
1

Map-Adaptive Multimodal Trajectory Prediction

Using Hierarchical Graph Neural Networks
Xiaoyu Mo, Student Member, IEEE, Yang Xing, Member, IEEE, Haochen Liu, Student Member, IEEE,

and Chen Lv, Senior Member, IEEE

Abstract—Predicting the multimodal future motions of neigh-
boring agents is essential for an autonomous vehicle to navigate
complex scenarios. It is challenging as the motion of an agent is
affected by the complex interaction among itself, other agents,
and the local roads. Unlike most existing works, which predict a
fixed number of possible future motions of an agent, we propose
a map-adaptive predictor that can predict a variable number
of future trajectories of an agent according to the number of
lanes with candidate centerlines (CCLs). The predictor predicts
not only future motions guided by single CCLs but also a
scene-reasoning prediction and a motion-maintaining prediction.
These three kinds of predictions are produced integrally via a
single graph operation. We represent the driving scene with a
heterogeneous hierarchical graph containing nodes of two types.
An agent node contains its dynamics feature encoded from its
historical states, and a CCL node contains the CCL’s sequential
feature. We propose a hierarchical graph operator (HGO) with
an edge-masking technology to regulate the information flow in
graph operations and obtain the encoded scene feature for the
trajectory decoder. Experiments on two large-scale real-world
driving datasets show that our method realizes map-adaptive
prediction and outperforms strong baselines.

Index Terms—Map-adaptive trajectory prediction, connected
vehicles, graph neural networks, heterogeneous interactions.

I. INTRODUCTION

A
N autonomous vehicle has to predict the future trajec-

tories of its neighboring traffic participants to navigate

in highly dynamic driving situations [1]. However, trajectory

prediction is non-trivial due to several challenges. First, the

number of traffic participants can vary from case to case.

Second, the road structure is quite complex and shapes the

motion of vehicles to a great extent. Third, the interdependen-

cies among vehicles and infrastructures are complicated [2].

Fourth, driving behavior is multimodal, meaning that given the

same situation, there may exist different future motions. For

example, a vehicle approaching an intersection can either go

straight forward or turn left (right). Fifth, driving behavior is

not always rational in some critical corner cases.

Most recent works have proposed to jointly consider the

target agent’s own dynamics, its interaction with surrounding

agents, and the impacts of the infrastructure. Surrounding

agents are the agents that can potentially impact the target

vehicle’s future motion. The selection of criteria varies from

Xiaoyu Mo, Haochen Liu, and Chen Lv are with the School of Mechanical
and Aerospace Engineering, Nanyang Technological University, 639798,
Singapore. (e-mail: xiaoyu006@e.ntu.edu.sg, haochen002@e.ntu.edu.sg,
lyuchen@ntu.edu.sg)

Yang Xing is with the Centre for Autonomous and Cyber-Physical Systems
at Cranfield University, UK, MK43 0AL. (e-mail: yang.x@cranfield.ac.uk)

study to study. Existing works represent the agents and the

map either separately or integrally and try to predict multi-

modal future motions of target agents [3]–[8]. However, scene

representation and multimodality for trajectory prediction are

far from being well explored. Most existing works predict

a predefined number of possible future motions of target

agents across all situations. Thus they are non-map-adaptive. A

prediction set with a fixed number of options limits the model

to generalize to complex map geometries (e.g., a method with

three outputs cannot cover all options of a target vehicle

approaching a four-way intersection). These limitations can

be addressed by map-adaptive trajectory prediction methods,

which can output an arbitrary number of predictions according

to a set of goal paths in specific scenes [6] as long as the

goal paths can be retrieved from the local lane graph. Map-

adaptive methods also make driving modes more interpretable

by associating them with target paths.

In this work, we attempt to represent the complex driving

scene and predict the multimodal motions of a target vehicle

in an integrated manner. We represent the driving scene with

a heterogeneous hierarchical graph, wherein a node is either

an agent or one of its CCLs and contains the corresponding

feature. This representation can accommodate an arbitrary

number of agents and their centerlines, thus tackling the first

two challenges. We represent interdependencies among nodes

with directed edges and propose a three-stage graph operator

to encode the scene graph. An edge-masking technology is

used to regulate information flow in different stages. The

hierarchical graph operator is designed to cope with the third

challenge. To handle the fourth and fifth challenges, we design

an integrated multimodal predictor via graph operation and

edge-masking that can simultaneously predict CCL-following,

scene-reasoning, and motion-maintaining future trajectories of

a target agent. The graph operation allows our predictor to

output a variable number of trajectories according to the target

agent’s CCLs. Thus our method is map-adaptive.

The main contributions of this work can be summarised as

follows:

• At the high level, this work designs a map-adaptive multi-

modal trajectory prediction framework that jointly considers

the target agent’s own dynamics, interaction with other

agents, and the local roads.

