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Abstract

The ever-increasing market demands to produce better products, with reduced costs
and lead times, has prompted the industry to look for rigorous ways of optimising its
designs. However, the lack of flexibility and adequacy of existing optimisation
techniques in dealing with the challenges of engineering design optimisation, has
prevented the industry from using optimisation algorithms. The aim of this research
is to explore the field of evolutionary computation for developing techniques that are
capable of dealing with three features of engineering design optimisation problems:

multiple objectives, constraints and variable interaction.

An industry survey grounds the research within the industrial context. A literature
survey of EC techniques for handling multiple objectives, constraints and variable
interaction highlights a lack of techniques to handle variable interaction. This
research, therefore, focuses on the development of techniques for handling variable
interaction in the presence of multiple objectives and constraints. It attempts to fill
this gap in research by formally defining and classifying variable interaction as
inseparable function interaction and variable dependence. The research then proposes
two new algorithms, GRGA and GAVD, that are respectively capable of handling

these types of variable interaction.

Since it is difficult to find a variety of real-life cases with required complexities, this
research develops two test beds (RETB and RETB-II) that have the required features
(multiple objectives, constraints and variable interaction), and enable controlled
testing of optimisation algorithms. The performance of GRGA and GAVD is
analysed and compared to the current state-of-the-art optimisation algorithm (NSGA-
IT) using RETB, RETB-II and other ‘popular’ test problems.

Finally, a set of real-life optimisation problems from literature are analysed from the
point of variable interaction. The performance of GRGA and GAVD is finally
validated using three appropriately chosen problems from this set. In this way, this
research proposes a fully tested and validated methodology for dealing with

engineering design optimisation problems with variable interaction.
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Chapter 1. Introduction

1 INTRODUCTION

The ever-increasing market demands to produce better products, with reduced costs
and lead times, has prompted industry to look for rigorous ways of optimising its
designs. Traditional trial-and-error method of design optimisation is not capable of
meeting the industrial demands. Industries are, therefore, looking for automating the
optimisation process using algorithms and computational techniques. However, the
complexity of engineering design optimisation problems, coupled with limited
flexibility and adequacy of existing optimisation techniques in dealing with the
challenges of these problems, has prevented industry from adopting the optimisation
algorithms. This research focuses on developing optimisation algorithlﬁs based on
the Evolutionary Computing (EC) approach to address the complexities of
engineering design optimisation problems. It has the broad aim of making the
optimisation algorithms more popular in industry. This research is carried out as part

of a project called ‘FLEXO’, titled ‘Flexible Optimisation within CAD/CAM

Environment’ (Engineering and Physical Sciences Research Council (EPSRC) Grant

No. GR/M 71473). This chapter attempts to address the following.

1.1 Definition and Classification of Engineering
Design Optimisation Problems

Optimisation can be defined as the process of selecting a superior design, based on

some pre-defined criteria, from a set of feasible alternative designs. The engineering
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design optimisation problems are the real-life problems that, as opposed to the
theoretical problems (test cases), are encountered in industry. Some examples of
these problems are the design of aerospace structures for better aerodynamics, the
surface design of automobiles for improved aesthetics, the design of mechanical
components for maximum performance, and the design of pumps, turbines and heat
transfer equipment for maximum efficiency (Rao, 1996). There are a number of ways
in which these optimisation problems can be classified. Some ofthe commonly used

classification schemes are as follows.

1.1.1 Based on Number of Variables

The engineering design optimisation problems can be classified as single and multi-
dimensional based on the number of variables involved in the problem. Consider the
problem of optimising the design ofthe rectangular cantilever beam, shown in Figure
1.1, for given material and loading conditions. An example of single-dimensional
optimisation problem is the design of this beam when the cross-section is fixed
leaving the length as the only variable. The same problem is classified as multi-

dimensional if more than one dimension ofthe beam can be varied.

Figure 1.1: Rectangular Cantilever Beam (Length - I Breadth =b and Height - h)

1.1.2 Based on Existence of Constraints

An engineering design optimisation problem can be classified as constrained or
unconstrained depending on whether constraints exist in the problem [Rao, 1996;
Schwefel, 1995]. The optimisation of rectangular cantilever beam shown in Figure

1.1 is classified as unconstrained if there are no bounds and pre-defmed relationships
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involving its variables (beam dimensions). The same problem is called constrained if

it has bounds and/or relationships concerning beam dimensions.

1.1.3 Based on Number of Objective Functions

Depending upon the number of objective functions in the engineering design
optimisation problem, it can be classified as single-objective and multi-objective
(Rao, 1996). The optimisation problem of Figure 1.1 is classified as single-objective
if it has only one objective, say, the minimisation of end deflection under the given
constraints. On the other hand, it is classified as multi-objective if it involves a
number of conflicting objectives that need to be simultaneously optimised. An
example could be the simultaneous minimisation of end deflection, maximum stress

along the beam length and cost involved.

1.1.4 Based on Nature of Objective Functions

The objective functions involved in an engineering design optimisation problem may
be either quantitative or qualitative in nature. Some examples of quantitative
objective functions for the beam design problem of Figure 1.1 are those involving the
end deflection, maximum stress along the beam length and cost. On the other hand,
the qualitative objective functions involve issues like manufacturability and
designers’ special preferences (Rogero et al., 2000). Based on the nature of objective
functions, the optimisation problems can be classified as quantitative, qualitative or
hybrid. These categories of optimisation problems involve quantitative, qualitative

and a combination of quantitative and qualitative objective functions respectively.

1.1.5 Based on Separability of Functions

A function is said to be separable if it can be expressed as the sum of single-variable
functions. An alternative definition of separability relaxes the above definition to
include decomposition into functions that involve groups of variables rather than just
a single variable. Inseparability manifests itself as cross-product terms, and makes

the effect of a variable on the function dependent on the values of other variables in
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the function. The engineering design optimisation problems can be classified as
separable and inseparable based on the separability of objective functions.
Inseparability causes difficulties for an optimisation algorithm by requiring it to
update all decision variables in a unique way in order to converge to an optimum
solution. Suppose the problem of Figure 1.1 requires the minimisation of the end
deflection (&) of the cantilever beam. This becomes an inseparable optimisation
problem since the equation for & involves cross-product terms among its variables

(beam dimensions) (Equation 1.1).

5 =4zPP |3EB*H?, Equation 1.1
7, P,E = Constants.

On the other hand, the problem is classified as separable if it requires the

minimisation of the sum of all edge lengths (S) of the beam (Equaﬁon 1.2).

S=4(+b+h). Equation 1.2

1.1.6 Based on Dependence among Variables

Variable dependence occurs when the variables are functions of each other, and
hence cannot be varied independently. Here, the change in one variable has an
impact on the value of the other. This causes additional problems for an optimisation
algorithm due to the requirement that all dependency relationships need to be
satisfied while searching for an optimum solution. This has an effect of constraining
the search space. The optimisation of the rectangular cantilever beam, shown in
Figure 1.1, is classified as a dependent-variable optimisation problem if it involves
relationship(s) among its variables (beam dimensions) that need to be satisfied.
These relationships may arise due to some physical/practical requirements or due to
designers’ special preferences. An example of these relationships is shown in
Equation 1.3 in which the designer prefers those designs that have the cross-section

aspect ratio as defined by him/her.

Cross — section _Aspect _Ratio = h/b=0.7. Equation 1.3
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The same problem is called an independent-variable problem if none of these
relationships exist, thereby allowing the variables to vary independently of each

other.

1.1.7 Based on Nature of Search Space

The nature of search space also defines an important classification of engineering
design optimisation problems. Based on this, the two categories that are identified
are known search space and unknown search space optimisation problems. The real-
life optimisation problems in which the designers lack prior knowledge about the
shape of search space, and about the location and performance of optimal points are
classified as unknown search space optimisation problems (Rogero et al., 2000). As
opposed to this, most theoretical problems (test cases), being lab-designed, are
classified as known search space optimisation problems. The problem of Figure 1.1
can be classified as a known search space problem. Chapter 9 discusses the design of
a turbine blade cooling system, which is an example of an unknown search space

optimisation problem.

The nature of search space also classifies the engineering design optimisation
problems as uni-modal and multi-modal based on the number of optimal solutions
that the problem has. The problem of Figure 1.1 for minimising the end deflection

under the given constraints is a uni-modal problem.

1.1.8 Miscellaneous Classifications

There are several other classifications of engineering design optimisation problems
besides the ones mentioned above. Some of these miscellaneous classifications are

outlined below (Rao, 1996).

¢ Based on Nature of Equations Involved: This classification is based on the nature
of eXpressions that represent the objective functions in the optimisation problem.
According to this classification, the engineering design optimisation problems
can be classified as linear, non-linear, geometric and quadratic. Based on this

criterion, the engineering design optimisation problems can also be classified as
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continuous and discontinuous depending on whether the equations involved in

the problem have any discontinuities.

Based on Nature of Design Variables: Based on the nature of design variables,
the engineering design optimisation problems can be classified as static and
dynamic. In parameter or static optimisation problems, the design variables are
independent of each other whereas in trajectory or dynamic optimisation
problems, the design variables are all continuous functions of some other
variable(s). Another perspective of this classification is provided by Schwefel
(1995), based on time-dependence of the optimisation problems.

Based on Permissible Values of Design Variables: Depending on the values
permitted for design variables, the engineering design optimisation problems can
be classified as integer-valued, real-valued and hybrid (that involve both integer

and real variables).

Table 1.1: Classification Schemes for Engineering Design Optimisation problems

Based on Number of Parameters

[e]
Multi-dimensional

Constrained
Unconstrained

Based on Existence of Constraints

Single-objective

Based on Number of Objective Functions Ao
Multi-objective

Quantitative
Based on Nature of Objective Functions Qualitative
Hybrid
Based on Separability of Functions Separable
(for Quantitative and Hybrid Problems) Inseparable

Independent-variable

Based on Dependence among Variables Dependent-variable

Known Search Space
Unknown Search Space

Based on Nature of Search Space Uni-modal

Multi-modal

Linear
Non-linear
Geometric
Quadratic

Based on Nature of Equations Involved
(for quantitative and hybrid problems)

Continuous
Discontinuous

Parameter or Static

Based on Nature of Design Variables h .
Trajectory or Dynamic

Integer-valued
Real-valued
Hybrid

Based on Permissible Values of Design Variables

The summary of classification schemes, described in this section is given in Table

1.1. These classifications enable the categorisation of problems based on their
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prominent features. This facilitates the choice of a suitable algorithm for a given

engineering design optimisation problem.

1.2 Introduction to EC Techniques as Efficient

Optimisers

In the natural world, evolution has created an unimaginably diverse range of designs,
having much greater complexity than mankind could ever hope to achieve. Inspired
by this, researchers have started using the EC techniques that use the pﬁnciples of
evolution to guide the optimisation process. There are a number of benefits of
evolutionary-based optimisation that justify the effort invested in this area. The most
significant advantage lies in the gain of flexibility and adaptability to the task in
hand, in combination with robust performance and global search characteristics
(Back et al., 1997). The evolutionary-based optimisation techniques use a population
of solutions in each iteration, instead of a single solution. This enables them, in

principle, to identify multiple optimal solutions in their final population.

These characteristics of the EC techniques also make them a suitable candidate for
handling a combination of multiple features of engineering design optimisation
problems in a single run. These features include the presence of multiple objectives,
constraints and interaction among decision variables. As a consequence, the EC
techniques are better suited to deal with engineering design optimisation problems as
compared to their classical counterparts. This research, therefore, focuses on EC

techniques for the development of optimisation algorithms for engineering design.

The majority of current implementations of evolutionary algorithms descend from
four strongly related but independently developed approaches: Genetic Algorithms
(GAs), Evolutionary Programming (EP), Evolution Strategies (ESs) and Genetic
Programming (GP) (Back et al., 1997). These approaches are defined below.

¢ The GAs are a type of search and optimisation algorithms that are based on the

mechanics of genetics and natural selection.
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¢ The EP, which was originally offered as an attempt to create artificial
intelligence, relies on transformations depending upon a finite set of states and

state transition rules.

¢ The ESs, which were initially designed for solving complex optimisation

problems, involve the modification of behavioural traits of solutions.

¢ Finally, the GP is an automated method for creating a working computer program

from a high-level problem statement of a problem. The GP does this by

genetically breeding a population of computer programs using the principles of

Darwinian natural selection and biologically inspired operations. (Deb, 2001).
Over the last decade, the GAs have been extensively used aé search and optimisation
tools in various problem domains, including engineering design. The primary reasons
for their success over other EC techniques are their broad applicability, ease of use
and global perspective (Goldberg, 1989). This is the main reason that has led to the
choice of GAs as the principal EC technique for this research.

1.3 Introduction to GAs

The GAs are robust search and optimisation techniques that mimic natural evolution.
They were introduced by Holland, and subsequently studied by De Jong, Goldberg,
and others such as Davis, Eshelman, Forrest, Grefenstette, Koza, Michalewicz,
Mitchell, Riolo, and Schaffer, to name only a few (Back et al., 1997). Because of
their robustness, the GAs have attracted a vast interest among the researchers all over

the world (Goldberg, 1989).

The GAs work on a population of individuals, which represent alternative solutions
to the given optimisation problem. For each of these individuals, a score called
fitness value is allocated based on the objective function defined in the problem. The
population for the next generation is created by applying selection, crossover and
mutation operators (genetic operators) to the current population. The high performing
individuals are selected for the mating pool, where they reproduce with other
individuals to produce offspring. Through this process, the members of new
generation attain a higher proportion of the characteristics possessed by the ‘good’

members of previous generation. As a result, each new generation stands a relatively
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higher chance of finding the optimal value of the objective function (Goldberg,
1989).

When a GA is used, the first task is to encode the solutions in a way that is easy to
store and manage. The representation of a solution is termed as chromosome.
Chromosomes are often developed as binary strings or a list of real numbers. Based
on this, the GAs are classified as binary-coded and real-parameter, the latter being
ideally suited for handling problems with continuous search spaces. The genetic
operators work on chromosomes to produce a new set. The crossover operation is
performed by exchanging genetic information between two randomly selected
chromosomes. After crossover, the mutation operator is individually applied to each
chromosome. It randomly alters a small part of the chromosome to produce a new
individual. Mutation can help the optimisation process by introducing new search
areas that crossover alone might not reach (Goldberg, 1989). Figure 1.2 gives a

schematic description of the GAs.

Generation (i) Maling Pootl Generation {+1)

“ Fitness Genetic

1 Evaluation Selection Operations
1 L ’ 2 3

Figure 1.2: Schematic Description of GAs (Source: Jared et al., 1998)

1.4 ‘FLEXQ’: Parent Project of this Research

Optimisation algorithms do not find popular use in industry. There are a number of
factors that are responsible for this situation. There is a general lack of robust

optimisers that are capable of handling the complexity of engineering design
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optimisation problems. Further, most of the currently available optimisation
packages are not integrated within CAD/CAM systems, making their use
cumbersome. To further augment this situation, all optimisation algorithms work on
mathematical models of real-life designs, which attract little confidence from
designers in the industry (Roy et al., 2001). ‘FLEXO’ targets these inhibitors that
prevent the use of optimisation algorithms in industry (Roy et al., 2000a).

1.4.1 Previous Work

In the recent past, some work has been carried out in the field of flexible
optimisation. Roy et al. (1998), Jared et al. (1998) and Mussa et al. (1998)
specifically addressed the issue of enhancing the optimisation capabilities of existing
CAD/CAM systems. Roy (1997), and Bentley and Wakefield (1998) also
demonstrated the feasibility of developing a generic evolutionary design system.
Keane (1996), Parmee (1996) and Greene (1998) have further attempted to develop a
compact ‘tool box’ of robust optimisation techniques. However, the above-
mentioned work has limited scope in terms of the robustness of optimisation
techniques employed, their integration with CAD/CAM systems, and enhancement
of designers’ confidence. In contrast to the previous work that has only attempted to
solve a specific optimisation problem in hand, ‘FLEXO’ adopts a holistic view of

flexible optimisation within CAD/CAM environment (Rogero et al., 2000).

1.4.2 Brief Description of ‘FLEXO’

‘FLEXO’ is funded by EPSRC, which is the largest of the seven UK Research
Councils. It funds research and postgraduate training in universities and other
organisations throughout the UK (EPSRC, 2001). The industrial sponsors of
‘FLEXO’ are Nissan Technical Centre — Europe (NTC-E), UK and Structural
Dynamics Research Corporation (SDRC), UK. NTC-E (UK) is one of the main
technology centres of Nissan in Europe. It is responsible for carrying out research
and development activities in the area of vehicle development to improve design,
performance and costs of Nissan automobiles (Nissan, 2001). SDRC, which includes

Nissan as one of its customers, is a major provider of CAD/CAM/CAE software. It
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constitutes a part of the Product Lifecycle Management (PLM) Solutions of EDS,
and includes I-DEAS and IMAGEWARE as its main products, with both having a
vast client base (SDRC, 2001). ‘FLEXO’ involves the author and a fellow researcher,
Mr. Olivier Munaux. The research detailed in this thesis is carried out by the author,

and is a part of his contribution to the project.

‘FLEXO’ aims to develop a framework for flexible optimisation within Computer
Aided Designing (CAD) / Computer Aided Manufacturing (CAM) environment
using EC techniques. This framework would enable a CAD/CAM environment to
select appropriate techniques and parameters for an optimisation task. The flexible
optimisation wheel, shown in Figure 1.3, depicts the different combinations that are
possible within this framework. This would provide a platform for dealing with
various settings of tools and evaluation techniques, geometric modellers and

optimisation algorithms (Roy et al., 2000a).

Tools and Geometric
Evaluation Techniques Modellers

Evolutionary
Algorithms

Classical
Algorithms

Design of
Experi-
ments
Optimisation

Algorithms
Figure 1.3: Flexible Optimisation Wheel (Source: Roy et al., 2000)

The research objectives of ‘FLEXO’ can be summarised as follows (Roy et al.,

2000a).

¢ To identify the key industrial requirements on a flexible optimisation
environment.

¢ To develop a ‘tool box’ of flexible optimisation techniques.

¢ To establish the core functionality required of a CAD system’s Application

Programming Interface (API) to support such an environment.
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¢ To implement the findings of the research through a prototype decision support

system.

1.4.3 ‘FLEXO’ Methodology

The ‘FLEXO’ framework is developed on the basis of the industrial requirements for
flexible optimisation. The project involves the development of a ‘tool box’
containing flexible optimisation algorithms, capable of solving a variety of
engineering design optimisation problems. The decision of developing the ‘tool box’
was guided by the No Free Lunch (NFL) theorem, which states that it is not possible
to develop a single optimisation technique that is capable of simultaneously handling
multiple features of optimisation problems in an efficient manner (Wolpert and
Macready, 1997). Furthermore, the robustness of EC techniques has led to their use
in this project for constructing the ‘tool box’. The performance of this ‘tool box’ is
also validated using a representative set of case studies reported in the literature. In
order to provide the optimisation capability online, this ‘tool box’ is integrated with
the CAD/CAM environment. This involves the development of generic Application
Programming Interface (API) and a wrapper software for integrating the API with
CAD system IMAGEWARE. Finally, the findings of this project are implemented
through a prototype decision support system using an industrial case study on surface
development. This case study provides the surface designers with an interactive tool

for the attainment of aesthetic geometry (Rogero et al., 2000; Roy et al., 2000a).
The key industrial deliverables of ‘FLEXO’ are as follows (Roy et al., 2000a).

¢ Compilation of industrial requirements for optimisation.
¢ A ‘tool box’ of optimisation techniques that is suitable for the framework.
4 An API specification to support optimisation.

4 A prototype decision support system using a standard CAD/CAM environment.

1.5 Problem Statement and Motivation

The problem statement of this research is as follows.
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The development of robust o(I;vt'ifms\;:rs enables the handling of the features of
engineering design optimisation problems, such as multiple measures of performance
(objectives), constraints and interaction among decision variables. This enhances the
effectiveness of optimisation algorithms by giving them the capability of dealing
with a wide variety of problems. In this way, one of the main inhibitors to their
industrial use is addressed, and their popularity and relevance for industry could be
enhanced. This is the main motivation for this research. Furthermore, the
development of evolutionary-based optimisation techniques for engineering design

optimisation problems makes a direct contribution to ‘FLEXO’, as discussed below.

‘FLEXO’ is an inter-disciplinary project involving design, geometric modelling and
optimisation (Roy et al., 2000a). The area and data flow perspectives of ‘FLEXO’,
shown in Figure 1.4, depict the interactions between its three areas. This research

deals with the optimisation aspect of ‘FLEXO’, shown as shaded area in Figure 1.4.

Variational CAD

Design

Geometric
‘ Modelling

Geometric

‘FLEXO’ Modelling
Geometric > Geometric
Paramet finition
Design .
Optimisation Design

Properties

(®)

(@

Figure 1.4: Perspectives of ‘FLEXO’ — (a) Area Perspective (b) Data Flow
Perspective (Source: Roy et. al., 2000a)

The flexible optimisation ‘tool box’, which defines the shaded areas in Figure 1.4,
optimises the model parameters based on prior problem knowledge, constraints and

evaluation functions provided by the designers. Figure 1.5 presents the relative
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location and the details of this ‘tool box’. This research aids the creation of this ‘tool
box’ through the development of evolutionary-based optimisation techniques for
engineering design optimisation. In this way, the research directly contributes to the

objectives and industrial deliverables of ‘FLEXO’.

[ USER |

I Evaluation

Functions Constraints
) Design CAD Definition
Evaluation

Optimised
Parameters

Updated
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Parameters

No No
Test

Yes
—— Prior Problem
m Knowledge

(2 (b)

Figure 1.5: Flexible Optimisation ‘Tool Box’ — (a) Location (b) Details

1.6 Thesis Layout

The layout of this thesis is developed based on the story of this research. This story,
which is pictorially depicted in Figure 1.6, aids the identification of individual

chapters. A brief description of these chapters is given below.

Chapter 1 discusses the background of this research, briefly explaining the aim and
objectives of its parent project, ‘FLEXO’. It presents the problem statement and

motivation for this research, and describes its contribution to ‘FLEXO’.

Chapter 2 provides a survey of literature in the area of engineering design
optimisation. It presents a critical analysis of the state-of-the-art evolutionary-based
optimisation techniques and of the test problems used for the evaluation of these

techniques.
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Chapter 3 gives a brief description of this research, outlining its aim, objectives and
scope. It also discusses the methodology that is adopted for ensuring that the aim and

objectives of this research are attained.

Chapter 4 grounds the research within the industrial context based on the results of

an industry survey.

Problem Statement: Development of Techniques

Chapter 1 for Engineering Design Optimisation
Literature Survey of Optimisation Techniques Literature Survey of Test Beds’ for
Chapter 2 for Engineering Design Optimisation Algorithms
Chapter 3 Research Aim and Objectives
i Industrial

Chapter 4 lrg;rit:;l Industry and Literature Survey %;:t;ft

Developing a Technique to Handle
Chapter § ¥ Inseparable Function Interaction

Developing a Technique to Handle
Chapter 6 Variable Dependence

Developing a Test Bed' for
Chapter 7 Simulating Engineering Design
Optimisation Problems

Chapter 8 Performance Analysis
Using Proposed Test Bed'

E Validation Using
Chapter 9 Real-life Case Studies
Chapter 10 E Discussion, Conclusions

and Future Research
Figure 1.6: Thesis Layout

Chapter 5 develops a technique to handle a form of variable interaction, called
inseparable function interaction, in multi-objective optimisation problems. It also
compares the performance of the proposed algorithm with other high performing

novel optimisation algorithms.

Chapter 6 proposes a technique to handle the second form of variable interaction,

called variable dependence, in multi-objective optimisation problems. It also
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evaluates the proposed algorithm with respect to other state-of-the-art optimisation

algorithms.

Chapter 7 proposes a test bed that is capable of controlled and systematic simulation
of the characteristics of engineering design optimisation problems, especially with
respect to variable interaction. It compares the proposed test bed with the existing

ones, and validates its behaviour using case studies.

Chapter 8 analyses the performance of the proposed optimisation algorithms
(Chapters 5 and 6) using the test bed that is developed in Chapter 7. It also presents a

discussion of the results that are obtained from these tests.

Chapter 9 validates the research using three industrial case studies: designs of a
welded beam, a machine tool spindle and a turbine blade cooling system. The
proposed optimisation algorithms are applied on these problems, and the results thus

obtained are analysed, compared and discussed.

Chapter 10 concludes this thesis with a discussion on the generality of this research,
contribution to knowledge, and limitations of the research methodology, proposed
algorithms and test bed. It finally discusses the future research directions that could

follow from this research.
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2 A REVIEW OF LITERATURE

Optimisation refers to the process of finding one or more feasible solutions that
correspond to the extreme values of one or more objectives. The need for finding
such optimal solutions in a problem comes mostly from an extreme purpose, such as
designing a solution for minimum possible cost of fabrication or for maximum
possible reliability or others. Because of such extreme properties of optimal
solutions, the optimisation algorithms are of great importance in practice, particularly
in engineering design. The aim of this chapter is to give an overview of techniques

for solving engineering design optimisation problems, and the test beds for

evaluating these techniques. It attempts to achieve the following.

2.1 Engineering Design Optimisation Approaches

Design can be considered to represent a process that begins with recognition of the
need and the conception of an idea to meet this need. Thus, in design decision
making the main aim of the designer is to find a design solution that meets or closely
meets the performance requirements of the design, while satisfying all the
constraints. That defines a concept of ‘optimum design’ as a design that is feasible
and also superior to all other feasible alternative designs. As mentioned in Chapter 1,
optimisation is the process of selecting this ‘optimum design’, based on some pre-

defined criteria, from a set of feasible alternative designs.

EC Techniques for Handling Variable Interaction 17



Chapter 2. A Review of Literature

2.1.1 Manual versus Algorithmic Approaches to Optimisation

There are two ways to obtain an optimum design: through a manual process or by
using an algorithmic approach (Roy, 1997). The manual process improves a design
by repeated modifications. The design variables are changed one at a time. Designers
often use their previous experience to decide changes in the design variables. They
may easily improve a design involving few variables. If the design involves many
variables this can pose a great challenge to the human designer, especially if he or
she needs to consider variable interaction. If the designer does not have prior
knowledge about the design the manual process can simply become a trial-and-error

exercise. Thus, the manual approach can be very time-consuming and tedious.

On the other hand, the second approach (i.e. use of algorithms for optimisation) can
simultaneously determine all the design variables so as to satisfy a set of constraints
and optimise a set of objectives. To solve an optimisation problem, a computable
design model is required. Many aspects of a design process can be represented by a
formal model and are thus computable. However, some of the required designer’s
knowledge can be abstract and complex, and thus difficult to formalise. A design can
therefore involve computable or quantitative formal knowledge as well as qualitative
or abstract knowledge. In the absence of a formal model of the design process or at

least a partial model, the manual approach may often become the only choice.

2.1.2 Algorithmic Approaches to Optimisation

Literature suggests a number of optimisation techniques for solving modelled
optimisation problems. These techniques can be classified into two broad categories:

classical and evolutionary.

Most classical algorithms use a point-by-point deterministic procedure for
approaching the optimum solution. Such algorithms start from a random guess
solution. Thereafter, based on a pre-specified transition rule, the algorithm suggests a
search direction, which is often arrived at by considering local information. A uni-
directional search is then performed along the search direction to find the best

solution. This best solution becomes the new solution and the above procedure is
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continued for a number of times. Figure 2.1 illustrates this procedure. Algorithms

vary mostly in the way the search directions are defined at each intermediate solution

(Deb, 1995).
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Figure 2.1: Classical Optimisation Algorithms (Source: Deb, 2001)

Classical optimisation methods can be classified into two distinct” groups: direct
methods and gradient-based methods. In direct search methods, only the objective
functions and the constraint values are used to guide the search strategy. Some
examples of these methods are the Simplex Search Method (Spendley et al., 1962),
Hooke-Jeeves Pattern Search Method (Hooke and Jeeves, 1961) and Powell’s
Conjugate Direction Method (Powell, 1964). On the other hand, the gradient-based
methods use the first- and/or second-order derivatives of the objective functions
and/or constraints to guide the search process. Some examples of these methods are
Cauchy’s (Steepest Descent) Method (Cauchy, 1847), Marquardt’s Method
(Marquardt, 1963) and Conjugate Gradient Method (Fletcher and Reeves, 1964).
Since derivative information is not used, the direct search methods are usually slow,
requiring many function evaluations for convergence. For the same reason, they can
also be applied to many problems without a major change in the algorithm. On the
other hand, gradient-based methods quickly converge near an optimal solution, but
are not efficient in non-differentiable or discontinuous problems. In addition, there
are some common difficulties with most classical direct and gradient-based

techniques, as mentioned below (Deb, 1995).

¢ The convergence to an optimal solution depends on the chosen initial solution.
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¢ Most algorithms tend to get stuck to a sub-optimal solution.

¢ An algorithm that is efficient in solving one optimisation problem may not be

efficient in solving a different optimisation problem.
¢ Algorithms are not efficient in handling problems having a discrete search space.
¢ Algorithms cannot be efficiently used on a parallel machine.

The above-mentioned drawbacks of classical optimisation techniques have led to the
growth of research in the field of evolutionary computation. The EC techniques can
handle most of the drawbacks of classical algorithms, and as discussed in the
| previous chapter, the characteristics of the EC techniques, especially their robustness,
make them suitable for dealing with the features of engineering design optimisation
problems. This research, therefore, focuses on EC for the development of

optimisation algorithms.

2.1.3 Optimisation Approaches to Handle Uncertainty

Designers typically require a lot of information for design decision making.
Information is collected from the laws of physics, previous experiences, available
literature, logical deductions and designers’ intuition. Some of the information may
be imprecise and ambiguous, whereas some may be precise and structured. The
designer often faces a challenge to manipulate this combination of precise and
imprecise information in order to reach a decision. To achieve good decisions, the
designers must be able to take an overview of the possible alternative actions at any
point in the design process. The designers can then predict the results of more than
one selected course of action. The predictions can be heavily influenced by various
other industrial factors and also the market environment. For example, predictions
about a design action can be affected by the impact of that decision on the
manufacturing organisation responsible for implementing the decision and on the end
user (that is the customer). The impact of the decision on the overall market (that is
the market environment within which the industry operates) also needs to be
assessed. With the dynamic nature of the industrial and market environment in many

cases it becomes almost impossible to predict the outcome of a decision very

EC Techniques for Handling Variable Interaction 20



Chapter 2. A Review of Literature

precisely. Design decisions that use precise information from historical data,
scientific evidence, etc. can be said to be virtually certain. The decisions that involve
designers’ knowledge, intuition and judgement involve a certain degree of
uncertainty. Uncertainty can also be caused due to the complex dynamic interactions
within the industry, between the industry and the market environment, imprecision
involved in the designers’ knowledge and vagueness involved in the designers’

language (Roy, 1997).

All the optimisation techniques discussed previously consider the design variables as
deterministic which means that the parameters used in the optimisation problem have
precise values. These approaches therefore do not take into account any uncertainty
related to design variables. In order to address uncertainty, probability theory has
been widely accepted and applied in engineering design. In this theory, some
statistical knowledge of random variables such as their mean values and standard
deviations is used to address uncertainty. The first application of random variables in
optimisation problems was studied by Chames and Cooper (1959), in which a
stochastic optimisation problem is converted into an equivalent deterministic one by
using the chance constraint programming technique. Although there are many
successful applications of this technique in the literature, it is not sufficient for
problems that have highly non-linear performance functions. A number of methods
are proposed in the recent past to overcome the weaknesses of this technique
(Nikolaidis and Burdisso, 1988; Reddy et al., 1994; Wang and Grandhi, 1996;
Kaymaz et al., 1998). The method proposed by Kaymaz et al. (1998) has a strong
potential for dealing with real-life optimisation problems. This algorithm combines
the response surface method with Monte Carlo simulation. The polynomial function
(the response function) reduces the number of repetitions of an expensive analysis
method such as Finite Element Analysis (FEA) (McMahon and Meng, 1996), and
direct Monte Carlo simulation carries out the reliability calculation within the

optimisation process.
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2.1.4 Optimisation Approaches involving FEA/CFD

It is very common in engineering design optimisation problems to have the
involvement of computationally expensive analysis techniques such as the FEA and
Computational Fluid Dynamics (CFD). A number of researchers have discussed the
integration of these techniques with the computer-based design systems (Kaymaz et
al., 1998; Tilley and Burrows, 1995). Literature reports some techniques for reducing
the number of repetitions of these analyses during the optimisation process. The
Monte Carlo method is one of the most widely used simulation approximations. The
approach involves generating a sufficiently large set of observations to reproduce the
statistical characteristics of the underlying population that the observations are taken
from. The demerit of the approach is its computational cost, since the accuracy of the
result largely depends on the number of samples used. Presently, there are efforts to
improve the technique in two respects. One is to find approaches to reduce the size of
sample as far as possible, such as the importance sampling technique in reliability
analysis (Melchers, 1989). The second is to simplify the model or function that will
be called many times in the sampling process. The influence surface method is one
such approach to reduce the computational effort spent on the calculation of the
function. An influence surface (or response surface) replaces a real analysis, and is
often a surface in hyperspace identified by pre-analysis or experiment before

implementing multiple analyses (e.g., in a simulation) (Meng and McMahon, 1998).

2.1.5 Sensitivity Analysis

Information concerning the sensitivity of engineering designs can be essential for
engineering decision making. Sensitivity analysis provides the information on the
performance of a design when there is some minor change in the values of the design
variables. Sensitivities of a design can be defined in terms of the following (Emch

and Parkinson, 1993; Sundaresan et al., 1993).

¢ Design Solution Sensitivity: This refers to the sensitivity of a design solution

performance within a defined neighbourhood.
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¢ Design Variable Sensitivity: This is the effect of each design variable on the

design solution performance within a defined neighbourhood.

¢ Constraint Sensitivity: Violations of constraints within the neighbourhood of a
design define the constraint sensitivity of the design.
The study of the effect of varying the independent variables on a dependent variable
requires the relationship between the dependent and independent variables to be
known. An empirical method, known as design of experiments, is sometimes used to
establish such relationship. For an empirical study all possible combinations of the
values of the independent variables (also known as factors) are required to define the
relationship using a statistical technique. This method of exhaustive trials is known

as full factorial experiments.

In many cases, it is too expensive to run a full factorial experiment, for example a
multi-dimensional real-life problem. In this situation, a fractional factorial
experiment can be performed where a fraction of the full factorial experiments is
considered. The price of running a fractional factorial experiment is the loss of some
information regarding the independent variables and their relation to the dependent
variable. Taguchi (1987a, 1987b) advocates a systematic approach and has
developed several standard orthogonal metrics to define the fractional factorial
experiments (Phadke, 1989). The use of the orthogonal metrics involves the least

amount of information loss, especially if the variables do not interact with each other.

Taguchi’s methodology (1987a, 1987b) assumes no interaction among variables.
Thus, the analysis can be very reliable provided there is no or very little interaction
among the design variables in the neighbourhoods of the design variables. One way
of checking for the presence of interaction is to validate the additivity principle in the
region. The additivity principle assumes that the result of eachbexperiment is the
superposition of the single factor effects plus the error due to this assumption and

any repetition of the tests.
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2.1.6 Engineering Design Support System

Chandrasekaran (1990) describes a design problem as a search problem in a large
space for objects that satisfy multiple constraints. An object in the design space is
equivalent to an acceptable value of a design variable. Only a very small number of
objects in this space constitute satisfying, not to mention optimal, solutions. In order
to make design decisions, practical strategies that radically shrink the search space
are needed. A good design decision support tool can assist a designer in the search
space reduction. The first step towards the search space reduction is to separate the
information required for a design into two categories: formal and non-formal. The
information obtained from the laws of physics, design catalogues, and design
archives is structured and probably computable. Thus the information can be
considered as contributing towards formal knowledge. The designer’s experience,
intuition and judgement can be abstract, unstructured and incomplete, thus they

constitute the non-formal knowledge.

The optimisation approaches discussed above can reduce the search space by
providing the designer with multiple preferred solutions. However, most of these
approaches deal with formal knowledge only. During the last decade, some
researchers have developed frameworks that can deal with both formal and non-
formal knowledge. Yang and Sen (1994) describe an interactive multiple objective
decision making procedure. The process describes a multi-objective preliminary
design problem as a non-linear vector maximisation problem. The technique defines
the design model using some computable functions. The methodology is a learning-
oriented interactive technique that supports the designer in easily searching for
preferred solutions following an adaptive approach. The technique allows designer’s
preferences to be progressively articulated with the generation of efficient design
solutions. Through designer interaction the technique also makes sure that no
unacceptable solutions is selected as a preferred design. Roy et al. (1996) propose an
Adaptive Search Manager (ASM) that integrates a GA with knowledge-based
software. The developed approach allows utilising both quantitative and qualitative

information in engineering design decision making.
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Most engineering design optimisation problems involve multiple objectives,
constraints and interaction among decision variables. This chapter, therefore,
provides a detailed description of the state-of-the-art evolutionary-based optimisation
techniques that are reported in literature for dealing with these features of

engineering design optimisation problems.

2.2 Evolutionary-based Techniques for Multi-
objective Optimisation

Most engineering design optimisation problems are multi-objective in nature since
they normally have several conflicting objectives, say, cost and performance, that
must be satisfied at the same time. This has encouraged the growth of research in the
field of multi-objective optimis‘ation using evolutionary algorithms. The considerably
large number of open questions in this area has provided a further impetus to the
field (Coello, 2001). This section gives an overview of Evolutionary-based Multi-

objective Optimisation Techniques (EMOTSs) in terms of their types and features.

2.2.1 Problem Statement

Multi-objective optimisation, also known as multi-criteria, multi-performance or
vector optimisation, can be defined as the problem of finding “a vector of decision
variables, which satisfies constraints and optimises a vector function whose elements
represent the objective functions.” (Osyczka, 1985). This problem can be formally
stated as follows (Coello, 2001).

Find a vector X* =[x, *,x,%,...,x, *#]”, which satisfies the J inequality constraints,
g,;(¥)20,7=12,..,J; , Equation 2.1

the K equality constraints,
h(x)=0,k=12,.,K; Equation 2.2

and optimises the vector function,
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NGEITHe WA Y ME Equation 2.3
where X =[x,,x,,...,x,]" is the vector of decision variables, and each variable has

upper and lower limits such that x* <x, <x{;i=12,...,n.

As can be seen from this definition, the principles of multi-objective optimisation
differ widely from those of single objective optimisation. The main goal in a single
objective optimisation problem is to find the best solution (Deb, 1995). On the
contrary, in a multi-objective optimisation problem, there are many objective
functions, each of which may have a different individual optimal solution (Steuer,
1986). The interaction among different objectives gives rise to a set of compromised
solutions, none of which can be considered to be better than the others without any
further consideration (Deb, 1999a). These optimal solutions are called non-inferior,
non-dominated or Pareto-optimal solutions. The boundary of the feasible region on
which these solutions are located is called the Pareto front. A related concept that is
used by many multi-objective optimisation algorithms for comparing alternative
solutions is called the concept of domination. This concept is defined as follows

(Coello, 1999).

A solution ¥ is said to dominate the other solution ¥, if both the following

conditions are true.

¢ The solution ¥ is strictly better than ¥ in at least one objective.
¢ The solution ¥® is no worse than ¥ in all objectives.

In general, it is mathematically difficult to find an analytical expression of the Pareto
front. So, iterative computation techniques are normally used for solving multi-
objective optimisation problems (Coello, 1998). The two primary goals that these

techniques must achieve are as follows (Deb, 1999a).

¢ To guide the search towards global Pareto-optimal region.

¢ To maintain population diversity in the Pareto front.
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2.2.2 Classical versus Evolutionary Approaches

The classical ways of tackling multi-objective optimisation problems have primarily
ignored the second goal mentioned above. Most methods, such as Weighted Sum
Approach, e-perturbation Method, Tchybeshev Method, Min-max Method and Goal
Programming Method, convert multiple objectives into one objective using different
heuristics (Miettinen, 1999; Sen and Yang, 1998; Steuer, 1986). Since multiple
objectives are converted into one objective, the resulting solution to the single-
objective optimisation problem usually depends on the parameter settings, for
example, weights chosen for each objective in the Weighted Sum Approach. Since
most classical methods use point-by-point approach, it is expected that one unique
solution (hopefully a Pareto-optimal solution) will be found in each run of the
optimisation algorithm. Thus, in order to find multiple Pareto-optimal solutions, the
chosen optimisation algorithm needs to be used a number of times. Furthermore, the
ability of a classical optimisation method to find a different Pareto-optimal solution
in each simulation run is found to be dependent on the convexity and continuity of
the Pareto-optimal region. Finally, the classical methods are not reliable in problems

that involve uncertainties or stochasticities (Deb, 1999a).

Evolutionary approaches can successfully handle most of the above-mentioned
drawbacks of classical algorithms. Since they use a population-based approach, it is
intuitive that a number of Pareto-optimal solutions can, in principle, be obtained in a
single simulation run. Therefore, these techniques have the potential of dealing with

a variety of multi-objective optimisation problems (Coello, 2001).

2.2.3 Classification of EMOTSs

Since the pioneering work of Rosenberg (1967), the research in the field of
evolutionary multi-objective optimisation has grown considerably, especially in the
last decade. In the recent past, a number of researchers have attempted to summarise
the studies in this field. Notable among these are Fonseca and Fleming (1995),
Tamaki et al. (1996), Horn (1997), Coello (1998), Fonseca and Fleming (1998a),
Veldhuizen and Lamont (1998), Coello (1999), Deb (1999a), Zitzler and Thiele
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(1999), and Deb (2001). The two main classifications of EMOTs that are commonly

used by researchers are outlined below.

2.2.3.1 Function-based Classification

The function-based classification, which is the most commonly used, divides
EMOTs based on the way the search is guided. Most of the researchers, who use this
classification, also check for the presence of mechanisms for maintaining population
diversity in the Pareto front. Some of the main diversity-preserving mechanisms that
are reported in literature are Diversity through Mutation, Preselection, Crowding
Model and Sharing Function Model, among many others (Deb, 2001). Fonseca and
Fleming (1995), Tamaki et al. (1996), Coello (1998), and Fonseca and Fleming
(1998a) have used this classification in their work. Another form of Function-based
Classification is presented by Deb (2001), who classifies EMOTs based on the
presence/absence of elitism in each of the techniques. As the name suggests, elitism
favours the elite of a population by giving them an opportunity to be directly carried
over to the next generation. In this way, a good solution is never lost unless a better
solution is discovered, thereby ensuring that the fitness of the population-best

solution does not deteriorate.

The function-based classification divides the EMOTs into three broad categories that
are discussed below (The presence of a diversity-preserving mechanism and an elite-

preserving operator is checked in each of the EMOTs.).

¢ Plain Aggregating Approaches: In these approaches, the multiple objectives are
artificially combined, or aggregated, into a scalar function according to some
understanding of the problem, and then the evolutionary algorithm is applied.

¢ Population-based Non-Pareto Approaches: In these approaches, the
selection/reproduction, while applying the evolutionary algorithm, is performed
by treating the objective functions separately. Therefore, these approaches do not

use the concept of Pareto domination in carrying out the optimisation process.

¢ Pareto-based Approaches: In these approaches, the selection/reproduction, while
applying the evolutionary algorithm, is performed by referring not only to the
objective values themselves but also to their Pareto dominance property.
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2.2.3.2 User-based Classification

User-based classification has been used by Homn (1997), Fonseca and Fleming
(1998a), and Veldhuizen and Lamont (1998) for classifying EMOTSs. Since these
techniques provide the user with a set of optimal solutions, the final choice has to be
made by him/her based on some understanding of the problem. This classification
divides the EMOTs into three categories based on the stages in the optimisation
process when the user makes the final decision. These three categories are outlined

below.

¢ A Priori Preference Articulation (First Decide then Search): In this case, the user

gives his/her preferences for the objectives prior to the optimisation process.

¢ Progressive Preference Articulation (Search and Decide Together): Here, the
decision making and the optimisation processes are intertwined. Partial

preference information is provided by the user during the optimisation process.

¢ A Posteriori Preference Articulation (First Search then Decide): In this case, the
user makes a choice from a set of efficient candidate solutions provided to

him/her after the optimisation process.

2.2.3.3 Hybrid Classification

This research proposes a hybrid classification, which combines the two schemes
discussed above. The aim of this classification is to provide both the researcher and
the user with a clear understanding of various EMOTs in terms of their function and
use. In this classification, each of the three categories of user-based classification is
sub-divided based on the way the search is guided. Finally, the presence of a
diversity-preserving mechanism and an elite-preserving operator in the technique is
checked. Table 2.1 divides some of the important EMOTs using hybrid
classiﬁcétion. D and E in this table respectively represent the presence of a diversity-
preserving mechanism and an elite-preserving operator in the technique. The
computational complexities of some of the main techniques listed in this table are:
VEGA - O(N/M), HLGA - O(MN?), MOGA - O(MN?), NSGA - larger of
O(MN?)/O(nN?), NPGA - O(MN?), REMEA - O(MN?), NSGA-II - O(MN?), DPGA
- O(Mn?), SPEA - O(MN?), TDGA - O(N°) and PAES - O(MN’d); where M is the
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number of objectives, N is the population size, n is the number of variables, 1 is the

current size of the elite set, and d is a user-defined parameter in PAES.

Table 2.1: Hybrid Classification of EMOTS

; Evolutlonary We

s Hajela’s and Lin's GA-
HLGA (D)(Hajela and
Lin, 1992)

« Random Weighted GA-
RWGA (D)(Murata and
Ishibuchi, 1995)

» Lexicographic Selection
(Fourman, 1985)

Vector Evaluated GA-
VEG! (D)(Schaffer

) “,;’-,

e Tchebycheff Method
(Steuer, 1986)

¢ Multi-Objective GA—
MOGA (D)(Fonseca and
Fleming, 1993)

¢ Evolutionary Co-design-
EvoC (Hu, 1996)

"hed Pareto GA:
GA (D) Horn and
t | .

. Jg) (Rudolph, 2001

The hybnd clas51ﬁcat10n gives a holistic view of the EMOTs, making the

classification relevant for both the researcher and the user. It also aids in

identification of a suitable EMOT for a given problem by matching the features of

each category with the problem characteristics. Further, the classification draws
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attention to the research trends and to the most popular group of techniques. In the
following discussion, the features of three most commonly used categories of
EMOTs (shown as shaded regions in Table 2.1) are discussed in order to identify
their relative strengths and weaknesses in dealing with multi-objective optimisation

problems.

2.2.4 Plain Aggregating A Priori Approaches

The main EMOTs that are classified as Plain Aggregating A Priori Approaches are
Evolutionary Weighted Sum Approach and Evolutionary Goal Programming. These
techniques, which have strong roots in classical methods, require aggregation of
objective functions prior to the application of evolutionary algorithms. If the
combination of objectives is possible, these are one of the most computationally

efficient techniques.

The main strength of these approaches is that they are easy to understand and
implement. These approaches are computationally efficient and guarantee that the
results would be at least sub-optimal in most cases. They, however, require a priori
problem knowledge for combining the objectives. This information is difficult to
obtain in most real-life cases. They also require accurate scalar information on the
range of objectives, which is computationally very expensive to obtain. Since these
approaches aggregate the objectives, they produce only one unique solution (perhaps
~ a Pareto-optimal solution) in a single run. Therefore, these algorithms need to be run
a number of times to obtain multiple Pareto-optimal solutions. This, however, does

not guarantee the diversity of solutions.

Some applications of these approaches that are reported in literature include solution
of task planning and transportation problems, optimisation of the designs of plane
trusses and planar mechanisms, generation of hyper-structures from a set of chemical

structures, and solution of pollution containment problems (Coello, 1998).
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2.2.5 Population-based Non-Pareto A Posteriori Approaches

The main techniques that fall in the category of Population-based Non-Pareto A
Posteriori Approaches are VEGA, Non-generational GA and PPES. These
techniques, which were initially developed to overcome the weaknesses of plain
aggregating approaches, involve alternative population strategies ideally suited for
solving those problems in which approximate optimal solutions are required in

simple search spaces.

Since these approaches are easy to implement and are computationally less
expensive, a number of their successful applications are reported in the literature.
They also seem to overcome most of the weaknesses of Plain Aggregating
Approaches. However, their main drawback is that the solutions they produce are
mostly sub-optimal and are sensitive to the values of the control parameters. Most of
these algorithms also have a bias towards individuals that excel in different aspects
of performance, a problem that in genetics is known as ‘speciation’. Another
weakness of some of these techniques, like VEGA, is their inability to produce
Pareto-optimal solutions in the presence of non-convex search spaces (Coello, 1998).
Therefore, prior knowledge regarding the shape of search space is required‘ for the

application of these algorithms.

The main applications of these techniques reported in the literature are the solution of
groundwater pollution containment problem, optimisation of gas supply networks

and development of preliminary airframe designs (Coello, 1998).

2.2.6 Pareto-based A Posteriori Approaches

The main techniques that can be classified as Pareto-based A Posteriori Approaches
are VOES, NPGA, NSGA, DPGA, TDGA, SPEA, MOMGA, NSGA-II, PAES and
REMEA. The techniques in this catégory, being capable of tackling a vast variety of
problems, form the centre-stage of research in the area of evolutionary-based multi-

objective optimisation.
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The main strength of these techniques is that in most cases they satisfy the two
principal requirements of multi-objective optimisation: convergence to the Pareto-
optimal front and maintenance of population diversity across the front. Another
strength of these techniques is that they can handle multiple variables involved in
optimisation problems. A number of researchers have confirmed that, in solving
multi-objective optimisation problems, these techniques perform better than most
others (Zitzler et al., 1999). However, their main weakness is that the algorithms they
use for checking non-dominance in a set of feasible solutions are computationally
very expensive, and exhibit serious degradation of performance as the population
size and the number of objectives is increased. In a number of cases, the
performance of these approaches is also dependent on the values of control
parameters. Finally, in most cases the application of diversity-preserving
mechanisms to these techniques makes it necessary to evaluate the sharing factor,

which is generally difficult to compute (Coello, 1998).

Of the vast variety of applications of these approaches reported in the literature,
some are as follows: minimisation of the back scattering of aerodynamic reflectors,
design of an electromagnetic system, optimisation of the investment portfolio and

design of laminated ceramic composites (Coello, 1998).

2.2.7 Examples of EMOTs

A brief description of three state-of-the-art EMOTs is presented here. All these are
Pareto-based A Posteriori Approaches, and involve the use of both diversity-

preserving mechanisms and elite-preserving operators.

2.2.7.1 Thermo-Dynamical GA (TDGA)

The TDGA minimises Gibb’s free energy term, constructed by using a mean energy
term representing a fitness function and an entropy term representing the diversity
term needed in a multi-objective optimisation problem. The fitness function is used
as the non-domination rank of the solution obtained from the objective function

values. By carefully choosing solutions from a combined parent and offspring
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population, the algorithm attempts to achieve both the goals of an ideal multi-

objective optimisation algorithm (Kita et al., 1996).

The overall complexity of one generation of the TDGA is O(N?), where N is the
population size. This complexity is higher than that of a number of other EMOTs.
Further, the performance of this algorithm is strongly dependent on the setting of

control parameters (Kita et al., 1996).

2.2.7.2 Strength Pareto Evolutionary Algorithm (SPEA)

The SPEA also maintains a separate elite population, which contains the fixed
number of non-dominated solutions found till the current generation. The elite
population participates in the genetic operations and influences the fitness
assignment procedure, which in this case is easy to calculate. A clustering technique
is used to control the size of the elite set, thereby indirectly maintaining diversity
among the elite population members. This clustering algorithm is parameter-less,
which makes it attractive to use. In the absence of this clustering algorithm, the

SPEA exhibits a convergence proof (Zitzler and Thiele, 1998a).

The overall complexity needed in each generation of the SPEA is O(MN?), where M
is the number of objectives and N is the size of the population. The SPEA introduces
an extra parameter, the size of the external population, which influences its
performance. In this algorithm, since non-dominated sorting of the whole population
is not used for assigning fitness, the fitness values do not favour all non-dominated
solutions of the same rank equally. Moreover, in the SPEA fitness assignment, an
external solution, which dominates more solutions, gets a worse fitness. This is
justified when all dominated solutions are concentrated near the dominating solution.
Since in most cases this is not true, the crowding effect should come only from the
clustering procedure to prevent a wrong solution pressure for the non-dominated

solutions (Zitzler and Thiele, 1998a).
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2.2.7.3 Fast Elitist Non-dominated Sorting GA (NSGA-II)

The NSGA-II carries out a non-dominated sorting of a combined parent and
offspring population. Thereafter, starting from the best non-dominated solutions,
each front is accepted until all population slots are filled. This makes the algorithm
an elitist type. For the solutions of the last allowed front, a parameter-less crowded
distance-based niching strategy is used to resolve which solutions are carried over to
the new population. This algorithm also has a crowded distance metric, which makes
it fast and scalable to more than two objectives. The convergence of NSGA-II

(without crowded comparison operator) can be proved. (Deb et al., 2000).

