencies. They are then resolved either by using some additional 

information from the source of equations or by eliminating the weaker leg of the 

cyclic dependency by comparing the coefficients of the corresponding terms in the 

dependency equations. TDs or their adaptations are used for visual representation of 

relationship among variables in a number of areas of research including GP (Banzhaf 

et a l, 1998), NNs (Richards, 1988) and probability (Larranaga et a l, 1999). The 

main motivation for the use of TDs is their ease of use and visualisation capabilities. 

However, TDs in their pure forms are difficult to be encoded in a computer language.

Figure 2.7: An Example o f  a Tree Diagram (TD)

2.S.5.2 Direct Analysis (DA)

The method of DA involving dependency equations could also be used for the 

classification of variables (Gershenfeld, 1999). It identifies independent variables as 

those that do not have any explicit equations for their definition. Each of the 

equations is then decomposed into independent variables. In doing so, all pairs of 

variables that play the roles of both independent and dependent variables for each 

other are identified. As in the case of TDs, these cyclic dependencies are then
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resolved. This method is easy to be encoded in a computer language but is difficult to 

visualise.

2.5.6 Summary

The discussion in this section can be summarised with the following comments.

♦ Since variable dependence is defined by the nature of variables, rather than by 
that of the objective functions or constraints, the procedure for its handling is 
independent of the number of objectives and constraints in the problem.

♦ The solution of dependent-variable optimisation problems requires a two-step 
procedure to be appended to the EC: identification of dependency relationships 
(Step 1) and classification of variables (Step 2).

♦ The literature does not report any dedicated technique for handling variable 
dependence. However, some techniques, extracted from related areas of research, 
could form part of the overall two-step procedure for handling variable 
dependence.

♦ There is a need to develop a complete EC framework for dealing with dependent- 
variable optimisation problems.

The development of optimisation algorithms requires systematic and controlled 

testing. Therefore, it is required to have test functions that simulate the features of 

optimisation problems. The next three sections provide a survey of the optimisation 

test functions that are reported in the literature. Since the presence of multiple 

objectives, constraints and dependence among decision variables are common 

features of engineering design optimisation problems, these sections present a survey 

of existing test functions that are reported in literature for each of these categories. A 

categorised list of these test problems is provided in Table 2.5.
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Table 2.5: Classification o f Test Problems for Optimisation Algorithms

Non-tuneable Test Problems Tuneable Test Problems

a

• SCH1 (Schaffer, 1984)
• SCH2 (Schaffer, 1984)
• KUR (Kursawe, 1990)
• FON (Fonseca and Fleming, 1995)
• VNT (Viennet, 1996)
• Poloni et at. (2000)

• Tuneable Test Bed (Deb, 1999b)
• ZTD1 to ZTD6 (Zitzlet et ai, 2000)

Test Non-tuneable Test Problems Tuneable Test Problems

ü

• BNH (Binh and Korn, 1997)
• OSY (Osyczka and Kundu, 1995)
• SRN (Srinivas and Deb, 1994)
• TNK (Tanaka, 1995)

• Tuneable Test Bed (Deb ef a/., 2001)

Test Problems for Inseparable Function 
Interaction Test Problems for Variable Dependence

sssr • Tuneable Test Bed (Deb, 1999b) (Partial 
fulfilment of requirements)

• No test problem was observed in this 
category

2.6 Test Problems for Simulating Multi-objective  

Optimisation

The literature reports a number of test functions for simulating single-objective 

optimisation problems. Beale (1958), Rosenbrock (1960), Fletcher and Powell 

(1963), Smith and Rudd (1964), Box (1966), De Jong (1975), Schwefel (1995) and 

Gershenfeld (1999) proposed non-tuneable test problems that fall in this category. 

More recently, Michalewicz et a l (2000) proposed a parametric test bed for 

controlled simulation of the features of single-objective optimisation problems. All 

these test functions have contributed to the development of test beds for multi­

objective optimisation, which is the principal focus of this section.

In multi-objective evolutionary computation, researchers have used many different 

test problems with known sets of Pareto-optimal solutions. Veldhuizen (1999) in his 

doctoral thesis outlined many such problems. A number of such popular test 

problems are presented here.
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2.6.1 Non-tuneable Test Problems

Most of the test problems in the area of multi-objective optimisation fall in this 

category. Some of the most commonly used of these test problems are listed in Table 

2 .6.

Table 2.6: Non-tuneable Test Problems for Multi-objective Optimisation

, , 2 1 ,

/ i ( ^ ) = X2 , 

f 2 (x) = ( x - 2 ) 2 , 
— A < x  < A.

Figure 2.8(a)

f ( x ) = - x , i f  :x <\ ,  
- x - 2 , i f  : l< x < 3 ,  
= 4 - x, i f  : 3 < x < 4 ,  
= x - 4, i f  :x> 4,

/ , W  =  (z -5 )%
-5 < x < 1 0 .

Figure 2.8(b)

/ , r a = è h o exp (-o -2^ '  + < ,) ]

/ ,  (* > = x  k  r + 5 sin(x' )]/=!
- 5 < x ,  < 5 ,f =1,2,3.

Figure 2.8(c)

f  (x) = 0.5(x,2 + x 2 ) + sin(x2 + x 2 ),

/ , ( ^ )  =  (3%, + 4 '  /8  +  (x, -x ,  + 1)2 /2 7 + 1 5 ,

f  (v) = 1 /(x2 + x 2 + 1) - 1.1 exp[- (x2 + x 2 )\ 
- 3 < ( x , , x 2) < 3.

Figure 2.8(d)

In addition to the above test problems, Fonseca and Fleming (1995) proposed a two- 

objective optimisation problem, having n variables. This problem gives a concave 

Pareto front. Poloni et a l (2000) also proposed a two-variable, two-objective 

problem that gives a non-convex and disconnected Pareto-optimal set. Although 

researchers have used a number of other test problems, the fundamental problem 

with all of these is that the difficulty caused by such problems cannot be controlled. 

In most problems, neither the dimensionality/objectivity can be changes, nor the 

associated complexity (such as non-convexity, the extent of discreteness of the 

pareto-optimal region, etc.) can be changed in a simple manner. Furthermore, in most 

of these problems, it is difficult to establish what feature of an algorithm has been
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tested. All these drawbacks of test problems led to the development of a tuneable test 

bed by Deb (1999b), as discussed below.

24
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/ front /
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20

; Pareto-optimal 
,fronts15
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42I) f.
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16.50
15.5

(c) (d)

Figure 2.8: Non-tuneable Test problems fo r  Multi-objective Optimisation -  (a) SCH1

2.6.2 Tuneable Test Problems

Deb (1999b) suggested a tuneable test bed based on the two tasks that a multi­

objective optimisation algorithm must do well: convergence to Pareto front and 

maintenance of diversity across the front. Keeping in mind these two tasks, Deb 

(1999b) designed a problem where the difficulty involved in each of the above tasks 

can be controlled. He listed the following problem features that create difficulties in
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converging to the Pareto-optimal front and in maintaining diverse Pareto-optimal 

solutions. Deb’s test bed gives the control of tuning these features in a problem.

♦ Difficulties in Converging to Pareto-optimal Front

> Multi-modality.

> Deception.

> Isolated optimum.

> Collateral noise.

♦ Difficulties in Maintaining Diverse Pareto-optimal Solutions

> Convexity or non-convexity in the Pareto-optimal front.

> Discontinuity in the Pareto-optimal front.

> Non-uniform distribution o f solutions in the search space and in the 
pareto-optimal front.

In this scheme, an 77-variable, two-objective optimisation problem is defined in terms 

of three functions (g,fi, and h), as shown in Equation 2.10.

Minimise =>/](%) = f  (xl, x2,..., xm), Equation 2.10
MmWae => /,(x )  = g (x ^ ,...,x jx

Complications are avoided in this test suite by choosing/} and g  functions such that 

they take only positive values in the search space. By choosing appropriate functions 

for / ; ,  g  and h, multi-objective problems with pre-defined features can be 

constructed, as shown below.

♦ Convexity or discontinuity in the Pareto front can be affected by choosing an 
appropriate h function.

♦ Convergence to the true Pareto front can be influenced by using a difficult g  
function (multi-modal, deceptive or others).

♦ Diversity in the Pareto front can be controlled by choosing an appropriate (non­
linear or multi-dimensional)/} function.

This scheme could also be extended to include more than two objectives, as shown 

below with M  objectives (Equation 2.11).
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Minimise => f x (%, ), Equation 2.11
M inim ised f 2{x2),......,

Subject_t° => 3cf e =

Table 2.7: Zitzler-Deb-Thiele (ZDT) Test Problems

T „ « Bounds Objective Functions (Minimisation, : : :
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Figure 2.9(a)

30 [0,1]
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/ = 2

Figure 2.9(b)
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Figure 2.9(c)
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i=2

Figure 2.9(d)
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g(x) = 2 ] v [ m ( x , . ) ] ,
i = 2
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Figure 2.9(e)
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Figure 2.9(f)
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In this equation, the decision variable vector x  is partitioned into M  non-overlapping 

blocks as follows: x = {xx,x2,...,xM_lixM)T.

Zitzler et al. (2000) framed six problems (ZDT1 to ZDT6) based on the above 

construction process. These Zitzler-Deb-Thiele (ZDT) test problems are summarised 

in Table 2.7.

Deb’s tuneable test bed that is discussed here provides a generic framework for 

explicitly simulating the features of multi-objective optimisation problems in a 

controlled manner. It also exhibits scalability with the number of dimensions and 

objectives. However, it is incapable of handling constraints. Further, the degree of 

control that is provided by this test suite is limited since it does not provide 

parametric function prototypes for g ,/;  and h.

2.6.3 Summary

This section can be concluded with the following comments.

♦ Most of the test problems in the area of multi-objective optimisation are not 
tuneable in nature.

♦ Deb (1999b) proposed a tuneable strategy, but it also provides only a limited 
control due to the lack of generic, parametric prototypes for the functions in its 
definition.

2.7  Test Problems for Simulating Constrained 

Multi-objective Optimisation

The presence of ‘hard’ constraints in a multi-objective optimisation problem may 

cause further hurdles. Veldhuizen (1999) has cited a number of constrained test 

problems used by several researchers. This section provides a description of a 

number of test problems commonly used in literature.
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2.7.1 Non-tuneable Test Problems

Most of the constrained multi-objective optimisation test problems are not tuneable 

in nature. In most of these, there are only two to three variables, and the constraints 

are not sufficiently non-linear. A summary of some of these problems is provided in 

Table 2.8.

Table 2.8: Noh-tuneable Test Problems for Constrained Multi-objective Optimisation

P r o 'S m . "ttzsssr z z ,

/ @  = - [ 2 5 (x l - 2 ) ! + ( x , - 2 ) -

+ Cq — I)2 + (x4 — 4)2 +  (*5 — I)2],

f l (-V) = -*4 + ^ 2  "1" -̂ 3 -Vt -̂ 5 "I" V6 •

+ x2 — 2 ^ 0,
6 — x, — x2 > 0,
2 + x, — x2 > 0, 
2 - x l + 3x2 ^ 0,
4 — (x3 -  3)2 -  x4 > 0, 

(x3 — 3)2 + x6 -  4 > 0,
0 < x,,x2,x6 < 10,
1 < x3,x5 < 5,
0 < x4 < 6.

Figure 2.10(a)

/ ( x )  =  2 + ( x , - 2 ) '+ ( x ,- l ) ' ,
/ 2(x) =  9x , - ( x2 - 1 ) 2.

X 2 +  X 2 < 225; 

x, — 3x2 +10 ^  10, 
-2 0 < x , <20, 
- 2 0 < x 2 <20.

Figure 2.10(b)

f i(x) = xl.

x 2 +  x 2 — 1 —

0.1cos(16arctan(x, / x2)) > 0, 

(x, — 0.5)2 + (x2 — 0.5) < 0.5, 
0 < x, < Æ,
0 < x 2 < ^ .

Figure 2.10(c)

2.7.2 Tuneable Test problem s

Recently, Deb et al. (2001) presented a tuneable test bed for constrained multi­

objective optimisation problems. This test bed is based on the challenges that the 

constraints pose for multi-objective optimisation problems. It has two sets of generic 

test functions. In the first set, the constraints are designed in such a way that some 

portion of the unconstrained Pareto front becomes infeasible. In this way, the final 

Pareto front is a composite of the unconstrained Pareto front and the constraint 

boundaries. Equation 2.12 defines this test problem. The parameters (aj, bj) control
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the nature of the final Pareto front. Deb et a l  (2001) suggest a procedure for 

calculating these parameters.

Minimise => f f i , ) ,
=> % expf -  /(%

=> -  4/ expf J,) > 0,/ = 1,2,

Equation 2.12
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Figure 2.10: Non-tuneable Test Problems fo r  Constrained Multi-objective 

Optimisation - (a) OSY (b) SRN (c) TNK (Source: Deb, 2001)

In the second set, the whole of unconstrained Pareto front is made infeasible, making 

the constraints define the resulting Pareto front. This test problem is defined in 

Equation 2.13. The constraint function has six parameters (0, a, e, b, c and d), which
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respectively control the slope of Pareto front, the transition from continuous to 

discontinuous feasible regions, and the location, number, distribution and size of 

disconnected Pareto regions. Here, the decision variable xj  is restricted to [0,1], and 

the bounds on other variables depend on the chosen g  function.

Minimise => f x (x) = xx, Equation 2.13
Minimise => f 2 (x) = g(x)  x (1 -  ( f x (x) / g(x))),
Subject_t°  => c ( x )  =  c o s (< 9 )( /2(x) - e ) - sin(û) f x(x) >

a sm(b7r(sm(0)(f2 (x )- e )  + cos(^)y] (x))c ) .

The two sets of equations, suggested by Deb et a l (2001), can together model the 

difficulties for constrained multi-objective optimisation algorithms both near the 

Pareto-optimal front and in the entire search space. Deb et a l (2001) illustrated this 

through the development of eight problems (CTP1 to CTP8), constructed from these 

sets of equations. Table 2.9 lists some of these problems with their parameter values.

This scheme provides a tuneable framework for test bed development. As suggested 

by Deb et al. (2001), it can also be extended to include more than two objectives. 

However, since it concentrates on the challenges posed by constraints, it does not 

directly control the complexity of test problems in terms of their objective functions. 

Therefore, this scheme lacks a unified approach to multi-objective test bed 

development, and hence suffers from limitations in performing controlled simulation 

of the features of engineering design optimisation problems.

Table 2.9: Tuneable Test Problems for Constrained Multi-objective Optimisation

Test Pro blems Parameter Values Search Spaces

a,=0.858, b,=0.541, a2=0.728, b2=0.295 Figure 2.11(a)

#=-0.27i, a=0.1, 6=10, c=2, d=0.5, e=1 Figure 2.11(b)

#=0.17i, a=40, 6=0.5, c=1, d=2, e=-2 Figure 2.11(c)

#=-0.057t, a=40, 6=5, c=1, d=6, e=0 Figure 2.11(d)
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2.7.3 Summary

Following are the concluding remarks for this section.

♦ Most of the test problems for simulating constrained multi-objective optimisation 
problems are not tuneable in nature.

♦ Deb et al. (2001) proposed a tuneable strategy, but it focuses only on constraints, 
without addressing its interactions with the complexity introduced by the 
objective functions. Therefore, this scheme also lacks a complete approach to 
multi-objective test bed development.
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2.8 Test Problems for Variable Interaction

As mentioned earlier, there are two categories of interaction among decision 

variables: inseparable function interaction and variable dependence. This section 

presents a survey of test problems in each of these categories.

2.8.1 Test Problems for Inseparable Function Interaction

Literature reveals a general lack of test problems in which the epistasis/inseparable 

function interaction can be controlled. This applies to both single- and multi­

objective optimisation problems, working in all domains. However, in recent years 

Deb (1999b) has attempted to introduce control over variable interaction in his test 

suite for multi-objective optimisation.

Deb (1999b) observed that variable interaction may create difficulty for a GA in 

converging to the true Pareto front. In Equation 2.10, the Pareto-optimal set 

corresponds to all solutions of different f i  values. Since the purpose in a multi­

objective optimisation is to find as many Pareto-optimal solutions as possible, and 

since in Equation 2.10 the variables d e f in in g //^  are different from those defining 

g(xn), a multi-objective optimisation algorithm may work in two stages. In stage one, 

all variables xj may be found and in the other stage optimal xn values may be 

obtained. This rather simple mode of working of a multi-objective optimisation 

algorithm in two stages can face difficulty if the above variables are mapped to 

another set of variables. If M  is a random orthonormal matrix of size mn, the true 

variables y can first be mapped to derive the variables x by using the following 

equation (Equation 2.14).

x  = M y Equation 2.14

Thereafter, the objective functions defined in Equation 2.10 can be computed by 

using the variable vector x. Since a multi-objective optimisation algorithm will be 

operating on the variable vector y and the function values depend on the interaction 

among the variables of y, any change in one variable must be accompanied by related
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changes in other variables in order to remain on the Pareto front. This makes the 

mapped version of the problem difficult to solve.

The major drawback of this strategy is that it takes a narrow perspective of variable 

interaction. It exploits the structure of Deb’s (1999b) test bed to artificially introduce 

an external variable interaction in the problem. However, it completely ignores the 

interaction that is already present in the problem in the definition of its objective 

functions. Therefore, this strategy lacks a holistic view to variable interaction in 

multi-objective optimisation.

2.8.2 Test Problems for Variable Dependence

Literature reports a complete lack of test problems for simulating variable 

dependence in multi-objective optimisation problems. However, the vast pool of test 

functions in optimisation, and the popular equations in other areas of research could 

be used to derive these problems.

2.8.3 Summary

This section can be concluded with the following remarks.

♦ The development of test beds for simulating variable interaction has not been 
adequately addressed by previous research in the area of optimisation.

♦ There is only one test bed (Deb, 1999b) that attempts to address inseparable 
function interaction. Even this test bed lacks a holistic approach to this concept, 
and hence does not provide full control over inseparable function interaction in a 
multi-objective optimisation problem.

♦ Literature reports a complete lack of test problems for simulating variable 
dependence in multi-objective optimisation problems.

2.9 Summary

This chapter has achieved the following.

♦ This chapter has presented an overview of the main engineering design 
optimisation approaches.
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♦ It has then presented a literature review of the EC techniques in four areas that 
are based on three features of engineering design optimisation problems.

> Evolutionary-based Multi-objective Optimisation Techniques.

> Evolutionary-based Constrained Optimisation Techniques.

> Evolutionary-based Techniques for Handling Inseparable Function 
Interaction.

> Evolutionary-based Techniques for Handling Variable Dependence.

♦ It has finally presented a review of optimisation test functions in the same four 
areas, as mentioned above.

As mentioned in Chapter 1, this research attempts to develop EC techniques for 

dealing with the challenges of engineering design optimisation problems. The current 

chapter has given an overview of EC techniques for handling three features of these 

problems: multiple objectives, constraints and variable interaction. This survey of 

literature enables the identification of the research aim and objectives in the next 

chapter.
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3  RESEARCH AIM, OBJECTIVES AND  
METHODOLOGY

The research aims to develop EC techniques for handling the complexities of 

engineering design optimisation problems. This chapter identifies the objectives of 

this research. As shown below, it attempts to discuss the following.

: “  
:

3.1 Research Aim

The aim of this research is to explore the field of EC for developing techniques that 

are capable of dealing with the challenges posed by three features of engineering 

design optimisation problems: multiple objectives, constraints and interaction among 

decision variables. This would enhance the industrial usefulness of optimisation 

algorithms by giving them the capability of dealing with a wide variety of real-life 

problems.

3.2  Research Objectives

There are a number of research issues involved in the fulfilment of the aim of this 

research. The research objectives, which address these issues, are as follows.

♦ To carry out a literature survey for classification and critical analysis of EC 
techniques for handling three features of engineering design optimisation 
problems: multiple objectives, constraints and variable interaction.

♦ To carry out a literature survey of existing test functions for evaluating their 
capabilities of performing systematic and controlled simulation of multiple 
objectives, constraints and variable interaction in optimisation problems.
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♦ To identify the industrial context of the research.

♦ To develop EC techniques that can fill the gap between the capabilities of 
existing optimisation algorithms and the challenges posed by multiple objectives, 
constraints and variable interaction.

♦ To develop test beds that can address the drawbacks of the existing optimisation 
test functions in mimicking multiple objectives, constraints and variable 
interaction, in a systematic and controlled manner.

♦ To compare the performance of the proposed algorithms with the current state-of- 
the-art optimisation algorithm (NSGA-II), using the proposed test bed and other 
popular test functions from literature.

♦ To analyse a set of case studies in real-life engineering design optimisation, and 
to validate the performance of the proposed algorithms using three appropriately 
chosen case studies from this set.

3.3 Research Scope

Based on the objectives mentioned above, the scope of this research can be

summarised as follows.

♦ Domain: This research focuses only on engineering design optimisation.

♦ Optimisation Techniques: As mentioned in the previous chapter, this research 
concentrates on EC techniques due to their flexibility, adaptability, robustness 
and global search characteristics. Further, within the EC techniques, this research 
mainly focuses on the GAs because of their broad applicability.

♦ Literature Survey: The literature survey in this research concentrates on EC 
techniques that attempt to handle three features of engineering design 
optimisation problems: multiple objectives, constraints and variable interaction. 
It should be noted here that objectives and constraints are interchangeable in a 
number of optimisation problems.

♦ Industry Survey: Although the industry survey involved a wide range of 
companies, the focus was on engineering design optimisation problems.

♦ Areas of Development of Optimisation Techniques: In this research, the EC 
techniques are developed for handling three features of engineering design 
optimisation problems: multiple objectives, constraints and variable interaction.
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♦ Areas of Development of Test Bed: This research focuses on the development of 
test beds for performing systematic and controlled simulation of multiple 
objectives, constraints and variable interaction in optimisation problems.

♦ Validation: In this research, the validation is performed using newly developed 
test beds and case studies borrowed from literature in the area of real-life 
engineering design optimisation. These case studies are analysed, and three of 
them are selected in such a way that a broad spectrum of features is attained.

3.4 Research Methodology

This section discusses the methodology that has guided the main activities of this 

research. A pictorial representation of this methodology is given in Figure 1.6, which 

also forms the basis for the layout of this thesis.

3.4.1 Problem Identification

As mentioned in Chapter 1, this research forms a part of the project ‘FLEXO’ (Roy, 

et al., 2000a). The problem statement for this research is, therefore, derived based on 

the objectives of ‘FLEXO’. Hence, it shares the vision of ‘FLEXO’, which is to 

make optimisation algorithms more popular in industry through the removal of 

hurdles in their industrial use.

3.4.2 Literature Survey

An extensive literature survey is carried out as part of this research in order to 

analyse and classify the state-of-the-art evolutionary-based optimisation techniques, 

and the test beds for evaluating these techniques. Since the focus in this research is 

engineering design optimisation, the literature survey is carried out with respect to 

three features, as identified by literature, of engineering design optimisation 

problems: multiple objectives, constraints and variable interaction. This enables to 

attain a broad understanding of the existing work in terms of its strengths and 

weaknesses.
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3.4.3 Identification of Research Aim, Objectives and Focus

The survey of literature highlights the main research issues that need to be addressed 

for handling the problem statement of this research. This enables the precise 

identification of the research aim and objectives that can address these issues. The 

literature survey also enables the identification of the drawbacks of the EC 

techniques in handling three features of engineering design optimisation problems: 

multiple objectives, constraints and variable interaction. A similar procedure is 

adopted to identify the limitations of existing optimisation test functions in 

performing systematic and controlled modelling of multiple objectives, constraints 

and variable interaction. These limitations in existing EC techniques and test 

functions define the focus of this research.

3.4.4 Industry Survey

The aim of this industry survey is to support the literature survey for grounding the 

research within the industrial context (Roy et a l, 2000c; Roy et ah, 2000d). In order 

to attain a broad perspective of design optimisation in industry, companies belonging 

to a number of industry sectors are surveyed. However, only the engineering design 

optimisation activities in these companies are observed. This survey is carried out 

through industry visits, and uses semi-structured questionnaires for collecting 

information from the designers. The detailed survey methodology is discussed in the 

next chapter.

3.4.5 Development of EC Techniques

Two new EC techniques are developed in this research to address the drawbacks of 

existing ones in handling multiple objectives, constraints and variable interaction. 

This development is carried out in a systematic, step-by-step fashion, adding a single 

new feature at a time. These features are those that are not adequately addressed by 

the existing techniques. Here, the current state-of-the-art technique is used as the 

starting point of development. In this way, all the strengths of current research are 

inherited, while addressing its weaknesses. At the end of this development, the
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performance of the proposed algorithms is compared, using some popular test 

functions, with the state-of-the-art optimisation technique in its original form.

3.4.6 Development of Test Bed

In this research, a test bed is developed to enable systematic and controlled 

simulation of three features of engineering design optimisation problems: multiple 

objectives, constraints and variable interaction. Similar to the previous case, the 

development of this test bed is also guided, in a step-by-step fashion, by the 

drawbacks of the existing ones in mimicking the above-mentioned features of 

engineering design optimisation problems. Also, the philosophy of the existing 

‘tuneable’ test beds is used here to develop the proposed test bed. Furthermore, the 

performance of the proposed test bed is validated by applying it to construct multiple 

test functions, modelling a number of features of engineering design optimisation 

problems with varying degrees of complexity.

3.4.7 Performance Analysis Using the Proposed Test Bed

Here, the performance of the proposed algorithms is compared with the state-of-the- 

art optimisation technique. This comparison is carried out using a wide spectrum of 

test problems created from the proposed test bed. These test problems are developed 

such that they evaluate the performance of the optimisation algorithms in the 

presence of a number of features that are commonly present in engineering design 

optimisation problems.

3.4.8 Validation Using Real-life Case Studies

Here, a set of real-life engineering design optimisation problems, reported in 

literature, are analysed from the point of view of the challenges that they pose for 

optimisation algorithms. The performance of the proposed optimisation algorithms is 

validated using three appropriately chosen case studies from this set. In this way, this 

research proposes a fully tested and validated methodology for dealing with 

engineering design optimisation problems.

EC Techniques for Handling Variable Interaction 87



Chapter 3. Research Aim, Objectives and Methodology

3.4.9 Identification of Limitations and Future Research Directions

Finally, the limitations of the research methodology, and proposed optimisation 

algorithms and test bed are identified. Based on these limitations, the generality of 

the research and its contribution to knowledge are established, and the corresponding 

future research directions are proposed.

3.5 Summary

This chapter has discussed the following.

♦ It has stated the research aim.

♦ It has outlined the objectives that address the aim of this research.

♦ It has summarised the scope of this research based on its objectives.

♦ This chapter has finally discussed the methodology that has guided this research. 
This methodology has seven main parts, as given below.

> Problem identification.

> Literature survey.

> Identification o f research aim and objectives.

> Identification o f industrial context and focus o f the research.

> Development.

> Testing and Validation.

> Identification o f limitations and future research directions.

As stated in this chapter, the aim of this research is to develop EC techniques that are 

capable of dealing with the challenges posed by three features of engineering design 

optimisation problems: multiple objectives, constraints and variable interaction. The 

next chapter reports the findings of an industry survey to enable the grounding of this 

research within the industrial context. It also determines the focus of this research by 

analysing the gap between the capabilities of existing EC techniques and the 

challenges posed by multiple objectives, constraints and variable interaction.
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4  INDUSTRIAL CONTEXT AND FOCUS

Chapter 2 analysed the EC techniques for handling multiple objectives, constraints 

and variable interaction. It also presented a survey of test beds for controlled 

simulation of these features of engineering design optimisation problems. This 

chapter grounds the research within the industrial context based on a survey of 

companies, coupled with a study of existing literature in the area of real-life 

optimisation. This chapter also analyses the observations made in Chapter 2 to 

determine the focus of this research. This analysis guides the course of action that is 

followed in this research. The objectives of this chapter can be summarised as 

follows.

algorithms.

engineering design

4.1 Industrial Survey

An industry survey is carried out for grounding the research within the industrial 

context. This is complemented by a survey of literature in the area of real-life 

optimisation, which compiles those real-world applications of evolutionary-based 

optimisation techniques that are reported in literature. As mentioned in Chapter 3, a 

representative set of these problems is chosen in this research to validate the 

performance of the proposed optimisation algorithms. This section concentrates on 

the methodology that is adopted here for carrying out the industry survey.
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4.1.1 Aim and Objectives

The main aim of the industry survey is to ground the research within the industrial 

context. The survey objectives that lead to this aim can be summarised as follows 

(Roy et al., 2000c).

♦ To assess the current status of engineering design optimisation in industry.

♦ To identify the features of real-life engineering design optimisation problems.

♦ To identify the factors that inhibit the industrial applications of optimisation 
algorithms.

4.1.2 Methodology

In the industry survey, the designers belonging to various industry sectors were 

interviewed. However, only the engineering design optimisation activities in these 

companies were observed. This survey was carried out through industry visits, and 

used a semi-structured questionnaire as a tool for collecting information. Appendix A 

presents a copy of this ‘FLEXO’ questionnaire. The following companies were 

visited by the ‘FLEXO’ researchers (Roy et a l, 2000).

♦ Nissan Technical Centre -  Europe (NTC-E).

♦ Corns -  British Steel.

♦ Ikeda Hoover Ltd. (IHL).

♦ TRW Automotive.

♦ Trelleborg Automotive.

♦ Xerox Limited Technical Centre (XETC).

The questionnaire was developed based on the recommendations of Oppenheim 

(1992). The following factors were considered.

4.1.2.1 Method of Approach to Respondents

Prior to the visit, some information regarding the research is send to the main contact 

person in the company. Further, the interviews are preceded by a presentation, which 

introduces the research and explains the purpose of the visit. The objectives of the
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questionnaire and of each of its modules are also provided in the questionnaire. After 

guaranteeing the confidentiality, the designers are individually interviewed by one or 

two researchers. The researchers write and tape (subject to the approval of the 

respondents) the responses given during the interview. The information thus 

collected from the interview is used for preparing the final transcript. The questions 

are set to fit the time frame available in the industrial environment. The development 

of the questionnaire also addresses the issue of biases by broadening the aspects 

covered by the questions.

4.1.2.2 Determination of Question Sequence

The questionnaire is structured in four modules covering general design issues, 

industrial requirements for optimisation algorithms, general remarks and finally the 

self-assessment of the designer (Appendix A). The first module of the questionnaire 

is aimed at understanding the general design optimisation practice in industry and the 

degree of involvement of designers in those activities. The second module targets at 

capturing the industrial requirements for optimisation algorithms. This is achieved by 

identifying the features of real-life optimisation problems (Section 4.3.1) and the 

inhibitors to the industrial applications of optimisation algorithms (Section 4.4.1) that 

highlight the corresponding limitations of the existing design systems. The third and 

fourth modules respectively deal with the general comments and the self-assessment 

of the interviewed designers (Roy et a l, 2000d). These modules, which are kept 

optional, aim at gathering some information about the respondents so that their 

comments can be evaluated in the right perspective. Each module starts with some 

broad questions, which are gradually made specific. The process is called funnelling, 

which is a standard practice in similar applications (Roy, 1997). The broad questions 

at the beginning of a module prepare the ground for subsequent questions.

4.1.2.3 Types of Questions

The questionnaire uses both ‘closed’ or pre-coded answer and ‘open’ or ffee- 

response types of questions. A ‘closed’ question is one in which the respondents are 

offered a choice of alternative replies. Although this type of questions allow less
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freedom of expression, but they are easy to answer and analyse. On the other hand, 

‘open’ or free-response type questions are not followed by any kind of choice, and 

the answers have to be written in full. These questions allow freedom of expression 

and are easy to ask, but are difficult to answer and analyse. They also involve 

personal emotions and biases (Roy, 1997). The above discussion justifies the use of a 

combination of both ‘closed’ and ‘open’ types of questions in the ‘FLEXO’ 

questionnaire.

4.1.2.4 Analysis of R esponses

For each of the questions in the questionnaire, the responses given by the 

respondents are compiled into two categories. The first category, known as 

‘common’, identifies the observations made by a majority of respondents. On the 

other hand, the second category, known as ‘special’, identifies the observations made 

only by a few respondents. Unless stated otherwise, all the observations listed in the 

subsequent sections of this chapter are derived from the ‘common’ category of the 

analysis of responses.

4.2  Design Improvement in Industry

After investigating the design processes in different companies using the industry 

surevy, it is observed that they exhibit a number of similarities. It is observed that the 

design optimisation in industry is an iterative process of creating a model, using a 

design system, carrying out some analyses which give indications of how to improve 

the design, and then modifying the model and repeating the process. This manual 

process contributes significantly to lengthening the design cycle and depends 

critically for its success on the skill of the designer. It is observed that trial-and-error 

finds widespread use in industry for improving designs.

4.2.1 Industrial Applications of Optimisation Algorithms

Despite the immense potential of optimisation algorithms (Table 4.1), it is observed 

that no company surveyed uses any of these algorithms actively as a day-to-day
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design tool. However, the design centres of some multi-national corporations use 

optimisation packages, like OPTISTRUCT from Altair Engineering and DOT from 

Vanderplaats Research and Development, Inc. Companies using these software 

systems report benefits in terms of reduction of design lead times and attainment of 

better designs through the use of these packages.

Table 4.1: Evolutionary-based Optimisation Algorithms in Applied Research

Product Families

Aircraft Body Shells

• Aerodynamic shape design (Poloni, 1997)
• Aircraft wing platform design (Obayashi et al., 1998)
• Airframe design (Cvetkovic and Parmee, 1998)
• Airfoil design (Poloni and Pediroda, 1997 and Quagliarella and Vicini, 1997)

Civil Engineering 
Structures

• Design of frames, foundations, bridges, towers, chimneys and dams (Rao, 1996)
• Structure design for random loading (earthquake, wind) (Rao, 1996)
• Design of water resource systems (Rao, 1996)
• Design of plane trusses(Liu et al., 1998 and Hajela and Lin, 1992)
• Design of I-beams (Coello, 1997; Coello and Christiansen, 1999)
• Design of two-bar truss (Deb, Pratap and Moitra, 2000)

Mechanical
Components

• Design of linkages, cams, gears and machine tools (Rao, 1996)
• Extruder screw design (Cunha et ai, 1997; Cunha, 2000)
• Design of planar mechanisms (Sandgren, 1994)
• Design of robot arm (Coello, 1997;Coello et al., 1998)
• Design of machines (Osyczka, 1984)
• Design of machine tool spindle (Coello, 1997)
• Design of compound gear train (Deb, Pratap and Moitra, 2000)
• Welded beam design (Deb, Pratap and Moitra, 2000)

Networks
• Design of electrical networks (Rao, 1996)
• Design of pipeline networks (Rao, 1996)

High Performance 
Materials

• Microwave absorber design (Weile et al., 1996)
• Laminated ceramic composites (Belequndu et al., 1994)

Energy Conversion 
Machines

• Pumps, turbines and heat transfer equipment (Fonseca and Fleming, 1998b; 
Chipperfield and Fleming, 1995)

• Design of a turbine blade cooling system (Roy, 1997)
• Motors, generators and transformers (Rao, 1996)
• Reactor design (Mitra et al., 1998)
• Compressor design (Obayashi, 1997)

Electronic Components

• Microprocessor chip design (Stanley and Mudge, 1995)
• Synthesis of multiprocessor system (Zitzler and Thiele, 1998b)
• Design of control systems (Tan and Li, 1997)
• Multiplierless filters (Wilson and Macleod, 1993)

Miscellaneous
Applications

• Design of conveyors, trucks and cranes (Rao, 1996)
• Determination of optimal machining parameters (Coello, 1997)
• Design of helical compression spring (Deb, Pratap and Moitra, 2000)

4.2.2 Optimisation Algorithms in Applied Research

Interestingly, the popularity of optimisation algorithms in applied research is much 

more than that in industry. The reasons for this difference could be understood from 

Section 4.4.1 that discusses the inhibitors to the industrial applications of 

optimisation algorithms. Literature reveals a number of real-life applications of 

optimisation algorithms, especially in the area of evolutionary computing. Table 4.1
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lists some of these applications encountered across various industry sectors. Some of 

the applications listed in this table are analysed in detail in Chapter 9.

4.3 Features o f Real-life Engineering Design Opti­

misation Problems

The real-life optimisation problems, as opposed to the theoretical problems (test 

cases), are those that are encountered in industry. This section compiles the features 

of real-life engineering design optimisation problems using the results from the 

industry and literature survey. It also gives a simple example of these problems.

4.3.1 Features

The main features of real-life engineering design optimisation problems are listed 

below.

♦ The principal feature of most real-life problems is the presence of multiple 
measures of performance, or objectives, which should be improved 
simultaneously.

♦ Almost all these problems require some constraints to be satisfied.

♦ The complexity of a number of these problems is further increased by the 
presence of multiple interacting decision variables, involving both inseparable 
function interaction and variable dependence. In many cases, the variables also 
take both integer and real values.

♦ Most real-life problems also involve qualitative issues (such as manufacturability 
and designers’ special preferences), and elements of incompleteness, inaccuracy 
and uncertainty in their models.

♦ The models of a number of real-life engineering design optimisation problems 
are computationally expensive in nature. Examples include those models that 
involve the use of FEA or CED.

♦ A number of real-life engineering design optimisation problems also use multiple 
models for different physical aspects.
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♦ The computational expense for solving these problems and their difficulty are 
also augmented by the presence of several optimal solutions, as defined in 
Chapter 2.

♦ Lack of prior knowledge regarding the shape of search space is also commonly 
observed in these problems. There is also no prior information about the 
performance, and the location of optimal and sub-optimal points in the search 
space.

♦ Finally, the model development for the solution of real-life engineering design 
optimisation problems is a very complex task. It involves determining the 
variables in the problem, and the objective functions and constraints in such a 
way that the model thus obtained closely matches the features of the real-life 
problem.

Table 4.2: Features o f Real-life Engineering Design Optimisation Problems

Classification Schemes
Based on Number of Parameters Multi-dimensional

Based on Existence of Constraints Constrained
Based on Number of Objective Functions Multi-objective
Based on Nature of Objective Functions Hybrid

Based on Separability of Functions 
(for Quantitative and Hybrid Problems)

Inseparable

Based on Dependence among Variables Independent- and Dependent-variable

Based on Nature of Search Space
Unknown Search Space

Multi-modal
Based on Nature of Equations Involved 
(for quantitative and hybrid problems)

Linear, Non-linear, Geometric and Quadratic

Based on Nature of Design Variables Static and Dynamic
Based on Permissible Values of Design Variables Hybrid

Chapter 2 discussed the different classification schemes used for optimisation 

problems. These classification schemes are used here to summarise the features of 

real-life engineering design optimisation problems, as shown in Table 4.2.

4.3.2 An Example of a Real-life Design Optimisation Problem

Figure 1.1, which depicts the model constructed from the real-life scenario, can be 

considered as an example of a real-life engineering design optimisation problem. 

This problem involves the optimisation of the design of a rectangular cantilever 

beam, for given material and loading conditions. In a typical real-life case, this 

problem may possess the following features.

♦ Multiple variable, such as /, b and h.
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♦ Constraints, such as variable bounds and relationships involving beam 
dimensions.

♦ Multiple objectives, such as minimisation of the end deflection, maximum stress 
along the beam length and cost involved.

♦ Qualitative issues, such as manufacturability and designers6 special preferences.

♦ Inseparable function interaction leading to an inseparable optimisation problem, 
such as minimisation of the end deflection of the beam (Equation 1.1).

♦ Dependence among decision variables, such as the designer preference to have a 
fixed cross-section aspect ratio (Equation 1.3).

♦ Lack of prior knowledge about the problem in terms of its search space.

♦ Non-linear objective function(s), such as minimisation of the end deflection of 
the beam (Equation 1.1).

♦ Dynamic variables.

♦ Combination of integer and real variables, such as / (real variable) and material 
type (discrete/integer variable).

♦ Complexity of model development in terms of the cross-section, support and 
loading.

4.4 Industrial Context o f the Research

The industry and literature surveys also enable the identification of the factors that 

inhibit the applications of optimisation algorithms in industry. These inhibitors are 

presented here and compared against the research objectives with an aim of 

grounding the research within the industrial context.

4.4.1 Inhibitors to Industrial Applications of Optimisation 

Algorithms

The main inhibitors to the industrial applications of optimisation algorithms are 

outlined below.

♦ The features of real-life engineering design optimisation problems, such as the 
presence of multiple objectives, constraints and interaction among decision
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variables, create challenges for optimisation algorithms that are currently in use 
in industry. This discourages the industry from adopting these algorithms. This is 
particularly true for those industries that deal with a wide range of complex 
designs.

♦ All optimisation algorithms work on mathematical models of real-life designs. It 
is observed that since designers prefer maintaining full control on the design 
improvement process, they have little faith in the models that are provided to 
them. This makes them sceptical about the results obtained from the optimisation 
algorithms. This situation is further worsened by the fact that there is a lack of 
model development skills among designers in industry. There is also a lack of 
commercial tools required for carrying out the task of model development.

♦ Most of the currently available optimisation packages are not integrated within 
CAD/CAM systems, making their use cumbersome. The designers need to 
extract the parameters from the CAD/CAM models, feed them to the 
optimisation packages and bring the optimised parameters back to the CAD 
system. There are a number of difficulties, associated with this off-line 
optimisation, which prevent the designers from using the optimisation 
algorithms. The data transfer often leads to loss of quality and information, which 
makes the optimisation process inaccurate. This off-line scenario of optimisation 
also makes designers lose control over the design process. Finally, the inflexible 
nature of this scenario makes the process iterative and time consuming.

♦ Another inhibitor to the use of optimisation algorithms in industry is the 
important role of designers’ skills and experience in the design improvement 
process. This makes the optimisation task extremely difficult to be modelled and 
encoded in an algorithmic form. Further, the lack of knowledge of designers in 
using these algorithms also presents an additional obstacle to their use in 
industry.