• For scene representation and encoding, this work represents

the complex driving scene with a single heterogeneous

hierarchical graph. It proposes a hierarchical graph operator

augmented with an edge-masking technology to encode the

scene graph for trajectory prediction.

li2106
Text Box
IEEE Robotics and Automation Letters, Volume 8, Issue 6, June 2023, pp. 3685-3692DOI:10.1109/LRA.2023.3270739

li2106
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

• For map-adaptive trajectory decoding, this work proposes

a comprehensive CCL-enabled map-adaptive multimodal

predictor implemented with a graph operation. It produces

three kinds of predictions simultaneously: 1) a set of CCL-

following trajectories that is adaptive to the road topology

and can generalize to unseen road structures; 2) a scene-

reasoning trajectory that estimates the target agent’s future

movements based on its understanding of the scene; 3) a

motion-maintaining trajectory that covers the cases where

the vehicle just maintains its motion.

II. RELATED WORK

A. Graph-Based Scene Representations

A graph is a natural way to represent the relationships (e.g.,

either or both of inter-agent interaction and lanelet connec-

tivity) among objects [9]. ReCoG represents the relationships

among agents and the map via a star-like heterogeneous graph,

wherein the map node contains features extracted from a

raster image [10]. HEAT represents the relationships among

different kinds of agents using a heterogeneous edge-enhanced

graph. Map information is considered via another channel [11].

VectorNet represents the driving scene with a hierarchical

heterogeneous graph, where a higher-level node contains either

an agent’s trajectory or a map feature, and a lower-level node

is a vector in a sequence (polyline). The graph is constructed

with the full connection. The fully-connected graph structure

is inefficient since the number of edges in the graph grows

quadratically with the number of nodes [12]. LaneGCN repre-

sents actors and the map separately. It constructs a lane graph

from the high-definition map (HD map) preserving connectiv-

ity between lane nodes and saves four types of connections for

downstream encoders [5]. Rather than representing agents as

single nodes, LaneRCNN constructs a dynamics-related lane

graph for each agent, with each node containing geometric,

semantic, and agent information [8].

We represent the driving scene with a heterogeneous hi-

erarchical graph containing both agent and CCL nodes. An

agent’s CCLs are only connected to the agent itself, and all

the surrounding agents are connected only to the target agent.

This star-like connection makes the number of edges grows

linearly, rather than quadratically, with the number of nodes.

An edge in the graph is assigned with a type label, and the

connection of the graph can be stored in a sparse manner.

Rather than saving multiple edge sets and applying a specific

graph neural network (GNN) for each, we utilize an edge-

masking strategy to regulate information flow in the graph

and apply a GNN for a subset of edge types hierarchically.

B. Multimodal Trajectory Predictions

Many works have proposed to output multiple possible

future trajectories of a target agent to capture the inherent

multimodality of a moving agent’s future motion. MTP uses

a convolutional neural network (CNN) to produce a fixed

number of trajectories for a target agent. It shows that setting

the model to produce three modalities gives the best perfor-

mance on their metrics [3]. MultiPath first clusters trajectories

in the training set via K-means to obtain a set of anchor

trajectories, then reformulates the task into anchor selection

and regression [4]. CoverNet dynamically generates a trajec-

tory set according to the target agent’s current dynamic state,

then follows the anchor selection and regression operations

introduced in MultiPath [4], [13]. TNT first predicts a fixed

number of targets (final points in a fixed prediction horizon)

for a given agent, then estimates trajectories conditioned on

the targets, and finally scores and selects a fixed number of

trajectories as the final prediction [7]. Heatmaps are also used

in some recent works for goal generation [14], [15].

Rather than selecting a fixed number of anchors or targets

for all driving scenarios, GoalNet predicts a variable number

of trajectories that are adaptive to the road structure [6].

Specifically, it predicts a set of goal-based and goal-free

trajectories of a target vehicle, where the goal is a forward

path that the target vehicle can potentially choose to follow

in the next seconds. It combines the traffic information in the

goal paths and the target vehicle’s dynamics to output goal-free

predictions. However, GoalNet ignores the vehicles behind the

target and those in other lanes, which can have a critical impact

on the target vehicle’s behavior. For example, the behavior

of a target vehicle operating an unprotected left turn will be

affected by the vehicles in the lane on its left side. However,

GoalNet does not consider this information. In addition, the

goal-free prediction, although also named motion-maintaining,

is not purely based on the target vehicle’s past motion, thus

unable to cover the cases where a vehicle just maintains its

motion. Motion-maintaining can be in either normal (e.g.,

cruising) or critical situations (e.g., brake failure).

To address the above-mentioned limitations of GoalNet,

we propose a map-adaptive multimodal trajectory predictor

that can predict CCL-following, scene-reasoning, and motion-

maintaining trajectories of a target agent simultaneously based

on a comprehensive representation of all nearby agents and

CCLs. CCL-following predictions condition the target agent’s

future motions on individual CCLs, while the scene-reasoning

prediction outputs a reasonable prediction based on the infor-

mation available in the scene, in case a specific CCL cannot

explain the target agent’s behavior (e.g., parking, overtaking,

and pulling onto the shoulder [6]) or there is no CCL can

be retrieved from the lane graph (e.g., CCL selection method

failure or lane graph error). The motion-maintaining prediction

extrapolates the actor’s current motion into the future to

capture non-map-compliant behaviors in some critical cases

for safety concerns.