The overall complexity of the NSGA-II is at most O(MN?), where M is the number
of objectives and N is the population size. This algorithm loses its convergence
property when the crowded comparison is used to restrict the population size.
Further, the non-dominated sorting needs to be performed on a population of size 2N,

instead of a population of size N, as required in most algorithms (Deb ef al., 2000).

2.2.8 Summary

This section can be summarised with the following remarks.

¢ The two main goals of multi-objective optimisation are convergence to the Pareto

front and maintenance of diversity across the front (Deb, 1999a).

¢ The concept of Pareto domination is a powerful way of encouraging convergence

of solutions to the Pareto front.

¢ The spread of solutions can be encouraged by using diversity-preserving
mechanisms with EMOTs.

¢ The use of elitism ensures that the ‘good’ solutions are not lost after being

located once.

¢ In general, elitist EMOTSs, such as NSGA-II, that use Pareto domination and
diversity-preserving operators perform better than other multi-objective

optimisation techniques.
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2.3 Evolutionary-based Constrained Optimisation
Techniques

Constraints are common in most engineering design optimisation problems. They
arise due to practical/physical requirements or due to designers’ special preferences.
Whereas evolutionary computation techniques assume the existence of evaluation
functions for feasible individuals, there is no uniform methodology for handling
infeasible ones (Michalewicz, 1995). This section analyses the different types of
Evolutionary-based Constrained Optimisation Técfmiques (ECOTs), together with

their strengths and weaknesses.

2.3.1 Problem Statement

Constrained optimisation can be defined as the problem of locating optimal solutions
in the presence of constraints in the search space. Typically, a constrained

optimisation problem can be written as follows (Equation 2.4) (Deb, 2001).

Minimise/ Maximise = f, (X),m=1,2,..,. M Equation 2.4
Subject _to=g,(x)20,j=12,...,J;
h,(X)=0,k=12,.,K;

) ) _
¥ <x, <x©,i=12,...n

Any evolutionary computation technique, applied to a particular constrained
optimisation problem, should address the issue of handling infeasible individuals. In
general, a search space S consists of two disjoint subsets of feasible and infeasible
subspaces, F and U, respectively. A constrained optimisation technique should be
able to locate the feasible optima without making any assumptions regarding the
shape and connectivity of the subspaces. Since in constrained optimisation process,
both feasible and infeasible individuals are encountered, the algorithm must be able

to handle the following issues (Michalewicz, 1995).

¢ Comparison of two feasible individuals.

¢ Comparison of two infeasible individuals.
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¢ Comparison of a feasible with an infeasible individual.

¢ Treatment of infeasible individuals: eliminate, repair or penalise.

2.3.2 Classical versus Evolutionary Approaches

In addition to the drawbacks mentioned Section 2.2.2, the classical approaches (e.g.
Complex Method (Box, 1965), Sequential Linear Programming (Cheney and
Goldstein, 1959) etc.) suffer from the following limitations in dealing with

constraints in optimisation problems (Deb, 1995).

¢ These algorithms suffer from serious limitations in dealing with constraints in the

presence of multiple objectives.

¢ Most of these algorithms demand some knowledge about the shape, size and
nature of F and U subspaces. Further, the performance of a number of these

algorithms is sensitive to the shape of constraint boundaries.
¢ These algorithms are not suitable for solving the problems that have a

discontinuous feasible subspace (F).

¢ Finally, they are not reliable in the presence of uncertainties or stochasticities in

constraints.

2.3.3 Classification of ECOTs

Richardson et al (1989) claimed, “Attempts to apply GAs with constrained
optimisation problems follow two different paradigms (1) modification of the genetic
operators; and (2) penalising strings which fail to satisfy all the constraints.” This is
no longer the case as a number of methods, which use different methodologies for
handling constraints, have been proposed. A survey of constraint handling techniques
in evolutionary computation is provided by Michalewicz (1995) for single objective

optimisétion, and by Deb (2001) for multi-objective optimisation.

Based on the algorithm for constraint handling, most ECOTs that are reported in
literature can be classified into five main categories for both single- and multi-
objective optimisation (Table 2.2) (Michalewicz, 1995; Michalewicz and
Schoenauer, 1996; Michalewicz et al., 2000; Roy et al., 2000b; Deb, 2001). Each of

these categories is briefly discussed in this section.
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Baldwinian Method (Liu et al.,
2000)

Lamarckian Method (Deb and
Goel, 2001)

Table 2.2: Classification of ECOTs

Baldwinian Method (Liu ef al.,
2000)

Lamarckian Method (Deb and
Goel, 2001)

Static Penalty Method (Homaifar
et al., 1994)

Dynamic Penalty Method (Joines
and Houck, 1994)

Dynamic Penalty Method
(Michalewicz and Attia, 1994)

Static Penalty Method (Srinivas
and Deb, 1994)

Static Penalty Method (Deb,
1999a)

Behavioural Memory Method
(Schoenauer and Xanthakis,
1993)

Powell and Skolnick’s Method
(1993)

Death Penalty Method
(Michalewicz, 1995)

Deb’s Method (2000)

Jimenez-Verdagay-Gomez-
Skarmeta’s Method (Jimenez et
al., 1999)

Death Penalty Method (Coello
and Christiansen, 1999)
Constrained Tournament Method
(Deb, 2000)

Ray-Tai-Seow’s Method (Ray et
al., 2001)

Koziel and Michalewicz’'s Method
(1998)

Koziel and Michalewicz's Method
(1998)

Method of Waagen et al. (1992)
Co-evolutionary Approach
(Paredis, 1994)

Method based on Multi-objective
Optimisation Techniques
(Michalewicz, 1995)

Barbosa's Co-evolutionary
Approach (Barbosa, 1996)

Method based on Multi-objective
Optimisation Techniques
(Michalewicz, 1995)

2.3.3.1 Methods based on Preserving Feasibility of Solutions

In this approach, two feasible solutions, after recombination and mutation operations,
create two feasible offspring. Here, one decision variable is manipulated using an
equality constraint, either implicitly or explicitly. In the explicit case, the value of
one of the decision variable is calculated using the constraint function, thereby
allowing the GA to use one variable less. In the implicit case, the GA uses all the
variables, but estimates the value of one using the constraint function. In both single-
and multi-objective optimisation, there are two ways of handling this new value. In
the Lamarckian Method, the new value is substituted in the individual vector, while
in the Baldwinian Method, it is not. However, both the methods use the new values
to compute objective functions and other constraints. Although the Lamarckian
Method of repairing an infeasible solution seems desirable (Deb and Goel, 2001), the

Baldwinian Method is found to be more efficient in some problems (Liu et al., 2000).
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These method that are based on preserving feasibility of solutions, though
computationally inexpensive and easy to implement, have limited practical

significance due to their inability in handling inequality constraints.

2.3.3.2 Methods based on Penalty Functions

In many algorithms, an exterior penalty term (Deb, 1995; Reklaitis et al., 1983),
which penalises infeasible solutions, is used. In most of these cases, the penalties are
based on the degree of constraint violations (Richardson et al., 1989). In general, the
penalty functions can be classified as static or dynamic based on their relationship
with the generation number. In addition, there are adaptive penalties that can be
incorporated in the chromosome structures (Michalewicz, 1995). In this way, these
penalties are treated as variables of the problem. They adaptively take suitable values

as the population grows.

Static penalties are independent of the generation number (Michalewicz, 1995).
However, there are two main difficulties associated with them. Firstly, the users
require extensive experimentation to find the values of the penalty parameters that
would steer the search towards the feasible region. Secondly, the inclusion of the
penalty term distorts the objective function space, making it difficult for the GA to
locate the optimum (Deb, 1995). An example of an ECOT that uses static penalties
for solving single-objective optimisation problems is that proposed by Homaifar et
al. (1994). Most of the studies in multi-objective evolutionary optimisation use

carefully chosen static penalties (Srinivas and Deb, 1994; Deb, 1999a).

In the case of dynamic penalties, which were introduced to tackle the drawbacks of
static penalties, the penalty parameter is changed with the generation number
(Michalewicz, 1995). Some methods that fall in this category are those of Joines and
Houck (1994), and Michalewicz and Attia (1994). The use of these penalties is not
trivial and only partial analysis of their performance is available. Further, all these
methods require exogenous parameters, which must be tuned for each problem

(Michalewicz, 1995).
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2.3.3.3 Methods based on Feasible over Infeasible Solutions

In these methods, a clear distinction is made between the feasible and infeasible
solutions in the search space. In the simplest of these methods, called the Death
Penalty Method (Michalewicz, 1995; Coello and Christiansen, 1999), the infeasible
solutions are completely rejected. In both single- and multi-objective optimisation,
this methods works only when F has a simple shape, and constitutes a reasonable
part of S (Michalewicz, 1995). In the Behavioural Memory Method (Schoenauer and
Xanthakis, 1993), which deal with constraints in single-objective optimisation, all the
constraints are considered in a sequence. In another approach (Powell and Skolnick,
1993), which is also a constrained single-objective optimisation technique, a
heuristic rule (suggested earlier by Richardson et al, 1989) that states, “every
feasible solution is better than all infeasible solutions”, is used to process infeasible
solutions. A recent study (Deb, 2000) suggested an approach that does not need any
penalty parameter. One fundamental difference between this approach and the
approach of Powell and Skolnick (199\3) is that here the objective function value is
not computed for any infeasible solution. This method uses a niched binary
tournament selection operator, where two solutions are compared in a tournament
only if their Euclidean distance is within a pre-specified limit. Niching is used here to
maintain diversity among the feasible solutions. In this tournament selection, the

following scenarios are always assured (Deb, 2001).

¢ Any feasible solution is preferred to any infeasible solution.

¢ Among two feasible solutions, the one having a better objective function is

preferred.

¢ Among two infeasible solutions, the one having a smaller constraint violation is
preferred.
This Constrained Tournament Method (Deb, 2000) can also be extended to deal with
multi-objective  optimisation problems. Jimenez-Verdegay-Gomez-Skarmeta’s
Method (Jimenez ef al., 1999) and Ray-Tai-Seow’s Method (Ray et al., 2001) are

two other constrained multi-objective optimisation algorithms that fall in the
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category of ‘Methods based on Feasible over Infeasible Solutions’. The description

of all these three methods is provided later in this section.

2.3.3.4 Methods based on Decoders

The infeasible individuals could be repaired for either evaluation or replacement
(Orvosh and Davis, 1993). In this strategy, a chromosome stores information about
how to fix an infeasible solution. For example, the chromosome may keep
information about the ordering of decision variables, which may be altered to make a
solution feasible. In some instances, a decoder imposes a mapping between a feasible
solution and a decoded solution. One such example (for both single- and multi-
objective optimisation) is the use of a homomorphous mapping between an n-
dimensional cube and a feasible search space (Koziel and Michalewicz, 1998). These
algorithms are particulatly interesting for combinatorial optimisation problems due to

the relative ease of repairing an infeasible solution in these problems.

2.3.3.5 Hybrid Methods

There are two types of hybrid methods. In the first type, a classical constrained
optimisation method is combined with the existing operators of an evolutionary
algorithm. Three such techniques that are reported in literature for single-objective
optimisation are discussed here. In the method suggested by Waagen et al. (1992),
the Hooke-Jeeves Pattern Search Method is combined with evolutionary algorithms.
Paredis (1994) suggested another approach, called the Co-evolutionary Approach.
Here, a population of decision variable vectors is evolved along with a population of
constraints, with fitter solutions satisfying more constraints and fitter constraints
being violated by fewer solutions. A different twist to this approach suggested by
Barbosa (1996), uses a population of solutions and a population of Lagrange

multipliers.

In the second type, the given objective function(s) and constraint violation measures
are both treated as objectives of a multi-objective optimisation problem. One of the

EMOTs (Section 2.2) can then be used to locate the optimal solutions (Michalewicz,
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1995). This Method based on Multi-objective Optimisation Techniques can be used

to solve both single- and multi-objective optimisation problems.

In the following discussion, three main algorithms that specialise in handling

constraints in multi-objective optimisation problems are described.

2.3.4 Jimenez-Verdegay-Gomez-Skarmeta’s Method

Jimenez et al. (1999) suggested a systematic constraint handling procedure that lies
in the category of ‘Methods based on Feasible over Infeasible Solutions’. Here, the
feasible and infeasible solutions are carefully evaluated by ensuring that no infeasible
solution gets a better fitness than any feasible solution. This algorithm uses the
binary tournament selection in its core. In this case, as long as the decisions can be
made with the help of feasibility and dominance of solutions, they are followed.
However, when both solutions enter a tie with respect to feasibility and dominance
considerations, the algorithm attempts to satisfy the second task of multi-objective

optimisation by using a niching concept to encourage a less crowded solution.

This algorithm has O(N?) complexity, where N is the population size. This is
comparable to that of other algorithms. Another advantage is that it uses the
tournament selection operator, which has better convergence properties than

proportionate selection operator.

This algorithm could be improved by restricting the niching computations to the
members of the chosen comparison set, instead of the entire population. This would
reduce its computational complexity. Further, by explicitly preserving diversity
among infeasible solutions, this algorithm sacrifices the progress towards the feasible
region. It also has a couple of additional parameters that a user must set right. In
order to make the non-domination check less stochastic, a large comparison set is
also needed here. Furthermore, this algorithm does not explicitly check the

domination of participating solutions in a tournament.
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2.3.5 Constrained Tournament Method

The Constrained Tournament Method, which also falls in the category of ‘Methods
based on Feasible over Infeasible Solutions’, was proposed by Deb (2000). The
original version of this method for dealing with single-objective optimisation
problems is given in Section 2.3.3.3. Here, the modified version of this method for

multi-objective optimisation is discussed.

In this algorithm, the definition of domination is modified. Before comparing two
solutions for domination, they are checked for their feasibility. If one solution is
feasible and the other is not, the feasible solution dominates the other. If the two
solutions are infeasible, the solution with the smaller normalised constraint violation
dominates the other. On the other hand, if both the solutions are feasible, the usual
domination principle is applied. This Constrain-domination Principle can be applied

with any EMOT. Its formal definition is given below.

A solution ¥ is said to ‘constrain-dominate’ a solution ¥, if any of the following

conditions is true.

¢ Solution ¥® is feasible and solution ¥ is not.

¢ Solutions ¥ and ¥ are both infeasible, but solution ¥’ has a smaller
constraint violation.

¢ Solutions ¥® and ¥ are both feasible, and solution ¥ dominates solution
7 in the usual sense of Pareto domination, as defined in Section 2.2.1.

This is a penalty-parameter-less constraint handling approach. It does not require any

extra computational burden, other than the constraint violation computations.

Further, this strategy is generic and can be used with any EMOT. Since it forces an

infeasible solution to be always dominated by a feasible one, no other constraint

handling strategy is required here.

In solving simple problems, this algorithm exhibits better performance as compared
to other constraint handling techniques. Moreover, since this approach requires
domination checks to be performed with the constraint violation values, it has a

slightly higher computational expense as compared to other techniques.
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2.3.6 Ray-Tai-Seow’s Method

Ray et al. (2001) suggested a more elaborate constraint handling technique, which is
also a ‘Method based on Feasible over Infeasible Solutions’. Here, the constraint
violations of all constraints are not simply added together; instead, a non-domination
check of the constraint violation is made. In this case, three different non-dominated
sorting procedures are used. In addition to a non-dominated sorting of the objective
functions, a couple of non-dominated sortings using the constraint violation values
and a combined set of objective function and constraint violation values are needed

to construct the new population.

The overall complexity of this algorithm is O((M+])N?), where J is the number of
constraints, M is the number of objective functions and N is the population size. This
method emphasises the solutions that violate different constraints. In this way, the

diversity is maintained in the population.

In a later generation, when all population members are feasible and belong to a sub-
optimal non-dominated front, the algorithm stagnates. The performance of this
algorithm is also dependent on the choice of appropriate values for its parameters.
Further, the algorithm Has a tendency of losing the diversity in its population.
Finally, three non-dominated ranking and head-count computations make the
algorithm more computationally expensive than the other algorithms discussed so

far.

2.3.7 Summary

The following points summarise this section.

¢ There are only a few specialised techniques for handling constraints in multi-
objective optimisation problems.

¢ The ease of understanding and implementation of penalty function approaches
make them the most popular techniques for handling constraints in optimisation

problems.

¢ Incorporation of constraint violations in the definition of Pareto domination is a

powerful way of handling constraints in multi-objective optimisation problems.
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¢ Niching can also be used with the above strategy to encourage diversity among

solutions.

¢ Techniques, such as Constrained Tournament Method, that use the above
concepts achieve better convergence and diversity of solutions as compared to

other approaches.

Interaction among decision variables is inherent to a number of engineering design
optimisation problems. In spite of its immense potential for real-life problems, lack
of systematic research has plagued this field for a long time. The main reason for this
was that no sophisticated technique was available in the past for effectively dealing
with variable interaction. Inadequate hardware and software technologies also
hampered the growth of research in this computationally complex field. However, in
the last two decades, with the growth of these technologies, some research has been
carried out in this area, esi)ecially in the fields of probability (Scott, 1992) and
statistics (Draper and Smith, 1998). This has been further augmented in the recent
past with the growth of computational intelligence techniques like EC, Neural
Networks (NN) and Fuzzy Logic (FL) (Pedrycz, 1998).

In an ideal situation, desired results could be obtained by varying the decision
variables of a given problem in a random fashion independently of each other.
However, due to interaction this is not possible in a number of cases, implying that if
the value of a given variable changes, the values of others should be changed in a
unique way to get the desired results. The interaction among decision variables can
be classified into two broad levels: inseparable function interaction and variable
dependence. The EC techniques for handling both these types 6f variable interaction

are discussed in this chapter.

2.4 Evolutionary-based Techniques for Handling
Inseparable Function Interaction

This section presents a literature survey of the Evolutionary-based Techniques for

handling Inseparable Function Interaction (ETIFIs) in optimisation problems.
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2.4.1 Problem Statement

Inseparable function interaction is a form of variable interaction. It occurs when the
effect that a variable has on the objective function depends on the values of other
variables in the function (Taguchi, 1987a; Taguchi, 1987b). This concept of
interaction can be understood from Figure 2.2. Figure 2.2(a) shows the case of no
interaction between two variables 4 and B. Here, the lines representing the effect of
variable 4 for the settings B; and B; of variable B are parallel to each other. Figure
2.2(b) and Figure 2.2(c) show two examples of the presence of interaction. The type
of interaction in Figure 2.2(b) is sometimes called synergistic interaction and the one

in Figure 2.2(c) is called anti-synergistic interaction (Phadke, 1989).

B
3
3}’/4 3/ %4

v
v

v

Figure 2.2: Examples of Interaction — (a) No Interaction (b) Synergistic Interaction
(c) Anti-synergistic Interaction (Phadke, 1989)

The above discussion reveals that this interaction depends on the definition of
objective functions, and manifests itself as cross-product terms. As an example,
assume y in Figure 2.2 stands for A*+B?, having no cross-product terms. Here, y3-y;
is equal to y4-y; (Equation 2.5), making the two lines parallel and implying that there
is no interaction between 4 and B in the given function.
s =y =47 +B})— (4] +B})=(B; - B)), 5
Vo=, =(4; +B})=(4; + B}) = (B; - B).

Let us take the other case in which y in Figure 2.2 stands for A%+B’+4B, having a

Let us take the other case in which y in Figure 2.2 stands for A’+B*+4B, having a
cross-product term AB. Here, y;-y; is not equal to y,-y, (Equation 2.6). This makes
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the two lines non-parallel implying interaction between variables in the given

function.

y=A*+B*+ 4B, Equation 2.6
Vs =y, =(A + B} + A,B,)— (A} + B} + 4,B))

=(B} -B} + 4B, — AB),

Ya—2 :(A22 "'Bz2 +Asz)_(A22 +B12 +4,B,)

=(B} -B} + 4,B, - 4,B)).

In GA literature, the inseparable function interaction, as defined above, is termed as
epistasis. The GA community defines epistasis as the interaction between different
genes in a chromosome (Beasley ef al., 1993). In other words, it determines the
extent to which the contribution to fitness of one gene depends on the values of other

genes. Beasley et al. (1993) put forward the following three levels of epistasis.

¢ Level 0 indicates no epistasis.

¢ Level 1 indicates synergistic epistasis, where a particular change in one gene

always produces a change in fitness of the same sign.

¢ Level 2 indicates anti-synergistic epistasis in which a change in one gene causes
a change in fitness that varies in sign and magnitude depending on the values of
other genes.

An alternative definition of epistasis is given by Reeves and Wright (1995a), who

define it in terms of alleles. In this sense, the term epistasis is used to denote the

effect of a combination of alleles on the chromosome fitness that is not merely a

linear function of the effects of individual alleles. In general, epistasis can be thought

of as expressing the degree of cross-terms in the fitness function.

Davidor (1991), and Reeves and Wright (1995a and 1995b) argued that
understanding the distribution and level of epistasis is often an indicator of the
difficulty of an optimisation problem. Davidor (1991) introduced the epistatic
variance as a tool for the evaluation of interdependencies between genes, thus
possibly giving clues about the difficulty of optimising functions with a GA (Fonlupt
et al., 1998). In recent years, Reeves and Wright (1999) have also attempted to put
Davidor’s methodology (Davidor, 1990; Davidor, 1991) on a firmer footing by
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drawing on existing work in the field of Experimental Design (ED), which can be

used to give insights into epistatic effects.

A number of real-life examples can be found in literature that involve this level of
interaction. For example, the temperature (7) of an ideal gas varies with its pressure
(P) and volume (V) as T=kPV, where k is the constant of proportionality (Equation
2.7). This equation has cross-product term PV clearly demonstrating the interaction

between P and ¥V in the definition of T (Tiwari et al., 2001a).

T=kPV. Equation 2.7

2.4.2 Classical versus Evolutionary Approaches

Section 2.2.2 listed a number of drawbacks that classical approaches face in dealing
with multi-objective optimisation problems. The discussion in the previous section
revealed that the presence of complex inseparable function interaction further
enhances the challenges for multi-objective optimisation algorithms (Deb, 1999b).
Since the classical approaches suffer from inherent drawbacks in handling complex
interaction among decision variables, it becomes even more important to explore the
field of EC for solving these optimisation problems. This is also supported by the
fact that the EC can handle most of the drawbacks of classical algorithms, and has

the potential of handling inseparable function interaction in optimisation problems.

2.4.3 Classification of ETIFIs

The success of a GA depends on its capability to grow ‘good’ building blocks
(Thierens, 1995). In the presence of complex inseparable function interaction, it
becomes difficult for a GA to meet this requirement. In these cases, it is essential to
provide the simple GA with some additional features that can enable it to support the
growth of ‘good’ building blocks. A number of techniques are reported in the
literature that attempt to achieve this by preventing the disruption of important partial

solutions.
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Table 2.3: Classification of ETIFIs

Methods that Manipulate
Representation of

Methods that Use

Specialised Reproduction

Methods that Avoid Race
‘between Linkage Evolution

Solutions . Operators - and ‘Allele Selection

Method of Bagley (1967)
Method of Rosenberg
(1967) -
Method of Frantz (1972) | * E?é‘s'illyve“f?.?%%
Method of Holland (1975) (Reported by Harik, 1997)
miér;g(z1<g8(§;)ldberg and « Edge Recombination « messy GA (MGA)
Method of Schaffer and (Reported by Harik, 1997) (Goldst(nerg et al., 1989)
Morishima (1987) * Enhanced Edge e Gene Ex ressian Mess
M Recombination (Reported p y

ethod of Goldberg and by Harik, 1997) GA (GEMGA) (Kargupta,
Bridges (1990) . e Order Crossover 1998)
Method of Leven!ck (1995) (Reported by Harik, 1997)
Metﬂog 0; garegls (; 995) |, Molecular GA Crossover

ethod of Smith an :
Fogarty (1996) (Reported by Harik, 1997)
Linkage Learning GA

(LLGA) (Harik, 199

Population Based
Incremental Learning
(PBIL) algorithm (Baluja,
1994)

Univariate Marginal
Distribution Algorithm
(UMDA) (Muhlenbein and
Paab, 1996)

Stochastic Hill Climbing
with Learning by Vectors
of Normal Distributions
(SHCLVND) (Rudolf and
Koppen, 1996)

compact GA (cGA) (Harik
et al., 1997)

Technique of Servet et al.
(1997)

Extended PBIL for
continuous domain (PBIL.)
(Sebag and
Ducoulombier, 1998)

airwise Interaction . |

¢ Method of Baluja and
Davies, 1997

¢ MIMIC (De Bonet et al.,
1997)

¢ Bivariate Marginal
Distribution Algorithm
(BMDA) (Pelikan and
Muhlenbein, 1999)

ultiple Interaction: =

o Factorised Distribution
Algorithm (FDA)
(Muhlenbein and Mahnig,

" 1999a; Muhlenbein and
Mahnig, 1999b )

« Bayesian Optimisation
Algorithm (BOA) (Pelikan
et al., 1999)

o Learning FDA (LFDA)
(Muhlenbein and Mahnig,
1999a; Muhlenbein and
Mahnig, 1999b )

o Extended Compact GA
(ECGA) (Harik, 1999)

o Polytree Approximation of
Distribution Algorithms
(PADA) (Soto et al., 1999)

¢ Continuous-domain EDA
using a Flexible
Probability Density
Estimator (Gallagher et
al., 1999)

« Multi-objective Mixture-
based Iterated Density
Estimation Evolutionary
Algorithm (MIDEA)
(Thierens and Bosman,
2001)

As shown in Table 2.3, ETIFIs can be classified into two broad categories based on
the approach that are used for the prevention of building block disruption. The first
class of these techniques manages the race between the building block growth and
mixing (Harik, 1997). The second class attempts to model promising solutions for
extracting some information from them in order to generate new solutions (Pelikan et
al., 1998). This section provides a brief overview of the techniques belonging to both

of these categories.
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2.4.4 Managing Race between Linkage Evolution and Allele

Selection

Linkage is defined as the logical grouping of building block components to facilitate
their growth and mixing. This strategy handles epistasis on the basis of the
observation that the force that causes the evolution of linkage is, in effect, in a race
against the force of allele selection. Therefore, a GA may fail if it is unable to control
this struggle between the building block growth and mixing. In order to make the GA
successful, this strategy proposes ways of managing this race (Harik, 1997). Most of
the techniques that fall in this category work on single-objective optimisation

problems in binary domains. These techniques can be classified as follows.

2.4.4.1 Methods that Manipulate Representation of Solutions

Various studies have shown that the struggle between linkage evolution and allele
selection can be easily overcome when a problem’s building blocks are tightly linked
(Goldberg et al., 1992; Goldberg et al., 1993). The methods in this category attain
this by manipulating the representation of solutions in the algorithm, in order to
make the interacting components of partial solutions less likely to be broken by
recombination operators. These methods evolve a problem’s ordering alongside its
solution, thereby enabling the GA to smooth the path of building block mixing. Some
of the important studies in this area of dynamic adjustment of building block linkages
were undertaken by Bagley (1967), Rosenberg (1967), Frantz (1972), Holland
(1975), Goldberg and Lingle (1985), Schaffer and Morishima (1987), Goldberg and
Bridges (1990), Levenick (1995), Paredis (1995), and Smith and Fogarty (1996). One
of the latest algorithms in this category is Linkage Learning GA (LLGA). It was
developed by Harik (1997). In this algorithm, the decision variables are mapped onto
a circle. Their mutual distances evolve during optimisation, grouping together those

with strong interaction so that recombination is less likely to disrupt them.

Many of the above-mentioned studies were undertaken before the logistics of
building block mixing were well understood. They were inspired by a more holistic

view of the GAs operation that considered the exploitation of tight building blocks
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the Holy Grail to GA optimisation. The main drawback of these techniques is that the
reordering operators that they use are often too slow and lose the race against
selection, resulting in premature convergence to low quality solutions. Reordering is
not sufficiently powerful in order to ensure a proper mixing of partial solutions
before these are lost. This line of research has resulted in algorithms that evolve the

representation of a problem among individual solutions (Harik, 1997).

2.4.4.2 Methods that Use Specialised Reproduction Operators

Some binary permutation operators, such as Partially Mapped Crossover (PMX),
Edge Recombination, Enhanced Edge Recombination, Order Crossover and
Molecular GA Crossover, have the potential of speeding-up the rate at which linkage
evolution occurs (Harik, 1997). These crossover operators are directly useful for
those optimisation problems that are naturally encoded as permutation, such as
combinatorial optimisation problems. However, since the ordering problem can be
considered as a combinatorial optimisation problem that the GA must tackle, these
operators are potentially useful even within the confines of traditional GA

optimisation.

2.4.4.3 Methods that Avoid Race between Linkage Evolution and Allele

Selection

There are a number of techniques that entirely avoid the race between linkage
evolution and allele selection. In the messy GA (mGA) (Goldberg et al., 1989), the
steps of building block identification and mixing are separate. In the first phase, the
important building blocks are identified. This is done by simply applying the
selection operator to them. The remaining solution components are substituted from
a special solution called the template. The template is updated every few generations.
In the second phase, the identified building blocks are mixed using selection and
crossover operators. In the Gene Expression Messy GA (GEMGA) (Kargupta, 1998),
the interaction in a problem is identified by manipulating individual solutions. These

are used in order to improve the effects of recombination.
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2.4.5 Modelling Promising Solutions

A different way to cope with the disruption of partial solutions is to change the basic
principle of recombination. In this approach, instead of implicit reproduction of
important building blocks and their mixing by selection and two-parent
recombination operators, new solutions are generated by using the information
extracted from the entire set of promising solutions. Global information about the set
of promising solutions can be used to estimate their distribution, and new solutions
can be generated according to this estimate. A general scheme of the algorithms
based on this principle is called the Estimation of Distribution Algorithm (EDA)
(Muhlenbein and Paab, 1996). A typical EDA approach to optimisation is illustrated
in Figure 2.3.
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Figure 2.3: Estimation of Distribution Algorithm (EDA) Approach to Optimisation
(Source: Larranaga et al., 1999)

In EDA, the better solutions are selected from an initially randomly generated
population of solutions like in the simple GA. The distribution of the selected set of
solutions is estimated. New solutions are generated according to this estimate. The

new solutions are then added into the original population, replacing some of the old
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ones. The process is repeated until the termination criteria are met. However,
estimating the distribution is not an easy task. There is a trade-off between the
accuracy of the estimation and its computational cost (Larranaga et al., 1999). The

techniques that fall in this category can be classified as follows.

2.4.5.1 No Interaction

The simplest way to estimate the distribution of ‘good’ solutions is to consider each
variable in a problem independently, and generate new solutions by only preserving
the proportions of the values of all variables independently of the remaining
solutions. This is the basic principle of the Population Based Incremental Learning
(PBIL) algorithm (Baluja, 1994), the compact GA (cGA) (Harik ez al., 1997) and the
Univariate Marginal Distribution Algorithm (UMDA) (Muhlenbein and Paab, 1996).
There is theoretical evidence that the UMDA approximates the behaviour of the
simple GA with uniform crossover (Muhlenbein, 1997). It reproduces and mixes the
building blocks of order one very efficiently. The theory of UMDA, based on the
techniques of quantitative genetics, can be found in Muhlenbein (1997). Some
analysis of PBIL can be found in Kvasnicka et al. (1996). The PBIL, cGA and
UMDA algorithms work well for problems with no significant interaction among
variables (Muhlenbein , 1997; Harik et al., 1997; Pelikan and Muhlenbein, 1999).
However, partial solutions of order more than one are disrupted, and therefore these
algorithms experience a great difficulty to solve problems with interaction among the

variables.

2.4.5.2 Pairwise Interaction

First attempts to solve the problems that have interaction among variables were
based on covering some pairwise interaction, for example, the incremental algorithm
using the so-called dependency trees as a distribution estimate (Baluja and Davies,
1997), the population-based MIMIC algorithm using simple chain distributions (De
Bonet et al., 1997), or the Bivariate Marginal Distribution Algorithm (BMDA)
(Pelikan and Muhlenbein, 1999). In the algorithms based on covering pairwise

interaction, the reproduction of building blocks of order one is generated. Moreover,
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the disruption of some important building blocks of order two is prevented.
Important building blocks of order two are identified using various statistical
methods. Mixing of building blocks of order one and two is guaranteed, assuming the
independence of the remaining group of variables. However, covering pairwise
interaction does not preserve higher order partial solutions. Moreover, interaction of
higher order does not necessarily imply pairwise interaction that can be detected at
the level of partial solutions of order two. Therefore, covering only pairwise
interaction has been shown to be insufficient to efficiently solve problems with

interaction of higher order (Pelikan and Muhlenbein, 1999).

2.4.5.3 Multiple Interaction

The Factorised Distribution Algorithm (FDA) (Muhlenbein and Mahnig, 1999a;
Muhlenbein and Mahnig, 1999b) is capable of covering the interaction of higher
order, and combining important partial solutions effectively. Here, a factorisation of
the distribution is used for generating new solutions. The distribution factorisation is
a conditional distribution constructed by analysing the problem decomposition. The
FDA works very well on additively decomposable problems. The theory of UMDA
can be used in order to estimate the time to convergence of the FDA. However, the
FDA requires prior information about the problem in the form of problem
decomposition and its factorisation. As input, this algorithm gets a complete or
approximate information about the structure of a problem. Unfortunately, the exact
distribution factorisation is often not available without computationally expensive -
problem analysis. Moreover, the use of an approximate distribution according to the
current state of information represented by the set of promising solutions can be very
effective even if it is not a valid distribution factorisation. However, by providing
sufficient conditions for the distribution estimate that ensure a fast and reliable
convergence on decomposable problems, the FDA is of great theoretical value.
Moreover, for problems in which the factorisation of the distribution is known, the -

FDA is a very powerful optimisation tool.

The Bayesian Optimisation Algorithm (BOA), proposed by Pelikan et al. (1999), is

also capable of covering higher order interaction. It uses techniques from the field of
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modelling data by Bayesian networks in order to estimate the joint distribution of
promising solutions. The class of distributions that are considered is identical to the
class of conditional distributions used in the FDA. Therefore, the theory of the FDA
can be used in order to demonstrate the power of this algorithm to solve
decomposable problems. However, unlike the FDA, the BOA does not require any
prior information about the problem. It discovers the structure of a problem, and
identifies, reproduces and mixes building blocks up to a specified order very
efficiently. Some other optimisation algorithms that have been proposed in the recent
past to handle higher order interaction, while at the same time addressing the
drawbacks of the FDA, are the Learning Factorised Distribution Algorithm (LFDA)
(Muhlenbein and Mahnig, 1999a; Muhlenbein and Mahnig, 1999b), Extended
Compact GA (ECGA) (Harik, 1999) and Polytree Approximation of Distribution
Algorithms (PADA) (Soto et al., 1999).

It should be noted here that most of the EDAs mentioned here are proposed for
combinatorial optimisation problems in binary domains. Literature also reports a few
EDAs for continuous-domain problems. These include the Stochastic Hill Climbing
with Learning by Vectors of Normal Distributions (SHCLVND) (Rudolf and
Koppen, 1996), extended PBIL for continuous domain (PBIL;) (Sebag and
Ducoulombier, 1998) and the technique of Servet et al. (1997). A major drawback of
these algorithms is that they fail in problems that have any significant interaction

among their decision variables.

2.4.6 Examples of ETIFIs

It is evident that most of the ETIFIs discussed so far in this section work on single-
objective optimisation problems in binary domains. However, for these techniques to
be of any practical significance, they should be able to work in continuous domains
in the presence of multiple objectives. Some attempts have been made by the
researchers in the recent past to address these issues. In the following discussion, two

new ETIFIs are analysed. Both work on continuous domains, but the first is a single-
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objective optimisation technique and the second is a multi-objective optimisation

technique.

2.4.6.1 Continuous-domain EDA using a Flexible Probability Density

Estimator

Gallagher et al. (1999) extended the PBIL technique to real-valued search spaces.
They proposed a powerful and general algorithmic framework that enables the use of
arbitrary probability estimation techniques in evolutionary optimisation. To illustrate
the usefulness of this framework, they also developed and implemented an
evolutionary algorithm that uses a Finite Adaptive Gaussian Mixture Model Density
Estimator. This method offers considerable power and flexibility in the forms of the
density that can be effectively modelled. However, it is not suitable for those
problems that have complex inseparable function interaction. It also cannot deal with

multi-objective optimisation problems.

2.4.6.2 Multi-objective Mixture-based Iterated Density Estimation
Evolutionary Algorithm (MIDEA)

Thierens and Bosman (2001) proposed a Multi-objective optimisation algorithm
using a Mixture-based Iterated Density Estimation Evolutionary Algorithm
(MIDEA). The MIDEA algorithm is a probabilistic model building evolutionary
algorithm that constructs at each generation a mixture of factorised probability
distributions. The use of a mixture distribution gives a powerful, yet computationally
tractable, representation of complicated interaction. In addition, it results in an
elegant procedure to preserve the diversity in the population, which is necessary in
order to be able to cover the Pareto front. The algorithm searches for the Pareto front
by computing the Pareto dominance among all solutions. As specific instantiations of
the proposed algorithm, Thierens and Bosman (2001) have successfully implemented
a mixture of universal factorisations and a mixture of tree factorisations for discrete
multi-objective optimisation, and a mixture of continuous univariate factorisations
and a mixture of conditional Gaussian factorisations for continuous optimisation

problems. However, similar to other EDAs, this algorithm also specialises in binary
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domains. The application of this algorithm to continuous domains requires it to be
customised for each problem, especially with respect to the clustering algorithm.
This customisation is mostly done based on trial-and-error. As Thierens and Bosman
(2001) admit, this algorithm is still at an early stage of development, and is currently
being developed for generalising it to enable its wider testing on a variety of

problems.

2.4.7 Summary

The discussion in this section can be summarised can follows.

¢ A number of research questions need to be answered regarding the theory of
epistasis, its measurement and its relationship with the difficulty of an

optimisation problem.

¢ Most of the current research in the field of inseparable function interaction

(epistasis) deals with single-objective optimisation in discrete domain.

¢ The few ETIFIs that are available for dealing with continuous search spaces have
limited capability in handling any significant inseparable function interaction.

¢ The development of ETIFIs for dealing with real-valued, multi-objective
optimisation problems is an important area of research. It needs to be addressed
in order to develop techniques that can handle the challenges of engineering
design optimisation problems.

2.5 Evolutionary-based Techniques for Handling
Variable Dependence

This section presents a survey of Evolutionary-based Techniques for handling

Variable Dependence (ETVD).

2.5.1 Problem Statement

Variable dependence, which is a form of variable interaction, occurs when the
variables are functions of each other, and hence cannot be varied independently.

Here, change in one variable has an impact on the value of the other. Unlike
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inseparable function interaction that depends on the nature of objective functions,
variable dependence depends on the nature of variables. Equation 2.8 depicts a

dependent-variable optimisation problem, having multiple objectives and constraints.

Minimise | Maximise = f (56.‘), m=12,..,M, Equation 2.8

m

X, =d (%), =1,2,., N,

Ny

U X = ‘;Ea'ep ;

i=1

X=Xy =Xy

X= xdep Uxina';

P =Xy, EA-

Subject _to=> g (%)20,j=12,.,J;
h,(X)=0,k=12,..,K;

fo) <x; < xfu),i =12,...,n;

N, = Number _of _dependent _variables,
X4, = Set _of _depedent _variables;,

X,, =Set _of _independent _variables.

A typical example of this type of interaction is the case when the function y is
defined as A°+B°, where 4 is Random(a,b) and B is f{A)+Random(c,d) (Equation 2.9)
(Tiwari et al., 2001b).

y=A>+B*, Equation 2.9
A = Random(a,b),
B = f(A)+ Random(c,d).

As can be seen, variable 4 is fully independent and can take any random value
between a and b. On the other hand, variable B is not fully independent and has two
components. The first component that is a function of variable A4 takes values
depending on the values of 4. The second component is a random number lying
between ¢ and d. The origin of this random component lies in one of the following

two reasons or in a combination of both.

¢ This component may arise due to the deficiency of the mathematical model in

accurately representing the real-life problem.
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¢ Alternatively, it may represent noise in the data, arising due to the
measurement/rounding/calculation errors, disturbances from the environment or
other inaccuracies in the set-up.

It should be noted that in case of no dependence among decision variables, the

function f'does not exist. Therefore, @ and b define the range of 4, and c and d define

the range of B.

The above example reveals that the presence of dependence among decision

variables has the following effects on the search process.

¢ Both variables 4 and B cannot simultaneously take random values in their
respective ranges. If variable 4 takes a value 4;, variable B can take only those
random values that lie between [f{4)+c] and [f(4;)+d]. With the change in value
of 4, the range of random values that B can take also changes. So, the variables

cannot be varied independently of each other.

¢ The above discussion implies that the presence of dependence among decision
variables modifies the shape and location of variable search space. In case of no
dependence among decision variables, both variables 4 and B can independently
take random values in their respective ranges, making the 4-B search space
rectangular in nature. However, the presence of dependence makes the search
space take the shape and location based on the nature of function f(4).

2.5.2 Classical versus Evolutionary Approaches

Classical optimisation techniques suffer from serious limitations in handling the
complexity of multi-objective optimisation problems (Section 2.2.2; Section 2.3.2;
Section 2.4.2). As mentioned in the above discussion, the presence of variable
dependence may introduce some additional features, such as bias (non-linearity),
multi-modality, deception and discontinuity, in the optimisation problem. This makes
it even more difficult for the classical optimisation algorithms to give satisfactory
results. However, in recent years the growth of research in the fields of probability,
statistics, EC, NN and FL has improved the situation. Literature reveals the potential
of EC in removing most of the drawbacks of classical techniques (Deb, 2001). This
makes the EC more suitable for dealing with dependent variable multi-objective

optimisation problems than its classical counterparts.
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2.5.3 Classification of ETVD

As discussed below, the evolutionary-based techniques need to follow the given two
steps for solving optimisation problems that have dependence among their decision

variables.

¢ Identification of Dependency Relationships (Step 1): In this step, the
relationships that determine the dependency among decision variables are
determined. The user may either explicitly know these relationships in the form
of equations or need to infer them based on the data provided regarding decision
variables. In both these cases, the user needs to ensure that the dependency

relationships do not involve any cyclic dependencies.

¢ Classification of Variables (Step 2): The next step in solving these problems is to
analyse the dependency equations for classifying the variables as independent
and dependent. This allows the GA to operate on the independent variables,
varying them independently of each other. For each alternative solution generated
by the GA, the dependency equations are used to calculate the values of the
dependent variables. In this way, the whole set of decision variables is

determined, which is then used for evaluating the objective function(s).

Table 2.4: Classification of Techniques for Handling Variable Dependence

Regression Analysis (RA) (Frees, 1996; Draper and Smith, 1998; Evans
and Olson, 2000)

Neural Networks (NNs) (Kolmogorov, 1957; Cybenko, 1989; Hertz et al.,
1991; Bishop, 1996; Richards, 1998; Gershenfeld, 1999)

Probabilistic Modelling (PM) (Pelikan ef al., 1998; Larranaga et al., 1999;
Gallagher et al., 1999; Pelikan ef al., 1999; Evans and Olson, 2000)

Tree Diagrams (TDs) ( Banzhaf ef al., 1998; Richards, 1998; Larranaga ef
al., 1999)
Direct Analysis (DA) (Gershenfeld, 1999)

Due to the lack of systematic research in the area of variable dependence, the
literature in the field of optimisation does not report dedicated techniques that can
deal with these problems. However, the survey of literature in related areas of
research reveals some techniques that could form part of the above-mentioned two-
step procedure for solving these problems. This section presents a critical analysis of
the techniques for each of these steps. A summary of these techniques is provided in
Table 2.4.
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2.5.4 Techniques for Step 1: Identification of Dependency
Relationships

The optimisation problems that involve variable dependence can be classified into
two broad categories. In the first category of these problems, the user explicitly
knows the equations that define the dependence among decision variables. However,
the user still needs to ensure that the equations that are provided to him/her are free
of cyclic dependencies. The next sub-section analyses the techniques that can be used
for identifying the independent variables and removing any cyclic dependencies. In
the second category, the dependency equations are unknown, but multiple sets of
variable values are provided to the user from which the dependency relationships can
be inferred. Literature reveals a number of sophisticated data modelling techniques
that can be used for deriving the dependency relationships from the given data
(Gershenfeld, 1999). Here, the use of three most popular data modelling techniques
is analysed. As mentioned in Section 2.4.5, some of these techniques, especially the
Probabilistic Modelling (PM), have also been applied in literature to deal with
epistasis in optimisation problems (Pelikan ef al., 1999). Here, it is worth noting that
epistasis, referred to as inseparable function interaction, and variable dependence are
the two categories of variable interaction. As mentioned in the discussion that
follows, the second step of the solution procedure is carried out based on the choice

of the data modelling technique.

It should be noted that along with these two categories, there is another category of
dependent variable optimisation problems, in which neither the dependency
equations nor the data are available to the user. In these problems, only the
compound fitness/evaluation model is available to the user. In this compound model,
the independent input variables define the dependent variables; both of which define
the objective functions. Since in these problems the relationships among dependent
and independent variables are known, it is evident that they fall in the first category

in which the dependency equations are provided to the user.
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2.5.4.1 Regression Analysis (RA)

Regression Analysis (RA) is a tool for building statistical models that characterise
relationships between a dependent variable and one or more independent variables,
all of which are numerical (Evans and Olson, 2000). Figure 2.4 depicts a regression
line through population means, and errors associated with individual observations.
The non-linear multivariable RA, which is the most generic form of RA, attempts to
fit a non-linear equation (of pre-defined degree) to the data, having one dependent
variable and multiple independent variables. In this method, the coefficients of the
non-linear equation are obtained in such a way that some function of the errors
between the given values and the predicted values of the dependent variable is
minimised. The most common approach for doing this is called least-squares
regression, which minimises the sum of squares of the errors. The non-linear
multivariable equation, which is attained from this analysis, is used for predicting the

dependent variable in terms of the independent variables (Frees, 1996).

Advantages

RA is easy to understand and implement in a computer language. It has lesser
computational expense than other sophisticated non-linear modelling techniques like
the Neural Networks. Since it derives explicit dependency equations, it also gives
better insight to the user regarding the relationships among decision variables
(Draper and Smith, 1998). Further, due to its reasonable computational expense, the
RA can be repeatedly applied on the given set of data, to determine the dependency
equation, if any, for each variable. This makes it possible for the RA to identify
multiple relationships among decision variables. This also lends it the capability of
classifying the variables as dependent and independent, thereby eliminating the need

for prior information regarding the nature of variables.
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Figure 2.4: Illustration of Regression Model (a) Regression Line through Population
Means (b) Errors Associated with Individual Observations (Source: Evans and

Olson, 2000 v

Disadvantages

The accuracy of RA depends on the degree of non-linear equation that is being used
for modelling the given data. Therefore, this method suffers from limitations in
modelling data that involve complex relationships (Frees, 1996). Also, each time a
new set of data is added, the whole RA needs to be repeated with the updated data set
(including both old and new data). Further, it is also not suitable for dealing with

excessively noisy information (Evans and Olson, 2000).

2.5.4.2 Neural Networks (NNs)

The study of NN started as an attempt to build mathematical models that worked in
the same way that brains do. While biology is so complex that such explicit
connections have been hard to make outside of specialised areas (Richards, 1988),
the effort to do so has led to a powerful language for using large flexible non-linear
models. The spirit of NN or connectionist modelling is to use fully non-linear
functions (to handle the curse of dimensionality), and use a large number of terms (so
that model mismatch errors are not a concern). Instead of matching the architecture
of the model to a problem, a generic model is used, and careful training of the model
is used to constrain it to describe the data (Gershenfeld, 1999). A typical NN with
one hidden layer is depicted in Figure 2.5.

EC Techniques for Handling Variable Interaction 63



Chapter 2. A Review of Literature

Figure 2.5: NN with One Hidden layer (Source: Gershenfeld, 1999)

Advantages

Since the NNs can handle the cursev of dimensionality and the model mismatch
errors, they are robust for simulating the dependency among decision variables
(Gershenfeld, 1999). It has been shown that with one hidden layer a NN can describe
any continuous function (if there are enough hidden units), and that with two hidden
layers it can describe most functions (Kolmogorov, 1957 and Cybenko, 1989). Some
types of NNs can also incorporate new sets of data without needing to recreate the
whole model. This feature, together with the capability of dealing with noisy data,
give them the potential of modelling noisy environments, where more information is
added with time. A single NN also has the capability of modelling multiple

relationships among decision variables (Bishop, 1996).

Disadvantages

The major drawback of NNs is that due to their huge computational expense, they
cannot be repeatedly applied, using different sets of dependent and independent
variables. Therefore, they require prior problem knowledge for classification of
variables as independent and dependent, making them unsuitable for real-life
optimisation problems, in which there is lack of prior information about the nature of
variables (Hertz et al., 1991). In terms of computer implementation, the NNs are

more difficult than the RA, and have higher computational expense. Since they do
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not provide dependency equations, they are also not as explicit as the RA (Bishop,

1996).

2.5.4.3 Probabilistic Modelling (PM)

In Probabilistic Modelling (PM), a probability distribution is constructed from the
data provided by the user. This probability distribution, which acts as the model for
representing the data, is expressed using a function pX = x), called Joint
Generalised Probability Density Function (JGPDF). In this way, the model provides
a characterisation of the possible values that its variables may assume, along with the
probabilities of assuming these values. A typical probabilistic model is shown in
Figure 2.6 (assuming that pX = x) is the JGPDF). This model can be used to create
new sets of data that have the same relationship among their variables as in the
original data provided by the user. Evans and Olson (2000) suggest a number of
probability distributions for PM. These include Bernoulli, Binomial, Poisson and
Bayesian distributions for discrete variable models, and Uniform, Normal,
Triangular, Exponential, Lognormal, Gamma, Weibull, Beta, Geometric, Negative
Binomial, hypergeometric, Logistic, Pareto, Extreme Value and Gaussian

distributions for continuous variable models.

Figure 2.6: Example of Probabilistic Modelling (PM) (Assuming that p(X = x) is
JGPDF)

Advantages

PM is a very powerful data modelling technique since it does not require a priori
classification of variables as dependent and independent (Pelikan et al., 1999). Since

PM provides an implicit model of the data, it is capable of dealing with complex
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relationships among decision variables (Larranaga et al., 1999). PM also has lower
computational expense than the NNs but higher than that of the RA. Further, when a
new set of data is added, it is not required here to re-create the model from scratch.
PM makes it possible to update the model using just the new data. Therefore, it is
simple and computationally inexpensive to update the model with the addition of
more data. This makes the PM suitable for working in those noisy environments in

which information slowly evolves with time (Pelikan et al., 1998).

Disadvantages

The intricacy of concepts involved in PM makes it a difficult technique to understand
and implement in a computer language. By not providing explicit dependency
equations, it also does not give an insight into the dependency among decision
variables (Evans and Olson, 2000). Finally, the field of multivariate PM for
continuous variables is a subject of ongoing development, and a number of issues
(such as setting of parameters, robustness, etc.) remain unanswered regarding its
implementation. Some of the methods that fall in this category are Kernel, Mixture
Model and Nearest Neighbour methods. The Adaptive Mixture algorithm, a type of
Mixture Model, has the potential of modelling multivariate data from real-life
problems. However, a number of research questions (such as scalability with number
of variables and complexity of relationships, robustness, etc.) need to be answered
before this algorithm could be used for any real-life application (Gallagher et al,
1999).