♦ Each company has its own design improvement process. This process gradually 
evolves in the company, and hence its people resist the implementation of any 
new optimisation system and the associated organisational changes. Further, the 
costs associated with creation, installation and maintenance of optimisation 
algorithms discourage their use in industry.
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4.4.2 Industrial Context of the Research

As mentioned in Chapter 1, the project ‘FLEXO’ targets the first three of the above- 

mentioned inhibitors. This research focuses on the first of these inhibitors, which is 

the lack of robust optimisers in industry. It attempts to develop optimisation 

techniques that can handle, within a single framework, the following three features of 

real-life engineering design optimisation problems: presence of multiple objectives, 

constraints and variable interaction. Since it is difficult to find a variety of real-life 

cases with required complexities, this research also develops test beds that are 

capable of performing systematic and controlled simulation of multiple objectives, 

constraints and variable interaction in optimisation problems.

The existing EC techniques and test beds in these three areas were critically analysed 

in Chapter 2. The next two sections utilise the main findings of Chapter 2 in order to 

identify the research gap that forms the focus of this research.

4.5 Research Focus for Development o f EC 

Techniques

This section compares the capabilities of the existing EC techniques against the 

challenges posed by multiple objectives, constraints and variable interaction in 

engineering design optimisation problems. In more specific terms, it checks whether 

the existing EC techniques can handle the above-mentioned features of real-life 

engineering design optimisation problems.

4.5.1 Multi-objective Optimisation

Chapter 2 reveals that the area of multi-objective optimisation is well addressed 

within the EC community. This has led to the development of techniques that can 

effectively handle this feature of real-life problems. It is now known that a 

combination of elitism, Pareto domination and diversity preservation lead to EC 

techniques that can, in principle, meet both the goals of multi-objective optimisation: 

convergence to the Pareto front and maintenance of diversity across the front. In the
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recent past, some techniques, such as DPGA (Osyczka and Kundu, 1995), TDGA 

(Kita et a l, 1996), SPEA (Zitzler and Thiele, 1998a), MOMGA (Veldhuizen, 1999), 

NSGA-II (Deb et a l, 2000) and PAES (Knowles and Come, 2000), have been 

developed that incorporate the above-mentioned concepts in a single algorithm. Deb 

(2001) demonstrated the superiority of these techniques over others. It has also been 

shown that these techniques can deal with a variety of multi-objective optimisation 

problems, but fail to give satisfactory results in the presence of complex inseparable 

function interaction among decision variables (Deb et a l, 2000).

4.5.2 Constrained Multi-objective Optimisation

Similarly, it is evident from Chapter 2 that the area of constrained optimisation is 

well researched. However, most of this research is limited to single-objective 

optimisation, and the field of constrained multi-objective optimisation has grown 

only recently. In spite of this, a powerful strategy for handling constraints in multi­

objective optimisation problems has now been developed. This strategy incorporates 

constraint violations in the definition of Pareto domination, and uses niching to 

encourage diversity among solutions. Techniques, such as the Constrained 

Domination Method (Deb, 2000), that use this strategy achieve better convergence 

and diversity of solutions as compared to other approaches. These techniques have 

been shown to satisfactorily handle constraints in a variety of multi-objective 

optimisation problems (Deb, 2001).

4.5.3 Variable Interaction

Interaction among decision variables is inherent to a number of real-life engineering 

design optimisation problems. In spite of its immense potential for real-life problems, 

there is a lack of systematic research in both halves of this field: inseparable function 

interaction and variable dependence. The gaps created by this lack of research are 

identified below for the two types of variable interaction.
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4.5.3.1 Inseparable Function Interaction

- A number of research questions remain unanswered regarding the theory of 

inseparable function interaction (epistasis), which is a type of variable interaction. 

However, from the practical point of view some applications have been developed 

that can deal with this type of interaction in single-objective optimisation problems, 

defined in discrete domains. But there are only a few of these techniques that can 

work in real search spaces (Gallagher et a l, 1999). Furthermore, inseparable function 

interaction in multi-objective optimisation problems is a research area that is at its 

very early stage of development (Thierens and Bosman, 2001). Therefore, given the 

importance of handling inseparable variable interaction for solving real-life 

engineering design optimisation problems, a systematic research effort is urgently 

required to address this interaction in hybrid-valued (with integer and real variables), 

constrained, multi-objective optimisation problems.

4.5.5.2 Variable Dependence

Most real-life engineering design optimisation problems that have interaction among 

decision variables do not have known dependency equations. Therefore, the 

dependency relationships in these problems need to be inferred from the multiple sets 

of measured variable values that are available in most real-life cases. This implies 

that any strategy for solving these optimisation problems should provide a 

framework that is capable of satisfying the following two objectives.

♦ Determination of the relationships among decision variables.

♦ Incorporation of these relationships in the optimisation engine.

The lack of systematic research in the area of variable dependence has led to a 

scarcity of dedicated frameworks that can deal with the above-mentioned objectives 

for solving dependent-variable optimisation problems. This highlights the need to 

develop a complete EC framework for dealing with variable dependence in 

constrained multi-objective optimisation problems. However, as mentioned in 

Chapter 2, some techniques (RA, NNs, PM, TDs and DA), extracted from related 

areas of research, can aid the development of this framework.
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4.5.4 Research Focus

The above discussion reveals that there are effective techniques available in the 

literature for handling multiple objectives and constraints. However, there is a 

research gap in EC techniques for handling variable interaction.

♦ There is a research vacuum in the area of inseparable function interaction, 
especially for multi-objective optimisation problems in hybrid search spaces 
(with integer and real variables).

♦ There is also a need to develop dedicated optimisation techniques that can handle 
variable dependence in multi-objective optimisation problems.

This gap defines the main focus of this research, which is to develop EC techniques 

that can effectively handle the two types of variable interaction in constrained multi­

objective optimisation problems, defined in hybrid search spaces (with integer and 

real variables).

4.6 Research Focus for Development o f 

Optimisation Test Beds

This section compares the capabilities of the existing test beds for controlled 

simulation of the following three features of real-life engineering design optimisation 

problems: multiple objective, constraints and variable interaction.

4.6.1 Multi-objective Optimisation

Most of the multi-objective optimisation test problems are not tuneable in nature. 

However, Deb (1999b) provides a tuneable strategy that does not incorporate 

constraints. Furthermore, due to a lack of generic, parametric prototypes for the 

functions in its definition, this strategy provides only a limited control over the 

complexity of the test problems.
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4.6.2 Constrained Multi-objective Optimisation

Similar to the previous case, most of the test problems in the area of constrained 

multi-objective optimisation are not tuneable in nature. Deb et a l (2001) recently 

proposed a tuneable strategy that incorporates parametric constraints in the test bed 

of Deb (1999b). However, this strategy also lacks a complete approach to multi­

objective ‘test bed’ development since it focuses only on constraints, without 

addressing its interactions with the complexity introduced by the objective functions.

4.6.3 Variable Interaction

As mentioned below, the lack of systematic research in the area of variable 

interaction has also led to a deficiency of test problems that can mimic the two types 

of variable interaction in a controlled fashion.

4.6.3.1 Inseparable Function Interaction

Most of the current multi-objective optimisation test beds do not explicitly address 

the complexity introduced in the problem by the inseparable function interaction. 

Deb (1999b) attempts to introduce variable interaction in his test bed through re­

definition of the original variables. However, by completely ignoring the interaction 

that is already present in the problem definition of its objective functions, it does not 

provide full control over inseparable function interaction in a multi-objective 

optimisation problem.

4.G.3.2 Variable Dependence

There is a complete lack of test problems in literature that can simulate dependent- 

variable multi-objective optimisation problems. However, popular equations from 

other areas of research could be potentially used to construct these test problems.

4.6.4 Research Focus

Similar to the case of EC techniques, the areas of multi-objective and constrained 

optimisation test bed development are well addressed in literature as almost separate
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streams. However, as revealed in the above discussion, there are a number of gaps in

this area that this research attempts to address.

♦ There is a need to develop tuneable test beds that can simulate the complexity 
introduced by both the objective functions and constraints in a single framework.

♦ In order to provide full control, it is also required to develop parametric 
prototypes for the functions in this test bed.

♦ Furthermore, it is required to introduce functions/parameters in the test bed that 
can explicitly control the complexity introduced by the two types of variable 
interaction.

4 .7  Summary

This chapter has achieved the following.

♦ It has explained the methodology of the industry survey that is carried out for 
grounding the research within the industrial context.

♦ It has described the current status of engineering design optimisation in industry. 
This discussion has highlighted that although a number of real-life applications of 
optimisation algorithms are reported in literature, they attract only a little interest 
in industry.

♦ It has compiled the features of real-life engineering design optimisation 
problems.

♦ It has identified the inhibitors to the industrial applications of optimisation 
algorithms, and has compared them against the research objectives with an aim of 
grounding the research within the industrial context. It has stated the industrial 
context of this research, which is to develop robust optimisers for handling the 
following three features of real-life engineering design optimisation problems: 
multiple objectives, constraints and variable interaction.

♦ It has analysed the gap between the capabilities of existing EC techniques and the 
challenges posed by multiple objectives, constraints and variable interaction. This 
has identified variable interaction as the main area of focus in this research for 
the development of optimisation algorithms.

♦ Finally, it has analysed the capabilities of existing test beds with respect to the 
following three features of real-life optimisation problems: multiple objectives,
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constraints and variable interaction. Here also, variable interaction constitutes as 
the main focus of test bed development.

This chapter has identified the interaction among decision variables as the main 

focus of this research. The next chapter develops an algorithm for handling the first 

type of variable interaction, viz. inseparable function interaction, in complex multi­

objective optimisation problems.
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5  DEVELOPING AN EC TECHNIQUE TO 
HANDLE INSEPARABLE FUNCTION  
INTERACTION

As explained in Chapter 2, inseparable function interaction is a type of variable 

interaction, and occurs when the effect that a variable has on the objective function 

depends on the values of other variables in the function. This type of variable 

interaction is commonly evident in real-life optimisation problems. Chapter 4 

identified the gap in the literature to deal with these problems. The aim of this 

chapter is to develop a generic solution strategy and to propose an algorithm capable 

of handling complex multi-objective optimisation problems having high degrees of 

inseparable function interaction. This chapter attempts to achieve the following.

♦ To devise a

♦ To propose a mu 

solution strategy.

test problems.

In addition, the proposed optimisation algorithm is expected to possess the following

features.

so that it is not specific to a problem.

'y Better convergence to Pareto jronn
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5.1 Challenges for Multi-objective Optimisation 

Algorithms

Complex inseparable function interaction poses a number of challenges for multi­

objective optimisation algorithms. A GA operates on the building blocks, growing 

them and mixing them with each other in an attempt to solve the search problem at 

hand. Epistasis, termed here as inseparable function interaction, causes problems for 

a GA by making it more difficult for it to build these building blocks (Harik, 1997). 

Further, in its presence, a multi-objective optimisation problem cannot be 

decomposed into simpler parts. Hence, a GA requires updating all decision variables 

in a unique way in order to maintain a spread of solutions over the Pareto-optimal 

region or even converge to any particular solution. With a generic search operator, 

this becomes a difficult task for the GA. Furthermore, even if a set of Pareto-optimal 

solutions are obtained, it is difficult to maintain them since any change in one 

variable must be accompanied by related changes in others in order to remain on the 

Pareto front. The difficulties that inseparable function interaction may create for a 

GA are summarised below, with respect to the two goals of multi-objective 

optimisation (Deb, 1999a; Deb, 1999b).

5.1.1 Convergence to Global Pareto Front

Inseparable function interaction in objective functions may lead to one or more of the 

following features that obstruct convergence to the true (or global) Pareto front.

♦ Multi-modality: In this case, a GA, like many other search and optimisation 
methods, may converge to a local Pareto front.

♦ Deception: Deception is a kind of multi-modality in which almost the entire 
search space favours the deceptive (non-global) optimum. If present in a 
problem, deception misleads a GA towards deceptive attractors (Goldberg et a l, 
1989).

♦ Collateral Noise: Complex inseparable function interaction in objective functions 
may lead to problems that are ‘rugged’ with relatively large variations in the
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function landscape. This collateral noise may create convergence problems for a 
GA.

♦ Isolated Optimum: In some problems, the optimum may be surrounded by a 
fairly flat search space. Since there is no useful information provided by most of 
the search space, a GA faces difficulty in solving such problems with isolated 
optima.

5.1.2 Maintenance of Diverse Pareto-optimal Solutions

Maintenance of diversity in Pareto-optimal solutions may become difficult for a GA 

due to one or more of the following features that may be introduced in the problem 

by inseparable function interaction.

♦ Discontinuity in Pareto Front: Here the Pareto front is a collection of discretely 
spaced continuous sub-regions (Schaffer, 1984). In such problems, although 
solutions within each sub-region may be found, competition among them may 
lead to extinction of some sub-regions.

♦ Non-uniform Distribution over Pareto Front: In this case, feasible solutions have 
a non-uniform density across the Pareto front. This leads to a natural tendency for 
a GA to find a biased distribution in the Pareto-optimal region.

♦ Shape Complexity of Pareto Front: Inseparable function interaction also 
influences the shape of Pareto front. In some cases, the shape complexity of the 
front may be so high that it becomes difficult for a GA to find uniformly 
distributed solutions across it.

Further, in many real-life multi-objective optimisation problems, inseparable

function interaction leads to Pareto fronts that correspond to complex relationships

among decision variables. All such cases become difficult for a GA to handle since it

is required to update the decision variables in a unique way in order to attain the

desired results (Tiwari et a l, 2001a). An example of a complex multi-objective

optimisation problem that has high degrees of inseparable function interaction is

given in Figure 5.1. This problem is given in Equation 5.1. This problem has a

number of features discussed above including multi-modality and biased search

space.
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Figure 5.1: An Example o f Inseparable Function Interaction

/ , ( * , , x2) = 7- 1 ' [l- e x p ( - 4x ,)],VO< x , , x2 <1, ........
(l-exp(-4 )J

f 2(x,, x2) = ( 2 - ( / ,  / / ) “ ) x ( /) ,V 0 < x ,,x 2 < 1,
I ( x x, x 2) = 2 - exp(-2x2) c o s ( 8 ^ 2) , V 0 < x ], ^ 2 < 1.

5.2 Proposed Solution Strategy

For any continuous portion of the Pareto front, there is a unique relationship 

involving objective functions. This relationship is difficult to obtain analytically, and 

even if it is found, it has limited usefulness since mapping from function space to 

variable space is very complex. However, the existence of a relationship among 

objective functions of Pareto solutions necessarily implies that corresponding 

relationship^ exist among the decision variables of these solutions.

A simple multi-objective optimisation problem is used below for explaining the 

above concept (Figure 5.2). Consider a two-objective optimisation problem having// 

and/  as the two objective functions. For any continuous portion of the Pareto front, 

there exists a Function F  involving/ and/  (Equation 5.2).
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y ) = 0 Equation 5.2

f-space

x-space

Figure 5.2: Proposed Solution Strategy

Suppose the problem has two decision variables x/ and xj that define the functions / ;  

and f 2 i.e. f i  and can be expressed as ffeipci) and ^(xypcj. Substituting the 

expressions for / ;  and _/} in the above equation yields the function Fj in decision 

variables (Equation 5.3).

F{fx (x1, *2 ), f 2 (xl , x2 )) = 0 Equation 5.3

Fl (<xl ' x2 ) = 0

This proves the statement made earlier that there is existence of relationship(s) 

among the decision variables of the solutions belonging to any continuous portion of 

the Pareto front. The proposed algorithm aims to explore this relationship using non­

linear, multi-variable regression analysis (Draper and Smith, 1998). It uses the 

relationship thus obtained for the following purposes.

♦ To perform periodic re-distribution of solutions for aiding their spread over the 
current front.

♦ To use history of change of regression coefficients for guiding the search towards 
the global Pareto front.

♦ To use rate of change of regression coefficients for determining the termination 
condition of the algorithm.

♦ To re-distribute the final solutions for obtaining the whole range of well- 
distributed Pareto-optimal solutions.
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♦ To identify the relationship(s) among the decision variables of the Pareto-optimal 
solutions, in order to enable the designers to create and choose the Pareto-optimal 
solutions based on their preferences.

5.3 Proposed Generalised Regression G A (GRGA)

The solution strategy, discussed in the previous section, is encoded in C++ using a 

new algorithm called ‘Generalised Regression GA (GRGA)’. This algorithm is 

illustrated in Figure 5.3. It should be noted that being a state-of-the-art optimisation 

algorithm, NSGA-II (described in Appendix B) has been chosen as the optimisation 

engine for GRGA (Deb et a l, 2000). However, since GRGA is completely modular 

it can also be used with any other multi-objective optimisation algorithm for 

enhancing the algorithm performance in handling problems with complex 

inseparable function interaction. The steps involved in GRGA are explained below.

1. Run the optimisation cycle until all individuals have rank 0. This ensures that a 
front containing only non-dominated solutions is achieved. This intermediate 
front can be assumed to have as many clusters as the number of clusters in the 
global Pareto front.

2. Identify all the clusters in variable space using tree-clustering analysis.

3. Perform regression analysis individually on the decision variables belonging to 
each cluster. This gives the correlation coefficients (that show how accurately the 
regression model represents relationship among variables) and the regression 
coefficients (that determine the exact nature of relationship) for all the clusters.

4. If the correlation coefficient of at least one cluster is greater than the empirically 
determined value of 0.7 (obtained by trial-and-error experiments using various 
values), proceed to Step 5 else continue running optimisation cycle, and 
performing clustering and regression analysis until the correlation coefficient of 
at least one cluster becomes greater than 0.7. This ensures that regression 
analysis is used in subsequent steps only for those clusters in which the 
correlation coefficient has a value greater than 0.7. This removes the possibility 
of misleading the search through the use of a regression model that does not 
accurately represent relationship among variables.

5. If the generation number is a multiple of 10, proceed to Step 6 else go to Step 8.
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Figure 5.3: Generalised Regression G A (GRGA)
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6. After every 10 generations, artificially modify the regression coefficients (for 
those clusters in which the correlation coefficient has a value greater than 0.7) to 
guide the search towards the global Pareto front. This is done using the history of 
change of regression coefficients observed in previous generations. This guides 
the search towards global Pareto front by preventing it from getting trapped in 
local fronts.

7. After every 10 generations, re-distribute the solutions, using modified regression 
coefficients, in those clusters in which the correlation coefficient has a value 
greater than 0.7. The aim of this step is to encourage diversity among solutions. 
The algorithms that can be used for re-distribution of solutions are discussed in 
the next section.

8. Proceed to the next generation by running the optimisation process.

9. Perform clustering, and regression analysis on the decision variables belonging to 
each cluster.

10. If there are any changes in the values of correlation and regression coefficients in 
the last two generations, go to Step 5 else proceed to Step 11. No changes in the 
values of these coefficients imply that the Pareto front has been reached and that 
the algorithm should now be terminated.

11. Re-distribute the final solutions, using regression coefficients, in all those 
clusters in which the correlation coefficient has a value greater than 0.7. This 
creates solutions that are well distributed across the Pareto front.

12. Using the regression coefficients corresponding to each cluster, identify the 
relationship(s) among the decision variables of the Pareto-optimal solutions.

It should be noted that infinite looping is avoided in this algorithm by restricting the 

maximum number of generations to a pre-determined value. For the sake of 

simplicity, this feature is not depicted in Figure 5.3.

5.4 Distribution Algorithms

Distribution algorithms are used here for periodically spreading out solutions over 

their current front. The aim is to encourage diversity among solutions. The 

distribution algorithm should be able to deal with complex objective functions
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without significantly adding to the computational expense of the optimisation 

algorithm. This section proposes and analyses three different distribution algorithms.

5.4.1 Linear Distribution Algorithm (LDA)

LDA re-distributes the solutions using equally spaced decision variables in their 

respective ranges. This means that in a problem that has two decision variables x\: 

[0:1] and x2: [0:1], the algorithm chooses equally spaced xi values in [0:1] such that 

the number of points chosen is equal to the population size. It then uses results from 

regression analysis to find the x2 values corresponding to these x% values. The 

algorithm uses this set of decision variables to form the new individuals and proceeds 

forward. This algorithm, applied to a problem with two decision variables xi and x2, 

is as follows (Figure 5.4).

1. Choose equally spaced values for xi in its range. Number of values chosen 
should be equal to the population size.

2. Use results from regression analysis to get corresponding x2 values.

3. Map the above set of xi-x2 values back to the function space. The solutions thus 
attained form the re-distributed set of solutions.

Start

S to p

Get corresponding x2 values

Map to function space

Choose equally spaced x1 values 
(number of values = 

population size)

Figure 5.4: Linear Distribution Algorithm (LDA)

The computational complexity of this algorithm is O(MN), where M is the number of 

objectives and N is the population size. This algorithm is simple to implement but it 

works on the assumption that well-distributed points in parameter space will give rise
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to well-distributed points in function space. This works well for uni-modal objective 

functions that do not have any steep changes. However, for complex functions this 

assumption is not valid causing the algorithm to fail.

5.4.2 Random Distribution Algorithm (RDA)

The failure of LDA in handling complex objective functions was the motivation for 

the development of RDA. This algorithm first generates a set of random values for xi 

in its range such that the number of points generated is equal to the population size. It 

then uses results from regression analysis to find the corresponding X2 values and 

maps the obtained set of xi-x2 values back to the function space. The algorithm then 

determines unique points from this set and repeats the above process until the 

number of unique points becomes equal to the population size. This algorithm is 

described below for a problem that has two variables (xi and x2) (Figure 5.5).

1. Generate random values for x% in its range (number of points generated should be 
equal to population size). The reason for using random values is that it aids the 
exploration of the entire search space with equal probability.

2. Use regression analysis to get corresponding x2 values.

3. Map the above set of xi-x2 values back to the function space.

4. Mix the points obtained in Step 3 with pre-determined unique points.

5. Determine the unique points from the combined set obtained in Step 4. This 
ensures that only those solutions are selected that have the required separation in 
the function space.

6. Check if the number of unique points obtained is greater than the population size. 
If yes go to Step 7 else go to Step 1.

7. From the set of unique points obtained in Step 5, randomly delete points until 
their number becomes equal to the population size.

The computational complexity of this algorithm is 0(MN2), where M is the number 

of objectives and N is the population size. It is evident that this algorithm ensures 

equal distribution of solutions in the function space using the concept of unique 

point. Hence, an appropriate definition of unique point becomes critical to the 

success of this algorithm. Here, a unique point is defined using the concept of
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diversity metric (A) given by Deb et al. (2000). This concept is described in detail in 

Appendix C.
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G e t  c o r r e s p o n d i n g  x 2 v a l u e s

Mix with p r e - d e t e r m i n e d  
U n i q u e  P o in t s  ( U P ’s )

Figure 5.5: Random Distribution Algorithm (RDA)

To demonstrate the concept of unique point, a problem with two objective functions 

fi and Î2 is considered here. Figure 5.6 shows a hypothetical circle, with radius equal 

to the average Euclidean distance, drawn around the first point. This point is now 

marked as unique and all other points lying in its circle are deleted. This process is 

repeated until all the given points have been analysed. This algorithm is depicted in 

Figure 5.7 for a two-objective problem, and is briefly described below.

1. Sort the given population based on function values. Since all the solutions 
analysed at this stage are non-dominated (Figure 5.3), sorting for one function 
would inevitably sort the solutions for the other function. Sorting is carried out to 
ensure that the algorithm proceeds sequentially from one end to the other of the 
Pareto front.

Find the Euclidean distances between consecutive members of the given 
population.

Find the average of these Euclidean distances.

2 .

3.
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H y p o th e tic a l c irc le

U n iq u e  p o in t 

D e le te d  p o in t

Figure 5.6: Identification o f Unique Points (Assuming two objective functions)
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Figure 5.7: Algorithm for Identification o f Unique Points

4. Select the next undeleted point based on the sequence in which the population 
members have been sorted.

5. Draw a hypothetical circle around the selected point with radius equal to the 
average Euclidean distance.

6. Mark the selected point as a unique point.

7. Delete all other points lying in the hypothetical circle around the unique point 
(Figure 5.6). This removes any point whose Euclidean distance from the unique 
point is less than the average Euclidean distance. This ensures that the Euclidean 
distance between each pair of consecutive unique points is more than or equal to 
the average Euclidean distance.
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8. Check if  there is any undeleted/unmarked point left in the population. If yes go to 
Step 4 else stop the process.

The above algorithm ensures that only well-distributed points are defined as unique 

so that only these points are passed on to the future iterations of RDA (Figure 5.5).

5.4.3 Hybrid Distribution Algorithm (HDA)

Although RDA has satisfactory performance, it is difficult to implement and has high 

computational expense. This has led to the development of HDA in which a part of 

the population is generated by linear distribution and the rest is generated on a point- 

by-point basis using differences in objective function values between consecutive 

points in the objective-variable space. The computational complexity of this 

algorithm is 0(N2), where N is the population size. Being a good compromise 

between performance and computational expense, HDA is chosen for use with 

GRGA. This algorithm is described below for a two-variable (X1-X2) problem (Figure 

5.8).

1. Generate equally distributed values for x% in its range. Number of values 
generated should be equal to a pre-determined proportion (say 10%) of the 
population size.

2. Use results from regression analysis to get corresponding X2 values. Map the 
above set of X1-X2 values back to the function space.

3. Sort these points based on xi values. In each objective-variable space, find the 
gap between consecutive points in terms of the objective function values. Express 
the gap as a percentage of the sum of total differences between consecutive 
points.

4. Generate a new x% value as mid-point of two consecutive x% values that 
correspond to the maximum percentage gap, considering all objective-variable 
spaces.

5. Use results from regression analysis to get the X2 value corresponding to this new 
xi value. Map the new X1-X2 pair back to the function space.

6. Find the percentage gaps in each objective-variable space between this new point 
and its immediate neighbours.
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7. Check if the total number of generated points is equal to the population size. If 
yes stop the process else go to Step 4.

Start
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Figure 5.8: Hybrid Distribution Algorithm (HDA)

5.5 Computational Expense of GRGA

GRGA uses NSGA-II as its optimisation engine, whose computational complexity is 

G(MN2) (where M is the number of objectives and N is the population size) (Deb et 

al., 2000). In addition, it uses distribution algorithms for spreading out solutions over 

their current front in order to encourage diversity. GRGA uses HDA whose overall 

computational complexity is 0(N 2). Since NSGA-II, whose complexity is G(MN2), is 

a part of GRGA, the overall complexity of GRGA becomes G(MN2). The conclusion
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of this analysis is that both NSGA-II and GRGA have the same order of complexity 

(0(MN2)). However, due to the presence of the distribution algorithm, the actual 

complexity of GRGA is slightly higher that of NSGA-II.

5.6 Performance Analysis o f GRGA

This section compares the performance of GRGA with a state-of-the-art multi- 

objective optimisation algorithm, NSGA-II, using three test problems.

Table 5.1: Test Problems for Performance Analysis o f GRGA (PF: Pareto Front)

ROT 
(Deb et al., 

2000)
5 [-0.3,0.3]

f l (y) = y l
f 2 00  = s(y) exp(-71 / g(y))

g (y )  = l + 10(n-l)+  E b ?  -10cos(4^.)]

y  = Rx
R = Rotation _M atrix

• PF: Vie [Based on R], 
Yi=0, i=2,...,n

• Convex distribution
• Linearly related 

decision variables
• Multiple local fronts
• Collateral noise

ZDT4 
(Zitzler et 
al., 2000) 10

x-ie [0,1] 
Xi e [-5,5] 
i=2,...,n

/ 1(*) = *1

/ 2 W  = g W [l-^ x 1/g(x)]

g(x) = 1 + 10(«-1)+ E [x?-10cos(4ÆC.)]
i=2 1 1

• PF: X ie [ 0 ,1 ] ,  Xi=0, 
i=2,....n

• Convex distribution
• Multiple local fronts 

(21* or 7.94x1011)
• Collateral noise

ZDT6 
(Zitzler et 
al., 2000)

10 [0,1]

f  (x) = 1 -  exp(-4Xj ) sin6 (4%  ̂) 

/ 2 (x) = g(x)[l -  (/j (x) / g(x))2 ] 

g(x) = l + 9[( & x .) / ( /z - l) f  ^

• PF: Xie[0,1], xi=0, 
i=2..... n

• Non-convex 
distribution

• Non-uniformly spaced

5.6.1 Experim ental Results

GRGA was tested using three problems namely ROT, ZDT4 and ZDT6 listed in 

Table 5.1. The objective functions of these problems are plotted in Figure 5.9, Figure 

5.10 and Figure 5.11 respectively. As can be seen from Table 5.1, these problems 

form a representative set since they together possess a number of features that create 

difficulties for optimisation algorithms. Further, a number of existing multi-objective 

optimisation algorithms have exhibited limitations in solving these problems. This 

section compares the performance of GRGA with that of NSGA-II, which 

demonstrates better performance than most other contemporary algorithms in solving 

these optimisation problems (Deb et a/., 2000).
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Figure 5.9: Objective Functions o f  ROT (Assuming Two Variables)

Figure 5.10: Objective Functions ofZDT4 (Assuming Two Variables)
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Figure 5.11: Objective Functions ofZD T6 (Assuming Two Variables)

The parameters for carrying out the tests reported in this section are chosen based on 

their typical values that are used in literature for these test problems. These values 

are as follows.
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♦ ROT: 100 population size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index.

♦ ZDT4: 100 population size, 250 generations, 0.8 crossover probability, 0.05 
mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index.

♦ ZDT6: 100 population size, 250 generations, 0.9 crossover probability, 0.1 
mutation probability, and simulated binary crossover with 20 crossover
distribution index and 20 mutation distribution index.

The results obtained from these tests are shown in Figure 5.12 for ROT, Figure 5.13 

for ZDT4 and Figure 5.14 for ZDT6. These results form the typical set obtained from 

10 runs with different seed values for the random number generator. No major 

variation was observed in the results with the change in the seed values. To enable 

fair comparison, the termination condition and re-distribution of final solutions are 

not applied here for reporting the GRGA results. Also, unless otherwise stated, HDA 

is used with GRGA in all the tests.

5.6.2 Discussion o f Results

Here, the performances of GRGA and NSGA-II are measured, with respect to the 

goals of multi-objective optimisation (convergence to the Pareto front and diversity 

across it), using the two metrics proposed by Deb et al. (2000). The metrics used 

here are the convergence metric (y) and diversity metric (A), which are explained in 

detail in Appendix C. The lower the values of these metrics, the better is the 

performance of the given optimisation algorithm. The y and A values for the results 

reported here are shown in Table 5.2. The results obtained from each of the three test 

problems are discussed below.
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Figure 5.12: GRGA Performance Analysis Using ROT Problem -  (a) Full Search

Space (b) Magnified Search Space
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Figure 5.13: GRGA Performance Analysis Using ZDT4 Problem -  (a) Full Search

Space (b) Magnified Search Space
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Table 5.2: Performance Metrics in ROT, ZDT4 and ZDT6

RC)T, ZDT4 P .R .™ .n ce Metrics

ar,d ZOTS
y

NSGA-II 0.012694 1.192163'

GRGA 0.009162 0.341217

NSGAJI 0.253053 0.702612

GRGA 0.018982 0.745652

N.GA-II 0.296564 0.668025

GRGA 0.032871 0.441495

5.6.2.1 ROT

ROT has an externally introduced inseparable function interaction due to the rotation 

matrix R. This causes ROT to have a linear relationship among decision variables 

corresponding to the Pareto-optimal solutions. Therefore, the NSGA-II and GRGA 

require updating all decision variables in a unique way in order to maintain a spread 

of solutions over the Pareto-optimal front and to converge to the Pareto front. 

Further, even if  a set of Pareto-optimal solutions are obtained, it is difficult to 

maintain them since any change in one variable must be accompanied by related 

changes in others in order to remain on the Pareto front. Here, NSGA-II gives 

inferior distribution of solutions as compared to GRGA. This is illustrated in Figure

5.12. Table 5.2 also supports this by showing a much lower value of A for GRGA as 

compared to that for NSGA-II. The reason for this is that the Crowded Comparison 

Operator used in NSGA-II attempts to attain solution diversity using external means, 

without addressing the inherent features that lead to diversity problems. On the other 

hand, GRGA addresses the core issue of this problem by determining the 

relationships among the decision variables of the solutions, and using them to re­

distribute the solutions for aiding their spread over the current front.

It is interesting to note that both NSGA-II and GRGA exhibit satisfactory 

convergence to the Pareto front (Figure 5.12), in spite of the presence of multiple 

local fronts and inseparable function interaction in this problem. This is facilitated in
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NSGA-II by the use of Pareto-domination and elitism, and in GRGA by the use of 

NSGA-II supported by artificial modification of regression coefficients. Table 5.2 

exhibits nearly the same values for y, thereby supporting the above observation.

5.6.2.2 ZDT4

ZDT4 is characterised by the presence of multiple local fronts. As shown in Figure

5.13, GRGA exhibits better convergence as compared to NSGA-II. Table 5.2 also 

shows that the y value of GRGA is an order less as compared to that of NSGA-II. 

This is because the Pareto-domination/elitism strategy used by NSGA-II ceases to 

produce the driving force towards the global Pareto front once most of the solutions 

of the population share the same non-domination level. Therefore, in this problem, 

the NSGA-II solutions get trapped in one of the local fronts. GRGA addresses this 

drawback of NSGA-II by artificially modifying the regression coefficients after 

every ten generations using their history of change observed in previous generations. 

This guides the search towards the global Pareto front by preventing it from getting 

trapped in local fronts.

Furthermore, this problem does not exhibit any difficulty with respect to the 

maintenance of diversity of solutions across the Pareto front. Therefore, both NSGA- 

II and GRGA exhibit satisfactory diversity in this case (Figure 5.13). This is also 

supported by Table 5.2, which shows small values of A for both NSGA-II and 

GRGA that are nearly same in magnitude.

5.6.2.3 ZDT6

This problem is characterised by a biased search space. In this case as well, GRGA 

exhibits better convergence as compared to NSGA-II (Figure 5.14). Also, both 

GRGA and NSGA-II demonstrate satisfactory diversity in this case (Figure 5.14). 

The y and A values in Table 5.2 support the above observations. The reasons for this 

behaviour of NSGA-II and GRGA are on the same lines as those discussed for 

ZDT4, with the difference that in this case the bias in the search space, rather than
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multi-modality, creates obstacles in convergence to the Pareto front. This bias also 

makes it more difficult to maintain diversity across the Pareto front.

5.6.3 Summary of Results

In addition to the above, GRGA identifies the following relationships for the decision 

variables corresponding to the Pareto-optimal solutions. In solving real-life 

problems, this information is very useful for designers since it provides them with an 

easy way of generating a Pareto-optimal solution based on their preferences. 

Comparison with Table 5.1 reveals that the GRGA has been able to accurately locate 

the Pareto front in each case.

♦ ROT: Pareto front corresponds to yi = 0; i = 2,...,5; with yi taking values in its 
range.

♦ ZDT4: Pareto front corresponds to Xj = 0; i = 2,.. .,10; with xi taking values in its 
range.

♦ ZDT6: Pareto front corresponds to Xi = 0; i = 2,. ..,10; with x% taking values in its 
range.

It is observed that the proposed algorithm enhances the interaction handling 

capabilities of NSGA-II. The tests reported in this section lead to the following 

general conclusions regarding the performance of GRGA.

♦ The periodic modification of regression coefficients using history of search is 
successful in guiding the algorithm towards global Pareto front by preventing it 
from getting trapped in local fronts.

♦ The periodic re-distribution of solutions using regression analysis ensures that 
better distribution of solutions is attained across the Pareto front.

♦ The use of regression analysis for the termination of the optimisation cycle 
ensures that the process is terminated when no further improvements are possible 
in terms of convergence to the Pareto front. This reduces unnecessary repetitions 
of optimisation loop, making the process faster. It is worth noting that the 
termination condition is solely based on convergence and does not take 
distribution into account. This is because once the solutions converge to the 
Pareto front, they are re-distributed by the algorithm using regression analysis.
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♦ The re-distribution of final solutions performed in this algorithm provides the 
designers with the whole range of well-distributed Pareto-optimal solutions.

♦ The identification of the relationship^ among the decision variables of the 
Pareto-optimal solutions enables the designers to create and choose the Pareto- 
optimal solutions based on their preferences.

5 .7  Summary

This chapter has proposed a novel algorithm capable of handling inseparable

function interaction in multi-objective optimisation problems. As illustrated below,

GRGA meets all the objectives of its development mentioned at the beginning of this

chapter.

♦ As revealed in Chapter 2, most of the optimisation problems have varying 
degrees of inseparable function interaction. Since GRGA is capable of handling 
this interaction and the logic behind it is generic in nature, it is expected that the 
algorithm would perform better than the existing ones in dealing with a wide 
variety of optimisation problems. This also includes those multi-objective 
optimisation problems that involve constraints.

♦ GRGA is completely modular in nature. So, it can be used to enhance the 
interaction handling capability of any optimisation algorithm.

♦ GRGA exhibits better performance than the high-performing NSGA-II on a 
variety of multi-objective optimisation problems.

>  Better convergence to Pareto front.

> Better distribution o f Pareto-optimal solutions.

This chapter has achieved the following.

♦ It has identified the challenges that inseparable function interaction poses for 
multi-objective optimisation algorithms.

♦ It has devised a generic solution strategy for handling this interaction in multi­
objective optimisation problems.

♦ It has proposed a new multi-objective optimisation algorithm, called Generalised 
Regression GA (GRGA), based on the solution strategy.
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♦ It has analysed the performance of the proposed algorithm using existing test 
problems.

This chapter has proposed an algorithm for handling inseparable function interaction 

in multi-objective optimisation problems. The next chapter deals with the second 

category of variable interaction: variable dependence. It proposes a dedicated 

algorithm for handling variable dependence in multi-objective optimisation 

problems.
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6  DEVELOPING AN EC TECHNIQUE TO 
HANDLE VARIABLE DEPENDENCE

As discussed in Chapter 2, variable dependence occurs when the variables are 

functions of each other, and hence cannot be varied independently. This dependence 

among decision variables is frequently observed in real-life problems. Chapter 4 

identified the research gap in the area of variable dependence, and highlighted the 

need to develop dedicated optimisation techniques for handling dependence among 

decision variables in multi-objective optimisation problems. The aim of this chapter 

is to develop a generic solution strategy and to implement it for proposing this 

dedicated optimisation algorithm for variable dependence. This chapter attempts to 

achieve the following.

♦ To identify the challenges that variable dependence poses for multi- 

.  r o  SO M ,™  tor « =  m ^acrnn

♦ To propose a multi-objective optimisation algorithm based on the

In addition, the proposed optimisation algorithm is expected to possess the following 

features.

:
variable dependence of any multi-objective optimisation algorithm. 

♦ Capability to handle a wide variety of dependent-variable multi­
objective optimisation problems in terms of satisfying its two goals.

> Satisfactory distribution o f Pareto-opthnal solutions._________________
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6.1 Challenges for Multi-objective Optimisation 

Algorithms

Complex variable dependence poses a number of challenges for multi-objective 

optimisation algorithms. In the presence of variable dependence, the decision 

variables cannot be varied independently of each other. Also, the search space gets 

modified creating a new feasible region based on the dependence among decision 

variables. This is shown in Figure 6.1. Depending upon the nature of variable 

dependency, additional features (such as bias (non-linearity), multi-modality, 

deception and discontinuity) may also be introduced in the problem. A generic GA 

independently varies the decision variables and works in the feasible region that does 

not take variable dependence into account. So, it creates solutions that have limited 

practical significance since they do not lie in the actual feasible region of the search 

space.

The dependence among decision variables is frequently observed in real-life 

problems. Here, the effects of dependence among decision variables are illustrated 

graphically using a real-life example in which the Resistance (R) of a wire is defined 

in terms of two parameters, namely Temperature (2) and Stress (S) (Kreyszig, 1993). 

Here, 7 is Random(Ti,T2) and S is f(T)+Random(Si,S2)  (Equation 6.1).

R = F(S,T), Equation 6.1
T = R andom ^,T2),
S = f  (T) + Random(Sl ,S2).

This real-life problem is analogous to the example discussed earlier. As can be seen. 

Temperature T  can take any random value between Ti and T2. On the other hand, 

Stress S has two components. The first component is a function of Temperature T  

and the second is a random number lying between Si and S2. It should be noted here 

that Temperatures 7/ and T2 are defined by the range of the heating device, and 

Stresses Si and S2 are defined by the range of the loading instrument. The effects of 

dependence among decision variables are analysed in the following discussion.
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♦ As expected, both variables T and S  cannot simultaneously take random values in 
their respective ranges. If Temperature T takes a value 7% Stress S  can take only 
those random values that lie between \f(Ti)+Si\ and \f(Ti)+S2 \. With the change 
in value of T, the range of random values that S can take also changes. So, the 
variables cannot be varied independently of each other.

s
F R D V

..W_.

F R IV

Figure 6.1: Relationship between Stress(S) and Temperature(T) (FRIV: Feasible 

Region with Independent Variables and FRDV: Feasible Region with Dependent

Variables)

♦ As shown in Figure 6.1, which gives a graphical representation of this problem, 
the presence of dependence among decision variables modifies the variable 
search space. Figure 6.1 represents the search space for both the cases: (i) without 
dependence among decision variables and (ii) with dependence among decision 
variables. These two cases are analysed below.

> Without Dependence: I f  there is no dependence among decision variables, 
both variables T and S can independently take random values in their 
respective ranges. This gives a rectangular shape to the T-S search space, 
shown as FRIV (Feasible Region with Independent Variables) in Figure 
6. 1.

> With Dependence: The presence o f  dependence among decision variables 
modifies the shape and location o f the search space. It makes the T-S 
search space take the shape and location based on the nature o f  function 
f(T). The modified search space is shown as FRDV (Feasible Region with 
Dependent Variables) in Figure 6.1.
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6.2 Alternative Strategies for Handling Variable 

Dependence

Chapter 2 provided a survey of techniques for dealing with the two steps involved in 

solving the dependent-variable optimisation problems: identification of dependency 

relationships and classification of variables. This section presents alternative solution 

strategies that can utilise these techniques for handling the two categories of 

dependent-variable optimisation problems: those with and those without dependency 

equations, defined in Chapter 2.