III. METHOD

A. Input and Output.

This work aims to predict a set of multimodal trajectories

of a target agent given dynamics of considered agents and the

local map. At a time t, the input Xt contains historical states

of considered agents and their CCLs:

Xt = [Ht, Ct], (1)

where Ht = {h1
t , h

2
t , . . . , h

n
t } contains the

historical states of n agents at time t, and

Ct = {c1,1t , c
1,2
t , . . . , c

2,1
t , c

2,2
t , . . . , c

n,m−1
t , c

n,m
t } contains



3

: Target agent : Directed edge: Surrounding agent : Virtual target agent : Candidate centerline : Future trajectory

Driving Scene Scene Graph Map-Adaptive 

Trajectory Decoder

PredictionHierarchical Graph 

Operator

Fig. 1. Overview of the proposed scheme. Given a driving scene consisting of agents and the HD map, we first assign a variable number of CCLs to
each agent according to its dynamics and the road structure. Then, we represent the driving scene with a heterogeneous hierarchical graph (scene graph) with
an additional virtual target agent node. Next, we process the scene graph using our proposed hierarchical graph operator. Finally, we apply a map-adaptive
trajectory decoder to predict a variable number of trajectories. These predictions of a target agent fall into three categories: CCL-following, scene-reasoning,
and motion-maintaining predictions.

the CCLs of each agent. hi
t = [sit−Th+1, s

i
t−Th+2, . . . , s

i
t] is

the historical states of agent i over a traceback horizon Th,

where sit = [xi
t, y

i
t, vx

i
t, vy

i
t
] is the state (position and velocity)

of agent i at time t. c
i,j
t = [(x, y)i,j1 , (x, y)i,j2 , . . . , (x, y)i,jL ] is

the jth CCL of agent i at time t that contains L way-points.

Note that the number of considered agents n and the number

of CCLs of an agent m vary from case to case. Without loss

of generality, we number the target agent with one. Then the

output is a set of future trajectories of the target agent:

Ft = {f1,1
t , f

1,2
t , . . . , f

1,m
t , f

1,m+1
t , f

1,m+2
t }, (2)

where f
1,j
t = [(x1,j

t+1, y
1,j
t+1), . . . , (x

1,j
t+Tf

, y
1,j
t+Tf

)] is jth se-

quence of predicted XY coordinates of the target agent over

a prediction horizon Tf . The first m predictions are based on

the target agent’s m CCLs. f
1,m+1
t is the scene-reasoning pre-

diction and f
1,m+2
t is the motion-maintaining prediction. The

predicted trajectories are further described in Sub.Sec. III-E.

B. Heterogeneous Hierarchical Scene Graph

In this work, we represent the driving scene as a hetero-

geneous hierarchical graph, where the nodes fall into two

categories: agents and CCLs. The hierarchical graph contains

two layers, where the lower layer is the agent-CCL graph

and the upper layer is the inter-agent interaction graph. The

agent-CCL graph is a star-like graph with the agent at the

center and all its CCLs linked to it (indicated by dark gray

arrows in the second block of Fig. 1). The interaction graph

is another star-like graph with the target agent at the center

and all neighboring nodes linked to it (indicated by light gray

arrows in the second block of Fig. 1). In addition to the objects

in the driving scene, we introduce a virtual target agent node

(light green node with a dashed border in the second block

of Fig. 1) for motion-maintaining prediction. The virtual node

is isolated in the graph and has no CCL nodes to form a

sub-graph. We also assume that each node in the graph has a

self-loop for information preservation. But, for clarity, these

self-loops are not plotted.

There are many advantages of this representation: 1) the

graph representation can accommodate an arbitrary number

of objects; 2) the heterogeneous graph can comprehensively

represent different kinds of objects; 3) the star-like graph

structure is sparse so that it is more efficient compared to

graphs with dense connectivity [7]; 4) the hierarchical structure

allows information flow from local to global; 5) the introduced

virtual node preserves the target agent’s dynamics for motion-

maintaining prediction.

Candidate centerlines selection. The main idea of center-

line selection is operating depth-first search (DFS) on the lane

graph. More description of CCL selection can be found in

Sub.Sec. IV-A.

Graph construction. We construct a heterogeneous hierar-

chical graph to represent the interaction among agents and

CCLs. We use A and C to contain the indices of agent

and CCL nodes in the graph. These two types of objects

(agents and CCLs) are further divided into four types of

nodes (target agent, surrounding agent, target agent’s CCL,

and surrounding agents’ CCL). In addition to these nodes,

we introduce a virtual target node in the constructed graph

to integrate motion-maintaining prediction. For an agent node,

the raw node feature is the agent’s historical states. For a CCL

node, the raw node feature is a sequence of XY coordinates

of this CCL. A directed edge pointing from node j to node i

means that node j has an impact on node i, and there will be

information flow from node j to node i in graph operations.

Each edge is associated with an edge type determined by the

edge’s source and target nodes. The edge set is represented as:

E = {eij}(j∈Ni), i = 1, . . . , N, (3)

where eij is a directed edge from node j (the source node)

to node i (the target node), Ni is the neighborhood of node i,

and N is the total number of nodes in the graph. Self-loops

eii are included in the edge set because a node is also counted

as a neighbor of itself. An example of the constructed graph

is shown in the second block of Fig. 1. Tab. I lists the node

and edge types in this heterogeneous hierarchical graph.