2.5.5 Techniques for Step 2: Classification of Variables

After obtaining the dependency relationships, the user needs to carry out the next
step, which is to identify the independent variables that form part of the GA
chromosome. A number of tools are suggested in literature for analysing the
dependency equations to classify the variables (as dependent and independent) and

remove any cyclic dependencies. Some of these tools are discussed below.
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2.5.5.1 Tree Diagrams (TDs)

The dependence among decision variables can be graphically represented using TDs,
in which each node represents a variable in the problem. An example of a TD is
shown in Figure 2.7. In this example, variable A is dependent on B, C and D,
variable B on E, variable C on B and F, and variable D on F and G. Stepwise
construction of TDs from the dependency equations can also be used to identify the
cyclic dependencies. They are then resolved either by using some additional
information from the source of equations or by eliminating the weaker leg of the
cyclic dependency by comparing the coefficients of the corresponding terms in the
dependency equations. TDs or their adaptations are used for visual representation of
relationship among variables in a number of areas of research including GP (Banzhaf
et al., 1998), NNs (Richards, 1988) and probability (Larranag; et al., 1999). The
main motivation for the use of TDs is their ease of use and visualisation capabilities.

However, TDs in their pure forms are difficult to be encoded in a computer language.

Figure 2.7: An Example of a Tree Diagram (1D)

2.5.5.2 Direct Analysis (DA)

The method of DA involving dependency equations could also be used for the
classification of variables (Gershenfeld, 1999). It identifies independent variables as
those that do not have any explicit equations for their definition. Each of the
equations is then decomposed into independent variables. In doing so, all pairs of
variables that play the roles of both independent and dependent variables for each

other are identified. As in the case of TDs, these cyclic dependencies are then
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resolved. This method is easy to be encoded in a computer language but is difficult to

visualise.

2.5.6 Summary

The discussion in this section can be summarised with the following comments.

¢ Since variable dependence is defined by the nature of variables, rather than by
that of the objective functions or constraints, the procedure for its handling is

independent of the number of objectives and constraints in the problem.

¢ The solution of dependent-variable optimisation problems requires a two-step
procedure to be appended to the EC: identification of dependency relationships
(Step 1) and classification of variables (Step 2).

¢ The literature does not report any dedicated technique for handling variable
dependence. However, some techniques, extracted from related areas of research,
could form part of the overall two-step procedure for handling variable
dependence.

¢ There is a need to develop a complete EC framework for dealing with dependent-
variable optimisation problems.
The development of optimisation algorithms requires systematic and controlled
testing. Therefore, it is required to have test functions that simulate the features of
optimisation problenis. The next three sections provide a survey of the optimisation
test functions that are reported in the literature. Since the presence of multiple
objectives, constraints and dependence among decision variables are common
features of engineering design optimisation problems, these sections present a survey
of existing test functions that are reported in literature for each of these categories. A

categorised list of these test problems is provided in Table 2.5.
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Table 2.5: Classification of Test Problems for Optimisation Algorithms

;iu éa éﬁT‘est Pfob]érﬁ "'Tuneable Test Problems .

SCH1 (Schaffer, 1984)
SCH2 (Schaffer, 1984)
KUR (Kursawe, 1990) e Tuneable Test Bed (Deb, 1999b)

FON (Fonseca and Fleming, 1995) ZTD1 to ZTD6 (Zitzlet ef al., 2000)
VNT (Viennet, 1996)

Poloni et al. (2000)
- Non-tuneable TestProblems | . Tuneable Test Problems ' :

BNH (Binh and Korn, 1997)

OSY (Osyczka and Kundu, 1995)
SRN (Srinivas and Deb, 1994)
TNK (Tanaka, 1995)

¢ Tuneable Test Bed (Deb ef al., 2001)

- ‘Interaction

Test Problems for Inseparable Function |

roblems for Variable Depen

o Tuneable Test Bed (Deb, 1999b) (Partial No test problem was observed in this
fulfilment of requirements) category

2.6 Test Problems for Simulating Multi-objective
Optimisation

The literature reports a number of test functions for simulating single—objective
optimisation problems. Beale (1958), Rosenbrock (1960), Fletcher and Powell
(1963), Smith and Rudd (1964), Box (1966), De Jong (1975), Schwefel (1995) and
Gershenfeld (1999) proposed non-tuneable test problems that fall in this category.
More recently, Michalewicz et al. (2000) proposed a parametric test bed for
controlled simulation of the features of single-objective optimisation problems. All
these test functions have contributed to the development of test beds for multi-

objective optimisation, which is the principal focus of this section.

In multi-objective evolutionary computation, researchers have used many different
test problems with known sets of Pareto-optimal solutions. Veldhuizen (1999) in his
doctoral thesis outlined many such problems. A number of such popular test

problems are presented here.
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2.6.1 Non-tuneable Test Problems

Most of the test problems in the area of multi-objective optimisation fall in this

category. Some of the most commonly used of these test problems are listed in Table

2.6.

Table 2.6: Non-tuneable Test Problems for Multi-objective Optimisation

f®=x2,
f (x)z(x_z)z Figure 28(3)
2 b
—A<x< A
[ix) =—x,if 1x<1,
=x—2,if :1<x<3,
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Aifix>4 Figure 2.8(b)
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In addition to the above test problems, Fonseca and Fleming (1995) proposed a two-
objectivev optimisation problem, having » variables. This problem gives a concave
Pareto front. Poloni et al. (2000) also proposed a two-variable, two-objective
problem that gives a non-convex and disconnected Pareto-optimal set. Although
researchers have used a number of other test problems, the fundamental problem
with all of these is that the difficulty caused by such problems cannot be controlled.
In most problems, neither the dimensionality/objectivity can be changes, nor the
associated complexity (such as non-convexity, the extent of discreteness of the
pareto-optimal region, etc.) can be changed in a simple manner. Furthermore, in most

of these problems, it is difficult to establish what feature of an algorithm has been
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tested. All these drawbacks oftest problems led to the development of a tuneable test

bed by Deb (1999b), as discussed below.
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Figure 2.8: Non-tuneable Testproblems for Multi-objective Optimisation - (a) SCHI

2.6.2 Tuneable Test Problems

Deb (1999b) suggested a tuneable test bed based on the two tasks that a multi-
objective optimisation algorithm must do well: convergence to Pareto front and
maintenance of diversity across the front. Keeping in mind these two tasks, Deb
(1999b) designed a problem where the difficulty involved in each of the above tasks

can be controlled. He listed the following problem features that create difficulties in
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converging to the Pareto-optimal front and in maintaining diverse Pareto-optimal

solutions. Deb’s test bed gives the control of tuning these features in a problem.

¢ Difficulties in Converging to Pareto-optimal Front
»  Multi-modality.
» Deception.
» Isolated optimum.
» Collateral noise.

¢ Difficulties in Maintaining Diverse Pareto-optimal Solutions
» Convexity or non-convexity in the Pareto-optimal front.
» Discontinuity in the Pareto-optimal front.

» Non-uniform distribution of solutions in the search space and in the

pareto-optimal front.
In this scheme, an n-variable, two-objective optimisation problem is defined in terms

of three functions (g, f7, and /), as shown in Equation 2.10.

Minimise = f,(X) = f,(%,%X55..:,X,,), Equation 2.10
Minimise = f,(X) = g(x,,,15-%,) X h(f},8).

Complications are avoided in this test suite by choosing f; and g functions such that

they take only positive values in the search space. By choosing appropriate functions

for f;, g and h, multi-objective problems with pre-defined features can be

constructed, as shown below.

¢ Convexity or discontinuity in the Pareto front can be affected by choosing an
appropriate 4 function.

¢ Convergence to the true Pareto front can be influenced by using a difficult g

function (multi-modal, deceptive or others).

¢ Diversity in the Pareto front can be controlled by choosing an appropriate (non-

linear or multi-dimensional) f; function.
This scheme could also be extended to include more than two objectives, as shown

below with M objectives (Equation 2.11).

EC Techniques for Handling Variable Interaction 72



Chapter 2. A Review of Literature

Minimise = f,(%,), Equation 2.11
Minimise = f,(X;),eeeees

Minimise = f,,_,(X,,_1),

Minimise = f,,(X) = g(X, YA(f1(%))s [2(%3)seves Srp1 (iag1 ), 8 (X4 ))s

Subject to=X, € Rl i=12,...M.

Table 2.7: Zitzler-Deb-Thiele (ZDT) Test Problems

:x”

f@=

30 [0,1 v .fz(i) = g()_c)[l~.\;xl/g(5c')], Figure 2.9(a)
g(®) =149 x)/(n-1).
L) =x,
30 0.1] f(®)= g(x)[ln - (x,/g@)], Figure 2.9(b)
g® =1+9Q x)/(n-1).
f; (2) =X
L@ =g@0-x/2F) ~
0 o (x,/ g(®)sin(10mx)], Figure 2.9(c)
g®=1+9x)/(n-1).
f; (}) =X
10 ;1:[%,;]] £, =g@ =%/ g®)], Figure 2.9(d)
1=2,...10 g(® =1+10(1—1) + 3 [x* — 10 cos(dzmx )}
£Z) =1+u(x),
15 301 g = 2 lu)) |
" f(='§5 bﬁ Viu(x)1=2 +u(x,),if ru(x) <5, Figure 2.9(e)
=Lif 1u(x) =5,
h(f,,g) =1/ /(%)
f,(%) =1-exp(—4x,) sin®(47x,),
10 0.1] L@ =g~ (f(x)/g)'], Figure 2.9(7)
g(®) =1+ 91 %) /(n = DI"™.
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In this equation, the decision variable vector X is partitioned into M non-overlapping

L= = = = N\T
blocks as follows: X =(X,X,,..; X5 Xy ) -

Zitzler et al. (2000) framed six problems (ZDT1 to ZDT6) based on the above
construction process. These Zitzler-Deb-Thiele (ZDT) test problems are summarised

in Table 2.7.

Deb’s tuneable test bed that is discussed here provides a generic framework for
explicitly simulating the features of multi-objective optimisation problems in a
controlled manner. It also exhibits scalability with the number of dimensions and
objectives. However, it is incapable of handling constraints. Further, the degree of
control that is provided by this test suite is limited since it does not provide

parametric function prototypes for g, f7 and A.

2.6.3 Summary

This section can be concluded with the following comments.

¢ Most of the test problems in the area of multi-objective optimisation are not
tuneable in nature.

¢ Deb (1999b) proposed a tuneable strategy, but it also provides only a limited
control due to the lack of generic, parametric prototypes for the functions in its

definition.

2.7 Test Problems for Simulating Constrained
Multi-objective Optimisation

The presence of ‘hard’ constraints in a multi-objective optimisation problem may
cause further hurdles. Veldhuizen (1999) has cited a number of constrained test
problems used by several researchers. This section provides a description of a

number of test problems commonly used in literature.
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2.7.1 Non-tuneable Test Problems

Most of the constrained multi-objective optimisation test problems are not tuneable
in nature. In most of these, there are only two to three variables, and the constraints
are not sufficiently non-linear. A summary of some of these problems is provided in

Table 2.8.

Table 2.8: Non-tuneable Test Problems for Constrained Multi-objective Optimisation

x+x,-220,

6—x,—-x,20,

24x-x,20,

LG =-25(x, - 2)" +(x, -2)° 2-x +3x, 20, ‘

O =+ G =4+ s =D, 4-(x,-3)-x,20, Figure 2.10(a)

L) =x] +x2 +x]+x; +x] +x;. (x,=3) +x,-420,

0< x,x,,x, <10,

1< x;,x, <35,

0<x,<6.

x? +x} <225

£@) =2+ (x5, = 2) +(x, ~1)%, x, —3x,+10<10,

£.(®) = 9% - (x, ~ D ~20<x <20,
-20<x, <20.

xP+x;—1-

0.1cos(l6arctan(x, / x,)) 2 0,

S =5, @ = 0.5 +(x, ~ 05 <0.5) o 1000)

L,(3)=x,. 0<x <7,

0<x, <.

Figure 2.10(b)

2.7.2 Tuneable Test problems

Recently, Deb et al. é()()l) presented a tuneable test bed for constrained multi-
objective optimisation problems. This test bed is based on the challenges that the
constraints pose for multi-objective optimisation problems. It has two sets of generic
test functions. In the first set, the constraints are designed in such a way that some
portion of the unconstrained Pareto front becomes infeasible. In this way, the final
Pareto front is a composite of the unconstrained Pareto front and the constraint

boundaries. Equation 2.12 defines this test problem. The parameters (a;, b;) control
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the nature of the final Pareto front. Deb ef a/ (2001) suggest a procedure for

calculating these parameters.

Minimise => ffi, ),
= Yexpf- /(%
= - 4/ expf

Equation 2.12

1,)>0/=12,

-150
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250
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fl
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(©

Figure 2.10: Non-tuneable Test Problemsfor Constrained Multi-objective

Optimisation - (a) OSY (b) SRN (c) TNK (Source: Deb, 2001)

In the second set, the whole of unconstrained Pareto front is made infeasible, making

the constraints define the resulting Pareto front. This test problem is defined in

Equation 2.13. The constraint function has six parameters (0, @, e, b, ¢ and d), which
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respectively control the slope of Pareto front, the transition from continuous to
discontinuous feasible regions, and the location, number, distribution and size of
disconnected Pareto regions. Here, the decision variable x; is restricted to [0,1], and

the bounds on other variables depend on the chosen g function.

Minimise = f,(X) =x,, Equation 2.13
Minimise = f,(%) = g(X)x (1 - (f1(X)/ g(X))),
Subject _to = c(X) = cos(0)(f,(X)—e)—sin(0) f,(¥) =

a|sin(b7r(sin(0)( f,(X)—e)+cos(@) f,(X))°) ‘ .

The two sets of equations, suggested by Deb et al. (2001), can together model the
difficulties for constrained multi-objective optimisation algorithms both near the
Pareto-optimal front and in the entire search space. Deb et al. (2001) illustrated this
through the development of eight problems (CTP1 to CTP8), constructed from these

sets of equations. Table 2.9 lists some of these problems with their parameter values.

This scheme provides a tuneable framework for test bed development. As suggested
by Deb et al. (2001), it can also be extended to include more than two objectives.
However, since it concentrates on the challenges posed by constraints, it does not
directly control the complexity of test problems in terms of their objective functions.
Therefore, this scheme lacks a unified approach to multi-objective test bed
development, and hence suffers from limitations in performing controlled simulation

of the features of engineering design optimisation problems.

Table 2.9: Tuneable Test Problems for Constrained Multi-objective Optimisation

et arc
ar=0.858, b;=0.541, a,=0.728, b,=0.295 Figure 2.11(a)
6=-0.2r, a=0.1, b=10, ¢=2, d=0.5, e=1 Figure 2.11(b)
6=0.1x, a=40, b=0.5, c=1, d=2, e=-2 Figure 2.11(c)
6=-0.05r, a=40, b=5, c=1, d=6, e=0 Figure 2.11(d)
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Following are the concluding remarks for this section.

¢ Most of the test problems for simulating constrained multi-objective optimisation

problems are not tuneable in nature.

¢ Deb eral (2001) proposed a tuneable strategy, but it focuses only on constraints,

without addressing its interactions with the complexity introduced by the

objective functions. Therefore, this scheme also lacks a complete approach to

multi-objective test bed development.
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2.8 Test Problems for Variable Interaction

As mentioned earlier, there are two categories of interaction among decision
variables: inseparable function interaction and variable dependence. This section

presents a survey of test problems in each of these categories.

2.8.1 Test Problems for Inseparable Function Interaction

Literature reveals a general lack of test problems in which the epistasis/inseparable
function interaction can be controlled. This applies to both single- and multi-
objective optimisation problems, working in all domains. However, in recent years
Deb (1999b) has attempted to introduce control over variable interaction in his test

suite for multi-objective optimisation.

Deb (1999b) observed that variable interaction may create difficulty for a GA in
converging to the true Pareto front. In Equation 2.10, the Pareto-optimal set
~ corresponds to all solutions of different f; values. Since the purpose in a multi-
objective optimisation is to find as many Pareto-optimal solutions as possible, and
since in Equation 2.10 the variables defining f;(x;) are different from those defining
g(x), a multi-objective optimisation algorithm may work in two stages. In stage one,
all variables x; may be found and in the other stage optimal x; values may be
obtained. This rather simple mode of working of a multi-objective optimisation
algorithm in two stages can face difficulty if the above variables are mapped to
another set of variables. If M is a random orthonormal matrix of size nxn, the true
variables y can first be mapped to derive the variables x by using the following

equation (Equation 2.14).

x=My Equation 2.14

Thereafter, the objective functions defined in Equation 2.10 can be computed by
using the variable vector x. Since a multi-objective optimisation algorithm will be
operating on the variable vector y and the function values depend on the interaction

among the variables of y, any change in one variable must be accompanied by related
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changes in other variables in order to remain on the Pareto front. This makes the

mapped version of the problem difficult to solve.

The major drawback of this strategy is that it takes a narrow perspective of variable
interaction. It exploits the structure of Deb’s (1999b) test bed to artificially introduce
an external variable interaction in the problem. However, it completely ignores the
interaction that is already present in the problem in the definition of its objective
functions. Therefore, this strategy lacks a holistic view to variable interaction in

multi-objective optimisation.

2.8.2 Test Problems for Variable Dependence

Literature reports a complete lack of test problems for simulating variable
dependence in multi-objective optimisation problems. However, the vast pool of test
functions in optimisation, and the popular equations in other areas of research could

be used to derive these problems.

2.8.3 Summary

This section can be concluded with the following remarks.

¢ The development of test beds for simulating variable interaction has not been
adequately addressed by previous research in the area of optimisation.

¢ There is only one test bed (Deb, 1999b) that attempts to address inseparable
function interaction. Even this test bed lacks a holistic approach to this concept,
and hence does not provide full control over inseparable function interaction in a

multi-objective optimisation problem.

¢ Literature reports a complete lack of test problems for simulating variable

dependence in multi-objective optimisation problems.

2.9 Summary

This chapter has achieved the following.

¢ This chapter has presented an overview of the main engineering design

optimisation approaches.
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¢ It has then presented a literature review of the EC techniques in four areas that

are based on three features of engineering design optimisation problems.
» Evolutionary-based Multi-objective Optimisation Techniques.
» Evolutionary-based Constrained Optimisation Techniques.

» Evolutionary-based Techniques for Handling Inseparable Function
Interaction.

» Evolutionary-based Techniques for Handling Variable Dependence.

¢ It has finally presented a review of optimisation test functions in the same four

areas, as mentioned above.
As mentioned in Chapter 1, this research attempts to develop EC techniques for
dealing with the challenges of engineering design optimisation problems. The current
chapter has given an overview of EC techniques for handling three features of these
problems: multiple objectives, constraints and variable interaction. This survey of
literature enables the identification of the research aim and objectives in the next

chapter.
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3 RESEARCH AIM, OBJECTIVES AND
METHODOLOGY

The research aims to develop EC techniques for handling the complexities of

engineering design optimisation problems. This chapter identifies the objectives of

this research. As shown below, it attempts to discuss the following.

3.1 Research Aim

The aim of this research is to explore the field of EC for developing techniques that
are capable of dealing with the challenges posed by three features of engineering
design optimisation problems: multiple objectives, constraints and interaction among
decision variables. This would enhance the industrial usefulness of optimisation
algorithms by giving them the capability of dealing with a wide variety of real-life

problems.

3.2 Research Objectives

There are a number of research issues involved in the fulfilment of the aim of this

research. The research objectives, which address these issues, are as follows.

¢ To carry out a literature survey for classification and critical analysis of EC
techniques for handling three features of engineering design optimisation

problems: multiple objectives, constraints and variable interaction.

¢ To carry out a literature survey of existing test functions for evaluating their
capabilities of performing systematic and controlled simulation of multiple

objectives, constraints and variable interaction in optimisation problems.
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To identify the industrial context of the research.

To develop EC techniques that can fill the gap between the capabilities of
existing optimisation algorithms and the challenges posed by multiple objectives,

constraints and variable interaction.

To develop test beds that can address the drawbacks of the existing optimisation
test functions in mimicking multiple objectives, constraints and variable

interaction, in a systematic and controlled manner.

To compare the performance of the proposed algorithms with the current state-of-
the-art optimisation algorithm (NSGA-II), using the proposed test bed and other

popular test functions from literature.

To analyse a set of case studies in real-life engineering design optimisation, and
to validate the performance of the proposed algorithms using three appropriately

chosen case studies from this set.

3.3 Research Scope

Based on the objectives mentioned above, the scope of this research can be

summarised as follows.

¢

¢

Domain: This research focuses only on engineering design optimisation.

Optimisation Techniques: As mentioned in the previous chapter, this research
concentrates on EC techniques due to their flexibility, adaptability, robustness
and global search characteristics. Further, within the EC techniques, this research
mainly focuses on the GAs because of their broad applicability.

Literature Survey: The literature survey in this research concentrates on EC
techniques that attempt to handle three features of engineering design
optimisation problems: multiple objectives, constraints and variable interaction.
It should be noted here that objectives and constraints are interchangeable in a

number of optimisation problems.

Industry Survey: Although the industry survey involved a wide range of

companies, the focus was on engineering design optimisation problems.

Areas of Development of Optimisation Techniques: In this research, the EC
techniques are developed for handling three features of engineering design

optimisation problems: multiple objectives, constraints and variable interaction.
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¢ Areas of Development of Test Bed: This research focuses on the development of
test beds for performing systematic and controlled simulation of multiple

objectives, constraints and variable interaction in optimisation problems.

¢ Validation: In this research, the validation is performed using newly developed
test beds and case studies borrowed from literature in the area of real-life
engineering design optimisation. These case studies are analysed, and three of
them are selected in such a way that a broad spectrum of features is attained.

3.4 Research Methodology

This section discusses the methodology that has guided the main activities of this
research. A pictorial representation of this methodology is given in Figure 1.6, which

also forms the basis for the layout of this thesis.

3.4.1 Problem Identification

As mentioned in Chapter 1, this research forms a part of the project ‘FLEXO’ (Roy, -
et al., 2000a). The problem statement for this research is, therefore, derived baséd on
the objectives of ‘FLEXO’. Hence, it shares the vision of ‘FLEXO’, which is to
make optimisation algorithms more popular in industry through the removal of

hurdles in their industrial use.

3.4.2 Literature Survey

An extensive literature survey is carried out as part of this research in order to
analyse and classify the state-of-the-art evolutionary-based optimisation techniques,
and the test beds for evaluating these techniques. Since the focus in this research is
engineering design optimisation, the literature survey is carried out with respect to
three features, as identified by literature, of engineering design optimisation
problems: multiple objectives, constraints and variable interaction. This enables to
attain a broad understanding of the existing work in terms of its strengths and

weaknesses.
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3.4.3 Identification of Research Aim, Objectives and Focus

The survey of literature highlights the main research issues that need to be addressed
for handling the problem statement of this research. This enables the precise
identification of the research aim and objectives that can address these issues. The
literature survey also enables the identification of the drawbacks of the EC
techniques in handling three features of engineering design optimisation problems:
multiple objectives, constraints and variable interaction. A similar procedure is
adopted to identify the limitations of existing optimisation test functions in
performing systematic and controlled modelling of multiple objectives, constraints
and variable interaction. These limitations in existing EC techniques and test

functions define the focus of this research.

3.4.4 Industry Survey

The aim of this industry survey is to support the literature survey for grounding the
research within the industrial context (Roy et al., 2000c; Roy et al., 2000d). In order
to attain a broad perspective of design optimisation in industry, compénies belonging
to a number of industry sectors are surveyed. However, only the engineering design
optimisation activities in these companies are observed. This survey is carried out
through industry visits, and uses semi-structured questionnaires for collecting
information from the designers. The detailed survey methodology is discussed in the

next chapter.

3.4.5 Development of EC Techniques

Two new EC techniques are developed in this research to address the drawbacks of
existing ones in handling multiple objectives, constraints and variable interaction.
This development is carried out in a systematic, step-by-step fashion, adding a single
new feature at a time. These features are those that are not adequately addressed by
the existing techniques. Here, the current state-of-the-art technique is used as the
starting point of development. In this way, all the strengths of current research are

inherited, while addressing its weaknesses. At the end of this development, the

EC Techniques for Handling Variable Interaction 86



Chapter 3. Research Aim, Objectives and Methodology

performance of the proposed algorithms is compared, using some popular test

functions, with the state-of-the-art optimisation technique in its original form.

3.4.6 Development of Test Bed

In this research, a test bed is developed to enable systematic and controlled
simulation of three features of engineering design optimisation problems: multiple
objectives, constraints and variable interaction. Similar to the previous case, the
development of this test bed is also guided, in a step-by-step fashion, by the
drawbacks of the existing ones in mimicking the above-mentioned features of
engineering design optimisation problems. Also, the philosophy of the existing
‘tuneable’ test beds is used here to develop the proposed test bed. Furthermore, the
performance of the proposed test bed is validated by applying it to construct multiple
test functions, modelling a number of features of engineering design optimisation

problems with varying degrees of complexity.

' 3.4.7 Performance Analysis Using the Proposed Test Bed

Here, the performance of the proposed algorithms is compared with the state-of-the-
art optimisation technique. This comparison is carried out using a wide spectrum of
test problems created from the proposed test bed. These test problems are developed
such that they evaluate the performance of the optimisation algorithms in the
presence of a number of features that are commonly present in engineering design

optimisation problems.

3.4.8 Validation Using Real-life Case Studies

Here, a set of real-life engineering design optimisation problems, reported in
literature, are analysed from the point of view of the challenges that they pose for
optimisation algorithms. The performance of the proposed optimisation algorithms is
validated using three appropriately chosen case studies from this set. In this way, this
research proposes a fully tested and validated methodology for dealing with

engineering design optimisation problems.
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3.4.9 Identification of Limitations and Future Research Directions

Finally, the limitations of the research methodology, and proposed optimisation
algorithms and test bed are identified. Based on these limitations, the generality of
the research and its contribution to knowledge are established, and the corresponding

future research directions are proposed.

3.5 Summary

This chapter has discussed the following.

¢ It has stated the research aim.
¢ It has outlined the objectives that address the aim of this research.
¢ It has summarised the scope of this research based on its objectives.

¢ This chapter has finally discussed the methodology that has guided this research.
This methodology has seven main parts, as given below.
» Problem identification.
Literature survey.
Identification of research aim and objectives.
Identification of industrial context and focus of the research.

Development.

vV V V V VY

Testing and Validation.
» Identification of limitations and future research directions.

As stated in this chapter, the aim of this research is to develop EC techniques that are
capable of dealing with the challenges posed by three features of engineering design
optimisation problems: multiple objectives, constraints and variable interaction. The
next chapter reports the findings of an industry survey to enable the grounding of this
research within the industrial context. It also determines the focus of this research by
analysing the gap between the capabilities of existing EC techniques and the

challenges posed by multiple objectives, constraints and variable interaction.
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4 INDUSTRIAL CONTEXT AND FOCUS

Chapter 2 analysed the EC techniques for handling multiple objectives, constraints
and variable interaction. It also presented a survey of test beds for controlled
simulation of these features of engineering design optimisation problems. This
chapter grounds the research within the industrial context based on a survey of
companies, coupled with a study of existing literature in the area of real-life
optimisation. This chapter also analyses the observations made in Chapter 2 to
determine the focus of this research. This analysis guides the course of action that is

followed in this research. The objectives of this chapter can be summarised as

follows.

4.1 Industrial Survey

An industry survey is carried out for grounding the research within the industrial
context. This is complemented by a survey of literature in the area of real-life
optimisation, which compiles those real-world applications of evolutionary-based
optimisation techniques that are reported in literature. As mentioned in Chapter 3, a
representative set of these problems is chosen in this research to validate the
performance of the proposed optimisation algorithms. This section concentrates on

the methodology that is adopted here for carrying out the industry survey.
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4.1.1 Aim and Objectives

The main aim of the industry survey is to ground the research within the industrial
context. The survey objectives that lead to this aim can be summarised as follows

(Roy et al., 2000c).

¢ To assess the current status of engineering design optimisation in industry.
¢ To identify the features of real-life engineering design optimisation problems.

¢ To identify the factors that inhibit the industrial applications of optimisation
algorithms. |

4.1.2 Methodology

In the industry survey, the designers belonging to various industry sectors were
interviewed. However, only the engineering design optimisation activities in these
companies were observed. This survey was carried out through industry visits, and
used a semi-structured questionnaire as a tool for collecting information. Appendix A
presents a copy of this ‘FLEXO’ questionnaire. The following companies were

visited by the ‘FLEXO’ researchers (Roy et al., 2000).
¢ Nissan Technical Centre — Europe (NTC-E).

¢ Corus — British Steel.

¢ Ikeda Hoover Ltd. (IHL).

¢ TRW Automotive.

¢ Trelleborg Automotive.

¢ Xerox Limited Technical Centre (XETC).

The questionnaire was developed based on the recommendations of Oppenheim

(1992). The following factors were considered.

4.1.2.1 Method of Approach to Respondents

Prior to the visit, some information regarding the research is send to the main contact
person in the company. Further, the interviews are preceded by a presentation, which

introduces the research and explains the purpose of the visit. The objectives of the
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questionnaire and of each of its modules are also provided in the questionnaire. After
guaranteeing the confidentiality, the designers are individually interviewed by one or
two researchers. The researchers write and tape (subject to the approval of the
respondents) the responses given during the interview. The information thus
collected from the interview is used for preparing the final transcript. The questions
are set to fit the time frame available in the industrial environment. The development
of the questionnaire also addresses the issue of biases by broadening the aspects

covered by the questions.

4.1.2.2 Determination of Question Sequence

The questionnaire is structured in four modules covering general design issues,
industrial requirements for optimisation algorithms, general remarks and finally the
self-assessment of the designer (Appendix A). The first module of the questionnaire
is aimed at understanding the general design optimisation practice in industry and the
degree of involvement of designers in those activities. The second module targets at
capturing the industrial requirements for optimisation algorithms. This is achieved by
identifying the features of real-life optimisation problems (Section 4.3.1) and the
inhibitors to the industrial applications of optimisation algorithms (Section 4.4.1) that
highlight the corresponding limitations of the existing design systems. The third and
fourth modules respectively deal with the general comments and the self-assessment
of the interviewed designers (Roy et al., 2000d). These modules, which are kept
optional, aim at gathering some information about the respondents so that their
comrhents can be evaluated in the right perspective. Each module starts with some
broad questions, which are gradually made specific. The process is called funnelling,
which is a standard practice in similar applications (Roy, 1997). The broad questions

at the beginning of a module prepare the ground for subsequent questions.

4.1.2.3 Types of Questions

The questionnaire uses both ‘closed’ or pre-coded answer and ‘open’ or free-
response types of questions. A ‘closed’ question is one in which the respondents are

offered a choice of alternative replies. Although this type of questions allow less
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freedom of expression, but they are easy to answer and analyse. On the other hand,
‘open’ or free-response type questions are not followed by any kind of choice, and
the answers have to be written in full. These questions allow freedom of expression
and are easy to ask, but are difficult to answer and analyse. They also involve
personal emotions and biases (Roy, 1997). The above discussion justifies the use of a
combination of both ‘closed’ and ‘open’ types of questions in the ‘FLEXO’

questionnaire.

4.1.2.4 Analysis of Responses

For each of the questions in the questionnaire, the responses given by the
respondents are compiled into two categories. The first category, known as
‘common’, identifies the observations made by a majority of respondents. On the
other hand, the second category, known as ‘special’, identifies the observations made
only by a few respondents. Unless stated otherwise, all the observations listed in the
subsequent sections of this chapter are derived from the ‘common’ category of the

analysis of responses.

4.2 Design Improvement in Industry

After investigating the design processes in different companies using the industry
surevy, it is observed that they exhibit a number of similarities. It is observed that the
design optimisation in industry is an iterative process of creating a model, using a
design system, carrying out some analyses which give indications of how to improve
the design, and then modifying the model and repeating the process. This manual
process contributes significantly to lengthening the design cycle and depends
critically for its success on the skill of the designer. It is observed that trial-and-error

finds widespread use in industry for improving designs.

4.2.1 Industrial Applications of Optimisation Algorithms

Despite the immense potential of optimisation algorithms (Table 4.1), it is observed

that no company surveyed uses any of these algorithms actively as a day-to-day
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design tool. However, the design centres of some multi-national corporations use
optimisation packages, like OPTISTRUCT from Altair Engineering and DOT from
Vanderplaats Research and Development, Inc. Companies using these software
systems report. benefits in terms of reduction of design lead times and attainment of

better designs through the use of these packages.

Table 4.1: Evolutionary-based Optimisation Algorithms in Applied Research

erodynamic shape design (Poloni,
Aircraft wing platform design (Obayashi et al., 1998)

Airframe design (Cvetkovic and Parmee, 1998)

Airfoil design (Poloni and Pediroda, 1997 and Quagliarella and Vicini, 1997)
Design of frames, foundations, bridges, towers, chimneys and dams (Rao, 1996)
Structure design for random loading (earthquake, wind) (Rao, 1996)

Design of water resource systems (Rao, 1996)

Design of plane trusses(Liu ef al., 1998 and Hajela and Lin, 1992)

Design of I-beams (Coello, 1997; Coello and Christiansen, 1999)

Design of two-bar truss (Deb, Pratap and Moitra, 2000)

Design of linkages, cams, gears and machine tools (Rao, 1996)

Extruder screw design (Cunha et al., 1997; Cunha, 2000)

Design of planar mechanisms (Sandgren, 1994)

Design of robot arm (Coello, 1997;Coello et al., 1998)

Design of machines (Osyczka, 1984)

Design of machine tool spindle (Coello, 1997)

Design of compound gear train (Deb, Pratap and Moitra, 2000)

Welded beam design (Deb, Pratap and Moitra, 2000)

Design of electrical networks (Rao, 1996)

Design of pipeline networks (Rao, 1996)

Microwave absorber design (Weile et al., 1996)

Laminated ceramic composites (Belegundu et al., 1994)

Pumps, turbines and heat transfer equipment (Fonseca and Fleming, 1998b;
Chipperfield and Fleming, 1995)

Design of a turbine blade cooling system (Roy, 1997)

Motors, generators and transformers (Rao, 1996)

Reactor design (Mitra ef al., 1998)

Compressor design (Obayashi, 1997)

Microprocessor chip design (Stanley and Mudge, 1995)

Synthesis of multiprocessor system (Zitzler and Thiele, 1998b)

Design of control systems (Tan and Li, 1997)

Multiplierless filters (Wilson and Macleod, 1993)

Design of conveyors, trucks and cranes (Rao, 1996)

Determination of optimal machining parameters (Coello, 1997)

Design of helical compression spring (Deb, Pratap and Moitra, 2000)

Aircraft Body Shells

Civil Engineering
Structures

Mechanical
Components

Networks

High Performance
Materials

Energy Conversion
Machines

Electronic Components

Miscellaneous
Applications

® o o e & o ¢ (0 o 0o o

4.2.2 Optimisation Algorithms in Applied Research

Interestingly, the popularity of optimisation algorithms in applied research is much
more than that in industry. The reasons for this difference could be understood from
Section 4.4.1 that discusses the inhibitors to the industrial applications of
optimisation algorithms. Literature reveals a number of real-life applications of

optimisation algorithms, especially in the area of evolutionary computing. Table 4.1

EC Techniques for Handling Variable Interaction 93



Chapter 4. Industrial Context and Focus

lists some of these applications encountered across various industry sectors. Some of

the applications listed in this table are analysed in detail in Chapter 9.

4.3 Features of Real-life Engineering Design Opti-
misation Problems

The real-life optimisation problems, as opposed to the theoretical problems (test
cases), are those that are encountered in industry. This section compiles the features
of real-life engineering design optimisation problems using the results from the

industry and literature survey. It also gives a simple example of these problems.

4.3.1 Features

The main features of real-life engineering design optimisation problems are listed

below.

¢ The principal feature of most real-life problems is the presence of multiple
measures of performance, or objectives, which should be improved

simultaneously.
¢ Almost all these problems require some constraints to be satisfied.

¢ The complexity of a number of these problems is further increased by the
presence of multiple interacting decision variables, involving both inseparable
function interaction and variable dependence. In many cases, the variables also

take both integer and real values.

¢ Most real-life problems also involve qualitative issues (such as manufacturability
and designers’ special preferences), and elements of incompleteness, inaccuracy

and uncertainty in their models.

¢ The models of a number of real-life engineering design optimisation problems
are computationally expensive in nature. Examples include those models that
involve the use of FEA or CFD.

¢ A number of real-life engineering design optimisation problems also use multiple

models for different physical aspects.
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¢ The computational expense for solving these problems and their difficulty are
also augmented by the presence of several optimal solutions, as defined in
Chapter 2.

¢ Lack of prior knowledge regarding the shape of search space is also commonly
observed in these problems. There is also no prior information about the
performance, and the location of optimal and sub-optimal points in the search

space.

¢ Finally, the model development for the solution of real-life engineering design
optimisation problems is a very complex task. It involves determining the
variables in the problem, and the objective functions and constraints in such a
way that the model thus obtained closely matches the features of the real-life
problem.

Table 4.2: Features of Real-life Engineering Design Optimisation Problems

Based on Number of Parameters Multi-dimensional
Based on Existence of Constraints Constrained

Based on Number of Objective Functions Multi-objective

Based on Nature of Objective Functions Hybrid
Based on Separability of Functions

(for Quantitative and Hybrid Problems) Inseparable
Based on Dependence among Variables Independent- and Dependent-variable
Unknown Search Space

Based on Nature of Search Space Multi-modal

Based on Nature of Equations Involved

(for quantitative and hybrid problems)

Based on Nature of Design Variables Static and Dynamic
Based on Permissible Values of Design Variables Hybrid

Chapter 2 discussed the different classification schemes used for optimisation

Linear, Non-linear, Geometric and Quadratic

problems. These classification schemes are used here to summarise the features of

real-life engineering design optimisation problems, as shown in Table 4.2.

4.3.2 An Example of a Real-life Design Optimisation Problem

Figure 1.1, which depicts the model constructed from the real-life scenario, can be
considered as an example of a real-life engineering design optimisation problem.
This problem involves the optimisation of the design of a rectangular cantilever
beam, for given material and loading conditions. In a typical real-life case, this

problem may possess the following features.

¢ Multiple variable, such as /, b and .
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¢ Constraints, such as variable bounds and relationships involving beam

dimensions.

¢ Multiple objectives, such as minimisation of the end deflection, maximum stress

along the beam length and cost involved.
¢ Qualitative issues, such as manufacturability and designers‘ special preferences.

¢ Inseparable function interaction leading to an inseparable optimisation problem,

such as minimisation of the end deflection of the beam (Equation 1.1).

¢ Dependence among decision variables, such as the designer preference to have a

fixed cross-section aspect ratio (Equation 1.3).
¢ Lack of prior knowledge about the problem in terms of its search space.

¢ Non-linear objective function(s), such as minimisation of the end deflection of
the beam (Equation 1.1).

¢ Dynamic variables.

¢ Combination of integer and real variables, such as / (real variable) and material

type (discrete/integer variable).

¢ Complexity of model development in terms of the cross-section, support and

loading.

4.4 Industrial Context of the Research

The industry and literature surveys also enable the identification of the factors that
inhibit the applications of optimisation algorithms in industry. These inhibitors are
presented here and compared against the research objectives with an aim of

grounding the research within the industrial context.

4.4.1 Inhibitors to Industrial Applications of Optimisation
Algorithms

The main inhibitors to the industrial applications of optimisation algorithms are

outlined below.

¢ The features of real-life engineering design optimisation problems, such as the

presence of multiple objectives, constraints and interaction among decision
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variables, create challenges for optimisation algorithms that are currently in use
in industry. This discourages the industry from adopting these algorithms. This is
particularly true for those industries that deal with a wide range of complex

designs.

¢ All optimisation algorithms work on mathematical models of real-life designs. It
is observed that since designers prefer maintaining full control on the design
improvement process, they have little faith in the models that are provided to
them. This makes them sceptical about the results obtained from the optimisation
algorithms. This situation is further worsened by the fact that there is a lack of
model development skills among designers in industry. There is also a lack of

commercial tools required for carrying out the task of model development.

¢ Most of the currently available optimisation packages are not integrated within
CAD/CAM systems, making their use cumbersome. The designers need to
extract the parameters from the CAD/CAM models, feed them to the
optimisation packages and bring the optimised parameters back to the CAD
system. There are a number of difficulties, associated with this off-line
optimisation, which prevent the designers from using the optimisation
algorithms. The data transfer often leads to loss of quality and information, which
makes the optimisation process inaccurate. This off-line scenario of optimisation
also makes designers lose control over the design process. Finally, the inflexible
nature of this scenario makes the process iterative and time consuming.

¢ Another inhibitor to the use of optimisation algorithms in industry is the
important role of designers’ skills and experience in the design improvement
process. This makes the optimisation task extremely difficult to be modelled and
encoded in an algorithmic form. Further, the lack of knowledge of designers in
using these algorithms also presents an additional obstacle to their use in

industry.

¢ Each company has its own design improvement process. This process gradually
evolves in the company, and hence its people resist the implementation of any
new optimisation system and the associated organisational changes. Further, the
costs associated with creation, installation and maintenance of optimisation

algorithms discourage their use in industry.
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4.4.2 Industrial Context of the Research

As mentioned in Chaptér 1, the project ‘FLEXO’ targets the first three of the above-
mentioned inhibitors. This research focuses on the first of these inhibitors, which is
the lack of robust optimisers in industry. It attempts to develop optimisation
techniques that can handle, within a single framework, the following three features of
real-life engineering design optimisation problems: presence of multiple objectives,
constraints and variable interaction. Since it is difficult to find a variety of real-life
cases with required complexities, this research also develops test beds that are
capable of performing systematic and controlled simulation of multiple objectives,

constraints and variable interaction in optimisation problems.

The existing EC techniques and test beds in these three areas were critically analysed
in Chapter 2. The next two sections utilise the main findings of Chapter 2 in order to

identify the research gap that forms the focus of this research.

4.5 Research Focus for Development of EC
Techniques

This section compares the capabilities of the existing EC techniques against the
challenges posed by multiple objectives, constraints and variable interaction in
engineering design optimisation problems. In more specific terms, it checks whether
the existing EC techniques can handle the above-mentioned features of real-life

engineering design optimisation problems.

4.5.1 Multi-objective Optimisation

Chapter 2 reveals that the area of multi-objective optimisation is well addressed
within the EC community. This has led to the development of techniques that can
effectively handle this feature of real-life problems. It is now known that a
combination of elitism, Pareto domination and diversity preservation lead to EC
techniques that can, in principle, meet both the goals of multi-objective optimisation:

convergence to the Pareto front and maintenance of diversity across the front. In the
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recent past, some techniques, such as DPGA (Osyczka and Kundu, 1995), TDGA
(Kita et al., 1996), SPEA (Zitzler and Thiele, 1998a), MOMGA (Veldhuizen, 1999),
NSGA-II (Deb et al., 2000) and PAES (Knowles and Corne, 2000), have been
developed that incorporate the above-mentioned concepts in a single algorithm. Deb
(2001) demonstrated the superiority of these techniques over others. It has also been
shown that these techniques can deal with a variety of multi-objective optimisation
problems, but fail to give satisfactory results in the presence of complex inseparable

function interaction among decision variables (Deb et al., 2000).

4.5.2 Constrained Multi-objective Optimisation

Similarly, it is evident from Chapter 2 that the area of constrained optimisation is
well researched. However, most of this research is limited to single-objective
optimisation, and the field of constrained multi-objective optimisation has grown
only recently. In spite of this, a powerful strategy for handling constraints in multi-
objective optimisation problems has now been developed. This strategy incorporates
constraint violations in the definition of Pareto domination, and uses niching to
encourage diversity among solutions. Techniques, such as the Constrained
Domination Method (Deb, 2000), that use this strategy achieve better convergence
and diversity of solutions as compared to other approaches. These techniques have
been shown to satisfactorily handle constraints in a variety of multi-objective

optimisation problems (Deb, 2001).

4.5.3 Variable Interaction

Interaction among decision variables is inherent to a number of real-life engineering
design optimisation problems. In spite of its immense potential for real-life problems,
there is a lack of systematic research in both halves of this field: inseparable function
interaction and variable dependence. The gaps created by this lack of research are

identified below for the two types of variable interaction.
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4.5.3.1 Inseparable Function Interaction

A number of research questions remain unanswered regarding the theory of
inseparable function interaction (epistasis), which is a type of variable interaction.
However, from the practical point of view some applications have been developed
that can deal with this type of interaction in single-objective optimisation problems,
defined in discrete domains. But there are only a few of these techniques that can
work in real search spaces (Gallagher ef al., 1999). Furthermore, inseparable function
interaction in multi-objective optimisation problems is a research area that is at its
very early stage of development (Thierens and Bosman, 2001). Therefore, given the
importance of handling inseparable variable interaction for solving real-life
engineering design optimisation problems, a systematic research effort is urgently
required to address this interaction in hybrid-valued (with integer and real variables),

constrained, multi-objective optimisation problems.

4.5.3.2 Variable Dependence

Most real-life engineering design optimisation problems that have interaction among
decision variables do not have known dependency equations. Therefore, the
dependency relationships in these problems need to be inferred from the multiple sets
of measured variable values that are available in most real-life cases. This implies
that any strategy for solving these optimisation problems should provide a

framework that is capable of satisfying the following two objectives.

¢ Determination of the relationships among decision variables.
¢ Incorporation of these relationships in the optimisation engine.

The lack of systematic research in the area of variable dependence has led to a
scarcity of dedicated frameworks that can deal with the above-mentioned objectives
for solving dependent-variable optimisation problems. This highlights the need to
develop a complete EC framework for dealing with variable dependence in
constrained multi-objective optimisation problems. However, as mentioned in
Chapter 2, some techniques (RA, NNs, PM, TDs and DA), extracted from related

areas of research, can aid the development of this framework.
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4.5.4 Research Focus

The above discussion reveals that there are effective techniques available in the
literature for handling multiple objectives and constraints. However, there is a

research gap in EC techniques for handling variable interaction.

¢ There is a research vacuum in the area of inseparable function interaction,
especially for multi-objective optimisation problems in hybrid search spaces

(with integer and real variables).

¢ There is also a need to develop dedicated optimisation techniques that can handle
variable dependence in multi-objective optimisation problems.

This gap defines the main focus of this research, which is to develop EC techniques

that can effectively handle the two types of variable interaction in constrained multi-

objective optimisation problems, defined in hybrid search spaces (with integer and

real variables).

4.6 Research Focus for Development of
Optimisation Test Beds

This section compares the capabilities of the existing test beds for controlled
simulation of the following three features of real-life engineering design optimisation

problems: multiple objective, constraints and variable interaction.

4.6.1 Multi-objective Optimisation

Most of the multi-objective optimisation test problems are not tuneable in nature.
However, Deb (1999b) provides a tuneable strategy that does not incorporate
constraints. Furthermore, due to a lack of generic, parametric prototypes for the
functions in its definition, this strategy provides only a limited control over the

complexity of the test problems.
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4.6.2 Constrained Multi-objective Optimisation

Similar to the previous case, most of the test problems in the area of constrained
multi-objective optimisation are not tuneable in nature. Deb et al. (2001) recently
proposed a tuneable strategy that incorporates parametric constraints in the test bed
of Deb (1999b). However, this strategy also lacks a complete approach to multi-
objective ‘test bed’ development since it focuses only on constraints, without

addressing its interactions with the complexity introduced by the objective functions.

4.6.3 Variable Interaction

As mentioned below, the lack of systematic research in the area of variable
interaction has also led to a deficiency of test problems that can mimic the two types

of variable interaction in a controlled fashion.

4.6.3.1 Inseparable Function Interaction

Most of the current multi-objective optimisation test beds do not explicitly address
the complexity introduced in the problem by the inseparable function interaction.
Deb (1999b) attempts to introduce variable interaction in his test bed through re-
definition of the original variables. However, by completely ignoring the interaction
that is already present in the problem definition of its objective functions, it does not
provide full control over inseparable function interaction in a multi-objective

optimisation problem.

4.6.3.2 Variable Dependence

There is a complete lack of test problems in literature that can simulate dependent-
variable multi-objective optimisation problems. However, popular equations from

other areas of research could be potentially used to construct these test problems.

4.6.4 Research Focus

Similar to the case of EC techniques, the areas of multi-objective and constrained

optimisation test bed development are well addressed in literature as almost separate
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streams. However, as revealed in the above discussion, there are a number of gaps in

this area that this research attempts to address.

¢

There is a need to develop tuneable test beds that can simulate the complexity

introduced by both the objective functions and constraints in a single framework.

In order to provide full control, it is also required to develop parametric
prototypes for the functions in this test bed.

Furthermore, it is required to introduce functions/parameters in the test bed that
can explicitly control the complexity introduced by the two types of variable

interaction.

4.7 Summary

This chapter has achieved the following.

¢

It has explained the methodology of the industry survey that is carried out for

grounding the research within the industrial context.

It has described the current status of engineering design optimisation in industry.
This discussion has highlighted that although a number of real-life applications of
optimisation algorithms are reported in literature, they attract only a little interest

in industry.

It has compiled the features of real-life engineering design optimisation

problems.

It has identified the inhibitors to the industrial applications of optimisation
algorithms, and has compared them against the research objectives with an aim of
grounding the research within the industrial context. It has stated the industrial
context of this research, which is to develop robust optimisers for handling the
following three features of real-life engineering design optimisation problems:

multiple objectives, constraints and variable interaction.

It has analysed the gap between the capabilities of existing EC techniques and the
challenges posed by multiple objectives, constraints and variable interaction. This
has identified variable interaction as the main area of focus in this research for

the development of optimisation algorithms.

Finally, it has analysed the capabilities of existing test beds with respect to the

following three features of real-life optimisation problems: multiple objectives,
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constraints and variable interaction. Here also, variable interaction constitutes as
the main focus of test bed development.
This chapter has identified the interaction among decision variables as the main
focus of this research. The next chapter develops an algorithm for handling the first
type of variable interaction, viz. inseparable function interaction, in complex multi-

objective optimisation problems.
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5 DEVELOPING AN EC TECHNIQUE TO
HANDLE INSEPARABLE FUNCTION
INTERACTION

As explained in Chapter 2, inseparable function interaction is a type of variable
interaction, and occurs when the effect that a variable has on the objective function
depends on the values of other variables in the function. This type of variable
interaction is commonly evident in real-life optimisation problems. Chapter 4
identified the gap in the literature to deal with these problems. The aim of this
chapter is to develop a generic solution strategy and to propose an algorithm capable

of handling complex multi-objective optimisation problems having high degrees of

inseparable function interaction. This chapter attempts to achieve the following.

In addition, the proposed optimisation algorithmis expected to possess the (ollowmg

features.
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5.1 Challenges for Multi-objective Optimisation
Algorithms

Complex inseparable function interaction poses a number of challenges for multi-
objective optimisation algorithms. A GA operates on the building blocks, growing
them and mixing them with each other in an attempt to solve the search problem at
hand. Epistasis, termed here as inseparable function interaction, causes problems for
a GA by making it more difficult for it to build these building blocks (Harik, 1997).
Further, in its presence, a multi-objective optimisation problem cannot be
decomposed into simpler parts. Hence, a GA requires updating all decision variables
in a unique way in order to maintain a spread of solutions over the Pareto-optimal
region or even converge to any particular solution. With a generic search operator,
this becomes a difficult task for the GA. Furthermore, even if a set of Pareto-optimal
solutions are obtained, it is difficult to maintain them since any change in one
variable must be accompanied by related changes in others in order to remain on the
Pareto front. The difficulties that inseparable function interaction may create for a
GA are summarised below, with respect to the two goals of multi-objective

optimisation (Deb, 1999a; Deb, 1999b).

5.1.1 Convergence to Global Pareto Front

Inseparable function interaction in objective functions may lead to one or more of the

following features that obstruct convergence to the true (or global) Pareto front.

¢ Multi-modality: In this case, a GA, like many other search and optimisation

methods, may converge to a local Pareto front.

¢ Deception: Deception is a kind of multi-modality in which almost the entire
search space favours the deceptive (non-global) optimum. If present in a
problem, deception misleads a GA towards deceptive attractors (Goldberg et al.,
1989).

¢ Collateral Noise: Complex inseparable function interaction in objective functions

may lead to problems that are ‘rugged’ with relatively large variations in the
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function landscape. This collateral noise may create convergence problems for a
GA.

¢ Isolated Optimum: In some problems, the optimum may be surrounded by a
fairly flat search space. Since there is no useful information provided by most of
the search space, a GA faces difficulty in solving such problems with isolated

optima.

5.1.2 Maintenance of Diverse Pareto-optimal Solutions

Maintenance of diversity in Pareto-optimal solutions may become difficult for a GA
due to one or more of the following features that may be introduced in the problem

by inseparable function interaction.

¢ Discontinuity in Pareto Front: Here the Pareto front is a collection of discretely
spaced continuous sub-regions (Schaffer, 1984). In such problems, although
solutions within each sub-region may be found, competition among them may

lead to extinction of some sub-regions.