6.2.1 Solving Optimisation Problems Having Known Dependency 

Equations

The two steps involved in solving the optimisation problems that have known 

dependency equations are as follows.

6.2.1.1 Step 1: Identification of Dependency Relationships

In these problems, the dependency equations are given to the user, but he/she still 

needs to make sure that these relationships are free of cyclic dependencies. Step 2 

deals with the removal of cyclic dependencies and the identification of independent 

variables.

6.2.1.2 Step 2: Classification of Variables

The techniques discussed in Chapter 2, TDs and DA, can be used for the 

classification of variables into dependent and independent, and for the removal of 

cyclic dependencies. The independent variables define the GA chromosome. The 

dependent variables are then calculated using the dependency equations, and their 

bounds are treated as constraints. Finally, the objective functions are calculated using 

the complete set of variables. This solution procedure is pictorially presented in 

Figure 6.2.
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Remove cyclic dependencies

Identify independent variables

Draw Tree Diagram (TD) 
or perform Direct Analysis (DA)

Given:
• Objective functions (F’s) and constraints
• Variable bounds
• Variable dependency equations

Use optimisation engine:
• GA chromosome defined by independent 
variables (identified by TD or DA)
• Dependent variables calculated from 
dependency equations
• Bounds on independent variables treated 
as variable limits
• Bounds on dependent variables treated 
as constraints

Figure 6.2: Solving Optimisation Problems Having Known Dependency Equations

6.2.2 Solving Optimisation Problems Having Unknown Dependency 

Equations

In these problems, the dependency equations are unknown, but multiple sets of 

variable values are provided to the user from which the dependency relationships can 

be inferred using one of the data modelling techniques, viz. RA, NNs and PM, 

discussed in Chapter 2. The application of these techniques for solving dependent- 

variable optimisation problems is presented in this section. The two steps involved in 

solving these optimisation problems are discussed below for each of the three data 

modelling techniques.

6.2.2.1 Regression Analysis (RA)

When the RA is used, the two steps involved in the solution procedure of a 

dependent-variable optimisation problem are as follows.
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Step 1: Identification of Dependency Relationships

For solving an optimisation problem that has interaction among decision variables, 

the RA can be applied to the given sets of variable values. In this way, the equations 

that define the interaction among decision variables can be obtained. RA may be 

designed in such a way that it creates equations that do not have any cyclic 

dependencies. Alternatively, the techniques TDs and DA can be used to identify and 

remove any cyclic dependencies.

Step 2: Classification of Variables

The techniques, TDs and DA, can also be used to carry out the second step of the 

solution procedure, which is to identify the independent variables that form part of 

the GA chromosome. Figure 6.3 summarises the application of RA for solving 

optimisation problems that have dependence among decision variables.

R em ove cyclic depen dencies

U se R egression Analysis (RA) to identify 
variable dependency equations

Identify independent variables using 
Tree Diagram (TD) or Direct Analysis (DA)

Given:
• Objective functions (F’s) and constraints
• Variable bounds
• Multiple se ts  of variable values

U se optimisation engine:
• GA chrom osom e defined by independent 
variables (identified by TD or DA)
• D ependent variables calculated from 
dependency equations
• Bounds on independent variables treated 
a s  variable limits
• Bounds on dependent variables treated 
a s  constraints

Figure 6.3: Application o f Regression Analysis (RA) for Solving Dependent-variable

Optimisation Problems
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6.2.2.2 Neural Networks (NNs)

The steps involved in solving the dependent-variable optimisation problems using 

NNs are as follows.

Step 1: Identification of Dependency Relationships

Similar to the RA, the NNs can be used for deriving the dependency relationships 

from the data provided. However, unlike the RA, in which explicit dependency 

equations are attained, a NN model that is trained in the given data can be used to 

predict the values of the dependent variables in terms of the independent ones, 

without using any explicit equations. Therefore, the application of NNs requires a 

priori classification of variables as dependent and independent. Since this 

classification is required to be mutually exclusive, the possibility of having cyclic 

dependencies does not exist, and the independent variables are assumed to be known.

Construct Neural Network (NN) 
to model variable dependence

Given:
• Objective functions (F ’s) and constraints
• Variable bounds
• List of independent variables
• Multiple sets of variable values

Use optimisation engine:
• GA chromosome defined by 
independent variables
• Dependent variables calculated from NN
• Bounds on independent variables 
treated as variable limits
• Bounds on dependent variables treated 
as constraints

Figure 6.4: Application o f Neural Networks (NNs) for Solving Dependent-variable

Optimisation Problems
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Step 2: Classification of Variables

In this case, the classification of variables into dependent and independent is 

assumed to be known, making it possible for the GA to use the independent variables 

in its chromosome. For each solution generated by the GA, the dependent variables 

are predicted using the NN model. In this way, all the variables in the problem are 

determined, which can now be used for calculating the objective functions. The 

above-mentioned solution procedure is summarised in Figure 6.4.

6.2.2.S Probabilistic Modelling (PM)

If the PM is applied to solve dependent-variable optimisation problems, the steps 

involved in the solution procedure are as follows.

Construct probability distribution 
based on data provided 

(Probabilistic Model (PM ))

Given:
• Objective functions (F ’s) and constraints
• Variable bounds
• Multiple sets of variable values

Use optimisation engine:
• GA chromosome defined by all variables
• Bounds on all variables treated 
as variable limits
• Initial GA population generated by PM
• Use of PM as constraint

Figure 6.5: Application o f Probabilistic Modelling (PM) for Solving Dependent-

variable Optimisation Problems

Step 1: Identification of Dependency Relationships

PM creates a probability distribution based on the data provided by the user. The 

distribution thus created models the relationship among decision variables, and can
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be used for creating additional data that have the same relationship among decision 

variables. Therefore, the PM implicitly models the relationship among decision 

variables. This is unlike the RA and NNs that attempt to classify the variables (as 

dependent and independent), and estimate the dependent variables from the 

independent ones. Since the PM does not classify the variables as dependent and 

independent, the issue of cyclic dependencies does not arise.

Step 2: Classification of Variables

Since the PM does not classify the variables, the GA chromosome is made up of all 

the decision variables in the problem, and the initial population is generated by the 

PM. In successive generations, each individual is analysed to determine its closeness 

to the PM. To ensure that the solutions created are always in a pre-defined vicinity of 

the PM, a constraint is introduced that requires the closeness measure (defined by the 

user) to have a value greater than the pre-defined limit. In this way, the optimisation 

problem is handled. This solution procedure is depicted in Figure 6.5.

6.3 Proposed Solution Strategy

The previous section analysed some solution strategies for handling optimisation 

problems that have dependence among decision variables. This discussion is re­

visited here to select the most appropriate solution strategy for solving real-life 

dependent-variable optimisation problems.

6.3.1 Analysis of Alternative Solution Strategies

It was stated in Chapter 2 that the lack of systematic research in the area of variable 

dependence has led to a scarcity of dedicated frameworks that can deal with 

dependent-variable real-life optimisation problems. However, the previous section 

presented some solution strategies that attempt to solve these problems using some 

techniques from related areas of research. This section presents a critical analysis of 

these strategies in order to select one for this research. This analysis is presented here 

for both the categories of dependent-variable optimisation problems: those with and 

those without dependency equations.
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6.3.1.1 Solving Optimisation Problems Having Known Dependency 

Equations

The solution strategy presented in Figure 6.2 performs the two steps, as mentioned in 

Chapter 2, involved in solving the dependent-variable optimisation problems. 

However, the choice here is between using a TD or DA for identifying the dependent 

variables and removing any cyclic dependencies. It is evident that a TD has better 

visualisation capability but is difficult to be encoded in a computer language, 

whereas the opposite is true for the DA.

6.3.1.2 Solving Optimisation Problems Having Unknown Dependency 

Equations

Similar to the previous case, the solution strategies that are presented in Figure 6.3, 

Figure 6.4 and Figure 6.5 are capable of performing the two steps, as mentioned in 

Chapter 2, involved in solving the dependent-variable optimisation problems. 

However, in this case as well, the choice is among the three data modelling 

techniques (RA, NN and PM) that form part of these solution strategies. Table 6.1 

gives a summary of the features of these techniques. These features are analysed 

below to guide the selection of an appropriate data modelling technique for dealing 

with the dependent-variable real-life optimisation problems.

♦ NNs: As can be seen from Table 6.1, the NNs require a priori knowledge 
regarding the classification of variables as dependent and independent. Since this 
information is rarely available in real-life problems, the choice of the NNs is 
ruled out in spite of their other attractive features.

♦ PM: The PM is also a very powerful technique, requiring little information 
regarding the nature of variables. As shown in Table 6.1, it also has a number of 
other features that are required for dealing with real-life problems. However, 
Figure 6.5 shows that the application of PM requires its use as a constraint, which 
is difficult to implement. Furthermore, the application of PM to model multiple 
interacting decision variables is a relatively new area of research, and as 
mentioned in Chapter 2, a number of research issues need to be addressed before 
it could be chosen for handling real-life problems having multiple real variables.
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♦ RA: Table 6.1 reveals that the multiple explicit equations that are identified by 
the RA give good insight to the designer regarding the relationships among 
decision variables. RA is also easy to implement and maintain. Further, it 
addresses most of the above-mentioned limitations of NNs and PM. This leads to 
the choice of RA in the proposed solution strategy.

Table 6.1: Comparison o f Data Modelling Techniques

Data Modelling Techniques

ass, Neural Networks 
(NNs) — i'S,

Difficulty of 
Implementation Medium High Very high (due to many 

open issues)

Accuracy Dependent on degree of 
RA equation

Dependent on number 
of hidden units

Dependent on choice of 
modelling method

c°sr" Low High Medium

= .

Explicit Explicit (for given 
dependent variables) Purely implicit

Identification of
Multiple RA equations

Built-in multiple 
relationships (based on 
choice of NN structure)

Built-in multiple 
relationships

•SSr Through multiple 
repetitions of RA Not possible Not required

~=i“ Medium (repetition 
required)

Medium (repetition 
required by most NNs) Low (updating required)

6.3.2 Proposed Solution Strategy

The above analysis leads to the choice of RA for the solution of those dependent- 

variable problems in which the dependency equations are not known. Here, RA is 

applied in such a way that it resolves all cyclic dependencies in the model. The 

application of RA reduces the given optimisation problem to the one in which the 

dependency equations are known. It is now required to identify the independent 

variables that form part of the GA chromosome. Chapter 2 discussed two tools for 

analysing the dependency equations in order to identify the independent variables 

and remove any cyclic dependencies. Based on this analysis, the TDs are chosen here 

for visual representation of relationships among decision variables and for removal
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of cyclic dependencies. Since the TDs are difficult to be encoded in a computer 

language, the method of DA is used to automate the process of identification of 

independent variables and removal of cyclic dependencies. This strategy uses the 

strengths of both TDs and DA, while avoiding their weaknesses. It should be noted 

that the removal of cyclic dependencies is not required when RA is used, since all the 

dependency equations provided by it are free of these dependencies. The main 

features of this novel solution strategy can be summarised as follows.

♦ This strategy takes a holistic view of variable dependence in order to propose a 
complete framework for dealing with dependent-variable optimisation problems.

♦ It can deal with both the categories of dependent-variable optimisation problems: 
those with and without dependency equations.

♦ It performs both the steps, as mentioned in Chapter 2, involved in solving these 
optimisation problems.

♦ It uses existing tools and techniques for proposing this novel framework.

♦ It provides insight into the design model provided by the user, thereby giving 
him/her the opportunity of removing any inconsistencies that arise in the form of 
cyclic dependencies.

6.4 Proposed Genetic Algorithm for Variable  

Dependence (GAVD)

In this section, the solution strategy that is introduced in the previous section is 

implemented to propose a novel algorithm, called Genetic Algorithm for Variable 

Dependence (GAVD), which is capable of solving real-life optimisation problems 

that have dependence among their decision variables. Figure 6.6 gives a flowchart of 

GAVD. As can be seen from this figure, the GAVD comprises of the following two 

parts, corresponding to the two steps involved in solving the dependent-variable 

optimisation problems.
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Stepl
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• tr ia b le  bounds
• MJtiple sets of variable values

Ferfcrm Regression Analysis (RA), 
considering first variable a s  dependent

Set first regresscn coemaenttozero

Re-perfcrmRA
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Figure 6.6: Genetic Algorithm fo r Variable Dependence (GAVD)

6.4.1 Step 1: Identification o f Dependency Relationships

This step is omitted in the case when the dependency equations are given to the user. 

In the other case, this step analyses the given data for identifying multiple 

dependency equations, while keeping the computational expense as low as possible. 

GAVD applies RA in such a way that it not only identifies all non-decomposable 

relationships among decision variables but also removes any cyclic dependency in
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those relationships. To attain this, a strategy that ensures better ‘book keeping’ is 

adopted. The salient features of this strategy are discussed below.

♦ The RA that is used in GAVD breaks down a regression equation until it 
becomes non-deeomposable. In this way, all the underlying relationships among 
decision variables are identified.

♦ A Dependency Chart (DC), which is a tool for DA, is maintained to keep track of 
the variables that are identified as dependent (D) and independent (I) in the 
regression process. In this way, unnecessary repetitions of RA are avoided for the 
variables that have already been identified as D or I. This also ensures that the 
regression equations do not involve any cyclic dependency.

♦ When determining the regression equation for a given variable, only those 
variables that are marked as T  or are unmarked in DC are considered as 
independent. This guarantees that the variables that are identified as ‘D ’ are not 
considered as independent in subsequent stages of the RA, thereby ensuring that 
the regression equations obtained are as non-deeomposable as possible. This also 
reduces the number of variables that are considered at each stage of the RA.

6.4.2 Step 2: Classification o f Variables

In both the categories of dependent variable optimisation problems (with and without 

dependency equations), TDs are used for visual representation of relationships 

among decision variables. Using the given dependency equations or the regression 

equations determined in the previous step (as the case may be), a Dependency Tree 

(DT) is constructed. This tree, which is a form of TD, gives a visual representation of 

dependency relationships. The end nodes of this tree are the independent variables. 

The DT also aids in the identification of cyclic dependencies that may be present in 

the given dependency equations. A typical DT is shown in Figure 6.7. This DT 

represents Equation 6.2.
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F  = F(A,B, C, D), Equation 6.2
= / ; ( # ,  D , f ) ,

a  = /2 (;) ,
C = f 3 (A),

E = / , ( G ^ ) .

Figure 6.7: An Example o f a Dependency Tree (DT) (F: Objective Function and A, 

B, C, D, E, G, H, I: Decision Variables)

Since TDs are difficult to be encoded in a computer language, the method of DA is 

used in both the categories of dependent variable optimisation problems, to automate 

the process of identification of independent variables and removal of cyclic 

dependencies. Here, the DC is used to identify the independent variables as those that 

are marked as T . The construction of this chart also aids the identification and 

removal of cyclic dependencies from the given dependency equations.

Finally, GAVD makes use of GRGA as the optimisation engine. Here, the 

independent variables, identified in the previous step, define the GA chromosome. 

For each alternative solution generated by the GA, the dependency equations are 

used to calculate the values of the dependent variables. It should be noted here that 

the bounds on independent variables are treated as variable limits and those on 

dependent variables are treated as constraints.
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6.4.3 Com putational Expense

Since GAVD uses GRGA as its optimisation engine, the basic operations of GRGA 

also form part of GAVD. In addition, it uses the RA to model the relationship among 

decision variables The RA used in GAVD has an overall complexity of 0(n2) for the 

determination of all dependency equations (where n is the number of variables in the 

problem). Since GRGA, whose complexity is 0(MN2), is a part of GAVD, the 

overall complexity of GAVD becomes 0(MN2+n2) (where M is the number of 

objectives and N is the population size). Since in most cases the value of N is much 

greater than that of n, the conclusion of this analysis is that both GAVD and GRGA 

have nearly the same order of complexity (G(MN2)). However, due to the presence 

of RA, the actual complexity of GAVD exceeds that of GRGA by an additional 

amount of 0(n2).

6.5 Worked Examples

To demonstrate the application of GAVD, the following optimisation problems, 

which have dependence among decision variables, are considered here.

6.5.1 W orked Exam ple 1

Consider the following optimisation problem (Equation 6.3).

Objective_ Function => F  = F (xl,x2,x3,x4,x5), Equation 6.3

\fx\L) < xt < x^U),i = 1...5,
Given => Multiple _ Sets _ o f  _ Variable _  Values.

Suppose that the underlying relationships among decision variables, which the user is 

trying to identify, are as follows (Equation 6.4).

Xi = jFsrwdüfct» 6.4

X3 = f 2 (%2 5 ^4 > )‘

The steps involved in solving this problem are as follows.

♦ Determine the following equation for xi (Equation 6.5).
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Equation 6.5

♦ No change is observed in correlation coefficient, when the regression coefficient 
of X2 is set to zero and the RA is performed. The new equation is as follows 
(Equation 6.6).

♦ Reduction is observed in correlation coefficient, when the regression coefficients 
of jcj, x4 and xj are set to zero in steps and the RA is performed in each step.

♦ Mark x; as ‘D’ and xj, x4 and xj as T  in the DC (Table 6.2).

♦ Determine the following equation for X2 (Equation 6.7).

♦ Repetition of the above process for xj yields the same equation, as given above.

♦ Mark X2 as ‘D’ in the DC (Table 6.2). The variables that are marked as T  in the 
DC are treated as independent variables.

♦ Draw the DT for the problem (Figure 6.8). The nodes that are encircled in this 
figure represent the independent variables.

♦ Use GRGA as the optimisation engine considering the following.

>  xj, x4 and xj constitute the GA chromosome.

>  Regression equations determine xj and xj.

>  Bounds on xj, x4 and xj are treated as variable limits.

> Bounds on xi and xj are treated as constraints.

Equation 6.6

Equation 6.7

Table 6.2: Dependency Chart (DC): Worked Example 1

Dependency

D

m
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Figure 6.8: Dependency Tree (DT): Worked Example 1

6.5.2 W orked Exam ple 2

Suppose the example optimisation problem mentioned above has the following 

relationships among decision variables (Equation 6.8).

= j f ( k , ^ ) ,  E gw afzbM  d.<9

X Z ~ f l  (-% 4  > X 5 ) *

The steps for solving this problem can be derived from Figure 6.6, and are similar to 

the ones listed for the previous problem. Table 6.3 and Figure 6.9 respectively 

present the DC and DT for this example.

Table 6.3: Dependency Chart (DC): Worked Example 2

=

D 1 1 1

I !
D 1 1

u

Figure 6.9: Dependency Tree (DT): Worked Example 2
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6.5.3 W orked Exam ple 3

Suppose the relationships among decision variables are as follows (Equation 6.9).

X4 = f  j (X5 ).

The steps for solving this problem are similar to the ones mentioned for the previous 

two problems. Its DC and DT are given in Table 6.4 and Figure 6.10 respectively.

Table 6.4: Dependency Chart (DC): Worked Example 3

X,
D 1 1

D 1

Figure 6.10: Dependency Tree (DT): Worked Example 3

6.6 Performance Analysis o f GAVD

Chapter 2 reported a complete lack of test problems in literature for simulating 

variable dependence in multi-objective optimisation problems. However, in this 

section, three test problems are created by introducing variable dependence in 

existing multi-objective optimisation problems. These test problems are modified 

versions of the test problems used in the previous chapter for the performance 

analysis of GRGA. The three dependency equations that are introduced here are
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linear, cubic polynomial and cyclic. The first can be accurately modelled by the 

quadratic RA used in GAVD, whereas the last two can only be approximated by it.

6.6.1 Experim ental Results

GAVD is tested here using three test problems, as listed in Table 6.5. The objective 

functions of these problems are plotted in Figure 5.9, Figure 5.10 and Figure 5.11 

respectively, and their function search spaces are shown in Figure 5.12, Figure 5.13 

and Figure 5.14 respectively. The features of these test problems make them 

particularly difficult for multi-objective optimisation algorithms. In the absence of 

any dedicated technique for handling variable dependence, this section compares the 

performance of GAVD with two high-performing multi-objective optimisation 

algorithms: NSGA-II and GRGA.

Table 6.5: Test Problems for Performance Analysis o f GAVD

-saasr
ROT 

(Deb eta!., 
2000)

4 [-0.3,0.3]

f \  0 9  = y \

A O') = g O') exp(-71 / g ( y ) )

2
g ( y )  = 1 + 10 + [ j 2 -1° cos(4̂ 2 )] 

y  = Rx

R = Rotation _ Matrix

x2 = O.2X3 + O.8X4

(Figure 6.11)

ZDT4 
(Zitzler et 
at., 2000) 3

Xie[0,1] 
Xie[-5,5] 
i=2..... n

f \ ( x )  = x 1

f l  ix)  = g(x)[l ~ ^ x 1 /  g ( x )  ]

2
g(x) = 1 + 10 + [x2 -  10 cos(4%%2 )]

1 >2 '3
xn = 1 -  0.2x -  0.6x -  O.lx , 

% 3 3 3

x̂  = (xg + 5) / 10 

(Figure 6.12)

ZDT6 
(Zitzler et 
al., 2000)

4 [0,1]

f j  (x) = 1 -  exp(-4x2 ) sin6 (4otj ) 

A  (*) = g(x)[l -  ( f i  (x) / g ( x ) ) 2 ] 

g(x ) = l + 9 x ° ^

x-i = 1 — O.lx — 0.3x Z 3 3
2 2 

cos (2 nx ) -  0.2x -  0.2x 3 4 4
(Figure 6.13)
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Figure 6.11: Dependency Relationship in ROT

O rig ina l
A p p ro x im a te d

le n d e n cy  R e la tio n sh ip  ----------
le n d e n cy  R e la t io n s h ip ----------

0.8

0.6

0.4

0.2

0
-2 0-4 2 4

Figure 6.12: Dependency Relationship in ZDT4

Original Dependency Relationship 
Approxiniated Dependency Relationship

O.o ' Y ' o

Figure 6.13: Dependency Relationship in ZDT6
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5
"Ex-ka'ustive -Sgafçfi 

PFIV, PFDV & EPF 
NSGA-II Solutions 

GRGA Solutions
4

3

2

0
-0.3 - 0.2 - 0.1 0 0.1 0.2 0.3

fl

(a)

5
PFIV, PFD V & EPF ------

GAVD Solutions o

4

3

2

0
-0.3 - 0.2 ■0.1 0 0.1 0.2 0.3

f l

(b)

Figure 6.14: GA VD Performance Analysis Using ROT Problem -  (a) NSGA-II and 

GRGA (b) GAVD (Pareto Front fo r  Independent Variables: PFIV, Pareto Front fo r  

Dependent Variables: PFD V, Estimated Pareto Front: EPF)
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PFIV —  -
P F D V & EPF

NSGA-i! Solutions 
G RG A Solutions

0.5

0.80 0.2 0.4 0.6

f l

(a)

P F IV ---------
P F D V & EPF 

GAVD Solutions

0.5

0 0.2 0.4 0.6 0.8
fl

(b)

Figure 6.15: GA VD Performance Analysis Using ZDT4 Problem -  (a) NSGA-II and 

GRGA (b) G A VD (Pareto Front fo r  Independent Variables: PFIV, Pareto Front fo r  

Dependent Variables: PFDV, Estimated Pareto Front: EPF)
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Exhaustive Search
P F IV ---------

P F D V & E P F
NSGA-II Solutions 

GRGA Solutions

3.5

2.5

0.5
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f1

(a)

P F IV ---------
P F D V & E P F  

GAVD Solutions
3.5

2.5

0.5

0.4 0.5 0.6 0.7 0.8 0.9
f1

(b)

Figure 6.16: GA VD Performance Analysis Using ZDT6 Problem -  (a) NSGA-II and 

GRGA (b) GAVD (Pareto Front fo r  Independent Variables: PFIV, Pareto Front fo r  

Dependent Variables: PFDV, Estimated Pareto Front: EPF)
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The parameters for carrying out the tests reported in this section are chosen based on 

their typical values that are used in literature for these test problems. These values 

are as follows.

♦ ROT: 100 population size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index.

♦ ZDT4: 100 population size, 250 generations, 0.8 crossover probability, 0.05 
mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index.

♦ ZDT6: 100 population size, 250 generations, 0.9 crossover probability, 0.1 
mutation probability, and simulated binary crossover with 20 crossover
distribution index and 20 mutation distribution index.

The results obtained from these tests are shown in Figure 6.14 for ROT, Figure 6.15 

for ZDT4 and Figure 6.16 for ZDT6. These results form the typical set obtained from 

10 runs with different seed values. No major variation was observed in the results 

with the change in seed values. To enable fair comparison, the termination condition 

and re-distribution of final solutions are not applied here for reporting the GRGA 

results. Also, unless otherwise stated, HDA is used with GRGA in all the tests.

6.6.2 Discussion of Results

Here, the performances of GAVD, GRGA and NSGA-II are measured, with respect 

to the goals of multi-objective optimisation (convergence to the Pareto front and 

diversity across it), using the convergence metric (y) and diversity metric (Deb et al, 

2000) (Appendix C). The lower the values of these metrics, the better is the 

performance of the given optimisation algorithm. The y and A values for the results 

reported here are shown in Table 6.6. The results obtained from each of the three test 

problems are discussed below.
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Table 6.6: Performance Metrics in ROT, ZDT4 and ZDT6

8!
NSGA-II 0.002095 1.093412

GRGA 0.000345 0.341113

GAVD 0.008573 0.347539

" S S " 0.042951 0.703519

GROA 0.249721 0.725295

GAVD 0.025735 0.698345

NSGA-II 1.853340 0.556320

GRGA 2.294010 0.428945

GAVD 0.029410 0.402756

6.6.2.1 ROT

Along with the challenges introduced by the objective functions, this problem ROT 

also has a linear dependency relationship among its decision variables (Table 6.5). 

However, this dependency relationship does not change the range of variables, 

thereby maintaining the boundaries of the search space. Hence, in this case, the 

Pareto front does not change with the introduction of variable dependence.

Since the GAVD uses a quadratic RA, it is able to accurately predict the dependency 

relationship in this case. Therefore, the GAVD converges to the true Pareto front. As 

shown in the previous chapter, the NSGA-II and GRGA converge to the original 

Pareto front, which in this case coincides with the Pareto front in the presence of 

variable dependence. Therefore, in this problem, all the three algorithms have very 

small y values as shown in Table 6.6.

Here the GRGA exhibits good distribution of solutions in this problem. Since the 

GAVD uses GRGA as the optimisation engine, it also gives a satisfactory 

distribution of Pareto optimal solutions. However, NSGA-II lacks good distribution 

in this case. These observations are supported by the values of A depicted in Table
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6.6. As shown in this table, the A values of GRGA and GAVD are similar, and are 

about one-third of the A value for NSGA-II.

6.6.2.2 ZDT4

ZDT4 is characterised by the presence of multiple local fronts. Here, a cubic 

dependency relationship is also introduced in this problem. The introduction of this 

dependency restricts the values of x2 in the [0.1,1] range, which is only a fraction of 

its original range [-5,5]. This constraint on the range of x2 changes the boundaries of 

the search space, thereby modifying the Pareto front.

In this case, the cubic nature of the dependency relationship prevents its accurate 

prediction by the quadratic RA used by the GAVD. However, since the equation that 

it predicts (Equation 6.10) contains that value of x2 (=0.5) in its range that defines the 

modified Pareto front, the GAVD does not introduce an error in its estimation. Hence 

in this case as well, the GAVD is able to converge to the modified Pareto front, 

thereby producing very small values of y. Here, the GRGA converges to the original 

Pareto front that does not take into account the dependence among decision 

variables. Since the introduction of variable dependence modifies the Pareto front, 

the results produced by the GRGA lie in an infeasible belt. Therefore, the GRGA 

gives high values of y in this problem (Table 6.6). Similar to the results shown in 

Chapter 2, NSGA-II gets trapped in a local front in this problem. However, 

incidentally in this problem, this particular local front has assumed the role of the 

global front due to the modification of the search space by variable dependence. This 

means that here NSGA-II has converged to the modified Pareto front, which gives it 

a low value of y, of the same order as that obtained from GAVD.

x, = 0.7375-0.0875%, -0.0075%^, V0 < x, < 1. EgwaüoM 6.70

Furthermore, since this problem does not exhibit any difficulty with respect to the 

diversity of solutions across the Pareto front, all the three algorithms (NSGA-II, 

GRGA and GAVD) provide satisfactory distribution of solutions. Therefore, in this 

case, all the three algorithms have nearly the same values of A.
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6.6.2.S ZDT6

This problem has a biased search space, and a cyclic dependency equation among its 

decision variables. The introduction of this dependency restricts the values of X2 in 

the [0.2,1] range, which is only a sub-set of its original range [0,1]. Therefore, 

similar to the previous problem, the introduction of variable dependence modifies the 

search space and the Pareto front in this case.

Since the given dependency equation is cyclic in nature, the GAVD is not able to 

estimate it accurately. The use of quadratic RA in the GAVD makes it see this cyclic 

dependency equation as shown in Equation 6.11. However, since the range of x2 

defined by this equation is also [0.2,1], the approximation that is introduced by the 

quadratic RA does not artificially modify the search space and the Pareto front. 

Therefore, in this problem, the GAVD converges to the modified Pareto front, giving 

very small values for y. However, both GRGA and NSGA-II cannot see the 

dependency relationships, making them converge to the infeasible regions. It is worth 

noting here that the GRGA exhibits better convergence to the original Pareto front as 

compared to NSGA-II. However, it gives a higher value of y than NSGA-II since the 

front located by it has a higher average distance from the modified Pareto front as 

compared to that located by NSGA-II.

= l - 0 . 4 x 3 - 0 . 2 x 4 - 0 . 2 ^ , V 0 < % 3  < 1 , V 0 < X 4  < 1 .

Similar to the previous case, all the three algorithms (NSGA-II, GRGA and GAVD) 

perform satisfactorily in this case with respect to the distribution of solutions. 

Therefore, the A values of all these algorithms are similar, with NSGA-II having 

slightly inferior value as compared to the other two algorithms.

6.6.3 Summary of Results

In addition to the above, the GAVD identifies the following relationships among the 

decision variables corresponding to the Pareto-optimal solutions. Comparison with 

Table 6.6 reveals that the GAVD has been able to accurately locate the Pareto front 

in each case.
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♦ ROT: Estimated Pareto front corresponds to j 2 = 0; with yi taking values in its 
range.

♦ ZDT4: Estimated Pareto front corresponds to X2 = 0.5; with xi taking values in its 
range.

♦ ZDT6: Estimated Pareto front corresponds to xz = 0.2; with Xj taking values in its 
range.

It is observed that the proposed algorithm enhances the variable dependence handling 

capabilities of GRGA. The tests reported in this section lead to the following general 

conclusions regarding the performance of GAVD.

♦ Since GAVD uses GRGA as the optimisation engine, it inherits all its features, 
listed in Chapter 5, for effectively dealing with inseparable function interaction in 
multi-objective optimisation problems. Therefore, GAVD is able to satisfy the 
two goals of multi-objective optimisation: convergence to the Pareto front and 
maintenance of diversity across the front, in complex problems.

♦ GAVD attaches an additional module to GRGA for dealing with variable 
dependence in optimisation problems.

♦ The capability of GAVD to estimate the dependence among decision variables is 
limited by the degree of the RA that it uses. Here, the RA that is used is quadratic 
in nature.

6.7 Summary

This chapter has proposed a new algorithm for dealing with variable dependence in 

multi-objective optimisation problems. As can be seen, GAVD meets all the 

objectives of its development set at the beginning of this chapter.

♦ GAVD uses a generic methodology for dealing with variable dependence. This 
methodology can be applied to a vast spectrum of optimisation problems, limited 
only by the degree of the RA that is being used.

♦ GAVD is completely modular in nature. So, it can be used to enhance the 
capability of handling variable dependence of any multi-objective optimisation 
algorithm.
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♦ GAVD exhibits the capability to handle a wide variety of dependent-variable 
multi-objective optimisation problems in terms of satisfying its two goals.

> Convergence to Pareto front.

> Satisfactory distribution o f Pareto-optimal solutions.

This chapter has achieved the following.

♦ It has identified the challenges that variable dependence poses for multi-objective 
optimisation algorithms.

♦ It has devised a generic solution strategy for handling this interaction in multi­
objective optimisation problems.

♦ It has proposed a new multi-objective optimisation algorithm, called Genetic 
Algorithm for Variable Dependence (GAVD), based on the solution strategy.

♦ It has analysed the performance of the proposed algorithm using existing test 
problems.

The previous chapter and this chapter have respectively proposed two optimisation 

algorithms (GRGA and GAVD) for handling the two categories of variable 

interaction: inseparable function interaction and variable dependence. However, 

there is a need to develop test beds that can be used for controlled testing of the 

proposed optimisation algorithms on a variety of cases that are difficult to obtain 

from real-life. The next chapter aims to develop this generic, parametric test bed that 

can handle objective functions, constraints and variable interaction in a single 

framework.
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7  DEVELOPING A TEST BED FOR  
ENGINEERING DESIGN OPTIMISATION

The development of optimisation algorithms requires systematic and controlled 

testing. However, since it is difficult to find a wide variety of real-life cases to 

support this, it is important to develop test beds that have the required features and 

enable controlled testing of algorithms. This research concentrates on the 

development of techniques for handling multiple objectives, constraints and 

interaction among decision variables in engineering design optimisation problems. It 

was identified in Chapter 4 that there is a need to develop a generic, parametric test 

bed that can simulate the complexity introduced by both the objective functions and 

constraints in a single framework. This test bed should also be able incorporate the 

two types of variable interaction: inseparable function interaction and variable 

dependence. The aim of this chapter is to propose a test bed that meets the 

requirements set above. This chapter is organised in two main parts. In the first part, 

it proposes a generic, parametric test bed for controlled simulation of multi-objective 

optimisation problems, having constraints and inseparable function interaction. In the 

second part, this test bed is extended to incorporate dependence among decision 

variables. In short, this chapter attempts to achieve the following.

■“ = = = = = ]
♦ To devise a generic strategy for test bed development

♦ To apply this strategy for proposing an optimisation test bed for 

simuiating muitipte o g i v e s ,  constraints and variahie interaction. :

♦ To develop parametric function prototypes for the proposed test bed.

♦ To present guidelines and case studies for demonstrating the use of 

the proposed test bed.

♦ To compare the proposed test bed with the existing ones. __________
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In addition, the proposed test bed is expected to possess the following features.

♦ Generic, so that it is can generate a wide variety of optimisation

♦ Unified framework, to deal with multiple objective, constraints and 

variable interaction.

♦ Parametric, to have better control on the complexity of optimisation 

problems.

> Inseparable funcion interaction

This chapter proposes two test beds. Reverse Engineered Test Bed (RETB) and 

RETB-II. The parameters that are provided in the function prototypes of these test 

beds are summarised in Table 7.1, Table 7.2 and Table 7.3.

7*1 Methodology for Test Bed Development

This chapter proposes a test bed for systematic and controlled simulation of multiple 

objectives, constraints and variable interaction in optimisation problems. The 

methodology that is adopted here for developing this test bed is given in Figure 7.1, 

and is explained below.

The first step in the development of a test bed for simulating multiple objectives, 

constraints and variable interaction is to identify the challenges, as discussed in 

Chapter 2, Chapter 5 and Chapter 6, which these features of engineering design 

optimisation problems pose for optimisation algorithms. These challenges are then 

translated into functions and their parameters that need to be controlled for attaining 

a 'truly' tuneable test bed. A strategy for the development of a tuneable test bed is 

evolved and is applied to develop the proposed test bed. The first set of parametric 

function prototypes are then developed with an aim of giving full control to the user 

over the complexity of proposed test problems. These prototypes are modified
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iteratively until they provide the functions and parameters required in the proposed 

test bed for systematic and controlled simulation of multiple objectives, constraints 

and variable interaction.

Table 7.1: Summary o f Parameters in S, D and I  Functions ofRETB

Pars. Meaning Pars. Meaning Pars. Meaning

M Number of objective 
functions k Number of variables 

defining D n Number of decision 
variables

a,- General shape of S /  
Pareto front Mi

Number of parts into 
which fh variable is 
sub-divided

k Number of variables 
defining D functions

RFTR
Cn Flag to control 

discontinuity T
Number of parts into 
which variable space is 
sub-divided

b, Height of cosine waves

b, Height of cosine 
waves a,7

Location of exponential 
function Ci Number of cosine 

waves

Ci Number of cosine 
waves by

Shape of exponential 
function Mi Number of deceptive 

fronts

d,
Spacing between 
consecutive cosine 
waves

Ri Added to sum of 
exponential functions di Height of deceptive 

exponential function

e General location of 
Pareto front 3k Location of D for purely 

unbiased Pareto fronts £ Small positive constant 
number

M Number of objective 
functions e Range of values taken 

by I function

Table 7.2: Summary o f Parameters in Cj, Cj and O? Functions ofRETB

Pars. Meaning Pars. Meaning Pars. Meaning

J Number of feasible 
belts J Number of feasible 

belts J Number of feasible 
holes

Eu
Size, location and 
distribution of 
feasible regions

mi Slope of constraint 
boundaries Ej

Location of constraint 
boundary

Ezj
Size, location and 
distribution of 
feasible regions

Eu Location of constraint 
boundaries a,y

Location and shape of 
constraint boundary

M Number of objective 
functions E*

Location of constraint 
boundaries Py

Location and shape of 
constraint boundary

a,

Same values as in 
definition of S

M Number of objective 
functions M Number of objective 

functions

Cn a.

S function parameter

a, S function parameter

b, Cn Cn

Cyclical nature of 
constraint boundary

Ci bi b,
di Ci Ci
e di d,

e e General location
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Table 7.3: Summary o f Parameters in RETB-II

Parameters Meaning

A/c Number of dependent variables

N'mdJ Number of independent variables defining lh dependent variable

N, Total number of independent variables

n Number of decision variables

Q, Number of parts into which variable space is sub-divided

Plk Polynomial

Clijk Flag to control multi-modality

bijk Height of cosine waves

Cijk Number of cosine waves

dÿk Spacing between consecutive cosine waves

Oik General location

C2ijk Flag to control deception

Mm Number of deceptive optima

9ijk Height of deceptive exponential function

Pm Value of the decision variable corresponding to deceptive optimum.

£ small positive constant number

P Mean of normal noise distribution in dependency relationship

a2 Variance of normal noise distribution in dependency relationship (<xis 
standard deviation).

C o m p ariso n

N o T e s t bed  m e ets  
requ irem ents?

Y e s

D e v e lo p m e n t o f proposed te s t bed

C o m p a riso n  a g a in s t initial 
requ irem ents

Iden tification o f functions a nd  
p a ram e te rs  requ ired  in th e  te s t bed

D evis ing  s tra teg y  fo r d e ve lo p m en t  
o f proposed te s t bed

D e v e lo p m e n t o f param etric  function  
prototypes fo r the  te s t bed

Iden tification o f  c ha llen g es  posed  by  
m ultip le  ob jectives , constrain ts  and  

variab le  interaction

Figure 7.1: Methodology for Test Bed Development
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7.2 Identification of Test Bed Parameters

This section identifies the parameters that are required to control the complexity 

introduced in an optimisation problem by multiple objectives, constraints and 

interaction among decision variables. Here, the identification of test bed parameters 

is carried out based on the challenges, as discussed in Chapter 2 and Chapter 5, 

which the above-mentioned features of real-life optimisation problems pose for 

optimisation algorithms. The parameters that are spotted in this section form the 

basis for the construction of a tuneable test bed in the next section.

There are primarily two goals that a multi-objective optimisation algorithm must 

achieve: convergence to the Pareto-optimal front and maintenance of population 

diversity across the front. In view of these two goals, the test bed parameters can be 

classified into two broad categories. The following discussion identifies the 

parameters in each of these categories that need to be controlled for attaining a 

‘truly’ tuneable test bed. Table 7.4 provides a summary of the discussion in this 

section, including a detailed list of these parameters.

7.2.1 Convergence to Pareto Front

A multi-objective optimisation problem may have features that obstruct convergence 

to the Pareto front. In general, these obstacles may lie in the entire search space, and 

as discussed below, they may be generated both by constraints and objective 

functions.

♦ Direct Hindrance to Convergence: The presence of constraints in a multi­
objective optimisation problem may create infeasible regions, causing direct 
obstacles to convergence. In order to have control on the complexity introduced 
by this feature, it is essential for the test bed to provide suitable parameters in the 
constraint function (Q  for governing the features of these infeasible regions.

♦ Indirect Hindrance to Convergence: The inherent features of some objective 
functions create indirect hindrance to convergence. In general, the relationship^ 
among the decision variables of Pareto-optimal solutions creates obstacles in 
convergence by introducing multiple local fronts that compete with the global
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front. In order to exercise control over this feature, the test bed should have a 
dedicated interaction function (7), with parameters to control the characteristics of 
these local fronts.

Table 7.4: Identification o f Test Bed Parameters

« S S S B . Z 2 S Z .
Direct Hindrance to Convergence
• Caused by constraints.
• Number, size, location, distribution and shape of 

infeasible regions.
Controlled by Constraint Functions (C)

Indirect Hindrance to Convergence
• Caused by multi-modality of objective functions.
• Number, location and distribution of multiple fronts.
• Number, location and distribution of deceptive 

fronts.
Controlled by Interaction Functions (!)

Direct Hindrance to Diversity
(a) General Features of Pareto Front
• Caused by objective functions.
• Shape and location of Pareto front.
Controlled by Shape Functions (S)

(b1) Discontinuity of Pareto Front
• Caused by objective functions.
• Number, size and distribution of disconnected 

Pareto regions.
• Size of transition from continuous to discontinuous 

feasible regions.
Controlled by Shape Functions (S)

(b2) Discontinuity of Pareto Front
• Caused by constraints.
• Number, size, location, distribution and shape of 

infeasible regions.
Controlled by Constraint Functions (C)

(c) Composition of Pareto front
• Caused by constraints.
• Number, size, location, distribution and shape of 

constraint boundaries.
• Proportion of original front vis-à-vis constraint 

boundaries.
Controlled by Constraint Functions (C)

Indirect Hindrance to Diversity
• Caused by objective functions due to bias towards 

certain regions of Pareto front.
• Number, location and extent of bias.
Controlled by Diversity Functions (D)

7.2.2 Maintaining Diversity across Pareto Front

There may be features in multi-objective optimisation problems that create obstacles 

in maintaining diversity across the Pareto front. In most cases, these obstacles lie 

close to the Pareto front, and as described below, they may be created both by 

constraints and objective functions.