C. Agent and CCL Encoders

Since there are two kinds of objects in our scene graph, i.e.,

vehicles and their CCLs, we introduce one shared encoder for



4

TABLE I
NODES AND EDGES IN THE SCENE GRAPH

TarAg Target agent node
VirTarAg Virtual target agent node
SurAg Surrounding agent node
TarCCL Target agent’s CCL node
SurCCL Surrounding agent’s CCL node

TarAg-Loop Self-loop of the TarAg node
VirTarAg-Loop Self-loop of the VirTarAg node
SurAg-Loop Self-loop of the SurAg node
TarCCL-Loop Self-loop of the TarCCL node
SurCCL-Loop Self-loop of the SurCCL node
SurCCL→SurAg Edge from SurCCL node to SurAg node
SurAg→TarAg Edge from SurAg node to TarAg node
TarCCL→TarAg Edge from TarCCL node to TarAg node
TarAg→TarCCL Edge from TarAg node to TarCCL node

Agent 

Encoder

CCL 

Encoder

Agent sequences

CCL sequences

Dynamics 

features

Sequential

features

: Target agent

: Directed edge

: Surrounding agent : Virtual target agent

: Candidate centerline

: Past trajectory

: Node feature

Fig. 2. Agent and CCL encoders. Given the agents’ historical states
and CCLs, we apply agent encoder and CCL encoder to extract sequential
dependencies in corresponding sequences. Then we take the extracted features
as node features of the scene graph.

each type. We assume that the CCLs are sequences of XY

coordinates and the historical states of vehicles are sequences

of their positions and velocities over the last two seconds.

1) Agent Dynamics Encoder: An agent is represented by a

sequence of its historical states. We use a gated recurrent unit

(GRU [16]) network to model its dynamics from its historical

states:

dit = GRUagn(h
i
t), i ∈ A, (4)

where hi
t is the historical sequence of vehicle node i at time

t, GRUagn is the GRU network for agent dynamics encoding,

and dit is is the extracted dynamics feature.

2) Candidate Centerline Encoder: A CCL is represented by

a sequence of XY coordinates. We use another GRU network

to model the sequential dependencies in a centerline sequence:

q
j
t = GRUccl(c

j
t ), j ∈ C, (5)

where c
j
t is the way-point sequence of CCL j at time t,

GRUccl is the GRU network for centerline encoding, and

q
j
t is is the extracted sequential feature. Then the extracted

features (dit and q
j
t for all agents and CCLs) are reordered

and renamed to rit and taken as node features of the scene

graph :Rt = {r1t , r
2
t , . . . , r

i
t, . . . , r

j
t , . . . , r

N−1
t , rNt }. Please

see Fig. 2 for an illustration of sequence encoding.

D. Hierarchical Graph Operator

In this subsection, we introduce the hierarchical graph

operator (HGO) with the edge-masking technique (III-D1)

: Target agent : Surrounding agent : Virtual target agent : Candidate centerline

Surrounding Agent CCL-Awareness

GAT

(1)

Target Agent ITA-Awareness

GAT

(2)

Target Agent CCL-Awareness

GAT

(3)

Fig. 3. Information flow in the hierarchical graph operator (HGO). The
information flow is regulated by edge-masking. The first stage of HGO is
for surrounding agent CCL-awareness. The second stage is for target agent
interaction-awareness. The third stage is for target agent CCL-awareness. Each
stage is implemented with a graph operation augmented with edge-masking.

designed to encode the scene graph. HGO consists of three

stages, namely 1) surrounding agents’ CCL-awareness, 2)

the target agent’s interaction-awareness, and 3) the target

agent’s CCL-awareness. The first stage (III-D2) allows the

surrounding agents to gather information from their CCLs.

The second stage (III-D3) then allows the target agent to

model its interaction with the surrounding agents. The third

stage (III-D4) then brings CCL-awareness to the target agent.

Each stage is implemented with a separate Graph Attention

Network (GAT [17]) with information flow regulated by the

edge-masking technology. GAT is selected considering that:

1) its effectiveness has been proven in many graph learning

tasks [18]; 2) it operates in the local neighborhood; 3) its

attention mechanism allows modeling the importance of dif-

ferent factors. It is worth noting that HGO is open to being

implemented with other GNNs. The information flow in HGO

is shown in Fig. 3. Since GAT is utilized to implement the

graph operators throughout this work, we first briefly introduce

it before diving into the details.

Graph Attention Network. In this work, we want to

model the effects of a target vehicle’s surrounding agents and

CCLs on its future motion. We represent the interdependencies

among them as a graph and use GATs to update node features

in each graph operation. For a node i, a GAT layer first

computes attention coefficients over its neighborhood. Then it

updates the feature of node i via a linear combination of the

features of its neighboring nodes according to the normalized

attention coefficients. In a GAT operation, information only

flows along directed edges so that the information flow can

be regulated by manipulating the edge set. This leads us to

propose edge-masking for information flow regulation. For

details of the GAT layer, please refer to [17].

1) Edge-Masking: Data masking is a technique to hide

irrelevant information from a model so that it can be trained

on more relevant data for a specific task. This technique

is widely used in language and vision models and shows

promising improvements [19]. Inspired by data masking, we

propose edge-masking, a technique that hides irrelevant edges

of a graph before processing it with a GNN, to train task-

specific GNNs. In the setting of GNNs, information flows

from one node to another through the edge between them. The

information in node j can only be passed to node i through

GNN operations if there is an edge from j to i. So we can

regulate information flow from nodes to nodes (which can be

of different types) by hiding irrelevant edges via edge-masking



5

to train GNNs for specific sub-tasks. This is different from

HetGNN [20], which applies a GNN for each type of edge

connection. Using the edge-masking technique, we only need

to save one edge set with several edge masks for each graph

operation.