¢ Non-uniform Distribution over Pareto Front: In this case, feasible solutions have
a non-uniform density across the Pareto front. This leads to a natural tendency for
a GA to find a biased distribution in the Pareto-optimal region.

¢ Shape Complexity of Pareto Front: Inseparable function interaction also
influences the shape of Pareto front. In some cases, the shape complexity of the
front may be so high that it becomes difficult for a GA to find uniformly
distributed solutions across it.
Further, in many real-life multi-objective optimisation problems, inseparable
function interaction leads to Pareto fronts that correspond to complex relationships
among decision variables. All such cases become difficult for a GA to handle since it
is required to update the decision variables in a unique way in order to attain the
desired results (Tiwari et al., 2001a). An example of a complex multi-objective
optimisation problem that has high degrees of inseparable function interaction is
given in Figure 5.1. This problem is given in Equation 5.1. This problem has a
number of features discussed above including multi-modality and biased search

space.
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Figure 5.1: An Example ofInseparable Function Interaction

/(*,,x2)=T 1 '[1- exp(-4x,)],VO<x,,x2<1,
( ) (l-exp(-4)J[ p( )]

S2(x,,x2)=(2-(/, 11)* )x(/),VO<x,x2<],
I(xx,x2)=2-exp(-2x2)cos(872),V0<x],"2<1.

5.2 Proposed Solution Strategy

For any continuous portion of the Pareto front, there is a unique relationship
involving objective functions. This relationship is difficult to obtain analytically, and
even if it is found, it has limited usefulness since mapping from function space to
variable space is very complex. However, the existence of a relationship among
objective functions of Pareto solutions necessarily implies that corresponding

relationship” exist among the decision variables ofthese solutions.

A simple multi-objective optimisation problem is used below for explaining the
above concept (Figure 5.2). Consider a two-objective optimisation problem having//
and/ as the two objective functions. For any continuous portion of the Pareto front,

there exists a Function F involving/ and/ (Equation 5.2).
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F(fl’fz) =0 Equation 5.2

x-space
Figure 5.2: Proposed Solution Strategy

Suppose the problem has two decision variables x; and x; that define the functions f;
and f; i.e. f; and f; can be expressed as fi(x;,x;) and fx(x;xz). Substituting the
expressions for f; and f> in the above equation yields the function F; in decision

variables (Equation 5.3).

F(f (%)), ) (0%, ) =0 Equation 5.3

:>F1(x1,x2)=0

This proves the statement made earlier that there is existence of relationship(s)
among the decision variables of the solutions belonging to any continuous portion of
the Pareto front. The proposed algorithm aims to explore this relationship using non-
linear, multi-variable regression analysis (Draper and Smith, 1998). It uses the

relationship thus obtained for the following purposes.
¢ To perform periodic re-distribution of solutions for aiding their spread over the
current front.

¢ To use history of change of regression coefficients for guiding the search towards
the global Pareto front. -

¢ To use rate of change of regression coefficients for determining the termination

condition of the algorithm.

¢ To re-distribute the final solutions for obtaining the whole range of well-

distributed Pareto-optimal solutions.
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¢ To identify the relationship(s) among the decision variables of the Pareto-optimal
solutions, in order to enable the designers to create and choose the Pareto-optimal

solutions based on their preferences.

5.3 Proposed Generalised Regression GA (GRGA)

The solution strategy, discussed in the previous section, is encoded in C++ using a
new algorithm called ‘Generalised Regression GA (GRGA)’. This algorithm is
illustrated in Figure 5.3. It should be noted that being a state-of-the-art optimisation
algorithm, NSGA-II (described in Appendix B) has been chosen as the optimisation
engine for GRGA (Deb et al., 2000). However, since GRGA is completely modular
it can also be used with any other multi-objective optimisation algorithm for
enhancing the algorithm performance in handling problems with complex

inseparable function interaction. The steps involved in GRGA are explained below.

1. Run the optimisation cycle until all individuals have rank 0. This ensures that a
front containing only non-dominated solutions is achieved. This intermediate
front can be assumed to have as many clusters as the number of clusters in the

global Pareto front.
2. Identify all the clusters in variable space using tree-clustering analysis.

3. Perform regression analysis individually on the decision variables belonging to
each cluster. This gives the correlation coefficients (that show how accurately the
regression model represents relationship among variables) and the regression
coefficients (that determine the exact nature of relationship) for all the clusters.

4. TIf the correlation coefficient of at least one cluster is greater than the empirically
determined value of 0.7 (obtained by trial-and-error experiments using various
values), proceed to Step 5 else continue running optimisation cycle, and
performing clustering and regression analysis until the correlation coefficient of
at least one cluster becomes greater than 0.7. This ensures that regression
analysis is used in subsequent steps only for those clusters in which the
correlation coefficient has a value greater than 0.7. This removes the possibility
of misleading the search through the use of a regression model that does not

accurately represent relationship among variables.

5. If the generation number is a multiple of 10, proceed to Step 6 else go to Step 8.
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Figure 5.3: Generalised Regression GA (GRGA)
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10.

11.

12.

After every 10 generations, artificially modify the regression coefficients (for
those clusters in which the correlation coefficient has a value greater than 0.7) to
guide the search towards the global Pareto front. This is done using the history of
change of regression coefficients observed in previous generations. This guides
the search towards global Pareto front by preventing it from getting trapped in
local fronts.

After every 10 generations, re-distribute the solutions, using modified regression
coefficients, in those clusters in which the correlation coefficient has a value
greater than 0.7. The aim of this step is to encourage diversity among solutions.
The algorithms that can be used for re-distribution of solutions are discussed in

the next section.
Proceed to the next generation by running the optimisation process.

Perform clustering, and regression analysis on the decision variables belonging to

each cluster.

If there are any changes in the values of correlation and regreséion coefficients in
the last two generations, go to Step 5 else proceed to Step 11. No changes in the
values of these coefficients imply that the Pareto front has been reached and that
the algorithm should now be terminated.

Re-distribute the final solutions, using regression coefficients, in all those
clusters in which the correlation coefficient has a value greater than 0.7. This

creates solutions that are well distributed across the Pareto front.

Using the regression coefficients corresponding to each cluster, identify the
relationship(s) among the decision variables of the Pareto-optimal solutions.

It should be noted that infinite looping is avoided in this algorithm by restricting the

maximum number of generations to a pre-determined value. For the sake of

simplicity, this feature is not depicted in Figure 5.3.

5.4 Distribution Algorithms

Distribution algorithms are used here for periodically spreading out solutions over

their current front. The aim is to encourage diversity among solutions. The

distribution algorithm should be able to deal with complex objective functions
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without significantly adding to the computational expense of the optimisation

algorithm. This section proposes and analyses three different distribution algorithms.

5.4.1 Linear Distribution Algorithm (LDA)

LDA re-distributes the solutions using equally spaced decision variables in their
respective ranges. This means that in a problem that has two decision variables x;:
[0:1] and x,: [0:1], the algorithm chooses equally spaced x; values in [0:1] such that
the number of points chosen is equal to the population size. It then uses results from
regression analysis to find the x, values corresponding to these x; values. The
algorithm uses this set of decision variables to form the new individuals and proceeds
forward. This algorithm, applied to a problem with two decision variables x; and xa,

. is as follows (Figure 5.4).

1. Choose equally spaced values for x; in its range. Number of values chosen

should be equal to the population size.
2. Use results from regression analysis to get corresponding X values.

3. Map the above set of x;-X, values back to the function space. The solutions thus

attained form the re-distributed set of solutions.

( Start )
v

Choose equally spaced x, values
(number of values =
population size)

v

Get corresponding x, values

v

Map to function space
( Stop )

Figure 5.4: Linear Distribution Algorithm (LDA)

The computational complexity of this algorithm is O(MN), where M is the number of
objectives and N is the population size. This algorithm is simple to implement but it

works on the assumption that well-distributed points in parameter space will give rise
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to well-distributed points in function space. This works well for uni-modal objective
functions that do not have any steep changes. However, for complex functions this

assumption is not valid causing the algorithm to fail.

5.4.2 Random Distribution Algorithm (RDA)

The failure of LDA in handling complex objective functions was the motivation for
the development of RDA. This algorithm first generates a set of random values for x;
in its range such that the number of points generated is equal to the population size. It
then uses results from regression analysis to find the corresponding x, values and
maps the obtained set of x;-x, values back to the function space. The algorithm then
determines unique points from this set and repeats the above process until the
number of unique points becomes equal to the population size. This algorithm is
described below for a problem that has two variables (x; and x) (Figure 5.5).

1. Generate random values for x; in its range (number of points generated should be

equal to population size). The reason for using random values is that it aids the
exploration of the entire search space with equal probability.

Use regression analysis to get corresponding X, values.
Map the above set of x;-x, values back to the function space.

Mix the points obtained in Step 3 with pre-determined unique points.

bAoA

Determine the unique points from the combined set obtained in Step 4. This
ensures that only those solutions are selected that have the required separation in

the function space.

6. Check if the number of unique points obtained is greater than the population size.
If yes go to Step 7 else go to Step 1.

7. From the set of unique points obtained in Step 5, randomly delete points until
their number becomes equal to the population size.

The computational complexity of this algorithm is O(MNZ), where M is the number

of objectives and N is the population size. It is evident that this algorithm ensures

equal distribution of solutions in the function space using the concept of unique

point. Hence, an appropriate definition of unique point becomes critical to the

success of this algorithm. Here, a unique point is defined using the concept of
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diversity metric (A) given by Deb et al. (2000). This concept is described in detail in
Appendix C. |

( Start )
v

[ Generate random x, values Id—

v

| Get corresponding x, values l

v

[ Map to function space |

¥

Mix with pre-determined
Unique Points (UP’s)

| Determine new setof UP’s I

Number of UP’s
>

population size?

Delete a UP randomly

Number of UP’s

population size?

( Stop )
Figure 5.5: Random Distribution Algorithm (RDA)

To demonstrate the concept of unique point, a problem with two objective functions
f; and £ is considered here. Figure 5.6 shows a hypothetical circle, with radius equal
to the average Euclidean distance, drawn around the first point. This point is now
marked as unique and all other points lying in its circle are deleted. This process is
repeated until all the given points have been analysed. This algorithm is depicted in

Figure 5.7 for a two-objective problem, and is briefly described below.

1. Sort the given population based on function values. Since all the solutions
analysed at this stage are non-dominated (Figure 5.3), sorting for one function
would inevitably sort the solutions for the other function. Sorting is carried out to
ensure that the algorithm proceeds sequentially from one end to the other of the

Pareto front.

2. Find the Euclidean distances between consecutive members of the given

population.

3. Find the average of these Euclidean distances.
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DUy Hypothetical circle

\ Unique point

O Deleted point
o
o

Figure 5.6: Identification of Unique Points (Assuming two objective functions)
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l Select next undeleted point I(—
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IDeIele all points lying within circle |

Any more Y
undeleted points?

Figure 5.7: Algorithm for Identification of Unique Points

4. Select the next undeleted point based on the sequence in which the population

members have been sorted.

5. Draw a hypothetical circle around the selected point with radius equal to the

average Euclidean distance.
6. Mark the selected point as a unique point.

7. Delete all other points lying in the hypothetical circle around the unique point
(Figure 5.6). This removes any point whose Euclidean distance from the unique
point is less than the average Euclidean distance. This ensures that the Euclidean
distance between each pair of consecutive unique points is more than or equal to

the average Euclidean distance.
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8. Check if there is any undeleted/unmarked point left in the population. If yes go to
Step 4 else stop the process.
The above algorithm ensures that only well-distributed points are defined as unique

so that only these points are passed on to the future iterations of RDA (Figure 5.5).

5.4.3 Hybrid Distribution Algorithm (HDA)

Although RDA has satisfactory performance, it is difficult to implement and has high
computational expense. This has led to the development of HDA in which a part of
the population is generated by linear distribution and the rest is generated on a point-
by-point basis using differences in objective function values between consecutive
points in the objective-variable space. The computational complexity of this
algorithm is O(N?), where N is the population size. Being a good compromise
between performance and computational expense, HDA is chosen for use with
GRGA. This algorithm is described below for a two-variable (x;-x2) problem (Figure
5.8).

1. Generate equally distributed values for x; in its range. Number of values

generated should be equal to a pre-determined proportion (say 10%) of the

population size.

2. Use results from regression analysis to get corresponding X, values. Map the
above set of x1-x, values back to the function space.

3. Sort these points based on x; values. In each objective-variable space, find the
gap between consecutive points in terms of the objective function values. Express
the gap as a percentage of the sum of total differences between consecutive

points.

4. Generate a new Xx; value as mid-point of two consecutive x; values that
correspond to the maximum percentage gap, considering all objective-variable

spaces.

5. Use results from regression analysis to get the x, value corresponding to this new

x; value. Map the new x;-x; pair back to the function space.

6. Find the percentage gaps in each objective-variable space between this new point

and its immediate neighbours.
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7. Check if the total number of generated points is equal to the population size. If

yes stop the process else go to Step 4.

)
!

Generate equally spaced x, values
(number of values =
10% of population size)

v

_— | Get corresponding x, values I

Map to function space |

[ Sort points based on x, values

v

Calculate consecutive
Objective Differences (OD’s) in
each objective-variable space

v

r Express OD’s as percentages l

v

Generate new x, value as mid
point of consecutive x, values ﬂ
having maximum percentage OD

Get corresponding x, value I

v

l Map to function space I

v

Find percentage OD between
new point and its neighbours

Number of points

population size?

w )

Figure 5.8: Hybrid Distribution Algorithm (HDA)

5.5 Computational Expense of GRGA

GRGA uses NSGA-II as its optimisation engine, whose computational complexity is
O(MN?) (where M is the number of objectives and N is the population size) (Deb et
al., 2000). In addition, it uses distribution algorithms for spreading out solutions over
their current front in order to encourage diversity. GRGA uses HDA whose overall
computational complexity is O(Nz). Since NSGA-II, whose complexity is O(MN?), is
a part of GRGA, the overall complexity of GRGA becomes O(MN?). The conclusion
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of this analysis is that both NSGA-II and GRGA have the same order of complexity
(O(MN?)). However, due to the presence of the distribution algorithm, the actual
complexity of GRGA is slightly higher that of NSGA-II.

5.6 Performance Analysis of GRGA

This section compares the performance of GRGA with a state-of-the-art multi-

objective optimisation algorithm, NSGA-II, using three test problems.

Table 5.1: Test Problems for Performance Analysis of GRGA (PF: Pareto Front)

S 0=y, » PF: y;e[Based on R],
£, =g()exp(=y, /8(») y=0,1=2....0
ROT 2 1 « Convex distribution
(Deb et al., 5 0.3.0.3 —1410(n-1)+ L2 10cos(4 « Linearly related
2000) [03.03] £0) (=1 ,Ez Ly; cos(4m; )] decision variables
y=Rx o Multiple local fronts
R = Rotation _ Matrix * Coliateral noise
x)=x e PF: X1E[0,1], Xi=0,
ZDT4 x1€[0.1] fl( ) 1 i=2,...,n
(Zitzler et 1= f2 (x) = g(x)[1- x /g(x)] o Convex distribution
al., 2000) 10 xie[-5,5] . * Multiple local fronts
i=2,..,0 | g(x)=1+10(1—-1)+ 3 [x> —10cos(4xx,)] (21" or 7.94x107)
i=2 ! ! o Collateral noise
fl(x)=1—exp(—4x1)sin6(4mcl) o PF: x:€[0,1], i=0,
ZDT6 2 i=2,..., n
(Zitzler et 10 [0,1] £ = g-(f,(x)/ g(x)) ] + Non-convex
al., 2000) n 0.25 distribution
g(x) =1+9[(.22xi)/(" ~-ni- « Non-uniformly spaced
i=

5.6.1 Experimental Results

GRGA was tested using three problems namely ROT, ZDT4 and ZDT6 listed in
Table 5.1. The objective functions of these problems are plotted in Figure 5.9, Figure
5.10 and Figure 5.11 respectively. As can be seen from Table 5.1, these problems
form a representative set since they together possess a number of features that create
difficulties for optimisation algorithms. Further, a number of existing multi-objective
optimisation algorithms have exhibited limitations in solving these problems. This
section compares the performance of GRGA with that of NSGA-II, which
demonstrates better performance than most other contemporary algorithms in solving

these optimisation problems (Deb et al., 2000).

EC Techniques for Handling Variable Interaction 119



Chapter 5. Inseparable Function Interaction

0.3 03

0.2,
02

Figure 5.9: Objective Functions ofROT (Assuming Two Variables)

Figure 5.10: Objective Functions ofZDT4 (Assuming Two Variables)
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Figure 5.11: Objective Functions ofZDT6 (Assuming Two Variables)

The parameters for carrying out the tests reported in this section are chosen based on

their typical values that are used in literature for these test problems. These values

are as follows.
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¢ ROT: 100 population size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover

distribution index and 50 mutation distribution index.

¢ ZDT4: 100 population size, 250 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover

distribution index and 50 mutation distribution index.

¢ ZDT6: 100 population size, 250 generations, 0.9 crossover probability, 0.1
mutation probability, and simulated binary crossover with 20 crossover
distribution index and 20 mutation distribution index.

The results obtained from these tests are shown in Figure 5.12 for ROT, Figure 5.13

for ZDT4 and Figure 5.14 for ZDT6. These results form the typical set obtained from

10 runs with different seed values for the random number generator. No major

variation was observed in the results with the change in the seed values. To enable

fair comparison, the termination condition and re-distribution of final solutions are
not applied here for reporting the GRGA results. Also, unless otherwise stated, HDA
is used with GRGA in all the tests.

5.6.2 Discussion of Results

Here, the performances of GRGA and NSGA-II are measured, with respect to the
goals of multi-objective optimisation (convergence to the Pareto front and diversity
across it), using the two metrics proposed by Deb ez al. (2000). The metrics used
here are the convergence metric (y) and diversity metric (A), which are explained in
detail in Appendix C. The lower the values of these metrics, the better is the
performance of the given optimisation algorithm. The y and A values for the results
reported here are shown in Table 5.2. The results obtained from each of the three test

problems are discussed below.
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Figure 5.12: GRGA Performance Analysis Using ROT Problem - (a) Full Search
Space (b) Magnified Search Space
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Figure 5.13: GRGA Performance Analysis Using ZDT4 Problem - (a) Full Search
Space (b) Magnified Search Space
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Figure 5.14: GRGA Performance Analysis Using ZDT6 Problem - (a) Full Search
Space (b) Magnified Search Space
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Table 5.2: Performance Metrics in ROT, ZDT4 and ZDT6

¥ A
NSGA-I 0.012694 1.192163
GRGA _: 0.009162 0.341217
0.253053 0.702612
0.018982 0.745652
0.296564 0.668025
0.032871 0.441495

5.6.2.1 ROT

ROT has an externally introduced inseparable function interaction due to the rotation
matrix R. This causes ROT to have a linear relationship among decision variables
corresponding to the Pareto-optimal solutions. Therefore, the NSGA-II and GRGA
require updating all decision variables in a unique way in order to maintain a spread
of solutions over the Pareto-optimal front and to converge to the Pareto front.
Further, even if a set of Pareto-optimal solutions are obtained, it is difficult to
maintain them since any change in one variable must be accompanied by related
changes in others in order to remain on the Pareto front. Here, NSGA-II gives
inferior distribution of solutions as compared to GRGA. This is illustrated in Figure
5.12. Table 5.2 also supports this by showing a much lower value of A for GRGA as
compared to that for NSGA-II. The reason for this is that the Crowded Comparison
Operator used in NSGA-II attempts to attain solution diversity using external means,
without addressing the inherent features that lead to diversity problems. On the other
hand, GRGA addresses the core issue of this problem by determining the
relationships among the decision variables of the solutions, and using them to re-

distribute the solutions for aiding their spread over the current front.

It is interesting to note that both NSGA-II and GRGA exhibit satisfactory
convergence to the Pareto front (Figure 5.12), in spite of the presence of multiple

local fronts and inseparable function interaction in this problem. This is facilitated in
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NSGA-II by the use of Pareto-domination and elitism, and in GRGA by the use of
NSGA-II supported by artificial modification of regression coefficients. Table 5.2

exhibits nearly the same values for y, thereby supporting the above observation.

5.6.2.2 ZDT4

ZDT4 is characterised by the presence of multiple local fronts. As shown in Figure
5.13, GRGA exhibits better convergence as compared to NSGA-II. Table 5.2 also
shows that the y value of GRGA is an order less as compared to that of NSGA-IL
This is because the Pareto-domination/elitism strategy used by NSGA-II ceases to
produce the driving force towards the global Pareto front once most of the solutions
of the population share the same non-domination level. Therefore, in this problem,
the NSGA-II solutions get trapped in one of the local fronts. GRGA addresses this
drawback of NSGA-II by artificially modifying the regression coefficients after
every ten generations using their history of change observed in previous generations.
This guides the search towards the global Pareto front by preventing it from getting
trapped in local fronts.

Furthermore, this problem does not exhibit any difficulty with respect to the
maintenance of diversity of solutions across the Pareto front. Therefore, both NSGA-
II and GRGA exhibit satisfactory diversity in this case (Figure 5.13). This is also
supported by Table 5.2, which shows small values of A for both NSGA-II and
GRGA that are nearly same in magnitude.

5.6.2.3 ZDT6

This problem is characterised by a biased search space. In this case as well, GRGA
exhibits better convergence as compared to NSGA-II (Figure 5.14). Also, both
GRGA and NSGA-II demonstrate satisfactory diversity in this case (Figure 5.14).
The y and A values in Table 5.2 support the above observations. The reasons for this
behaviour of NSGA-II and GRGA are on the same lines as those discussed for
ZDT4, with the difference that in this case the bias in the search space, rather than
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multi-modality, creates obstacles in convergence to the Pareto front. This bias also

makes it more difficult to maintain diversity across the Pareto front.

5.6.3 Summary of Results

In addition to the above, GRGA identifies the following relationships for the decision
variables corresponding to the Pareto-optimal solutions. In solving real-life
problems, this information is very useful for designers since it provides them with an
easy way of generating a Pareto-optimal solution based on their preferences.
Comparison with Table 5.1 reveals that the GRGA has been able to accurately locate

the Pareto front in each case.

¢ ROT: Pareto front corresponds to y; = 0; i = 2,...,5; with y; taking values in its

range.

¢ ZDT4: Pareto front corresponds to x; = 0; i = 2,...,10; with x, taking values in its

range.

¢ ZDT6: Pareto front corresponds to x; = 0; i = 2,...,10; with x; taking values in its

range.

It is observed that the proposed algorithm enhances the interaction handling
capabilities of NSGA-IL. The tests reported in this section lead to the following

general conclusions regarding the performance of GRGA.

¢ The periodic modification of regression coefficients using history of search is
successful in guiding the algorithm towards global Pareto front by preventing it
from getting trapped in local fronts.

¢ The periodic re-distribution of solutions using regression analysis ensures that

better distribution of solutions is attained across the Pareto front.

¢ The use of regression analysis for the termination of the optimisation cycle
ensures that the process is terminated when no further improvements are possible
in terms of convergence to the Pareto front. This reduces unnecessary repetitions
of optimisation loop, making the process faster. It is worth noting that the
termination condition is solely based on convergence and does not take
distribution into account. This is because once the solutions converge to the

Pareto front, they are re-distributed by the algorithm using regression analysis.
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¢

¢

The re-distribution of final solutions performed in this algorithm provides the

designers with the whole range of well-distributed Pareto-optimal solutions.

The identification of the relationship(s) among the decision variables of the
Pareto-optimal solutions enables the designers to create and choose the Pareto-

optimal solutions based on their preferences.

5.7 Summary

This chapter has proposed a novel algorithm capable of handling inseparable

function interaction in multi-objective optimisation problems. As illustrated below,

GRGA meets all the objectives of its development mentioned at the beginning of this

chapter.

¢

As revealed in Chapter 2, most of the optimisation problems have varying
degrees of inseparable function interaction. Since GRGA is capable of handling
this interaction and the logic behind it is generic in nature, it is expected that the
algorithm would perform better than the existing ones in dealing with a wide
variety of optimisation problems. This also includes those multi-objective

optimisation problems that involve constraints.

GRGA is completely modular in nature. So, it can be used to enhance the
interaction handling capability of any optimisation algorithm.

GRGA exhibits better performance than the high-performing NSGA-II on a

variety of multi-objective optimisation problems.
> Better convergence to Pareto front.

» Better distribution of Pareto-optimal solutions.

This chapter has achieved the following.

¢

It has identified the challenges that inseparable function interaction poses for

multi-objective optimisation algorithms.

It has devised a generic solution strategy for handling this interaction in multi-

objective optimisation problems.

It has proposed a new multi-objective optimisation algorithm, called Generalised
Regression GA (GRGA), based on the solution strategy.
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¢ It has analysed the performance of the proposed algorithm using existing test

problems.
This chapter has proposed an algorithm for handling inseparable function interaction
in multi-objective optimisation problems. The next chapter deals with the second
category of variable interaction: variable dependence. It proposes a dedicated
algorithm for handling variable dependence in multi-objective optimisation

problems.
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6 DEVELOPING AN EC TECHNIQUE TO
HANDLE VARIABLE DEPENDENCE

As discussed in Chapter 2, variable dependence occurs when the variables are
functions of each other, and hence cannot be varied independently. This dependence
among decision variables is frequently observed in real-life problems. Chapter 4
identified the research gap in the area of variable dependence, and highlighted the
need to develop dedicated optimisation techniques for handling dependence among
decision variables in multi-objective optimisation problems. The aim of this chapter
is to develop a generic solution strategy and to implement it for proposing this

dedicated optimisation algorithm for variable dependence. This chapter attempts to

achieve the following.

In addition, the proposed optimisation algorithm is expected to possess the folloing

features.
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6.1 Challenges for Multi-objective Optimisation
Algorithms

Complex variable dependence poses a number of challenges for multi-objective
optimisation algorithms. In the presence of variable dependence, the decision
variables cannot be varied independently of each other. Also, the search space gets
modified creating a new feasib}e region based on the dependence among decision
variables. This is shown in Figure 6.1. Depending upon the nature of variable
dependency, additional features (such as bias (non-linearity), multi-modality,
deception and discontinuity) may also be introduced in the problem. A generic GA
independently varies the decision variables and works in the feasible regioﬁ that does
not take variable dependence into account. So, it creates solutions that have limited
practical significance since they do not lie in the actual feasible region of the search

space.

The dependence among decision variables is frequently observed in real-life
problems. Here, the effects of dependence among decision variables are illustrated
graphically using a real-life example in which the Resistance (R) of a wire is defined
in terms of two parameters, namely Temperature (7) and Stress (S) (Kreyszig, 1993).
Here, Tis Random(T;,T5) and S is f{T)+Random(S;,S,) (Equation 6.1).

R=F(S,T), Equation 6.1
T = Random(1;,T,),
S = f(T)+ Random(S,,S,).

This real-life problem is analogous to the example discussed earlier. As can be seen,
Temperature 7 can take any random value between 77 and 7. On the other hand,
Stress S has two components. The first component is a function of Temperature 7'
and the second is a random number lying between S; and S». It should be noted here
that Temperatures T; and T, are defined by the range of the heating device, and
Stresses S; and S, are defined by the range of the loading instrument. The effects of

dependence among decision variables are analysed in the following discussion.
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¢ As expected, both variables I"and S cannot simultaneously take random values in
their respective ranges. If Temperature 7 takes a value 77, Stress S can take only
those random values that lie between [f(T})+S;] and [f(T;)+S.]. With the change
in value of T, the range of random values that S can take also changes. So, the

variables cannot be varied independently of each other.

A

s
FRDV i
//:¢ ........

FRIV .

[2]
A R
T, T

T2

Figure 6.1: Relationship between Stress(S) and Temperature(T) (FRIV: Feasible
Region with Independent Variables and FRDV: Feasible Region with Dependent
Variables)

¢ As shown in Figure 6.1, which gives a graphical representation of this problem,
‘the presence of dependence among decision variables modifies the variable
search space. Figure 6.1 represents the search space for both the cases: (i) without
dependence among decision variables and (ii) with dependence among decision

variables. These two cases are analysed below.

> Without Dependence: If there is no dependence among decision variables,
both variables T and S can independently take random values in their
respective ranges. This gives a rectangular shape to the T-S search space,
shown as FRIV (Feasible Region with Independent Variables) in Figure
6.1.

» With Dependence: The presence of dependence among decision variables
modifies the shape and location of the search space. It makes the T-S
search space take the shape and location based on the nature of function
AT). The modified search space is shown as FRDV (Feasible Region with
Dependent Variables) in Figure 6.1.
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6.2 Alternative Strategies for Handling Variable
Dependence

Chapter 2 provided a survey of techniques for dealing with the two steps involved in
solving the dependent-variable optimisation problems: identification of dependency
relationships and classification of variables. This section presents alternative solution
strategies that can utilise these techniques for handling the two categories of
dependent-variable optimisation problems: those with and those without dependency

equations, defined in Chapter 2.

6.2.1 Solving Optimisation Problems Having Known Dependency
Equations

The two steps involved in solving the optimisation problems that have known

dependency equations are as follows.

6.2.1.1 Step 1: Identification of Dependency Relationships

In these problems, the dependency equations are given to the user, but he/she still
needs to make sure that these relationships are free of cyclic dependencies. Step 2
deals with the removal of cyclic dependencies and the identification of independent

variables.

6.2.1.2 Step 2: Classification of Variables

The techniques discussed in Chapter 2, TDs and DA, can be used for the
classification of variables into dependent and independent, and for the removal of
cyclic dependencies. The independent variables define the GA chromosome. The
dependent variables are then calculated using the dependency equations, and their
bounds are treated as constraints. Finally, the objective functions are calculated using
the complete set of variables. This solution procedufe is pictorially presented in

Figure 6.2.
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Given:

* Objective functions (F’s) and constraints
* Variable bounds
» Variable dependency equations

v

Draw Tree Diagram (TD)
or perform Direct Analysis (DA)

v

I Remove cyclic dependencies |

v

I Identify independent variables |

v

Use optimisation engine:

» GA chromosome defined by independent
variables (identified by TD or DA)

» Dependent variables calculated from
dependency equations

» Bounds on independent variables treated
as variable limits

» Bounds on dependent variables treated
as constraints

Figure 6.2: Solving Optimisation Problems Having Known Dependency Equations

6.2.2 Solving Optimisation Problems Having Unknown Dependency

Equations

In these problems, the dependency equations are unknown, but multiple sets of
variable values are provided to the user from which the dependency relationships can
be inferred using one of the data modelling techniques, viz. RA, NNs and PM,
discussed in Chapter 2. The application of these techniques for solving dependent-
variable optimisation problems is presented in this section. The two steps involved in
solving these optimisation problems are discussed below for each of the three data

modelling techniques.

6.2.2.1 Regression Analysis (RA)

When the RA is used, the two steps involved in the solution procedure of a

dependent-variable optimisation problem are as follows.
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Step 1: Identification of Dependency Relationships

For solving an optimisation problem that has interaction among decision variables,
the RA can be applied to the given sets of variable values. In this way, the equations
that define the interaction among decision variables can be obtained. RA may be
designed in such a way that it creates equations that do not have any cyclic
dependencies. Alternatively, the techniques TDs and DA can be used to identify and

remove any cyclic dependencies.

Step 2: Classification of Variables

The techniques, TDs and DA, can also be used to carry out the second step of the
solution procedure, which is to identify the independent variables that form part of
the GA chromosome. Figure 6.3 summarises the application of RA for solving

optimisation problems that have dependence among decision variables.

Given:

» Objective functions (F’s) and constraints
* Variable bounds
« Multiple sets of variable values

!

Use Regression Analysis (RA) to identify |
variable dependency equations B

¢ Remove cyclic dependencies

Identify independent variables using P
Tree Diagram (TD) or Direct Analysis (DA)

v

Use optimisation engine:

» GA chromosome defined by independent
variables (identified by TD or DA)

« Dependent variables calculated from
dependency equations

+» Bounds on independent variables treated
as variable limits

* Bounds on dependent variables treated
as constraints »

Figure 6.3: Application of Regression Analysis (RA) for Solving Dependent-variable

Optimisation Problems
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6.2.2.2 Neural Networks (NNs)

The steps involved in solving the dependent-variable optimisation problems using

NN are as follows.

Step 1: Identification of Dependency Relationships

Similar to the RA, the NNs can be used for deriving the dependency relationships
from the data provided. However, unlike the RA, in which explicit dependency
equations are attained, a NN model that is trained in the given data can be used to
predict the values of the dependent variables in terms of the independent ones,
without using any explicit equations. Therefore, the application of NNs requires a
priori classification of variables as dependent and independent. Since this
classification is required to be mutually exclusive, the possibility of having cyclic

dependencies does not exist, and the independent variables are assumed to be known.

Given:

» Objective functions (F’s) and constraints
* Variable bounds

» List of independent variables

« Multiple sets of variable values

v

Construct Neural Network (NN)
to model variable dependence

v

Use optimisation engine:

» GA chromosome defined by
independent variables

* Dependent variables calculated from NN
 Bounds on independent variables
treated as variable limits

* Bounds on dependent variables treated
as constraints

Figure 6.4: Application of Neural Networks (NNs) for Solving Dependent-variable

Optimisation Problems
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Step 2: Classification of Variables

In this case, the classification of variables into dependent and independent is
assumed to be known, making it possible for the GA to use the independent variables
in its chromosome. For each solution generated by the GA, the dependent variables
are predicted using the NN model. In this way, all the variables in the problem are
determined, which can now be used for calculating the objective functions. The

above-mentioned solution procedure is summarised in Figure 6.4.

6.2.2.3 Probabilistic Modelling (PM)

If the PM is applied to solve dependent-variable optimisation problems, the steps

involved in the solution procedure are as follows.

Given:

* Objective functions (F’s) and constraints
* Variable bounds
« Multiple sets of variable values

v

Construct probability distribution
based on data provided
(Probabilistic Model (PM))

Use optimisation engine:

« GA chromosome defined by all variables
* Bounds on all variables treated

as variable limits

« |nitial GA population generated by PM

* Use of PM as constraint

Figure 6.5: Application of Probabilistic Modelling (PM) for Solving Dependent-

variable Optimisation Problems

Step 1: Identification of Dependency Relationships

PM creates a probability distribution based on the data provided by the user. The

distribution thus created models the relationship among decision variables, and can
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be used for creating additional data that have the same relationship among decision
variables. Therefore, the PM implicitly models the relationship among decision
variables. This is unlike the RA and NNs that attempt to classify the variables (as
dependent and independent), and estimate the dependent variables from the
independent ones. Since the PM does not classify the variables as dependent and

independent, the issue of cyclic dependencies does not arise.

Step 2: Classification of Variables

Since the PM does not classify the variables, the GA chromosome is made up of all
the decision variables in the problem, and the initial population is generated by the
PM. In successive generations, each individual is analysed to determine its closeness
to the PM. To ensure that the solutions created are always in a pre-defined vicinity of
the PM, a constraint is introduced that requires the closeness measure (defined by the
user) to have a value greater than the pre-defined limit. In this way, the optimisation

problem is handled. This solution procedure is depicted in Figure 6.5.

6.3 Proposed Solution Strategy

The previous section analysed some solution strategies for handling optimisation
problems that have dependence among decision variables. This discussion is re-
visited here to select the most appropriate solution strategy for solving real-life

dependent-variable optimisation problems.

6.3.1 Analysis of Alternative Solution Strategies

It was stated in Chapter 2 that the lack of systematic research in the area of variable
dependence has led to a scarcity of dedicated frameworks that can deal with
dependent-variable real-life optimisation problems. However, the previous section
presented some solution strategies that attempt to solve these problems using some
techniques from related areas of research. This section presents a critical analysis of
these strategies in order to select one for this research. This analysis is presented here
for both the categories of dependent-variable optimisation problems: those with and

those without dependency equations.
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6.3.1.1 Solving Optimisation Problems Having Known Dependency

Equations

The solution strategy presented in Figure 6.2 performs the two steps, as mentioned in
Chapter 2, involved in solving the dependent-variable optimisation problems.
However, the choice here is between using a TD or DA for identifying the dependent
variables and removing any cyclic dependencies. It is evident that a TD has better
visualisation capability but is difficult to be encoded in a computer language,

whereas the opposite is true for the DA.

6.3.1.2 Solving Optimisation Problems Having Unknown Dependency

Equations

Similar to the previous case, the solution strategies that are presented in Figure 6.3,
Figure 6.4 and Figure 6.5 are capable of performing the two steps, as mentioned in
Chapter 2, involved in solving the dependent-variable optimisation problems.
However, in this case as well, the choice is among the three data modelling
techniques (RA, NN and PM) that form part of these solution strategies. Table 6.1
gives a summary of the features of these techniques. These features are analysed
below to guide the selection of an appropriate data modelling technique for dealing

with the dependent-variable real-life optimisation problems.

¢ NNs: As can be seen from Table 6.1, the NNs require a priori knowledge
regarding the classification of variables as dependent and independent. Since this
information is rarely available in real-life problems, the choice of the NNs is
ruled out in spite of their other attractive features.

¢ PM: The PM is also a very powerful technique, requiring little information
regarding the nature of variables. As shown in Table 6.1, it also has a number of
other features that are required for dealing with real-life problems. However,
Figure 6.5 shows that the application of PM requires its use as a constraint, which
is difficult to implement. Furthermore, the application of PM to model multiple
interacting decision variables is a relatively new area of research, and as
mentioned in Chapter 2, a number of research issues need to be addressed before
it could be chosen for handling real-life problems having multiple real variables.
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¢ RA: Table 6.1 reveals that the multiple explicit equations that are identified by
the RA give good insight to the designer regarding the relationships among
decision variables. RA is also easy to implement and maintain. Further, it
addresses most of the above-mentioned limitations of NNs and PM. This leads to
the choice of RA in the proposed solution strategy.

Table 6.1: Comparison of Data Modelling Techniques

| Neural Networks |  Probabilistic
| (NNs) | Modelling (PM)
. . Very high (due to many
Medium High open issues)
Dependent on degree of | Dependent on number Dependent on choice of
RA equation of hidden units modelling method
Low High Medium

Explicit (for given

Explicit dependent variables)

Purely implicit

Built-in multiple
Multiple RA equations relationships (based on
choice of NN structure)

Built-in multiple
relationships

Through multiple . .
| repetitions of RA Not possible Not required

Medium (repetition Medium (repetition . .

required) required by most NNs) | -OW (updating required)

6.3.2 Proposed Solution Strategy

The above analysis leads to the choice of RA for the solution of those dependent-
variable problems in which the dependency equations are not known. Here, RA is
applied in such a way that it resolves all cyclic dependencies in the model. The
application of RA reduces the given optimisation problem to the one in which the
dependency equations are known. It is now required to identify the independent
variables that form part of the GA chromosome. Chapter 2 discussed two tools for
analysing the dependency equations in order to identify the independent variables
and remove any cyclic dependencies. Based on this analysis, the TDs are chosen here

for visual representation of relationships among decision variables and for removal
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of cyclic dependencies. Since the TDs are difficult to be encoded in a computer
language, the method of DA is used to automate the process of identification of
independent variables and removal of cyclic dependencies. This strategy uses the
strengths of both TDs and DA, while avoiding their weaknesses. It should be noted
that the removal of cyclic dependencies is not required when RA is used, since all the
dependency equations provided by it are free of these dependencies. The main

features of this novel solution strategy can be summarised as follows.

¢ This strategy takes a holistic view of variable dependence in order to propose a
complete framework for dealing with dependent-variable optimisation problems.

¢ It can deal with both the categories of dependent-variable optimisation problems:
those with and without dependency equations.

¢ It performs both the steps, as mentioned in Chapter 2, involved in solving these

optimisation problems.
¢ It uses existing tools and techniques for proposing this novel framework.

¢ It provides insight into the design model provided by the user, thereby giving
him/her the opportunity of removing any inconsistencies that arise in the form of

cyclic dependencies.

6.4 Proposed Genetic Algorithm for Variable
Dependence (GAVD)

In this section, the solution strategy that is introduced in the previous section is
implemented to propose a novel algorithm, called Genetic Algorithm for Variable
Dependence (GAVD), which is capable of solving real-life optimisation problems
that have dependence among their decision variables. Figure 6.6 gives a flowchart of
GAVD. As can be seen from this figure, the GAVD comprises of the following two
parts, corresponding to the two steps involved in solving the dependent-variable

optimisation problems.
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Gvert

» Chiective functions (F's) and constraints
« Variable bounds

Step 1 II] . Mjﬁnesetsdva’diivdues

Perform Regression Andlysis (RA),
considering first variable as dependent

I Set first regression coefficient to zero I#
- [
Set next regressian coeffidient to zero ’_L’l o Yy

All regression coeffidients (in
new equation) analysed?
Yes

Mark al RA variabies in Dependency Chart (DC),

as Dependent (D) or Independent (1)
<*>—"°' e
Al variables merked? considering next unmerked variable as dependent ———
Yoo and all unmarked or ‘| variables as independent
Y
[ Merk P as peck nodes of Dependency Tree (O1) |
[ )
| Decormpose first F |
v
Decarrpose first child node of F le
sz ) | : .
¥ 7 Decormpose dl dependent nodes
Decompose next child node of F
Decorrpose next F I—

Use GRGA as optinisation engine:
» GA chromosame defined by independent

N variables (e nodes of DT ar rerked ¥ in DC)
Optimisation I[l + Dependent variaties (merked D in DC)
calafated from dependency equations

* Bounds onindependent variables treated as
variable limits

» Bounds on dependent variables treated as
constraints

Figure 6.6: Genetic Algorithm for Variable Dependence (GAVD)

6.4.1 Step 1: Identification of Dependency Relationships

This step is omitted in the case when the dependency equations are given to the user.
In the other case, this step analyses the given data for identifying multiple
dependency equations, while keeping the computational expense as low as possible.
GAVD applies RA in such a way that it not only identifies all non-decomposable

relationships among decision variables but also removes any cyclic dependency in
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those relationships. To attain this, a strategy that ensures better ‘book keeping’ is

adopted. The salient features of this strategy are discussed below.

¢ The RA that is used in GAVD breaks down a regression equation until it
becomes non-decomposable. In this way, all the underlying relationships among

decision variables are identified.

¢ A Dependency Chart (DC), which is a tool for DA, is maintained to keep track of
the variables that are identified as dependent (D) and independent (I) in the
regression process. In this way, unnecessary repetitions of RA are avoided for the
variables that have already been identified as D or 1. This also ensures that the

regression equations do not involve any cyclic dependency.

¢ When determining the regression equation for a given variable, only those
variables that are marked as ‘I’ or are unmarked in DC are considered as
independent. This guarantees that the variables that are identified as ‘D’ are not
considered as independent in subsequent stages of the RA, thereby ensuring that
the regression equations obtained are as non-decomposable as possible. This also
reduces the number of variables that are considered at each stage of the RA.

6.4.2 Step 2: Classification of Variables

In both the categories of dependent variable optimisation problems (with and without
dependency equations), TDs are used for visual representation of relationships
among decision variables. Using the given dependency equations or the regression
equations determined in the previous step (as the case may be), a Dependency Tree
(DT) is constructed. This tree, which is a form of TD, gives a visual representation of
dependency relationships. The end nodes of this tree are the independent variables.
The DT also aids in the identification of cyclic dependencies that may be present in
the given dependency equations. A typical DT is shown in Figure 6.7. This DT

represents Equation 6.2.
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F=F(A4,B,C,D), Equation 6.2
A= f,(B,D,E),

B=f,(I),

C=f3(4),

D=f,(4,B,C,G) = f,(B,G),

E=f,(G, H).

B l é) | l
/ i
7585 /ééé@

Figure 6.7: An Example of a Dependency Tree (DT) (F: Objective Function and 4,
B, C, D, E, G, H, I: Decision Variables)

Since TDs are difficult to be encoded in a computer language, the method of DA is
used in both the categories of dependent variable optimisation problems, to automate
the process of identification of independent variables and removal of cyclic
dependencies. Here, the DC is used to identify the independent variables as those that
are marked as ‘I’. The construction of this chart also aids the identification and

removal of cyclic dependencies from the given dependency equations.

Finally, GAVD makes use of GRGA as the optimisation engine. Here, the
independent variables, identified in the previous step, define the GA chromosome.
For each alternative solution generated by the GA, the dependency equations are
used to calculate the values of the dependent variables. It should be noted here that
the bounds on independent variables are treated as variable limits and those on

dependent variables are treated as constraints.
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6.4.3 Computational Expense

Since GAVD uses GRGA as its optimisation engine, the basic operations of GRGA
also form part of GAVD. In addition, it uses the RA to model the relationship among
decision variables The RA used in GAVD has an overall complexity of O(n?) for the
determination of all dependency equations (where n is the number of variables in the
problem). Since GRGA, whose complexity is O(MN?), is a part of GAVD, the
overall complexity of GAVD becomes O(MN2+n2) (where M is the number of
objectives and N is the population size). Since in most cases the value of N is much
greater than that of n, the conclusion of this analysis is that both GAVD and GRGA
have nearly the same order of complexity (O(MN?)). However, due to the presence
of RA, the actual complexity of GAVD exceeds that of GRGA by an additional

amount of O(n?).

6.5 Worked Examples

To demonstrate the application of GAVD, the following optimisation problems,

which have dependence among decision variables, are considered here.

6.5.1 Worked Example 1

Consider the following optimisation problem (Equation 6.3).

Objective _Function=>F = F(x,,X,,%X;,X4,Xs), Equation 6.3
vxP <x, <x©,i=1..5,

Given = Multiple Sets _of _Variable _Values.

Suppose that the underlying relationships among decision variables, which the user is

trying to identify, are as follows (Equation 6.4).

x; = fi(x;,%3), Equation 6.4

x3 = (%, %y, Xs).
The steps involved in solving this problem are as follows.

¢ Determine the following equation for x; (Equation 6.5).
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x; =V (X, X5, X4, X5 ). Equation 6.5

No change is observed in correlation coefficient, when the regression coefficient
of x, is set to zero and the RA is performed. The new equation is as follows
(Equation 6.6).

X, =, (X5, Xy, X5)- Equation 6.6

Reduction is observed in correlation coefficient, when the regression coefficients

of x3, x4 and x;s are set to zero in steps and the RA is performed in each step.
Mark x; as ‘D’ and x3, x4 and x5 as ‘I’ in the DC (Table 6.2).
Determine the following equation for x, (Equation 6.7).

X, =V, (x5, %4, X5). Equation 6.7

Repetition of the above process for x; yields the same equation, as given above.

Mark x; as ‘D’ in the DC (Table 6.2). The variables that are marked as ‘I’ in the

DC are treated as independent variables.

Draw the DT for the problem (Figure 6.8). The nodes that are encircled in this
figure represent the independent variables.
Use GRGA as the optimisation engine considering the following.

> x3, x4 and x5 constitute the GA chromosome.

» Regression equations determine x; and x;.

» Bounds on x3, x4 and x5 are treated as variable limits.

> Bounds on x; and x; are treated as constraints.

Table 6.2: Dependency Chart (DC): Worked Example 1
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@Q\@ gfaé;

Figure 6.8: Dependency Tree (DI): Worked Example 1

6.5.2 Worked Example 2
Suppose the example optimisation problem mentioned above has the following
relationships among decision variables (Equation 6.8).
X = fi(xy, %), Equation 6.8
3 = fo (X5 Xs).

The steps for solving this problem can be derived from Figure 6.6, and are similar to
the ones listed for the previous problem. Table 6.3 and Figure 6.9 respectively
present the DC and DT for this example.

Table 6.3: Dependency Chart (DC): Worked Example 2

4//l
T N

Figure 6.9: Dependency Tree (DT): Worked Example 2
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6.5.3 Worked Example 3

Suppose the relationships among decision variables are as follows (Equation 6.9).
x, = f,(x,,%5), Equation 6.9
x4 = f5(x5)-

The steps for solving this problem are similar to the ones mentioned for the previous

two problems. Its DC and DT are given in Table 6.4 and Figure 6.10 respectively.

Table 6.4: Dependency Chart (DC): Worked Example 3

@5\@

Figure 6.10: Dependency Tree (DI): Worked Example 3

6.6 Performance Analysis of GAVD

Chapter 2 reported a complete lack of test problems in literature for simulating
variable dependence in multi-objective optimisation problems. However, in this
section, three test problems are created by introducing variable dependence in
existing multi-objective optimisation problems. These test problems are modified
versions of the test problems used in the previous chapter for the performance

analysis of GRGA. The three dependency equations that are introduced here are
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linear, cubic polynomial and cyclic. The first can be accurately modelled by the

quadratic RA used in GAVD, whereas the last two can only be approximated by it.

6.6.1 Experimental Results

GAVD is tested here using three test problems, as listed in Table 6.5. The objective
functions of these problems are plotted in Figure 5.9, Figure 5.10 and Figure 5.11
respectively, and their function search spaces are shown in Figure 5.12, Figure 5.13
and Figure 5.14 respectively. The features of these test problems make them
particularly difficult for multi-objective optimisation algorithms. In the absence of
any dedicated technique for handling variable dependence, this section compares the
performance of GAVD with two high-performing multi-objective optimisation

algorithms: NSGA-II and GRGA.

Table 6.5: Test Problems for Performance Analysis of GAVD

[GY=n
ROT S () =g(y)exp(-y1 / g(¥)
= 0.2x7 + 0.8x,
(Deb etal., 4 -0.3.0.3 - 2 _ x2 3 4
2000) [03.03] | g() =1+10+[yy —10coslmo)] | (kigire 6.11)
y=Rx
R = Rotation _ Matrix
= =1 02' 06'2 01'3
ZDT4 . fl(x)—xl xpy =1- .x3— .Jc3 - .x3,
(Zitzler et ’ )
al., 2000) 3 xi€[-5,5] fr(x)= g(x)[l—\/xl / g(x)] x, = (x3 +5)/10
i=2,..,n 2
g(x) =1+10+[xy —10 cos(4mx, )] (Figure 6.12)
.6
Sf1(x) =1~ exp(-4xy ) sin (47 ) %) =1-0.1x, —03x
ZDT6 2 3 3
(thzler et 4 [o 1] f2 (x) = g(x)[l - (fi (x) / g(x)) ] 0052 (27DC )_ 02x -0 2x2
al., 2000) ’ 37 T4 s
g(x) =1+ 9x(2)'25 (Figure 6.13)
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Figure 6.11: Dependency Relationship in ROT

Original  lendency Relationship ————
Approximated  lendency Relationship-————

0.8
0.6
0.4

0.2

Figure 6.12: Dependency Relationship in ZDT4

Original Dependency Relationship
Approxiniated Dependency Relationship

Figure 6.13: Dependency Relationship in ZDT6
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PFIV, PFDV & EPF —
GAVD Solutions o
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fl

(b)
Figure 6.14: GA VD Performance Analysis Using ROT Problem - (a) NSGA-II and

GRGA (b) GAVD (Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor
Dependent Variables: PFD V, Estimated Pareto Front: EPF)
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PFIV — -
PFDV& EPF
NSGA-i! Solutions
GRGA Solutions

0.5
0 0.2 0.4 0.6 0.8
fl
(a
|3 AV —
PFDV & EPF
GAVD Solutions
0.5
0 0.2 0.4 0.6 0.8

(b)
Figure 6.15: GA VD Performance Analysis Using ZDT4 Problem - (a) NSGA-II and

GRGA (b) GA VD (Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor
Dependent Variables: PFDV, Estimated Pareto Front: EPF)
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Exhaustive Search

35 PFDV&EPF
’ NSGA-II Solutions

GRGA Solutions
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(a)
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’ GAVD Solutions
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f1

(b)
Figure 6.16: GA VD Performance Analysis Using ZDT6 Problem - (a) NSGA-II and
GRGA (b) GAVD (Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor
Dependent Variables: PFDV, Estimated Pareto Front: EPF)
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The parameters for carrying out the tests reported in this section are chosen based on
their typical values that are used in literature for these test problems. These values

are as follows.

¢ ROT: 100 population size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover

distribution index and 50 mutation distribution index.

¢ ZDT4: 100 population size, 250 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with 10 crossover
distribution index and 50 mutation distribution index.

¢ ZDT6: 100 population size, 250 generations, 0.9 crossover probability, 0.1
mutation probability, and simulated binary crossover with 20 crossover

distribution index and 20 mutation distribution index.
The results obtained from these tests are shown in Figure 6.14 for ROT, Figure 6.15
for ZDT4 and Figure 6.16 for ZDT6. These results form the typical set obtained from
10 runs with different seed values. No major variation was observed in the results
with the change in seed values. To enable fair comparison, the termination condition
and re-distribution of final solutions are not applied here for reporting the GRGA
results. Also, unless otherwise stated, HDA is used with GRGA 1in all the tests.