♦ Direct Hindrance to Diversity: The shape of the Pareto front has a direct impact 
on the difficulty of maintaining diversity of Pareto-optimal solutions. This relates
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to the general features of the front, including its shape and location, and to the 
degree of discontinuity in the front. Further, the maintenance of diversity is also 
obstructed in cases where the Pareto front is composed of a combination of 
original front and constraint boundaries. The shape and location of the front are 
governed by the objective functions, the front composition by the constraints and 
the front discontinuity by both objective functions and constraints. The test bed 
should have a separate shape function (S) to control the general characteristics of 
the Pareto front, including the features of its disconnected regions. Further, the 
constraint function C in the test bed should have parameters for controlling the 
composition and discontinuity of the Pareto front.

♦ Indirect Hindrance to Diversity: Some objective functions have an inherent bias 
towards particular regions of the Pareto front. In order to control this indirect 
hindrance to diversity, the test bed should provide a dedicated diversity function 
(D) to control the nature of bias in the Pareto front.

In order to construct problems that have dependence among their decision variables, 

additional parameters are required that represent the challenges that variable 

dependence poses for optimisation algorithms. These challenges, along with the 

required parameters, are outlined in Table 7.5 with respect to the two objectives of 

multi-objective optimisation (convergence to Pareto front and maintaining diversity 

across it).

Table 7.5: Additional Test Bed Parameters to Incorporate Variable Dependence

Convergence t .  Pareto Front Melnlalnlng Diverelty on Pareto Front

Modification of search space

• Number, location and distribution of multiple 
fronts.

• Number, location and distribution of deceptive 
fronts.

Modification of search space

• Number, location, size and distribution of 
disconnected regions.

• Number, location and extent of bias (non-linearity).

The next section proposes a test bed that creates optimisation problems that do not 

have any dependence among decision variables. In later parts of this chapter, the test 

bed proposed in the next section is extended to incorporate variable dependence.
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7.3 Proposed Test Bed

This section proposes a parametric test bed based on the factors identified in Table 

7.4. This test bed is designed to simulate multi-objective optimisation problems, 

having constraints and inseparable function interaction (Tiwari et a l, 2001c).

7.3.1 Strategy for Development of Proposed Test Bed

Table 7.4 reveals that convergence to the Pareto front is obstructed by constraints 

and by local fronts in the search space that are generated due to the relationship^) 

among the decision variables of the Pareto-optimal solutions. Similarly, the shape of 

the front, constraints and inherent bias in the search space influence the difficulty of 

maintaining diversity of solutions across the Pareto front. In short, the design of a 

multi-objective optimisation test problem requires controlling the shape of Pareto 

front, relationship^) among decision variables of the Pareto-optimal solutions, 

inherent bias across Pareto front and nature of constraints. Therefore, the ideal 

scenario for test bed development would be to have separate functions for controlling 

each of these features. These functions and their intended roles are summarised 

below (Table 7.4).

♦ Shape Function (5): This function should be able to directly specify the shape of 
Pareto front.

♦ Diversity Function (D): This function should have the capability of controlling 
the inherent bias in the problem towards certain regions of the search space and 
towards certain parts of the Pareto front.

♦ Interaction Function (7): This function should be able to specify the interaction 
among decision variables of the Pareto-optimal solutions, thereby controlling the 
traps created by multiple local fronts in the search space.

♦ Constraint Function (Q : This function has two purposes. It should be able to 
provide controlled hindrance to convergence of solutions towards the Pareto front 
and to diversity across the front.

In order to attain maximum control over the complexity of test problems, one of the 

best alternatives would be to begin with an equation for the Pareto front, and then
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derive the objective functions based on this equation. This would also enhance the 

visibility of the problems thus constructed. The discussion that follows analyses the 

feasibility of this strategy.

In principle, there exist an infinite number of multi-objective optimisation problems 

that correspond to a given Pareto front. The aim here is to identify a particular 

problem set whose complexity can be varied in a controlled fashion using functions 

C, I, S  and D. A  simple multi-objective optimisation problem, having/; a n d /  as the 

two objective functions, is used here as an example. Here, the given Pareto front is 

defined in terms of the shape function S (Equation 7.1).

f 2 = ^ ( / ) .  Equation 7.1

Suppose an optimisation problem is generated using an arbitrary function D that 

defines / ;  (Equation 7.2). Substituting it in Equation 7.1 gives corresponding f 2 

(Equation 7.2). Since / ;  is defined as a function D of decision variables, any bias in 

function D influences the diversity of solutions across the Pareto front. Therefore, D 

plays the part of diversity function in this case. The major drawback of this strategy 

is that its search space is limited only to the Pareto front, since any arbitrary 

combination of decision variables always gives a point lying on the front.

/  = D(x \  Equation 7.2

/ = 5 ' ( / )  = ^(D(%)).

An effective way of handling this limitation is to re-define the problem such that /  is 

expressed as a product of two functions, S and /, where the function I  is defined in 

terms of those decision variables that are not included in / ;  (Equation 7.3). In this 

way, the simultaneous minimisation of /  and /  requires the function I  to be 

minimised, which drives the search towards the Pareto front. Therefore, the Pareto 

front of this problem (Equation 7.3) corresponds to the minimum of function /  (/„,,■„). 

Hence, the selection of a multi-modal function I  would create traps (local fronts) in 

the search space, thereby obstructing convergence to the global Pareto front. Further, 

in order to remain on the Pareto front the decision variables require to satisfy the 

relationship I  = Imin. Therefore, /  plays the role of interaction function in this case.
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Minimise => /] = D{xx xm ), Equation 7.3

M inim ised f 2 = S {fx) x l ( x m+{,...,xn),
Pareto _ front = > /2 = / min xS'C/, ).

To ensure the generality of the proposed test bed, the shape function S should be 

expressed as a function of both / /  and I. This puts a restraint on the test bed by 

requiring S' to be a monotonically non-decreasing function of I  for a fixed // . This 

ensures that the global Pareto front occurs for the global minimum of I  In this 

way, a generic multi-objective optimisation test bed can be achieved in which the 

shape of Pareto front, the relationship^ among variables that defines this front and 

the hindrance to diversity across the front are explicitly controlled by functions S, I  

and D  respectively. This test bed and its Pareto front are given in Equation 7.4. The 

formal definition of this test bed is presented in the discussion that follows.

M inim ised f  =Z)(x1,...,xm), Equation 7.4
Minimise => / 2 = S ( f f ) x l  (xm+l 
Pareto _ front =^>/2 -  / min * S ( f f ^ n ).

7.3.2 Proposed Reverse Engineered Test Bed (RETB)

The strategy for test bed development described above explains how a multi­

objective optimisation problem can be reverse engineered to correspond to a given 

Pareto front, relationship^ among variables corresponding to the Pareto-optimal

solutions and hindrance to diversity. Therefore, the proposed test bed is termed here

as Reverse Engineered Test Bed (RETB). RETB and its equation for Pareto front are 

formally stated in Equation 7.5. For the sake of simplicity, the three RETB functions 

Z), S and I  are chosen such that they take only positive values in the search space. 

Further, to ensure that the Pareto front corresponds to I  min, S  is chosen to be a 

monotonically non-decreasing function of I  for a fixed /}. Also, the chosen S should 

monotonically decrease in f  for a fixed /, if a continuous Pareto front is desired. The 

roles of functions D, S, I  and C in simulating the complexity of multi-objective 

optimisation problems are discussed in Section 7.3.1, and summarised in Table 7.4.
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M inim ised  = D{x'), Equation 7.5
M inim ised f 2 = *S(/1,/)x /(x " ) ,
Constraints => C = Cj (x) >0, j  = 1,2,..., J , 

x'Ux"= x = Vector_of_decision^yariables,

Pareto_ front => / 2 = / min * S ( f x, / min).

M inim ised  f  = D^(x'), Equation 7.6

Minimise => / 2 =D2 (x"),
Minimise => f =  S { fx, f 2, ï ) x  I(x"  ' ),
Constraints => C = Cj (x) > 0 ,j = 1,2,...,/, 
x,Ux"Ux'"= x = Vector_of_decision_variables,

RETB can also be extended to more than two objectives. The RETB scheme and its 

Pareto front for a three-objective optimisation problem are stated in Equation 7.6. 

Here, the functions Dj, Dj, S, I  and C carry similar interpretations as in the two- 

objective case.

7.4 Function Prototypes for RETB

This section develops parametric function prototypes for RETB, which give full 

control to the user over the complexity of proposed test problems. The basic forms of 

these prototypes are derived from existing test functions in optimisation, and from 

known equations in other areas of research. These basic forms are customised here to 

incorporate the parameters that are required for controlling the complexity 

introduced in the optimisation problems by multiple objectives, constraints and 

variable interaction.
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7.4.1 Diversity Function (D )

Equation 7.7 defines the function prototype for diversity function D. The main

features of this function prototype are listed below.

♦ The main purpose of diversity function D is to introduce bias towards certain 
regions of the search space, and towards certain parts of the Pareto front. 
Therefore, the exponential function, due to its inherent non-linearity, is chosen 
here for defining the function D. This introduces an inherent bias in the problem 
towards certain regions of the search space. This leads to test problems with 
biased Pareto fronts.

♦ In order to provide scalability with respect to number of biased Pareto regions, 
the test bed sub-divides the variable space and defines different exponential 
functions for each sub-space. This explains the use of different parameters in the 
D function for each of the sub-spaces. In this way, Equation 7.7 is able to 
generate multiple biased Pareto regions, having pre-defined locations and 
strengths.

♦ The parameter of the exponential function is the product of a constant term and a 
function of The constant part controls the strength of bias introduced by the D 
function whereas the variable part is designed in such a way that the exponential 
function sees it ranging from 0 to 1 in each of the sub-spaces.

♦ The exponential part of the D function is multiplied by a parameter and the result 
is added to another parameter. Both these parameters control the location of bias 
in the search space. The choice of these parameters also ensures that the overall 
D function has a maximum value of 1. As will be seen later (Equation 7.10), this 
simplifies the equation of the RETB Pareto front.

The parameters used in Equation 7.7 and their influences on the complexity of RETB

are discussed below.

♦ M: It is the total number of objective functions in the problem.

♦ k: It is equal to the number of variables defining D. Higher values of k contribute 
to the biased nature of the search space.

♦ Me. It is the number of equal parts into which the span of ith variable is sub­
divided. Mi influences the total number of biased regions in the Pareto front.
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♦ T\ It is the total number of equal parts into which the whole variable space is sub­
divided. Therefore, T is  equal to the total number of biased regions in the Pareto 
front.

♦ ay: This parameter influences the location of exponential function defined for the 
j th part of the i th variable. In this way, ay  directly controls the location of bias in 
the Pareto front.

♦  by: This influences the shape of exponential function defined for the j th part of the 
ith variable. A higher value of b y  implies a stronger contribution to the bias by the 
corresponding ay.

♦ SVSSù This indicates the ith Sub-set of Variable Search Space (SVSS) of the 
problem. All SVSSfs are mutually exclusive and their union gives the whole 
Variable Search Space (VSS).

♦ Rû This is a constant value that is added to the sum of exponential functions 
corresponding to each SVSSt. The role of R fs  is to ensure that the biased regions 
on the Pareto front occur at required locations. Further, Ri values may also be 
chosen such that the maximum value of the corresponding objective function 
(fkmax) is 1. As will be seen later (Equation 7.10), this simplifies the equation of 
the RETB Pareto front.

k M,-

) =  Z  Z  DiA* ' ) +  R(-*'), V /  =  1,..., M  - 1 ,  VO < x , ^  < 1,
M y=l

Equation 7.7

(l-exp(-6,.))

( 7 - 1 )

1-exp
— h X; ---

( 7 - 1 )  
Mi 7

M,
M, ' M,

M,
D ,(f )  = 0 ,V x ,> ^ r,

ra s= U 5 'ras i,

‘i
T = U Mr

7=1
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Equation 7.7 can also be simplified to Equation 7.8, in case of problems having 

purely unbiased Pareto fronts.

Dl (x' ) = [l -  x , ], V/ = 1,...M -1 , VO < .X, <1. Equation 7.8

Figure 7.2: An Example o f Diversity Function D (k=2; Mi=2,2; T=4; 

aij=0.1,0.1,0.1,0.2; 1,5,1,3; R ^O ,0.2,0.5,0.7)

Suppose it is required to construct a D  function that ranges from 0 to 1, and exhibits 

four biases at the values of 0.2, 0.5, 0.7 and 1.0 in increasing orders o f their 

strengths. Figure 7.2 depicts this diversity function D. The main features of this 

function are as follows.

♦ Since only one D function is defined here, the problem has only two objective 
functions {M=  2).

♦ The given function D  is defined by two variables (k = 2), and the span o f each of 
these variables is divided into two equal parts (M  = 2,2). This implies that the 
whole search space is divided into 4 equal parts (T = Mj x M 2). The given 
function D  takes different parameters and hence different forms in each o f these 
sub-spaces (SVSSj's).

♦ The values of ay (= 0.1, 0.1, 0.1 and 0.2) and Ri (= 0, 0.2, 0.5 and 0.7) are chosen 
such that the biased regions occur at D values of 0.2, 0.5, 0.7 and 1.0. The choice 
of these parameters also ensures that the overall D  function has a minimum value 
of 0 and a maximum value of 1. As mentioned earlier, the choice of D max (or 
fimax) equal to 1 simplifies the equation of the RETB Pareto front.

♦ The values of by (= 1, 5, 1 and 3) ensure that the maximum bias occurs at the D 
value of 1, followed by the biases that correspond to the D  values of 0.7, 0.5 and 
0.2 in that order.
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7.4.2 Shape Function (5)

The function prototype for shape function S  is given in Equation 7.9. The main

features of this function prototype are listed below.

♦ As evident from this equation, the function S  is monotonically non-decreasing 
with respect to I  for fixed f i s .  This ensures that the Pareto front corresponds to 
Imim thereby preserving the basic philosophy of RETB.

♦ The S function should monotonically decrease in^'s for a fixed /, if  a continuous 
Pareto front is desired. In order to attain a discontinuous Pareto front, the 
function prototype of S  relaxes this condition by using a cosine function that 
gives it a cyclical shape. This creates a discontinuous Pareto front since S  is no 
longer monotonically decreasing in f i s  for a fixed I. However, the function 
prototype of S  provides a flag variable that is multiplied to the cosine function. 
Hence, the discontinuity in S  could be switched off by setting this flag variable to 
0.

♦ The parameter of the cosine function is the product of a constant term and a 
function o î f .  The constant term controls the number of discontinuous fronts and 
the function offi controls the spacing between the discontinuous fronts.

♦ The cosine function is multiplied by a function oîfi that controls the variations in 
the sizes of the discontinuous fronts.

♦ Added to the cosine function and its multiplier is another function of fi that 
influences the general shape of the Pareto front (concave/convex/linear).

♦ Finally, the S function has a constant term that influences the general location of 
the Pareto front.

Following is the list of parameters used in Equation 7.9, along with their influences

on the complexity of RETB.

♦ M: This is equal to the total number of objective functions.

♦ ac. This parameter directly influences the general shape (with respect to fi) o î S 
and that of the corresponding Pareto front. A value of a, greater than 1 gives a 
concave front and a value less than 1 gives a convex front.
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♦ bf. It determines the height of cosine waves with respect to the ith objective
function. A higher 6, implies more variations in the sizes of the disconnected 
Pareto regions.

♦ a: It is equal to the number of cosine waves in the range of fi. This gives the 
number of disconnected Pareto regions in the optimisation problem.

♦ cn- It is a flag to indicate whether the optimisation problem is discontinuous with 
respect to f .  cn takes a value of 0 for continuous fronts and a value of 1 for 
discontinuous fronts.

♦ dr. This parameter influences the spacing between consecutive cosine waves in 
thefy-fi space. Higher values of dt lead to more closely packed regions.

♦ e: It decides the general location of Pareto front. Higher values of e push the 
Pareto front towards higher values offy.

♦ bi x di. This product gives an indication of the shape of transition from 
continuous to discontinuous feasible regions in the fy-fi space. Higher values of 
this product indicate the presence of a long narrow feasible tunnel leading to the 
Pareto front.

The equation of Pareto front, for all fimax and Imin equal to 1, is given in Equation

/max /

/"max y

V J i max y

Equation 7.9

/=i VA"

M-l f  J" V'

7.10.

/ M = 2(M -  l)e -  X) [(Z )“' + <hi (ft f  cos(27rcf i f  Y‘ )1
Equation 7.10

/= i

vo< /;. < i ,vz= i,...,m - i .

EC Techniques for Handling Variable Interaction 175



Chapter 7. Test Bed Development

Figure 7.3: An Example o f Shape Function S (M=3; ai=2,0.4; cjj=J,J; bi=l,4;

Ci=4,7; d,=2,4; e=8)

Suppose it is required to construct a shape function S for a problem that has 3 

objective functions. This function S is required to be concave with respect to the first 

objective function and convex with respect to the second. It is required to have 40 

discontinuous Pareto surfaces arising from 5 and 8 discontinuous fronts 

corresponding to the first and second objective functions respectively. Also, the 

Pareto surfaces with respect to f 2 are required to be closer and with larger variations 

in their sizes as compared to those with respect to f .  This shape function S is plotted 

in Figure 7.3. The main features of this function are as follows.

♦ Since this problem has three objective functions, M  takes a value of 3.

♦ In order to have concave and convex shapes for S with respect to the first and 
second objective functions respectively, ai takes a value of 2 (greater than 1) and 
ti2 takes a value of 0.4 (less than 1).

♦ Since in this case the Pareto front is discontinuous with respect to both the first 
and second objective functions, the values of cu and c/j are both chosen to be 1. 
In order to attain 5 and 8 discontinuous fronts corresponding to the first and 
second objective functions respectively, ci takes a value of 4 ( = 5 - 1 )  and c2 
takes a value of 7 (= 8 - 1). This gives a total of 40 (= 5 x 8) discontinuous Pareto 
surfaces.

♦ A higher value of b2 (= 4) than bi (= 1) produces discontinuous Pareto surfaces 
that have more variations in their sizes with respect to f 2 than // . Similarly, a
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higher value of (= 4) than dj (= 2) leads to discontinuous Pareto surfaces that 
are more closely packed with respect to_/} than//.

♦ e is arbitrarily given a value of 8.

7.4.3 Interaction Function (7)

Equation 7.11 gives the function prototype for the interaction function I. The main

features of this function prototype are listed below.

♦ Since this function needs to be minimised to obtain the Pareto front, a cosine 
function is used in its definition to obtain multiple fronts in the function search 
space. The parameter of this cosine function controls the number of local Pareto 
fronts in the search space.

♦ To ensure that these fronts are created at different locations, an exponential 
function is multiplied to the cosine function. The parameter of this exponential 
function controls the concentration of local Pareto fronts in the search space.

♦ Similarly, deception is introduced in the function search space using an 
exponential function that exhibits sudden drop at a given value of decision 
variable, but remains zero otherwise.

♦ The above-mentioned function is multiplied by another exponential function that 
prevents the deceptive fronts from coinciding with each other. The parameter of 
this exponential function controls the concentration of deceptive Pareto fronts in 
the search space. Equation 7.11 also provides parameters to control the number 
of deceptive fronts.

♦ Finally, the I  function provides a parameter that allows Imin to be 1. As evident 
from Equation 7.10, this simplifies the equation of Pareto front.

The various parameters used in Equation 7.11, together with their significance, are

discussed below.

♦ n: This is equal to the total number of decision variables in the problem.

♦ k\ This is equal to the number of variables that define the D functions (/)/,..., 
Dm-i \ where M  is the number of objective functions in the problem). Therefore, 
these k variables form the X ’-space and the remaining (n-k) variables form the 
X ’ -space that defines the I  function.
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be. This parameter controls the height of cosine waves with respect to the itl 
decision variable. A higher value of 6, implies greater concentration of fronts 
towards the centre of function search space.

d'. It is equal to the number of cosine waves in the range of X/. This gives the 
number of local Pareto fronts in the function search space.

Mf. This is equal to the number of deceptive fronts corresponding to the variable

♦ dû This parameter controls the height of the deceptive exponential function 
corresponding to the ith decision variable. A higher value of dt implies that the 
deceptive fronts are farther away from each other.

♦ e\ This controls the range of values taken by the I  function, e should be chosen 
such that Imin is equal to 1. As evident from Equation 7.10, this simplifies the 
equation of Pareto front.

♦ d. This is a small positive constant number used with the deceptive exponential 
function.

" r / m Equation 7.11
I(x") = 2 e -  2 ^ |exp(-6,x, ) cos(/rc;.x;. jj-

i=k+i

M :

E E
i=k+\ j=\

exp%x.)exp
X ;---

M, ,V 0< x,. < l,Vz = k + \,...,n.

Equation 7.11 could be simplified to Equation 7.12 to represent problems having a 

single Pareto front, with no biased region parallel to the Pareto front.

7(x") = 2e + X2,V0<X2 <1. ÆgrwafmM 7.72

Suppose an interaction function I  is required to be constructed for a problem that has 

2 variables, with one variable defining the I  function. The function I  is required to 

have 5 local Pareto fronts that have low concentration, and 3 deceptive fronts that are 

far apart from each other. Figure 7.4 depicts this I  function. The main features of this 

function are as follows.
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♦ Being a 2-variable problem, the parameter n takes a value of 2 in this case. Since 
one variable defines I, the value of & is 1 (= 2 - 1), which is the number of 
variables that define the D functions.

♦ The parameter ci is given a value of 4 to attain 5 (= 4 + 1) local Pareto fronts. 
The value of 6/ is chosen to be 1 to have low concentration of these fronts.

♦ The parameter Mi is given a value of 3 to attain 3 deceptive Pareto fronts. The 
value of di equal to 2 makes the deceptive fronts far apart from each other.

♦ The value of e is chosen to be 4.38 so that Imin takes a value of 1. As mentioned 
earlier, this simplifies the equation of the Pareto front.

♦ Finally, the choice of s  equal to 0.004 is arbitrary.

10

9

B

7

6
5

4

3

2

1 10.4 0.6 0.80 0.2
x2

Figure 7.4: An Example o f Interaction Function I  (n=2; k=l; bi=l; Ci=4; M i= 3;

di=2; e=0.004; e=4.38)

7.4.4 Constraint Function (C)

As evident from Table 7.4, constraints can create three types of difficulties for multi­

objective optimisation algorithms. The function prototypes for the three types of 

constraints that individually specialise in simulating each of these difficulties are 

discussed below.
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7AAA  Pareto Blocking Constraints

Constraints can create direct hindrance to convergence by completely blocking the 

Pareto front. They may also render the Pareto front infeasible, thereby making one of 

their boundaries as the feasible front for the given optimisation problem. The 

function prototype for this type of constraints is given in Equation 7.13. The main 

features of this equation are given below.

♦ These constraints constitute bands of infeasible regions that are parallel to the 
Pareto front. In order to ensure that the boundaries of these regions are parallel to 
the Pareto front, constant terms are added to the S function to define the 
boundaries. These constant terms could be used to control the size, distribution 
and location of infeasible belts with respect to the Pareto front.

♦ The number of infeasible belts could also be varied using the parameters in 
Equation 7.13.

The various parameters used in this equation and their significance are discussed

♦ M: This is equal to the number of objective functions in the optimisation 
problem.

♦ S  Function Parameters: In this C; equation, all S function parameters are given 
the same values as used in the problem definition of S. Since the unchanged 
parameters control the shape of constraint boundaries, this ensures that these 
boundaries are parallel to the Pareto front. In this way, constraints that 
completely block the Pareto front are achieved.

Equation 7.13
v ...

E2i

V  ...
Elj + 3(1},-.., f M-\ 5 A nin )

E\J — fltf ~
. . .V.. .V

E l J  +  ‘S'C ./l ’ •••> / m - 1  ’ Anin )

VO<A<Amax,Vi = l , _ ,M - l  

below.
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Figure 7.5: Examples o f  Constraint Functions C - (a) Pareto Blocking Constraints 

(Cj) (J=4; Eij=-0.1,0.4,1.5,2.9; E 2j= 0.1,0.9,2.1,3.7; M=2; ai=0.6; cn=0; e= l) (b) 

Pareto Intersecting Constraints (C2) (J=5; m ^ l ;  E/j= -0.1,0.5,1.5,2.9,4.7; 

E2j= 0 .1,0.9, 2.1,3.7,5.7; M=2; aj=0.6; C u = 0 ;  e=l) (c) Composite Constraints (C3)  

(J=2; Ej=l,2; aij=0.9,0.2; Pij=2.5,4; M=2; a^O .6 ; C n = 0 ;  e=l)
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♦ Eij, E2f. The choice of appropriate Eij and E2j  values enables the design of 
feasible regions having required size, location and distribution. Higher values of 
Eij move the constraints away from the original Pareto front, towards higher 
values of /n- Further, the more the difference between Eij and E2J, the bigger is 
the size of the corresponding feasible belt. The difference between E2j and Ejj+i 
also determines the separation between feasible belts. Eij and E2J also control the 
feasibility under constraints of the original Pareto front.

♦ J: The total number of feasible belts in the search space is determined by the 
parameter J.

Suppose a Pareto blocking constraint that has four feasible belts needs to be 

constructed. It is required that the Pareto front remains feasible but is blocked by the 

infeasible belts. Figure 7.5(a) depicts this constraint function. The main features of 

this function are as follows.

♦ Being a 2-objective problem, the value of M  is 2 in this case. Since there are 4 
feasible belts in this problem, the value o f / i s  4.

♦ In order to ensure that the Pareto front remains feasible, the values o f E n  and E2i 
are chosen to be -0.1 and 0.1 respectively. The values of other E jj's (= 0.4, 1.5,
2.9) and E2Js (= 0.9, 2.1, 3.7) are chosen to make the feasible belts and their 
separation gradually increase in size as their distance from the Pareto front 
increases.

♦ All S  function parameters are given the same values as used in the problem 
definition of S (ai = 0.6, cu  = 0, e = 1) to ensure that the constraint boundaries 
are parallel to the Pareto front.

7.4.4.2 Pareto Intersecting Constraints

The second category of constraints introduces direct hindrance to diversity by 

making some parts of Pareto front infeasible. This leads to discontinuous Pareto 

fronts that create diversity problems for the optimisation algorithms. Equation 7.14 

gives the function prototype for this type of constraints. The main features of this 

function prototype are discussed below.

♦ The boundaries of the infeasible belts introduced by these constraints are defined 
using a linear equation that cut away parts of Pareto front using infeasible belts
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passing through the front. The coefficients of this equation control the orientation 
of constraint boundaries with respect to the Pareto front, and its intercept controls 
the size, location and distribution of infeasible regions.

The number of infeasible belts could also be varied using the parameters in 
Equation 7.14.

M - \  M - \

,V

..V

V. . .

Equation 7.14
2̂ = — I m — -^21 V  '

/=1 i'=l

M -l M -l

exj+Y.mifi -  /«  -  Eij+
i=l Z=1

M - l  M -l

Eu + - f u  -  e 2j +
1=1 Z=1

The parameters used in this equation have the following significance.

♦ M: This is equal to the number of objective functions in the optimisation 
problem.

♦ ra/: This is equal to the slope of constraint boundaries with respect to f .  m/’s 
should be chosen in such a way that the constraint boundaries have required 
orientation with respect to the Pareto front. An easy way of ensuring this is to 
determine the ends of the Pareto front using its equation (Equation 7.10). This 
information can now be used to determine m/s such that the constraint 
boundaries have required orientation.

♦ J: This is equal to the total number of feasible belts in the function search space.

♦ Eij, E2f. These parameters control the location of constraint boundaries 
corresponding to the j th feasible belt. Higher values of Ejj move the constraints 
towards higher values off N. Further, the more the difference between Eij and £ 2/, 
the bigger is the size of the corresponding feasible belt. The difference between 
E2j  and Ejj+i also determines the separation between feasible belts. In this way, 
Ejj and E2j  control the size, location and distribution of feasible regions.

Suppose it is needed to construct a Pareto interesting constraint that introduces 5

feasible belts. It is required to create discontinuities in the unconstrained Pareto front

using the separation between these feasible belts. Figure 7.5(b) depicts this constraint

function. The main features of this function are as follows.

EC Techniques for Handling Variable Interaction 183



Chapter 7. Test Bed Development

♦ Being a 2-objective problem, the value of M is 2 in this case. Since there are 5 
feasible belts in this problem, the value of J  is 5.

♦ The values of EjJs (= -0.1, 0.5, 1.5, 2.9, 4.7), E^-'s (= 0.1, 0.9, 2.1, 3.7, 5.7) and 
m/ (= 1) are chosen such that the constraint boundaries intersect the Pareto front, 
thereby introducing the discontinuities. The choice of these parameters also 
ensures that the feasible belts and their separation gradually increase in size as 
their distance from the Pareto front increases.

7.4.4.S Composite Constraints

There are also cases when the constraint boundaries intersect the original Pareto front 

in such a way that the new front becomes a combination of original front and 

constraint boundaries. Due to this composite nature of the constraints, maintenance 

of diversity becomes a problem. Equation 7.15 gives the function prototype for this 

type of constraints. The main features of this function prototype are listed below.

♦ This Cs function takes a form that is similar to the shape function S, thereby 
enabling better control over the intersection of the constraint boundaries with the 
unconstrained Pareto front. This function also provides parameters to control the 
shape, cyclical nature and location (with respect to the original Pareto front) of 
the constraint boundaries.

♦ The number of constraints could also be varied using the parameters in Equation
7.15.

The parameters used in this equation provide the following control.

♦ M\ This is equal to the total number of objective functions in the optimisation 
problem.

♦ Ef. This parameter influences the location of the j th constraint boundary with 
respect to the original Pareto front. Higher values of Ej move the constraint 
boundary away from the original Pareto front, towards higher values offy.

♦ J\ This is equal to the total number of feasible holes in the function search space.

♦ P[j, ciif. These parameters control the location and shape of the j th constraint 
boundary with respect to the ith objective function. Decreasing the value of <z,y and 
increasing the value of Py both have the influence of pulling the constraint 
boundary away from the original Pareto front, towards lower values of fy.
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Increasing Pÿ also makes the constraint boundary steeper. Finally, the difference 
between a,y and a, (a parameter in the equation of original Pareto front -  Equation
7.10) explains the dissimilarities in general shapes of Pareto front and the 
constraint boundary.

en, bi, Ci, di, e\ The first four of these parameters control the cyclical nature of the 
constraint boundary and the fifth controls its general location. By giving these 
parameters the same values as those used in the problem for the corresponding 
parameters of shape function S, it can be ensured that the constraint boundary has 
the same cyclical nature and general location as the Pareto front.

M - \z
i=\

p„ / ,  v ''
V V i  max J  

(  /

COS 2nC: f t

V i max J

+ cXi

. . .A

V f  i max J

Equation 7.15

A

M - \zJ=1
' J l.  V i

V i max V
+  C\i

V V i  max y

/
(  f  \

V
COS 2 n c i J  i

V V f  i max y y

A .. .

. . .A M - \z
1=1

p, rj j _ v "
V V i  max y

+  C\i
V J  i max /

/
( f  1

dP
cos 2m  t J i

V V f  i max y y

Suppose it is required to construct a composite constraint that is composed of 2 

constraints leading to a new Pareto front, which is made up of a combination of the 

original Pareto front and the two constraint boundaries. Figure 7.5(c) depicts this 

constraint function. The main features of this function are as follows.
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♦ Being a 2-objective problem, the value of M is 2 in this case. Since there are 2 
constraints in this problem, the value of J  is 2.

♦ The values of e (= 1), Py (= 2.5, 4), ay (= 0.9, 0.2) and Ej (=1,2)  are chosen such 
that the constraint boundaries intersect the Pareto front, thereby leading to a new 
Pareto front that is a combination of the original Pareto front and the two 
constraint boundaries. The other parameters in Equation 7.15 take the same 
values as those in the problem definition of S (ai = 0.6, cu = 0).

NoAre constraints desired?

Yes

Specify desired problem features

Choose a suitable type of constraint

Give suitable values to parameters 
of interaction function I

Give suitable values to parameters 
of diversity function D

Give suitable values to parameters 
of shape function S

Give suitable values to parameters 
of constraint function C

Figure 7.6: Steps for Using Reverse Engineered Test Bed (RETB)

7.5 Guidelines for Use o f RETB

The following steps can be used as guides for using RETB to construct a test 

problem with desired features. Figure 7.6 presents a flow chart that can be used to 

design test problems using RETB.
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♦ Step 1 : Specify the problem features in terms of the desired complexity of Pareto 
front, relationship^ among decision variables of the Pareto-optimal solutions, 
hindrance to diversity and nature of constraints.

♦ Step 2: Give suitable values to the parameters of the diversity function D 
(Equation 7.7, Equation 7.8), based on the problem features defined in Step 1.

♦ Step 3 : Repeat the above process for the shape function S (Equation 7.9).

♦ Step 4: Also repeat the above process for the interaction function I  (Equation
7.11, Equation 7.12).

♦ Step 5: If a constrained optimisation problem is desired, choose a suitable type of 
constraint function C (Pareto blocking - Equation 7.13, Pareto intersecting - 
Equation 7.14 or composite - Equation 7.15), and give appropriate values to its 
parameters based on the nature of constraints desired in Step 1.

To further facilitate the development of test problems using RETB, a pictorial 

representation of the proposed test bed is given in Figure 7.7. This figure presents a 

tree diagram that facilitates the stepwise selection of RETB functions and 

parameters, based on pre-defined problem features. It should be noted that Equation

7.16, mentioned in this figure, refers to the function prototypes for single objective 

optimisation problems. This equation is developed as a special case of the prototypes 

proposed in the previous section.

f ( x i,...,xn) = 2He-£ [(* /)" ' + c , ,W ' c o é p tc W  I  Equation 7.16
7=1

M ;

IE
i=\ j= \

exp(gj.Tj)exp
2\

,V0< jq <l,Vz =l,...,re,
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RETB Optimisation Problems

Single Objective 
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Multi-objective 
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Multi-dimensional
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(S:a<l)
Concave
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Biased PF 
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(f:c,rO) Single PF Multiple PÈ

77-% 7.72; 77-%. 7.77;
Multi-modal

Uni-modal

Non-dec eptive PF Deceptive PFj 
77.7W)=(% |

Non-deceptive Deceptive 
(f:M=0)

Figure 7.7: Tree Diagram for Constructing RETB Optimisation Problems (PF:

This section illustrates the use of the above-mentioned guidelines to select RETB 

parameters for constructing three multi-objective optimisation problems, having pre­

defined characteristics. The three test cases are chosen such that they form a 

representative set of the characteristics of multi-objective optimisation problems. 

Table 7.6 lists the desired features of these test cases. As can be seen from this table, 

the test cases thus created incorporate a variety of features of multi-objective 

optimisation problems: discontinuous Pareto front, inherent bias on Pareto front, 

interaction among variables corresponding to the Pareto-optimal solutions (leading to 

multiple local fronts), and constraints.

The parameters in S, D, I  and C functions of these test cases are determined based on 

their pre-defined features, as listed in Table 7.6. Table 7.7 gives the RETB parameter
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values for the three test cases. The reasons behind the selection of these parameter 

values are also stated in this table. Further, Figure 7.8, Figure 7.9 and Figure 7.10 

present pictorial representations of these test cases by depicting the results of 

exhaustive search applied on them. These figures aid in visual validation of the test 

functions by confirming that their characteristics conform to the pre-defined problem 

features (Table 7.6), which guided their development. To support the process of 

validation, Figure 7.8, Figure 7.9 and Figure 7.10 also show the global Pareto fronts.

Table 7.6 : Features o f  RETB Test Cases

■EST
• Two objectives
• Convex and continuous S 

(Pareto front)
• Biased D (biased region on 

Pareto front)
• Multi-front (multiple local 

Pareto fronts)
• No constraints

• Two objectives
• Convex and discontinuous 

S (Pareto front)
• Biased D (biased region on 

Pareto front)
• Multi-front (multiple local 

Pareto fronts)
• No constraints

• Two objectives
• Convex and continuous S 

(Pareto front)
• Biased D (biased region on 

Pareto front)
• Multi-front (multiple local 

Pareto fronts)
• Pareto blocking constraints 

with infeasible Pareto front

Table 7.7: RETB Parameters Values for Test Cases -  (a) Case-1 (b) Case-2 (c)

Case-3

(a)

Reasoning P“ Reasoning pvrrr
M 2 2 objectives k 1 1 variable 

defining D n 2
2 variable- 
problem

a,- 0.6
< 1 for 
convex 
Pareto front

Mi 1 1 biased region 
on Pareto front k 1 1 variable 

defining D

Cn 0
To attain 
continuous 
Pareto front

T 1 Product of Mis bi 2 Arbitrary

b , NA - a,y 1 Arbitrary Ci 8 (8+1 )=9 local 
Pareto fronts

C; NA - bij 4 Arbitrary M, 0 No deceptive 
front

d, NA - R i 0 So that f,max is 1 di NA -

e 1 For simplicity a* NA - £ NA -

e 1 So that Imin is 1
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Table 7.7: RETB Parameters Values for Test Cases -  (a) Case-1 (b) Case-2 (c)

Case-3 (contd.)

Parameter
Values Reasoning Parameter

Values Reasoning Parameter
Values Reasoning

M 2 2 objectives k 1 1 variable 
defining D n 3 3 variable- 

problem

a, 0.4 <1 for convex 
Pareto front M i 1 1 biased region 

on Pareto front k 1 1 variable 
defining D

Cil 1
To attain 
discontinuous 
Pareto front

T 1 Product of M/s b, 1,1 Arbitrary

b, 1 Arbitrary a,y 1 Arbitrary Ci 2,4
(2+1)x(4+1)=15 
local Pareto 
fronts

Cj 4
(4+1)=5
disconnected 
Pareto regions

bu 3 Arbitrary M i 0 No deceptive 
front

d, 2 Arbitrary R, 0 So that fjmax is 1 d, NA -

e 1 For simplicity a* NA - E NA -

e 1.5 So that Imin is 1

(c)

s .
Reason­

ing VaTs.
Reason­

ing *
Reason­

ing S i T

M 2 2
objectives k 1

1
variable
defining
D

n 2
2
variable-
problem

J 4 4 feasible 
belts

a,- 0.6

< 1 for 
convex 
Pareto 
front

M, 1

1 biased 
region on 
Pareto 
front

k 1

1
variable
defining
D

Eu

0.3,
0.9,
1.9,
3.3

To make 
Pareto front 
infeasible, 
and attain 
required 
size and 
separation 
of
constraint
boundaries

Cn 0

To attain 
continuous 
Pareto 
front

T 1 Product 
of M/s bi 2 Arbitrary E2J

0.5,
1.3,
2.5,
4.1

bi NA - a* 1 Arbitrary Ci 8
(8+1)=9 
local 
Pareto 
fronts

M 2 2 objectives

Ci NA - bt 4 Arbitrary Mi 0
No
decep­
tive front

a,- 0.6
Same
values as in
S (to have
constraint
boundaries
parallel to
Pareto
front)

di NA - R, 0 So that
flmax is 1 di NA - c« 0

e 1 For
simplicity a* NA - £ NA - bi NA

e 1 So that
Imin is 1 Ci NA

di NA
e 1
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Exhaustive Search 
Pareto Front

Figure 7.8: Search Space ofRETB Case-1

Exhaustive Search 
Pareto Front
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7
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Figure 7.10: Search Space ofRETB Case-3

7.7 RETB-II: Extension

Variable Dependence

As mentioned in Chapter 4, there is a complete lack of test problems in literature that 

can simulate dependent-variable multi-objective optimisation problems. This section 

attempts to extend RETB to enable it to carry out controlled testing of the 

performance of optimisation algorithms in the presence of variable dependence. 

Hence, the test bed that is proposed in this section is given the name Reverse 

Engineered Test Bed -  II (RETB-II). Since variable dependence is defined by the 

nature of variables rather than by that of the objective functions and constraints, it 

can be treated independently of them. Therefore, RETB simulates the complexities 

that are introduced by objective functions and constraints, whereas RETB-II extends 

RETB to include the complexities that are introduced by the nature of variables. In 

this way, the parametric equations defined for RETB are also valid for RETB-II, with 

the addition of equations that are presented in this section for modelling variable 

dependence.
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In order to perform controlled simulation, RETB-II should have parameters that 

represent the challenges that variable dependence poses for optimisation algorithms. 

These challenges, which are outlined in Table 7.5, form the basis for the 

development of RETB-II, as discussed in this section.

7.7.1 Number of Dependency Relationships

Since RETB-II utilises explicit equations to model dependence among decision 

variables, the number of dependency relationships is equal to the number of 

dependent variables desired in the problem (Nj). Since the bounds on dependent 

variables are treated as constraints, increasing the value of Nd has an effect of making 

the search space more constrained. This makes it more difficult for an optimisation 

algorithm to work in the feasible region, as defined by variable dependence, and 

locate optimal solutions. To avoid cyclic dependencies and to maintain the 

consistency of dependent and independent variables, the DC is used while defining 

the dependency equations. The DT can also be used to visualise the relationship 

among variables.

7.7.2 Nature of Dependency Relationships

In this test bed, the nature of dependency relationships is controlled by the 

dependency equations. The following parametric equation (Equation 7.17) can be 

used, in conjunction with the DC/DT, to define the dependency relationships. The 

basic form of these prototypes is derived from existing test functions in optimisation, 

and from known equations in other areas of research. These basic forms are 

customised here based on the specific requirements of this research. The main 

features of Equation 7.17 are given below.