2) Surrounding Agents’ CCL-Awareness: Before modeling

interactions between the target and its surrounding agents,

we first let these surrounding agents gather information from

their own CCLs. This operation, when modeling inter-agent

interactions in the following stage, gives the target agent a

broader view of the road structure and possible motions of

its surrounding agents. We apply a GAT to the entire graph

with edge-masking to regulate information flow in this graph

operation so that the information only flows from surrounding

agents’ CCL nodes to themselves. This graph operation is

expressed by:

G1
t = GAT1(Rt, E1), (6)

where Rt contains node features for both agent and CCL

nodes, E1 is the edge set retrieved via masking for this stage,

GAT1 is the GAT for this stage, and G1
t is the output of

this stage. Each surrounding agent node in G1
t is with CCL-

awareness. All the other nodes, i.e., the target, the virtual

target, and all the centerline nodes, remain isolated. The infor-

mation flow regulated by edge-masking is shown in the first

block of Fig. 3. Specifically, the edges of the following types

are used in this graph operator: {SurCCL→SurAg, TarAg-

Loop, SurAg-Loop, TarCCL-Loop, VirTarAg-Loop}. Note that

these self-loops are included to avoid information loss.

3) Target Agent’s Interaction-Awareness: In the second

stage, we allow the target agent to gather information from its

neighborhood. Since its neighboring agents are aware of their

corresponding CCLs, this stage provides interaction-awareness

to the target vehicle along with further road awareness from

its neighbors. This graph operation is expressed by:

G2
t = GAT2(G

1
t , E2), (7)

where G1
t is the output of Eq. 6, E2 is the edge set retrieved

via masking for this stage, GAT2 is the GAT for this stage, and

G2
t is the output of this stage. This stage brings interaction-

awareness (ITA-awareness) to the target agent node. All the

other nodes, i.e., the surrounding agents, the virtual target,

and all the CCL nodes, remain isolated. The information

flow regulated by edge-masking is shown in the second block

of Fig. 3. Specifically, the edges of the following types are

used in this stage: {SurAg→TarAg, TarAg-Loop, SurAg-Loop,

TarCCL-Loop, VirTarAg-Loop}.

4) Target Agent’s CCL-Awareness: The third stage is to

make the target agent aware of its options, that is, its CCLs.

This graph operation is expressed by:

G3
t = GAT3(G

2
t , E3), (8)

where G2
t is the output of Eq. 7, E3 is the edge set retrieved via

masking for this stage, GAT3 is the GAT for this stage, and G3
t

is the output of this stage. This stage lets the target agent look

at its CCLs with knowledge of surrounding agents’ options and

interactions. All the other nodes, i.e., the surrounding agents,

the virtual target, and all the CCL nodes, remain isolated. The

GAT

(4)

Trajectory 

Decoder

Predicted 

Trajectories

: Target agent

: Virtual target agent

: Candidate centerline

: Directed edge

: Future trajectory

Fig. 4. Map-adaptive trajectory decoder. After encoding, we apply another
GAT on the graph with edges shown in the left block of this figure. This is to
distribute the target agent’s feature to the CCL nodes and let the target agent
node reconsider its options (CCLs). Then we apply a trajectory decoder to
output the final multimodal prediction.

information flow regulated by edge-masking is shown in the

third block of Fig. 3. Specifically, the edges of the following

types are used in this stage: {TarCCL→TarAg, TarAg-Loop,

TarCCL-Loop, VirTarAg-Loop}.

E. Map-Adaptive Trajectory Decoder

Our approach utilizes a variable number of CCLs to predict

three kinds of future trajectories of a target vehicle. The

number of CCLs depends on the lane geometry of the driving

scene, and the predicted trajectories include CCL-following,

scene-reasoning, and motion-maintaining predictions. This de-

sign is based on the following observations: 1) the road

structure mainly shapes the motion of vehicles, and vehicles

tend to follow centerlines in driving to keep a safe distance

from each other; 2) there are some situations where a vehicle’s

behavior is determined by more than a single CCL; 3) A

vehicle’s motion can depend on its own dynamics in some

cases.

A CCL-following prediction (Eq. 9) emphasizes the impacts

of a specific CCL on the target vehicle’s future motion and

estimates its future motion under the current situation (Xt) if

it is going to follow the CCL (c
1,i
t ). Map-adaptive prediction

is realized by iterating over a set of CCLs:

f
1,i
t = Fccl(Xt, c

1,i
t ), i = 1, . . . ,m. (9)

When a vehicle does not follow a CCL (e.g., parking and

overtaking), the scene-reasoning prediction (Eq. 10) estimates

the target agent’s future movements based on its understanding

of the scene and covers the unimodal prediction [21]. It also

guarantees that the designed model can output an interaction-

aware prediction, regardless of whether the target vehicle’s

CCLs are available or not.

f
1,m+1
t = Fscn(Xt). (10)

The motion-maintaining prediction (Eq. 11) covers the cases

where the target vehicle maintains its current motion (h1
t ):

f
1,m+2
t = Fmot(h

1
t ). (11)

It is worth noting that these three prediction types are designed

for different purposes. However, in normal driving, vehicles

tend to follow a CCL and maintain their motions, so these

three types can generate similar predictions in some cases.