6.6.2 Discussion of Results

Here, the performances of GAVD, GRGA and NSGA-II are measured, with respect
to the goals of multi-objective optimisation (convergence to the Pareto front and
diversity across it), using the convergence metric (y) and diversity metric (Deb et al,
2000) (Appendix C). The lower the values of these metrics, the better is the
performance of the given optimisation algorithm. The y and A values for the results
reported here are shown in Table 6.6. The results obtained from each of the three test

problems are discussed below.

EC Techniques for Handling Variable Interaction 154



Chapter 6. Variable Dependence

Table 6.6: Performance Metrics in ROT, ZDT4 and ZDT6

s b
NSGA-Il 0.002095 1.093412
A 0.000345 0.341113
0.008573 0.347539
0.042951 0.703519
0.249721 0.725295
0.025735 0.698345
1.853340 0.556320
2.294010 0.428945
0.029410 0.402756

6.6.2.1 ROT

Along with the challenges introduced by the objective functions, this problem ROT
also has a linear dependency relationship among its decision variables (Table 6.5).
However, this dependency relationship does not change the range of variables,
thereby maintaining the boundaries of the search space. Hence, in this case, the

Pareto front does not change with the introduction of variable dependence.

Since the GAVD uses a quadratic RA, it is able to accurately predict the dependency
relationship in this case. Therefore, the GAVD converges to the true Pareto front. As
shown in the previous chapter, the NSGA-II and GRGA converge to the original
Pareto front, which in this case coincides with the Pareto front in the presence of

variable dependence. Therefore, in this problem, all the three algorithms have very

small y values as shown in Table 6.6.

Here the GRGA exhibits good distribution of solutions in this problem. Since the
GAVD uses GRGA as the optimisation engine, it also gives a satisfactory
distribution of Pareto optimal solutions. However, NSGA-II lacks good distribution

in this case. These observations are supported by the values of A depicted in Table
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6.6. As shown in this table, the A values of GRGA and GAVD are similar, and are
about one-third of the A value for NSGA-IIL.

6.6.2.2 ZDT4

7ZDT4 is characterised by the presence of multiple local fronts. Hére, a cubic
dependency relationship is also introduced in this problem. The introduction of this
dependency restricts the values of X, in the [0.1,1] range, which is only a fraction of
its original range [-5,5]. This constraint on the range of x, changes the boundaries of

the search space, thereby modifying the Pareto front.

In this case, the cubic nature of the dependency relationship prevents its accurate
prediction by the quadratic RA used by the GAVD. However, since the equation that
it predicts (Equation 6.10) contains that value of x, (=0.5) in its range that defines the
modified Pareto front, the GAVD does not introduce an error in its estimation. Hence
in this case as well, the GAVD is able to converge to the modified Pareto front,
thereby producing very small values of y. Here, the GRGA converges to the original
Pareto front that does not take into account the dependence among decision
variables. Since the introduction of variable dependence modifies the Pareto front,
the results produced by the GRGA lie in an infeasible belt. Therefore, the GRGA
gives high values of y in this problem (Table 6.6). Similar to the results shown in
Chapter 2, NSGA-II gets trapped in a local front in this problem. However,
incidentally in this problem, this particular local front has assumed the role of the
global front due to the modification of the search space by variable dependence. This
means that here NSGA-II has converged to the modified Pareto front, which gives it

a low value of y, of the same order as that obtained from GAVD.
x, =0.7375-0.0875x, —0.0075x;, V0 < x, <1. Equation 6.10

Furthermore, since this problem does not exhibit any difficulty with respect to the
diversity of solutions across the Pareto front, all the three algorithms (NSGA-II,
GRGA and GAVD) provide satisfactory distribution of solutions. Therefore, in this

case, all the three algorithms have nearly the same values of A.
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6.6.2.3 ZDT6

This problem has a biased search space, and a cyclic dependency equation among its
decision variables. The introduction of this dependency restricts the values of x; in
the [0.2,1] range, which is only a sub-set of its original range [0,1]. Therefore,
similar to the previous problem, the introduction of variable dependence modifies the

search space and the Pareto front in this case.

Since the given dependency equation is cyclic in nature, the GAVD is not able to
estimate it accurately. The use of quadratic RA in the GAVD makes it see this cyclic
dependency equation as shown in Equation 6.11. However, since the range of x;
defined by this equation is also [0.2,1], the approximation that is introduced by the
quadratic RA does not artificially modify the search space and the Pareto front.
Therefore, in this problem, the GAVD converges to the modified Pareto front, giving
very small values for y. However, both GRGA and NSGA-II cannot see the
dependency relationships, making them converge to the infeasible regions. It is worth
noting here that the GRGA exhibits better convergence to the original Pareto front as
compared to NSGA-II. However, it gives a higher value of y than NSGA-II since the
front located by it has a higher average distance from the modified Pareto front as

compared to that located by NSGA-IIL.
x, =1-0.4x, —0.2x, —0.2x],V0 < x, <1, VO <x, <1. Equation 6.11

Similar to the previous case, all the three algorithms (NSGA-II, GRGA and GAVD)
perform satisfactorily in this case with respect to the distribution of solutions.
Therefore, the A values of all these algorithms are similar, with NSGA-II having

slightly inferior value as compared to the other two algorithms.

6.6.3 Summary of Results

In addition to the above, the GAVD identifies the following relationships among the
decision variables corresponding to the Pareto-optimal solutions. Comparison with
Table 6.6 reveals that the GAVD has been able to accurately locate the Pareto front

in each case.
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ROT: Estimated Pareto front corresponds to y, = 0; with y; taking values in its

range.

ZDT4: Estimated Pareto front corresponds to x, = 0.5; with x; taking values in its

range.

ZDT6: Estimated Pareto front corresponds to x, = 0.2; with x; taking values in its

range.

It is observed that the proposed algorithm enhances the variable dependence handling

capabilities of GRGA. The tests reported in this section lead to the following general

conclusions regarding the performance of GAVD.

14

Since GAVD uses GRGA as the optimisation engine, it inherits all its features,
listed in Chapter 5, for effectively dealing with inseparable function interaction in
multi-objective optimisation problems. Therefore, GAVD is able to satisfy the
two goals of multi-objective optimisation: convergence to the Pareto front and

maintenance of diversity across the front, in complex problems.

GAVD attaches an additional module to GRGA for dealing with variable

dependence in optimisation problems.

The capability of GAVD to estimate the dependence among decision variables is
limited by the degree of the RA that it uses. Here, the RA that is used is quadratic

in nature.

6.7 Summary

This chapter has proposed a new algorithm for dealing with variable dependence in

multi-objective optimisation problems. As can be seen, GAVD meets all the

objectives of its development set at the beginning of this chapter.

14

GAVD uses a generic methodology for dealing with variable dependence. This
methodology can be applied to a vast spectrum of optimisation problems, limited

only by the degree of the RA that is being used.

GAVD is completely modular in nature. So, it can be used to enhance the
capability of handling variable dependence of any multi-objective optimisation
algorithm.
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¢ GAVD exhibits the capability to handle a wide variety of dependent-variable

multi-objective optimisation problems in terms of satisfying its two goals.
» Convergence to Pareto front.
» Satisfactory distribution of Pareto-optimal solutions.

This chapter has achieved the following.

¢ It has identified the challenges that variable dependence poses for multi-objective
optimisation algorithms.

¢ It has devised a generic solution strategy for handling this interaction in multi-
objective optimisation problems. '

¢ It has proposed a new multi-objective optimisation algorithm, called Genetic

Algorithm for Variable Dependence (GAVD), based on the solution strategy.

¢ It has analysed the performance of the proposed algorithm using existing test
problems.
The previous chapter and this chapter have respectively proposed two optimisation
algorithms (GRGA and GAVD) for handling the two categories of variable
interaction: inseparable function interaction and variable dependence. However,
there is a need to develop test beds that can be used for controlled testing of the
proposed optimisation algorithms on a variety of cases that are difficult to obtain
from real-life. The next chapter aims to develop this generic, parametric test bed that
can handle objective functions, constraints and variable interaction in a single

framework.
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7 DEVELOPING A TEST BED FOR
ENGINEERING DESIGN OPTIMISATION

The development of optimisation algorithms requires systematic and controlled
testing. However, since it is difficult to find a wide variety of real-life cases to
support this, it is important to develop test beds that have the required features and
enable controlled testing of algorithms. This research concentrates on the
development of techniques for handling multiple objectives, constraints and
interaction among decision variables in engineering design optimisation problems. It
was identified in Chapter 4 that there is a need to develop a generic, parametric test
bed that can simulate the complexity introduced by both the objective functions and
constraints in a single framework. This test bed should also be able incorporate the
two types of variable interaction: inseparable function interaction and variable
dependence. The aim of this chapter is to propose a test bed that meets the
requirements set above. This chapter is organised in two main parts. In the first part,
it proposes a generic, parametric test bed for controlled simulation of multi-objective
optimisation problems, having constraints and inseparable function interaction. In the

second part, this test bed is extended to incorporate dependence among decision

variables. In short, this chapter attempts to achieve the following.
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In addition, the proposed test bed is expected to possess the following features.

o i o e AT T oo

This cﬁpter propose§ two test bedé, Reverse Engiﬁeered Test Be(RmETB and
RETB-II. The parameters that are provided in the function prototypes of these test
beds are summarised in Table 7.1, Table 7.2 and Table 7.3.

7-1 Methodology for Test Bed Development

This chapter proposes a test bed for systematic and controlled simulation of multiple
objectives, constraints and variable interaction in optimisation problems. The
methodology that is adopted here for developing this test bed is given in Figure 7.1,

and is explained below.

The first step in the development of a test bed for simulating multiple objectives,
constraints and variable interaction is to identify the challenges, as discussed in
Chapter 2, Chapter 5 and Chapter 6, which these features of engineering design
optimisation problems pose for optimisation algorithms. These challenges are then
translated into functions and their parameters that need to be controlled for attaining
a 'truly’ tuneable test bed. A strategy for the development of a tuneable test bed is
evolved and is applied to develop the proposed test bed. The first set of parametric
function prototypes aré then developed with an aim of giving full control to the user

over the complexity of proposed test problems. These prototypes are modified
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iteratively until they provide the functions and parameters required in the proposed

test bed for systematic and controlled simulation of multiple objectives, constraints

and variable interaction.

Table 7.1: Summary of Parameters in S, D and I Functions of RETB

Meaning Meaning Meaning
M Number of objective Kk Number of variables n Number of decision
functions defining D variables
a General shape of S/ M. mgﬁ E;; Sgggglzligto k Number of variables
i i . .
Pareto front sub-divided defining D functions
Number of parts into
Cu S::gotr%iﬁzﬁtml T which variable space is b; Height of cosine waves
Y sub-divided
b Height of cosine 2. Location of exponential c Number of cosine
d waves 4 function i waves
c Number of cosine b Shape of exponential M Number of deceptive
T 1 waves 7| function " | fronts
Spacing between . .
; - . Added to sum of Height of deceptive
di \ZC;T\IISeeSCUtIVG cosine R; exponential functions di exponential function
e General location of a Location of D for purely Small positive constant
Pareto front k unbiased Pareto fronts € number
M Number of objective e Range of values taken
functions by / function

Number of feasible

Number of feasible

Number of feasible

J belts J belts J holes
S.'Ze.’ logatlon and Slope of constraint Location of constraint
distribution of Mi | poundaries Ei boundary
feasible regions
gigt?i’t)lgt?g::oor} and E, Location of constraint 2 Location and shape of
- i -
feasible regions boundaries constraint boundary
Number of objective E, | Location of constraint P Location and shape of
functions 4 boundaries b constraint boundary
M Number of objective M Number of objective
functions functions
aj a; S function parameter
Same values as in c c
definition of S i i
b | s function parameter bi_| Cyalical nature of
ci ci constraint boundary
di di
e e General location
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Table 7.3: Summary of Parameters in RETB-11

unction
Parameters Sl P * “Meaning
Ny Number of dependent variables
Nindg,i Number of independent variables defining / dependent variable

N; Total number of independent variables

n Number of decision variables

Qi Number of parts into which variable space is sub-divided

P Polynomial

Ciijk Flag to control multi-modality

bk Height of cosine waves

Cijx Number of cosine waves

dijx Spacing between consecutive cosine waves

eix General location

Caijk Flag to control deception

Miix Number of deceptive optima

ik Height of deceptive exponential function

Piik Value of the decision variable corresponding to deceptive optimum.
£ small positive constant number
[ Mean of normal noise distribution in dependency relationship
o Variance of n.or(nal noise distribution in dependency relationship (cis

standard deviation).

Identification of challenges posed by
multiple objectives, constraints and
variable interaction

v

Identification of functions and _
parameters required in the test bed

¥

Devising strategy for development
of proposed test bed

v

Development of proposed test bed

v

Development of parametric function
prototypes for the test bed

¥

Comparison against initial »
requirements

Comparison

Test bed meets
requirements?

Figure 7.1: Methodology for Test Bed Development
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7.2 Identification of Test Bed Parameters

This section identifies the parameters that are required to control the complexity
introduced in an optimisation problem by multiple objectives, constraints and
interaction among decision variables. Here, the identification of test bed parameters
is carried out based on the challenges, as discussed in Chapter 2 and Chapter 5,
which the above-mentioned features of real-life optimisation problems pose for
optimisation algorithms. The parameters that are spotted in this section form the

basis for the construction of a tuneable test bed in the next section.

There are primarily two goals that a multi-objective optimisation algorithm must
achieve: convergence to the Pareto-optimal front and maintenance of population
diversity across the front. In view of these two goals, the test bed parameters can be
classified into two broad categories. The following discussion identifies the
parameters in each of these categories that need to be controlled for attaining a
‘truly’ tuneable test bed. Table 7.4 provides a summary of the discussion in this

section, including a detailed list of these parameters.

7.2.1 Convergence to Pareto Front

A multi-objective optimisation problem may have features that obstruct convergence
to the Pareto front. In general, these obstacles may lie in the entire search space, and
" as discussed below, they may be generated both by constraints and objective

functions.

¢ Direct Hindrance to Convergence: The presence of constraints in a multi-
objective optimisation problem may create infeasible regions, causing direct
obstacles to convergence. In order to have control on the complexity introduced
by this feature, it is essential for the test bed to provide suitable parameters in the
constraint function (C) for governing the features of these infeasible regions.

¢ Indirect Hindrance to Convergence: The inherent features of some objective
functions create indirect hindrance to convergence. In general, the relationship(s)
among the decision variables of Pareto-optimal solutions creates obstacles in

convergence by introducing multiple local fronts that compete with the global
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front. In order to exercise control over this feature, the test bed should have a
dedicated interaction function (), with parameters to control the characteristics of

these local fronts.

Table 7.4: Identification of Test Bed Parameters

Direct Hindrance to Convergence

» Caused by constraints.

o Number, size, location, distribution and shape of
infeasible regions.

Controlled by Constraint Functions (C)

Indirect Hindrance to Convergence
¢ Caused by multi-modality of objective functions.

o Number, location and distribution of deceptive

o Number, location and distribution of multiple fronts.

Direct Hindrance to Diversity

(a) General Features of Pareto Front
» Caused by objective functions.

¢ Shape and location of Pareto front.
Controlled by Shape Functions (S)

(b1) Discontinuity of Pareto Front

» Caused by objective functions.

o Number, size and distribution of disconnected
Pareto regions.

» Size of transition from continuous to discontinuous

fronts.
Controlled by Interaction Functions (1)

feasible regions.
Controlled by Shape Functions (S)

(b2) Discontinuity of Pareto Front

¢ Caused by constraints.

* Number, size, location, distribution and shape of
infeasible regions.

Controlled by Constraint Functions (C)

(c) Composition of Pareto front

e Caused by constraints.

o Number, size, location, distribution and shape of
constraint boundaries.

« Proportion of original front vis-a-vis constraint
boundaries.

Controlled by Constraint Functions (C)

Indirect Hindrance to Diversity

o Caused by objective functions due to bias towards
certain regions of Pareto front.

« Number, location and extent of bias.

Controlled by Diversity Functions (D)

7.2.2 Maintaining Diversity across Pareto Front

There may be features in multi-objective optimisation problems that create obstacles
in maintaining diversity across the Pareto front. In most cases, these obstacles lie
close to the Pareto front, and as described below, they may be created both by

constraints and objective functions.

¢ Direct Hindrance to Diversity: The shape of the Pareto front has a direct impact
on the difficulty of maintaining diversity of Pareto-optimal solutions. This relates
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to the general features of the front, including its shape and location, and to the
degree of discontinuity in the front. Further, the maintenance of diversity is also
obstructed in cases where the Pareto front is composed of a combination of
original front and constraint boundaries. The shape and location of the front are
governed by the objective functions, the front composition by the constraints and
the front discontinuity by both objective functions and constraints. The test bed
should have a separate shape function (S) to control the general characteristics of
the Pareto front, including the features of its disconnected regions. Further, the
constraint function C in the test bed should have parameters for controlling the

composition and discontinuity of the Pareto front.

Indirect Hindrance to Diversity: Some objective functions have an inherent bias
towards particular regions of the Pareto front. In order to control this indirect
hindrance to diversity, the test bed should provide a dedicated diversity function
(D) to control the nature of bias in the Pareto front.

In order to construct problems that have dependence among their decision variables,

additional parameters are required that represent the challenges that variable

dependence poses for optimisation algorithms. These challenges, along with the

required parameters, are outlined in Table 7.5 with respect to the two objectives of

multi-objective optimisation (convergence to Pareto front and maintaining diversity

across it).

Modification of search space

Table 7.5: Additional Test Bed Parameters to Incorporate Variable Dependence

Modification of search space

Number, location and distribution of multiple o Number, location, size and distribution of
fronts. disconnected regions.
Number, location and distribution of deceptive e Number, location and extent of bias (non-linearity).

fronts.

The next section proposes a test bed that creates optimisation problems that do not

have any dependence among decision variables. In later parts of this chapter, the test

bed proposed in the next section is extended to incorporate variable dependence.
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7.3 Proposed Test Bed

This section proposes a parametric test bed based on the factors identified in Table
7.4. This test bed is designed to simulate multi-objective optimisation problems,

having constraints and inseparable function interaction (Tiwari ef al., 2001c).

7.3.1 Strategy for Development of Proposed Test Bed

Table 7.4 reveals that convergence to the Pareto front is obstructed by constraints
and by local fronts in the search space that are generated due to the relationship(s)
among the decision variables of the Pareto-optimal solutions. Similarly, the shape of
the front, constraints and inherent bias in the search space influence the difficulty of
maintaining diversity of solutions across the Pareto front. In short, the design of a
multi-objective optimisation test problem requires controlling the shape of Pareto
front, relationship(s) among decision variables of the Pareto-optimal solutions,
inherent bias across Pareto front and nature of constraints. Therefore, the ideal
scenario for test bed development would be to have separate functions for controlling
each of these features. These functions and their intended roles are summarised

below (Table 7.4).

¢ Shape Function (S): This function should be able to directly specify the shape of

Pareto front.

¢ Diversity Function (D): This function should have the capability of controlling
the inherent bias in the problem towards certain regions of the search space and
towards certain parts of the Pareto front.

¢ Interaction Function (/): This function should be able to specify the interaction
among decision variables of the Pareto-optimal solutions, thereby controlling the

traps created by multiple local fronts in the search space.

¢ Constraint Function (C): This function has two purposes. It should be able to
provide controlled hindrance to convergence of solutions towards the Pareto front
and to diversity across the front.

In order to attain maximum control over the complexity of test problems, one of the

best alternatives would be to begin with an equation for the Pareto front, and then
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derive the objective functions based on this equation. This would also enhance the
visibility of the problems thus constructed. The discussion that follows analyses the

feasibility of this strategy.

In principle, there exist an infinite number of multi-objective optimisation problems
that correspond to a given Pareto front. The aim here is to identify a particular
problem set whose complexity can be varied in a controlled fashion using functions
C, I S and D. A simple multi-objective optimisation problem, having f; and f; as the
two objective functions, is used here as an example. Here, the given Pareto front is

defined in terms of the shape function S (Equation 7.1).
S =8(f)- Equation 7.1

Suppose an optimisation problem is generated using an arbitrary function D that
defines f; (Equation 7.2). Substituting it in Equation 7.1 gives corresponding f>
(Equation 7.2). Since f; is defined as a function D of decision variables, any bias in
function D influences the diversity of solutions across the Pareto front. Therefore, D
plays the part of diversity function in this case. The major drawback of this strategy
is that its search space is limited only to the Pareto front, since any arbitrary

combination of decision variables always gives a point lying on the front.

fi =D(55), ' Equation 7.2
1, =8(f,) =S(DRX)).

An effective way of handling this limitation is to re-define the problem such that f; is
expressed as a product of two functions, S and 7, where the function [ is defined in
terms of those decision variables that are not included in f; (Equation 7.3). In this
way, the simultaneous minimisation of f; and f; requires the function 7 to be
minimised, which drives the search towards the Pareto front. Therefore, the Pareto
front of this problem (Equation 7.3) corresponds to the minimum of function I (Zyin)-
Hence, the selection of a multi-modal function 7 would create traps (local fronts) in
the search space, thereby obstructing convergence to the global Pareto front. Further,
in order to remain on the Pareto front the decision variables require to satisfy the

relationship I = I,,;,. Therefore, I plays the role of interaction function in this case.
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Minimise = f, = D(x,,...,X,,), Equation 7.3

Minimise = f, = S(f; )% I(X,41 55 %,)s
Pareto _ front = f, =1, xS(f}).

To ensure the generality of the proposed test bed, the shape function S should be
expressed as a function of both f; and I. This puts a restraint on the test bed by
requiring S to be a monotonically non-decreasing function of / for a fixed f;. This
ensures that the global Pareto front occurs for the global minimum of 7 (/). In this
way, a generic multi-objective optimisation test bed can be achieved in which the
shape of Pareto front, the relationship(s) among variables that defines this front and
the hindrance to diversity across the front are explicitly controlled by functions S, 7
and D respectively. This test bed and its Pareto front are given in Equation 7.4. The

formal definition of this test bed is presented in the discussion that follows.

- Minimise = f, = D(x,,...,X,,), Equation 7.4
Minimise = f, = S(f;,1)%x I(X,415-s%,)»
Pareto _front = f, =1, xS(fi,4 i )-

7.3.2 Proposed Reverse Engineered Test Bed (RETB)

The strategy for test bed development described above explains how a multi-
objective optimisation problem can be reverse engineered to correspond to a given
Pareto front, relationship(s) among variables corresponding to the Pareto-optimal
solutions and hindrance to diversity. Therefore, the proposed test bed is termed here
as Reverse Engineered Test Bed (RETB). RETB and its equation for Pareto front are
formally stated in Equation 7.5. For the sake of simplicity, the three RETB functions
D, S and I are chosen such that they take only positive values in the search space.
Further, to ensure that the Pareto front corresponds to I, S is chosen to be a
monotonically non-decreasing function of I for a fixed f;. Also, the chosen $ should
monotonically decrease in f; for a fixed /, if a continuous Pareto front is desired. The
roles of functions D, S, I and C in simulating the complexity of multi-objective

optimisation problems are discussed in Section 7.3.1, and summarised in Table 7.4.
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Minimise = f, = D(X"), Equation 7.5
Minimise = f, = S(f,,1)xI(Z"),

Constraints => C=c;(X)20,j=1,2,...,J,

xUx"= X =Vector_of decision_variables,

¥Nx"=¢,

Pareto _front = f, =1 . xS(fi,dpin )

Minimise = f, = D,(X"), Equation 7.6
Minimise=> f, =D, ("),

Minimise=> f, = S(f;, f,,I)x I(""),

Constraints = C=c;(x) 20, =1,2,...,J,

FUx"Ux"'=X =Vector_of decision_variables,

PNX"=¢,

NE"=4,

Pareto _front = f, =1, XS(f15 fordmin )

RETB can also be extended to more than two objectives. The RETB scheme and its
Pareto front for a three-objective optimisation problem are stated in Equation 7.6.
Here, the functions D;, D;, S, I and C carry similar interpretations as in the two-

objective case.

7.4 Function Prototypes for RETB

This section develops parametric function prototypes for RETB, which give full
control to the user over the complexity of proposed test problems. The basic forms of
these prototypes are derived from existing test functions in optimisation, and from
known equations in other areas of research. These basic forms are customised here to
incorporate the parameters that are required for controlling the complexity
introduced in the optimisation problems by multiple objectives, constraints and

variable interaction.
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7.4.1 Diversity Function (D)

Equation 7.7 defines the function prototype for diversity function D. The main

features of this function prototype are listed below.

¢ The main purpose of diversity function D is to introduce bias towards certain
regions of the search space, and towards certain parts of the Pareto front.
Therefore, the exponential function, due to its inherent non-linearity, is chosen
here for defining the function D. This introduces an inherent bias in the problem
towards certain regions of the search space. This leads to test problems with

biased Pareto fronts.

¢ In order to provide scalability with respect to number of biased Pareto regions,
the test bed sub-divides the variable space and defines different exponential
functions for each sub-space. This explains the use of different parameters in the
D function for each of the sub-spaces. In this way, Equation 7.7 is able to
generate multiple biased Pareto regions, having pre-defined locations and
strengths.

¢ The parameter of the exponential function is the product of a constant term and a
function of x;. The constant part controls the strength of bias introduced by the D
function whereas the variable part is designed in such a way that the exponential

function sees it ranging from O to 1 in each of the sub-spaces.

¢ The exponential part of the D function is multiplied by a parameter and the result
is added to another parameter. Both these parameters control the location of bias
in the search space. The choice of these parameters also ensures that the overall
D function has a maximum value of 1. As will be seen later (Equation 7.10), this
simplifies the equation of the RETB Pareto front.

The parameters used in Equation 7.7 and their influences on the complexity of RETB

are discussed below.

¢ M: It is the total number of objective functions in the problem.

¢ [k Ttis equal to the number of variables defining D. Higher values of k contribute
to the biased nature of the search space.

¢ M; 1t is the number of equal parts into which the span of i" variable is sub-

divided. M; influences the total number of biased regions in the Pareto front.
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<>

T: 1t is the total number of equal parts into which the whole variable space is sub-
divided. Therefore, T is equal to the total number of biased regions in the Pareto

front.

<

a;;: This parameter influences the location of exponential function defined for the
;™ part of the i variable. In this way, a; directly controls the location of bias in
the Pareto front.

¢ b;: This influences the shape of exponential function defined for the j’h part of the
i" variable. A higher value of b; implies a stronger contribution to the bias by the

corresponding a;;.

¢ SVSS;: This indicates the i” Sub-set of Variable Search Space (SVSS) of the
problem. All SVSSys are mutually exclusive and their union gives the whole
Variable Search Space (VSS).

¢ R;: This is a constant value that is added to the sum of exponential functions
corresponding to each S¥SS;. The role of R/’s is to ensure that the biased regions
on the Pareto front occur at required locations. Further, R; values may also be
chosen such that the maximum value of the corresponding objective function
(fima) is 1. As will be seen later (Equation 7.10), this simplifies the equation of
the RETB Pareto front.

kM, -, Equation 7.7
=ZZ D,(F)+R("),VI=1,... M ~1,V0 < x,..., 3, <1,
i=l j=1

M, )|y U=D
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) ewy)| T L u, ",
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1

(-1
D,-,()OV<M,

=1y J
Dij(.x )—O,in ZE,
R(F') =R, Vx'e SVSS,,

T
VSs =\ svss,,

i=1
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Equation 7.7 can also be simplified to Equation 7.8, in case of problems having

purely unbiased Pareto fronts.

Dix")= [l-x,V/=1,,.M-1,VO<x <I1. Equation 7.8

Figure 7.2: An Example ofDiversity Function D (k=2; Mi=2,2; T=4;
aij=0.1,0.1,0.1,0.2; 1,5,1,3; R*0,0.2,0.5,0.7)

Suppose it is required to construct a D function that ranges from 0 to 1, and exhibits
four biases at the values of 0.2, 0.5, 0.7 and 1.0 in increasing orders of their
strengths. Figure 7.2 depicts this diversity function D. The main features of this

function are as follows.

¢ Since only one D function is defined here, the problem has only two objective
functions {M= 2).

¢ The given function D is defined by two variables (k = 2), and the span of each of
these variables is divided into two equal parts (M = 2,2). This implies that the
whole search space is divided into 4 equal parts (7 = Mj x M:). The given
function D takes different parameters and hence different forms in each of these
sub-spaces (SVSSj's).

¢ The values ofay (= 0.1, 0.1, 0.1 and 0.2) and Ri (= 0, 0.2, 0.5 and 0.7) are chosen
such that the biased regions occur at D values 0f 0.2, 0.5, 0.7 and 1.0. The choice
of'these parameters also ensures that the overall D function has a minimum value
of 0 and a maximum value of 1. As mentioned earlier, the choice of Dnux (or

fimax) equal to 1 simplifies the equation ofthe RETB Pareto front.

¢ The values of by (= 1, 5, 1 and 3) ensure that the maximum bias occurs at the D
value of 1, followed by the biases that correspond to the D values of 0.7, 0.5 and
0.2 in that order.
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7.4.2 Shape Function ()

The function prototype for shape function S is given in Equation 7.9. The main

features of this function prototype are listed below.

¢

As evident from this equation, the function S is monotonically non-decreasing
with respect to I for fixed f7’s. This ensures that the Pareto front corresponds to
Lin, thereby preserving the basic philosophy of RETB.

The S function should monotonically decrease in fi's for a fixed 7, if a continuous
Pareto front is desired. In order to attain a discontinuous Pareto front, the
function prototype of S relaxes this condition by using a cosine function that
gives it a cyclical shape. This creates a discontinuous Pareto front since S is no
longer monotonically decreasing in f’s for a fixed I. However, the function
prototype of S provides a flag variable that is multiplied to the cosine function.
Hence, the discontinuity in S could be switched off by setting this flag variable to
0.

The parameter of the cosine function is the product of a constant term and a
function of f;. The constant term controls the number of discontinuous fronts and

the function of f; controls the spacing between the discontinuous fronts.

The cosine function is multiplied by a function of f; that controls the variations in

the sizes of the discontinuous fronts.

Added to the cosine function and its multiplier is another function of f; that

influences the general shape of the Pareto front (concave/convex/linear).

Finally, the S function has a constant term that influences the general location of
the Pareto front.

Following is the list of parameters used in Equation 7.9, along with their influences

on the complexity of RETB.

¢ M: This is equal to the total number of objective functions.

¢

a;: This parameter directly influences the general shape (with respect to f;) of S
and that of the corresponding Pareto front. A value of a; greater than 1 gives a

concave front and a value less than 1 gives a convex front.
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b;: It determines the height of cosine waves with respect to the i ' objective
function. A higher b; implies more variations in the sizes of the disconnected

Pareto regions.

c;: It is equal to the number of cosine waves in the range of fi. This gives the

number of disconnected Pareto regions in the optimisation problem.

csi: It is a flag to indicate whether the optimisation problem is discontinuous with
respect to f. cy; takes a value of 0 for continuous fronts and a value of 1 for

discontinuous fronts.

d;: This parameter influences the spacing between consecutive cosine waves in
the fy-f; space. Higher values of d; lead to more closely packed regions.

e: It decides the general location of Pareto front. Higher values of e push the
Pareto front towards higher values of fy.

b; X di: This product gives an indication of the shape of transition from
continuous to discontinuous feasible regions in the fi-f; space. Higher values of
this product indicate the presence of a long narrow feasible tunnel leading to the
Pareto front.

-
lfimax
S(ﬁ,'-,fM_1,1)=2(M—1)e—2 Cu( / ) :

i=1 Zfimax
di
cos 27rc,.( / j
S o

Equation 7.9

Vo< f,

<fo Wizl

M 1.

The equation of Pareto front, for all fime and Ly equal to 1, is given in Equation

7.10.

i =20 -e- S (1)

VO< £, <1,Vi=1,.,

"+, (f cos(27zc (f )d )l

M -1.

Equation 7.10
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Figure 7.3: An Example ofShape Function S (M=3; ai=2,0.4; cjj=J,J; bi=14;
Ci=4,7;, d,=2,4; e=8)

Suppose it is required to construct a shape function § for a problem that has 3
objective functions. This function S is required to be concave with respect to the first
objective function and convex with respect to the second. It is required to have 40
discontinuous Pareto surfaces arising from 5 and 8 discontinuous fronts
corresponding to the first and second objective functions respectively. Also, the
Pareto surfaces with respect tof2 are required to be closer and with larger variations
in their sizes as compared to those with respect tof. This shape function § is plotted

in Figure 7.3. The main features of'this function are as follows.

¢ Since this problem has three objective functions, M takes a value of 3.

¢ In order to have concave and convex shapes for S with respect to the first and
second objective functions respectively, ai takes a value of 2 (greater than 1) and

ti2 takes a value 0f 0.4 (less than 1).

¢ Since in this case the Pareto front is discontinuous with respect to both the first
and second objective functions, the values of cu and c/j are both chosen to be 1.
In order to attain 5 and 8 discontinuous fronts corresponding to the first and
second objective functions respectively, ci takes a value of 4 (=5-1) and c2
takes a value of 7 (= 8 - 1). This gives a total 0of40 (= 5 x 8) discontinuous Pareto

surfaces.

¢ A higher value of b2 (= 4) than bi (= 1) produces discontinuous Pareto surfaces

that have more variations in their sizes with respect to f2 than//. Similarly, a
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higher value of d> (= 4) than d; (= 2) leads to discontinuous Pareto surfaces that

are more closely packed with respect to f; than f;.

¢ ¢ is arbitrarily given a value of 8.

7.4.3 Interaction Function (/)

Equation 7.11 gives the function prototype for the interaction function I. The main

features of this function prototype are listed below.

¢ Since this function needs to be minimised to obtain the Pareto front, a cosine
function is used in its definition to obtain multiple fronts in the function search
space. The parameter of this cosine function controls the number of local Pareto

fronts in the search space.

¢ To ensure that these fronts are created at different locations, an exponential
function is multiplied to the cosine function. The parameter of this exponential

function controls the concentration of local Pareto fronts in the search space.

¢ Similarly, deception is introduced in the function search space using an
exponential function that exhibits sudden drop at a given value of decision

variable, but remains zero otherwise.

¢ The above-mentioned function is multiplied by another exponential function that
prevents the deceptive fronts from coinciding with each other. The parameter of
this exponential function controls the concentration of deceptive Pareto fronts in
the search space. Equation 7.11 also provides parameters to control the number

of deceptive fronts.

¢ Finally, the I function provides a parameter that allows I, to be 1. As evident
from Equation 7.10, this simplifies the equation of Pareto front.

The various parameters used in Equation 7.11, together with their significance, are

discussed below.

¢ n: This is equal to the total number of decision variables in the problem.

¢ k: This is equal to the number of variables that define the D functions (Dy,...,
Dyy.1; where M is the number of objective functions in the problem). Therefore,
these k variables form the X’-space and the remaining (n-k) variables form the
X’’-space that defines the 7 function.
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¢ b;: This parameter controls the height of cosine waves with respect to the i"
decision variable. A higher value of b; implies greater concentration of fronts

towards the centre of function search space.

¢ ¢ It is equal to the number of cosine waves in the range of x;. This gives the

number of local Pareto fronts in the function search space.

¢ M;: This is equal to the number of deceptive fronts corresponding to the variable
Xi.
¢ d;: This parameter controls the height of the deceptive exponential function

corresponding to the i™ decision variable. A higher value of d; implies that the
deceptive fronts are farther away from each other.

¢ e: This controls the range of values taken by the I function. e should be chosen
such that I,;, is equal to 1. As evident from Equation 7.10, this simplifies the

equation of Pareto front.

¢ & This is a small positive constant number used with the deceptive exponential

function.

1(55”) =%¢— i[exp(_bixi) COS(7Z'CI.JC,. )]_ Equatzon 7.11

i=k+1

2 4 "M,
ZZ exp(d,x,)exp| —| ——— ,VO<x, <LVi=k+1,.,n
£

i=k+1 j=1

Equation 7.11 could be simplified to Equation 7.12 to represent problems having a

single Pareto front, with no biased region parallel to the Pareto front.
I(Xx")=2e+x,,V0<x, <1. Equation 7.12

Suppose an interaction function [ is required to be constructed for a problem that has
2 variables, with one variable defining the I function. The function 7 is required to
have 5 local Pareto fronts that have low concentration, and 3 deceptive fronts that are
far apart from each other. Figure 7.4 depicts this / function. The main features of this

function are as follows.
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¢ Being a 2-variable problem, the parameter n takes a value of 2 in this case. Since
one variable defines I, the value of £ is 1 (= 2 - 1), which is the number of
variables that define the D functions.

¢ The parameter ¢; is given a value of 4 to attain 5 (= 4 + 1) local Pareto fronts.
The value of b, is chosen to be 1 to have low concentration of these fronts.

¢ The parameter M; is given a value of 3 to attain 3 deceptive Pareto fronts. The
value of d; equal to 2 makes the deceptive fronts far apart from each other.

¢ The value of e is chosen to be 4.38 so that I,,;, takes a value of 1. As mentioned
earlier, this simplifies the equation of the Pareto front.

¢ Finally, the choice of gequal to 0.004 is arbitrary.

10

8/—\\{\/%

|

x2

Figure 7.4: An Example of Interaction Function I (n=2; k=1; bi=1; ¢;=4; M;=3;
di=2; £=0.004; e=4.38)

7.4.4 Constraint Function (C)

As evident from Table 7.4, constraints can create three types of difficulties for multi-
objective optimisation algorithms. The function prototypes for the three types of
constraints that individually specialise in simulating each of these difficulties are

discussed below.

EC Techniques for Handling Variable Interaction 179



Chapter 7. Test Bed Development

7.4.4.1 Pareto Blocking Constraints

Constraints can create direct hindrance to convergence by completely blocking the
Pareto front. They may also render the Pareto front infeasible, thereby making one of
their boundaries as the feasible front for the given optimisation problem. The
function prototype for this type of constraints is given in Equation 7.13. The main

features of this equation are given below.

¢ These constraints constitute bands of infeasible regions that are parallel to the
Pareto front. In order to ensure that the boundaries of these regions are parallel to
the Pareto front, constant terms are added to the S function to define the
boundaries. These constant terms could be used to control the size, distribution
and location of infeasible belts with respect to the Pareto front.

¢ The number of infeasible belts could also be varied using the parameters in

Equation 7.13.

NEL S Srras L) S for S Equation 7.13
! {Ezl 28y fryis Do) }V
(E; +S(fyeeor frratr Toin) S frr <]
_E2j + S5 Srrao L in) ]
ny _Eu +S(f1r~:fM—1aImin) < fu S—’
| Eyy +S(fioeos Sytmto L i)
VO< f, < fioo o Vi=1,M=1.-1.

The various parameters used in this equation and their significance are discussed

below.

¢ M: This is equal to the number of objective functions in the optimisation

problem.

¢ S Function Parameters: In this C; equation, all S function parameters are given
the same values as used in the problem definition of S. Since the unchanged
parameters control the shape of constraint boundaries, this ensures that these
boundaries are parallel to the Pareto front. In this way, constraints that

completely block the Pareto front are achieved.
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@
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Figure 7.5: Examples of Constraint Functions C - (a) Pareto Blocking Constraints
(Cj) (J=4; Eij=-0.1,0.4,1.5,2.9; Ej= 0.1,0.9,2.1,3.7; M=2; ai=0.6; cn=0; e=1) (b)
Pareto Intersecting Constraints (C2) (J=5; m "I, E/j= -0.1,0.5,1.5,2.9,4.7;
Ej=0.1,0.9, 2.1,3.7,5.7; M=2; aj=0.6; cu=0; e=1) (c) Composite Constraints (C3)
(J=2; Ej=12; aij=0.9,0.2; Pij=2.5,4; M=2; a™O .6, cn=0; e¢=1)
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¢ Ej, Ej: The choice of appropriate Ej; and Ej; values enables the design of
feasible regions having required size, location and distribution. Higher values of
E;; move the constraints away from the original Pareto front, towards higher
values of fy. Further, the more the difference between £y and E;, the bigger is
the size of the corresponding feasible belt. The difference between £y and Eyj+;
also determines the separation between feasible belts. £; and E,; also control the

feasibility under constraints of the original Pareto front.
¢ J: The total number of feasible belts in the search space is determined by the
parameter J.
Suppose a Pareto blocking constraint that has four feasible belts needs to be
constructed. It is required that the Pareto front remains feasible but is blocked by the
infeasible belts. Figure 7.5(a) depicts this constraint function. The main features of

this function are as follows.

¢ Being a 2-objective problem, the value of M is 2 in this case. Since there are 4
feasible belts in this problem, the value of Jis 4.

¢ In order to ensure that the Pareto front remains feasible, the values of E£;; and E;;
are chosen to be -0.1 and 0.1 respectively. The values of other E;'s (= 0.4, 1.5,
2.9) and E,'s (= 0.9, 2.1, 3.7) are chosen to make the feasible belts and their
separation gradually increase in size as their distance from the Pareto front

increases.

¢ All S function parameters are given the same values as used in the problem
definition of S (a; = 0.6, ¢;; = 0, e = 1) to ensure that the constraint boundaries

are parallel to the Pareto front.

7.4.4.2 Pareto Intersecting Constraints

The second category of constraints introduces direct hindrance to diversity by
making some parts of Pareto front infeasible. This leads to discontinuous Pareto
fronts that create diversity problems for the optimisation algorithms. Equation 7.14
gives the function prototype for this type of constraints. The main features of this

function prototype are discussed below.

¢ The boundaries of the infeasible belts introduced by these constraints are defined
using a linear equation that cut away parts of Pareto front using infeasible belts
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M-1 M-l
G, E|:Eu +Zm1~fi < fu SEy +Zmif,}\/...
i=1 i=1

.se

passing through the front. The coefficients of this equation control the orientation
of constraint boundaries with respect to the Pareto front, and its intercept controls

the size, location and distribution of infeasible regions.

The number of infeasible belts could also be varied using the parameters in

Equation 7.14.
Equation 7.14

M-l M-1
V[EU +Zmif,. <fu SE2j+Zm,.f,}v...
i=]

i=1

M-l M-
v I:Eu + Zmzfx SfuSEy,+ Zmif;'j|7
il

i=1

YOS £, < frmo Vi=1,, M —1,

The parameters used in this equation have the following significance.

¢

M: This is equal to the number of objective functions in the optimisation

problem.

m;: This is equal to the slope of constraint boundaries with respect to f;. m;’s
should be chosen in such a way that the constraint boundaries have required
orientation with respect to the Pareto front. An easy way of ensuring this is to
determine the ends of the Pareto front using its equation (Equation 7.10). This
information can now be used to determine m;’s such that the constraint

boundaries have required orientation.
J: This is equal to the total number of feasible belts in the function search space.

Ey, E;: These parameters control the location of constraint boundaries
corresponding to the j™ feasible belt. Higher values of E;; move the constraints
towards higher values of fw. Further, the more the difference between E;; and Ej;,
the bigger is the size of the corresponding feasible belt. The difference between
Ej and Ej;4; also determines the separation between feasible belts. In this way,

E; and Ej control the size, location and distribution of feasible regions.

Suppose it is needed to construct a Pareto interesting constraint that introduces 5

feasible belts. It is required to create discontinuities in the unconstrained Pareto front

using the separation between these feasible belts. Figure 7.5(b) depicts this constraint

function. The main features of this function are as follows.
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¢ Being a 2-objective problem, the value of M is 2 in this case. Since there are 5
feasible belts in this problem, the value of Jis 5.

¢ The values of E;'s (= -0.1, 0.5, 1.5, 2.9, 4.7), E3's (= 0.1, 0.9, 2.1, 3.7, 5.7) and
m; (= 1) are chosen such that the constraint boundaries intersect the Pareto front,
thereby introducing the discontinuities. The choice of these parameters also
ensures that the feasible belts and their separation gradually increase in size as

their distance from the Pareto front increases.

7.4.4.3 Composite Constraints

There are also cases when the constraint boundaries intersect the original Pareto front
in suchk a way that the new front becomes a combination of original front and
constraint boundaries. Due to this composite nature of the constraints, maintenance
of diversity becomes a problem. Equation 7.15 gives the function prototype for this

type of constraints. The main features of this function prototype are listed below.

¢ This C; function takes a form that is similar to the shape function S, thereby
enabling better control over the intersection of the constraint boundaries with the
unconstrained Pareto front. This function also provides parameters to control the
shape, cyclical nature and location (with respect to the original Pareto front) of

the constraint boundaries.

¢ The number of constraints could also be varied using the parameters in Equation
7.15.

The parameters used in this equation provide the following control.

¢ M: This is equal to the total number of objective functions in the optimisation

problem.

¢ E; This parameter influences the location of the jth constraint boundary with
respect to the original Pareto front. Higher values of E; move the constraint

boundary away from the original Pareto front, towards higher values of fy.
¢ J: This is equal to the total number of feasible holes in the function search space.

¢ Py a; These parameters control the location and shape of the 7™ constraint
boundary with respect to the i objective function. Decreasing the value of a;; and
increasing the value of Pj; both have the influence of pulling the constraint

boundary away from the original Pareto front, towards lower values of fy.
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Increasing P;; also makes the constraint boundary steeper. Finally, the difference
between a;; and a; (a parameter in the equation of original Pareto front — Equation
7.10) explains the dissimilarities in general shapes of Pareto front and the

constraint boundary.

¢ ¢y, by ¢, d, e: The first four of these parameters control the cyclical nature of the
constraint boundary and the fifth controls its general location. By giving these
parameters the same values as those used in the problem for the corresponding
parameters of shape function S, it can be ensured that the constraint boundary has

the same cyclical nature and general location as the Pareto front.

[ fu 2 By +2(M e~ Equation 7.15
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Suppose it is required to construct a composite constraint that is composed of 2
constraints leading to a new Pareto front, which is made up of a combination of the
original Pareto front and the two constraint boundaries. Figure 7.5(c) depicts this

constraint function. The main features of this function are as follows.
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¢ Being a 2-objective problem, the value of M is 2 in this case. Since there are 2

constraints in this problem, the value of J is 2.

¢ The values of e (= 1), P;; (= 2.5, 4), a; (= 0.9, 0.2) and E; (= 1, 2) are chosen such
that the constraint boundaries intersect the Pareto front, thereby leading to a new
Pareto front that is a combination of the original Pareto front and the two
constraint boundaries. The other parameters in Equation 7.15 take the same
values as those in the problem definition of S (a; = 0.6, c;; = 0).

r Specify desired problem features |

v

Give suitable values to parameters
of diversity function D

v

Give suitable values to parameters
of shape function S

v

Give suitable values to parameters
of interaction function /

Are constraints desired? No

Yes

[ Choose a suitable type of constraint '

v

Give suitable values to parameters
of constraint function C

Figure 7.6: Steps for Using Reverse Engineered Test Bed (RETB)

7.5 Guidelines for Use of RETB

The following steps can be used as guides for using RETB to construct a test
problem with desired features. Figure 7.6 presents a flow chart that can be used to

design test problems using RETB.
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¢ Step 1: Specify the problem features in terms of the desired complexity of Pareto
front, relationship(s) among decision variables of the Pareto-optimal solutions,

hindrance to diversity and nature of constraints.

¢ Step 2: Give suitable values to the parameters of the diversity function D
(Equation 7.7, Equation 7.8), based on the problem features defined in Step 1.

¢ Step 3: Repeat the above process for the shape function S (Equation 7.9).
¢ Step 4: Also repeat the above process for the interaction function / (Equation
7.11, Equation 7.12).

¢ Step 5: If a constrained optimisation problem is desired, choose a suitable type of
constraint function C (Pareto blocking - Equation 7.13, Pareto intersecting -
Equation 7.14 or composite - Equation 7.15), and give appropriate values to its
parameters based on the nature of constraints desired in Step 1.

To further facilitate the development of test problems using RETB, a pictorial
representation of the proposed test bed is given in Figure 7.7. This figure presents a
tree diagram that facilitates the stepwise selection of RETB finctions and
parameters, based on pre-defined problem features. It should be noted that Equation
7.16, mentioned in this figure, refers to the function prototypes for single objective
optimisation problems. This equation is developed as a special case of the prototypes

proposed in the previous section.

S(xp5eesx,) =2ne — i [(x,. ) +eu(x,) COS(Zﬂ'Ci (x,)" )] Equation 7.16
i1

i=1 j=1

n M X, — P, 2
—ZZ exp(g,x,)exp —(’—”j ,VO<x, <1,Vi=1,..,n,
£

Cy (%0 %,) 2 0, = 1,uur, .
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RETB Optimisation Problems
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Single Objective Multi-objective
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Unconstrained Constrained L& Unconstrained Constrained
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Figure 7.7: Tree Diagram for Constructing RETB Optimisation Problems (PF:
Pareto Front, Highlighted Numbers: Re-useable Sub-trees)

7.6 RETB Case Studies

This section illustrates the use of the above-mentioned guidelines to select RETB
parameters for constructing three multi-objective optimisation problems, having pre-
defined characteristics. The three test cases are chosen such that they form a
representativerset of the characteristics of multi-objective optimisation problems.
Table 7.6 lists the desired features of these test cases. As can be seen from this table,
the test cases thus created incorporate a variety of features of multi-objective
optimisation problems: discontinuous Pareto front, inherent bias on Pareto front,
interaction among variables corresponding to the Pareto-optimal solutions (leading to

multiple local fronts), and constraints.

The parameters in S, D, I and C functions of these test cases are determined based on

their pre-defined features, as listed in Table 7.6. Table 7.7 gives the RETB parameter
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values for the three test cases. The reasons behind the selection of these parameter

values are also stated in this table. Further, Figure 7.8, Figure 7.9 and Figure 7.10

present pictorial representations of these test cases by depicting the results of

exhaustive search applied on them. These figures aid in visual validation of the test

functions by confirming that their characteristics conform to the pre-defined problem

features (Table 7.6), which guided their development. To support the process of

validation, Figure 7.8, Figure 7.9 and Figure 7.10 also show the global Pareto fronts.

Table 7.6: Features of RETB Test Cases

Two objectives

Convex and continuous S
(Pareto front)

Biased D (biased region on
Pareto front)

Multi-front (multiple local
Pareto fronts)

No constraints

Two objectives

e Convex and discontinuous

S (Pareto front)

Biased D (biased region on
Pareto front)

Multi-front (multiple local
Pareto fronts)

No constraints

Two objectives
Convex and continuous S
(Pareto front)

Biased D (biased region on
Pareto front)

Multi-front (multiple local
Pareto fronts)

Pareto blocking constraints
with infeasible Pareto front

Table 7.7: RETB Parameters Values for Test Cases — (a) Case-1 (b) Case-2 (c)

Case-3
(a)
Reas
o 1 variable 2 va;iable-
2 objectives k 1 defining D n 2 problem
<1 for . . .
1 biased region 1 variable
a; 0.6 | convex M; 1 k 1 -
Pareto front on Pareto front defining D
To attain
Cii 0 continuous T 1 Product of Mj's b; 2 Arbitrary
Pareto front
} ) i . (8+1)=9 local
b; NA ajj 1 Arbitrary [ 8 Pareto fronts
a | NA - by | 4 | Armitrary M | o | Nodeceptive
! 4 ! front
di NA - Ri 0 So that f1max is1 d,' NA -
e 1 For simplicity ax NA - £ NA -
e 1 So that I is 1
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Table 7.7: RETB Parameters Values for Test Cases — (a) Case-1 (b) Case-2 (c)
Case-3 (contd.)