♦ This function is provided with a polynomial function that directly controls its 
degree of non-linearity. In this way, the bias in the search space is controlled.

♦ This function also has a cosine function that introduces multiple fronts in the 
search space and produces multiple basins of attraction across the Pareto front.
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♦ The parameter of the cosine function has two parts. The first part is a constant 
term that controls the number of multiple fronts and basins of attraction in the 
search space. The second part that is a function of xy controls the distribution of 
the multiple fronts and basins of attraction.

♦ The cosine function is multiplied by another function of xy that also has an effect 
on the distribution of the multiple fronts and basins of attraction.

♦ The cosine function has a multiplier whose value can be set to 0 in order to 
switch-off its effects.

♦ Similarly, deception is introduced in the search space using an exponential 
function that exhibits sudden drop at a given value of decision variable, but 
remains zero otherwise.

♦ The above-mentioned function is multiplied by another exponential function that 
prevents the deceptive regions from coinciding with each other. The parameter of 
this exponential function controls the concentration of deceptive regions in the 
search space. Equation 7.17 also provides parameters to control the number of 
deceptive fronts.

♦ This exponential function has a multiplier whose value can be set to 0 in order to 
switch-off its effects.

♦ Equation 7.17 also provides the facility of sub-dividing the search space that 
allows different dependency equations to be defined for each of the sub-spaces. 
In this way, discontinuity can be introduced in the optimisation problem, and its 
nature can be controlled using the parameters provided in Equation 7.17.

♦ Equation 7.17 also provides the parameters for controlling the general location of 
the dependency relationship in the search space.

Here, the DC/DT should be used such that each Xdi and xy correspond to a given 

decision variable in the problem where n is the total number of decision

variables. In this case, x^’s always correspond to different dependent variables, but 

Xÿ’s may correspond to the same independent variable. It should be noted that the 

sequence of independent variables has an influence on those GAs whose 

performance is dependent on variable sequence. Hence, sequencing of variables may 

be controlled to influence the difficulty for some optimisation algorithms. With the 

increase in separation between the dependencies of a variable in the GA
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chromosome, the difficulty of a problem increases due to the enhanced probability of 

the ‘good’ building blocks being broken by the recombination operators (Pelikan et 

a/., 1999).

xdi = FunctioniXy ), VO < Xy < 1 Equation 7.17

xdik = '2‘Nindjeik + Pik (xij ) ~~ \pujk (vy ) 7 cos {̂ TTCyf, (x.. ) J )]
y=i

Nw,i,i

- Zy=i
Vz = ,\/j = l,...,Nindj,V k  =

vss, ={Jsvsstt,
k=l

</,=r)svss,t,
k=l

xdi = Dependent _Variables(i = ),

xdik -  Function_ Definition_of _ i th _ Dependent_ Variable_
-SKss,.,

Xy — Independent_ Variables_ Defining_ith _ Dependent_

Variable(i =

The parameters used in the above-mentioned equation and their significance are 

discussed below.

♦ « : This is equal to the total number of decision variables in the problem.

♦ Nil This is equal to the total number of independent variables in the problem. 
Higher Nt implies greater complexity in the problem.

♦ Nindj- This is equal to the number of independent variables that define the ith 
dependent variable. The complexity of a dependency equation increases with the 
increase in the value of this parameter.

♦ Nd'. This parameter is equal to the number of dependent variables in the problem. 
Higher Nd implies greater complexity in the problem.

♦ Qù It is the total number of parts into which the variable space, corresponding to 
the ith dependent variable, is sub-divided. Since the function parameters may take 
different values for each part of the variable space, Qi influences the total number

C2ijkjk X exp(g#x,y)exp r x,)-P , ^
/=1

ijlk
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of disconnected regions in the Pareto front. Higher values of this parameter 
indicate higher numbers of disconnected regions in the function search space, and 
hence more complexity.

♦ SVSSik'. This indicates a Sub-set of Variable Search Space (SVSS) of the problem 
for the ith dependent variable. The subscript k is an index for numbering the sub­
sets. Since the problem has Qi sub-sets for the ith dependent variable, the value of 
k  ranges from 1 to Qi. Further, all SVSSik s are mutually exclusive. This makes 
their intersection a null set. Also, the union of all SVSSik s gives the whole 
Variable Search Space (VSS) for the ith dependent variable. The way in which 
SVSSik s are designed controls the location, size and distribution of disconnected 
regions in the function search space.

♦ VSSf. It indicates the Variable Search Space for the i h dependent variable. Its 
relevance to the test bed development is described in the discussion for SVSSik.

♦ Pik. This is a polynomial that is defined in terms of x,/s. It directly influences the 
general shape of a dependency relationship (in SVSSik) with respect to xy’s. The 
degree of Pik influences the complexity of this relationship. The parameters Pik s 
control the number, location and extent of bias in the function search space.

♦ bijk'. It determines the height of cosine waves (in SVSSik) with respect to the 
decision variable xy. In this way, it controls the distribution of optimal values in 
the dependency relationship. A higher 6#  implies more variations in these values.

♦ Cijk'. It is equal to the number of cosine waves (in SVSSik) in the range of Xÿ. This 
gives the number of optima in the dependency relationship. Higher values of this 
parameter increase the complexity of the dependency relationship.

♦ cnjk'. It is a flag to indicate whether the dependency relationship is multi-modal 
(in SVSSik) with respect to xy. cnjk takes a value of 0 for uni-modal equations and 
a value of 1 for multi-modal equations.

♦ C2 ijk: Similarly, is a flag to indicate whether the dependency relationship (in 
SVSSik) is deceptive with respect to xy. C2yk takes a value of 0 for non-deceptive 
equations and a value of 1 for deceptive equations.

♦ dyk’. This parameter influences the spacing between consecutive cosine waves in 
the dependency relationship. Therefore, it directly controls the distribution of 
points that correspond to the optimal values of the dependent variables (in 
SVSSik), with higher values of dyk leading to closer points.
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♦ eik. It decides the general location of the dependency equation. Higher values of 
eik push the equation towards higher values of the dependent variable (in SVSSik). 

eik should be chosen in such a way that the dependency equation takes only 
positive values.

♦ Mijk'. This is equal to the number of deceptive optima (in SVSSik) corresponding to 
the variable %  Higher values of this parameter lead to higher complexity.

♦ gijk'. This parameter controls the height of deceptive exponential function (in 
SVSSik) corresponding to the decision variable xy. Since deceptive optima 
correspond to the maximum values of these functions, the parameter gyk controls 
the values of the dependent variable corresponding to the deceptive optima. A 
higher value of gyk implies that the deceptive optimal values are farther away 
from each other.

♦ pijik'. This parameter gives the value of the decision variable xy  (in SVSSik) 

corresponding to its Ith deceptive optimum. Using these parameters, the location 
of the points that lead to deceptive optima can be controlled.

♦ This is a small positive number used with the deceptive exponential function to 
ensure that it exhibits a sudden drop at a given value of the decision variable.

7.7.3 Nature of Available Information

As mentioned in Chapter 2, there are two categories of dependent variable 

optimisation problems: with and without dependency equations. The above 

discussion proposed a test bed that simulates those dependent variable optimisation 

problems in which the dependency equations are known. However, in many real-life 

problems, these equations are not known explicitly. In these problems, multiple sets 

of measured variable values are known from which the optimisation algorithms need 

to infer the dependency relationships. This adds another dimension to the challenges 

posed by these problems. In order to simulate this feature, Equation 7.17 is modified 

to get the following equation (Equation 7.18).

xdi = xdi + Normal{ju,(7 2),\/i = l,...,Nd. Equation 7.18

In this case, the data for the independent variables are generated in a random fashion 

whereas those for the dependent ones are obtained using the above equation. In this
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equation, the second term is added to introduce an error in the data generated by the 

previously mentioned equation for Since xcu ’ simulates the data that is 

measured/calculated in real-life, the introduction of this term makes the data more 

realistic. The parameters used in the above equation and their significance are 

discussed below.

♦ Nd'. This is the number of dependent variables in the problem. Higher Nci implies 
greater complexity in the problem.

♦ Xdi This gives the data corresponding to the ith dependent variable.

♦ Xdù This defines the nature of the dependency relationship for the ith dependent 
variable. The value of this term is obtained using the equation that was proposed 
earlier for % . The parameters in this equation are chosen based on the desired 
behaviour of the dependency relationships.

♦ Normal(ju,c?)\ This term is used to introduce noise in the dependency 
relationships. This noise is normally distributed with mean p and variance c? (a  
is the standard deviation). This term could also be made to follow another 
continuous variable distribution, such as Uniform, Triangular, Exponential, 
Lognormal, Gamma, Weibull, Beta, Geometric, Negative Binomial, 
Hypergeometric, Logistic, Pareto, Extreme Value and Gaussian. A value of ju 
equal to 0 keeps the data centred at the relationship defined by the equation for 
Xdu Any change in // from 0 moves the data away from this equation. Similarly, 
the parameter cr influences the distribution of data around the equation for % . 
Higher values of cr imply wider distribution around this equation. An increase in 
the absolute values of ju and <j  make it more difficult for the optimisation 
algorithm to predict the real underlying relationship among the decision 
variables. This increases the complexity of the optimisation problem.

7.8 Guidelines for Use o f RETB-II

The following simple steps are guides for using RETB-II to construct test problems 

with desired features. Figure 7.11 presents a flow chart that can be used to design test 

problems using RETB-II.

♦ Step I: Fix the number of dependent (NJ) and independent (M) variables in the 
problem. The sum of these two parameters gives the total number of variables in
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the problem (ri). Decide the relative sequence of these variables based on the 
desired complexity.

♦ Step II: Identify the characteristics that are desired in the dependency 
relationships. Use these in conjunction with DC/DT to choose the parameters in 
the equations for % 's.

♦ Step III: To design a problem in which multiple sets of variable values define the 
dependency relationships, use the equation for %  ’ to generate the data. The mean 
and distribution of noise around the relationship defined by %  are controlled 
using the appropriate parameters provided in the equation for %  ’.

N o

Y e s

Is dependency data required?

C hoose parameters in xd/’ equations

Generate data using these equations

Identify the desired features of 
dependency relationships

Based on these features and DC/DT, 
choose parameters in xdj equations

Determine the number and 
relative sequence of dependent (Nd) 

and independent (N )̂ variables

Figure 7.11: Steps for Using Reverse Engineered Test Bed -  II  (RETB-II)

7.9 RETB-II Case Studies

In this section, four RETB-II case studies are presented; each of which specialises in 

a particular challenge that variable dependence poses for optimisation algorithms. In 

this way, these examples illustrate all the challenges that are listed in Table 7.5. The 

characteristics of variable dependence associated with these examples are as follows.
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♦ Example 1 : Biased problem.

♦ Example 2: Multi-front problem.

♦ Example 3: Deceptive problem.

♦ Example 4: Problem with discontinuous function search space.
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Figure 7.12: Original Search Space fo r  RETB-II Examples 1, 2, 3 & 4 (Assuming

Independent Variables)

For these examples, the objective functions are defined using RETB. In order to 

concentrate on the challenges introduced by variable dependence, the RETB 

parameters are chosen in such a way that the objective functions (without variable 

dependence) give a simple problem that has no bias and multi-modality (Equation 

7.19). The main features of this independent-variable problem and the corresponding 

objective functions are as follows. The search space for this problem is also given in 

Figure 7.12.

♦ Two objectives.

♦ Convex and continuous S/Pareto front.

♦ Unbiased D (uniform Pareto front).

Exhaustive Search 
Pareto Front

m i
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♦ Uni-modal /  (single Pareto front).

♦ No constraints.

D (? )  = l- j:,,V 0 < x , <1, 7.79

7 (? ')  = 2-%2,V0<X2 ^1,
^(yi,;) = 6 - ( y ; / 7 r ,
/  = D (f ) ,

7)x/(%"),

Pareto_ front f 2 = 6 - ( / 1)°'4,V0 < f  <1.

7.9.1 Exam ple 1: Biased Problem

A non-linear variable dependence is introduced in the above problem to attain a 

biased search space. The steps that are given below for the development of this test 

problem are based on the guidelines presented in the previous section.

7.9.1.1 Step 1

Here, the variable is assumed to be dependent on two independent variables (xj 

and xf) that are introduced in this problem. The variable xj is also assumed to be 

independent. This gives a value of 1 to Nd (x2), a value of 3 to M (*;, U, xj) and 

hence a value of 4 to % (M/ + N f  To concentrate on the effects of the dependency 

equation, the two dependencies of x2 (xj and x4) are arranged close to each other in 

the GA chromosome. This is attained by placing the variables in the order of their 

indices.

7.9.1.2 Step 2

In order to attain a biased search space, a non-linear dependency equation needs to be 

developed for x2 in terms of x2 and x4. This guides the selection of parameters for the 

required dependency equation, as shown in Table 7.8. This equation is given below 

(Equation 7.20) and is also graphically represented in Figure 7.13.

x2 = l-0 .1 x 3 -0.2xj - 0.3x 4 - 0.1x 42 - 0.3x 3x 4, Equation 7.20

V 0<x3 < l,V 0 < x 4 <1.
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Table 7.8: Parameter Values for RETB-II Examples -  (a) Example I: Biased 

Problem and Example 2: Multi-front Problem (b) Example 3: Deceptive Problem 

and Example 4: Discontinuous Problem

(a)

Eexample 1: Biased Problem Example 2: Multi-front Problem
Parameter

Values Reasoning Parameter
Values Reasoning

A/d 1 1 dependent variable A/d 1 1 dependent variable

blind,i 2 2 variables defining 
dependent variable Nind,i 2 2 variables defining 

dependent variable

N i 3 3 independent variables N i 3 3 independent variables

n 4 4-variable problem n 4 4-variable problem

Q , 1 To attain continuous 
function search space Q , 1 To attain a continuous 

function search space

P ik
Degree

2

To get a non-linear 
dependency equation; 
coefficients are chosen to 
attain minimum value of 0

P ik
Degree

2

To get a non-linear 
dependency equation; 
coefficients are chosen to 
attain minimum value of 
0.2

Cnjk 0 No cyclic terms Ciijk 0.3 Not equal to 0 (to get a 
cyclic term)

b jjk NA - b ijk 1 Arbitrary

Cijk NA - Cijk 1 Arbitrary

d ijk NA - d ÿ k 1 Arbitrary

Oik 0.25
To attain maximum value 
of dependent variable 
equal to 1

Oik 0.25
To attain maximum value 
of dependent variable 
equal to 1

C2ijk 0 No deceptive terms C2ijk 0 No deceptive terms

M ijk NA - M ijk NA -

Qijk NA - Qijk NA -

P m NA - P m NA -

s NA - s NA -

p NA - M 0 To have the data centred 
on the equation for x2

<J NA - a 0.05 To attain a distribution of 
about 10%
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Table 7.8: Parameter Values for RETB-II Examples -  (a) Example 1: Biased 

Problem and Example 2: Multi-front Problem (b) Example 3: Deceptive Problem 

and Example 4: Discontinuous Problem (contd.)

(b)

Example 3: Deceptive Problem

Parameter
Values Reasoning Parameter

Values Reasoning

N d 1 1 dependent variable N d 1 1 dependent variable

blind,i 1 1 variable defining 
dependent variable NjndJ 1 1 variable defining 

dependent variable

N i 2 2 independent variables N i 2 2 independent variables

n 3 3-variable problem n 3 3-variable problem

Q i 1 To attain continuous 
function search space Q , 2 To attain a discontinuity in 

the function search space

Pm
Degree

2

To get a non-linear 
dependency equation; 
coefficients are chosen to 
attain minimum value of 0 
and maximum value of

Pik
Degree

2,2

To get non-linear 
dependency equations for 
the two discontinuous 
parts; coefficients are 
chosen to attain minimum 
value of 0 and maximum 
value of 0.9

T Ciijk 0 No cyclic terms Ciijk 0,0 No cyclic terms in the two 
discontinuous parts

Fa 4 bjjk NA - bijk NA -

Cijk NA - Cijk NA -

dijk NA - dÿk NA -

Oik 0.1
To attain minimum value of 
0 and maximum value of 
£1

Gik 0,0.05
To attain minimum value of 
0 and maximum value of 
0.9

C2ijk 1 Not equal to 0 (to get a 
deceptive term) C2ijk 0,0 No deceptive terms

Mijk 1 1 deceptive optimum Mijk NA -

Qijk 0.0957
To attain minimum value of 
0 and maximum value of 
s i

Qijk - NA -

Pijlk 0.5 To attain deception at 
variable value of 0.5 Pijlk NA -

£ 0.004 Arbitrary, small, positive £ NA -

M NA - P 0 To have the data centred 
on the equation forx2

(J NA - a 0.05 To attain a distribution of 
about 10%
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Figure 7.13: Dependency Relationship in RETB-II Example 1: Biased Problem 

7.9.1.3 Step 3

Since in this problem, the dependency equation is assumed to be known, it is not 

required to generate data for representing the dependency relationship. Hence, in this 

case, Step 3 is omitted. For the sake of illustration, the exhaustive search 

corresponding to this problem is given in Figure 7.14. The non-linearity of the search 

space is evident from this figure.
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Figure 7.14: Exhaustive Search fo r  RETB-II Example 1: Biased Problem

Exhaustive Search 
Pareto Front
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7.9.2 Example 2: Multi-front Problem

In this problem, the dependency relationship introduces multiple local fronts in the 

search space. The steps involved in creating this problem are as follows.

7.9.2.1 Step 1

As in the previous case, the variable xj is assumed to be dependent on two 

independent variables (vj and X4) that are introduced in this problem. The variable xi 

is also assumed to be independent. This gives a value of 1 to Nd (xj), a value of 3 to 

Ni (x/, x3, X4) and hence a value of 4 to « {Nd + Nt). As in Example 1, the independent 

variables are arranged in the order of their indices in the GA chromosome.

Figure 7.15: Dependency Relationship in RETB-II Example 2: Multi-front Problem 

7.9.2.2 Step 2

In order to attain a search space with multiple local fronts, a cyclic dependency 

equation needs to be developed for xj in terms of xj and X4 . This guides the selection 

of parameters for the required dependency equation (Equation 7.21), as shown in 

Table 7.8. This equation is given below and is also graphically represented in Figure 

7.15.
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x 2 = 1 -  0.1 :̂3 -  0.3 :̂3 cos2 (2^v3 ) -  0 2 x 4 -O .lx j , Equation 7.21

V 0<x3 <1,V 0<^4 <1.

7.9.2.3 Step 3

In this problem, the dependency equation is assumed to be unknown. Therefore, 

multiple sets of variable values are created using the above-mentioned equation for 

X2 in the equation for Xdi In this case, the noise values are obtained with mean {/a) of 

0 (to have the data centred on the equation for X2) and variance (c/) of 0.05 (to give a 

distribution of about 10%). The equation that is used for generating variable values is 

given below.

x2 = x 2 -\-Normal{0,0.05) Equation 7.22
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Figure 7.16: Exhaustive Search fo r  RETB-II Example 2: Multi-front Problem

For the sake of illustration, the exhaustive search corresponding to this problem is 

given in Figure 7.16. Here, the global Pareto front corresponds to the global 

minimum of the /  function, which occurs at the global maximum of the X2 function. 

The two local fronts in the figure correspond to the two minima of cos2 function (that 

create the two local maxima of the X2 function), and the global Pareto front 

corresponds to the global maximum of the xj function. Further, since X2 now varies

Pareto Front

Local Fronts
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from 0.2 to 1, as opposed to 0 to 1 in the case of independent variables, the upper 

part of the search space gets truncated.

7.9.3 Example 3: Deceptive Problem

Here, a test problem is created that has deceptiveness in its search space due to 

dependence among its decision variables. The steps involved in constructing this 

problem are as follows.

7.9.3.1 Step 1

In this case, the variable X2 is assumed to be dependent on a newly introduced 

independent variable (%,). The variable xj is also assumed to be independent. This 

gives a value of 1 to Nd (x j, a value of 2 to M (xy, xj) and hence a value of 3 to tz {Nd 

+ Ni). As in previous examples, the independent variables are arranged in the order of 

their indices in the GA chromosome.

1.2

0.8

0.6

0.4

0.2

0

- 0.2
0.40.2 0.6 0.80

x3

Figure 7.17: Dependency Relationship in RETB-II Example 3: Deceptive Problem
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7.9.3.2 Step 2

In order to attain a deceptive search space, a dependency equation with a deceptive 

optimum is developed for X2 in terms of vj. This guides the selection of parameters 

for the required dependency equation, as shown in Table 7.8. This equation is given 

below (Equation 7.23) and is also graphically represented in Figure 7.17.

f x  _ q  5 V Equation 7.23
x 2 = l-0 .2 -3 .3 9 6 ;r3 +3.396*3 + exp(0.0957*3 ) exp(- 

V0<*, <1.
0.004 ),

Exhaustive Search 
Pareto Front

0.2 0.4 0.6
f l

0.8

Figure 7.18: Exhaustive Search for RETB-II Example 3: Deceptive Problem

7.9.3.3 Step 3

Since in this problem, the dependency equation is assumed to be known, it is not 

required to generate data for representing the dependency relationship. Hence, in this 

case, Step 3 is omitted. The exhaustive search corresponding to this problem is given 

in Figure 7.18. It can be seen from this figure that there is a deception in the search
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space, which corresponds to the deceptiveness in the relationship of xj in terms of 

This situation arises because in this problem the global Pareto front corresponds to 

the global maximum of x2, which is an isolated optimum.

7.9.4 Example 4: Discontinuous Search Space Problem

Here, the aim is to construct a problem with a discontinuous search space. The 

RETB-II steps involved in constructing this problem are as follows.

7.9.4.1 Step 1

In this case, the variable is assumed to be dependent on a newly introduced 

independent variable (x3). The variable xj is also assumed to be independent. This 

gives a value of 1 to Nj (%2), a value of 2 to M (%/, %?) and hence a value of 3 to « (Nd 

+ Ni). As in previous examples, the independent variables are arranged in the order of 

their indices in the GA chromosome.

0.6

0.2

0 0.2 0.4 0.6 0.8
x3

Figure 7.19: Dependency Relationship in RETB-II Example 4: Discontinuous

Problem
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7.Q.4.2 Step 2

In order to attain a discontinuous search space, a dependency equation that has a 

discontinuity is developed for in terms of vj. This guides the selection of 

parameters for the required dependency equation, as shown in Table 7.8. This 

equation is given below (Equation 7.24) and is also graphically represented in Figure 

7.19.

jc, = 0.2%, + 0 .6 ^ , VO < x, < 0.5, 7.24

x2 =0.1+ 0.2x3 +0.6*3,V0.5<*3 <1.

7.9.4.S Step 3

In this problem, the dependency equation is assumed to be unknown. Therefore, 

multiple sets of variable values are created using the above-mentioned equation for 

%2 in the equation for xm In this case, the noise values are obtained with mean (ju) of 

0 (to have the data centred on the equation for *2) and variance (</) of 0.05 (to give a 

distribution of about 10%). The equation that is used for generating variable values is 

given below (Equation 7.25).

x2 = *2 + 77ormti!/(0,0.05). Equation 7.25

The exhaustive search corresponding to this problem is given in Figure 7.20. Here, 

the global Pareto front corresponds to the global minimum of the I  function, which 

occurs at the global maximum of the *2 function. Since the introduction of 

dependence changes the global maximum of *2 from 1 to 0.9, the part of the search 

space that corresponds to the values of *2 between 0.9 and 1 becomes infeasible. This 

gives a new Pareto front to the search space. As revealed in Figure 7.19, the 

dependency equation also exhibits a discontinuity that makes a certain band of the 

values of *2 infeasible. This leads to discontinuity in the search space corresponding 

to these values of *2. It should be noted that in this problem the variable search space 

would also be discontinuous, and would take the shape of two disjoint rectangles to 

reflect the discontinuity gap in the values of *2- Unlike this problem, all the previous 

test problems reported here have continuous, rectangular variable search spaces.

EC Techniques for Handling Variable Interaction 210



Chapter 7. Test Bed Development

12 

1 1  

10 

9

2 8 

7 

6 

5 

4
0 0.2 0.4 0.6 0.8 1

fl

Figure 7.20: Exhaustive Search for RETB-II Example 4: Discontinuous Problem

A closer look at RETB reveals that there are two functions D and /  that are defined in 

terms of the decision variables. In all the above problems, the variable X2 was treated 

as dependent. Since this variable defines the /  function, the introduction of variable 

dependence creates features that obstruct only convergence to the Pareto front. These 

features, which are introduced parallel to the Pareto front, include bias, multiple 

fronts, deception and discontinuity. Let us consider the other case, when the variable 

xj is treated as dependent. This has an effect of varying the function D that controls 

diversity across the Pareto front. Hence, introduction of dependency equations, 

similar to the ones used in the above examples, would have the following influences 

on the search space.

♦ Non-linear/Multi-dimensional Function: Bias towards certain parts of the Pareto 
front.

♦ Cyclic Function: Multiple basins of attraction across the Pareto front.

♦ Deceptive Function: Deception on the Pareto front.

♦ Discontinuous Function: Part of the Pareto front is rendered infeasible.

Exhaustive Search 
Pareto Front (No Dependence! 

Pareto Front (With Dependence)
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Table 7.9: Dependency Chart (DC) -  (a) Examples 1 & 2 (b) Examples 3 & 4

(a)

Deperidency
Char (DC) / :■ ; X, % X.

x, 1

! | D 1 1

| l w m im
X.

(b)

Variables

Equations

Finally, it is worth mentioning that in all the above examples, the DC and DT were 

used to guide the development of dependency equations. The DC and DT 

corresponding to all the above examples are given in Table 7.9 and Figure 7.21 

respectively.

(a) (b)

Figure 7.21: Dependency Tree (DT) -  (a) Examples 1 & 2 (b) Examples 3 & 4

7.10 RETBIRETB-II versus Existing Test Beds

RETB presents a generic tuneable framework for the development of test functions. 

It is capable of controlled simulation of three features of real-life optimisation 

problems: multiple objectives having inseparable function interaction and
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constraints. Since RETB provides handles for controlled variation of its complexity, 

it is able to determine the extent to which a given optimisation technique is capable 

of handling a specified feature of real-life problems.

Due to its tuneable nature, RETB has a clear advantage for real-life simulation over 

the non-tuneable test problems, mentioned in Chapter 2. These non-tuneable test 

beds are static in nature, i.e., they do not provide parameters for varying their 

complexity levels. This prevents them from being used as controlled testing beds for 

optimisation algorithms. Furthermore, as opposed to RETB, these test beds also do 

not provide the facility of explicitly analysing the performance of optimisation 

algorithms with respect to each aspect of multi-objective optimisation.

Deb (1999b) suggested a basic tuneable framework that is capable of constructing 

multi-objective optimisation problems having varying degrees of complexity. RETB, 

on the other hand, uses a ‘reverse engineering’ strategy that constructs multi­

objective optimisation problems to correspond to a given Pareto front, 

relationship(s)/interaction among variables of Pareto-optimal solutions, hindrance to 

diversity and nature of constraints. Another drawback of Deb’s (1999b) work is that 

he does not propose generic, parametric function prototypes for his test bed. This 

prevents systematic and controlled analysis of the optimisation algorithms. RETB, on 

the other hand, proposes parametric prototypes for each of its four test bed functions: 

S, D, I  and C. This allows stepwise increments in difficulty of the test bed, with 

respect to each aspect of complexity. In this way, RETB is able to systematically 

analyse optimisation algorithms, thereby successfully overcoming the drawback of 

Deb’s (1999b) framework. Recently, Deb et a l (2001) presented a parametric 

function prototype for constraints that enables controlled variation of the challenges 

that they pose for multi-objective optimisation problems. However, this work also 

has drawbacks since the systematic analysis of multi-objective optimisation 

algorithms that is facilitated by this approach focuses only on constraints, without 

addressing its interactions with the complexity introduced by the objective functions. 

As opposed to this, RETB takes a complete picture of constrained multi-objective
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optimisation through its four function prototypes (S, D, I  and C), which individually 

represent the four critical aspects of real-life optimisation.

The effectiveness of RETB is further enhanced due to its extension to RETB-II that 

is capable of constructing optimisation test problems that have dependence among 

their decision variables. Since there are no test problems reported in literature for 

variable dependence, RETB-II is unique in its capability of testing optimisation 

algorithms in the presence of dependence among decision variables.

This makes RETB/RETB-II more effective than the existing test beds. This is 

because unlike other test function development schemes, they simulate the core 

issues associated with multiple objectives, constraints and variable interaction, rather 

than their symptoms. The ‘reverse engineering’ strategy adopted here also enables a 

more intensive interpretation of each term of the proposed test bed, in terms of its 

relevance to the complexity of optimisation problems thus created. In this way, 

RETB/RETB-II provide controlled testing of optimisation algorithms with respect to 

multiple objectives, constraints and variable interaction in engineering design 

optimisation problems.

7.11 Summary

This chapter has proposed two test beds, RETB and RETB-II, for controlled 

simulation of multiple objectives, constraints and variable interaction in engineering 

design optimisation problems. As shown below, RETB and RETB-II together meet 

all the objectives for their development set at the beginning of this chapter.

♦ RETB and RETB-II provide a generic methodology for the development of test 
problems. So, they can generate a wide variety of optimisation problems, having 
varying degrees of complexity levels.

♦ They provide a unified framework, for controlled testing of optimisation 
algorithms with respect to three features of real-life engineering design 
optimisation: presence of multiple objectives, constraints and variable 
interaction.
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♦ They provide generic, parametric prototypes for each of the functions in their 
definition. This provides better control on the complexity of optimisation 
problems thus generated, thereby enabling systematic and controlled analysis of 
the optimisation problems.

♦ They provide explicit functions/parameters to control the complexity introduced 
by the two types of variable interaction.

> Inseparable function interaction.

> Variable dependence.

This chapter has achieved the following.

♦ It has identified the factors that need to be controlled for simulating multiple 
objectives, constraints and variable interaction in engineering design optimisation 
problems.

♦ It has devised a generic strategy for test bed development.

♦ It has applied this strategy for proposing two test beds, Reverse Engineered Test 
Bed (RETB) and RETB-II, for simulating multiple objective, constraints and 
variable interaction.

♦ It has developed parametric function prototypes for the proposed test beds.

♦ It has presented guidelines and case studies that demonstrate the use of the 
proposed test beds.

♦ It has finally compared the proposed test bed with the existing ones.

The last three chapters (Chapter 5, Chapter 6 and Chapter 7) have focused on 

interaction among decision variables. Chapter 5 and Chapter 6 have respectively 

proposed two EC techniques, GRGA and GAVD, for handling inseparable function 

interaction and variable dependence in multi-objective optimisation problems. This 

chapter has proposed two generic, parametric test beds, RETB and RETB-II, that can 

handle multiple objective functions, constraints and variable interaction in a single 

framework. The next chapter applies these test beds for analysing the performance of 

GRGA and GAVD.
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8  PERFORM ANCE ANALYSIS OF 
GRGA/GAVD USING RETB/RETB-II

This chapter analyses the performance of GRGA and GAVD using the two test beds, 

RETB and RETB-II, developed in the previous chapter. Here, a high-performing, 

novel multi-objective optimisation algorithm, NSGA-II, is also included in the 

analysis to enable the comparison of GRGA and GAVD with the state-of-the-art 

reported in literature. This chapter attempts to achieve the following.

♦ To develop a

presence of multiple objectives,

GRGA and

♦ To analyse the experimental results.

based on this analysis.

8.1 Case Study Development

This section constructs three multi-objective optimisation problems, having pre­

defined characteristics, and uses them for comparing the performances of GRGA, 

GAVD and NSGA-II. The three test cases are constructed such that they together 

represent the presence of multiple objectives, constraints and interaction among 

decision variables in engineering design optimisation problems. However, explicit 

constraints are not included in these test cases since the presence of variable 

dependence in these problems has the effect of constraining the search space. This is 

because the bounds on dependent variables are treated as constraints. Hence, to focus 

on the complexity introduced by variable dependence, explicit constraints are 

avoided in the test cases. Here, RETB is first used to define the objective functions
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based on the desired features of these test cases (as listed in Table 8.1). As can be 

seen from Table 8.1, the test cases thus created incorporate a variety of features of 

multi-objective optimisation problems: discontinuous Pareto front, inherent bias on 

Pareto front and multiple local fronts. RETB-II is then applied to each of these test 

cases to introduce the desired nature of dependency among decision variables. Since 

most real-life optimisation problems do not have explicit dependency equations, 

RETB-II introduces variable dependency in these three test cases by providing 

multiple sets of variable values. From this information, the GAVD needs to infer the 

dependency relationships. These data are created using the equation for 

(Equation 7.18), and involve noise terms with mean (//) of 0 (to have the data centred 

on the equation for % ) and variance (</) of 0.05 (to give a distribution of about 

10%). The equation that creates this data from %  is given below (Equation 8.1).

xdi = xdi + Normal{0,0.05) Equation 8.1

The three test cases are presented in the discussion that follows.

Table 8.1: Test Cases

• Two objectives
• Two variables
• Convex and continuous S  

(Pareto front)
• Biased D (biased region 

on Pareto front)
• Multi-front (multiple local 

Pareto fronts)
• No constraints

• Two objectives
• Two variables
• Convex and discontinuous 

S (Pareto front)
• Biased D (biased region 

on Pareto front)
• Multi-front (multiple local 

Pareto fronts)
• No constraints

• Four objectives
• Four variables
• Convex and continuous S  

(Pareto front) with respect 
to fi and fz, concave and 
continuous S (Pareto 
front) with respect to f3

• Biased Dj and D2 (two 
biased regions on Pareto 
front); unbiased D3

• Single front (Dependency 
scenario 3.1)

• Multi-front (multiple local 
Pareto fronts) 
(Dependency scenario 
3.2)

• No constraints

8.1.1 Case-1

As shown in Table 8.1, this problem has multiple local fronts and a biased region on 

the Pareto front. Based on these features, RETB parameters are given appropriate 

values, as shown in Table 8.2. Equation 8.2 and Equation 8.3 show the equations
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corresponding to this problem. This problem is also pictorially depicted in Figure 

8.1.

jD(5') = ~ eXP^~4X'^  V° -  - 1  Equation 8.2

I(x")  = 2 - exp(-2x2) cos(8^x2),VO< x2 < 1,

^  = x y ; , / ) x /(%").

=> = 2 - ( / ; ) ° \  EgwarfOM &3

Here, two variable dependency scenarios are introduced in this problem. Since 

GAVD uses RA to model the dependence relationships, the first scenario is created 

such that it can be exactly modelled by GAVD, whereas the second needs to be 

approximated by it. Both the scenarios are non-linear, with one having cyclic 

features.

Table 8.2: RETB Parameter Values fo r  Case-1

Parameter
Values

Parameter
Values

M 2 2 objectives k 1 1 variable 
defining D n 2 2 variable- 

problem

a, 0.6
< 1 for 
convex 
Pareto front

M, 1 1 biased region 
on Pareto front k 1 1 variable 

defining D

O il 0
To attain 
continuous 
Pareto front

T 1 Product of Mis b, 2 Arbitrary

bi NA - a,y 1 Arbitrary Ci 8 (8+1 )=9 local 
Pareto fronts

Ci NA - btj 4 Arbitrary M i 0 No deceptive 
front

d, NA - R i 0 So that fimax is 1 d i NA -

e 1 For simplicity a* NA - £ NA -

e 1 So that Lin is 1
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6

5 

4 

3 

2 

1
0 0.2 0.4 0.6 0.8 1

f1

Figure 8.1: Case-1 

8.1.1.1 Dependency Scenario 1.1

GAVD uses non-linear (quadratic) multi-variable RA to model the dependence 

among variables. In order to allow GAVD to exactly model the dependence, the 

equation that is constructed in this scenario is of degree two, with no cyclic and 

deceptive terms. This equation is defined in terms of two independent variables (xj 

and X4). The RETB-II parameters that make this equation are given in Table 8.3, and 

the corresponding equation is given below (Equation 8.4). This dependency equation 

is pictorially depicted in Figure 8.2.

x 2 = 1 -  0.1*3 - 0 .2x32 - 0 .3 ^  - 0 .\x] - 0.3^3x 4, Equation 8.4
V0<^3 < l , V 0 < x 4 < 1 .

Exhaustive Search 
Pareto Front

ISI
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Table 8.3: RETB-II Parameter Values for Case-1

Dependemcy Scenario 1.1 Dependency Scenario 1.2
Parameter

Values Reasoning Parameter
Values Reasoning

A/d 1 1 dependent variable A/d 1 1 dependent variable

N indJ 2 2 variables defining 
dependent variable blind,i 2 2 variables defining 

dependent variable

M 3 3 independent variables Ni 3 3 independent variables

n 4 4-variable problem n 4 4-variable problem

Q, 1 To attain continuous 
function search space Q, 1 To attain a continuous 

function search space

Pm
Degree

2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain minimum value of 0

Pm
Degree

2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain minimum value of 
0.2

C lijk 0 No cyclic terms Cnjk 0.3 Not equal to 0 (to get a 
cyclic term)

b ijk NA - b /jk 1 Arbitrary

Cijk NA - Cijk 1 Arbitrary

d jjk NA - d jjk 1 Arbitrary

e-m 0.25
To attain maximum value 
of dependent variable 
equal to 1

e-m 0.25
To attain maximum value 
of dependent variable 
equal to 1

C2ijk 0 No deceptive terms Cr,jk 0 No deceptive terms

M ijk NA - M ijk NA -

Qijk NA - Qijk NA -

Pm NA - Pm NA -

£ NA - £ NA -

M 0 To have the data centred 
on the equation for x2 A 0 To have the data centred 

on the equation for x2

a 0.05 To attain a distribution of 
about 10% a2 0.05 To attain a distribution of 

about 10%

8.1.1.2 Dependency Scenario 1.2

In this case, a two-variable cyclic equation is used to define the dependency 

equation. This relationship is approximated by GAVD. The RETB-II parameters that 

make this equation are given in Table 8.3, and the corresponding equation is given 

below (Equation 8.5). This dependency equation is shown in Figure 8.3.
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x 2 = 1 -  0. l;t:3 -  0.3x3 c o s 2 (2^:3 ) -  0.2^:4 -  0.2^4, Equation 8.5

VO < %3 < l,V 0 < x 4 <1.

0.8
0.6
0.4
0.2

0.8
0.6

0.2 0.4
0.20.6 0.8

Figure 8.2 Dependency Relationship in Case-1 (Dependency Scenario 1.1)

Original Dependency Relationship 
Approximated Dependency Relationship

Original

Approximated

Figure 8.3: Dependency Relationship in Case-1 (Dependency Scenario 1.2) 

(Original: Actual Relationship, Approximated: Relationship Estimated by RA)

8.1.2 Case-2

The features o f this problem are similar to those of Case-1, with the difference that 

here the Pareto front is discontinuous in nature (Table 8.1). Based on these features, 

RETB parameters are given appropriate values to get the following problem 

(Equation 8.6, Equation 8.7 and Figure 8.4). The rationale behind the choice o f these 

parameter values is given in Table 8.4.
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10
E xhaustive  S earch 

Pare to Front

0.2 0.4 0.6
f l

Figure 8.4: Case-2 

[l -  exp(- 3x, )], VO < x, < 1,

0.8

D(5') = (l-exp(-3))'
I { x '’) = 3 -  exp(-x2 ) cos(2^x2 ) -  exp(-x3 ) cos(4æv3 ), VO < x 2 , x 3 < 1, 

= 2 -  (/, / / r  - ( / ,  / / ) c o s ( 8 ^ ) ,

/ 2 = ^ , / ) x /(%").

Pareto_ front => f 2 = 2 - { f ) 0A - ( / , ) cos(8^j2).

Equation 8 . 6

Equation 8 .7

Similar to Case-1, the performance of GAVD is analysed here using two variable 

dependency scenarios: one that can be exactly modelled by GAVD and the other that 

can only be approximated. Both the scenarios are non-linear, with one having 

deceptive features.
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Table 8.4: RETB Parameters fo r  Case-2

S D /

Parameter
Values Reasoning Parameter

Values Reasoning Parameter
Values Reasoning

M 2 2 objectives k 1 1 variable 
defining D n 3 3 variable- 

problem

a, 0.4 <1 for convex 
Pareto front Mi 1 1 biased region 

on Pareto front k 1 1 variable 
defining D

Case-2
C n 1

To attain 
discontinuous 
Pareto front

T 1 Product of Mis bi 1,1 Arbitrary

b, 1 Arbitrary a,v 1 Arbitrary Ci 2,4
(2+1)x(4+1)=15 
local Pareto 
fronts

Ci 4
(4+1 )=5 
disconnected 
Pareto regions

bu 3 Arbitrary M, 0 No deceptive 
front

d, 2 Arbitrary R, 0 So that f1max is 1 di NA -

e 1 For simplicity 3k NA - e NA -

e 1.5 So that Lin is 1

8.1.2.1 Dependency Scenario 2.1

In this case, a quadratic equation is used to define the dependency relationship. This 

relationship can be exactly modelled by GAVD. The RETB-II parameters that make 

this equation are given in Table 8.5, and the corresponding equation is given below 

(Equation 8.8). This dependency equation is shown in Figure 8.5.