6

To handle the variable number of CCLs, we adopt the graph

representation and a GNN in this predictor. Fig. 4 shows an

illustration of this predictor. The graph structure used by this

predictor is shown in the left block of Fig. 4, which is a

heterogeneous graph containing three types of nodes: a target

node, a virtual target node, and a set of CCL nodes of the

target vehicle. The graph structure is also obtained via edge-

masking. Throughout all the previous encoding stages with

our information flow regulation strategy, the node features are

updated and contain corresponding features for three types of

predictions. The target node contains the overall information of

the scene; the virtual target node contains its own dynamics;

the target vehicle’s CCL nodes contain corresponding CCL

features. Since we focus on the target agent, all other agents

and their CCL nodes are ignored in this stage. Given the

number of the target vehicle’s CCLs m, our predictor will

output m+2 predictions. The calculation within this decoder

is expressed by:

Ft = MLPpred

(

GATpred(G
3
t , E4),Masktar

)

, (12)

where G3
t is the output of Eq. 8, E4 is the edge set re-

trieved via masking for this stage, GATpred is the GAT

used for prediction, Masktar is used to select the target

agent node, the target CCL nodes, and the virtual target

node from the output of GATpred, MLPpred is the trajectory

decoder implemented with a multi-layer perceptron, and Ft

is the predicted future trajectories of the target agent. Ft

contains m CCL-following predictions, one scene-reasoning

prediction, and one motion-maintaining prediction. Specifi-

cally, the edges of the following types are used in this graph

operation: {TarCCL→TarAg, TarAg→TarCCL, TarAg-Loop,

TarCCL-Loop, VirTarAg-Loop}.

IV. REAL-WORLD DATASET VALIDATION

A. Datasets

We evaluate our method on the Argoverse motion fore-

casting dataset [22] and the NuScenes dataset [23]. Both

provide two seconds of history states of traffic participants and

HD maps. The former requires methods to predict the target

vehicle’s motions in the next three seconds, while the latter

requires predictions of six seconds. The Argoverse dataset

provides centerline segments and their connectivity. It also

provides a map API (Application Programming Interface) to

get a vehicle’s CCLs given its latest trajectory. For more

details of this map API, please refer to their released code.

For the NuScenes dataset, given a vehicle, we first find the

lane closest to its current position as the start lane. Then

we search the lane graph from the start lane for up to three

steps to obtain CCLs. For the six-seconds prediction horizon,

we stop extending a CCL if its length exceeds 100 meters.

Since this work focuses on trajectory prediction for a single

target agent, we use a target-centric coordinate system for

all the trajectories and waypoints. This makes our method

robust to coordinate transformation since data represented in

other coordinate systems can always be transformed to be

target-centric. We split both datasets according to instructions

provided by the datasets except for selecting only vehicles with

a full six-second future trajectory in the NuScenes dataset for

training.

B. Comparison with Existing Methods

On the Argoverse dataset. We compare our model with

existing models proposed in recent years and two official

baselines provided by the Argoverse dataset on the Argoverse

motion forecasting benchmark (test set). We adopt Minimum

Average Displacement Error (minADE) and Minimum Final

Displacement Error (minFDE) in meters to evaluate prediction

performances as previous works [7], [10]. Since the bench-

mark allows up to K=6 predictions, we replace our map-

adaptive decoder with a decoder that predicts six possible

future trajectories of a target agent for a fair comparison. We

report the results in terms of minADE, minFDE, and miss rate

(MR). Miss rate is the number of scenarios where none of the

predicted trajectories of a target agent are within 2.0 meters

of the ground truth according to endpoint error. The MR is

listed, but the comparison is mainly on minADE and minFDE.

It can be seen from Tab. II that our model significantly

outperforms Argoverse baselines (Argo and Argo (NN)). Our

model also outperforms Jean (the first place winner of the

Argovese motion forecasting challenge 2019), LaneRCNN,

TNT, DenseTNT, and GOHOME in terms of minADE (K=6)

and minFDE (K=6). Our model is competitive with LaneGCN

with only a small gap in prediction accuracies but a much

greater reduction in memory cost and inference time. As we

show in Tab. III, our method reduces both the required model

size and data storage to a great extent and therefore improves

inference speed. In Tab. III, we show that LaneGCN uses 3.7

million (M) of parameters and requires 32 gigabytes (G) to

save data for training, validation, and testing. It needs 0.08

seconds to operate on a batch of 32 data pieces on a GPU

(GeForce RTX 2080 Ti), while our method needs only 0.02

seconds, reducing the inference time by 75%.