(b)

“'Parameter Hd ‘Parameter . Parameter f :
_Values . 4R9aso;n|ng .| Values : vvRea‘sonmg Values = | = Reasoning
I 1 variable 3 variable-
M 2 2 objectives k 1 defining D n 3 problem
< 1 for convex . 1 biased region 1 variable
a 0.4 Pareto front M 1 on Pareto front k ! defining D
To attain
C1i 1 discontinuous T 1 Product of Ms b; 1,1 | Arbitrary
Pareto front
(2+1)x(4+1)=15
b; 1 Arbitrary aj 1 Arbitrary C; 2,4 | local Pareto
fronts
(4+1)=5 .
Ci 4 disconnected bj 3 Arbitrary M; 0 ;\:gn(:eceptwe
Pareto regions
d; 2 Arbitrary R; 0 So that fimax is 1 d; NA -
e 1 For simplicity ax NA - £ NA -
e 1.5 | Sothat/nyis 1

. 2 .
2 variable . 4 feasible
M2 objectives k 1 defining n 2 | variable- J 4 belts
D problem
<1 for 1 biased 1 0.3, | To make
) convex . region on variable 1 0.9, Pareto front
@ | 06| pareto M| 1| pareto k 1 defining Ey 1.9, | infeasible
front front D 33| and attain
required
To attain 0.5, | size and
) continuous Product ) . | 1.3, | separation
¢i | O | pareto T 17| ofms bi | 2 | Arbitrary | Ej 2.5, | of
front 4.1 constraint
boundaries
(8+1)=9
b | NA - a | 1 | Aitrary | o | 8 |1 M | 2 | 2objectives
! v ' Pareto /
fronts
No
ci | NA - b; | 4 | Arbitrary M; | 0 | decep- a | 0.6
tive front Salme )
values as in
d | NA - R | o0 S° et g | Na - ¢i | 0 | S(tohave
For e constraint
e 1 simplicity ax | NA - £ NA - b; NA | boundaries
parallel to
e | 1 |[PoMa | ¢ | NA | Pareto
min 1S 1 front)
d; NA
e 1
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Exhaustive Search
Pareto Front

Figure 7.8: Search Space ofRETB Case-1

Exhaustive Search
Pareto Front
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7 Exhaustive Search
Pareto Front / Constraints
6
5
4
3
2
1
Original PF New PF Feasible Belts
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
fl
Figure 7.10: Search Space ofRETB Case-3
7.7 RETB-II: Extension

Variable Dependence

As mentioned in Chapter 4, there is a complete lack of'test problems in literature that
can simulate dependent-variable multi-objective optimisation problems. This section
attempts to extend RETB to enable it to carry out controlled testing of the
performance of optimisation algorithms in the presence of variable dependence.
Hence, the test bed that is proposed in this section is given the name Reverse
Engineered Test Bed - II (RETB-II). Since variable dependence is defined by the
nature of variables rather than by that of the objective functions and constraints, it
can be treated independently of them. Therefore, RETB simulates the complexities
that are introduced by objective functions and constraints, whereas RETB-II extends
RETB to include the complexities that are introduced by the nature of variables. In
this way, the parametric equations defined for RETB are also valid for RETB-II, with

the addition of equations that are presented in this section for modelling variable

dependence.
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In order to perform controlled simulation, RETB-II should have parameters that
represent the challenges that variable dependence poses for optimisation algorithms.
These challenges, which are outlined in Table 7.5, form the basis for the

development of RETB-II, as discussed in this section.

7.7.1 Number of Dependency Relationships

Since RETB-II utilises explicit equations to model dependence among decision
variables, the number of dependency relationships is equal to the number of
dependent variables desired in the problem (N,). Since the bounds on dependent
variables are treated as constraints, increasing the value of Ny has an effect of making
the search space more constrained. This makes it more difficult for an optimisation
algorithm to work in the feasible region, as defined by variable dependence, and
locate optimal solutions. To avoid cyclic dependencies and to maintain the
consistency of dependent and independent variables, the DC is used while defining -
the dependency equations. The DT can also be used to visualise the relationship

among variables.

7.7.2 Nature of Dependency Relationships

In this test bed, the nature of dependency relationships is controlled by the
dependency equations. The following parametric equation (Equation 7.17) can be
used, in conjunction with the DC/DT, to define the dependency relationships. The
basic form of these prototypes is derived from existing test functions in optimisation,
and from known equations in other areas of research. These basic forms are
customised here based on the specific requirements of this research. The main

features of Equation 7.17 are given below.

¢ This function is provided with a polynomial function that directly controls its

degree of non-linearity. In this way, the bias in the search space is controlled.

¢ This function also has a cosine function that introduces multiple fronts in the

search space and produces multiple basins of attraction across the Pareto front.
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¢ The parameter of the cosine function has two parts. The first part is a constant
term that controls the number of multiple fronts and basins of attraction in the
search space. The second part that is a function of x; controls the distribution of

the multiple fronts and basins of attraction.

¢ The cosine function is multiplied by another function of x; that also has an effect
on the distribution of the multiple fronts and basins of attraction.

¢ The cosine function has a multiplier whose value can be set to 0 in order to
switch-off its effects.

¢ Similarly, deception is introduced in the search space using an exponential
function that exhibits sudden drop at a given value of decision variable, but

remains zero otherwise.

¢ The above-mentioned function is multiplied by another exponential function that
prevents the deceptive regions from coinciding with each other. The parameter of
this exponential function controls the concentration of deceptive regions in the
search space. Equation 7.17 also provides parameters to control the number of

deceptive fronts.

¢ This exponential function has a multiplier whose value can be set to 0 in order to

switch-off its effects.

¢ Equation 7.17 also provides the facility of sub-dividing the search space that
allows different dependency equations to be defined for each of the sub-spaces.
In this way, discontinuity can be introduced in the optimisation problem, and its
nature can be controlled using the parameters provided in Equation 7.17.

¢ Equation 7.17 also provides the parameters for controlling the general location of
the dependency relationship in the search space.
Here, the DC/DT should be used such that each x4 and x;; correspond to a given
decision variable in the problem (xj,...,x,), where n is the total number of decision
variables. In this case, xz’s always correspond to different dependent variables, but
x;’s may correspond to the same independent variable. It should be noted that the
sequence of independent variables has an influence on those GAs whose
performance is dependent on variable sequence. Hence, sequencing of variables may
be controlled to influence the difficulty for some optimisation algorithms. With the

increase in separation between the dependencies of a variable in the GA
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chromosome, the difficulty of a problem increases due to the enhanced probability of
the ‘good’ building blocks being broken by the recombination operators (Pelikan et
al., 1999).

x,; = Function(x;),V0<x; <1 Equation 7.17

Nina i
_ _ ik 2 ik
X = 2N ,65 + By (xy) Z[clijk (xij cos (Zﬂ'cyk (xq) ’ )]
J=l

ind

Vi=1., N Vi =y Ny 1,V =1,..,0,,

O
vss, = Jsvss,,
k=1

o
$=[)SVSSy,
k=1

x, = Dependent _Variables(i =1,...,N,),

x,, = Function _ Definition_of _i * Dependent Variable _
in_k" SVSS,,

X, = Independent Variables Defining i" Dependent
Variable(i =1,..,N;;j=1,...,N,; ).

The parameters used in the above-mentioned equation and their significance are

discussed below.

¢ n: This is equal to the total number of decision variables in the problem.

¢ N;: This is equal to the total number of independent variables in the problem.
Higher N; implies greater complexity in the problem.

¢ N4 This is equal to the number of independent variables that define the i
dependent variable. The complexity of a dependency equation increases with the
increase in the value of this parameter.

¢ N, This parameter is equal to the number of dependent variables in the problem.
Higher N, implies greater complexity in the problem.

¢ O It is the total number of parts into which the variable space, corresponding to
the i" dependent variable, is sub-divided. Since the function parameters may take

different values for each part of the variable space, Q; influences the total number
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of disconnected regions in the Pareto front. Higher values of this parameter
indicate higher numbers of disconnected regions in the function search space, and

hence more complexity.

¢ SVSSy: This indicates a Sub-set of Variable Search Space (SVSS) of the problem
for the i dependent variable. The subscript k is an index for numbering the sub-

th dependent variable, the value of

sets. Since the problem has Q; sub-sets for the i
k ranges from 1 to Q. Further, all SVSS;’s are mutually exclusive. This makes
their intersection a null set. Also, the union of all SVSSj’s gives the whole
Variable Search Space (VSS) for the i" dependent variable. The way in which
SVSSy’s are designed controls the location, size and distribution of disconnected

regions in the function search space.

¢ VSS: 1t indicates the Variable Search Space for the i dependent variable. Its
relevance to the test bed development is described in the discussion for SV.SSy.

¢ Py This is a polynomial that is defined in terms of x;;’s. It directly influences the
general shape of a dependency relationship (in SVSSj) with respect to x;;’s. The
degree of Py influences the complexity of this relationship. The parameters Py’s

control the number, location and extent of bias in the function search space.

¢ by It determines the height of cosine waves (in SVSSy) with respect to the

decision variable x;. In this way, it controls the distribution of optimal values in

the dependency relationship. A higher b;; implies more variations in these values.

¢ ¢y It is equal to the number of cosine waves (in SVSSjy) in the range of x;;. This
gives the number of optima in the dependency relationship. Higher values of this

parameter increase the complexity of the dependency relationship.

¢ cuw It is a flag to indicate whether the dependency relationship is multi-modal
(in SVSSy) with respect to x;. ¢ takes a value of O for uni-modal equations and

a value of 1 for multi-modal equations.

¢ ¢y Similarly, ¢y is a flag to indicate whether the dependency relationship (in
SVSSy) is deceptive with respect to x;;. ¢ takes a value of 0 for non-deceptive

equations and a value of 1 for deceptive equations.

¢ dy: This parameter influences the spacing between consecutive cosine waves in
the dependency relationship. Therefore, it directly controls the distribution of
points that correspond to the optimal values of the dependent variables (in
SVSSix), with higher values of d; leading to closer points.
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¢ ey It decides the general location of the dependency equation. Higher values of
e;x push the equation towards higher values of the dependent variable (in SVSSy).
eix should be chosen in such a way that the dependency equation takes only

positive values.

¢ My This is equal to the number of deceptive optima (in S¥.SSi) corresponding to
the variable x;; Higher values of this parameter lead to higher complexity.

¢ g% This parameter controls the height of deceptive exponential function (in
SVSS#) corresponding to the decision variable x;. Since deceptive optima
correspond to the maximum values of these functions, the parameter g controls
the values of the dependent variable corresponding to the deceptive optima. A
higher value of g implies that the deceptive optimal values are farther away

from each other.

¢ pyi: This parameter gives the value of the decision variable x; (in SVSSi)
corresponding to its I" deceptive optimum. Using these parameters, the location

of the points that lead to deceptive optima can be controlled.

¢ & This is a small positive number used with the deceptive exponential function to

ensure that it exhibits a sudden drop at a given value of the decision variable.

7.7.3 Nature of Available Information

As mentioned in Chapter 2, there are two categories of dependent variable
optimisation problems: with and without dependency equations. The above
discussion proposed a test bed that simulates those dependent variable optimisation
problems in which the dependency equations are known. However, in many real-life
problems, these equations are not known explicitly. In these problems, multiple sets
of measured variable values are known from which the optimisation algorithms need
to infer the dependency relationships. This adds another dimension to the challenges
posed by these problems. In order to simulate this feature, Equation 7.17 is modified

to get the following equation (Equation 7.18).

x, =x,+Normal(u,6°),Vi=1,..,N,. Equation 7.18

1

In this case, the data for the independent variables are generated in a random fashion

whereas those for the dependent ones are obtained using the above equation. In this
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equation, the second term is added to introduce an error in the data generated by the
previously mentioned equation for xz. Since x;° simulates the data that is
measured/calculated in real-life, the introduction of this term makes the data more
realistic. The parameters used in the above equation and their significance are

discussed below.

¢ N, This is the number of dependent variables in the problem. Higher N; implies

greater complexity in the problem.
¢ xz - This gives the data corresponding to the i" dependent variable.

¢ xy: This defines the nature of the dependency relationship for the i" dependent
variable. The value of this term is obtained using the equation that was proposed
earlier for x;. The parameters in this equation are chosen based on the desired

behaviour of the dependency relationships.

¢ Normal(y, 02): This term is used to introduce noise in the dependency
relationships. This noise is normally distributed with mean p and variance & (o
is the standard deviation). This term could also be made to follow another
continuous variable distribution, such as Uniform, Triangular, Exponential,
Lognormal, Gamma, Weibull, Beta, Geometric, Negative Binomial,
Hypergeometric, Logistic, Pareto, Extreme Value and Gaussian. A value of u
equal to 0 keeps the data centred at the relationship defined by the equation for
x4. Any change in x from 0 moves the data away from this equation. Similarly,
the parameter o influences the distribution of data around the equation for x4
Higher values of o imply wider distribution around this equation. An increase in
the absolute values of x# and o make it more difficult for the optimisation
algorithm to predict the real underlying relationship among the decision

variables. This increases the complexity of the optimisation problem.

7.8 Guidelines for Use of RETB-II

The following simple steps are guides for using RETB-II to construct test problems
with desired features. Figure 7.11 presents a flow chart that can be used to design test
problems using RETB-II.

¢ Step I Fix the number of dependent (V) and independent (IV;) variables in the
problem. The sum of these two parameters gives the total number of variables in

EC Techniques for Handling Variable Interaction 198



Chapter 7. Test Bed Development

the problem (). Decide the relative sequence of these variables based on the

desired complexity.

¢ Step II: Identify the characteristics that are desired in the dependency

relationships. Use these in conjunction with DC/DT to choose the parameters in

the equations for x,;’s.

¢ Step III: To design a problem in which multiple sets of variable values define the
dependency relationships, use the equation for x,;* to generate the data. The mean
and distribution of noise around the relationship defined by x,; are controlled

using the appropriate parameters provided in the equation for x,;".

Determine the number and
relative sequence of dependent (N,)
and independent (N,) variables

v

Identify the desired features of
dependency relationships

v

Based on these features and DC/DT,
choose parameters in x; equations

Is dependency data required?

Yes

Choose parameters in x,;’ equations

v

Generate data using these equations

Figure 7.11: Steps for Using Reverse Engineered Test Bed — II (RETB-II)

7.9 RETB-II Case Studies

In this section, four RETB-II case studies are presented; each of which specialises in
a particular challenge that variable dependence poses for optimisation algorithms. In
this way, these examples illustrate all the challenges that are listed in Table 7.5. The

characteristics of variable dependence associated with these examples are as follows.
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¢ Example 1: Biased problem.
¢ Example 2: Multi-front problem.
¢ Example 3: Deceptive problem.

¢ Example 4: Problem with discontinuous function search space.

12
Exhaustive Search

Pareto Front
11

il

Figure 7.12: Original Search Spacefor RETB-Il Examples 1, 2, 3 & 4 (Assuming

Independent Variables)

For these examples, the objective functions are defined using RETB. In order to
concentrate on the challenges introduced by variable dependence, the RETB
parameters are chosen in such a way that the objective functions (without variable
dependence) give a simple problem that has no bias and multi-modality (Equation
7.19). The main features of this independent-variable problem and the corresponding
objective functions are as follows. The search space for this problem is also given in

Figure 7.12.

¢ Two objectives.
¢ Convex and continuous S/Pareto front.

¢ Unbiased D (uniform Pareto front).
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¢ Uni-modal 7 (single Pareto front).

¢ No constraints.

D(x")=1-x,,V0<x, <1, Equation 7.19
I(Xx")=2-x,,V0<x, <1,

s(fi, 1) =6-(£,/D)™,

Jfi =D&,

fo =s(f;, D)xI(x"),

Pareto _ front = f, =6—(f,)**,V0< f, <1.

7.9.1 Example 1: Biased Problem

A non-linear variable dependence is introduced in the above problem to attain a
biased search space. The steps that are given below for the development of this test

problem are based on the guidelines presented in the previous section.

7.9.1.1 Step 1

Here, the variable x; is assumed to be dependent on two independent variables (x3
and x,) that are introduced in this problem. The variable x; is also assumed to be
independent. This gives a value of 1 to Ny (x2), a value of 3 to N; (x;, x3, Xg) and
hence a value of 4 to n (Ny + N;). To concentrate on the effects of the dependency
equation, the two dependencies of x; (x3 and x,) are arranged close to each other in
the GA chromosome. This is attained by placing the variables in the order of their

indices.

7.9.1.2 Step 2

In order to attain a biased search space, a non-linear dependency equation needs to be
developed for x; in terms of x3 and x4. This guides the selection of parameters for the
required dependency equation, as shown in Table 7.8. This equation is given below

(Equation 7.20) and is also graphically represented in Figure 7.13.

x, =1-0.1x, —0.2x> —0.3x, - 0.1x] — 0.3x,x,, Equation 7.20
V0<x, <,V0<x, <1
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Table 7.8: Parameter Values for RETB-II Examples — (a) Example 1: Biased

Problem and Example 2: Multi-front Problem (b) Example 3: Deceptive Problem

and Example 4: Discontinuous Problem

(a)

Parameter = . - Parameter .
Valics | . Remsoning ) Weives jBestoiing
Ny 1 1 dependent variable Ny 1 1 dependent variable
N 2 2 variables defining N, 2 2 variables defining
indi dependent variable indii dependent variable
N; 3 3 independent variables Ni 3 3 independent variables
n 4 4-variable problem n 4 4-variable problem
Q 1 To attain continuous Q 1 To attain a continuous
! function search space ! function search space
n To get a non-linear
P. Degree -cli-gpgeeiltdaerr:g; eh;ﬁ:trion; P. Degree gsg%r;?:&gy;gﬁ?sgh to
k 2 coefficients are chosen to k 2 attain minimum value of
attain minimum value of 0 0.2 ;
B . . Not equal to 0 (to get a
Ciijk 0 No cyclic terms Ciijk 0.3 cyclic term)
biik NA - b[]k 1 Arbitrary
Cik NA - Cijk 1 Arbitrary -
dijk NA - dijk 1 Arbitrary
To attain maximum value To attain maximum value
[ 0.25 of dependent variable €k 0.25 of dependent variable
equal to 1 equal to 1
Cajjk 0 No deceptive terms Caijk 0 No deceptive terms
Mijx NA - M NA -
Gik NA - Gk NA -
Piji NA - Pk NA -
€ NA - £ NA -
NA R 0 To have the data centred
# H on the equation for x,
2 To attain a distribution of
i NA - & 0.05 | _out 10%
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Table 7.8: Parameter Values for RETB-II Examples — (a) Example 1: Biased
Problem and Example 2: Multi-front Problem (b) Example 3: Deceptive Problem

and Example 4: Discontinuous Problem (contd.)

(b)

1 dependent variable 1 dependent variable
Nooi 1 1 variable defining N 1 1 variable defining
indi dependent variable incid dependent variable
N; 2 2 independent variables N; 2 2 independent variables
n 3 3-variable problem n 3 3-variable problem
Q 1 To attain continuous Q 2 To attain a discontinuity in
g function search space d the function search space
To get non-linear
To get a non-linear dependency equations for
dependency equation; the two discontinuous
Pix Degree coefficients are chosen to Pix Dezg;ee parts; coefficients are
attain minimum value of 0 ’ chosen to attain minimum
and maximum value of =1 value of 0 and maximum
value of 0.9
. : . No cyclic terms in the two
Crijk 0 No cyclic terms Crik 0.0 discontinuous parts
bijx NA - bijk NA -
Cijx NA ~ Cijk NA -
dijx NA - diix NA -
To attain minimum value of To attain minimum value of
ik 0.1 0 and maximum value of - 0,0.05 | 0 and maximum value of
=1 0.9
) Not equal to 0 (to get a . .
Caijk 1 deceptive term) Caijk 0,0 No deceptive terms
M 1 1 deceptive optimum Mix NA -
To attain minimum value of
gy | 0.0957 | 0and maximum value of g | - NA -
~1
- To attain deception at . }
Pi 0.5 variable value of 0.5 Pi NA
£ 0.004 | Arbitrary, small, positive £ NA -
NA . 0 To have the data centred
# # on the equation for x»
2 2 To attain a distribution of
G NA ) i 0.05 1 apout 10%
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Figure 7.13: Dependency Relationship in RETB-I1I Example 1: Biased Problem

7.9.1.3 Step 3

Since in this problem, the dependency equation is assumed to be known, it is not
required to generate data for representing the dependency relationship. Hence, in this
case, Step 3 is omitted. For the sake of illustration, the exhaustive search
corresponding to this problem is given in Figure 7.14. The non-linearity of the search

space is evident from this figure.

12
Exhaustive Search
Pareto Front

11

f

Figure 7.14: Exhaustive Searchfor RETB-1l Example 1: Biased Problem
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7.9.2 Example 2: Multi-front Problem

In this problem, the dependency relationship introduces multiple local fronts in the

search space. The steps involved in creating this problem are as follows.

7.9.2.1 Step 1

As in the previous case, the variable xj is assumed to be dependent on two
independent variables (vj and Xi) that are introduced in this problem. The variable xi
is also assumed to be independent. This gives a value of 1to Nd (xj), a value of 3 to
Ni (x/, x3,X+) and hence a value of4 to « {Nd+ Ny. As in Example 1, the independent

variables are arranged in the order of'their indices in the GA chromosome.

Figure 7.15: Dependency Relationship in RETB-1I Example 2: Multi-front Problem

7.9.2.2 Step 2

In order to attain a search space with multiple local fronts, a cyclic dependency
equation needs to be developed for xj in terms ofxj and Xs. This guides the selection
of parameters for the required dependency equation (Equation 7.21), as shown in
Table 7.8. This equation is given below and is also graphically represented in Figure

7.15.
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x2=1- 0.1M3- 0.3M3c0s2(2"v3)- 02 x4 -0 .1xj, Equation 7.21
VO0<x3<1,V0<n4<].

7.9.2.3 Step 3

In this problem, the dependency equation is assumed to be unknown. Therefore,
multiple sets of variable values are created using the above-mentioned equation for
Xz in the equation for X In this case, the noise values are obtained with mean #a) of
0 (to have the data centred on the equation for X2) and variance (c/) of 0.05 (to give a
distribution of about 10%). The equation that is used for generating variable values is

given below.

x2 =x2-\-Normal{0,0.05) Equation 7.22
12
Pareto Front

11
10
9 Local Fronts

G 8
7
6
5
4

0 0.2 0.4 0.6 0.8 1

fl

Figure 7.16: Exhaustive Searchfor RETB-II Example 2: Multi-front Problem

For the sake of illustration, the exhaustive search corresponding to this problem is
given in Figure 7.16. Here, the global Pareto front corresponds to the global
minimum of the / function, which occurs at the global maximum of the X> function.
The two local fronts in the figure correspond to the two minima of cos2 function (that
create the two local maxima of the X2 function), and the global Pareto front

corresponds to the global maximum of the xj function. Further, since X2 now varies
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from 0.2 to 1, as opposed to 0 to 1 in the case of independent variables, the upper

part of the search space gets truncated.

7.9.3 Example 3: Deceptive Problem

Here, a test problem is created that has deceptiveness in its search space due to
dependence among its decision variables. The steps involved in constructing this

problem are as follows.

7.9.3.1 Step 1

In this case, the variable Xz is assumed to be dependent on a newly introduced
independent variable (%). The variable xj is also assumed to be independent. This
gives a value of 1to Nd (xj, a value of2 to M (xy, xj) and hence a value of 3 to tz {Nd
+ Ni). As in previous examples, the independent variables are arranged in the order of

their indices in the GA chromosome.

0.8
0.6
0.4

0.2

-0.2

x3

Figure 7.17: Dependency Relationship in RETB-1I Example 3: Deceptive Problem
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7.9.3.2 Step 2

In order to attain a deceptive search space, a dependency equation with a deceptive
optimum is developed for X> in terms ofvj. This guides the selection of parameters
for the required dependency equation, as shown in Table 7.8. This equation is given

below (Equation 7.23) and is also graphically represented in Figure 7.17.

fx _a 5V Equation 7.23

x2=1:0.2-3.3963r3+3.396*3 + exp(0.0957*3)exp(- ),

Vo<*, <I.

Exhaustive Search
Pareto Front

0.2 04 0.6 0.8
fl

Figure 7.18: Exhaustive Searchfor RETB-II Example 3: Deceptive Problem

7.9.3.3 Step 3

Since in this problem, the dependency equation is assumed to be known, it is not
required to generate data for representing the dependency relationship. Hence, in this
case, Step 3 is omitted. The exhaustive search corresponding to this problem is given

in Figure 7.18. It can be seen from this figure that there is a deception in the search
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space, which corresponds to the deceptiveness in the relationship ofxj in terms of
This situation arises because in this problem the global Pareto front corresponds to

the global maximum ofx2 which is an isolated optimum.

7.9.4 Example 4: Discontinuous Search Space Problem

Here, the aim is to construct a problem with a discontinuous search space. The

RETB-II steps involved in constructing this problem are as follows.

7.9.4.1 Step 1

In this case, the variable is assumed to be dependent on a newly introduced
independent variable (x3. The variable xj is also assumed to be independent. This
gives a value of 1to Nj (%2), a value of2 to M (%, %) and hence a value of 3 to « (Nd
+ Ni). As in previous examples, the independent variables are arranged in the order of

their indices in the GA chromosome.

0.6

0.2

x3

Figure 7.19: Dependency Relationship in RETB-1I Example 4: Discontinuous
Problem
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7.9.4.2 Step 2

In order to attain a discontinuous search space, a dependency equation that has a
discontinuity is developed for x; in terms of x; This guides the selection of
parameters for the required dependency equation, as shown in Table 7.8. This
equation is given below (Equation 7.24) and is also graphically represented in Figure

7.19.

x, =0.2x, +0.6x2,Y0 < x, <0.5, | Equation 7.24
x, =0.1+0.2x, +0.6x2,v0.5 < x, <1.

7.9.4.3 Step 3

In this problem, the dependency equation is assumed to be unknown. Therefore,
multiple sets of variable values are created using the above-mentioned equation for
x; in the equation for x,;". In this case, the noise values are obtained with mean () of
0 (to have the data centred on the equation for x;) and variance (%) of 0.05 (to give a
distribution of about 10%). The equation that is used for generating variable values is

given below (Equation 7.25).
x, = x, + Normal(0,0.05). Equation 7.25

The exhaustive search corresponding to this problem is given in Figure 7.20. Here,
the global Pareto front corresponds to the global minimum of the 7 function, which
occurs at the global maximum of the x, function. Since the introduction of
dependence changes the global maximum of x, from 1 to 0.9, the part of the search
space that corresponds to the values of x; between 0.9 and 1 becomes infeasible. This
gives a new Pareto front to the search space. As revealed in Figure 7.19, the
dependency equation also exhibits a discontinuity that makes a certain band of the
values of x;, infeasible. This leads to discontinuity in the search space corresponding
to these values of x;. It should be noted that in this problem the variable search space
would also be discontinuous, and would take the shape of two disjoint rectangles to
reflect the discontinuity gap in the values of x,. Unlike this problem, all the previous

test problems reported here have continuous, rectangular variable search spaces.
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Exhaustive Search
Pareto Front (No Dependence!
1 Pareto Front (With Dependence)

fl

Figure 7.20: Exhaustive Searchfor RETB-II Example 4. Discontinuous Problem

A closer look at RETB reveals that there are two functions D and / that are defined in
terms ofthe decision variables. In all the above problems, the variable X> was treated
as dependent. Since this variable defines the / function, the introduction of variable
dependence creates features that obstruct only convergence to the Pareto front. These
features, which are introduced parallel to the Pareto front, include bias, multiple
fronts, deception and discontinuity. Let us consider the other case, when the variable
xj is treated as dependent. This has an effect of varying the function D that controls
diversity across the Pareto front. Hence, introduction of dependency equations,
similar to the ones used in the above examples, would have the following influences

on the search space.

¢ Non-linear/Multi-dimensional Function: Bias towards certain parts of the Pareto

front.
¢ Cyclic Function: Multiple basins of attraction across the Pareto front.
¢ Deceptive Function: Deception on the Pareto front.

¢ Discontinuous Function: Part of the Pareto front is rendered infeasible.
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Table 7.9: Dependency Chart (DC) — (a) Examples 1 & 2 (b) Examples 3 & 4

(a)

Finally, it is worth mentioning that in all the above examples, the DC and DT were
used to guide the development of dependency equations. The DC and DT
corresponding to all the above examples are given in Table 7.9 and Figure 7.21

g S
ol ®

(a) (b)

Figure 7.21: Dependency Tree (DT) — (a) Examples 1 & 2 (b) Examples 3 & 4

7.10 RETBIRETB-II versus Existing Test Beds

RETB presents a generic tuneable framework for the development of test functions.
It is capable of controlled simulation of three features of real-life optimisation

problems: multiple objectives having inseparable function interaction and
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constraints. Since RETB provides handles for controlled variation of its complexity,
it is able to determine the extent to which a given optimisation technique is capable

of handling a specified feature of real-life problems.

Due to its tuneable nature, RETB has a clear advantage for real-life simulation over
the non-tuneable test problems, mentioned in Chapter 2. These non-tuneable test
beds are static in nature, i.e., they do not provide parameters for varying their
complexity levels. This prevents them from being used as controlled testing beds for
optimisation algorithms. Furthermore, as opposed to RETB, these test beds also do
not provide the facility of explicitly analysing the performance of optimisation

algorithms with respect to each aspect of multi-objective optimisation.

Deb (1999b) suggested a basic tuneable framework that is capable of constructing
multi-objective optimisation problems having varying degrees of complexity. RETB,
on the other hand, uses a ‘reverse engineering’ strategy that constructs multi-
objective optimisation problems to correspond to a given Pareto front,
relationship(s)/interaction among variables of Pareto-optimal solutions, hindrance to
diversity and nature of constraints. Another drawback of Deb’s (1999b) work is that
he does not propose generic, parametric function prototypes for his test bed. This
prevents systematic and controlled analysis of the optimisation algorithms. RETB, on
the other hand, proposes parametric prototypes for each of its four test bed functions:
S, D, I and C. This allows stepwise increments in difficulty of the test bed, with
respect to each aspect of complexity. In this way, RETB is able to systematically
analyse optimisation algorithms, thereby successfully overcoming the drawback of
Deb’s (1999b) framework. Recently, Deb er al. (2001) presented a parametric
function prototype for constraints that enables controlled variation of the challenges
that they pose foy multi-objective optimisation problems. However, this work also
has drawbacks since the systematic analysis of multi-objective optimisation
algorithms that is facilitated by this approach focuses only on constraints, without
addressing its interactions with the complexity introduced by the objective functions.

As opposed to this, RETB takes a complete picture of constrained multi-objective
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optimisation through its four function prototypes (S, D, I and C), which individually

represent the four critical aspects of real-life optimisation.

The effectiveness of RETB is further enhanced due to its extension to RETB-II that
is capable of constructing optimisation test problems that have dependence among
their decision variables. Since there are no test problems reported in literature for
variable dependence, RETB-II is unique in its capability of testing optimisation

algorithms in the presence of dependence among decision variables.

This makes RETB/RETB-II more effective than the existing test beds. This is
because unlike other test function development schemes, they simulate the core
issues associated with multiple objectives, constraints and variable interaction, rather
than their symptoms. The ‘reverse engineering’ strategy adopted here also enables a
more intensive interpretation of each term of the proposed test bed, in terms of its
relevance to the complexity of optimisation problems thus created. In this way,
RETB/RETB-II provide controlled testing of optimisation algorithms with respect to
multiple objectives, constraints and variable interaction in engineering design

optimisation problems.

7.11 Summary

This chapter has proposed two test beds, RETB and RETB-II, for controlled
simulation of multiple objectives, constraints and variable interaction in engineering
design optimisation problems. As shown below, RETB and RETB-II together meet

all the objectives for their development set at the beginning of this chapter.

¢ RETB and RETB-II provide a generic methodology for the development of test
problems. So, they can generate a wide variety of optimisation problems, having

varying degrees of complexity levels.

¢ They provide a unified framework, for controlled testing of optimisation
algorithms with respect to three features of real-life engineering design -
optimisation: presence of multiple objectives, constraints and variable

interaction.
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¢ They provide generic, parametric prototypes for each of the functions in their
definition. This provides better control on the complexity of optimisation
problems thus generated, thereby enabling systematic and controlled analysis of

the optimisation problems.

¢ They provide explicit functions/parameters to control the complexity introduced

by the two types of variable interaction.
» Inseparable function interaction.
» Variable dependence.
This chapter has achieved the following.

¢ It has identified the factors that need to be controlled for simulating multiple
objectives, constraints and variable interaction in engineering design optimisation

problems.
¢ It has devised a generic strategy for test bed development.

¢ It has applied this strategy for proposing two test beds, Reverse Engineered Test
Bed (RETB) and RETB-II, for simulating multiple objective, constraints and

variable interaction.
¢ It has developed parametric function prototypes for the proposed test beds.

¢ It has presented guidelines and case studies that demonstrate the use of the

proposed test beds.
¢ It has finally compared the proposed test bed with the existing ones.

The last three chapters (Chapter 5, Chapter 6 and Chapter 7) have focused on
interaction among decision variables. Chapter 5 and Chapter 6 have respectively
proposed two EC techniques, GRGA and GAVD, for handling inseparable function
interaction and variable dependence in multi-objective optimisation problems. This
chapter has proposed two generic, parametric test beds, RETB and RETB-II, that can
handle multiple objective functions, constraints and variable interaction in a single
framework. The next chapter applies these test beds for analysing the performance of

GRGA and GAVD.
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8 PERFORMANCE ANALYSIS OF
GRGA/GAVD USING RETB/RETB-II

This chapter analyses the performance of GRGA and GAVD using the two test beds,
RETB and RETB-II, developed in the previous chapter. Here, a high-performing,
novel multi-objective optimisation algorithm, NSGA-II, is also included in the
analysis to enable the comparison of GRGA and GAVD with the state-of-the-art

reported in literature. This chapter attempts to achieve the following.

8.1 Case Study Development

This section constructs three multi-objective optimisation problems, having pre-
defined characteristics, and uses them for comparing the performances of GRGA,
GAVD and NSGA-IL The three test cases are constructed such that they together
represent the presence of multiple objectives, constraints and interaction among
decision variables in engineering design optimisation problems. However, explicit
constraints are not included in these test cases since the presence of variable
dependence in these problems has the effect of constraining the search space. This is
because the bounds on dependent variables are treated as constraints. Hence, to focus
on the complexity introduced by variable dependence, explicit constraints are

avoided in the test cases. Here, RETB is first used to define the objective functions
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based on the desired features of these test cases (as listed in Table 8.1). As can be
seen from Table 8.1, the test cases thus created incorporate a variety of features of
multi-objective optimisation problems: discontinuous Pareto front, inherent bias on
Pareto front and multiple local fronts. RETB-II is then applied to each of these test
cases to introduce the desired nature of dependency among decision variables. Since
most real-life optimisation problems do not have explicit dependency equations,
RETB-II introduces variable dependency in these three test cases by providing
multiple sets of variable values. From this information, the GAVD needs to infer the
dependency relationships. These data are created using the equation for xz’
(Equation 7.18), and involve noise terms with mean (1) of O (to have the data centred
on the equation for x;;) and variance (6%) of 0.05 (to give a distribution of about

10%). The equation that creates this data from x,; is given below (Equation 8.1).

x; =X, + Normal(0,0.05) Equation 8.1

The three test cases are presented in the discussion that follows.

Table 8.1: Test Cases

o Four objectives

o Four variables

e Convex and continuous S
(Pareto front) with respect

o Two objectives * Two objectives to f; and f>; concave and
e Two variables * Two variables continuous S (Pareto
e Convex and continuous S | e Convex and discontinuous front) with respect to f;
(Pareto front) S (Pareto front) * Biased D; and D (two
« Biased D (biased region ¢ Biased D (biased region biased regions on Pareto
on Pareto front) on Pareto front) front); unbiased D;
o Multi-front (multiple local o Multi-front (muitiple local ¢ Single front (Dependency
Pareto fronts) Pareto fronts) scenario 3.1)
* No constraints ¢ No constraints o Multi-front (multiple local
Pareto fronts)
(Dependency scenario
3.2)

o No constraints

8.1.1 Case-1

As shown in Table 8.1, this problem has multiple local fronts and a biased region on
the Pareto front. Based on these features, RETB parameters are given appropriate

values, as shown in Table 8.2. Equation 8.2 and Equation 8.3 show the equations
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corresponding to this problem. This problem is also pictorially depicted in Figure

8.1,

, ‘ ~ ion 8.2
D) = [ —expl—4x, )} VO < x, <1, Equation
(1-exp(-4))
I(3") =2 —exp(-2x,) cos(87x, ), VO < x, <1,
s(fi,1)=2—-(f; /D",
Sfi =D(X"),
Lo =s(fi, D)xI(x").
Pareto _front = f, =2—(f;)*°. Equation 8.3

Here, two variable dependency scenarios are introduced in this problem. Since
GAVD uses RA to model the dependence relationships, the first scenario is created
such that it can be exactly modelled by GAVD, whereas the second needs to be
approximated by it. Both the scenarios are non-linear, with one having cyclic

features.

Table 8.2: RETB Parameter Values for Case-1

L ‘ 1 variable 2 vaﬁable—
M 2 2 objectives k 1 defining D n 2 problem
<1for . . -
1 biased region 1 variable
a; 0.6 | convex M; 1 k 1 .
Pareto front on Pareto front defining D
To attain )
Cii 0 continuous T 1 Product of Mi’s b; 2 Arbitrary
Pareto front
- - ; (8+1)=9 local
b; NA aj; 1 Arbitrary c 8 Pareto fronts
) } _ . ] No deceptive
Ci NA by 4 Arbitrary M; 0 front
d; NA - R; 0 So that fimax is 1 d; NA -
e 1 For simplicity ax NA - £ NA -
e 1 So that /i is 1
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Exhaustive Search
Pareto Front

4 ISI

Figure 8.1: Case-1

8.1.1.1 Dependency Scenario 1.1

GAVD uses non-linear (quadratic) multi-variable RA to model the dependence
among variables. In order to allow GAVD to exactly model the dependence, the
equation that is constructed in this scenario is of degree two, with no cyclic and
deceptive terms. This equation is defined in terms of two independent variables (Xj
and Xv). The RETB-II parameters that make this equation are given in Table 8.3, and
the corresponding equation is given below (Equation 8.4). This dependency equation

is pictorially depicted in Figure 8.2.

x2=1- 0.1%¥3 - 0.2x2- 0.3~ - 0.lx/ - 0.3”3x4, Equation 8.4
V0<£r3 <1,V0<x4<1.
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Table 8.3: RETB-II Parameter Values for Case-1

de o S
Parameter . Parameter ' el
Values Reasoning Values Rea_§on|ng L
Ny 1 1 dependent variable Ny 1 1 dependent variable
N, 2 2 variables defining N. 2 2 variables defining
indj dependent variable incii dependent variable
N; 3 3 independent variables N; 3 3 independent variables
n 4 4-variable problem n 4 4-variable problem
Q 1 To attain continuous Q 1 To attain a continuous
! function search space ! function search space
Equal to degree of RA in E%?S%%i%igg RA in
Degree | GAVD; Non-linear; Degree ! !
P 2 coefficients are chosen to Pu 2 coefficients are chosen to
attain minimum value of 0 gttzaln minimum value of
) . - Not equal to 0 (to geta
Ciijk 0 No cyclic terms Cijk 0.3 cyclic term)
bk NA - by 1 Arbitrary
Cijk NA - Cijk 1 Arbitrary
dijk NA - dijk 1 Arbitrary
To attain maximum value To attain maximum value
eix 0.25 of dependent variable €ik 0.25 of dependent variable
equal to 1 equal to 1
Caijk 0 No deceptive terms Caijk 0 No deceptive terms
My NA - Mix NA -
g,'ik NA - Jijk NA -
Pi NA - Pijix NA -
& NA - & NA -
0 To have the data centred 0 To have the data centred
# on the equation for x, H on the equation for x;
2 To attain a distribution of 2 To attain a distribution of
° 0.05 | 2bout 10% i 0.05 | about 10%

8.1.1.2 Dependency Scenario 1.2

In this case, a two-variable cyclic equation is used to define the dependency
equation. This relationship is approximated by GAVD. The RETB-II parameters that
make this equation are given in Table 8.3, and the corresponding equation is given

below (Equation 8.5). This dependency equation is shown in Figure 8.3.
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x2=1- 0.5t:3- 0.3x3co0s2(27:3)- 0.2%4- 0.274, Equation 8.5
VO<9% <1,V0<x4<1.

0.8
0.6
0.4
0.2

0.8
0.6
0.2 0.4

2
0.6 48 0

Figure 8.2 Dependency Relationship in Case-1 (Dependency Scenario 1.1)

Original Dependency Relationship
Approximated Dependency Relationship

Original

Approximated

Figure 8.3: Dependency Relationship in Case-1 (Dependency Scenario 1.2)
(Original: Actual Relationship, Approximated: Relationship Estimated by RA)

8.1.2 Case-2

The features of this problem are similar to those of Case-1, with the difference that
here the Pareto front is discontinuous in nature (Table 8.1). Based on these features,
RETB parameters are given appropriate values to get the following problem
(Equation 8.6, Equation 8.7 and Figure 8.4). The rationale behind the choice of these
parameter values is given in Table 8.4.

EC Techniquesfor Handling Variable Interaction 221



Chapter 8. Performance Analysis of GRGA/GAVD

10
Exhaustive Search

Pareto Front

0.2 0.4 0.6 0.8
fl

Figure 8.4: Case-2

Equation s ¢
[1- exp(-3x,), VO<x, <1,
D(5") = (I-exp(-3))'

I{x")=3- exp(-x2)cos(2”x2)- exp(-x3)cos(4=v3), VO< x2,x3 < 1,
=2-(/,//r -(/,//)cos(8"),

/2= 7 1)x (%").

Pareto_front=>f>=2-{f) M- (/,)cos(8")2). Equation s.7

Similar to Case-1, the performance of GAVD is analysed here using two variable
dependency scenarios: one that can be exactly modelled by GAVD and the other that

can only be approximated. Both the scenarios are non-linear, with one having

deceptive features.
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M 2
a, 0.4
Cn 1
Case-2

b, 1
Ci 4
d, 2
e 1
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Table 8.4: RETB Parametersfor Case-2

Reasoning

2 objectives

<1 for convex
Pareto front

To attain
discontinuous
Pareto front

Arbitrary

(4+1)=5
disconnected
Pareto regions

Arbitrary

For simplicity

Parameter
Values
k 1
M 1
T 1
av 1
bu 3
R0
3k NA

8.1.2.1 Dependency Scenario 2.1

D

Reasoning

1 variable
defining D

1 biased region
on Pareto front

Product of Mis

Arbitrary

Arbitrary

So that flmuxis 1

Parameter
Values

n 3
k 1
bi 1,1
Ci 2.4
M, 0
di NA
e NA
e 1.5

Reasoning

3 variable-
problem

1 variable
defining D

Arbitrary

2+1)x@+1)=15
local Pareto
fronts

No deceptive
front

So that Linis 1

In this case, a quadratic equation is used to define the dependency relationship. This

relationship can be exactly modelled by GAVD. The RETB-II parameters that make

this equation are given in Table 8.5, and the corresponding equation is given below

(Equation 8.8). This dependency equation is shown in Figure 8.5.

=0.2+0:Xs+06X5,VO< X5 <1.

0.6

0.4

0.2

0.4

0.6 0.8

Egwafzo/z &9

Figure 8.5: Dependency Relationship in Case-2 (Dependency Scenario 2.1)
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Table 8.5: RETB-II Parameter Values for Case-2
Parameter ' . Parameter e
 Values - ~Reasoning Values Rgasonmg
Ny 1 1 dependent variable Ny 1 1 dependent variable
N 1 1 variable defining N 1 1 variable defining
inel dependent variable indi dependent variable
N; 2 2 independent variables N; 2 2 independent variables
n 3 3-variable problem n 3 3-variable problem
Q 1 To attain continuous Q 1 To attain continuous
! function search space ! function search space
Equal to degree of RA in
Equal to degree of RA in GAVD; Non-linear;
P Degree | GAVD; Non-linear; P. Degree | coefficients are chosen to
i 2 coefficients are chosen to i 2 attain minimum value of
attain maximum value of 1 0.2 and maximum value of
=1
Ciijk 0 No cyclic terms Crijk 0 No cyclic terms
bijk NA - bijk NA -
Cijx NA - Cijk NA -
dix NA - dix NA -
To attain minimum value of To attain minimum value of
€ix 0.25 dependent variable equal e 0.1 0.2 and maximum value of
to 0.2 =1
] . Not equal to 0 (to get a
Caijk 0 No deceptive terms Cayk 1 deceptive term)
M NA - My 1 1 deceptive optimum
To attain minimum value of
ik NA - gix | 0.0957 | 0.2 and maximum value of
=1
- _ . To attain deception at
Puc | NA P | 05 | \ariable value of 0.5
£ NA - £ 0.004 | Arbitrary, small, positive
0 To have the data centred 0 To have the data centred
H on the equation for x, # on the equation for x,
2 To attain a distribution of 2 To attain a distribution of
o 0.05 | Jpout 10% ° 0.05 | apout 10%

8.1.2.2 Dependency Scenario 2.2

In this case, a two-variable deceptive equation is used to define the dependency
relationship. This relationship is approximated by GAVD. The RETB-II parameters
that make this equation are given in Table 8.5, and the corresponding equation is

given below (Equation 8.9). This dependency equation is shown in Figure 8.6.
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Equation 8.9
x2=0.2 +3.396x3~3.396x2-exp(0.0957x3)exp(-

1.2
Approximl

0.2

x3

Figure s.s: Dependency Relationship in Case-2 (Dependency Scenario 2.2)
(Original: Actual Relationship, Approximated: Relationship Estimated by RA)

8.1.3 Case-3

This problem is characterised by the presence of four objective functions. It has
biased search space with respect to two of its objectives, and possesses single Pareto
front (in Dependency Scenario 3.1) and multiple local Pareto fronts (in Dependency
Scenario 3.2). This problem also has a multi-dimensional Pareto front that is convex
with respect to two objectives, and concave with respect to one objective. Based on
these features, RETB parameters are given appropriate values to get the following
problem (Equation 8.10 and Equation 8.11). The rationale behind the choice of these

parameters is given in Table 8.6.
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Equation 8.10

D,(¥) = )[1 —exp(—5x, ) Vo< x, <1,

1
(1-exp(-5)
1
(1-exp(-2)
Dy(x"")=1~x,,V0<x, <1,
IX")=1+x,,V0<x, <l...... .Dependency _Scenario—3.1,
I(F"") =2 —exp(-2x,)cos(4nx, ), VO< x, <1.....
....Dependency Scenario—3.2,
s(fis fos 1D =4 = (i1 D) = (/D = (£, /1),
S =D, (x),
Jo =D, ("),
fy =D,
Jo =5, for f5, DX T(X™).

D,(") = [1-exp(-2x,) VO < x, <1,

Pareto_front=> f, =4—(£,)"* - ()" - (f2)". Equation 8:11

Table 8.6: RETB Parameters for Case-3

‘Paramete el
- Reaeont values | Rez
- 1,1, 1 variable . 4 variable-
m 4 4 objectives k 1 defining each D n 44 problem
. < 1 for convex Number of
. 0.6, | Pareto front biased regions .
11 3 variables
. ai 0.4, | and>1for M; ’0‘ on Pareto front k 3;3 defini
. - efining D
: 2 non-convex corresponding to
Pareto front each D
To attain Product of Mj's in X .
Cii 0 continuous T 1N1A case of biased b; '\?A ar:s':gry for
Paretq front D's
. 4+1)=5 local
1,1 Arbitrary for 4; (
b; NA - ajj N ) " Cj A Pareto fronts for
NA | biased D's NA biased /
) _ | 5.2, | Arbitrary for y 0; | No deceptive
¢ | NA bi | 'NA | biased D's Mi | NA | front for biased /
0,0, | So that fina is 1 NA;
d | NA - Ri | NA | for biased D's d | Na -
NA .
s | So that finax is 1 NA;
e NA | For simplicity ax Nq\, for unbiased D & NA -
e 1655; So that /i is 1

Here, the performance of GAVD is analysed using two variable dependency

scenarios. The dependency equations in both the scenarios are non-linear and
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discontinuous, with one having higher discontinuity than the other has. Further, the

first scenario has single Pareto front, whereas the second one has multiple local
Pareto fronts.
Table 8.7: Case-3 (Dependency Scenario 3.1) (Upper Diagonal Graphs: Search

Space with Variable Dependency, Lower Diagonal Graphs: Search Space without

Variable Dependency)

(Range: 0-1)

(Range: 0-1)

(Range: 0-1) I m

(Range: 0-8)

8.1.3.1 Dependency Scenario 3.1

The search space corresponding to this problem is depicted in Table 8.7. In this case,
a highly discontinuous quadratic equation is used to define the dependency
relationship. This relationship can be exactly modelled by GAVD (using piece-wise
RA). The RETB-II parameters that make this equation are given in Table 8.8, and the
corresponding equation is given below (Equation 8.12). This dependency equation is
shown in Figure 8.7.
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x, =02x, +0.4x2,V0< x, <0.5 Equation 8.12
x, =0.4+0.2x, +0.4x2,V0.5< x; <1
Table 8.8: RETB-II Parameter Values for Case-3
T T g
_Parameter L Parameter. | o R e
© Values ! Bgavsobf‘\:ikngl “Values Rgasonlng :
Ny 1 1 dependent variable Ny 1 1 dependent variable
N 1 1 variable defining Nooo 1 1 variable defining
indi dependent variable indi dependent variable
N; 4 4 independent variables N; 4 4 independent variables
n 5 5-variable problem n 5 5-variable problem
Q 2 To attain a discontinuity in Q 2 To attain a discontinuity in
! the function search space ! the function search space
Equal to degree of RA in Equal to degree of RA in
GAVD; Non-linear; GAVD; Non-linear;
Pix Dezggee coefficients are chosen to Pix Dezg;ee coefficients are chosen to
! attain minimum value of 0 ’ attain minimum value of 0
and maximum value of 1.0 and maximum value of 0.9
Cijk 0,0 No cyclic terms Cyjk 0,0 No cyclic terms
b NA - by NA -
Cijx NA - Cijk NA -
djjk NA - djk NA -
To attain minimum value of To attain minimum value of
e 0,0.05 | 0and maximum value of e 0,0.05 | 0and maximum value of
1.0 0.9
Caijjk 0,0 No deceptive terms Caijk 0,0 No deceptive terms
Mk NA - Mijx NA -
Gijx NA - Giix NA -
Pix NA - Piik NA -
& NA - & NA -
0 To have the data centred 0 To have the data centred
# on the equation for x; # on the equation for x;
2 0.05 To attain a distribution of 2 0.05 To attain a distribution of
i : about 10% i . about 10%
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Figure 8.7: Dependency Relationship in Case-3 (Dependency Scenario 3.1)

8.1.3.2 Dependency Scenario 3.2

The search space corresponding to this problem is depicted in Table 8.9. In this case,
a mildly discontinuous quadratic equation is used to define the dependency
relationship. This relationship can be exactly modelled by GAVD (using piece-wise
RA). The RETB-II parameters that make this equation are given in Table 8.8, and the
corresponding equation is given below (Equation 8.13). This dependency equation is

shown in Figure 8.8.

=0.2x5+0.6x2,V0<x52 0.5

x4=0.1+0.2x5+0.6x5 V0.5 <x5<1

0.4

0.2

Figure 8.8: Dependency Relationship in Case-3 (Dependency Scenario 3.2)
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Table 8.9: Case-3 (Dependency Scenario 3.2) (Upper Diagonal Graphs: Search
Space with Variable Dependency, Lower Diagonal Graphs: Search Space without
Variable Dependency)

773PS

(Range: 0-1)

(Range: 0-1)

(Range: 0-1)

(Range: 0-7)

8.2 Experimental Results

All the tests reported in this section correspond to 100 population size, 500
generations, 0.8 crossover probability, 0.05 mutation probability and simulated
binary crossover, with 10 crossover distribution index and 50 mutation distribution
index. The results reported here form the typical set obtained from 10 runs with
different seed values for the random number generator. No major variation was

observed in the results with the change in seed values.

Both GRGA and NSGA-II assume independence of variables, and hence do not take
variable dependency into account. In all the above-mentioned case studies, these two
algorithms work in search spaces that do not have any dependence among their
decision variables. Since the two algorithms work on the same search space, the

performance of GRGA is compared with that of NSGA-II in this chapter. However,
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in the absence of dedicated techniques for handling variable dependence, the
performance of GAVD cannot be compared to an algorithm that accounts for
variable dependence. Therefore, in this chapter, GAVD is compared against two
novel state-of-the-art optimisation algorithms (NSGA-II and GRGA). The idea is to
demonstrate that in the presence of variable dependence, even the most effective of
optimisation algorithms fail to produce good results if they do not have in-built
mechanisms to address variable dependency. Here, the performances of GAVD,
GRGA and NSGA-II are measured, with respect to the goals of multi-objective
optimisation (convergence to the Pareto front and diversity across it), using the
convergence metric (y) and diversity metric (Deb et al.,, 2000) (Appendix C). The
lower the values of these metrics, the better is the performance of the given

optimisation algorithm.