=  0 .2  +  O.2 X3  +  O.6 X3 , VO <  X3  <  1. E gw afzo/z &<9

0.6

0.4

0.2

0.4 0.60.2 0.8 10
x3

Figure 8.5: Dependency Relationship in Case-2 (Dependency Scenario 2.1)
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Table 8.5: RETB-II Parameter Values for Case-2

Depend*mcy Scenario 2.1 Dependency Scenario 2.2
Parameter

Values Reasoning Parameter
Values Reasoning

A/d 1 1 dependent variable A/d 1 1 dependent variable

blind,! 1 1 variable defining 
dependent variable Nind,i 1 1 variable defining 

dependent variable

N i 2 2 independent variables N , 2 2 independent variables

n 3 3-variable problem n 3 3-variable problem

Q i 1 To attain continuous 
function search space Q i 1 To attain continuous 

function search space

P ik
Degree

2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain maximum value of 1

P ik
Degree

2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain minimum value of 
0.2 and maximum value of 
s1

Clijk 0 No cyclic terms Clijk 0 No cyclic terms

b ijk NA - b ijk NA -

Cijk NA - Cijk NA -

dijk NA - d ijk NA -

Oik 0.25
To attain minimum value of 
dependent variable equal 
to 0.2

Cik 0.1
To attain minimum value of 
0.2 and maximum value of

Crijk 0 No deceptive terms C2ijk 1 Not equal to 0 (to get a 
deceptive term)

M ijk NA - M ijk 1 1 deceptive optimum

Qijk NA - 9 ijk 0.0957
To attain minimum value of 
0.2 and maximum value of 
^1

Pijlk NA - Pijlk 0.5 To attain deception at 
variable value of 0.5

E NA - £ 0.004 Arbitrary, small, positive

M 0 To have the data centred 
on the equation for x2 M 0 To have the data centred 

on the equation for x2

a 0.05 To attain a distribution of 
about 10% <J 0.05 To attain a distribution of 

about 10%

8.1.2.2 Dependency Scenario 2.2

In this case, a two-variable deceptive equation is used to define the dependency 

relationship. This relationship is approximated by GAVD. The RETB-II parameters 

that make this equation are given in Table 8.5, and the corresponding equation is 

given below (Equation 8.9). This dependency equation is shown in Figure 8.6.
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x 2 =0.2 + 3.396x3 ~3.396x32 -exp(0.0957x3)exp(-
Equation 8.9

Approximl
1.2

0.2

0 0 0.2 0.4 0.6 0.8
x3

Figure 8 .6 : Dependency Relationship in Case-2 (Dependency Scenario 2.2) 

(Original: Actual Relationship, Approximated: Relationship Estimated by RA)

This problem is characterised by the presence of four objective functions. It has 

biased search space with respect to two of its objectives, and possesses single Pareto 

front (in Dependency Scenario 3.1) and multiple local Pareto fronts (in Dependency 

Scenario 3.2). This problem also has a multi-dimensional Pareto front that is convex 

with respect to two objectives, and concave with respect to one objective. Based on 

these features, RETB parameters are given appropriate values to get the following 

problem (Equation 8.10 and Equation 8.11). The rationale behind the choice o f these 

parameters is given in Table 8.6.
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# 2 ^ " )

(l -  exp(-5)) 
1

[l -  exp(- Sxj )], VO < x, < 1,

[l -  exp(- 2 x2 )], VO < x2 < 1,

Equation 8.10

(l -  exp(-2))
D 3 ( x '" )  =  l - X 3 , V O < X 3  < 1 ,

7(x" ") = 1 + x4, VO < x4 <1........Dependency_ Scenario -3.1,
/ (x 'm) = 2 -exp(-2x4)cos(4;zx4),V0< x4 < 1....
... Dependency _ Scenario — 3.2,

/ i = D , ( x ' ) ,

^ = A ( x " ' ) ,

= 4 - ( y ; r  - ( ^ ) ° '

Table 8 .6 : RETB Parameters fo r  Case-3

Equation 8:11

£r.s
Parameter

Values — -sr -=.r Reasoning

M 4 4 objectives k 1,1,
1

1 variable 
defining each D n 4;4 4 variable- 

problem

a,-
0.6,
0.4,

2

<1 for convex 
Pareto front 
and > 1 for 
non-convex 
Pareto front

Mi 1,1,
0

Number of 
biased regions 
on Pareto front 
corresponding to 
each D

k 3;3 3 variables 
defining D

C n 0
To attain 
continuous 
Pareto front

T 1,1,
NA

Product of M/s in 
case of biased 
D’s

b, 2;
NA

Arbitrary for 
biased /

b, NA - a,7 1,1,
NA

Arbitrary for 
biased D’s Ci

4;
NA

(4+1 )=5 local 
Pareto fronts for 
biased /

Ci NA - bij
5,2,
NA

Arbitrary for 
biased D’s Mi 0;

NA
No deceptive 
front for biased /

d, NA - R, 0,0,
NA

So that Lax is 1 
for biased D’s d, NA;

NA -

e NA For simplicity 3 k

NA,
NA,

1
So that Lax is 1 
for unbiased D E

NA;
NA -

e 1.5;
0.5 So that lmin is 1

Here, the performance of GAVD is analysed using two variable dependency 

scenarios. The dependency equations in both the scenarios are non-linear and
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discontinuous, with one having higher discontinuity than the other has. Further, the 

first scenario has single Pareto front, whereas the second one has multiple local 

Pareto fronts.

Table 8.7: Case-3 (Dependency Scenario 3.1) (Upper Diagonal Graphs: Search 

Space with Variable Dependency, Lower Diagonal Graphs: Search Space without

Variable Dependency)

(Range: 0-1)

(Range: 0-1)

a m #

(Range: 0-1) I m

(Range: 0-8)

8.1.3.1 Dependency Scenario 3.1

The search space corresponding to this problem is depicted in Table 8.7. In this case, 

a highly discontinuous quadratic equation is used to define the dependency 

relationship. This relationship can be exactly modelled by GAVD (using piece-wise 

RA). The RETB-II parameters that make this equation are given in Table 8.8, and the 

corresponding equation is given below (Equation 8.12). This dependency equation is 

shown in Figure 8.7.
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a ,  = 0.2%g + 0.4%5, VO < < 0.5

x 4 = 0.4 + 0.2x5 + 0.4x52 , V0.5 < x 5 < 1

Table 8 .8 : RETB-II Parameter Values for Case-3

Scenario 3.1 Scenario 3.2
Parameter Reasoning Parameter ReasoningValues Values

Nd 1 1 dependent variable 1 1 dependent variable

blind,1 1 1 variable defining 
dependent variable blind,! 1 1 variable defining 

dependent variable

N, 4 4 independent variables Ni 4 4 independent variables

n 5 5-variable problem n 5 5-variable problem

Q i 2 To attain a discontinuity in 
the function search space Q , 2 To attain a discontinuity in 

the function search space

Pik Degree
2,2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain minimum value of 0 
and maximum value of 1.0

Pik Degree
2,2

Equal to degree of RA in 
GAVD; Non-linear; 
coefficients are chosen to 
attain minimum value of 0 
and maximum value of 0.9

C a s e - 3 Cnjk 0,0 No cyclic terms Ciijk 0,0 No cyclic terms

bijk NA - bijk NA -

Cijk NA - Cijk NA -

djjk NA - djjk NA -

Gik 0,0.05
To attain minimum value of 
0 and maximum value of 
1.0

Oik 0,0.05
To attain minimum value of 
0 and maximum value of 
0.9

Clijk 0,0 No deceptive terms C2ijk 0,0 No deceptive terms

Mijk NA - Mijk NA -

9ijk NA - Qijk NA -

Pijlk NA - Pijik NA -

£ NA - £ NA -

M 0 To have the data centred 
on the equation for x2 A 0 To have the data centred 

on the equation for x2

o 0.05 To attain a distribution of 
about 10% <J 0.05 To attain a distribution of 

about 10%
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0.8

0.6

0.4

0.2

0
0.80.60.40.20

x5

Figure 8.7: Dependency Relationship in Case-3 (Dependency Scenario 3.1)

8.1.3.2 Dependency Scenario 3.2

The search space corresponding to this problem is depicted in Table 8.9. In this case, 

a mildly discontinuous quadratic equation is used to define the dependency 

relationship. This relationship can be exactly modelled by GAVD (using piece-wise 

RA). The RETB-II parameters that make this equation are given in Table 8.8, and the 

corresponding equation is given below (Equation 8.13). This dependency equation is 

shown in Figure 8.8.

= 0.2x5 +0.6x52, V0 < x 5 2 0.5 

x4 = 0.1 + 0 .2 x 5 + 0 .6 x 5\  V0.5 < x5 < 1

0.4

0.2

0.8 10.4 O.B0.20

Figure 8.8: Dependency Relationship in Case-3 (Dependency Scenario 3.2)
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Table 8.9: Case-3 (Dependency Scenario 3.2) (Upper Diagonal Graphs: Search 

Space with Variable Dependency, Lower Diagonal Graphs: Search Space without

Variable Dependency)

773PS

(Range: 0-1)

(Range: 0-1)

(Range: 0-1)

(Range: 0-7)

8.2 Experim ental Results

All the tests reported in this section correspond to 100 population size, 500 

generations, 0.8 crossover probability, 0.05 mutation probability and simulated 

binary crossover, with 10 crossover distribution index and 50 mutation distribution 

index. The results reported here form the typical set obtained from 10 runs with 

different seed values for the random number generator. No major variation was 

observed in the results with the change in seed values.

Both GRGA and NSGA-II assume independence of variables, and hence do not take 

variable dependency into account. In all the above-mentioned case studies, these two 

algorithms work in search spaces that do not have any dependence among their 

decision variables. Since the two algorithms work on the same search space, the 

performance of GRGA is compared with that of NSGA-II in this chapter. However,
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in the absence of dedicated techniques for handling variable dependence, the 

performance of GAVD cannot be compared to an algorithm that accounts for 

variable dependence. Therefore, in this chapter, GAVD is compared against two 

novel state-of-the-art optimisation algorithms (NSGA-II and GRGA). The idea is to 

demonstrate that in the presence of variable dependence, even the most effective of 

optimisation algorithms fail to produce good results if they do not have in-built 

mechanisms to address variable dependency. Here, the performances of GAVD, 

GRGA and NSGA-II are measured, with respect to the goals of multi-objective 

optimisation (convergence to the Pareto front and diversity across it), using the 

convergence metric (y) and diversity metric (Deb et al, 2000) (Appendix C). The 

lower the values of these metrics, the better is the performance of the given 

optimisation algorithm.

8.2.1 Case-1

The performances of GAVD, GRGA and NSGA-II are compared on Case-1, 

considering the two variable dependency scenarios (1.1 and 1.2).

8.2.1.1 Dependency Scenario 1.1

In this case, NSGA-II and GRGA work on x/ and as the independent variables, 

while ignoring the dependency data provided. On the other hand, GAVD performs 

RA on the given data to obtain the dependency equation. It considers xy, xj and X4 as 

independent variables, and determines xj using the estimated dependency equation. 

The results obtained from NSGA-II, GRGA and GAVD are depicted in Figure 8.9. 

The y and A values that are obtained in this case are listed in Table 8.10.

Table 8.10: Performance Metrics in Case-1 (Dependency Scenario 1.1)

mi
NSGA-II 1.209567 0.090002

GRGA 0.009143 0.080121

GAVD 0.008221 0.081124
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Figure 8.9: GAVD Performance in RETB-II Case-1 (Dependency Scenario 1.1) 

(Pareto Front fo r  Independent Variables: PFIV, Pareto Front fo r  Dependent 

Variables: PFDV, Estimated Pareto Front: EPF)

8.2.1.2 Dependency Scenario 1.2

The classification (dependent/independent) of variables used in the application of 

NSGA-II, GRGA and GAVD is similar to the one used in the Dependency Scenario 

1.1. The results obtained from NSGA-II, GRGA and GAVD are depicted in Figure 

8.10. The y and A values that are obtained in this case are listed in Table 8.11.

Table 8.11: Performance Metrics in Case-1 (Dependency Scenario 1.2)

Case-1

Dependency 
Scenario 1.2

Performance Metrics

Y A

O
pt

im
is

at
io

n
A

lg
or

ith
m

s NSGA-II 0.436589 0.090002

GRGA 0.856745 0.080121

GAVD 0.000356 0.078659

Exhaustive Search
PFIV, P F D V  & EPF ------

NSGA-II Solutions +
G R G A Solutions x
G AVD Solutions o

*
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Figure 8.10: GAVD Performance in RETB-II Case-1 (Dependency Scenario 1.2) 

(Pareto Front for Independent Variables: PFIV, Pareto Front for Dependent 

Variables: PFDV, Estimated Pareto Front: EPF)

8.2.2 Case-2

The results obtained from GAVD, GRGA and NSGA-II on Case-2 are illustrated 

here.

8.2.2.1 Dependency Scenario 2.1

In this case, NSGA-II and GRGA are applied with xj, X2 and x? as the independent 

variables, while ignoring the dependency data provided. On the other hand, GAVD 

performs RA on the given data to obtain the dependency equation. It considers xi and 

as independent variables, and determines x 2 using the estimated dependency 

equation. The results obtained from NSGA-II, GRGA and GAVD are depicted in 

Figure 8.11, and the corresponding y and A values are given in Table 8.12.

Exhaustive Search
P F IV ------

P F D V & EPF ------
NSGA-II Solutions +

G RGA Solutions x
GAVD Solutions o
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E xhaustive  Search
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Figure 8.11: GAVD Performance in RETB-II Case-2 (Dependency Scenario 2.1) 

(Pareto Front fo r  Independent Variables: PFIV, Pareto Front fo r  Dependent 

Variables: PFDV, Estimated Pareto Front: EPF)

Table 8.12: Performance Metrics in Case-2 (Dependency Scenario 2.1)

Case-2

Dependency 
Scenario 2.1

Performance Metrics

Y A

O
pt

im
is

at
io

n
A

lg
or

ith
m

s NSGA-II 0.986345 0.083956

GRGA 1.654703 0.045431

GAVD 0.001373 0.014564

S.2.2.2 Dependency Scenario 2.2

The classification (dependent/independent) of variables used in the application of 

NSGA-II, GRGA and GAVD is similar to the one used in Scenario 2.1. The results 

obtained from NSGA-II, GRGA and GAVD are depicted in Figure 8.12, and the 

corresponding y and A values are shown in Table 8.13.
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Figure 8.12: GAVD Performance in RETB-II Case-2 (Dependency Scenario 2.2) 

(Pareto Front for Independent Variables: PFIV, Pareto Front for Dependent 

Variables: PFDV, Estimated Pareto Front: EPF)

Table 8.13: Performance Metrics in Case-2 (Dependency Scenario 2.2)

Case-2

Dependency 
Scenario 2.2

Performance Metrics

Y A

O
pt

im
is

at
io

n
A

lg
or

ith
m

s NSGA-II 1.394502 0.093956

GRGA 0.759007 0.045432

GAVD 0.742356 0.045831

8.2.3 Case-3

Here, the performances of GAVD, GRGA and NSGA-II on Case-3 are depicted.
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Table 8.14: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.1) 

(Upper Diagonal Graphs: Pareto Front with NSGA-II and GRGA Solutions, Lower 

Diagonal Graphs: Pareto Front with GA VD Solutions)

f l

(Range: 0-1)
Figure 8.13(a) Figure 8.13(b) Figure 8.13(c)

Figure 8.14(a)
f 2

(Range: 0-1)
Figure 8.13(d) Figure 8.13(e)

Figure 8.14(b) Figure 8.14(c)
f 3

(Range: 0-1)
Figure 8.13(f)

Figure 8.14(d) Figure 8.14(e) Figure 8.14(f)
f 4

(Range: 0-5)

8.2.3.1 Dependency Scenario 3.1

In this case, NSGA-II and GRGA are applied with xi, X2, xj, X4 and xj as the 

independent variables, while ignoring the dependency data provided. On the other 

hand, GAVD performs RA on the given data to obtain the dependency equation. It 

considers x/, xj, xs, and xj as independent variables, and determines X4 using the 

estimated dependency equation. The results obtained from NSGA-II, GRGA and 

GAVD are depicted in Table 8.14, and the corresponding y and A values are shown 

in Table 8.15.

Table 8.15: Performance Metrics in Case-3 (Dependency Scenario 3.1)

— 0.220678 0.129059

- 0.198456 0.110856

GAVD 0.124536 0.100985
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Figure 8.13: NSGA-II and GRGA Performance in RETB-II Case-3 (Dependency 

Scenario 3.1) -  (a) fl- f2  Graph (b) fl- f3  Graph (c) fl- f4  Graph (d) f2-f3 Graph (e)

f2-f4 Graph (f) f3-f4 Graph
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Figure 8.14: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.1) -  

(a) f2 -fl Graph (b) f3 -fl Graph (c) f3-f2 Graph (d) f4 -fl Graph (e) f4-f2 Graph (f)

f4-f3 Graph
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Table 8.16: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.2) 

(Upper Diagonal Graphs: Search Space with Variable Dependency, Lower Diagonal 

Graphs: Pareto Front with NSGA-II, GRGA and GA VD Solutions)

(Range: 0-1)

Figure 8.15(a)

Figure 8.15(b)

Figure 8.15(d)

(Range: 0-1)

Figure 8.15(c)

Figure 8.15(e)

(Range: 0-1)

Figure 8.15(f)

• ■ rA

f4

(Range: 0-7)

8.2.3.2 Dependency Scenario 3.2

The classification (dependent/independent) o f variables used in the application of 

NSGA-II, GRGA and GAVD is similar to the one used in Scenario 3.1. The results 

obtained from NSGA-II, GRGA and GAVD are depicted in Table 8.16, and 

corresponding y and A values are given in Table 8.17.

Table 8.17: Performance Metrics in Case-3 (Dependency Scenario 3.2)

Case-3

Dependency 
Scenario 3.2

Performance Metrics

Y A

O
pt

im
i­

sa
tio

n
A

lg
or

i­
th

m
s

NSGA-II 1.270974 0.198407

GRGA 0.284569 0.153057

GAVD 0.200846 0.145223
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Figure 8.15: G A VD Performance in RETB-II Case-3 (Dependency Scenario 3.2) -

(a) f2 -fl Graph (b) f3 -fl Graph (c) J3-f2 Graph (d) f4 -fl Graph (e) f4-f2 Graph (f)

f4-f3 Graph
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8.3 Discussion of Results

The results obtained from each of the three RETB/RETB-II case studies are 

discussed below.

8.3.1 Case-1

Here, GAVD, GRGA and NSGA-II are tested using the two scenarios of variable 

dependence (1.1 and 1.2), discussed in Section 8.1.

8.3.1.1 Dependency Scenario 1.1

Based on the y and A values, the following observations can be made regarding this 

problem and the performances of GAVD, GRGA and NSGA-II. The results 

discussed here are pictorially depicted in Figure 8.9.

♦ Since the dependency relationship (Equation 8.4) covers the foil range of it 
does not alter the Pareto front. Therefore, the Pareto fronts for the original 
problem (with no dependence) and the dependent-variable problem coincide with 
each other.

♦ GRGA and NSGA-II do not incorporate variable dependence in their solution 
strategies. However, since the original and the new Pareto fronts are coincident in 
this case, the GRGA is able to locate the Pareto front (y = 0.009143, A = 
0.080121). However, NSGA-II gets trapped in one of the local fronts, and so is 
not able to locate the global front (y = 1.209567, A = 0.090002), giving a much 
higher value of y as compared to that given by GRGA. This is because the 
convergence strategy (Pareto domination cum elitism) used by NSGA-II ceases 
to produce the driving force towards the global front once most of the solutions 
of the population share the same non-domination level. Therefore, in this case, 
the NSGA-II has prematurely converged to a local front. This situation is avoided 
in GRGA through the artificial modification of regression coefficients at regular 
intervals using their history of search observed in previous generations. This 
guides the search towards the global Pareto front by preventing it from getting 
trapped in local fronts.
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♦ The equation that is constructed in this scenario is of degree two, with no cyclic 
and deceptive terms (Equation 8.4), making it possible for the GAVD (that uses 
quadratic RA) to exactly model the dependence. Hence, the Pareto front that the 
GAVD sees coincides with the true Pareto front. Furthermore, since GAVD uses 
GRGA as its optimisation engine, it is able to converge to the Pareto front and 
distribute the solutions uniformly across the front (y = 0.008221, A = 0.081124). 
This is reflected by the small values of y and A attained from GAVD. These 
values are also similar to those attained from GRGA.

8.3.1.2 Dependency Scenario 1.2

Based on the y and A values, the following observations can be made regarding this 

problem and the performances of GAVD, GRGA and NSGA-II. The results 

discussed here are pictorially depicted in Figure 8.10.

♦ In this case, since the minimum value of the given is 0.2 (Equation 8.5), it does 
not cover its original range (in which the minimum value was 0) when there is no 
dependence among the decision variables. This truncates a part of the original 
search space. Furthermore, the Pareto front gets modified since the original one 
corresponded to equal to 0.

♦ Here, GRGA converges to the global Pareto front of the original problem (with 
no dependence among its variables). However, these results are infeasible since 
the original Pareto front has become infeasible with the introduction of variable 
dependence. Since the new Pareto front does not coincide with the original one, 
GRGA exhibits poor convergence (high y) in this case (y = 0.856745, A = 
0.080121). Similar to the results shown in the previous scenario, NSGA-II gets 
trapped in a local front in this problem. However, incidentally in this problem, 
this particular local front lies in the feasible region of the search space modified 
by variable dependence. Therefore, the results from NSGA-II are feasible but are 
sub-optimal with respect to the new Pareto front (y = 0.436589, A = 0.090002). 
Furthermore, the average distance between the new Pareto front and the original 
Pareto front at which GRGA converges is more than that between the new Pareto 
front and the local front at which NSGA-II converges. Therefore, the 
performance metric y shows better convergence for NSGA-II as compared to 
GRGA.
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♦ Due to the use of quadratic RA in GAVD, it estimates the given dependency 
relationship (Equation 8.5) as the following equation (Equation 8.14). This is 
pictorially depicted in Figure 8.3. Since this equation has the same range as the 
given dependency equation, the estimated search space has identical boundaries 
to the actual search space under variable dependency. Therefore, the estimated 
Pareto front coincides with the actual one. Hence, the use of GRGA in GAVD is 
able to ensure that the solutions converge to the new Pareto front and distribute 
evenly across it. This gives very small values for y and A (y = 0.000356, A = 
0.078659) in this case.

x2 = 1 -  0.4x3 -  0.2x4 -  0.2x4 , V0 < x3 < 1, V0 < x4 < 1. Equation 8.14

8.3.2 Case-2

Here, GAVD, GRGA and NSGA-II are tested using the two scenarios of variable

dependence (2.1 and 2.2), discussed in Section 8.1.

8.3.2.1 Dependency Scenario 2.1

The features of this problem together with the performances of GAVD, GRGA and

NSGA-II are discussed here. These results are illustrated in Figure 8.11.

♦ In this problem, the original Pareto front occurs when both xj and xj are equal to 
0. Due to the given dependency among these variables, this is no longer possible. 
This causes modifications in the search space and the Pareto front based on the 
nature of the given dependency equation (Equation 8.8 and Figure 8.11).

♦ Here as well, GRGA converges to the global Pareto front of the original problem 
(with no dependence among its decision variables). However, since the new 
Pareto front does not coincide with the original one, the results from GRGA are 
not feasible in this case (y = 1.654703, A = 0.045431). Similar to the previous 
case, NSGA-II gets trapped on a local front, which incidentally lies in the new 
search space. However, its results are sub-optimal with respect to the new Pareto 
front (y = 0.986345, A = 0.083956). Furthermore, since the average distance from 
the new Pareto front is more to the original Pareto front (at which GRGA 
converges) than to the local front at which NSGA-II converges, the performance 
metric y shows better convergence for NSGA-II as compared to GRGA.
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♦ Also, since GAVD uses quadratic RA, it is able to exactly determine the 
dependency equation in this case (Equation 8.8). Hence, the Pareto front seen by 
GAVD is the same as that of the actual dependent-variable problem. Therefore, 
GRGA used in GAVD converges to the Pareto front and distributes the solutions 
uniformly across the front (y = 0.001373, A = 0.014564). Hence, very small 
values for y and A are attained.

S.3.2.2 Dependency Scenario 2.2

The following observations can be made on the basis of the results obtained by

applying GAVD, GRGA and NSGA-II on this problem. These results are pictorially

represented in Figure 8.12.

♦ In this problem, when there is no dependence among the decision variables, the 
Pareto front occurs when both and xj are equal to 0. Due to the given 
dependency among these variables (Equation 8.9), this is no longer possible. This 
leads to modifications in the search space and the Pareto front.

♦ Here also, GRGA converges to the global Pareto front of the original 
independent-variable problem. However, since the Pareto front with independent 
variables does not coincide with the one in the presence of variable dependence, 
the results attained by GRGA become infeasible in this problem (y = 0.759007, A 
= 0.045432). Similar to the previous case, NSGA-II gets trapped in a local front 
that lies in the new search space (obtained by introduction of variable 
dependence) (y = 1.394502, A = 0.093956). In this case, GRGA exhibits better 
convergence (smaller y) than NSGA-II since here the average distance from the 
new Pareto front to NSGA-II solutions is about twice that from the new Pareto 
front to GRGA solutions.

♦ Due to the use of two-degree RA in GAVD, it estimates the given dependency 
relationship (Equation 8.9) as the following equation (Equation 8.15). This 
approximation is pictorially depicted in Figure 8.6. Since this estimated equation 
does not model the spike in the relationship, it only provides an approximation. 
Also, in this problem, the Pareto front occurs for the variable values 
corresponding to the bottom of the spike. Therefore, the search space and the 
Pareto front that GAVD sees are different from those in the given dependent- 
variable problem. Hence, GAVD is not able to locate the new Pareto front due to 
the limitations posed by the degree of RA that it uses (y = 0.742356, A =
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0.045831). However, since GRGA and GAVD solutions lie at almost the same 
average distance from the new Pareto front, the y values corresponding to them 
are almost equal to each other.

x2 = 0.204 +3.35lx3 -3 .3 5 IX3 ,VO<x3 <1. Equation 8.15

8.3.3 Case-3

Here, two scenarios of variable dependence (3.1 and 3.2), as discussed in Section 8.1,

are used for analysing the performances of GAVD, GRGA and NSGA-II.

8.3.3.1 Dependency Scenario 3.1

The pictorial representation of this test is shown in Table 8.14. The following

comments can be made based on this information.

♦ In this case, since the dependency relationship (Equation 8.12) covers the full 
range of xj, it does not alter the Pareto front. Therefore, the Pareto fronts for the 
original problem (with no dependence) and the dependent-variable problem 
coincide with each other. It should be noted that due to the multi-dimensional 
nature of the function search space in this problem, the Pareto front cannot be 
depicted by the two-dimensional plots of Table 8.14.

♦ This problem does not have multiple local fronts. Furthermore, since the original 
and the new Pareto fronts are coincident, GRGA and NSGA-II are also able to 
locate the front (GRGA: y = 0.198456, A = 0.110856; NSGA-II: y = 0.220678, A 
= 0.129059). Therefore, both GRGA and NSGA-II give small values of y and A, 
such that the values given by the two algorithms are nearly equal to each other.

♦ Furthermore, the dependency equation in this scenario is of degree two (Equation
8.12), with no cyclic and deceptive terms, making it possible for the GAVD to 
exactly model the dependence (using piece-wise quadratic RA). Hence, the 
Pareto front that the GAVD sees coincides with the true Pareto front. Therefore, 
the optimisation engine of GAVD (GRGA) converges to the Pareto front and 
distributes the solutions uniformly across the front (y = 0.124536, A = 0.100985). 
This gives small values for y and A. In this problem, although all the three 
algorithms exhibit good convergence to the Pareto front, it is not possible to
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visually see the results due to the multi-dimensional nature of the function search 
space.

S.3.3.2 Dependency Scenario 3.2

The features of this problem together with the performances of GAVD, GRGA and

NSGA-II are discussed here. These results are illustrated in Table 8.17.

♦ The search space shown in Table 8.9 does not clearly show the discontinuity in 
this case. This is because of its cyclical nature (due to the choice of a cyclic /  
function in RETB) that causes overlap of points in the two-dimensional plot, 
thereby hindering the depiction of discontinuity in the plot. Further, the mildness 
of the discontinuity also makes the discontinuity less prominent in this case.

♦ With the introduction of variable dependence (Equation 8.13), the maximum 
value of the given X4 becomes 0.9, and so it does not cover its original range (in 
which the maximum value was 1) when there was no dependence among the 
decision variables. This truncates a part of the original search space. However, 
since the Pareto front corresponds to X4 equal to 0, which still is a part of the 
search space, there is no modification in it with the introduction of variable 
dependency. Therefore, the Pareto fronts for the original problem (with no 
dependence) and the dependent variable problem coincide with each other.

♦ Since the original and the new Pareto fronts are coincident, GRGA is able to 
locate the Pareto front in this case (y = 0.284569, A = 0.153057). However, due 
to the presence of multiple local fronts, NSGA-II again exhibits pre-mature 
convergence to a local front, thereby giving values of y that are much higher than 
those given by GRGA (y = 1.270974, A = 0.198407).

♦ Furthermore, the dependency equation in this scenario is of degree two (Equation
8.13)), with no cyclic and deceptive terms, making it possible for the GAVD to 
exactly model the dependence (using piece-wise quadratic RA). Hence, the 
Pareto front that the GAVD sees coincides with the true Pareto front. Therefore, 
GAVD converges to the Pareto front and distributes the solutions uniformly 
across the front (y = 0.200846, À = 0.145223). It should be noted here that in 
general the results obtained for this scenario are inferior as compared to those 
obtained from the previous one. This can mainly be attributed to the presence of 
multiple local fronts in this scenario.
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8.4 Key Results

A review of the results obtained from all the three cases reveals that Case-3 is 

particularly challenging for all optimisation algorithms. This is because of the 

presence of four objectives in this problem that lends multi-dimensional nature to its 

Pareto front. The complexity of this problem is further enhanced due to the presence 

of bias in the search space (in both Dependency Scenarios 3.1 and 3.2) and multiple 

local fronts (only in Dependency Scenario 3.2). Furthermore, the presence of 

variable dependency introduces discontinuity in the search spaces corresponding to 

both the dependency scenarios. Therefore, it is observed that, although GAVD is able 

to locate points close to the global Pareto front, the convergence of the solutions to 

the Pareto front and their distribution across the front are inferior to that exhibited by 

it in those scenarios of Cases 1 and 2, where it is able to exactly model the 

dependency relationship among the decision variables. This is supported by 

comparatively higher values of y and A exhibited by GAVD in the Dependency 

Scenarios 3.1 and 3.2 (Table 8.15 and Table 8.17). This observation particularly 

revealed that the multi-dimensional nature of the Pareto front has a strong impact on 

the difficulty of a problem.

In addition to the results illustrated in Section 8.2, the GAVD and GRGA also 

identify the following relationships among the decision variables corresponding to 

the Pareto-optimal solutions.

♦ Case-1 (Dependency Scenario 1.1): True Pareto front corresponds to X2 = 0; X3 = 
1 ; X4=l ; with x% taking values in its range.

> GRGA: Estimated Pareto front corresponds to X2 = 0; with xj taking 
values in its range.

y  GA VD: Estimated Pareto front corresponds to X2 = 0; xj = 1; X4 =l; with 
X] taking values in its range.

♦ Case-1 (Dependency Scenario 1.2): True Pareto front corresponds to X2 = 0.25; X3 

=  1; X4= 0 .91 ; with x% taking values in its range.

> GRGA: Estimated Pareto front corresponds to xj = 0; with xj taking 
values in its range.
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> GAVD: Estimated Pareto front corresponds to xj = 0.25; xj -  1; X4=0.91; 
with xj taking values in its range.

♦ Case-2 (Dependency Scenario 2.1): True Pareto front corresponds to X2 = 0.2; xg 
= 0 ; with xi taking values in its range.

> GRGA: Estimated Pareto front corresponds to xj = 0; xj = 0; with xj 
taking values in its range.

> GAVD: Estimated Pareto front corresponds to xj = 0.2; xj = 0; with xj 
taking values in its range.

♦ Case-2 (Dependency Scenario 2.2): True Pareto front corresponds to X2 = 0.2; xg 
= 0.5; with xi taking values in its range.

> GRGA: Estimated Pareto front corresponds to xj = 0; xj = 0; with x; 
taking values in its range.

> GAVD: Estimated Pareto front corresponds to xj = 0.2; xj = 0; with x/ 
taking values in its range.

♦ Case-3 (Dependency Scenario 3.1): True Pareto front corresponds to X4 = 0; X5 = 
0 ; with xi, X2 and xg taking values in their respective ranges.

>  GRGA: True Pareto front corresponds to X4 = 0; with x/, X2 and xj taking 
values in their respective ranges.

> GAVD: True Pareto front corresponds to X4 = 0; xj = 0; with xj, xj and xg 
taking values in their respective ranges.

♦ Case-3 (Dependency Scenario 3.2): True Pareto front corresponds to X4 = 0; X5 = 
0 ; with xj, X2 and xg taking values in their respective ranges.

>  GRGA: True Pareto front corresponds to X4 = 0; with xj, xg and xg taking 
values in their respective ranges.

> GAVD: True Pareto front corresponds to X4 = 0; xj = 0; with xj, xj and xg 
taking values in their respective ranges.

The tests reported in this section lead to the following general conclusions regarding

the performances of GAVD and GRGA.

♦ If the introduction of variable dependency does not change the Pareto front, it is 
observed that GRGA and GAVD exhibit similar performance. This is because 
GAVD uses GRGA as its optimisation engine.

♦ GRGA exhibits better performance than NSGA-II in dealing with multi-objective 
optimisation problems that have complex inseparable function interaction.
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leading to a variety of features such as multiple local fronts, bias, deception and 
discontinuous Pareto fronts. This is because the Pareto-domination/elitism 
strategy used by NSGA-II ceases to produce the driving force towards the global 
Pareto front once most of the solutions of the population share the same non­
domination level. GRGA addresses this drawback of NSGA-II through periodic 
modification of regression coefficients based on their history of search observed 
in previous generations. Unlike NSGA-II, GRGA also addresses the core issue 
involved in maintaining diversity by re-distributing the solutions based on the 
relationships among their decision variables. However, since GRGA does not 
have an in-built mechanism for handling variable dependence, it fails to give 
satisfactory solutions in those problems that have dependence among their 
decision variables.

♦ GAVD removes the above-mentioned drawback of GRGA by providing it with a 
mechanism for handling variable dependence in multi-objective optimisation 
problems. This algorithm is capable of dealing with a variety of optimisation 
problems. However, the capability of GAVD is limited by the degree of the RA 
that it uses. Here, a quadratic RA has been used.

8.5 Summary
I

This chapter has analysed the performances of the two algorithms GAVD and GRGA 

that have been proposed in this research. The performance analysis has been carried 

out using the test beds RETB and RETB-II, which have also been developed in this 

research. This chapter has achieved the dual purpose of analysing the performances 

of GAVD and GRGA, while validating the behaviour of RETB and RETB-II. In 

short, this chapter has achieved the following.

♦ It has developed a set of RETB/RETB-II case studies such that it represents three 
features of real-life engineering design optimisation problems: presence of 
multiple objectives, constraints and variable interaction.

♦ It reported the experimental results obtained from GAVD, GRGA and NSGA-II 
in each of the cases.

♦ It has presented an analysis of the experimental results.

EC Techniques for Handling Variable Interaction 249



Chapter 8. Performance Analysis o f  GRGA/GAVD

♦ Finally, based on this analysis, it has compiled key observations and drawn 
general conclusions regarding the performances of GRGA and GAVD.

This chapter has analysed the performance of GRGA and GAVD using RETB and 

RETB-II. The next chapter validates the observations made in this chapter using a 

representative set of real-life case studies in the area of engineering design 

optimisation. A brief analysis of the features of a selection of real-life problems is 

also presented in the next chapter.

EC Techniques for Handling Variable Interaction 250



Chapter 9. Real-life Case Studies

9  REAL-LIFE CASE STUDIES_______________

In the previous chapters, two algorithms, GRGA and GAVD, were proposed for 

dealing with multiple objectives, constraints and variable interaction in engineering 

design optimisation problems. Two test beds, RETB and RETB-II, were also 

proposed that have the same features as mentioned above, and enable controlled 

testing of optimisation algorithms. These test beds were used in the previous chapter 

to analyse the performance of GRGA and GAVD. The aim of this chapter is to 

validate the observations made in the previous chapter using real-life case studies. 

This chapter attempts to achieve the following.

+ To ana/yse a number of case sW /es fomrea/-//7e eng/neer/ng desfgn 
optimisation.

♦ To frame the selection criteria for choosing a representative set of case

♦ To report the experimental results obtained from GRGA and GA VD.

9.1 Case Studies from Real-life Engineering 

Design Optimisation

The aim of this section is to present some case studies from real-life engineering 

design optimisation and to analyse the features of these case studies, especially with 

respect to variable interaction. These case studies are drawn from Table 4.1, which 

presents the list of some applications of evolutionary-based optimisation algorithms 

reported in the literature. This chapter analyses 10 problems chosen from Table 4.1. 

Since all these problems share similar features, it can be said that the successful 

application of GRGA and GAVD on a representative set of these 10 problems also 

ensures their success in solving other problems listed in Table 4.1.
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The features of the chosen 10 problems are tabulated in Table 9.1. As can be seen, 

this table gives the general features of these problems in terms of the number and 

nature of variables, and the number of objectives and constraints. It further looks at 

the problem features that influence interaction among the decision variables. Since 

inseparable function interaction is caused by the functions used in the problem, this 

table analyses the complexity of objectives and constraints. It also reports the 

complexity of the Pareto front, together with the relationships involving decision 

variables that define the Pareto front. The table also checks for the presence and 

nature of variable dependence in the problems. Finally, the table presents some 

published results obtained from the application of optimisation algorithms on these 

problems. The following gives a brief description of these case studies.

♦ Compound Gear Train Design (Deb, Pratap and Moitra, 2000): This problem 
involves the design of a compound gear train to achieve a specific gear ratio 
between the driver and driven shafts. The objective of the gear train design is to 
find the number of teeth in each of the four gears so as to minimise: (i) the error 
between the obtained gear ratio and a required gear ratio and (ii) the maximum 
size of any of the four gears. Since the number of teeth must be integers, all four 
variables are strictly integers, having bounds attached to them. This problem has 
a non-linear, concave and discontinuous Pareto front with bias in its search space. 
Furthermore, due to the presence of discrete variables, this problem has multiple 
local fronts in its search space. However, there is no variable dependence in this 
problem. This problem has been reported in the literature to be successfully 
solved by NSGA-II.

♦ Design of a Helical Compression Spring (Deb, Pratap and Moitra, 2000): Here, a 
helical compression spring needs to be designed for minimum volume and for 
minimum stress. This problem has three variables: the number of spring coils N, 
the wire diameter d and the mean coil diameter D. Of these variables, N is an 
integer variable, d is a discrete variable having forty-two non-equidistant values 
and D is a real-parameter variable. This problem has eight constraints that 
involve limits on variable values, restrictions on stress to be within the allowable 
strength and the volume to be within a pre-specified limit. The decision variables 
in this problem are independent. Furthermore, the Pareto front here is non-linear, 
convex and discontinuous, and the search space in biased in nature. Similar to the
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previous problem, this problem also has multiple local fronts due to the presence 
of discrete variables. It has been shown in the literature that NSGA-II (with 
constrained domination) is able to locate the Pareto front in this problem.

♦ Welded Beam Design (Deb, Pratap and Moitra, 2000): In this problem, a beam 
needs to be welded on another beam and must carry a certain load (Figure 9.1). 
The objective of the design is to minimise the cost of fabrication and minimise 
the end deflection. Here, the overhang portion of the beam and the applied force 
(F) are specified, making the cross-sectional dimensions of the beam (b, t) and 
the weld dimensions (h, 1) as the variables. This problem has four constraints. 
The first constraint makes sure that the shear stress developed at the support 
location of the beam is smaller than the allowable shear strength of the material. 
The second constraint makes sure that normal stress at the support location of the 
beam is smaller than the allowable yield strength of the material. The third 
constraint ensures that the thickness of the beam is not smaller than the weld 
thickness from a practical standpoint. Finally, the fourth constraint makes sure 
that the allowable buckling load of the beam is more than the applied load. This 
problem has a non-linear, convex and continuous Pareto front, and has no 
dependence among its decision variables. NSGA-II with constrained domination 
approach has been shown to converge to the Pareto front and to distribute the 
solutions uniformly across the front.

Figure 9.1: Welded Beam Design (Source: Deb, Pratap and Moitra, 2000)

♦ Design of an I-beam (Coello, 1997): The aim in this problem is to determine the 
dimensions of an I-beam such that the geometric and strength constraints are 
satisfied, and the following objectives are minimised: (i) cross-sectional area of 
the beam that reflects the volume for the given length (ii) static deflection of the 
beam for the displacement under the applied force. This problem has independent 
variables, a non-linear, convex and continuous Pareto front, and a biased search

J L

T
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space. In dealing with this problem, NSGA-II performs better than other multi- 
objective optimisation algorithms.

♦ Determining Machining Parameters (Coello, 1997): This problem requires to 
determine the values of the cutting speed, feed rate and depth of cut such that the 
surface roughness, scrap rate and tool wear are minimised, and the material 
removal rate is maximised. This problem has bounds on the cutting speed, feed 
rate and depth of cut to reflect the ranges over which the tests are run. It also has 
limits on the values of three performance measures: surface roughness, scrap rate 
and tool wear. Since all the objective functions in this problem are linear, it has 
an unbiased search space. Furthermore, the Pareto front is linear, multi­
dimensional and continuous, and there is no dependence among the decision 
variables. In this problem as well, NSGA-II performs better than most other 
multi-objective optimisation algorithms.

Figure 9.2: Design o f a Machine Tool Spindle (Source: Coello, 1997)

♦ Design of a Machine Tool Spindle (Coello, 1997): This design is shown in Figure 
9.2. The four variables in this problem are the dimensions of the spindle (1, dG, da, 
db). Two of these variables are real (1, d0) and the rest two are discrete (da, dy). 
This problem involves the minimisation of the volume of the spindle and the 
static displacement under the force F. This problem has nine constraints that 
include variable bounds and limits on the maximum radial run-out of the spindle 
nose. This problem has a non-linear, convex and discontinuous Pareto front, and 
a biased search space. It also has multiple local fronts due to the presence of 
discrete variables. Another interesting aspect of this problem is that it has 
dependence between two of its decision variables that arises due to the designers’ 
special preference regarding the proportion of these two variables. Due to the
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presence of dependence among its decision variables, most of the optimisation 
algorithms fail to produce satisfactory results in this case. However, the 
performance of NSGA-II is found to be better than that achieved by other 
approaches.