TABLE II
PERFORMANCE ON ARGOVERSE BENCHMARK (TEST SET)

Methods
K=1 K=6

minADE minFDE MR minADE minFDE MR

Argo [22] 2.96 6.81 0.81 2.34 5.44 0.69
Argo (NN) [22] 3.45 7.88 0.87 1.71 3.29 0.54
Jean [24] 1.86 4.18 0.63 0.93 1.49 0.19
LaneGCN [5] 1.71 3.78 0.59 0.87 1.36 0.16
LaneRCNN [8] 1.68 3.69 0.59 0.90 1.45 0.12
DenseTNT [15] - - - 0.94 1.49 0.11
TNT [7] 2.17 4.96 0.71 0.91 1.44 0.17
GOHOME [14] - 3.65 0.57 0.94 1.45 0.11
Ours 1.88 4.18 0.65 0.89 1.40 0.17

TABLE III
COMPARISON WITH LANEGCN

Method #Param Dataset size Inference time

LaneGCN 3.7M 20.0G, 3.4G, 8.7G 0.08 sec/batch

Ours 0.6M 7.0G, 1.1G, 3.5G 0.02 sec/batch

On the NuScenes dataset. We compare our method with

MTP and CoverNet on the NuScenes dataset and indirectly

compare it with GoalNet since both methods are used as

baselines in GoalNet. The results are reported in Tab. IV,



7

where min5ADE is the minADE in meters over 5 predictions.

The data in the first row are reported in GoalNet [6], and

the data in the second row are obtained by running MTP,

CoverNet, and our method on the NuScenes dataset.

TABLE IV
COMPARISON WITH GOALNET

Methods MTP CoverNet GoalNet (v.s. MTP) (v.s. CoverNet)

min5ADE 2.10 2.44 1.75 -0.35 -0.69

Methods MTP CoverNet Ours (v.s. MTP) (v.s. CoverNet)

min5ADE 2.49 2.39 1.70 -0.79 -0.69

C. Ablative Studies

We conduct ablative studies to show the importance of each

stage in the HGO and the superiority of the proposed approach

compared to a single GAT (G). In Tab. V, r, if checked, means

that the model uses RNN (GRU) to encode sequences; each of

the graph operators (g1, g2, and g3), if checked, means that the

model uses the checked operator(s); G, if checked, means that

the model uses a single GNN to encode the entire hierarchical

heterogeneous graph. All the ablative models are implemented

with the proposed map-adaptive multimodal predictor (III-E).

The number of predicted trajectories adapts to the number of

CCLs of the target agent. They differ from each other mainly

in the encoding part.

The results of the implemented models on the Argoverse

validation set are shown in Tab. V. We run each model

five times and report the mean and standard deviation of

its minADE and minFDE. It can be observed that as we

progressively add more graph operators, both minADE and

minFDE decrease, and the proposed method shows the most

stable performance. This demonstrates the effectiveness of our

framework. Besides, there are some more observations we

can draw from Tab. V: 1) comparing row 2 and row 3 with

row 1, we can see that both the target agent’s interaction-

awareness (g2) and overall CCL-awareness (g3) improve the

performance, respectively; 2) comparing row 4 with row 2, we

can observe that the surrounding agents’ CCL-awareness (g1)

is useful for trajectory prediction; 3) comparing row 5 with

row 2 and row 3, we can see that combining the target agent’s

interaction-awareness (g2) and its overall CCL-awareness (g3)

improves the performance; 4) comparing row 5 with row 6,

we can observe that our framework with hierarchical graph

operator (g2g3) outperforms the model using a single GAT

(G) to model a heterogeneous hierarchical graph, despite both

having access to the same data in the graph; 5) comparing

row 7 with the rest of the rows, we can tell that the proposed

hierarchical graph operator outperforms all its ablations. This

shows the effectiveness of the proposed HGO.

We find that all three factors (surrounding agents’ CCL-

awareness, the target agent’s interaction-awareness, and its

CCL-awareness) positively affect the prediction performance.

However, an inappropriate encoder can impair performance.

For example, cl-r-G performs worse than cl-r-g2g3 despite us-

ing the same input. This is because cl-r-G does not distinguish

node and edge types in the heterogeneous interaction graph,

while our method can do so via edge-masking. Running both

cl-r-g1g2g3 and cl-r-G on the same device, we observe that

TABLE V
ABLATIVE STUDY RESULTS (ARGOVERSE VALIDATION SET)

Methods r g1 g2 g3 G minADE minFDE

cl-r ✓ 0.883± 0.008 1.716± 0.017

cl-r-g2 ✓ ✓ 0.827± 0.010 1.561± 0.019

cl-r-g3 ✓ ✓ 0.838± 0.015 1.602± 0.033

cl-r-g1g2 ✓ ✓ ✓ 0.817± 0.017 1.533± 0.042

cl-r-g2g3 ✓ ✓ ✓ 0.798± 0.014 1.487± 0.036

cl-r-G ✓ ✓ 0.817± 0.011 1.549± 0.029

cl-r-g1g2g3 ✓ ✓ ✓ ✓ 0.783± 0.003 1.448± 0.006

the former uses 19% more time to make inferences on a batch

of 32 data than the latter.