8.2.1 Case-1

The performahces of GAVD, GRGA and NSGA-II are compared on Case-1,

considering the two variable dependency scenarios (1.1 and 1.2).

8.2.1.1 Dependency Scenario 1.1

In this case, NSGA-II and GRGA work on x; and x; as the independent variables,
while ignoring the dependency data provided. On the other hand, GAVD performs
RA on the given data to obtain the dependency equation. It considers x;, x3 and x4 as
independent variables, and determines x; using the estimated dependency equation.
The results obtained from NSGA-II, GRGA and GAVD are depicted in Figure 8.9.

The y and A values that are obtained in this case are listed in Table 8.10.

Table 8.10: Performance Metrics in Case-1 (Dependency Scenario 1.1)

¥

1.209567 0.090002

0.009143 0.080121

0.008221 0.081124
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Figure 8.9: GAVD Performance in RETB-II Case-1 (Dependency Scenario 1.1)
(Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor Dependent
Variables: PFDV, Estimated Pareto Front: EPF)

8.2.1.2 Dependency Scenario 1.2

The classification (dependent/independent) of variables used in the application of
NSGA-II, GRGA and GAVD is similar to the one used in the Dependency Scenario
1.1. The results obtained from NSGA-II, GRGA and GAVD are depicted in Figure

8.10. The y and A values that are obtained in this case are listed in Table 8.11.

Table 8.11: Performance Metrics in Case-1 (Dependency Scenario 1.2)

Case-1 Performance Metrics
Dependency
Scenario 1.2 Y A
g »n NSGA-II 0.436589 0.090002
s E
© o
g £ GRGA 0.856745 0.080121
o
2
o< GAVD 0.000356 0.078659
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Figure 8.10: GAVD Performance in RETB-II Case-1 (Dependency Scenario 1.2)
(Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor Dependent
Variables: PFDV, Estimated Pareto Front: EPF)

8.2.2 Case-2

The results obtained from GAVD, GRGA and NSGA-II on Case-2 are illustrated

here.

8.2.2.1 Dependency Scenario 2.1

In this case, NSGA-II and GRGA are applied with xj, X> and x? as the independent
variables, while ignoring the dependency data provided. On the other hand, GAVD
performs RA on the given data to obtain the dependency equation. It considers xi and

as independent variables, and determines x: using the estimated dependency
equation. The results obtained from NSGA-II, GRGA and GAVD are depicted in

Figure 8.11, and the corresponding y and A values are given in Table 8.12.
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Exhaustive Search

PFIV -----

PFDV& EPF —
NSGA-Il Solutions +
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f1

Figure 8.11: GAVD Performance in RETB-II Case-2 (Dependency Scenario 2.1)

(Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor Dependent

Variables: PFDV, Estimated Pareto Front: EPF)

Table 8.12: Performance Metrics in Case-2 (Dependency Scenario 2.1)

Case-2

Dependency

Scenario 2.1 Y
S o NSGA-II 0.986345
= E
T c
2= GRGA 1.654703
€ o
D
o< GAVD 0.001373

S.2.2.2 Dependency Scenario 2.2

Performance Metrics
A

0.083956

0.045431

0.014564

The classification (dependent/independent) of variables used in the application of

NSGA-II, GRGA and GAVD is similar to the one used in Scenario 2.1. The results

obtained from NSGA-II, GRGA and GAVD are depicted in Figure 8.12, and the

corresponding y and A values are shown in Table 8.13.
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Figure 8.12: GAVD Performance in RETB-II Case-2 (Dependency Scenario 2.2)

(Pareto Frontfor Independent Variables: PFIV, Pareto Frontfor Dependent

Variables: PFDV, Estimated Pareto Front: EPF)

Table 8.13: Performance Metrics in Case-2 (Dependency Scenario 2.2)

Case-2
Dependency
Scenario 2.2 Y
S o NSGA-II 1.394502
s £
¥
£ E GRGA 0.759007
o
52
o< GAVD 0.742356

8.2.3 Case-3

Performance Metrics

A

0.093956

0.045432

0.045831

Here, the performances of GAVD, GRGA and NSGA-II on Case-3 are depicted.
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Table 8.14: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.1)
(Upper Diagonal Graphs: Pareto Front with NSGA-II and GRGA Solutions, Lower
Diagonal Graphs: Pareto Front with GAVD Solutions)

fy
Figure 8.13(a) Figure 8.13(b) Figure 8.13(c)
(Range: 0-1)
f;
Figure 8.14(a) Figure 8.13(d) Figure 8.13(e)
(Range: 0-1) :
f;
Figure 8.14(b) Figure 8.14(c) Figure 8.13(f)
(Range: 0-1)
fs
Figure 8.14(d) Figure 8.14(e) Figure 8.14(f)
(Range: 0-5)

8.2.3.1 Dependency Scenario 3.1

In this case, NSGA-II and GRGA are applied with x;, x, x3 x4 and x5 as the
independent variables, while ignoring the dependency data provided. On the other
hand, GAVD performs RA on the given data to obtain the dependency equation. It
considers xj, x,, x3 and x5 as independent variables, and determines x, using the
estimated dependency equation. The results obtained from NSGA-II, GRGA and
GAVD are depicted in Table 8.14, and the corresponding y and A values are shown
in Table 8.15.

Table 8.15: Performance Metrics in Case-3 (Dependency Scenario 3.1)

0.129059

0.220678

0.198456 0.110856

0.124536 0.100985
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Figure 8.13: NSGA-1l and GRGA Performance in RETB-1I Case-3 (Dependency
Scenario 3.1) - (a)fl-f2 Graph (b)fl-f3 Graph (c)fl-f4 Graph (d)f2-f3 Graph (e)
f2-f4 Graph (f)f3-f4 Graph
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(a) (b)
© (d)
(e) ®

Figure 8.14: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.1) -

(@) f2-fl Graph (b)f3-fl Graph (c)f3-f2 Graph (d)f4-fl Graph (e)f4-f2 Graph (f)
f4-f3 Graph
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Table 8.16: GAVD Performance in RETB-II Case-3 (Dependency Scenario 3.2)
(Upper Diagonal Graphs: Search Space with Variable Dependency, Lower Diagonal
Graphs: Pareto Front with NSGA-1I, GRGA and GA VD Solutions)

(Range: 0-1)

Figure 8.15(a)

(Range: 0-1) A
Figure 8.15(b) Figure 8.15(c)
(Range: 0-1)
14
Figure 8.15(d) Figure 8.15(e) Figure 8.15(f)

(Range: 0-7)

8.2.3.2 Dependency Scenario 3.2

The classification (dependent/independent) of variables used in the application of
NSGA-II, GRGA and GAVD is similar to the one used in Scenario 3.1. The results
obtained from NSGA-II, GRGA and GAVD are depicted in Table 8.16, and

corresponding y and A values are given in Table 8.17.

Table 8.17: Performance Metrics in Case-3 (Dependency Scenario 3.2)

Case-3 Performance Metrics
Dependency
Scenario 3.2 Y A
o . NSGA-II 1.270974 0.198407
ESS 2
= § 5,5 GRGA 0.284569 0.153057
© GAVD 0.200846 0.145223
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Figure 8.15: GA VD Performance in RETB-II Case-3 (Dependency Scenario 3.2) -

(@) f2-fl Graph (b)f3-fl Graph (c)J3-f2 Graph (d)f4-fl Graph (e)f4-f2 Graph (f)
f4-13 Graph
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8.3 Discussion of Results

The results obtained from each of the three RETB/RETB-II case studies are

discussed below.

8.3.1 Case-1

Here, GAVD, GRGA and NSGA-II are tested using the two scenarios of variable

dependence (1.1 and 1.2), discussed in Section 8.1.

8.3.1.1 Dependency Scenario 1.1

Based on the y and A values, the following observations can be made regarding this
problem and the performances of GAVD, GRGA and NSGA-II. The results

discussed here are pictorially depicted in Figure 8.9.

¢ Since the dependency relationship (Equation 8.4) covers the full range of x;, it
does not alter the Pareto front. Therefore, the Pareto fronts for the original
problem (with no dependence) and the dependent-variable problem coincide with

each other.

¢ GRGA and NSGA-II do not incorporate variable dependence in their solution
strategies. However, since the original and the new Pareto fronts are coincident in
this case, the GRGA is able to locate the Pareto front (y = 0.009143, A =
0.080121). However, NSGA-II gets trapped in one of the local fronts, and so is
not able to locate the global front (y = 1.209567, A = 0.090002), giving a much
higher value of y as compared to that given by GRGA. This is because the
convergence strategy (Pareto domination cum elitism) used by NSGA-II ceases
to produce the driving force towards the global front once most of the solutions
of the population share the same non-domination level. Therefore, in this case,
the NSGA-II has prematurely converged to a local front. This situation is avoided
in GRGA through the artificial modification of regression coefficients at regular
intervals using their history of search observed in previous generations. This
guides the search towards the global Pareto front by preventing it from getting
trapped in local fronts.
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¢ The equation that is constructed in this scenario is of degree two, with no cyclic
and deceptive terms (Equation 8.4), making it possible for the GAVD (that uses
quadratic RA) to exactly model the dependence. Hence, the Pareto front that the
GAVD sees coincides with the true Pareto front. Furthermore, since GAVD uses
GRGA as its optimisation engine, it is able to converge to the Pareto front and
distribute the solutions uniformly across the front (y = 0.008221, A = 0.081124).
This is reflected by the small values of y and A attained from GAVD. These
values are also similar to those attained from GRGA.

8.3.1.2 Dependency Scenario 1.2

Based on the y and A values, the following observations can be made regarding this
problem and the performances of GAVD, GRGA and NSGA-II. The results
discussed here are pictorially depicted in Figure 8.10.

¢ In this case, since the minimum value of the given x; is 0.2 (Equation 8.5), it does
not cover its original range (in which the minimum value was 0) when there is no
dependence among the decision variables. This truncates a part of the original
search space. Furthermore, the Pareto front gets modified since the original one

corresponded to x; equal to 0.

¢ Here, GRGA converges to the global Pareto front of the original problem (with
no dependence among its variables). However, these results are infeasible since
the original Pareto front has become infeasible with the introduction of variable
dependence. Since the new Pareto front does not coincide with the original one,
GRGA exhibits poor convergence (high y) in this case (y = 0.856745, A =
0.080121). Similar to the results shown in the previous scenario, NSGA-II gets
trapped in a local front in this problem. However, incidentally in this problem,
this particular local front lies in the feasible region of the search space modified
by variable dependence. Therefore, the results from NSGA-II are feasible but are
sub-optimal with respect to the new Pareto front (y = 0.436589, A = 0.090002).
Furthermore, the average distance between the new Pareto front and the original
Pareto front at which GRGA converges is more than that between the new Pareto
front and the local front at which NSGA-II converges. Therefore, the
performance metric y shows better convergence for NSGA-II as compared to
GRGA.
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¢ Due to the use of quadratic RA in GAVD, it estimates the given dependency
relationship (Equation 8.5) as the following equation (Equation 8.14). This is
pictorially depicted in Figure 8.3. Since this equation has the same range as the
given dependency equation, the estimated search space has identical boundaries
to the actual search space under variable dependency. Therefore, the estimated
Pareto front coincides with the actual one. Hence, the use of GRGA in GAVD is
able to ensure that the solutions converge to the new Pareto front and distribute
evenly across it. This gives very small values for y and A (y = 0.000356, A =
0.078659) in this case.

x, =1-0.4x;, —0.2x, —0.2x2,V0 < x, <,V0< x, <1. Equation 8.14

8.3.2 Case-2

Here, GAVD, GRGA and NSGA-II are tested using the two scenarios of variable
dependence (2.1 and 2.2), discussed in Section 8.1.

8.3.2.1 Dependency Scenario 2.1

The features of this problem together with the performances of GAVD, GRGA and
NSGA-II are discussed here. These results are illustrated in Figure 8.11.

¢ In this problem, the original Pareto front occurs when both x; and x; are equal to
0. Due to the given dependency among these variables, this is no longer possible.
This causes modifications in the search space and the Pareto front based on the
nature of the given dependency equation (Equation 8.8 and Figure 8.11).

¢ Here as well, GRGA converges to the global Pareto front of the original problem
(with no dependence among its decision variables). However, since the new
Pareto front does not coincide with the original one, the results from GRGA are
not feasible in this case (y = 1.654703, A = 0.045431). Similar to the previous
case, NSGA-II gets trapped on a local front, which incidentally lies in the new
search space. However, its results are sub-optimal with respect to the new Pareto
front (y = 0.986345, A = 0.083956). Furthermore, since the average distance from
the new Pareto front is more to the original Pareto front (at which GRGA
converges) than to the local front at which NSGA-II converges, the performance
metric y shows better convergence for NSGA-II as compared to GRGA.
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¢ Also, since GAVD uses quadratic RA, it is able to exactly determine the
dependency equation in this case (Equation 8.8). Hence, the Pareto front seen by
GAVD is the same as that of the actual dependent-variable problem. Therefore,
GRGA used in GAVD converges to the Pareto front and distributes the solutions
uniformly across the front (y = 0.001373, A = 0.014564). Hence, very small

values for y and A are attained.

8.3.2.2 Dependency Scenario 2.2

The following observations can be made on the basis of the results obtained by
applying GAVD, GRGA and NSGA-II on this problem. These results are pictorially
represented in Figure 8.12.

¢ In this problem, when there is no dependence among the decision variables, the
Pareto front occurs when both x; and x; are equal to 0. Due to the given
dependency among these variables (Equation 8.9), this is no longer possible. This
leads to modifications in the search space and the Pareto front.

¢ Here also, GRGA converges to the global Pareto front of the original
independent-variable problem. However, since the Pareto front with independent
variables does not coincide with the one in the presence of variable dependence,
the results attained by GRGA become infeasible in this problem (y = 0.759007, A
= (0.045432). Similar to the previous case, NSGA-II gets trapped in a local front
that lies in the new search space (obtained by introduction of variable
dependence) (y = 1.394502, A = 0.093956). In this case, GRGA exhibits better
convergence (smaller y) than NSGA-II since here the average distance from the
new Pareto front to NSGA-II solutions is about twice that from the new Pareto
front to GRGA solutions.

¢ Due to the use of two-degree RA in GAVD, it estimates the given dependency
relationship (Equation 8.9) as the following equation (Equation 8.15). This
approximation is pictorially depicted in Figure 8.6. Since this estimated equation
does not model the spike in the relationship, it only provides an approximation.
Also, in this problem, the Pareto front occurs for the variable values
corresponding to the bottom of the spike. Therefore, the search space and the
Pareto front that GAVD sees are different from those in the given dependent-
variable problem. Hence, GAVD is not able to locate the new Pareto front due to
the limitations posed by the degree of RA that it uses (y = 0.742356, A =
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0.045831). However, since GRGA and GAVD solutions lie at almost the same
average distance from the new Pareto front, the y values corresponding to them

are almost equal to each other.

x, =0.204+3.351x, —3.351x7,V0 < x, <1. Equation 8.15

8.3.3 Case-3

Here, two scenarios of variable dependence (3.1 and 3.2), as discussed in Section 8.1,

are used for analysing the performances of GAVD, GRGA and NSGA-II.

8.3.3.1 Dependency Scenario 3.1

The pictorial representation of this test is shown in Table 8.14. The following

comments can be made based on this information.

¢ In this case, since the dependency relationship (Equation 8.12) covers the full
range of x,, it does not alter the Pareto front. Therefore, the Pareto fronts for the
original problem (with no dependence) and the dependent-variable problem
coincide with each other. It should be noted that due to the multi-dimensional
nature of the function search space in this problem, the Pareto front cannot be
depicted by the two-dimensional plots of Table 8.14.

¢ This problem does not have multiple local fronts. Furthermore, since the original
and the new Pareto fronts are coincident, GRGA and NSGA-II are also able to
locate the front (GRGA: y = 0.198456, A = 0.110856; NSGA-II: y = 0.220678, A
= 0.129059). Therefore, both GRGA and NSGA-II give small values of y and A,
such that the values given by the two algorithms are nearly equal to each other.

¢ Furthermore, the dependency equation in this scenario is of degree two (Equation
8.12), with no cyclic and deceptive terms, making it possible for the GAVD to
exactly model the dependence (using piece-wise quadratic RA). Hence, the
Pareto front that the GAVD sees coincides with the true Pareto front. Therefore,
the optimisation engine of GAVD (GRGA) converges to the Pareto front and
distributes the solutions uniformly across the front (y = 0.124536, A = 0.100985).
This gives small values for y and A. In this problem, although all the three

algorithms exhibit good convergence to the Pareto front, it is not possible to
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visually see the results due to the multi-dimensional nature of the function search

space.

8.3.3.2 Dependency Scenario 3.2

The features of this problem together with the performances of GAVD, GRGA and
NSGA-II are discussed here. These results are illustrated in Table 8.17.

¢ The search space shown in Table 8.9 does not clearly show the discontinuity in
this case. This is because of its cyclical nature (due to the choice of a cyclic /
function in RETB) that causes overlap of points in the two-dimensional plot,
thereby hindering the depiction of discontinuity in the plot. Further, the mildness
of the discontinuity also makes the discontinuity less prominent in this case.

¢ With the introduction of variable dependence (Equation 8.13), the maximum
value of the given x; becomes 0.9, and so it does not cover its original range (in
which the maximum value was 1) when there was no dependence among the
decision variables. This truncates a part of the original search space. However,
since the Pareto front corresponds to x; equal to 0, which still is a part of the
search space, there is no modification in it with the introduction of variable
dependency. Therefore, the Pareto fronts for the original problem (with no
dependence) and the dependent variable problem coincide with each other.

¢ Since the original and the new Pareto fronts are coincident, GRGA is able to
locate the Pareto front in this case (y = 0.284569, A = 0.153057). However, due
to the presence of multiple local fronts, NSGA-II again exhibits pre-mature
convergence to a local front, thereby giving values of y that are much higher than
those given by GRGA (y = 1.270974, A = 0.198407).

¢ Furthermore, the dependency equation in this scenario is of degree two (Equation
8.13)), with no cyclic and deceptive terms, making it possible for the GAVD to
exactly model the dependence (using piece-wise quadratic RA). Hence, the
Pareto front that the GAVD sees coincides with the true Pareto front. Therefore,
GAVD converges to the Pareto front and distributes the solutions uniformly
across the front (y = 0.200846, A = 0.145223). It should be noted here that in
general the results obtained for this scenario are inferior as compared to those
obtained from the previous one. This can mainly be attributed to the presence of
multiple local fronts in this scenario.
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8.4 Key Results

A review of the results obtained from all the three cases reveals that Case-3 is
particularly challenging for all optimisation algorithms. This is because of the
presence of four objectives in this problem that lends multi-dimensional nature to its
Pareto front. The complexity of this problem is further enhanced due to the presence
of bias in the search space (in both Dependency Scenarios 3.1 and 3.2) and multiple
local fronts (only in Dependency Scenario 3.2). Furthermore, the presence of
variable dependency introduces discontinuity in the search spaces corresponding to
both the dependency scenarios. Therefore, it is observed that, although GAVD is able
to locate points close to the global Pareto front, the convergence of the solutions to
the Pareto front and their distribution across the front are inferior to that exhibited by
it in those scenarios of Cases 1 and 2, where it is able to exactly model the
dependency relationship among the decision variables. This is supported by
comparatively higher values of y and A exhibited by GAVD in the Dependency
Scenarios 3.1 and 3.2 (Table 8.15 and Table 8.17). This observation particularly
revealed that the multi-dimensional nature of the Pareto front has a strong impact on

the difficulty of a problem.

In addition to the results illustrated in Section 8.2, the GAVD and GRGA also
identify the following relationships among the decision variables corresponding to

the Pareto-optimal solutions.

¢ Case-1 (Dependency Scenario 1.1): True Pareto front corresponds to x; = 0; X3 =
1; x4=1; with x; taking values in its range.

» GRGA: Estimated Pareto front corresponds to x; = 0; with x; taking
values in its range.

» GAVD: Estimated Pareto front corresponds to x; = 0; x3 = 1; x,=1; with
x; taking values in its range.
¢ Case-1 (Dependency Scenario 1.2): True Pareto front corresponds to x; = 0.25; x3
= 1; x4=0.91; with x; taking values in its range.

» GRGA: Estimated Pareto front corresponds to x; = 0; with x; taking
values in its range.
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» GAVD: Estimated Pareto front corresponds to x; = 0.25; x3 = 1; x4=0.91;
with x; taking values in its range.
Case-2 (Dependency Scenario 2.1): True Pareto front corresponds to x; = 0.2; x3
= 0; with x; taking values in its range.
» GRGA: Estimated Pareto front corresponds to x; = 0; x3 = 0; with x;
taking values in its range.

» GAVD: Estimated Pareto front corresponds to x; = 0.2; x3 = 0, with x;

taking values in its range.

Case-2 (Dependency Scenario 2.2): True Pareto front corresponds to x; = 0.2; X3
= 0.5; with x; taking values in its range.

» GRGA: Estimated Pareto front corresponds to x; = 0; x3 = 0; with x;
taking values in its range.

» GAVD: Estimated Pareto front corresponds to x; = 0.2; x3 = 0; with x;
taking values in its range.
Case-3 (Dependency Scenario 3.1): True Pareto front corresponds to x4 = 0; x5 =
0; with X1, X, and x5 taking values in their respective ranges.
» GRGA: True Pareto front corresponds to x4 = 0; with x;, x; and x;3 taking
values in their respective ranges.
» GAVD: True Pareto front corresponds to x4 = 0; x5 = 0; with x;, x; and x;3
taking values in their respective ranges.
Case-3 (Dependency Scenario 3.2): True Pareto front corresponds to x4 = 0; X5 =
0; with x;, X, and x3 taking values in their respective ranges.
» GRGA: True Pareto front corresponds to x4 = 0; with x;, x; and x3 taking
values in their respective ranges.

» GAVD: True Pareto front corresponds to x4 = 0; x5 = 0; with x;, x; and x3
taking values in their respective ranges.

The tests reported in this section lead to the following general conclusions regarding

the performances of GAVD and GRGA.

L

If the introduction of variable dependency does not change the Pareto front, it is
observed that GRGA and GAVD exhibit similar performance. This is because
GAVD uses GRGA as its optimisation engine.

GRGA exhibits better performance than NSGA-II in dealing with multi-objective
optimisation problems that have complex inseparable function interaction,
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leading to a variety of features such as multiple local fronts, bias, deception and
discontinuous Pareto fronts. This is because the Pareto-domination/elitism
strategy used by NSGA-II ceases to produce the driving force towards the global
Pareto front once most of the solutions of the population share the same non-
domination level. GRGA addresses this drawback of NSGA-II through periodic
modification of regression coefficients based on their history of search observed
in previous generations. Unlike NSGA-II, GRGA also addresses the core issue
involved in maintaining diversity by re-distributing the solutions based on the
relationships among their decision variables. However, since GRGA does not
have an in-built mechanism for handling variable dependence, it fails to give
satisfactory solutions in those problems that have dependence among their

decision variables.

GAVD removes the above-mentioned drawback of GRGA by providing it with a
mechanism for handling variable dependence in multi-objective optimisation
problems. This algorithm is capable of dealing with a variety of optimisation
problems. However, the capability of GAVD is limited by the degree of the RA

that it uses. Here, a quadratic RA has been used.

8.5 Summary

{
This chapter has analysed the performances of the two algorithms GAVD and GRGA

that have been proposed in this research. The performance analysis has been carried

out using the test beds RETB and RETB-II, which have also been developed in this

research. This chapter has achieved the dual purpose of analysing the performances

of GAVD and GRGA, while validating the behaviour of RETB and RETB-II. In

short, this chapter has achieved the following.

¢

It has developed a set of RETB/RETB-II case studies such that it represents three
features of real-life engineering design optimisation problems: presence of

multiple objectives, constraints and variable interaction.

It reported the experimental results obtained from GAVD, GRGA and NSGA-II
in each of the cases.

It has presented an analysis of the experimental results.
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¢ Finally, based on this analysis, it has compiled key observations and drawn

general conclusions regarding the performances of GRGA and GAVD.
This chapter has analysed the performance of GRGA and GAVD using RETB and
RETB-II. The next chapter validates the observations made in this chapter using a
representative set of real-life case studies in the area of engineering design
optimisation. A brief analysis of the features of a selection of real-life problems is

also presented in the next chapter.
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9 REAL-LIFE CASE STUDIES

In the previous chapters, two algorithms, GRGA and GAVD, were proposed for
dealing with multiple objectives, constraints and variable interaction in engineering
design optimisation problems. Two test beds, RETB and RETB-II, were also
proposed that have the same features as mentioned above, and enable controlled
testing of optimisation algorithms. These test beds were used in the previous chapter
to analyse the performance of GRGA and GAVD. The aim of this chapter is to

validate the observations made in the previous chapter using real-life case studies.

This chapter attempts to achieve the following.

9.1 Case Studies from Real-life Engineering
Design Optimisation

The aim of this section is to present some case studies from real-life engineering
design optimisation and to analyse the features of these case studies, especially with
respect to variable interaction. These case studies are drawn from Table 4.1, which
presents the list of some applications of evolutionary-based optimisation algorithms
reporfted in the literature. This chapter analyses 10 problems chosen from Table 4.1.
Since all these problems share similar features, it can be said that the successful
application of GRGA and GAVD on a representative set of these 10 problems also

ensures their success in solving other problems listed in Table 4.1.
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The features of the chosen 10 problems are tabulated in Table 9.1. As can be seen,
this table gives the general features of these problems in terms of the number and
nature of variables, and the number of objectives and constraints. It further looks at
the problem features that influence interaction among the decision variables. Since
inseparable function interaction is caused by the functions used in the problem, this
table analyses the complexity of objectives and constraints. It also reports the
complexity of the Pareto front, together with the relationships involving decision
variables that define the Pareto front. The table also checks for the presence and
nature of variable dependence in the problems. Finally, the table presents some
published results obtained from the application of optimisation algorithms on these

problems. The following gives a brief description of these case studies.

¢ Compound Gear Train Design (Deb, Pratap and Moitra, 2000): This problem
involves the design of a compound gear train to achieve a specific gear ratio
between the driver and driven shafts. The objective of the gear train design is to
find the number of teeth in each of the four gears so as to minimise: (i) the error
between the obtained gear ratio and a required gear ratio and (ii) the maximum
size of any of the four gears. Since the number of teeth must be integers, all four
variables are strictly integers, having bounds attached to them. This problem has
a non-linear, concave and discontinuous Pareto front with bias in its search space.
Furthermore, due to the presence of discrete variables, this problem has multiple
local fronts in its search space. However, there is no variable dependence in this
problem. This problem has been reported in the literature to be successfully
solved by NSGA-IL.

¢ Design of a Helical Compression Spring (Deb, Pratap and Moitra, 2000): Here, a
helical compression spring needs to be designed for minimum volume and for
minimum stress. This problem has three variables: the number of spring coils N,
the wire diameter d and the mean coil diameter D. Of these variables, N is an
integer variable, d is a discrete variable having forty-two non-equidistant values
and D is a real-parameter variable. This problem has eight constraints that
involve limits on variable values, restrictions on stress to be within the allowable
strength and the volume to be within a pre-specified limit. The decision variables
in this problem are independent. Furthermore, the Pareto front here is non-linear,

convex and discontinuous, and the search space in biased in nature. Similar to the
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previous problem, this problem also has multiple local fronts due to the presence
of discrete variables. It has been shown in the literature that NSGA-II (with

constrained domination) is able to locate the Pareto front in this problem.

¢ Welded Beam Design (Deb, Pratap and Moitra, 2000): In this problem, a beam
needs to be welded on another beam and must carry a certain load (Figure 9.1).
The objective of the design is to minimise the cost of fabrication and minimise
the end deflection. Here, the overhang portion of the beam and the applied force
(F) are specified, making the cross-sectional dimensions of the beam (b, t) and
the weld dimensions (h, 1) as the variables. This problem has four constraints.
The first constraint makes sure that the shear stress developed at the support
location of the beam is smaller than the allowable shear strength of the material.
The second constraint makes sure that normal stress at the support location of the
beam is smaller than the allowable yield strength of the material. The third
constraint ensures that the thickness of the beam is not smaller than the weld
thickness from a practical standpoint. Finally, the fourth constraint makes sure
that the allowable buckling load of the beam is more than the applied load. This
proBlem has a non-linear, convex and continuous Pareto front, and has no
dependence among its decision variables. NSGA-II with constrained domination
approach has been shown to convérge to the Pareto front and to distribute the
solutions uniformly across the front.

]

x
v
AF

Figure 9.1: Welded Beam Design (Source: Deb, Pratap and Moitra, 2000)

¢ Design of an I-beam (Coello, 1997): The aim in this problem is to determine the
dimensions of an I-beam such that the geometric and strength constraints are
satisfied, and the following objectives are minimised: (i) cross-sectional area of
the beam that reflects the volume for the given length (ii) static deflection of the
beam for the displacement under the applied force. This problem has independent

variables, a non-linear, convex and continuous Pareto front, and a biased search
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space. In dealing with this problem, NSGA-II performs better than other multi-

objective optimisation algorithms.

¢ Determining Machining Parameters (Coello, 1997): This problem requires to
determine the values of the cutting speed, feed rate and depth of cut such that the
surface roughness, scrap rate and tool wear are minimised, and the material
removal rate is maximised. This problem has bounds on the cutting speed, feed
rate and depth of cut to reflect the ranges over which the tests are run. It also has
limits on the values of three performance measures: surface roughness, scrap rate
and tool wear. Since all the objective functions in this problem are linear, it has
an unbiased search space. Furthermore, the Pareto front is linear, multi-
dimensional and continuous, and there is no dependence among the decision
variables. In this problem as well, NSGA-II performs better than most other

multi-objective optimisation algorithms.

Figure 9.2: Design of a Machine Tool Spindle (Source: Coello, 1997)

¢ Design of a Machine Tool Spindle (Coello, 1997): This design is shown in Figure
9.2. The four variables in this problem are the dimensions of the spindle (1, d,, da,
dp). Two of these variables are real (1, d,) and the rest two are discrete (d,, dp).
This problem involves the minimisation of the volume of the spindle and the
static displacement under the force F. This problem has nine constraints that
include variable bounds and limits on the maximum radial run-out of the spindle
nose. This problem has a non-linear, convex and discontinuous Pareto front, and
a biased search space. It also has multiple local fronts due to the presence of
discrete variables. Another interesting aspect of this problem is that it has
dependence between two of its decision variables that arises due to the designers’

special preference regarding the proportion of these two variables. Due to the
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presence of dependence among its decision variables, most of the optimisation
algorithms fail to produce satisfactory results in this case. However, the
performance of NSGA-II is found to be better than that achieved by other
approaches.

¢ Two-bar Truss Design (Deb, Pratap and Moitra, 2000): Here, a truss has to be
designed to carry a certain load without elastic failure. Thus, in addition to the
objective of designing the truss for minimum volume, there are additional
objectives of minimising the stresses in each of the two members. This two-
objective optimisation problem has three variables: height of the truss and cross-
sectional areas of the two members. This problem has four objectives that limit
the stresses and the dimensions of the two members. It has a non-linear, convex
and continuous Pareto front, and a biased search space. There is no dependence
among the variables of this problem. Literature reports that in this problem
NSGA-II is able to locate well distributed Pareto-optimal solutions.

¢ Design of a Robot Arm (Coello, 1997): Here, a two-member robot arm needs to
be designed. This problem has four variables that include the two counterweights
and their distances from the joints. The four objectives in this problem involve
the minimisation of the torque and the reaction forces at the joints of the two
members of the robot arm. This problem also has six constraints that restrain the
movement of the arm, values of counterweights and the distances of
counterweights from the joints. Here, the Pareto front is non-linear and multi-
dimensional, the search space is biased in nature, and the variables are
independent of each other. In this problem as well, NSGA-II performs better than
other algorithms.

¢ Design of a Single Screw Extruder (Cunha, 2000): The four variables in this
problem are the screw speed and the barrel temperatures in the initial,
intermediate and final zones. This problem has five objectives, requiring the
maximisation of output, and the minimisation of the length of screw required for
melting, melt temperature, power consumption and mixing quality. It should be
noted that here the objectives are not directly defined in terms of decision
variables. They are defined in terms of some intermediate variables that in turn
functions of the decision variables. This makes the objective functions multi-
layered in nature. Furthermore, the equations that are used to calculate the values
of objectives are implicit in this case. This means that the determination of their

values requires an iterative procedure in many cases. Here, the Pareto front is
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non-linear and multi-dimensional, the search space is biased in nature, and the
variables are independent of each other. In this case, the literature does not
report the results obtained from high-performing optimisation algorithms.

¢ Design of a Turbine Blade Cooling System (Roy, 1997): In order to maximise
gas turbine engine performance and efficiency, turbine blades need to operate in
an environment where the gas temperature is as high as possible. This
temperature often exceeds the operational limits of the turbine blade materials.
To ensure component integrity whilst operating at high gas temperatures, blade
materials are cooled to safe operating temperature levels by passing relatively
cool air through them and in more extreme cases, over them in the form of films.
A small portion of the compressor exit airflow is utilised to cool the blades
(Figure 9.3 and Figure 9.4). The temperature of this cooling air depends on the
compressor pressure ratio and on the flight Mach number and temperature. The
sacrifices for the blade cooling include the loss of work (and some loss of
efficiency) due to the portion of the air taken from the compressor exit. Thus, this

problem can be framed as multi-objective having four objectives.
» Coolant mass flow for radial passage (W, in Kg/s).
» Coolant mass flow for film hole (W rin Kg/s).
» Metal temperature for gas side (T,g in K).
» Metal temperature for film side (T,yin K).
Alternatively, the problem can also be framed in two objectives as follows.
» Coolant mass flow for radial passage (W., in Kg/s).
» Metal temperature for gas side (T, in K).

This problem has twelve variables as follows.

> Type of geometry (Geom).

» Coefficient of discharge (radial passage) (Cyy).

» Heat transfer coefficient factor (radial passage) (Fi).

» Inlet temperature (Ic;).

»  Wall thickness (dth).

»  Thermal conductivity of the blade material (k).

» Pressure ratio (between inlet and outlet of radial passage) (R, = Pci/Pc3).
» Perimeter ratio (radial passage) (Rs = Sg//Sc:).

»  Film hole diameter (df).
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> Coefficient of discharge (film hole) (Cy).

» Heat transfer coefficient factor (film hole) (Fy.

» Pressure ratio (film) (Ryr = (Pc;-Pc;)/(Pci-Pc3)).

Here, the first variable is discrete (plane, ribbed or pedestal) and the rest are
real. Also, the values of Cy, and Fhc vary within a range according to the type
of geometry. This problem also has 15 constraints that include limits on the
above-mentioned variables, blade wall temperature (on the gas and film side)
and flow ratio (W¢/Weg). Similar to the previous problem, the objective
functions are implicit and multi-layered in this case. This problem has a non-
linear and multi-dimensional - Pareto front, and a biased search space.
Literature does not report the application of any multi-objective optimisation

algorithm on this problem.

-\ Film holes

Typital blade section
showing five-pass cooling
airflow

Dual cooling-air feeds

Figure 9.3: General Arrangement of Five-pass Cooling of Turbine Rotor Blade
(Source: Roy, 1997)
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Figure 9.4: Schematic Diagram Showing General Arrangement of Coolant Flow
through Turbine Blade with Film Cooling Mechanism (1: Coolant Air Inlet, 2: Film

Cooling Passage Inlet, 3: Cooling Air Exit and 3°: Film Cooling Hole Exit) (Source:
Roy, 1997)

9.2 Selection of Case Studies

This section attempts to select a set of case studies from the ones mentioned in Table
9.1. These case studies are used in this chapter for validating the performance of
GRGA and GAVD. Therefore, the aim here is to select a set of problems that
together represent multiple objectives, constraints and variable interaction in

engineering design optimisation problems. Based on the challenges that multiple
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objectives, constraints, inseparable function interaction and variable dependence

pose for optimisation algorithms, the following list can be compiled that identifies

the various features that may be observed in real-life problems.

¢

¢

¢

Multiple variables.

Integer, discrete and real variables.

Multiple measures of performance (objectives).
Multiple constraints.

Polynomial, rational or complex objective functions.
Implicit and multi-layered objective functions.
Polynomial, rational or complex constraints.
Implicit and multi-layered constraints.
Unknown Pareto front

Multi-dimensional Pareto front

Non-linear (convex/concave) Pareto front
Continuous or discontinuous Pareto front
Biased search space

Multi-front (multiple local Pareto frbnts)

Variable dependence

This list is used to select a set of problems from Table 9.1 such that all the above-

mentioned features are represented. This analysis led to the choice of a set of three

problems listed below (shown as shaded regions in Table 9.1).

¢

¢

Design of a welded beam.

Design of a machine tool spindle.

¢ Design of a turbine blade cooling system.
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation

) Id e
pring
4 3 5
4 integer 1 mteg&el;, |?e;hlscrete
2 2
4 8
1. Rational function gézsl)ynomlal function
(zoﬁ';/gggzn function 2. Rational function
' (O(2)/0(4))
. 2 linear, 1 polynomial
4linear (O(4)) & 5 rational
Corresponds to fixed Unknown Sp

values for 2 variables

« Non-linear, concave
& discontinuous
Pareto front

« Biased search
space

o Multi-front (multiple
local Pareto fronts)

* Non-linear, convex
& discontinuous
Pareto front

¢ Biased search
space

e Multi-front (multiple
local Pareto fronts)

Independent decision

Independent decision

variables variables
e Order of

performance: e Order of
GeneAS-| > performance:
GeneAS-ll > GeneAS = Branch-
Augmented and-Bound (BB)
Lagrangian (AL) > » Solutions lie on
Branch-and-Bound estimated Pareto
(BB) front

e Sub-optimal results

e Order of
performance for
convergence:
NSGA-Il > NSGA

e Order of
performance for
distribution: NSGA-
Il > NSGA

e Order of
performance for
convergence:
NSGA-II (with
constrained
domination) =
NSGA-II (with
penalty function) >
NSGA

¢ Order of
performance for
distribution: NSGA-
Il (with constrained
domination) >
NSGA-II (with
penalty function) >
NSGA
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)
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* No published results
were observed in
this category
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e Order of
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> NSGA

¢ Order of perform-
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e Order of
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Table 9.1: Case Studies from Real-life Engineering Design Optimisation (contd.)

A2 e

Adiscrete & 11real

: i .| relationship
. Implicit | 2. Implicit mul
relationshp | relationship
3. Implicit mul
“relations
4. Implici
relations

“Pareto front with unknown

9.3 Design of a Welded Beam

This design is shown in Figure 9.1, and is briefly described in Section 9.1. The model
for this design is given in Equation 9.1. This equation assumes the following values.
¢ Overhang portion of the beam = 14 inch.

¢ F=6000Ib force.

¢ Allowable shear strength of the material = 13600 psi.

¢ Allowable yield strength of the material = 30,000 psi.
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Minimise = Cost = f;(x) =1.104714°1+ 0.04811:6(14.0 + 1),

Minimise = End _ Deflection = f,(x)=0(x),
Constraints = g ,(x) =13,600-17(x) = 0,
g2,(x)=30,000~-0(x) 20,

g, (x)=b—-h20,

g4(x)=P.(x)—6,000= 0.

Deflection_Term =5(x) =2.1952/t°b,

7(x) = 247"+ T") /4 0.25(% + (h+1)?),

'=6,000/~/2A,
_6,000014+0.51)4/0.25(1 + (h+1)*)
— 2{0.707hI(2 112+ 0.25(h + 1))
o(x) = 504,000/,

P.(x) = 64,746.022(1 — 0.0282346£)h°.

b

9.3.1 Experimental Results

Equation 9.1

Figure 9.5, Figure 9.6 and Figure 9.7 respectively depict the results obtainéd by
applying NSGA-II, GRGA (without final redistribution) and GRGA (with final

redistribution) to the optimisation of a welded beam design. The tests reported here

are carried out using 100 population size, 500 generations, 0.8 crossover probability,

0.05 mutation probability, and simulated binary crossover with 10 crossover

distribution index and 50 mutation distribution index. These results form the typical

set obtained from 10 runs with different seed values for the random number

generator. No majof variation was observed in the results with the change in seed

values. Furthermore, HDA is used here with GRGA, and to enable fair comparison,

the termination condition is not applied here for reporting the GRGA results.

EC Techniques for Handling Variable Interaction

264



Chapter 9. Real-life Case Studies

Exhaustive Search

NSGA-II +
0.009

0.008
0.007
¢ 0.006
y, 0.005
Q/ 0.004
0.003
0.002

0.001

Figure 9.5: Resultsfrom NSGA-II on Welded Beam Design (Units: Deflection in

inch, Cost in cost units)
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Figure 9.6: Resultsfrom GRGA (Without Final Redistribution) on Welded Beam

Design (Units: Deflection in inch, Cost in cost units)
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Figure 9.7: Resultsfrom GRGA (With Final Redistribution) on Welded Beam Design

(Units: Deflection in inch, Cost in cost units)

9.3.2 Discussion of Results
The salient observations from the above-mentioned results are as follows.

¢ The problem has a search space that is biased towards high values of cost and
low values of deflection. This implies that most of the solutions of the given
model lie in this region. Furthermore, the Pareto front of this problem is convex

and continuous in nature.

¢ Both NSGA-II and GRGA converge to the Pareto front in this case. In the case of
NSGA-II, this has been possible due to the absence of multiple local fronts. Since
GRGA converges to the Pareto front, it has been able to determine the
relationships involving decision variables that define the Pareto front. Hence,
when GRGA uses these values to redistribute the final solutions, a well-defined

Pareto front is attained.

¢ Since this problem does not have variable dependency, GAVD is not applied in

this case.

¢ GRGA reveals that the Pareto front of this problem corresponds to h = 0.422, 1=
2.465 and t=9.990. Table 9.2 shows that a majority of final solutions determined

by GRGA have these same values for h, 1and t. Therefore, to attain any solution
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on the Pareto front, the designer needs to fix h, 1 and t to these values, and choose

a value for b based on his/her preferences.

Table 9.2: Variable Values Corresponding to Identified Pareto Front

9.4 Design of a Machine Tool Spindle

This design is shown in Figure 9.2, and is briefly described in Section 9.1. The model

for this design is given in Equation 9.2. This equation assumes the following values.

¢ dom = 25.00 mm, d,; = 80.00 mm, d,; = 95.00 mm, dp; = 75.00 mm, dy; = 90.00
mm, p; = 1.25, po = 1.05, Iy = 150.00 mm, 1 = 200.00 mm, a = 80.00 mm, E =
210,000.0 N/mm?, F = 10,000 N, A;= 0.00540000 mm, A, = -0.00540000 mm, A
=0.01000000 mm, J, = -0.00100000 mm and &,,= -0.00100000 mm.

¢ d, must be chosen from the set {80,85,90,95} and dy from the set {75,80,85,90}.

9.4.1 Experimental Results

Figure 9.8, Figure 9.9 and Figure 9.10 respectively depict the results obtained by
applying NSGA-II, GRGA (with final redistribution) and GAVD (with final
redistribution) to the design bptimisation of a machine tool spindle. The tests
reported here are carried out using 100 population size, 500 generations, 0.8
crossover probability, 0.05 mutation probability, and simulated binary crossover with
10 crossover distribution index and 50 mutation distribution index. These results
form the typical set obtained from 10 runs with different seed values for the random
number generator. No major variation was observed in the results with the change in
seed values. Furthermore, HDA is used here with GRGA, and to enable fair
comparison, the termination condition is not applied here for reporting the GRGA

results.
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Minimise(Volume of _Spindle) = Equation 9.2
1) = e/ )lad? —d2) +1(d? ~d?)], |
Minimise(Static _Displacement _under F)=
3 2

fgfla i+ ff] >+£[(l+§)2 !
Constraints = g,(x)=1-1, <0,
g,(x)=1,-1<0,
g (x)=d,—d, <0,
g,(x)=d, —-d,; <0,
gs(x)=d, —d, <0,
gs(x)=d, —d,, <0,
g,(x)=d,, —d, <0,
g (x)=pd,—d, <0,

J2(%) =

gy(x)=

A, +(A, —Ab)-‘l’-}—Aso,

Dependency _Equation (Designer's_Proportion_Preference)
= p,d, =d,,

A = Maximum_Runout of Spindle_Nose,

A, = Radial _Runout _of _ Front _ Bearing,

A, = Radial _Runout of _Back _Bearing,

Moment _of _Inertia=1,=0.049(d} -d}),

Moment _of _Inertia=1, =0.049(d, —d}),

Bearing _Stiffness = ¢, =354005,,|° dX"° ,d,, = Preload,
d)*”,d, = Preload.

Bearing _Stiffness =c, = 35400[5,b|

179

9.4.2 Discussion of Results

The salient observations from the above-mentioned results are as follows.

¢ Due to two discrete variables in this problem, the search space is discontinuous.
This also leads to multiple local fronts in the problem. The discontinuity in the
search space also makes the global Pareto front discontinuous, composing it as a
combination of parts of several local fronts. Furthermore, there is bias in the

search space towards higher values of both displacement and volume. This means
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that the model has a tendency to generate solutions that lie in this part of the

search space.

Exhaustive Search
NSGA-II

0.035

Q 0.025

0.02

0.015
400000 600000 800000 le+06

Volume

Figure 9.8: Resultsfrom NSGA-II on Design ofMachine Tool Spindle (Units:

Displacement in mm, Volume in mm3

Exhaustive Search
GRGA (with final redistribution) o

0.035

0.03

b 0.025

0.02

0.015
400000 600000 800000 16406

Volume

Figure 9.9: Resultsfrom GRGA (With Final Redistribution) on Design ofMachine

Tool Spindle (Units: Displacement in mm, Volume in mm3
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0.04
Exhaustive Search

GAVD (with final redistribution)

0.035

0.02

0.015
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Figure 9.10: Resultsfrom GAVD (With Final Redistribution) on Design ofMachine

Tool Spindle (Units: Displacement in mm, Volume in mm3

¢ Here, GRGA successfully locates the global Pareto front, including all its parts.
However, NSGA-II gets trapped in a local front due to the same reasons as
mentioned for this behaviour in the previous chapter. Moreover, NSGA-II has

also been able to locate all other individual parts of'the Pareto front.

¢ Since GAVD has an in-built mechanism for dealing with variable dependence
and since it uses GRGA as its optimisation engine, it has been able to locate all
the parts of the Pareto front and distribute the solutions evenly across all these
parts. In this case, the performances of GAVD and GRGA are similar since the
introduction of variable dependence does not change the Pareto front. Therefore,
GAVD gives better results than GRGA only in those cases in which variable

dependency changes the Pareto front.

¢ GAVD reveals that the Pareto front of this problem corresponds to 1= 187.78, da
= 95 and dy = 90. Table 9.3 shows that a majority of final solutions determined
by GAVD have these same values for 1, da and dy. Therefore, to attain any
solution on the Pareto front, the designer needs to fix 1, daand db to these values,

and choose a value for dObased on his/her preferences.
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Table 9.3: Variable Values Corresponding to Identified Pareto Front

9.5 Design of a Turbine Blade Cooling System

The preliminary design of the turbine blade cooling system was briefly described in
9.1, using Figure 9.3 and Figure 9.4. The model is developed considering one
dimensional, single pass coolant flow. The model includes a cooling film
mechanism, and involves twelve design variables. This Turbine Blade Cooling
system Model (TBCOM) also uses several constants known as design parameters.

TBCOM also includes three non-linear constraints.

The common nomenclatures used in this model are: A for cross-sectional area of
passage, Cq for coefficient of discharge, Cp, for specific heat at constant pressure, C,
for specific heat at constant volume, d for hydraulic diameter, dth for wall thickness,
h for heat transfer coefficient, H1 for parameter group for heat balance equation, H2
for parameter group for heat balance equation, H3 parameter group for heat balance
equation, k for thermal conductivity, 1 for passage length, M for Mach number, N for
number, P, for cooling air pressure, R for gas constant, S, for cooling side parameter,
S, for gas side effective perimeter, Tc for cooling air temperature, W for mass flow,
X¢ for distance from film cooling hole exit / effective slot width of film, y for ratio of
specific heats and p for dynamic viscosity. The following subscripts are also used
here: 1 for cooling air inlet, 2 for film cooling passage inlet, 3 for cooling air exit, 3’
for film cooling hole exit, b for blade, ¢ for coolant, f for film and g for gas, hpc for

high pressure compressor, r for radial passage and w for wall.

Like many other design models, TBCOM involves several constants known as
design parameters. The design parameter values with their respective nomenclature

are as follows.
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¢ Heat transfer coefficient (gas side), hy = 3000.0 W/m’K; gas side temperature, T,
= 1500.0 K; ratio of specific heats, y = 1.36; mass flow (high pressure
compressor), W, = 84.85 Kg/s; radial cooling hole exit pressure, P.3 = 460000.0
N/m?; number of blades, Ny = 78; wall temperature (gas side) for initial
calculations, Tywg = 1250.0 K; radial passage length, 1, = 0.0406 m; specific heat
at constant pressure, Cp = 993.0; one of two factors for heat transfer coefficient, F
=(.01855; gas constant, R = 287.0; distance from film cooling hole exit/effective
slot width of film, X¢= 10; Mach number, Mach = 0.6; number of film holes, N¢
= 30 and initial outside temperature, Tyg = 1500.0 K.

Maximum radial passage area, A < 2.75E-05 mz; bounds on radial coolant flow
heat transfer coefficient, 100.0 W/m2K<hc,<4OOO.OW/m2K; check on metal
temperature, 1000.0 K < Ty, < 1500.0 K; for the film cooling section, heat
transfer coefficients are the same for the film side and the gas side, that is hf=h,

and for the film cooling section, the perimeter ratio, Rgs = 1.0.

As stated earlier, the objective functions are implicit and multi-layered in this case.

This implies that the determination of objective values requires an iterative

procedure. This procedure together with the equations involved is detailed in Roy

(1997). Here, the iterative design procedure used for the calculation of the values of

W, and Ty, is shown in Table 9.4 to give an illustration of the model complexity and

its equations.

W, =0.003xW, /N,. Equation 9.3
T -T Equation 9.4
hcr:hg(Sgr/Scr)( z Wg)‘ q
(]—'WC - TC)
A, =(FF x(k/u*®W2* /h,)), where, Equation 9.5
FF =FxFhe,
j = 2978E—03xTc™
1+(240.0/Tc) ’
_ 1.488E—-06xTc"
Tc+1104
(for initial value assume Tc = Tc)
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Table 9.4: Cooling System Design Procedure Used in TBCOM (Source: Roy, 1997)

Estimate W,

Equation 9.3

Based on the limiting
value of flow off-take from
the engine compressor.

Estimate Tug

Based on material
property limitation,
suggested 1500.0 K.

Calculate h

Equation 9.4

Calculate A.

Equation 9.5

Check the value, if within
the limiting value of A,
go to Step 5. If not within
the limiting value of A,
then W¢ = W,*0.99 and
go back to Step 4.

Calculate W,

Equation 9.6

Calculate hg

Equation 9.7

Compare hg value from
Step 6 with Step 3, if
within tolerance then
proceed to check whether
he lies within the
acceptable range, if yes
then proceed to Step 7
otherwise reset the Tug
and h values and go to
Step 4. If the wall
temperature calculation
reaches a steady state
then only accept, if not
equal then go back to
Step 4.

Calculate Tuyg

Equation 9.8

Check the value, if within
the acceptable limit then
accept. If not within the
limit and if W, has not
been changed previously,
change W, as W, =
Wa*1.01.

Calculate T,

Equation 9.9

Recalculate k

k defined in Equation 9.5

Reset Twg and h,; values
and go to Step 4. If the
wall temperature

Recalculate n p defined in Equation 9.5 calculation reaches a
steady state then only
accept.

05 Equation 9.6
-2/y -(+9)y qualtion 7.
_ A4,C,Pc 2y Pc, [ Pey
cr .
JT¢, Ry -1 [\ Pc, Pc,

e, = FFx (k| 1®*)x (W2 1 42%).