♦ Two-bar Truss Design (Deb, Pratap and Moitra, 2000): Here, a truss has to be 
designed to carry a certain load without elastic failure. Thus, in addition to the 
objective of designing the truss for minimum volume, there are additional 
objectives of minimising the stresses in each of the two members. This two- 
objective optimisation problem has three variables: height of the truss and cross- 
sectional areas of the two members. This problem has four objectives that limit 
the stresses and the dimensions of the two members. It has a non-linear, convex 
and continuous Pareto front, and a biased search space. There is no dependence 
among the variables of this problem. Literature reports that in this problem 
NSGA-II is able to locate well distributed Pareto-optimal solutions.

♦ Design of a Robot Arm (Coello, 1997): Here, a two-member robot arm needs to 
be designed. This problem has four variables that include the two counterweights 
and their distances from the joints. The four objectives in this problem involve 
the minimisation of the torque and the reaction forces at the joints of the two 
members of the robot arm. This problem also has six constraints that restrain the 
movement of the arm, values of counterweights and the distances of 
counterweights from the joints. Here, the Pareto front is non-linear and multi­
dimensional, the search space is biased in nature, and the variables are 
independent of each other. In this problem as well, NSGA-II performs better than 
other algorithms.

♦ Design of a Single Screw Extruder (Cunha, 2000): The four variables in this 
problem are the screw speed and the barrel temperatures in the initial, 
intermediate and final zones. This problem has five objectives, requiring the 
maximisation of output, and the minimisation of the length of screw required for 
melting, melt temperature, power consumption and mixing quality. It should be 
noted that here the objectives are not directly defined in terms of decision 
variables. They are defined in terms of some intermediate variables that in turn 
functions of the decision variables. This makes the objective functions multi­
layered in nature. Furthermore, the equations that are used to calculate the values 
of objectives are implicit in this case. This means that the determination of their 
values requires an iterative procedure in many cases. Here, the Pareto front is
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non-linear and multi-dimensional, the search space is biased in nature, and the 
variables are independent of each other. In this case, the literature does not 
report the results obtained from high-performing optimisation algorithms.

♦ Design of a Turbine Blade Cooling System (Roy, 1997): In order to maximise 
gas turbine engine performance and efficiency, turbine blades need to operate in 
an environment where the gas temperature is as high as possible. This 
temperature often exceeds the operational limits of the turbine blade materials. 
To ensure component integrity whilst operating at high gas temperatures, blade 
materials are cooled to safe operating temperature levels by passing relatively 
cool air through them and in more extreme cases, over them in the form of films. 
A small portion of the compressor exit airflow is utilised to cool the blades 
(Figure 9.3 and Figure 9.4). The temperature of this cooling air depends on the 
compressor pressure ratio and on the flight Mach number and temperature. The 
sacrifices for the blade cooling include the loss of work (and some loss of 
efficiency) due to the portion of the air taken from the compressor exit. Thus, this 
problem can be framed as multi-objective having four objectives.

> Coolant mass flow for radial passage (Wcr in Kg/s).

> Coolant mass flow for film hole (Wcfin  Kg/s).

> Metal temperature for gas side (Twg in K).

> Metal temperature for film side (Twfin  K).

Alternatively, the problem can also be framed in two objectives as follows.

>  Coolant mass flow for radial passage (WCr in Kg/s).

>  Metal temperature for gas side (Twg in K).

This problem has twelve variables as follows.

>  Type o f geometry (Geom).

> Coefficient o f discharge (radial passage) (Cjr)-

> Heat transfer coefficient factor (radial passage) (Fhc).

> Inlet temperature (Tcj).

> Wall thickness (dth).

> Thermal conductivity o f the blade material (kw).

> Pressure ratio (between inlet and outlet o f radial passage) (Rp = PcfPcfi.

> Perimeter ratio (radial passage) (Rs = Sgr/Scr).

> Film hole diameter (df).
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> Coefficient o f discharge (film hole) (Cdf).

> Heat transfer coefficient factor (film hole) (Ffi.

> Pressure ratio (film) (Rpf =  (Pc/-Pc2) /(Pc/-Pc3)).

Here, the first variable is discrete (plane, ribbed or pedestal) and the rest are 
real. Also, the values of Cdr and Fhc vary within a range according to the type 
of geometry. This problem also has 15 constraints that include limits on the 
above-mentioned variables, blade wall temperature (on the gas and film side) 
and flow ratio ( W c r / W cf ) .  Similar to the previous problem, the objective 
functions are implicit and multi-layered in this case. This problem has a non­
linear and multi-dimensional. Pareto front, and a biased search space. 
Literature does not report the application of any multi-objective optimisation 
algorithm on this problem.

Z
Figure 9.3: General Arrangement o f Five-pass Cooling o f Turbine Rotor Blade

(Source: Roy, 1997)
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Figure 9.4: Schematic Diagram Showing General Arrangement o f Coolant Flow 

through Turbine Blade with Film Cooling Mechanism (1: Coolant Air Inlet, 2: Film 

Cooling Passage Inlet, 3: Cooling Air Exit and 3 ’: Film Cooling Hole Exit) (Source:

Roy, 1997)

9.2 Selection o f Case Studies

This section attempts to select a set of case studies from the ones mentioned in Table

9.1. These case studies are used in this chapter for validating the performance of 

GRGA and GAVD. Therefore, the aim here is to select a set of problems that 

together represent multiple objectives, constraints and variable interaction in 

engineering design optimisation problems. Based on the challenges that multiple
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objectives, constraints, inseparable function interaction and variable dependence 

pose for optimisation algorithms, the following list can be compiled that identifies 

the various features that may be observed in real-life problems.

♦ Multiple variables.

♦ Integer, discrete and real variables.

♦ Multiple measures of performance (objectives).

♦ Multiple constraints.

♦ Polynomial, rational or complex objective functions.

♦ Implicit and multi-layered objective functions.

♦ Polynomial, rational or complex constraints.

♦ Implicit and multi-layered constraints.

♦ Unknown Pareto front

♦ Multi-dimensional Pareto front

♦ Non-linear (convex/concave) Pareto front

♦ Continuous or discontinuous Pareto front

♦ Biased search space

♦ Multi-front (multiple local Pareto fronts)

♦ Variable dependence

This list is used to select a set of problems from Table 9.1 such that all the above- 

mentioned features are represented. This analysis led to the choice of a set of three 

problems listed below (shown as shaded regions in Table 9.1).

♦ Design of a welded beam.

♦ Design of a machine tool spindle.

♦ Design of a turbine blade cooling system.
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation

ReaMife Case Studies
Problem. 1 Problem-2 Problem- 3

Compound Gear 
Train

Helical Compression 
Spring Welded Beam

s

No. of Variables 4 3 5
Nature of 
Variables 4 integer 1 integer, 1 discrete 

& 1 real 5 real

No. of Objectives 2 2 2

« B Ï
4 8 4

1

1. Rational function 
(0(4)/0(4))
2. Maximum function

1. Polynomial function 
(0(3))
2. Rational function 
(0(2)/0(4))

1. Polynomial function 
(0(3))
2. Rational function 
(0(0)/0(4))

4 linear 2 linear, 1 polynomial 
(0(4)) & 5 rational

1 linear, 1 polynomial 
(0(5)) & 2 rational

p S K S .
Corresponds to fixed 
values for 2 variables Unknown Corresponds to fixed 

values of 3 variables

»

• Non-linear, concave 
& discontinuous 
Pareto front

• Biased search 
space

• Multi-front (multiple 
local Pareto fronts)

• Non-linear, convex 
& discontinuous 
Pareto front

• Biased search 
space

• Multi-front (multiple 
local Pareto fronts)

• Non-linear, convex 
& continuous 
Pareto front

• Biased search 
space

Dependence
Independent decision 

variables
Independent decision 

variables
Independent decision 

variables
• Order of 

performance: 
GeneAS-l > 
GeneAS-II > 
Augmented 
Lagrangian (AL) > 
Branch-and-Bound 
(BB)

• Sub-optimal results

• Order of 
performance: 
GeneAS s  Branch- 
and-Bound (BB)

• Solutions lie on 
estimated Pareto 
front

• Simple GA
• Solution lies on 

estimated Pareto 
front

• Order of 
performance for 
convergence: 
NSGA-II > NSGA

• Order of 
performance for 
distribution: NSGA- 
II > NSGA

• Order of 
performance for 
convergence: 
NSGA-II (with 
constrained 
domination) ^ 
NSGA-II (with 
penalty function) > 
NSGA

• Order of 
performance for 
distribution: NSGA- 
II (with constrained 
domination) > 
NSGA-II (with 
penalty function) > 
NSGA

• Order of 
performance for 
convergence: 
NSGA-II (with 
constrained 
domination) s  
NSGA-II (with 
penalty function) > 
NSGA

• Order of 
performance for 
distribution: NSGA- 
II (with constrained 
domination) > 
NSGA-II (with 
penalty function) > 
NSGA
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)

Real-life Case Studies
Problem-4 Problem - 5 Problem -  6

I-beam Machining
Parameters

Machine Tool 
Spindle

a s

No. of Variables 4 3 4
Nature of Variables 4 real 3 real 2 real & 2 discrete
No. of Objectives 2 4 2
No. of Constraints 

(+ Var. Bounds) 5 6 9

1

Comr,y
Objectives

1. Polynomial 
function (0(2))
2. Rational function 
(0(0)/0(4))

1. Linear function
2. Linear function
3. Linear function
4. Linear function

1. Polynomial 
function (0(3))
2. Rational complex 
function (0(5)/0(8))

Constraints 4 linear & 1 rational 6 linear 8 linear & 1 rational

Reported 
Pareto Front Unknown Unknown Unknown

Complexity 
of Search 

Spaoe

• Non-linear, convex 
& continuous 
Pareto front

• Biased search 
space

• Linear, multi­
dimensional & 
continuous Pareto 
front

• Unbiased search 
space

• Non-linear, convex 
& discontinuous 
Pareto front

• Biased search 
space

• Multi-front (multiple 
local Pareto fronts)

Independent decision 
variables

Independent decision 
variables

One dependency 
; relationship among 2 

decision variables 
(0(1))

• Order of 
performance: 
Lexicographic > 
GALC > Min- 
max(OS) = GCM 
(OS) = WMM (OS) 
s  PMM (OS) s  
NMM (OS) > 
Monte Carlol s  
MonteCarlo2

• Most algorithms 
give solutions on 
estimated Pareto 
front

• Order of 
performance: 
Lexicographic > 
GALC > > 
MonteCarlo 1 = 
MonteCarlo2 > 
Min-max(OS) = 
GCM (OS) s WMM 
(OS) = PMM (OS) 
= NMM (OS)

• Most algorithms 
give solutions on 
estimated Pareto 
front

• Order of 
performance: 
Lexicographic > 
MonteCarlol > 
G A L O  
MonteCarlo2

• Most algorithms 
give solutions on 
estimated Pareto 
front

• Order of 
performance for 
convergence: 
NSGA-II > 
Gaminmax 1 > 
NPGA  ̂MOGA s 
NSGA s  VEGA s  
GAminmax2 = 
Hajela

• Order of 
performance for 
distribution: 
NSGA-II > NPGA 
> MOGA > NSGA 
= GAminmax2 s 
VEGA > 
Gaminmax 1 = 
Hajela

• Order of 
performance for 
convergence: 
NSGA-II > 
Gaminmax 1 > 
NPGA = MOGA s 
NSGA s VEGA s 
GAminmax2 = 
Hajela

• Order of 
performance for 
distribution: 
NSGA-II > NPGA 
> MOGA > NSGA 
= GAminmax2 = 
GAminmaxI > 
Hajela s VEGA

• Order of 
performance for 
convergence: 
NSGA-II > 
Gaminmax 2 s  
NSGA s  VEGA > 
Hajela > 
GAminmaxI > 
NPGA s  MOGA

• Order of 
performance for 
distribution: 
NSGA-II > VEGA > 
NSGA > 
GAminmax2 > 
NPGA > MOGA > 
Gaminmax 1 s 
Hajela
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)

, . , , , . 0 . . » , , . .
Problem - 7 Problem-8 Problem- 9

Two-bar Truss Robot Arm SiË9“

General
Problem
—

No. of Variables 3 4 4
Nature of 
Variables 3 real 4 real 4 real

No. of Objectives 2 4 5
No. of Constraints 
(+ Var. Bounds) 4 6 8

In
se

pa
ra

bl
e 

Fu
nc

tio
n 

In
te

ra
ct

io
n

1. Complex function 
(with root function)
2. Maximum function

1. Polynomial function 
(0(2))
2. Polynomial function 
(0(2))
3. Complex function 
(with root function)
4. Complex function 
(with root function)

1. Implicit multi-layered 
relationship
2. Implicit multi-layered 
relationship
3. Implicit multi-layered 
relationship
4. Implicit multi-layered 
relationship

3 linear &
1 maximum function 6 linear

4 linear &
4 compound multi­

layered relationships

AS. Unknown Unknown Corresponds to fixed 
value of ! variable

I
Ü

»

• Non-linear, convex & 
continuous Pareto 
front

• Biased search space

• Non-linear & multi­
dimensional Pareto 
front with unknown 
continuity

• Biased search space
• Unknown front 

modality

• Non-linear & multi­
dimensional Pareto 
front with unknown 
continuity

• Biased search space
• Unknown front 

modality
Independent decision 

variables
Independent decision 

variables
Independent decision 

variables

Ï
«

• e-constraint method
• Solutions lie on 

estimated Pareto 
front

• Order of 
performance: 
Lexicographic = 
GALC = Monte- 
Carlo! s  Monte- 
Carlo2 > Min- 
max(OS) s  GCM 
(OS)£WMM (0S) = 
PMM (OS) £ NMM 
(OS)

• Most algorithms give 
solutions on estim­
ated Pareto front

• No published results 
were observed in 
this category

• Order of 
performance for 
convergence: 
NSGA-II > NSGA

• Order of 
performance for 
distribution: NSGA-II 
> NSGA

• Order of perform­
ance for converg­
ence: NSGA-II > 
Gaminmax2 £ 
NSGA £ VEGA e 

Hajela e 

GAminmax! > 
NPGA£MOGA

• Order of perform­
ance for distribution: 
NSGA-II > Gamin- 
max2 £ VEGA e 

Hajela e  Gamin- 
max! > NSGA£ 
NPGA £ MOGA

• Order of 
performance for 
convergence: 
RPSGA > NPGA

• Order of 
performance for 
distribution: RPSGA 
> NPGA
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)

Problem -  10(a) Problem-10(b)
Real-life Case Studies Turbine Blade Cooling System Turbine Blade Cooling System

No of Variables 12

General
Nature of 
Variables 1 discrete & 11 real 1 discrete & 11 real

No. of Objectives 2 4

No. of Constraints 
(+ Var. Bounds) g g g g l # # 15

,

1
Complexity 1. Implicit multi-layered 

relationship
2. Implicit multi-layered 
relationship

1. Implicit multi-layered 
relationship
2. Implicit multi-layered 
relationship
3. Implicit multi-layered 
relationship
4. Implicit multi-layered 
relationship

I 12 linear &'
3 compound multi-layered 

relationships

12 linear &
3 compound multi-layered 

relationships

1
Unknown Unknown

I
• Non-linear & multi-dimensional 

Pareto front with unknown 
continuity

• Biased search space
• Unknown front modality

• Non-linear & multi-dimensional 
Pareto front with unknown 
continuity

• Biased search space
• Unknown front modality

Independent decision variables Independent decision variables

Single Objective 
Optimisers

• ARTS
• Solutions lie on estimated 

Pareto front

• ARTS
• Solutions lie on estimated 

Pareto front

• No published results were 
observed in this category

• No published results were 
observed in this category

9.3 Design o f a Welded Beam

This design is shown in Figure 9.1, and is briefly described in Section 9.1. The model 

for this design is given in Equation 9.1. This equation assumes the following values.

♦ Overhang portion of the beam =14 inch.

♦ F = 6000 lb force.

♦ Allowable shear strength of the material = 13600 psi.

♦ Allowable yield strength of the material = 30,000 psi.
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Minimise => Cost = f x (x) = 1.1047\h2l + 0.04811^(14.0 + /), Equation 9.1
Minimise => End _Deflection = f 2 (x) = 5 (x),
Constraints => g ; (x) = 13,600 -  r(x) > 0,
g 2 (x) = 30,000 -  cr(x) > 0,
g 3(x) = Z?-/z>0,
g 4 (x) = Pc (x) -  6,000 > 0.
Deflection _Term = 5 (x) = 2.1952/^6,

t(x) = -Jr’2 +t " 2 +(/rV") / Vo.25(/2 +(h + t)2), 

r'= 6,000/V2Zj/,

6,000(14 + 0.5l)^j0.25(/2 +(/! + i)2) 
r  2{0.707W(/2/12 + 0.25(/î + 0 2)} ’ 
cr(x) = 504,000/t 2b,
^  (x) = 64,746.022(1 -  0.0282346f)f^.

9.3.1 Experimental Results

Figure 9.5, Figure 9.6 and Figure 9.7 respectively depict the results obtained by 

applying NSGA-II, GRGA (without final redistribution) and GRGA (with final 

redistribution) to the optimisation of a welded beam design. The tests reported here 

are carried out using 100 population size, 500 generations, 0.8 crossover probability, 

0.05 mutation probability, and simulated binary crossover with 10 crossover 

distribution index and 50 mutation distribution index. These results form the typical 

set obtained from 10 runs with different seed values for the random number 

generator. No major variation was observed in the results with the change in seed 

values. Furthermore, HD A is used here with GRGA, and to enable fair comparison, 

the termination condition is not applied here for reporting the GRGA results.
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Figure 9.5: Results from NSGA-II on Welded Beam Design (Units: Deflection in

inch, Cost in cost units)
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Figure 9.6: Results from GRGA (Without Final Redistribution) on Welded Beam 

Design (Units: Deflection in inch, Cost in cost units)

Exhaustive Search 
GRGA (without final redistribution)
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Figure 9 .7: Results from GRGA (With Final Redistribution) on Welded Beam Design 

(Units: Deflection in inch, Cost in cost units)

9.3.2 Discussion of Results

The salient observations from the above-mentioned results are as follows.

♦ The problem has a search space that is biased towards high values of cost and 
low values of deflection. This implies that most of the solutions of the given 
model lie in this region. Furthermore, the Pareto front of this problem is convex 
and continuous in nature.

♦ Both NSGA-II and GRGA converge to the Pareto front in this case. In the case of 
NSGA-II, this has been possible due to the absence of multiple local fronts. Since 
GRGA converges to the Pareto front, it has been able to determine the 
relationships involving decision variables that define the Pareto front. Hence, 
when GRGA uses these values to redistribute the final solutions, a well-defined 
Pareto front is attained.

♦ Since this problem does not have variable dependency, GAVD is not applied in 
this case.

♦ GRGA reveals that the Pareto front of this problem corresponds to h = 0.422, 1 = 
2.465 and t = 9.990. Table 9.2 shows that a majority of final solutions determined 
by GRGA have these same values for h, 1 and t. Therefore, to attain any solution

Exhaustive Search 
GR G A (with final redistribution) o
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on the Pareto front, the designer needs to fix h, 1 and t to these values, and choose 
a value for b based on his/her preferences.

Table 9.2: Variable Values Corresponding to Identified Pareto Front

5

I
lf

0.422 83

2.465 87

9.990 97

NA NA

9.4 Design of a Machine Tool Spindle

This design is shown in Figure 9.2, and is briefly described in Section 9.1. The model 

for this design is given in Equation 9.2. This equation assumes the following values.

♦ d0m = 25.00 mm, dai = 80.00 mm, daz = 95.00 mm, dyi = 75.00 mm, d^ = 90.00 
mm, pi = 1.25, p2 = 1.05, Ik = 150.00 mm, lg = 200.00 mm, a = 80.00 mm, E = 
210,000.0 N/mm2, F = 10,000 N, Aa= 0.00540000 mm, Ay = -0.00540000 mm, A 
= 0.01000000 mm, 5ra = -0.00100000 mm and 5rb= -0.00100000 mm.

♦ da must be chosen from the set {80,85,90,95} and dy from the set {75,80,85,90}.

9.4.1 Experimental Results

Figure 9.8, Figure 9.9 and Figure 9.10 respectively depict the results obtained by 

applying NSGA-II, GRGA (with final redistribution) and GAVD (with final 

redistribution) to the design optimisation of a machine tool spindle. The tests 

reported here are carried out using 100 population size, 500 generations, 0.8 

crossover probability, 0.05 mutation probability, and simulated binary crossover with 

10 crossover distribution index and 50 mutation distribution index. These results 

form the typical set obtained from 10 runs with different seed values for the random 

number generator. No major variation was observed in the results with the change in 

seed values. Furthermore, HDA is used here with GRGA, and to enable fair 

comparison, the termination condition is not applied here for reporting the GRGA 

results.
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MinimiseiVolume_of _ Spindle) => Equation 9.2

f i(x) = (7tlA)[a(dl - d l )  + l(dl  - < ) ] ,
Minimis e{Static _ Displacement _ under _F )  =>

Constraints => gjix) = I - l g < 0,

S i ^ )  = lk - l < ^

a
g 9 (%) —A . + ( A . - A J ^ - A  < 0,

Dependency_ Equation (Designer's_Proportion_Preference) 
=>p2 d 0 =db,
A = Maximum_Runout_of_Spindle_Nose,
Aa = Radial Runout_ o f _ Front_ Bearing,
Ab = Radial _ Runout _ o f  _ Back _ Bearing,

M oment_of _Inertia - l a -  0.049(<^ - (/J),

M oment_of _ Inertia = I b = 0.049(J^ -  ̂ ),

Bearing Stiffness = ca = 35400|Ara|1/9̂ ° /9,<ira = Preload, 

Bearing _Stiffness = cb = 35400|JrZ,|1/9̂ ° /9,tifr6 = Preload.

9.4.2 Discussion of Results

The salient observations from the above-mentioned results are as follows.

♦ Due to two discrete variables in this problem, the search space is discontinuous. 
This also leads to multiple local fronts in the problem. The discontinuity in the 
search space also makes the global Pareto front discontinuous, composing it as a 
combination of parts of several local fronts. Furthermore, there is bias in the 
search space towards higher values of both displacement and volume. This means
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that the model has a tendency to generate solutions that lie in this part of the 
search space.

0.04
Exhaustive Search 

NSGA-II

0.035

0.03

q  0.025

0.02

0.015
800000400000 600000 1 e+06

Volume

Figure 9.8: Results from NSGA-II on Design o f Machine Tool Spindle (Units: 

Displacement in mm, Volume in mm3)
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GRGA (with final redistribution) o

0.035

0.03

b  0.025

0.02

0.015
800000 16406400000 600000

Volum e

Figure 9.9: Results from GRGA (With Final Redistribution) on Design o f Machine 

Tool Spindle (Units: Displacement in mm, Volume in mm3)
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GAVD (with final redistribution)
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0.015
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Figure 9.10: Results from  GAVD (With Final Redistribution) on Design o f  Machine 

Tool Spindle (Units: Displacement in mm, Volume in mm3)

♦ Here, GRGA successfully locates the global Pareto front, including all its parts. 
However, NSGA-II gets trapped in a local front due to the same reasons as 
mentioned for this behaviour in the previous chapter. Moreover, NSGA-II has 
also been able to locate all other individual parts of the Pareto front.

♦ Since GAVD has an in-built mechanism for dealing with variable dependence 
and since it uses GRGA as its optimisation engine, it has been able to locate all 
the parts of the Pareto front and distribute the solutions evenly across all these 
parts. In this case, the performances of GAVD and GRGA are similar since the 
introduction of variable dependence does not change the Pareto front. Therefore, 
GAVD gives better results than GRGA only in those cases in which variable 
dependency changes the Pareto front.

♦ GAVD reveals that the Pareto front of this problem corresponds to 1 = 187.78, da 
= 95 and dy = 90. Table 9.3 shows that a majority of final solutions determined 
by GAVD have these same values for 1, da and dy. Therefore, to attain any 
solution on the Pareto front, the designer needs to fix 1, da and db to these values, 
and choose a value for d0 based on his/her preferences.
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Table 9.3: Variable Values Corresponding to Identified Pareto Front

Si
187.78 99

NA NA

95 92

90 96

9.5 Design o f a Turbine Blade Cooling System

The preliminary design of the turbine blade cooling system was briefly described in

9.1, using Figure 9.3 and Figure 9.4. The model is developed considering one 

dimensional, single pass coolant flow. The model includes a cooling film 

mechanism, and involves twelve design variables. This Turbine Blade Cooling 

system Model (TBCOM) also uses several constants known as design parameters. 

TBCOM also includes three non-linear constraints.

The common nomenclatures used in this model are: A for cross-sectional area of 

passage, Ca for coefficient of discharge, Cp for specific heat at constant pressure, Cv 

for specific heat at constant volume, d for hydraulic diameter, dth for wall thickness, 

h for heat transfer coefficient, HI for parameter group for heat balance equation, H2 

for parameter group for heat balance equation, H3 parameter group for heat balance 

equation, k for thermal conductivity, 1 for passage length, M for Mach number, N for 

number, Pc for cooling air pressure, R for gas constant, Sc for cooling side parameter, 

Sg for gas side effective perimeter, Tc for cooling air temperature, W for mass flow, 

Xf for distance from film cooling hole exit / effective slot width of film, y for ratio of 

specific heats and p for dynamic viscosity. The following subscripts are also used 

here: 1 for cooling air inlet, 2 for film cooling passage inlet, 3 for cooling air exit, 3’ 

for film cooling hole exit, b for blade, c for coolant, f  for film and g for gas, hpc for 

high pressure compressor, r for radial passage and w for wall.

Like many other design models, TBCOM involves several constants known as 

design parameters. The design parameter values with their respective nomenclature 

are as follows.
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♦ Heat transfer coefficient (gas side), hg = 3000.0 W/m2K; gas side temperature, Tg 
= 1500.0 K; ratio of specific heats, y = 1.36; mass flow (high pressure 
compressor), WhpC = 84.85 Kg/s; radial cooling hole exit pressure, PC3 = 460000.0 
N/m2; number of blades, Ny = 78; wall temperature (gas side) for initial 
calculations, Twg = 1250.0 K; radial passage length, lr = 0.0406 m; specific heat 
at constant pressure, Cp = 993.0; one of two factors for heat transfer coefficient, F 
= 0.01855; gas constant, R = 287.0; distance from film cooling hole exit/effective 
slot width of film, X f  = 10; Mach number, Mach = 0.6; number of film holes, N f  

= 30 and initial outside temperature, Twgi = 1500.0 K.

♦ Maximum radial passage area, ACr ^ 2.75E-05 m2; bounds on radial coolant flow 
heat transfer coefficient, 100.0 W/m2K<hcr<4000.0W/m2K; check on metal 
temperature, 1000.0 K < Twg < 1500.0 K; for the film cooling section, heat 
transfer coefficients are the same for the film side and the gas side, that is hf = hg 
and for the film cooling section, the perimeter ratio, Rsf = 1.0.

As stated earlier, the objective functions are implicit and multi-layered in this case. 

This implies that the determination of objective values requires an iterative 

procedure. This procedure together with the equations involved is detailed in Roy 

(1997). Here, the iterative design procedure used for the calculation of the values of 

WCr and Twg is shown in Table 9.4 to give an illustration of the model complexity and 

its equations.

Wcr = 0.003 x Whpc / N b. Equation 9.3

FF = F x  Fhc, 

j _ 2.978E -  03 x Tfc0,5 
1 + (240.0/7c) ’

1.4882-06x7% 's
u  = ----------------------- .

7b+ 110.4

(for initial value assume Tc = Tcj)

Equation 9.4

x ( t / / * ) ( % T  / ^ ) ) , ^ c r c , Equation 9.5
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Table 9.4: Cooling System Design Procedure Used in TBCOM (Source: Roy, 1997)

Step Number Task Equation Comment

Estimate W Cr Equation 9.3
Based on the limiting 
value of flow off-take from 
the engine compressor.

Estimate Twg -
Based on material 
property limitation, 
suggested 1500.0 K.

Step 3 Calculate hcr Equation 9.4 -

Calculate ACr Equation 9.5

Check the value, if within 
the limiting value of Acr, 
go to Step 5. If not within 
the limiting value of Acr, 
then W Cr = Wcr*0.99 and 
go back to Step 4.

Steps Calculate W Cr Equation 9.6 -

Calculate hcr Equation 9.7

Compare hCr value from 
Step 6 with Step 3, if 
within tolerance then 
proceed to check whether 
her lies within the 
acceptable range, if yes 
then proceed to Step 7 
otherwise reset the Twg 
and hcr values and go to 
Step 4. If the wall 
temperature calculation 
reaches a steady state 
then only accept, if not 
equal then go back to 
Step 4.

Calculate Twg Equation 9.8

Check the value, if within 
the acceptable limit then 
accept. If not within the 
limit and if has not 
been changed previously, 
change W Cr as Wcr = 
Wcr‘ 1.01.

StepS Calculate Tc Equation 9.9 -
Step 9 Recalculate k k defined in Equation 9.5 -

Recalculate n H defined in Equation 9.5

Reset Twg and hcr values 
and go to Step 4. If the 
wall temperature 
calculation reaches a 
steady state then only 
accept.

^ c r ^ d ^ Cl 2r
( r  \ - 2 / y  z \ - V + r ) / r X \Pc, Pc,

0.5

\ P C 2 J PC2/

Equation 9. 6
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T , where.

Equation 9.8

w g

m+m m+H?>
m=  2-------

Scr = 3.545xJÂ ^,
lr = 0.0406m,

7b = ( # 2 /m ) (7 ;  - ^ )  + 2c„M,Wg, Equation 9.9

Tc3 -  Te, =2{Tc-Tcx)

9.5.1 Experimental Results

Two sets of results are reported in this case. In the first set, only two objectives are 

considered for optimisation ( W Cr and T w g)  whereas in the second set, all the four 

objectives are included ( W cr, W cf , T w g and T w f ) .  In both these cases, all the 

constraints in the problem are incorporated in the solution procedure. Figure 9.11, 

Figure 9.12 and Figure 9.13 respectively depict the results obtained by applying 

NSGA-II, GRGA (without final redistribution) and GRGA (with final redistribution) 

to the two-objective design optimisation of a turbine blade cooling system. Also, 

Table 9.5 depicts the results obtained by applying NSGA-II, GRGA (without final 

redistribution) and GRGA (with final redistribution) to the four-objective version of 

the same problem. All the tests reported here are carried out using 100 population 

size, 500 generations, 0.8 crossover probability, 0.05 mutation probability, and 

simulated binary crossover with 10 crossover distribution index and 50 mutation 

distribution index. These results form the typical set obtained from 10 runs with 

different seed values for the random number generator. No major variation was 

observed in the results with the change in seed values. Furthermore, HDA is used
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here with GRGA, and to enable fair comparison, the termination condition is not 

applied here for reporting the GRGA results.
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Figure 9.11: Results from NSGA-II on Design o f Turbine Blade Cooling System 

(Assuming Two Objectives) (Units: Wcr in Kg/s, Twg in K)
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Figure 9.12: Results from GRGA (without final redistribution) on Design o f Turbine 

Blade Cooling System (Assuming Two Objectives) (Units: Wcr in Kg/s, Twg in K)
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Figure 9.13: Results from GRGA (with final redistribution) on Design o f Turbine 

Blade Cooling System (Assuming Two Objectives) (Units: Wcr in Kg/s, Twg in K)

Table 9.5: Results from NSGA-II, GRGA (without final redistribution) and GRGA 

(with final redistribution) on Design o f Turbine Blade Cooling System (Assuming 

Four Objectives) (Upper Diagonal Graphs: GRGA Results, Lower Diagonal 

Graphs: NSGA-II Results) (Units: Wcr in Kg/s, Wcf in Kg/s, Twg in K, Twf in K)

Wcr

(0-0.007)
Figure 9.14(a) Figure 9.14(b) Figure 9.14(c)

Figure 9.15(a)
Twg

(1200-1300)
Figure 9.14(d) Figure 9.14(e)

Figure 9.15(b) Figure 9.15(c)
Wcf

(0-0.0025)
Figure 9.14(f)

Figure 9.15(d) Figure 9.15(e) Figure 9.15(f)
Twf

(900-1150)
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Figure 9.14: Results from GRGA on Design o f Turbine Blade Cooling System 

(Assuming Four Objectives) (Units: Wcr in Kg/s, Wcf in Kg/s, Twg in K, Twf in K) -  

(a) Wcr-Twg Graph (b) Wcr-Wcf Graph (c) Wcr-Twf Graph (d) Twg-Wcf Graph (e)

Twg-Twf Graph (f) Wcf-Twf Graph
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Figure 9.15: Results from NSGA-II on Design o f Turbine Blade Cooling System 

(Assuming Four Objectives) (Units: Wcr in Kg/s, Wcf in Kg/s, Twg in K, Twf in K) -  

(a) Twg-Wcr Graph (b) Wcf-Wcr Graph (c) Wcf-Twg Graph (d) Twf-Wcr Graph (e)

Twf-Twg Graph (f) Twf-Wcf Graph
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9.5.2 Discussion of Results

The following observations can be made regarding the search space of this problem.

♦ It can be seen from the above figures that the Pareto fronts appear in all W-T 
plots, implying conflict between W’s and T’s. This is intuitive since any increase 
in coolant mass flow is expected to decrease the metal temperature and vice 
versa. Furthermore, as expected, the conflicting fronts do not appear in any W-W 
or T-T plot.

♦ It can also be seen from these plots that there is a bias in the search space. An 
example of this is the Wcr-Twg plot (Figure 9.14(a)) that exhibits bias towards 
higher values of Twg.

♦ The Wcr-Twg plot also depicts that the given model has a local and a global Pareto 
front with respect to W Cr and Twg. This multi-modality arises due to the presence 
of a discrete variable in the problem. This also causes very low density of 
population in the region between the two fronts, leading to deception in the 
search space.

♦ This model exhibits a discontinuity at the value of Twg equal to 1250. At this 
value of Twg, which is also its initial value, some of the output values are 
undefined, leading to discontinuity in the search space. This might be due to an 
error in the model.

♦ This model has 12 variable bounds and 3 constraints. The introduction of these 3 
constraints has the following effects on the model.

♦ The first constraint (1200.0 < TWg < 1300.0) defines the range of TWg. This 
constraint, together with the relationship between TWg and W Cr, also limits the 
values that can be taken by W cr.

♦ Since, in the unconstrained model, the value of Twf does not cross 1300.0, the 
second constraint (Twf < 1300.0) does not have any impact on the model.

♦ All the solutions that lie below the line Wcr = 0.8 X WCf in the unconstrained 
model become infeasible in the constrained model due to the third constraint: 

Wc/Wcf > 0.8.

♦ As can be seen from the Wcr-Twg plot (Figure 9.14(a)), the restrictions on TWg 
values create a situation in which there are very few feasible points
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corresponding to certain values of WCr (close to a value of 0.002). This results in 
similar regions in all the plots that involve W Cr.

♦ In summary, the constraints focus the plot in the given range of WCr and Twg, 
introduce an infeasible region in the Wcr-Wcf plot (Figure 9.14(b)), and create 
sparsely populated regions that correspond to values of W Cr close to 0.002.

♦ The four-objective search space reveals well-defined Pareto front in all its two- 
dimensional plots. This is a clear demonstration of the fact that the Pareto front in 
this problem has the form of a curve, rather than a higher dimensional entity. 
This is because in a multi-dimensional search space only a curve can be projected 
as a curve in all its two-dimensional plots.

♦ The above observations are valid in the cases involving both two and four 
objectives. However, it should be noted that in the case of two objectives, the 
function space is only two-dimensional, having just one plot: Wcr-Twg.

The following conclusions can be drawn from the tests performed on the four-

objective version of this model.

♦ In this case, GRGA gives solutions that are very close to the Pareto front, but do 
not exactly converge to the front due to the multi-dimensional nature of the 
search space. However, GRGA determines the relationships involving those 
decision variables that define the Pareto front. Therefore, when GRGA uses these 
values to redistribute the final solutions, the results that are attained lie on the 
Pareto front and are well distributed across it.

♦ Here, NSGA-II gets trapped in a local front due to the same reasons as mentioned 
for this behaviour in the previous chapter. However, the solutions that are 
generated by NSGA-II exhibit a good distribution.

♦ Since this problem does not have variable dependency, GAVD is not applied in 
this case.

♦ GRGA reveals that the Pareto front of this problem corresponds to Geom = 
pedestal, Cdr= 0.3901, dth = 0.0019903, kw = 19.87, df = 0.000149, Cdf = 0.6378, 
Ff = 1.101 and Rpf = 0.381. Table 9.6 shows that a majority of final solutions 
determined by GRGA have these values of design variables. Therefore, to attain 
any solution on the Pareto front, the designer needs to fix the above-mentioned 
variables to these values, and choose values for other variables (Fhc, Tci, Rp and 
Rs) based on his/her preferences.
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Table 9.6: Variable Values Corresponding to Identified Pareto Front

£ 4 Objective Functions 2 Objective Functions

=
Geometry 3 83 3 99

0.3901 80 0.3995 99

NA NA 3.199 95

NA NA 799.05 99

0.0019903 74 0.0024381 99

19.87 77 19.19 99

NA NA 1.5933 98

NA NA NA NA

0.000149 77 0.0001041 90

0.6378 86 0.7491 89

1.101 78 1.497 92

0.381 81 0.397 94

The results obtained from the two-objective case are analysed here to make the 

following observations.

♦ GRGA is able to successfully converge to the Pareto front even without the use 
of a local search. This is expected since the reduction in the dimensionality of the 
model makes it easier for the optimisation algorithms to locate the Pareto front. 
Due to this convergence, GRGA is also able to successfully redistribute the 
solutions across the Pareto front. Here as well, NSGA-II gets trapped on a local 
front.

♦ GAVD is not tested on this problem for the same reason as mentioned in the 
four-objective case.

♦ As compared to the four-objective case, the Pareto front of this problem has fixed 
values for a larger number of variables. This is not surprising since the reduction 
in the number of objectives reduces the degrees of freedom of the Pareto front, 
thereby increasing the number of variables that take fixed values on the Pareto 
front. Here, GRGA reveals that the Pareto front corresponds to Geom = pedestal, 
Car = 0.3995, Fhc = 3.199, Tci = 799.05, dth = 0.0024381, kw = 19.19, Rp = 
1.5933, df = 0.0001041, Cdf = 0.7491, Ff = 1.497 and Rpf = 0.397. Table 9.6 
shows that a majority of final solutions determined by GRGA have these values 
of design variables. Therefore, to attain any solution on the Pareto front, the 
designer needs to fix the above-mentioned variables to these values, and choose a
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suitable value for Rs based on his/her preferences. It is interesting to note that the 
values reported here are similar to the ones observed in the four-objective case. 
Further, Rs is also a free variable in the previous case.

9.6 Validation of Results

The results obtained from GRGA and GAVD are validated here using exhaustive 

search and through comparison with the results published in literature.

9.6.1 Design of a Welded Beam

Visualisation of the GRGA results with the results of exhaustive search clearly 

depicts that GRGA has been able to converge to the Pareto front (Figure 9.7). It can 

also be seen from this plot that GRGA produces well distributed solutions across the 

Pareto front. These solutions also cover near the whole of Pareto front, with the 

extreme solutions having very high deflection and low cost on one end, and very 

high cost and low deflection on the other.

Literature reveals that in solving this problem NSGA-II gives better performance 

than all other algorithms (Deb, Pratap and Moitra, 2000). Figure 9.5 depicts the 

NSGA-II results on this problem. It is evident that although NSGA-II has been able 

to converge to the Pareto front, it does not exhibit uniform distribution of solutions. 

It can be seen from this graph that NSGA-II does not locate any Pareto-optimal 

solution in region of the search space that corresponds to low cost and high 

deflection. This is because the search space has a bias against these values of 

objective functions (Figure 9.5).

9.6.2 Design of a Machine Tool Spindle

The Pareto front in this problem is made up of four discontinuous parts that originate 

from the global and three local fronts in the search space. It can be seen from Figure 

9.9 and Figure 9.10 that both GRGA and GAVD are able to converge to all the four 

parts of the Pareto front. The performances of GRGA and GAVD are similar in this 

case since the introduction of variable dependence does not change the Pareto front.
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Coello (1997) compares the performances of a number of multi-objective 

optimisation algorithms in solving this problem. These include VEGA, NSGA, 

MOGA, NPGA, Hajela’s Method and GAminmax. It is observed from these results 

that although these algorithms could locate points close to the Pareto front, they 

could not exactly converge to either the global front or any of the local fronts. 

Furthermore, all the results reported by Coello (1997) exhibit concentration towards 

a region of the search space, thereby leading to very poor distribution of solutions. 

The author observed that in this problem NSGA-II gives better results than the 

above-mentioned algorithms. Figure 9.8 shows that although NSGA-II fails to locate 

the global Pareto front, it converges to the front that is the closest to the Pareto front. 

NSGA-II is also able to locate the other two parts of the Pareto front. As compared to 

NSGA-II, both GRGA (Figure 9.9) and GAVD (Figure 9.10) exhibit better 

convergence since they are able to converge to the global Pareto front, and locate all 

the other three discontinuous parts originating from the local fronts. These 

algorithms also exhibit good distribution of solutions across all these discontinuous 

parts of the Pareto front.

9.6.3 Design of a Turbine Blade Cooling System

This problem also has a global and a local front. In the two-objective version of this 

problem, it can be seen from Figure 9.13 that GRGA is able to locate the global 

Pareto front. It is also evident from this figure that GRGA gives equal distribution of 

solutions across the Pareto front, and is able to locate solutions across the full span of 

the Pareto front. In the four-objective case as well, GRGA converges to the Pareto 

front. This can be seen from Figure 9.14. This figure also shows that GRGA is able 

to find well distributed Pareto-optimal solutions that span across the search space.

Roy (1997) applies Adaptive Restricted Tournament Selection (ARTS) to this 

problem, but considering only one objective, Wcr. The results obtained from ARTS 

lie on the global Pareto front, but as expected, are concentrated at its extreme end 

that corresponds to low values of Wcr and high values of Twg. The application of 

NSGA-II to both the two- and four-objective versions of this problem leads to
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convergence to the local front. This can be seen from Figure 9.11 for the two- 

objective case and from Figure 9.15 for the four-objective case. However, as 

revealed in these figures, NSGA-II is able to provide well distributed solutions that 

span across the local front.

9.7 Summary

This chapter has demonstrated the successful application of GRGA and GAVD in 

solving three real-life engineering design optimisation problems: design of a welded 

beam, a machine tool spindle and a turbine blade cooling system. Since these three 

problems constitute a representative set, it can be said that the successful application 

of GRGA and GAVD on these problems ensures their success in solving other 

problems listed in Table 4.1. In this way, this chapter has used real-life problems to 

validate the observations made previously regarding the capability of GRGA and 

GAVD in dealing with multiple objectives, constraints and variable dependence in 

engineering design optimisation problems. In particular, it has demonstrated that 

GRGA and GAVD can successfully handle inseparable function interaction and 

variable dependence in complex multi-objective optimisation problems with 

constraints. This chapter has also demonstrated that these two algorithms outperform 

a state-of-the-art optimisation algorithm, NSGA-II, on a wide variety of multi­

objective optimisation problems. In short, this chapter has achieved the following.

♦ It has analysed a number of case studies from real-life engineering design 
optimisation.

♦ It has framed the selection criteria for choosing a representative set of case 
studies for this research.

♦ It has reported the experimental results obtained from GRGA, GAVD and 
NSGA-II.

♦ It has finally analysed these results in order to validate the performance of GRGA 
and GAVD.
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1 0  DISCUSSION AND CONCLUSIONS

This chapter concludes this thesis with a discussion on the findings of this research. 

It also identifies the limitations of this work and the corresponding future research 

activities. This chapter aims to achieve the following.

♦ To summarise key observations of this research

10.1 Discussion

This section discusses the key observations of this research. The generality of this 

research is also discussed in this section.

10.1.1 Key Observations of this Research

Traditional trial-and-error method of design optimisation is not capable of meeting 

the current industrial demands. Industries are, therefore, looking for automating the 

optimisation process using algorithms and computational techniques. However, the 

lack of flexibility and adequacy of existing optimisation techniques in dealing with 

the challenges of real-life engineering design optimisation problems has prevented 

the industry from adopting the optimisation algorithms. This research aims to explore 

the field of EC for developing techniques that are capable of dealing with the 

challenges posed by three features of real-life engineering design optimisation 

problems: multiple objectives, constraints and interaction among decision variables. 

This is a part of a broad initiative to make optimisation algorithms popular in 

industry. The key observations of this research are summarised here.
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10.1.1.1 Literature Survey

The research has looked at the popular engineering design optimisation approaches 

in literature. It has surveyed the optimisation approaches for handling uncertainty, 

FEAVCFD analysis and sensitivity analysis. It has analysed the drawbacks of 

classical optimisation algorithms that have led to the growth of research in the area 

of EC. In order to access the current capability of EC techniques in dealing with the 

challenges of engineering design optimisation, the research has carried out a detailed 

survey of these techniques with respect to three features of engineering design 

optimisation problems: multiple objectives, constraints and variable interaction.

The two main goals of multi-objective optimisation are convergence to the Pareto 

front and maintenance of diversity across the front. It is observed that the elitist 

EMOTs that use Pareto domination and diversity-preserving operators perform better 

than other multi-objective optimisation techniques. However, it is observed that there 

are only a few EC techniques that specialise in handling constraints in multi­

objective optimisation problems. The recently introduced concept of constrain- 

domination (Deb, 2000), which incorporates constraint violations in the definition of 

Pareto domination, has been shown to be successful in handling a variety of 

constrained multi-objective optimisation problems. This research classifies the 

interaction among decision variables into two broad categories: inseparable function 

interaction and variable dependence. Most of the EC techniques that are discussed 

above fail under the challenges, such as multi-modality, deception and discontinuity, 

posed by inseparable function interaction (epistasis). However, most of the current 

research in this field deals with single-objective optimisation in discrete domains. 

The few ETIFIs that are available for dealing with continuous search spaces have 

limited usefulness for real-life problems since in most cases they cannot handle 

multiple objectives and their performance is strongly dependent on the nature of the 

search space. The introduction of variable dependence introduces an additional level 

of complexity to the constrained, inseparable, multi-objective optimisation problems. 

Here, the variables are dependent on each other, implying that a two-step procedure 

needs to be appended to the EC: identification of dependency relationships (Step 1)
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and classification of variables (Step 2). Although the literature reports some 

techniques that can individually deal with these two steps, there is a compete lack of 

dedicated EC frameworks for dealing with dependent-variable optimisation 

problems.

The literature survey also analyses the existing optimisation test functions with 

respect to their capability of simulating multiple objectives, constraints and variable 

interaction in engineering design optimisation problems. It is observed that most of 

the multi-objective optimisation test functions that are reported in literature are not 

tuneable in nature. Recently Deb (2001) proposed a tuneable strategy for constrained 

multi-objective optimisation, but it also provides only a limited control since it does 

not propose generic, parametric prototypes for the objective functions. Therefore, 

this scheme lacks a complete approach to multi-objective test bed development. 

Furthermore, the development of test beds for simulating variable interaction has not 

been adequately addressed by previous research in the area of optimisation. Although 

in recent years some researchers have talked about test function development for 

inseparable function interaction, literature does not report any test bed that can 

directly control the complexity introduced due to the inseparable function interaction 

in the objective functions of the problem. A much stronger observation was made 

regarding variable dependence, where it is observed that there is a complete lack of 

test problems for simulating variable dependence.

10.1.1.2 Industrial Context and Focus

In order to ground the research within the industrial context, an industrial survey is 

carried out in this research. Questionnaires are used for collection of information, 

and the number of companies visited is limited to six. The industry survey highlights 

that optimisation algorithms are not popular in industry. The survey also compiles 

the features of real-life engineering design optimisation problems that include 

multiple objectives, constraints and interaction among decision variables. It is 

observed in this survey that the lack of robust techniques for dealing with the 

features of real-life engineering design optimisation problems is one of the inhibitors 

to industrial applications of optimisation algorithms. This leads to the industrial
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context of the research, which is to develop optimisation techniques that can handle, 

within a single framework, the following three features of real-life engineering 

design optimisation problems: presence of multiple objectives, constraints and 

variable interaction. Since it is difficult to find a variety of real-life cases with 

required complexities, this research also develops test beds that are capable of 

performing systematic and controlled simulation of multiple objectives, constraints 

and variable interaction in optimisation problems.

10.1.1.3 Gap Analysis: EC versus Multiple Objectives, Constraints and 

Variable Interaction

This research compares the capabilities of the existing EC techniques against the 

challenges posed by multiple objectives, constraints and variable interaction in 

engineering design optimisation problems. This analysis reveals that there are 

effective techniques available in literature for handling multiple objectives and 

constraints. However, there is a research gap in EC techniques for handling variable 

interaction. This gap defines the main focus of this research, which is to develop EC 

techniques that can effectively handle the two types of variable interaction 

(inseparable function interaction and variable dependence) in constrained multi­

objective optimisation problems, defined in hybrid search spaces (with integer and 

real variables).

Similar to the case of EC techniques, the areas of multi-objective and constrained 

optimisation test bed development are well addressed in literature as almost separate 

streams. However, there is a need to develop tuneable/parametric test beds that can 

simulate the complexity introduced by multiple objectives, constraints and variable 

interaction in a single framework. The research also attempts to address this gap.

10.1.1.4 Development of GRGA

This research identifies the challenges that inseparable function interaction poses for 

multi-objective optimisation algorithms. These challenges include multi-modality, 

deception, collateral noise and isolated optimum from the perspective of convergence 

to the Pareto front, and discontinuity, non-uniformity and shape complexity of the
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Pareto front from the perspective of maintenance of diverse Pareto-optimal solutions. 

This research proposes a novel solution strategy to deal with these challenges. 

Furthermore, it applies this solution strategy to develop an algorithm, GRGA, which 

is capable of handling constrained multi-objective optimisation problems having 

complex inseparable function interaction. GRGA is based on the fact that there is 

existence of relationship^ among the decision variables of the solutions belonging 

to the Pareto front. It explores this relationship using non-linear, multi-variable 

regression analysis. The relationship thus obtained is used for periodic and final re­

distribution of solutions over their respective fronts, guiding the search towards 

global Pareto front and determining the termination condition of the algorithm. 

GRGA has been shown to outperform the existing state-of-the-art multi-objective 

optimisation algorithm, NSGA-II. This algorithm has also been proved to be very 

effective in dealing with a variety of multi-objective optimisation problems. 

However, its performance is dependent on how accurately the relationships among 

the decision variables can be represented.

10.1.1.5 Development of GAVD

This research also deals with variable dependence, which is the second type of 

variable interaction. In the presence of variable dependence, the decision variables 

cannot be varied independently. Also, it has been proved here that the search space 

gets modified creating a new feasible region based on the dependence among the 

decision variables. This research observes that two additional steps need to be 

appended to GRGA for enabling it to deal with dependent-variable optimisation 

problems. These steps involve the identification of dependency relationships and the 

classification of variables into dependent and independent. This research proposes a 

novel algorithm, GAVD, which uses RA coupled with a DC to identify the 

dependency relationships. In this algorithm, the variables are classified as dependent 

and independent using a DT. GAVD makes use of GRGA as the optimisation engine. 

Here, the independent variables, identified by the DT, define the GA chromosome. 

For each alternative solution generated by the GA, the dependency equations are 

used to calculate the values of the dependent variables. It should be noted here that

EC Techniques for Handling Variable Interaction 289



Chapter 10. Discussion and Conclusions

the bounds on independent variables are treated as variable limits and those on 

dependent variables are treated as constraints. Hence, the presence of variable 

dependence has an effect of constraining the search space. GAVD exhibits successful 

performance on a number of dependent-variable optimisation problems. However, its 

capability to estimate the dependence among decision variables is limited by the 

degree of the RA that it uses.

10.1.1.6 Development of RETB and RETB-II

The development of optimisation algorithms requires systematic and controlled 

testing. However, since it is difficult to find a wide variety of real-life cases to 

support this, it is important to develop test beds that have the required features 

(multiple objectives, constraints and variable interaction), and enable controlled 

testing of algorithms. This research proposes two test beds, RETB and RETB-II, 

which provide a unified framework for controlled testing of optimisation algorithms 

with respect to the three features of real-life engineering design optimisation: 

presence of multiple objectives, constraints and variable interaction. To provide 

better control over the complexity of test functions, RETB and RETB-II also provide 

generic, parametric prototypes for each of the functions in their definition. The 

capability of RETB and RETB-II to handle multiple objectives, constraints and 

variable interaction in a single framework makes them generic in nature. 

Furthermore, the availability of parametric prototypes with these test beds also 

makes them fully tuneable.

10.1.1.7 Performance Analysis of GRGA and GAVD

This research applies RETB to compare the performance of GRGA with that of 

NSGA-II. The choice of NSGA-II for comparison is based on the fact that it has been 

shown in literature to outperform all existing techniques in dealing with multi­

objective optimisation problems in real domains. The test problems that are chosen 

for analysis have complex inseparable function interaction leading to multi-modality 

in the search space, discontinuity in Pareto front and bias in the search space. It is 

shown that in all cases GRGA exhibits better convergence as compared to NSGA-II.
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This is because the Pareto-domination/elitism strategy used by NSGA-II ceases to 

produce the driving force towards the global Pareto front once most of the solutions 

of the population share the same non-domination level. GRGA addresses this 

drawback of NSGA-II through periodic modification of regression coefficients based 

on their history of search observed in previous generations. This guides the search 

towards the global Pareto front by preventing it from getting trapped in local fronts. 

It is also observed that in most test functions GRGA provides better distribution of 

solutions than NSGA-II. The reason for this is that the Crowded Comparison 

Operator used in NSGA-II attempts to attain solution diversity using external means, 

without addressing the inherent features that lead to diversity problems. On the other 

hand, GRGA addresses the core issue of this problem by determining the 

relationships among the decision variables of the solutions, and using them to re­

distribute the solutions for aiding their spread over the current front.

This research uses RETB-II for constructing dependent-variable test functions in 

order to compare the performance of GAVD against those of GRGA and NSGA-II. It 

is observed that in all those problems in which the introduction of variable 

dependence modifies the Pareto front, the GRGA and NSGA-II are not able to 

converge to the Pareto front. This is because of the inability of these algorithms to 

incorporate variable dependence. On the other hand, GAVD is able to identify 

variable dependency, and hence converges to the Pareto front. Furthermore, it is 

observed that since GAVD uses GRGA as its optimisation engine, it also inherits all 

its features for effectively dealing with inseparable function interaction in multi­

objective optimisation problems.

10.1.1.8 Validation Using Real-life Problems

The performance of GRGA and GAVD is also tested on a set of real-life engineering 

design optimisation problems that together represent a variety of challenges that 

multiple objectives, constraints and variable interaction pose for optimisation 

algorithms. This representative set includes the design of a welded beam, a machine 

tool spindle and a turbine blade cooling system. The validation of results is 

performed here based on the published results and visualisation of the search space in
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the presence of exhaustive search. The findings made through the testing of GRGA 

and GAVD with RETB and RETB-II are validated here. In particular, the application 

of GRGA and GAVD on these real-life problems demonstrates their capability of 

dealing with multiple objectives, constraints, inseparable function interaction and 

variable dependence in engineering design optimisation problems.

10.1.2 Main Contributions

This research has significantly contributed to understanding about the handling of 

variable interaction in engineering design optimisation problems. The research has 

mathematically defined and classified variable interaction. It has proposed two EC 

techniques, GRGA and GAVD, for handling variable interaction, and two test beds, 

RETB and RETB-II, for performing controlled testing of optimisation algorithms in 

the presence of multiple objectives, constraints and variable interaction.

The following points clearly identify the contribution to knowledge of this work. 

There was a research gap in all these areas that has subsequently been filled by this 

work.

♦ Critical Analysis of Existing EC techniques: The literature survey carried out in 
this research compares the capabilities of the existing EC techniques against the 
challenges posed by multiple objectives, constraints and variable interaction in 
engineering design optimisation problems. Based on the above analysis, this 
research has identified that there is a lack of techniques for handling variable 
interaction in engineering design optimisation problems. This has led to the 
identification of variable interaction as the main focus of this research for the 
development of optimisation algorithms and for the development of 
tuneable/parametric test beds.

♦ Definition and Classification of Variable Interaction: This research has defined 
and classified variable interaction into two broad categories: inseparable function 
interaction and variable dependence. It has further developed definitions for each 
of these categories.

♦ Development of Test Beds for Engineering Design Optimisation: It is difficult to 
find a wide variety of real-life design optimisation problems to support 
systematic and controlled testing of optimisation algorithms. Therefore, this
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research has developed two parametric test beds, RETB and RETB-II that can 
simulate multiple objectives, constraints, inseparable function interaction and 
variable dependence in engineering design optimisation problems. In this way, 
these test beds enable controlled testing of optimisation algorithms with a large 
variety of problem features.

♦ Development of Techniques for Handling Variable Interaction: This research has 
compiled the challenges that the two categories of variable interaction pose for 
optimisation algorithms. Based on this, it has developed generic strategies for 
dealing with inseparable function interaction and variable dependence. These 
strategies have led to the development of two novel algorithms: GRGA for 
handling inseparable function interaction and GAVD for handling variable 
dependence. Furthermore, the research has compared the performance of GRGA, 
GAVD and NSGA-II based on a set of test problems generated by RETB and 
RETB-II. The techniques are also validated with real-life case studies.

♦ Analysis of Real-life Optimisation problems: This research has analysed a 
number of real-life engineering design optimisation problems, especially with 
respect to inseparable function interaction and variable dependence. It has 
selected a representative set from these problems, and used them to validate the 
performance of GRGA and GAVD,

10.1.3 Generality of Research

An attempt has been made in this research to keep it as general as possible. However,

as with any other research, this work also has some limitations. Here, some of these

limitations are identified.

10.1.3.1 Limitations of Research Methodology

The following are the main limitations of the methodology used in this research.

♦ In this research, semi-structured interviews with designers were used as tools for 
accessing the current status of design optimisation in industry. The limitations of 
this survey are as follows.

> The use o f questionnaires as the method o f data collection, though useful, 
has its limitations since the surveyors do not directly observe the 
optimisation process.
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> The companies visited did not cover a fu ll spectrum o f the industry sectors.

> Although the questionnaire contained both ‘open’ and ‘closed’ questions, 
the analysis o f results was mostly qualitative in nature, making it prone to 
the errors o f subjectivity. To reduce this error, a systematic analysis was 
carried out to identify the factors common to most companies and those 
that are prevalent only in a few  companies. However, the analysis 
provided little insight into the quantitative/statistical aspects o f the 
information gathered.

♦ The industry survey identified a number of issues that inhibit industrial 
applications of optimisation algorithms. However, this research has chosen only 
one of these issues for analysis. This issue is the lack of robust optimisers for 
handling the features of real-life engineering design optimisation problems. 
Therefore, the research methodology focuses on developing EC/GA techniques 
for engineering design optimisation.

♦ The algorithm used for comparison in this research is NSGA-II. The choice of 
this algorithm is justified since it outperforms most of the existing algorithms in 
dealing with multi-objective optimisation problems.

♦ The real-life case studies that are used in this research are borrowed from 
literature. This has provided a limited insight into the process of model 
development for optimisation. Furthermore, the nature of case studies could have 
been better understood if they were designed in consultation with the industrial 
designers.

♦ This research carried out the process of validation by performing exhaustive 
search on the model of the real-life problem, and analysing the location of 
solutions with respect to the Pareto front depicted by the exhaustive search. 
Although this method gives useful information regarding the performance of the 
optimisation algorithms, it provides only a limited insight into the usefulness of 
the attained results for designers in industry.

10.1.3.2 Limitations of GRGA

The limitations of GRGA are as follows.

♦ The performance of GRGA is dependent on how accurately the relationship 
among decision variables can be represented in the RA that it uses. Hence, use of
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more sophisticated non-linear modelling tools have the potential of improving its 
performance.

♦ In case of very complex relationships (high order, non-linear) among the decision 
variables of the Pareto-optimal solutions, the performance of RA (used in 
GRGA) is expected to deteriorate. This is an inherent limitation of the RA 
technique used.

♦ As the number of dimensions and objectives in the problem is increased, the 
effectiveness of this algorithm in producing well distributed solutions exhibits a 
drop since it becomes more difficult for HDA (used in GRGA for distributing 
solutions) to evenly distribute the solutions.

♦ The performance of this algorithm drops as the number of relationships among 
the decision variables of the Pareto-optimal solutions increases. This is due to the 
difficulty of determining and maintaining all the relationships in the population.

♦ This algorithm is not capable of dealing with dependence among decision 
variables and qualitative issues such as manufacturability and designers’ special 
preferences.

10.1.3.3 Limitations of GAVD

The limitations of GAVD are as follows.

♦ Since GAVD uses GRGA as its optimisation engine, it shares all the above- 
mentioned limitations of GRGA. GAVD gives better results than GRGA only 
when the introduction of variable dependence actually modifies the search space. 
In addition, it has the following limitations in its strategy of handling dependence 
among the decision variables.

♦ The performance of this algorithm in accessing the dependence among decision 
variables is limited by the degree of RA that it uses. Hence, in dealing with 
complex dependence, higher order RAs are required. This implies that the use of 
more sophisticated non-linear modelling tools, such as Neural Networks, have 
the potential of improving its performance, especially in modelling deceptive and 
complex non-linear functions.

♦ GAVD also needs to be fitted with a mechanism that can learn the dependency 
relationships, and update it each time a new data is added, without having to 
repeat the whole process.
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♦ GAVD also needs enhancements to deal with noisy data.

♦ Finally, this algorithm is not capable of dealing with qualitative issues.

10.1.3.4 Limitations of Proposed Test Beds

The limitations of RETB and RETB-II are as follows.

♦ RETB is incapable of generating test problems that have dependence among their 
decision variables.

♦ Both RETB and RETB-II currently simulate only static environments. They are 
incapable of dealing with uncertain or dynamic conditions in the search space.

♦ As mentioned in Chapter 7, the relative sequence of dependent and independent 
variables has an influence on those GAs whose performance is dependent on 
variable sequence. However, RETB-II does not control the effects of changing 
the sequence of variables in the GA chromosome.

♦ It also needs to be further studied how the choice of a particular noise distribution 
effects the complexity of RETB-II test problems.

10.2 Future Research

Despite the immense potential of optimisation algorithms and the recognition of their 

need by industry, it was observed from the industry survey that no company 

surveyed uses any optimisation algorithm as a day to day tool. In order to address 

this grim situation, it is required to carry out a number of research activities in the 

area of real-life optimisation. Addressing the limitations of this research forms a part 

of these activities.

This research concentrates on engineering design optimisation problems. There is 

therefore a need to extend this research to include other areas of real-life 

optimisation, such as combinatorial problems (e.g. scheduling). The use of NN, FL 

and other areas of EC could be explored for enhancing the current capabilities of 

GRGA and GAVD. More tests are required to compare GRGA and GAVD against 

other optimisation algorithms.
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The research activities for future development of GRGA can be summarised as

follows.

♦ Further research needs to be carried out to enhance GRGA for incorporating 
designers’ preferences for certain objectives at an intermediate stage of the 
optimisation process.

♦ The use of sophisticated non-linear modelling tools for enabling GRGA to deal 
with complex relationships among the decision variables of the Pareto-optimal 
solutions is an important area of future research.

♦ The distribution strategies used in GRGA can be further improved to make them 
more scalable with respect to number of objectives and dimensions.

♦ The use of sophisticated clustering techniques could be analysed for enabling 
GRGA to solve those problems that have multiple relationships among the 
decision variables of the Pareto-optimal solutions.

The future research activities for further development of GAVD are as follows.

♦ The performance of GAVD needs to be studied in the presence of other data 
modelling techniques in place of RA.

♦ An NN-type strategy could be provided with GAVD to enable it to learn the 
dependency relationships, and update them with the addition of new data.

♦ The enhancement of GAVD to deal with noisy data is another area of future 
research.

Finally, the future research activities corresponding to RETB and RETB-II are as

follows.

♦ RETB/RETB-II could form the basis of classification of real-life engineering 
design optimisation problems. Further research needs to be carried out in this 
direction.

♦ Disturbance modelling techniques could be incorporated with RETB and RETB- 
II for enabling them to simulate uncertain or dynamic environments.

♦ The dependence of problem complexity on the sequence of variables in the GA 
chromosome needs to be modelled and incorporated within RETB and RETB-II.

♦ There is also a need to develop guidelines for illustrating the dependence of the 
noise distribution on the complexity of the RETB-II test problems.
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10.3 Conclusions

This section compares the achievements of this research with the objectives stated in

Chapter 3. The following discussion analyses one research objective at a time, and

compares it with what is achieved in this research.

♦ This thesis provides a literature survey of evolutionary-based optimisation 
techniques. The research classifies the EC techniques, and analyses them with 
respect to the three features of engineering design optimisation problems: 
multiple objectives, constraints and variable interaction. Here, the interaction 
among decision variables is also defined, and classified into two broad 
categories: inseparable function interaction and variable dependence. This survey 
reveals that there are effective techniques available in literature for handling 
multiple objectives and constraints. However, there is a research gap in EC 
techniques for handling variable interaction. This gap defines the main focus of 
this research, which is to develop EC techniques that can effectively handle the 
two types of variable interaction in constrained multi-objective optimisation 
problems.

♦ The research also carries out a literature survey of existing test functions for 
evaluating their capabilities of performing systematic and controlled simulation 
of multiple objectives, constraints and variable interaction in optimisation 
problems. Similar to the case of EC techniques, the areas of multi-objective and 
constrained optimisation test bed development are well addressed in literature as 
almost separate streams. However, there is a need to develop tuneable/parametric 
test beds that can simulate the complexity introduced by multiple objectives, 
constraints and variable interaction in a single framework. The research also 
attempts to address this gap.

♦ An industry survey is carried out to ground the research within the industrial 
context. This survey highlights that optimisation algorithms are not popular in 
industry. It also compiles the features of real-life engineering design optimisation 
problems that include multiple objectives, constraints and interaction among 
decision variables. It is observed in this survey that the lack of robust techniques 
for dealing with the features of real-life engineering design optimisation 
problems is one of the inhibitors to industrial applications of optimisation 
algorithms. This leads to the industrial context of the research, which is to
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develop optimisation techniques that can handle, within a single framework, the 
following three features of real-life engineering design optimisation problems: 
presence of multiple objectives, constraints and variable interaction.

♦ This research develops two EC techniques, GRGA and GAVD, for handling 
interaction among decision variables. GRGA specialises in dealing with 
inseparable function interaction in constrained multi-objective optimisation 
problems. GAVD is an extension of GRGA for dealing with dependent-variable 
optimisation problems. It provides a complete framework for handling multiple 
objectives in the presence of constraints, inseparable function interaction and 
variable dependence.

♦ This research proposes two test beds, RETB and RETB-II. These test beds 
together provide a unified, parametric framework for controlled testing of 
optimisation algorithms in the presence of the three features of real-life 
engineering design optimisation problems: the presence of multiple objectives, 
constraints and variable interaction.

♦ This research uses RETB and RETB-II for detailed performance analysis of 
GRGA and GAVD. This performance analysis establishes the superiority of 
GRGA in handling inseparable function interaction and of GAVD in handling 
variable dependence in multi-objective optimisation problems. It is observed that 
GRGA and GAVD outperform NSGA-II, which is currently the best-performing 
multi-objective optimisation technique.

♦ This research analyses a number of real-life engineering design optimisation 
problems, especially with respect to variable interaction. It selects a 
representative set from these problems, and analyses the performance of GRGA 
and GAVD on this representative set. The performance of GRGA and GAVD is 
also compared with NSGA-II on these problems. The validation is performed 
here based on the published results and through visualisation in the presence of 
exhaustive search.

The achievements of this research can be briefly and precisely stated as follows.

♦ Critical analysis of existing EC techniques.

♦ Definition and classification of variable interaction.
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♦ Development of test beds for simulating multiple objectives, constraints and 
variable interaction in engineering design optimisation problems (RETB and 
RETB-II).

♦ Development of techniques for handling variable interaction (GRGA and 
GAVD).

♦ Analysis of real-life engineering design optimisation problems, especially from 
interaction point of view.

In this way, the research has proposed a fully tested and validated methodology for

dealing with engineering design optimisation problems with variable interaction.
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A. APPENDIX: ‘FLEXO’ QUESTIONNAIRE

The questions that form part of the ‘FLEXO’ questionnaire are given below. The 

explanations that are provided to the designers for each of the modules are also 

presented here.

Module 1: General Issues

This section of the questionnaire tries to understand the general design practice 

involved in your company and your degree of involvement in those activities.

Q. 1: What industry sector is your company involved in?

Q. 2: In terms of the following criteria, please describe the product your 

company designs.

♦ Name

♦ Usage

♦ Material

♦ Size

♦ Complexity

♦ Performance/value

♦ Single component/assembly

Q. 3: How much time (in days) do you spend on design related activities per 

week?
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Q. 4: Explain the stages of design cycle in your company, and your role and 

place in the design cycle.

Q. 5: Would it be possible to categorise the general nature of your design 

activities?

♦ Detailed design

♦ Preliminary design

♦ Creative or innovative design

♦ Design analysis

♦ Design evaluation

♦ Design activity management and co-ordination

♦ Developing tools that can be useful in design activities

♦ no, it cannot be categorised because:

♦ others, please specify:

Q. 6: Please describe the nature of data received by you.

♦ Origin

♦ Type/ format/nature

♦ Quality

♦ Frequency/work load

Q. 7: Please describe the nature of data delivered by you.

♦ Destination

♦ Type/format/nature

♦ Quality

♦ Value added
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Q. 8: What are the different tools you use for your day to day design activities? 

(Please encircle more than one answer if you wish and specify the tool used)

♦ Drafting board and pencil

♦ Pen and pencil for calculations and free hand drawings

♦ Digitiser

♦ Computer aided drafting package

♦ Computer aided design and analysis package

♦ Simple spreadsheet for calculations

♦ Project management software

♦ Others, please specify:

Q. 9: In the design process, which tool do you use most? (Please encircle one of 

the following)

♦ Surface modelling

♦ Solid modelling

♦ Drafting tool

Q. 10: Which technique do you use to improve the design? (Encircle more than 

one answer if you wish)

♦ Design for assembly

♦ Design for manufacture

♦ Design performance

♦ Design for quality

♦ Shape optimisation

Q. 11: If you are working on shape optimisation, what are the design criteria?

♦ Structural properties
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y  Weight

y  Stress

y  Vibration

y  Thermodynamics

♦ Surface properties

^  Aerodynamics

y  Fluid dynamics

y  Aesthetics

y  Acoustics 

y  Manufacturability

Q. 12: What are the constraints considered for the design?

Q. 13: How would you improve the design you are working on?

♦ Trial and error

♦ Many iterations of educated guesses using previous knowledge

♦ Using an optimisation algorithm

♦ Using an optimisation package available in computer integrated design tools

♦ Others, please specify:

Q. 14: If you are using an optimisation algorithm to improve your design, please

specify the optimisation technique and the optimisation approach that you

employ.

♦ Optimisation approach

^  Single criterion

y  Multiple criteria

y  Single optimal solution

y  Multiple optimal solutions

y  Single variable
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y  Multiple variables

♦ Optimisation technique

> Conventional optimisation algorithm

> Evolutionary-based optimisation algorithm

Q. 15: How do you ensure that your design criteria and constraints are

satisfied?

Q. 16: Which optimisation scenario do you use?

♦ Manual

♦ Off-line, independent of CAD/CAM system

♦ On-line, fully integrated with the CAD/CAM system

Q. 17: Relative to the total design cycle, how much time do you spend refining 

the design?

♦ Below 25%

♦ 25 to 50%

♦ 50 to 75%

♦ Above 75%

Q. 18: Please explain your interaction with other designers in the company?

Q. 19: If you have working experience with other companies, please state the 

difference of working methodology.
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Module 2: Industrial Requirements Capture

The aim of this module is to capture the industrial requirements on the flexible 

optimisation environment. This is achieved by analysing the limitations of existing 

CAD/CAM systems and the characteristics expected in the flexible optimisation 

framework. The expected improvements from the framework are also discussed. 

Please answer the following questions based on your design experience in 

CAD/CAM.

Q. 1: What are the drawbacks and limitations of the current design process?

Q. 2: Could you please describe the limitations of the CAD/CAM system you use 

in terms of its optimisation capability?

Q. 3: Which tasks in the design process are not essential and can be avoided?

Q. 4: What are the critical activities in terms of time and skill involved?

Q. 5: Which of the tasks are repetitive in nature?

Q. 6: Are existing designs reused?

Q. 7: How do you feel the design process can be made more efficient?

Q. 8: Which tasks in the design cycle can be ‘automated’?
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Q. 9: How do you convert design requirements to design parameters?

Q. 10: How do you compare the final design with the initial requirements?

Q. 11: How integrated flexible optimisation could help in the design process?

Q. 12: How can the ‘FLEXO’ project help you in your job?

Module 3: General Remarks

Please write any general remarks you wish to make, and mention if you have any 

other suggestion^.

Module 4: Self-assessm ent of the Users

This section of the questionnaire is optional. The sole purpose of this module is to 

gather some information about you so that your comments may be evaluated in the 

right perspective. In case you do not feel comfortable in answering any part of this 

module, please ignore it. If you are happy to answer a question, please tick the 

appropriate box.

Q. 1: Engineering design:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5

Q. 2: Use of CAD/CAM systems:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5

EC Techniques for Handling Variable Interaction 330



Appendix A. ‘FLEXO’ Questionnaire

Q. 3: Optimisation Algorithms:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5
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B. APPENDIX; DESCRIPTION OF N SG A -ll

This appendix provides a brief description of Non-dominated Sorting Genetic 

Algorithm -  II (NSGA-II), which is a high-performing, novel multi-objective 

optimisation algorithm demonstrating better performance than most other 

contemporary algorithms (Deb et a l, 2000).

NSGA-ll Algorithm

Multi-objective evolutionary algorithms that use non-dominated sorting and sharing 

have been criticised for their 0(MN3) computational complexity (where M is the 

number of objectives and N is the population size), non-elitism approach, and the 

need for specifying a sharing parameter. NSGA-II is a non-dominated sorting based 

multi-objective evolutionary algorithm that alleviates all the above three difficulties. 

It uses a fast non-dominated sorting approach with 0(MN2) computational 

complexity, an elitist approach and a parameter-less sharing approach to tackle all 

the above-mentioned difficulties. The steps involved in this algorithm are as follows 

(Figure B.l).

1. Create a random parent population of size N.

2. Sort the population based on non-domination, and to each solution assign a 
fitness value equal to its non-domination level.

3. Create a child population of size N using binary tournament selection, 
recombination and mutation operators.

4. Combine the parent and child populations to create a global population of size 
2N.

5. Sort the global population based on non-domination.

6. Create a new parent population by selecting solutions in order of their fronts until 
the number of selected solutions exceeds N.

7. Sort the solutions of the last accepted front using niched comparison operator.

8. Using this sorting, select solutions from the last front until the size of new parent 
population becomes N.
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9. If the number of generations has exceeded a pre-determined value, say 100, stop 
the process else go to Step 3.

10. Display the final solutions.

Start

NoNumber of 
generations >= 100?

Y es

Stop

Sort using non-domination

Sort using non-domination

Create random parent population

Create global population

Display

Create child population using 
reproduction operators

S e lect fronts until number of 
accepted  solutions e x c e e d s  N

Sort last accepted  front using 
niched com parison operator

S e lect b est N solutions to 
form new  parent population

Figure B .l: Non-dominated Sorting GA - I I  (NSGA-II)

Analysis of NSGA-II

As stated earlier, there are primarily two goals that a multi-objective optimisation 

technique must achieve. These include guiding the search towards global Pareto- 

optimal region and maintaining population diversity in the Pareto front. This section
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analyses the internal mechanisms provided in NSGA-II for dealing with each of 

these goals.

Convergence to Global Pareto Front

In NSGA-II, the non-domination level of a solution has a strong impact on its fitness. 

The fitness assignment is usually performed in such a way that the lowest fitness at a 

particular non-domination level has a higher value than the highest fitness at the 

immediate lower level. This ensures that the search is driven towards the global 

Pareto front. Further, NSGA-II uses an elitist approach through a selection operator 

that creates a mating pool by combining the parent and child populations, and 

selecting the best (with respect to fitness and spread) N solutions. This elitism 

ensures that the ‘good’ solutions of the population are not lost, thereby creating a 

selection pressure towards the global Pareto front.

The above-mentioned strategy used by NSGA-II works well for a number of multi­

objective optimisation problems. However, complex problems having high degrees 

of inseparable function interaction usually possess multiple local fronts, along with 

deception. The fitness assignment strategy of NSGA-II ceases to produce the driving 

force towards the global front once most of the solutions of the population share the 

same non-domination level. This tendency is further augmented in NSGA-II due to 

the use of elitism. Therefore, NSGA-II suffers from the tendency of getting trapped 

in local fronts (pre-mature convergence).

Maintenance of Diverse Pareto-optimal Solutions

The diversity among non-dominated solutions is introduced in NSGA-II by using the 

crowded comparison operator that is used in the tournament selection and during the 

population reduction phase. The crowded comparison operator states that between 

two solutions with different non-domination ranks, the point with the lower rank is 

preferred. Otherwise, if  both the points belong to the same front then the point that is 

located in a region with lesser number of points is preferred. In this way, the crowded 

comparison operator guides the selection process at various stages of the algorithm 

towards a uniformly spread-out Pareto front. Further, no extra niching parameter
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(such as Gshare in NSGA (Deb, 1999a)) is required here, since solutions compete with 

their crowding distance (a measure of density of solutions in the neighbourhood). 

Finally, the use of elitism ensures that the diverse Pareto-optimal solutions, identified 

so far, are not lost.

As in the case of convergence, this strategy works well for a number of problems. 

However, complex inseparable function interaction in a problem may lead to one or 

more of the following features.

♦ Discontinuity in Pareto front.

♦ Biased Pareto front.

♦ Complex relationships among decision variables of Pareto-optimal solutions. 

NSGA-II suffers from serious limitations in handling these problems. This is because 

the strategy of NSGA-II attempts to attain solution diversity using external means, 

without addressing the inherent problem features that lead to diversity issues.

Computational Expense of NSGA-II

The computational complexity of non-dominated sorting algorithms in use until now 

is 0(MN3). However, NSGA-II uses a fast non-dominated sorting approach that 

requires at most 0(MN2) computations. The two approaches are similar in principle, 

except that a better book-keeping strategy makes NSGA-II a faster algorithm. In this 

approach, every solution from the population is checked with a partially filled 

population for domination. The steps involved in this approach are Hated below.

1. Include first member in a set P’.

2. Take one solution (p) at a time.

3. Include p in P ’ temporarily.

4. Compare p with other members of P \

5. If p dominates a member of P’, delete it.

6. If p is  dominated by other members of P’, do not include p in P’.

When all solutions of the population are checked, the remaining members of P’ 

constitute the non-dominated set. To find other fronts, the members of P ’ are 

discounted and the above procedure is repeated. In this algorithm, the second
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element of the population is compared with only one solution of P’, the third solution 

with at most two solutions of P’, and so on. This requires a maximum of 0(N2) 

domination checks. Since each domination check requires M function value 

comparisons, the maximum complexity of this approach is 0(MN2).

Let us now look at the complexity of one iteration of the entire algorithm, 

considering the worst case complexities of basic operations.

1. Non-dominated sort: 0(MN2).

2. Crowding distance assignment: O(MNlogN).

3. Sort using crowded comparison operator: 0(2Nlog(2N)).

As can be seen, the overall complexity of the above algorithm is 0(MN2).

This appendix has provided a brief description and analysis of NSGA-II, together 

with its computational expense.
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C. APPENDIX: PERFORMANCE METRICS 
FOR MULTI-OBJECTIVE OPTIMISATION

This appendix briefly describes the various performance measures that can be used 

for multi-objective optimisation. Unlike in single objective optimisation, there are 

two goals in a multi-objective optimisation -  (i) convergence to the Pareto-optimal 

set, and (ii) maintenance of diversity in solutions of the Pareto-optimal set. Clearly, 

these two tasks cannot be measured with one performance metric adequately. A 

number of performance metrics have been suggested in the past (Fonseca and 

Fleming, 1995; Zitzler et a l, 1999). But here two performance metrics have been 

used (Deb et al., 2000). These are more direct in evaluating each of the above two 

goals in a solution set obtained by a multi-objective optimisation algorithm.

Euclidean distance

Obtained
Solutions

Chosen points

Figure C.l: Illustration o f Distance Metric y

The first metric y measures the extent of convergence to a known set of Pareto- 

optimal solutions. The calculation of this metric is possible only when the Pareto- 

optimal set is known. Hence, this metric cannot be used for any arbitrary problem. 

First, a set of H equal to 500 uniformly-spaced solutions are chosen from the true 

Pareto front in the objective space. For each solution obtained with the algorithm, the 

minimum Euclidean distance from H chosen solutions on the Pareto front is 

computed. The average of these distances is used as the first metric y (the 

convergence metric). Figure C.l shows the calculation procedure of this metric.
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Solutions with open circles are H chosen solutions on the Pareto front for the 

calculation of the convergence metric and solutions marked with dark circles are 

solutions obtained by the algorithm. It is clear that the smaller the value of this 

metric, the better is the convergence towards the Pareto front. When all obtained 

solutions lie exactly on H chosen solutions, this metric takes a value zero.

Even when all the solutions converge to the Pareto front, the above convergence 

metric does not have a value zero. The metric will be zero only when each obtained 

solution lies exactly on each of the chosen solutions. Although this metric alone can 

provide some information about the spread in obtained solutions, a different metric to 

measure the spread in solutions obtained by the algorithm is discussed below. The 

second metric A measures the extent of spread achieved among the obtained 

solutions. Here, the idea is to get a set of solutions that span the entire Pareto-optimal 

region. Firstly, the Euclidean distance d; between consecutive solutions in the 

obtained non-dominated set of solutions is calculated. Then the average p of these 

distances is calculated. Thereafter, from the obtained set of non-dominated solutions, 

the extreme solutions (in the objective space) are determined. Then, the following 

metric is used to calculate the non-uniformity in the distribution (Equation C.l).

Equation C.lAM

d  j- ■Jr d l +  | d t — ju
A = -------------^ ----------

d  ,■ +  d[ + ( N -  l)ju

fi

Figure C.2: Illustration o f Diversity Metric A
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Here, the parameters df and di are the Euclidean distances between the extreme 

solutions and the boundary solutions of the obtained non-dominated set, as depicted 

in Figure C.2 that illustrates all distances mentioned in the above equation. The 

parameter p is the average of all distances dj, i = 1, 2,..., (N-l), assuming that there 

are N solutions on the best non-dominated front. With N solutions, there are (N-l) 

consecutive distances. The denominator is the value of the numerator for the case 

when all N solutions lie on one solution. It is interesting to note that this is not the 

worst case spread of solutions possible since a scenario with large variance of the 

distances may have a numerator value greater than the denominator. Thus, the 

maximum value of the above metric can be greater than one. But a good distribution 

would make all distances dfs equal to ju and would make df = di = 0 (with existence 

of extreme solutions in the non-dominated set). Thus, for the most widely and 

uniformly spread-out set of non-dominated solutions, the numerator of A would be 

zero, making the metric to take a value zero. For any other distribution, the value of 

the metric would be greater than zero. For two distributions having identical values 

of df and di, the metric A takes a higher value with worse distributions of solutions 

within the extreme solutions. Note that the above diversity metric can be used on any 

non-dominated set of solutions, including one which is not the Pareto-optimal set.

This appendix has provided a brief description of two performance metrics for multi­

objective optimisation: y (convergence metric) and A (diversity metric).
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