Equation 9.7
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2 Equation 9.8
- XH2 N gy HU
T H1+H3) # Hl+H3 "
e = , Where,
1+H2—H1XH2+HIXH3
H1+H3 HI1+H3
h

cr

P - —
h,x(S,/S,)
H2=(h S_1)/(2W.C.),

cr—cr'r cr 4
S, =3.545x,[4_,
1. =0.0406m,

gy 05k, [ 1)
dthxh, | (S,/S,)

Te=(H2/HI)T, -T,,)+TIc,,where, Equation 9.9
Te, —Tc, =2(Tc—Tc,)

9.5.1 Experimental Results

Two sets of results are reported in this case. In the first set, only two objectives are
considered for optimisation (W, and Tyg) whereas in the second set, all the four
objectives are included (W¢, W, Twe and Typ). In both these cases, all the
constraints in the problem are incorporated in the solution procedure. Figure 9.11,
Figure 9.12 and Figure 9.13 respectively depict the results obtained by applying -
NSGA-II, GRGA (without final redistribution) and GRGA (With final redistribution)
to the two-objective design optimisation of a turbine blade cooling system. Also,
Table 9.5 depicts the results obtained by applying NSGA-II, GRGA (without final
redistribution) and GRGA (with final redistribution) to the four-objective version of
the same problem. All the tests reported here are carried out using 100 population
size, 500 generations, 0.8 crossover probability, 0.05 mutation probability, and
simulated binary crossover with 10 crossover distribution index and 50 mutation
distribution index. These results form the typical set obtained from 10 runs with
different seed values for the random number generator. No major variation was

observed in the results with the change in seed values. Furthermore, HDA is used
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here with GRGA, and to enable fair comparison, the termination condition is not

applied here for reporting the GRGA results.

0.007 )
Exhaustive Search

NSGA-II  +
0.006

0.005
0.004
0.003
0.002

0.001

1200 1220 1240 1260 1280 1300
Twg

Figure 9.11: Resultsfrom NSGA-II on Design of Turbine Blade Cooling System
(Assuming Two Objectives) (Units: Wer in Kg/s, Twg in K)
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GRGA (without final redistribution) X
0.005
0.004
0.003
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Figure 9.12: Resultsfrom GRGA (withoutfinal redistribution) on Design of Turbine

Blade Cooling System (Assuming Two Objectives) (Units: Wcr in Kg/s, Twg in K)
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Figure 9.13: Resultsfrom GRGA (withfinal redistribution) on Design of Turbine

Blade Cooling System (Assuming Two Objectives) (Units: Wer in Kg/s, Twg in K)

Table 9.5: Resultsfrom NSGA-II, GRGA (withoutfinal redistribution) and GRGA

(withfinal redistribution) on Design of Turbine Blade Cooling System (Assuming

Four Objectives) (Upper Diagonal Graphs: GRGA Results, Lower Diagonal

Graphs: NSGA-II Results) (Units: Wer in Kg/s, Wcfin Kg/s, Twg in K, Twfin K)
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Figure 9.14(a)
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Figure 9.15(a)
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Figure 9.14: Resultsfrom GRGA on Design of Turbine Blade Cooling System
(Assuming Four Objectives) (Units: Wcr in Kg/s, Wcefin Kg/s, Twg in K, Twfin K) -
(@) Wer-Twg Graph (b) Wer-WefGraph (c) Wer-TwfGraph (d) Twg-WefGraph (e)

Twg-TwfGraph (f) Wcf-TwfGraph
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Figure 9.15: Resultsfrom NSGA-II on Design of Turbine Blade Cooling System
(Assuming Four Objectives) (Units: Wer in Kg/s, Wcfin Kg/s, Twg in K, Twfin K) -
(@) Twg-Wer Graph (b) Wcf-Wer Graph (c) Wef-Twg Graph (d) Twf-Wer Graph (e)
Twf-Twg Graph (f) Twf-WcfGraph
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9.5.2 Discussion of Results

The following observations can be made regarding the search space of this problem.

¢ It can be seen from the above figures that the Pareto fronts appear in all W-T
plots, implying conflict between W’s and T’s. This is intuitive since any increase
in coolant mass flow is expected to decrease the metal temperature and vice
versa. Furthermore, as expected, the conflicting fronts do not appear in any W-W
or T-T plot.

¢ It can also be seen from these plots that there is a bias in the search space. An
example of this is the We-Ty, plot (Figure 9.14(a)) that exhibits bias towards
higher values of Ty,.

¢ The W,-Ty, plot also depicts that the given model has a local and a global Pareto
front with respect to W, and Ty,. This multi-modality arises due to the presence
of a discrete variable in the problem. This also causes very low density of
population in the region between the two fronts, leading to deception in the
search space.

¢ This model exhibits a discontinuity at the value of Ty, equal to 1250. At this
value of Ty, which is also its initial value, some of the output values are
undefined, leading to discontinuity in the search space. This might be due to an

error in the model.

¢ This model has 12 variable bounds and 3 constraints. The introduction of these 3

constraints has the following effects on the model.

¢ The first constraint (1200.0 < Ty < 1300.0) defines the range of Ty, This
constraint, together with the relationship between Ty, and W, also limits the
values that can be taken by Wq,.

¢ Since, in the unconstrained model, the value of Ty does not cross 1300.0, the

second constraint (Tyws < 1300.0) does not have any impact on the model.

¢ All the solutions that lie below the line W, = 0.8 X W in the unconstrained
model become infeasible in the constrained model due to the third constraint:
W/ Wer> 0.8.

¢ As can be seen from the W¢-Ty, plot (Figure 9.14(a)), the restrictions on Ty,

values create a situation in which there are very few feasible points
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corresponding to certain values of W, (close to a value of 0.002). This results in

similar regions in all the plots that involve W,;.

¢ In summary, the constraints focus the plot in the given range of W, and T,
introduce an infeasible region in the W -W¢ plot (Figure 9.14(b)), and create
sparsely populated regions that correspond to values of W¢; close to 0.002.

¢ The four-objective search space reveals well-defined Pareto front in all its two-
dimensional plots. This is a clear demonstration of the fact that the Pareto front in
this problem has the form of a curve, rather than a higher dimensional entity.
This is because in a multi-dimensional search space only a curve can be projected

as a curve in all its two-dimensional plots.

¢ The above observations are valid in the cases involving both two and four
objectives. However, it should be noted that in the case of two objectives, the

function space is only two-dimensional, having just one plot: We-Ty,g.

The following conclusions can be drawn from the tests performed on the four-

objective version of this model.

¢ In this case, GRGA gives solutions that are very close to the Pareto front, but do
not exactly converge to the front due to the multi-dimensional nature of the
search space. However, GRGA determines the relationships involving those
decision variables that define the Pareto front. Therefore, when GRGA uses these
values to redistribute the final solutions, the results that are attained lie on the
Pareto front and are well distributed across it.

¢ Here, NSGA-II gets trapped in a local front due to the same reasons as mentioned
for this behaviour in the previous chapter. However, the solutions that are
generated by NSGA-II exhibit a good distribution.

¢ Since this problem does not have variable dependency, GAVD is not applied in
this case.

¢ GRGA reveals that the Pareto front of this problem corresponds to Geom =
pedestal, Cq4, = 0.3901, dth = 0.0019903, k,, = 19.87, df = 0.000149, C4¢= 0.6378,
F¢=1.101 and Ry = 0.381. Table 9.6 shows that a majority of final solutions
determined by GRGA have these values of design variables. Therefore, to attain
any solution on the Pareto front, the designer needs to fix the above-mentioned
variables to these values, and choose values for other variables (Fhe, Tcy, Rp and

R;) based on his/her preferences.
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Table 9.6: Variable Values Corresponding to Identified Pareto Front

3
0.3901 80 0.3995 99
NA NA 3.199 95
NA NA 799.05 99
0.0019903 74 0.0024381 99
19.87 77 19.19 99
NA NA 1.5933 98
NA NA NA NA
0.000149 77 0.0001041 90
0.6378 86 0.7491 89
1.101 78 1.497 92
0.381 81 0.397 94

The results obtained from the two-objective case are analysed here to make the

following observations.

¢ GRGA is able to successfully converge to the Pareto front even without the use
of a local search. This is expected since the reduction in the dimensionality of the
model makes it easier for the optimisation algorithms to locate the Pareto front.
Due to this convergence, GRGA is also able to successfully redistribute the
solutions across the Pareto front. Here as well, NSGA-II gets trapped on a local
front.

¢ GAVD is not tested on this problem for the same reason as mentioned in the

four-objective case.

¢ As compared to the four-objective case, the Pareto front of this problem has fixed
values for a larger number of variables. This is not surprising since the reduction
in the number of objectives reduces the degrees of freedom of the Pareto front,
thereby increasing the number of variables that take fixed values on the Pareto
front. Here, GRGA reveals that the Pareto front corresponds to Geom = pedestal,
Car = 0.3995, Fhe = 3.199, Tc; = 799.05, dth = 0.0024381, k,, = 19.19, R, =
1.5933, df = 0.0001041, C4r = 0.7491, Fr = 1.497 and Ryr = 0.397. Table 9.6
shows that a majority of final solutions determined by GRGA have these values
of design variables. Therefore, to attain any solution on the Pareto front, the

designer needs to fix the above-mentioned variables to these values, and choose a
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suitable value for R based on his/her preferences. It is interesting to note that the
values reported here are similar to the ones observed in the four-objective case.

Further, Ry is also a free variable in the previous case.

9.6 Validation of Results

The results obtained from GRGA and GAVD are validated here using exhaustive

search and through comparison with the results published in literature.

9.6.1 Design of a Welded Beam

Visualisation of the GRGA results with the results of exhaustive search clearly
depicts that GRGA has been able to converge to the Pareto front (Figure 9.7). It can
also be seen from this plot that GRGA produces well distributed solutions across the
Pareto front. These solutions also cover near the whole of Pareto front, with the
extreme solutions having very high deflection and low cost on one end, and very

high cost and low deflection on the other.

Literature reveals that in solving this problem NSGA-II gives better performance
than all other algorithms (Deb, Pratap and Moitra, 2000). Figure 9.5 depicts the
NSGA-II results on this problem. It is evident that although NSGA-II has been able
to converge to the Pareto front, it does not exhibit uniform distribution of solutions.
It can be seen from this graph that NSGA-II does not locate any Pareto-optimal
solution in region of the search space that corresponds to low cost and high
deflection. This is because the search space has a bias against these values of

objective functions (Figure 9.5).

9.6.2 Design of a Machine Tool Spindle

The Pareto front in this problem is made up of four discontinuous parts that originate
from the global and three local fronts in the search space. It can be seen from Figure
9.9 and Figure 9.10 that both GRGA and GAVD are able to converge to all the four
parts of the Pareto front. The performances of GRGA and GAVD are similar in this

case since the introduction of variable dependence does not change the Pareto front.
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Coello (1997) compares the performances of a number of multi-objective
optimisation algorithms in solving this problem. These include VEGA, NSGA,
MOGA, NPGA, Hajela’s Method and GAminmax. It is observed from these results
that although these algorithms could locate points close to the Pareto front, they
could not exactly converge to either the global front or any of the local fronts.
Furthermore, all the results reported by Coello (1997) exhibit concentration towards
a region of the search space, thereby leading to very poor distribution of solutions.
The author observed that in this problem NSGA-II gives better results than the
above-mentioned algorithms. Figure 9.8 shows that although NSGA-II fails to locate
the global Pareto front, it converges to the front that is the closest to the Pareto front.
NSGA-II is also able to locate the other two parts of the Pareto front. As compared to
NSGA-II, both GRGA (Figure 9.9) and GAVD (Figure 9.10) exhibit better
convergence since they are able to converge to the global Pareto front, and locate all
the other three discontinuous parts originating from the local fronts. These
algorithms also exhibit good distribution of solutions across all these discontinuous

parts of the Pareto front.

9.6.3 Design of a Turbine Blade Cooling System

This problem also has a global and a local front. In the two-objective version of this
problem, it can be seen from Figure 9.13 that GRGA is able to locate the global
Pareto front. It is also evident from this figure that GRGA gives equal distribution of
solutions across the Pareto front, and is able to locate solutions across the full span of
the Pareto front. In the four-objective case as well, GRGA converges to the Pareto
front. This can be seen from Figure 9.14. This figure also shows that GRGA is able

to find well distributed Pareto-optimal solutions that span across the search space.

Roy (1997) applies Adaptive Restricted Tournament Selection (ARTS) to this
problem, but considering only one objective, W,,. The results obtained from ARTS
lie on the global Pareto front, but as expected, are concentrated at its extreme end
that corresponds to low values of W, and high values of Ty,. The application of

NSGA-II to both the two- and four-objective versions of this problem leads to
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convergence to the local front. This can be seen from Figure 9.11 for the two-
objective case and from Figure 9.15 for the four-objective case. However; as
revealed in these figures, NSGA-II is able to provide well distributed solutions that

span across the local front.

9.7 Summary

This chapter has demonstrated the successful application of GRGA and GAVD in
solving three real-life engineering design optimisation problems: design of a welded
beam, a machine tool spindle and a turbine blade cooling system. Since these three
problems constitute a representative set, it can be said that the successful application
of GRGA and GAVD on these problems ensures their success in solving other
problems listed in Table 4.1. In this way, this chapter has used real-life problems to
validate the observations made previously regarding the capability of GRGA and
GAVD in dealing with multiple objectives, constraints and variable dependence in
engineering design optimisation problems. In particular, it has derﬁonstrated that
GRGA and GAVD can successfully handle inseparable function interaction and
variable dependence in complex multi-objective optimisation problems with
constraints. This chapter has also demonstrated that these two algorithms outperform
a state-of-the-art optimisation algorithm, NSGA-II, on a wide variety of multi-

objective optimisation problems. In short, this chapter has achieved the following.
¢ It has analysed a number of case studies from real-life engineering design
optimisation.

¢ It has framed the selection criteria for choosing a representative set of case

studies for this research.

¢ It has reported the experimental results obtained from GRGA, GAVD and
NSGA-IL

¢ It has finally analysed these results in order to validate the performance of GRGA
and GAVD.
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10 DISCUSSION AND CONCLUSIONS

This chapter concludes this thesis with a discussion on the findings of this research.
It also identifies the limitations of this work and the corresponding future research

activities. This chapter aims to achieve the following.

10.1 Discussion

This section discusses the key observations of this research. The generality of this

research is also discussed in this section.

10.1.1 Key Observations of this Research

Traditional trial-and-error method of design optimisation is not capable of meeting
the current industrial demands. Industries are, therefore, looking for automating the
optimisation process using algorithms and computational techniques. However, the
lack of flexibility and adequacy of existing optimisation techniques in dealing with
the challenges of real-life engineering design optimisation problems has prevented
the industry from adopting the optimisation algorithms. This research aims to explore
the field of EC for developing techniques that are capable of dealing with the
challenges posed by three features of real-life engineering design optimisation
problems: multiple objectives, constraints and interaction among decision variables.
This is a part of a broad initiative to make optimisation algorithms popular in

industry. The key observations of this research are summarised here.
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10.1.1.1 Literature Survey

The research has looked at the popular engineering design optimisation approaches
in literature. It has surveyed the optimisation approaches for handling uncertainty,
FEA/CFD analysis and sensitivity analysis; It has analysed the drawbacks of
classical optimisation algorithms that have led to the growth of research in the area
of EC. In order to access the current capability of EC techniques in dealing with the
challenges of engineering design optimisation, the research has carried out a detailed
survey of these techniques with respect to three features of engineering design

optimisation problems: multiple objectives, constraints and variable interaction.

The two main goals of multi-objective optimisation are convergence to the Pareto
front and maintenance of diversity across the front. It is observed that the elitist
EMOTs that use Pareto domination and diversity-preserving operators perform better -
than other multi-objective optimisation techniques. However, it is observed that there
are only a few EC techniques that specialise in handling constraints in multi-
objective optimisation problems. The recently introduced concept of constrain-
domination (Deb, 2000), which incorporates constraint violations in the definition of
Pareto domination, has been shown to be successful in handling a variety of
constrained multi-objective optimisation problems. This research classifies the
interaction among decision variables into two broad categories: inseparable function
interaction and variable dependence. Most of the EC techniques that are discussed
above fail under the challenges, such as multi-modality, deception and discontinuity,
posed by inseparable function interaction (epistasis). However, most of the current
research in this field deals with single-objective optimisation in discrete domains.
The few ETIFIs that are available for dealing with continuous search spaces have
limited usefulness for real-life problems since in most cases they cannot handle
multiple objectives and their performance is strongly dependent on the nature of the
search space. The introduction of variable dependence introduces an additional level
of complexity to the constrained, inseparable, multi-objective optimisation problems.
Here, the variables are dependent on each other, implying that a two-step procedure

needs to be appended to the EC: identification of dependency relationships (Step 1)
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and classification of variables (Step 2). Although the literature reports some
techniques that can individually deal with these two steps, there is a compete lack of
dedicated EC frameworks for dealing with dependent-variable optimisation

problems.

The literature survey also analyses the existing optimisation test functions with
respect to their capability of simulating multiple objectives, constraints and variable
interaction in engineering design optimisation problems. It is observed that most of
the multi-objective optimisation test functions that are reported in literature are not
tuneable in nature. Recently Deb (2001) proposed a tuneable strategy for constrained
multi-objective optimisation, butk it also provides only a limited control since it does
not propose generic, parametric prototypes for the objective functions. Therefore,
this scheme lacks a complete approach to multi-objective test bed development.
Furthermore, the development of test beds for simulating variable interaction has not
been adequately addressed by previous research in the area of optimisation. Although
in recent years some researchers have talked about test function development for
inseparable function interaction, literature does not report any test bed that can
directly control the complexity introduced due to the inseparable function interaction
in the objective functions of the problem. A much stronger observation was made
regarding variable dependence, where it is observed that there is a complete lack of

test problems for simulating variable dependence.

10.1.1.2 Industrial Context and Focus

In order to ground the research within the industrial context, an industrial survey is
carried out in this research. Questionnaires are used for collection of information,
and the number of companies visited is limited to six. The industry survey highlights
that optimisation algorithms are not popular in industry. The survey also compiles
the features of real-life engineering design optimisation problems that include
multiple objectives, constraints and interaction among decision variables. It is
observed in this survey that the lack of robust techniques for dealing with the
features of real-life engineering design optimisation problems is one of the inhibitors

to industrial applications of optimisation algorithms. This leads to the industrial
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context of the research, which is to develop optimisation techniques that can handle,
| within a single framework, the following three features of real-life engineering
design optimisation problems: presence of multiple objectives, constraints and
variable interaction. Since it is difficult to find a variety of real-life cases with
required complexities, this research also develops test beds that are capable of
performing systematic and controlled simulation of multiple objectives, constraints

and variable interaction in optimisation problems.

10.1.1.3 Gap Analysis: EC versus Multiple Objectives, Constraints and
Variable Interaction

This research compares the capabilities of the existing EC techniques against the
challenges posed by multiple objectives, constraints and variable interaction in
engineering design optimisation problems. This analysis reveals that there are
effective techniques available in literature for handling multiple objectives and
constraints. However, there is a research gap in EC techniques for handling variable
interaction. This gap defines the main focus of this research, which is to develop EC
techniques that can effectively handle the two types of variable interaction
(inseparable function interaction and variable dependence) in constrained multi-
objective optimisation problems, defined in hybrid search spaces (with integer and

real variables).

Similar to the case of EC techniques, the areas of multi-objective and constrained
optimisation test bed development are well addressed in literature as almost separate
streams. However, there is a need to develop tuneable/parametric test beds that can
simulate the complexity introduced by multiple objectives, constraints and variable

interaction in a single framework. The research also attempts to address this gap.

10.1.1.4 Development of GRGA

This research identifies the challenges that inseparable function interaction poses for
multi-objective optimisation algorithms. These challenges include multi-modality,
deception, collateral noise and isolated optimum from the perspective of convergence

to the Pareto front, and discontinuity, non-uniformity and shape complexity of the
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Pareto front from the perspective of maintenance of diverse Pareto-optimal solutions.
This research proposes a novel solution strategy to deal with these challenges.
Furthermore, it applies this solution strategy to develop an algorithm, GRGA, which
is capable of handling constrained multi-objective optimisation problems having
complex inseparable function interaction. GRGA is based on the fact that there is
existence of relationship(s) among the decision variables of the solutions belonging
to the Pareto front. It explores this relationship using non-linear, multi-variable
regression analysis. The relationship thus obtained is used for periodic and final re-
distribution of solutions over their respective fronts, guiding the search towards
global Pareto front and determining the termination condition of the algorithm.
GRGA has been shown to outperform the existing state-of-the-art multi-objective
optimisation algorithm, NSGA-II. This algorithm has also been proved to be very
effective in dealing with a variety of multi-objective optimisation problems.
However, its performance is dependent on how accurately the relationships among

the decision variables can be represented.

10.1.1.5 Development of GAVD

This research also deals with variable dependence, which is the second type of
variable interaction. In the presence of variable dependence, the decision variables
cannot be varied independently. Also, it has been proved here that the search space
gets modified creating a new feasible region based on the dependence among the
decision variables. This research observes that two additional steps need to be
appended to GRGA for enabling it to deal with dependent-variable optimisation
problems. These steps involve the identification of dependency relationships and the
classification of variables into dependent and independent. This research proposes a
novel algorithm, GAVD, which uses RA coupled with a DC to identify the
dependency relationships. In this algorithm, the variables are classified as dependent
and independent using a DT. GAVD makes use of GRGA as the optimisation engine.
Here, the independent variables, identified by the DT, define the GA chromosome.
For each alternative solution generated by the GA, the dependency equations are

used to calculate the values of the dependent variables. It should be noted here that
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the bounds on independent variables are treated as variable limits and those on
dependent variables are treated as constraints. Hence, the presence of variable
dependence has an effect of constraining the search space. GAVD exhibits successful
performance on a number of dependent-variable optimisation problems. However, its
capability to estimate the dependence among decision variables is limited by the

degree of the RA that it uses.

10.1.1.6 Development of RETB and RETB-II

The development of optimisation algorithms requires systematic and controlled
testing. However, since it is difficult to find a wide variety of real-life cases to
support this, it is important to develop test beds that have the required features
(multiple objectives, constraints and variable interaction), and enable controlled
testing of algorithms. This research proposes two test beds, RETB and RETB-II,
which provide a unified framework for controlled testing of optimisation algorithms
with respect to the three features of real-life engineering design optimisation:
presence of multiple objectives, constraints and variable interaction. To provide
better control over the complexity of test functions, RETB and RETB-II also provide
generic, parametric prototypes for each of the functions in their definition. The
capability of RETB and RETB-II to handle multiple objectives, constraints and
variable interaction in a single framework makes them generic in nature.
Furthermore, the availability of parametric prototypes with these test beds also

makes them fully tuneable.

10.1.1.7 Performance Analysis of GRGA and GAVD

This research applies RETB to compare the performance of GRGA with that of
NSGA-IL The choice of NSGA-II for comparison is based on the fact that it has been
shown in literature to outperform all existing techniques in dealing with multi-
objective optimisation problems in real domains. The test problems that are chosen
for analysis have complex inseparable function interaction leading to multi-modality
in the search space, discontinuity in Pareto front and bias in the search space. It is

shown that in all cases GRGA exhibits better convergence as compared to NSGA-II.
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This is because the Pareto-domination/elitism strategy used by NSGA-II ceases to
produce the driving force towards the global Pareto front once most of the solutions
of the population share the same non-domination level. GRGA addresses this
drawback of NSGA-II through periodic modification of regression coefficients based
on their history of search observed in previous generations. This guides the search
towards the global Pareto front by preventing it from getting trapped in local fronts.
It is also observed that in most test functions GRGA provides better distribution of
solutions than NSGA-II. The reason for this is that the Crowded Comparison
Operator used in NSGA-II attempts to attain solution diversity using external means,
without addressing the inherent features that lead to diversity problems. On the other
hand, GRGA addresses the core issue of this problem by determining the
relationships among the decision variables of the solutions, and using them to re-

distribute the solutions for aiding their spread over the current front.

This research uses RETB-II for constructing dependent-variable test functions in
order to compare the performance of GAVD against those of GRGA and NSGA-IL It
is observed that in all those problems in which the introduction of variable
dependence modifies the Pareto front, the GRGA and NSGA-II are not able to
converge to the Pareto front. This is because of the inability of these algorithms to
incorporate variable dependence. On the other hand, GAVD is able to identify
variable dependency, and hence converges to the Pareto front. Furthermore, it is
observed that since GAVD uses GRGA as its optimisation engine, it also inherits all
its features for effectively dealing with inseparable function interaction in multi-

objective optimisation problems.

10.1.1.8 Validation Using Real-life Problems

The performance of GRGA and GAVD is also tested on a set of real-life engineering
design optimisation problems that together represent a variety of challenges that
multiple objectives, constraints and variable interaction pose for opﬁmisation
algorithms. This representative set includes the design of a welded beam, a machine
tool spindle and a turbine blade cooling system. The validation of results is

performed here based on the published results and visualisation of the search space in
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the presence of exhaustive search. The findings made through the testing of GRGA
and GAVD with RETB and RETB-II are validated here. In particular, the application
of GRGA and GAVD on these real-life problems demonstrates their capability of
dealing with multiple objectives, constraints, inseparable function interaction and

variable dependence in engineering design optimisation problems.

10.1.2 Main Contributions

This research has significantly contributed to understanding about the handling of
variable interaction in engineering design optimisation problems. The research has
mathematically defined and classified variable interaction. It has proposed two EC
techniques, GRGA and GAVD, for handling variable interaction, and two test beds,
RETB and RETB-II, for performing controlled testing of optimisation algorithms in

the presence of multiple objectives, constraints and variable interaction.

The following points clearly identify the contribution to knowledge of this work.
There was a research gap in all these areas that has subsequently been filled by this

work.

¢ Critical Analysis of Existing EC techniques: The literature survey carried out in
this research compares the capabilities of the existing EC techniques against the
challenges posed by multiple objectives, constraints and variable interaction in
engineering design optimisation problems. Based on the above analysis, this
research has identified that there is a lack of techniques for handling variable
interaction in engineering design optimisation problems. This has led to the
identification of variable interaction as the main focus of this research for the
development of optimisation algorithms and for the development of

tuneable/parametric test beds.

¢ Definition and Classification of Variable Interaction: This research has defined
and classified variable interaction into two broad categories: inseparable function
interaction and variable dependence. It has further developed definitions for each

of these categories.

¢ Development of Test Beds for Engineering Design Optimisation: It is difficult to
find a wide variety of real-life design optimisation problems to support
systematic and controlled testing of optimisation algorithms. Therefore, this
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research has developed two parametric test beds, RETB and RETB-II that can
simulate multiple objectives, constraints, inseparable function interaction and
variable dependence in engineering design optimisation problems. In this way,
these test beds enable controlled testing of optimisation algorithms with a large
variety of problem features.

¢ Development of Techniques for Handling Variable Interaction: This research has
compiled the challenges that the two categories of variable interaction pose for
optimisation algorithms. Based on this, it has developed generic strategies for
dealing with inseparable function interaction and variable dependence. These
strategies have led to the development of two novel algorithms: GRGA for
handling inseparable function interaction and GAVD for handling variable
dependence. Furthermore, the research has compared the performance of GRGA,
GAVD and NSGA-II based on a set of test problems generated by RETB and
RETB-II. The techniques are also validated with real-life case studies.

¢ Analysis of Real-life Optimisation problems: This research has analysed a
number of real-life engineering design optimisation problems, especially with
respect to inseparable function interaction and variable dependence. It has
selected a representative set from these problems, and used them to validate the
performance of GRGA and GAVD,

10.1.3 Generality of Research

An attempt has been made in this research to keep it as general as possible. However,
as with any other research, this work also has some limitations. Here, some of these

limitations are identified.

10.1.3.1 Limitations of Research Methodology
The following are the main limitations of the methodology used in this research.

¢ In this research, semi-structured interviews with designers were used as tools for
accessing the current status of design optimisation in industry. The limitations of

this survey are as follows.

» The use of questionnaires as the method of data collection, though useful,
has its limitations since the surveyors do not directly observe the
optimisation process.
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» The companies visited did not cover a full spectrum of the industry sectors.

»  Although the questionnaire contained both ‘open’ and ‘closed’ questions,
the analysis of results was mostly qualitative in nature, making it prone to
the errors of subjectivity. To reduce this error, a systematic analysis was
carried out to identify the factors common to most companies and those
that are prevalent only in a few companies. However, the analysis
provided little insight into the quantitative/statistical aspects of the
information gathered.

¢ The industry survey identified a number of issues that inhibit industrial
applications of optimisation algorithms. However, this research has chosen only
one of these issues for analysis. This issue is the lack of robust optimisers for
handling the features of real-life engineering design optimisation problems.
Therefore, the research methodology focuses on developing EC/GA techniques

for engineering design optimisation.

¢ The algorithm used for comparison in this research is NSGA-II. The choice of
this algorithm is justified since it outperforms most of the existing algorithms in

dealing with multi-objective optimisation problems.

¢ The real-life case studies that are used in this research are borrowed from
literature. This has provided a limited insight into the process of model
development for optimisation. Furthermore, the nature of case studies could have
been better understood if they were designed in consultation with the industrial
designers.

¢ This research carried out the process of validation by performing exhaustive
search on the model of the real-life problem, and analysing the location of
solutions with respect to the Pareto front depicted by the exhaustive search.
Although this method gives useful information regarding the performance of the
optimisation algorithms, it provides only a limited insight into the usefulness of

the attained results for designers in industry.

10.1.3.2 Limitations of GRGA
The limitations of GRGA are as follows.

¢ The performance of GRGA is dependent on how accurately the relationship
among decision variables can be represented in the RA that it uses. Hence, use of
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more sophisticated non-linear modelling tools have the potential of improving its

performance.

¢ In case of very complex relationships (high order, non-linear) among the decision
variables of the Pareto-optimal solutions, the performance of RA (used in
GRGA) is expected to deteriorate. This is an inherent limitation of the RA
technique used.

¢ As the number of dimensions and objectives in the problem is increased, the
effectiveness of this algorithm in producing well distributed solutions exhibits a
drop since it becomes more difficult for HDA (used in GRGA for distributing

solutions) to evenly distribute the solutions.

¢ The performance of this algorithm drops as the number of relationships among
the decision variables of the Pareto-optimal solutions increases. This is due to the

difficulty of determining and maintaining all the relationships in the population.

¢ This algorithm is not capable of dealing with dependence among decision
variables and qualitative issues such as manufacturability and designers’ special

preferences.

10.1.3.3 Limitations of GAVD
The limitations of GAVD are as follows.

¢ Since GAVD uses GRGA as its optimisation engine, it shares all the above-
mentioned limitations of GRGA. GAVD gives better results than GRGA only
when the introduction of variable dependence actually modifies the search space.
In addition, it has the following limitations in its strategy of handling dependence

among the decision variables.

¢ The performance of this algorithm in accessing the dependence among decision
variables is limited by the degree of RA that it uses. Hence, in dealing with
complex dependence, higher order RAs are required. This implies that the use of
more sophisticated non-linear modelling tools, such as Neural Networks, have
the potential of improving its performance, especially in modelling deceptive and

complex non-linear functions.

¢ GAVD also needs to be fitted with a mechanism that can learn the dependency
relationships, and update it each time a new data is added, without having to

repeat the whole process.
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¢ GAVD also needs enhancements to deal with noisy data.

¢ Finally, this algorithm is not capable of dealing with qualitative issues.

10.1.3.4 Limitations of Proposed Test Beds
The limitations of RETB and RETB-II are as follows.

¢ RETB is incapable of generating test problems that have dependence among their

decision variables.

¢ Both RETB and RETB-II currently simulate only static environments. They are

incapable of dealing with uncertain or dynamic conditions in the search space.

¢ As mentioned in Chapter 7, the relative sequence of dependent and independent
variables has an influence on those GAs whose performance is dependent on
variable sequence. However, RETB-II does not control the effects of changing

the sequence of variables in the GA chromosome.

¢ It also needs to be further studied how the choice of a particular noise distribution
effects the complexity of RETB-II test problems.

10.2 Future Research

Despite the immense potential of optimisation algorithms and the recognition of their
need by industry, it was observed from the industry survey that no company
surveyed uses any optimisation algorithm as a day to day tool. In order to address
this grim situation, it is required to carry out a number of research activities in the
area of real-life optimisation. Addressing the limitations of this research forms a part

of these activities.

This research concentrates on engineering design optimisation problems. There is
therefore a need to extend this research to include other areas of real-life
optimisation, such as combinatorial problems (e.g. scheduling). The use of NN, FL
and other areas of EC could be explored for enhancing the current capabilities of
GRGA and GAVD. More tests are required to compare GRGA and GAVD against

other optimisation algorithms.
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The research activities for future development of GRGA can be summarised as

follows.

¢ Further research needs to be carried out to enhance GRGA for incorporating
designers’ preferences for certain objectives at an intermediate stage of the

optimisation process.

¢ The use of sophisticated non-linear modelling tools for enabling GRGA to deal
with complex relationships among the decision variables of the Pareto-optimal

solutions is an important area of future research.

¢ The distribution strategies used in GRGA can be further improved to make them
more scalable with respect to number of objectives and dimensions.

¢ The use of sophisticated clustering techniques could be analysed for enabling
GRGA to solve those problems that have multiple relationships among the

decision variables of the Pareto-optimal solutions.

The future research activities for further development of GAVD are as follows.

¢ The performance of GAVD needs to be studied in the presence of other data
modelling techniques in place of RA.

¢ An NN-type strategy could be provided with GAVD to enable it to learn the
dependency relationships, and update them with the addition of new data.

¢ The enhancement of GAVD to deal with noisy data is another area of future

research.

Finally, the future research activities corresponding to RETB and RETB-II are as

follows.

¢ RETB/RETB-II could form the basis of classification of real-life engineering
design optimisation problems. Further research needs to be carried out in this

direction.

¢ Disturbance modelling techniques could be incorporated with RETB and RETB-

II for enabling them to simulate uncertain or dynamic environments.

¢ The dependence of problem complexity on the sequence of variables in the GA
chromosome needs to be modelled and incorporated within RETB and RETB-IL

¢ There is also a need to develop guidelines for illustrating the dependence of the
noise distribution on the complexity of the RETB-II test problems.
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10.3 Conclusions

This section compares the achievements of this research with the objectives stated in
Chapter 3. The following discussion analyses one research objective at a time, and

compares it with what is achieved in this research.

¢ This thesis provides a literature survey of evolutionary-based optimisation
techniques. The research classifies the EC techniques, and analyses them with
respect to the three features of engineering design optimisation problems:
multiple objectives, constraints and variable interaction. Here, the interaction
among decision variables is also defined, and classified into two broad
categories: inseparable function interaction and variable dependence. This survey
reveals that there are effective techniques available in literature for handling
multiple objectives and constraints. However, there is a research gap in EC
techniques for handling variable interaction. This gap defines the main focus of
this research, which is to develop EC techniques that can effectively handle the
two types of variable interaction in constrained multi-objective optimisation

problems.

¢ The research also carries out a literature survey of existing test functions for
evaluating their capabilities of performing systematic and controlled simulation

of multiple objectives, constraints and variable interaction in optimisation
problems. Similar to the case of EC techniques, the areas of multi-objective and
constrained optimisation test bed development are well addressed in literature as
almost separate streams. However, there is a need to develop tuneable/parametric
test beds that can simulate the complexity introduced by multiple objectives,

. constraints and variable interaction in a single framework. The research also

attempts to address this gap.

¢ An industry survey is carried out to ground the research within the industrial
context. This survey highlights that optimisation algorithms are not popular in
industry. It also compiles the features of real-life engineering design optimisation
problems that include multiple objectives, constraints and interaction among
decision variables. It is observed in this survey that the lack of robust techniques
for dealing with the features of real-life engineering design optimisation
problems is one of the inhibitors to industrial applications of optimisation
algorithms. This leads to the industrial context of the research, which is to
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develop optimisation techniques that can handle, within a single framework, the
following three features of real-life engineering design optimisation problems:

presence of multiple objectives, constraints and variable interaction.

¢ This research develops two EC techniques, GRGA and GAVD, for handling
interaction among decision variables. GRGA specialises in dealing with
inseparable function interaction in constrained multi-objective optimisation
problems. GAVD is an extension of GRGA for dealing with dependent-variable
optimisation problems. It provides a complete framework for handling multiple
objectives in the presence of constraints, inseparable function interaction and

variable dependence.

¢ This research proposes two test beds, RETB and RETB-II. These test beds
together provide a unified, parametric framework for controlled testing of
optimisation algorithms in the presence of the three features of real-life
engineering design optimisation problems: the presence of multiple objectives,

constraints and variable interaction.

¢ This research uses RETB and RETB-II for detailed performance analysis of
GRGA and GAVD. This performance analysis establishes the superiority of
GRGA in handling inseparable function interaction and of GAVD in handling
variable dependence in multi-objective optimisation problems. It is observed that
GRGA and GAVD outperform NSGA-II, which is currently the best-performing

multi-objective optimisation technique.

¢ This research analyses a number of real-life engineering design optimisation
problems, especially with respect to variable interaction. It selects a
representative set from these problems, and analyses the performance of GRGA
and GAVD on this representative set. The performance of GRGA and GAVD is
also compared with NSGA-II on these problems. The validation is performed
here based on the published results and through visualisation in the presence of

exhaustive search.

The achievements of this research can be briefly and precisely stated as follows.

¢ Critical analysis of existing EC techniques.

¢ Definition and classification of variable interaction.
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¢ Development of test beds for simulating multiple objectives, constraints and
variable interaction in engineering design optimisation problems (RETB and
RETB-II).

¢ Development of techniques for handling variable interaction (GRGA and
GAVD).

¢ Analysis of real-life engineering design optimisation problems, especially from

interaction point of view.

In this way, the research has proposed a fully tested and validated methodology for

dealing with engineering design optimisation problems with variable interaction.
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A. APPENDIX: ‘FLEXO’ QUESTIONNAIRE

The questions that form part of the ‘FLEXO’ questionnaire are given below. The
explanations that are provided to the designers for each of the modules are also

presented here.

Module 1: General Issues

This section of the questionnaire tries to understand the general design practice

involved in your company and your degree of involvement in those activities.
Q. 1: What industry sector is your company involved in?

Q. 2: In terms of th‘e following criteria, please describe the product your
company designs.

¢ Name

¢ Usage

¢ Material

¢ Size

¢ Complexity

¢ Performance/value

¢ Single component/assembly

Q. 3: How much time (in days) do you spend on design related activities per

week?
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Q. 4: Explain the stages of design cycle in your company, and your role and

place in the design cycle.

Q. 5: Would it be possible to categorise the general nature of your design
activities?

¢ Detailed design

¢ Preliminary design

¢ Creative or innovative design

¢ Design analysis

¢ Design evaluation

¢ Design activity management and co-ordination

¢ Developing tools that can be useful in design activities

¢ no, it cannot be categorised because:

¢ others, please specify:

Q. 6: Please describe the nature of data received by you.

L 2

Origin

*

Type/format/nature

Quality

Frequency/work load

<>

*

Q. 7: Please describe the nature of data delivered by you.
¢ Destination
¢ Type/format/nature

Quality
¢ Value added

L 2
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Q. 8: What are the different tools you use for your day to day design activities?
(Please encircle more than one answer if you wish and specify the tool used)

¢ Drafting board and pencil

¢ Pen and pencil for calculations and free hand drawings

¢ Digitiser

¢ Computer aided drafting package

¢ Computer aided design and analysis package

+ Simple spreadsheet for calculations

¢ Project management software

¢ Others, please specify:

Q. 9: In the design process, which tool do you use most? (Please encircle one of
the following)

¢ Surface modelling

¢ Solid modelling

¢ Drafting tool

Q. 10: Which technique do you use to improve the design? (Encircle more than
one answer if you wish)

¢ Design for assembly

¢ Design for manufacture

¢ Design performance

¢ Desiérl for quality

¢ Shape optimisation

Q. 11: If you are working on shape optimisation, what are the design criteria?

¢ Structural properties
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> Weight

> Stress

> Vibration

> Thermodynamics

¢ Surface properties
> Aerodynamics

Fluid dynamics

>
> Aesthetics
> Acoustics
g .

Manufacturability

Q. 12: What are the constraints considered for the design?

Q. 13: How would you improve the design you are working on?

¢ Trial and error

¢ Many iterations of educated guesses using previous knowledge

¢ Using an optimisation algorithm

+ Using an optimisation package available in computer integrated design tools

¢ Others, please specify:

Q. 14: If you are using an optimisation algorithm to improve your design, please
specify the optimisation technique and the optimisation approach that you

employ.

¢ Optimisation approach
> Single criterion
> Multiple criteria
> Single optimal solution
> Multiple optimal solutions
> Single variable
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> Multiple variables
¢ Optimisation technique
> Conventional optimisation algorithm

> Evolutionary-based optimisation algorithm

Q. 15: How do you ensure that your design criteria and constraints are

satisfied?

Q. 16: Which optimisation scenario do you use?

¢ Manual
¢ Off-line, independent of CAD/CAM system
¢ On-line, fully integrated with the CAD/CAM system

Q. 17: Relative to the total design cycle, how much time do you spend refining
the design?

¢ Below 25%

¢ 2510 50%

¢+ 50to 75%

¢ Above 75%

Q. 18: Please explain your interaction with other designers in the company?

Q. 19: If you have working experience with other companies, please state the

difference of working methodology.
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Module 2: Industrial Requirements Capture

The aim of this module is to capture the industrial requirements on the flexible
optimisation environment. This is achieved by analysing the limitations of existing
CAD/CAM systems and the characteristics expected in the flexible optimisation
framework. The expected improvements from the framework are also discussed.
Please answer the following questions based on your design experience in

CAD/CAM.

Q. 1: What are the drawbacks and limitations of the current design process?

Q. 2: Could you please describe the limitations of the CAD/CAM system you use

in terms of its optimisation capability?

Q. 3: Which tasks in the design process are not essential and can be avoided?

Q. 4: What are the critical activities in terms of time and skill involved?

Q. 5: Which of the tasks are repetitive in nature?

Q. 6: Are existing designs reused?

Q. 7: How do you feel the design process can be made more efficient?

Q. 8: Which tasks in the design cycle can be ‘automated’?
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Q. 9: How do you convert design requirements to design parameters?

Q. 10: How do you compare the final design with the initial requirements?

Q. 11: How integrated flexible optimisation could help in the design process?

Q. 12: How can the ‘FLEXO?’ project help you in your job?
p p y

Module 3: General Remarks

Please write any general remarks you wish to make, and mention if you have any

other suggestion(s).

Module 4: Self-assessment of the Users

This section of the questionnaire is optional. The sole purpose of this module is to
gather some information about you so that your comments may be evaluated in the
right perspective. In case you do not feel comfortable in answering any part of this
module, please ignore it. If you are happy to answer a question, please tick the

appropriate box.

Q. 1: Engineering design:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5

Q. 2: Use of CAD/CAM systems:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5
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Q. 3: Optimisation Algorithms:

Best Worst
Knowledge 1 2 3 4 5
Experience 1 2 3 4 5
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B. APPENDIX: DESCRIPTION OF NSGA-II

This appendix provides a brief description of Non-dominated Sorting Genetic
Algorithm — II (NSGA-II), which is a high-performing, novel multi-objective
optimisation algorithm demonstrating better performance than most other

contemporary algorithms (Deb et al., 2000).

NSGA-Il Algorithm

Multi-objective evolutionary algorithms that use non-dominated sorting and sharing
have been criticised for their O(MN’) computational complexity (where M is the
number of objectives and N is the population size), non-elitism approach, and the
need for specifying a sharing parameter. NSGA-II is a non-dominated sorting based
multi-objective evolutionary algorithm that alleviates all the above three difficulties.
It uses a fast non-dominated sorting approach with O(MN?) computational
complexity, an elitist approach and a parameter-less sharing approach to tackle all
the above-mentioned difficulties. The steps involved in this algorithm are as follows

(Figure B.1).

1. Create a random parent population of size N.

2. Sort the population based on non-domination, and to each solution assign a

fitness value equal to its non-domination level.

3. Create a child population of size N using binary tournament selection,

recombination and mutation operators.

4. Combine the parent and child populations to create a global population of size
2N.

5. Sort the global population based on non-domination.

6. Create a new parent population by selecting solutions in order of their fronts until

the number of selected solutions exceeds N.
7. Sort the solutions of the last accepted front using niched comparison operator.

8. Using this sorting, select solutions from the last front until the size of new parent

population becomes N.
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9. If the number of generations has exceeded a pre-determined value, say 100, stop
the process else go to Step 3.

10. Display the final solutions.

(e )
!

Create random parent population

v

Sort using non-domination

v

Create child population using
reproduction operators

v

Create global population

v

Sort using non-domination

v

Select fronts until number of
accepted solutions exceeds N

v

Sort last accepted front using
niched comparison operator

v

Select best N solutions to
form new parent population

Number of
generations >= 1007?

Display
( Stop )

Figure B.1: Non-dominated Sorting GA —II (NSGA-II)

Analysis of NSGA-I

As stated earlier, there are primarily two goals that a multi-objective optimisation
technique must achieve. These include guiding the search towards global Pareto-

optimal region and maintaining population diversity in the Pareto front. This section
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analyses the internal mechanisms provided in NSGA-II for dealing with each of

these goals.

Convergence to Global Pareto Front

In NSGA-II, the non-domination level of a solution has a strong impact on its fitness.
The fitness assignment is usually performed in such a way that the lowest fitness at a
particular non-domination level has a higher value than the highest fitness at the
immediate lower level. This ensures that the search is driven towards the global
Pareto front. Further, NSGA-II uses an elitist approach through a selection operator
that creates a mating pool by combining the parent and child populations, and
selecting the best (with respect to fitness and spread) N solutions. This elitism
ensures that the ‘good’ solutions of the population are not lost, thereby creating a

selection pressure towards the global Pareto front.

The above-mentioned strategy used by NSGA-II works well for a number of multi-
objective optimisation problems. However, complex problems having high degrees
of inseparable function interaction usually possess multiple local fronts, along with
deception. The fitness assignment strategy of NSGA-II ceases to produce the driving
force towards the global front once most of the solutions of the population share the
same non-domination level. This tendency is further augmented in NSGA-II due to
the use of elitism. Therefore, NSGA-II suffers from the tendency of getting trapped

in local fronts (pre-mature convergence).

Maintenance of Diverse Pareto-optimal Solutions

The diversity among non-dominated solutions is introduced in NSGA-II by using the
crowded comparison operator that is used in the tournament selection and during the
population reduction phase. The crowded comparison operator states that between
two solutions with different non-domination ranks, the point with the lower rank is
preferred. Otherwise, if both the points belong to the same front then the point that is
located in a region with lesser number of points is preferred. In this way, the crowded
comparison operator guides the selection process at various stages of the algorithm

towards a uniformly spread-out Pareto front. Further, no extra niching parameter
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(such as Oshare in NSGA (Deb, 1999a)) is required here, since solutions compete with
their crowding distance (a measure of density of solutions in the neighbourhood).
Finally, the use of elitism ensures that the diverse Pareto-optimal solutions, identified

so far, are not lost.

As in the case of convergence, this strategy works well for a number of problems.
However, complex inseparable function interaction in a problem may lead to one or

more of the following features.

¢ Discontinuity in Pareto front.

¢ Biased Pareto front.

¢ Complex relationships among decision variables of Pareto-optimal solutions.

NSGA-II suffers from serious limitations in handling these problems. This is because
the strategy of NSGA-II attempts to attain solution diversity using external means,

without addressing the inherent problem features that lead to diversity issues.

Computational Expense of NSGA-II

The computational complexity of non-dominated sorting algorithms in use until now
is O(MN? ). However, NSGA-II uses a fast non-dominated sorting approach that
requires at most O(MN?) computations. The two approaches are similar in principle,
except that a better book-keeping strategy makes NSGA-II a faster algorithm. In this
approach, every solution from the population is checked with a partially filled

population for domination. The steps involved in this approach are liated below.
1. Include first member in a set P’.

2. Take one solution (p) at a time.

3. Include p in P’ temporarily.

4. Compare p with other members of P’.

5. If p dominates a member of P, delete it.

6. If p is dominated by other members of P’; do not include p in P’.

When all solutions of the population are checked, the remaining members of P’ -
constitute the non-dominated set. To find other fronts, the members of P’ are

discounted and the above procedure is repeated. In this algorithm, the second
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element of the population is compared with only one solution of P’, the third solution
with at most two solutions of P*, and so on. This requires a maximum of O(N?)
domination checks. Since each domination check requires M function value

comparisons, the maximum complexity of this approach is O(MN?).

Let us now look at the complexity of one iteration of the entire algorithm,
considering the worst case complexities of basic operations.

1. Non-dominated sort: O(MN?).

2. Crowding distance assignment: O(MNIlogN).

3. Sort using crowded comparison operator: O(2Nlog(2N)).

As can be seen, the overall complexity of the above algorithm is O(MN?).

This appendix has provided a brief description and analysis of NSGA-II, together

with its computational expense.
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C. APPENDIX: PERFORMANCE METRICS
FOR MULTI-OBJECTIVE OPTIMISATION

This appendix briefly describes the various performance measures that can be used
for multi-objective optimisation. Unlike in single objective optimisation, there are
two goals in a multi-objective optimisation — (i) convergence to the Pareto-optimal
set, and (ii) maintenance of diversity in solutions of the Pareto-optimal set. Clearly,
these two tasks cannot be measured with one performance metric adequately. A
number of performance metrics have been suggested in the past (Fonseca and
Fleming, 1995; Zitzler et al., 1999). But here two performance metrics have been
used (Deb et al., 2000). These are more direct in evaluating each of the above two
goals in a solution set obtained by a multi-objective optimisation algorithm.

A

Euclidean distance

Obtained
Solutions

Paretooptimal front

Chosen points

v

f,

Figure C.1: Illustration of Distance Metric y

The first metric y measures the extent of convergence to a known set of Pareto-
optimal solutions. The calculation of this metric is possible only when the Pareto-
optimal set is known. Hence, this metric cannot be used for any arbitrary problem.
First, a set of H equal to 500 uniformly—spaced solutions are chosen from the true
Pareto front in the objective space. For each solution obtained with the algorithm, the
minimum Euclidean distance from H chosen solutions on the Pareto front is
computed. The average of these distances is used as the first metric y (the

convergence metric). Figure C.1 shows the calculation procedure of this metric.
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Solutions with open circles are H chosen solutions on the Pareto front for the
calculation of the convergence metric and solutions marked with dark circles are
solutions obtained by the algorithm. It is clear that the smaller the value of this
metric, the better is the convergence towards the Pareto front. When all obtained

solutions lie exactly on H chosen solutions, this metric takes a value zero.

Even when all the solutions converge to the Pareto front, the above convergence
metric does not have a value zero. The metric will be zero only when each obtained
solution lies exactly on each of the chosen solutions. Although this metric alone can
provide some information about the spread in obtained solutions, a different metric to
measure the spread in solutions obtained by the algorithm is discussed below. The
second metric A measures the extent of spread achieved among the obtained
solutions. Here, the idea is to get a set of solutions that span the entire Pareto-optimal
region. Firstly, the Euclidean distance d; between consecutive solutions in the
obtained non-dominated set of solutions is calculated. Then the average p of these
distances is calculated. Thereafter, from the obtained set of non-dominated solutions,
the extreme solutions (in the objective space) are determined. Then, the following

metric is used to calculate the non-uniformity in the distribution (Equation C.1).

ik} Equation C.1
d,+d, +Z|di — K|
i=1

d,+d, +(N-Du

Extreme
solution

Extreme
solution

dI

Obtained solutions

A4

f,

Figure C.2: Illustration of Diversity Metric A
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Here, the parameters df and d, are the Euclidean distances between the extreme
solutions and the boundary solutions of the obtained non-dominated set, as depicted
in Figure C.2 that illustrates all distances mentioned in the above equation. The
parameter p is the average of all distances d;, i = 1, 2,..., (N-1), assuming that there
are N solutions on the best non-dominated front. With N solutions, there are (N-1)
consecutive distances. The denominator is the value of the numerator for the case
when all N solutions lie on one solution. It is interesting to note that this is not the
worst case spread of solutions possible since a scenario with large variance of the
distances may have a numerator value greater than the denominator. Thus, the
maximum value of the above metric can be greater than one. But a good distribution
would make all distances d;’s equal to p and would make d¢ = d; = 0 (with existence
of extreme solutions in the non-dominated set). Thus, for the most widely and
uniformly spread-out set of non-dominated solutions, the numerator of A would be
zero, making the metric to take a value zero. For any other distribution, the value of
the metric would be greater than zero. For two distributions having identical values
of dr and dj, the metric A takes a higher value with worse distributions of solutiohs
within the extreme solutions. Note that the above diversity metric can be used on any

non-dominated set of solutions, including one which is not the Pareto-optimal set.

This appendix has provided a brief description of two performance metrics for multi-

objective optimisation: y (convergence metric) and A (diversity metric).
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