D. Visualization

Fig. 5 shows successful prediction cases for all three types,

where our method can predict a variable number of trajectories

of a target agent according to its CCLs. The predicted trajecto-

ries fall into three types: CCL-following, scene-reasoning, and

motion-maintaining. The left part of Fig. 5 shows a successful

case of the motion-maintaining prediction, where the target

vehicle has only one CCL. It can be seen that the motion-

maintaining prediction extrapolates its historical track, while

the other two predictions are affected by the single CCL. The

scene-reasoning and CCL-following predictions are different

in this situation because the CCL-following prediction em-

phasizes the effect of a specific CCL and a shorter CCL may

lead to a slow-down in the prediction. The middle part shows

a successful case of the scene-reasoning prediction, where

the target vehicle has no available CCL. It can be seen that

the proposed model can still generate an interaction-aware

prediction according to its understanding of the whole scene

and the scene-reasoning prediction is closest to the ground

truth. The right part shows the successful case of the CCL-

following prediction where the target vehicle has two CCLs. It

can be seen that CCL-following predictions are aligned with

CCLs, and one of them is closest to the ground truth. Three

cases in Fig. 5 together show that our method can predict a

variable number of trajectories according to different situations

(different numbers of CCLs). Fig. 5 also demonstrates the ne-

cessity to produce three kinds of predictions (CCL-following,

scene-reasoning, and motion-maintaining predictions).

E. Training and Implementation

The implemented models are trained for 50 epochs using

Adam as the optimizer to minimize the MTP [3] loss without

classification loss. The learning rate of Adam starts from

0.002 and decreases by half at the ends of epochs: 1, 6,

12, 18, 24, and 30. For the proposed model, the raw agent

and CCL features are first embedded into a 32-dimensional

space separately before being sent to their corresponding GRU

encoders. The hidden sizes of both GRU encoders are 64. The

GATs in the hierarchical graph operator are single-layer GATs

with three attention heads, and their hidden sizes are all set to

128. The GAT in the CCL-enabled prediction header uses only

a single attention head. A two-layer MLP is used to finally

produce the trajectories. LeakyReLU is used as the activation

function between layers.



8

Fig. 5. Visualized prediction results. This figure showcases successful
predictions of three prediction types. Light blue dots (Vehicle) show the
agents’ current positions, and red curves show their corresponding historical
trajectories (Hist.). Dashed curves (CCL) show the CCLs of the target agent.
Yellow curves (GT) and stars (GT Final Pos.) show the target agent’s ground
truth trajectory and final position over the prediction horizon, respectively.
Green stars (CCL-Following Final Pos.) show the final positions of the CCL-
following predictions. Green dots (Scene-Reasoning Final Pos.) show that of
the scene-reasoning prediction. Green diamonds (Motion-Maintaining Final
Pos.) show that of the motion-maintaining predictions. Green curves (Pred.)
followed by predicted final positions are their corresponding trajectories.

To use this method in the real world, the historical states of

surrounding agents and the target vehicle must be available.

This information can be obtained via inter-vehicular com-

munications, onboard perception, or centralized information

hubs. For the CCL information, our method requires HD maps

(providing lane graphs) of the local area so that the CCLs can

be obtained via graph search.

V. CONCLUSION

In this work, we propose a map-adaptive multimodal tra-

jectory prediction framework that can predict an agent’s

CCL-following, scene-reasoning, and motion-maintaining tra-

jectories in an integrated manner. We represent the driving

scene using a heterogeneous hierarchical graph and design

a hierarchical graph operator (HGO) with an edge-masking

technology to encode the driving scene. Experiments on real-

world datasets show that the proposed framework achieves

competitive performance. Compared to LaneGCN, our method

reduces the inference time by three quarters. In addition to

map-compliant predictions, our method covers the critical

corner case where a vehicle’s future motion purely depends

on its own motion for safety considerations.

Although this method achieves accurate multimodal trajec-

tory prediction, its reliability is affected by the CCL selection

strategy. In the future, we plan to develop an adaptive CCL

selection strategy and incorporate probability prediction for

each possible motion into this framework. We also suggest

extending the hierarchical graph operator by adding a stage to

capture the interactions among surrounding agents.

REFERENCES

[1] X. Li, G. Rosman, I. Gilitschenski, C.-I. Vasile, J. A. DeCastro,
S. Karaman, and D. Rus, “Vehicle trajectory prediction using generative
adversarial network with temporal logic syntax tree features,” IEEE

Robotics and Automation Letters, vol. 6, no. 2, pp. 3459–3466, 2021.
[2] X. Jia, L. Sun, M. Tomizuka, and W. Zhan, “Ide-net: Interactive driving

event and pattern extraction from human data,” IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 3065–3072, 2021.
[3] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.

Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in 2019

International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2090–2096.

[4] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,” in
Conference on Robot Learning. PMLR, 2020, pp. 86–99.

[5] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in Euro-

pean Conference on Computer Vision. Springer, 2020, pp. 541–556.
[6] L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and M. Marchetti-Bowick,

“Map-adaptive goal-based trajectory prediction,” in Conference on Robot

Learning. PMLR, 2021, pp. 1371–1383.
[7] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,

Y. Shen, Y. Chai, C. Schmid et al., “Tnt: Target-driven trajectory
prediction,” in Conference on Robot Learning. PMLR, 2021, pp. 895–
904.

[8] W. Zeng, M. Liang, R. Liao, and R. Urtasun, “Lanercnn: Distributed
representations for graph-centric motion forecasting,” in 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 532–539.

[9] X. Mo, Z. Chen, and H.-T. Zhang, “Effects of adding a reverse edge
across a stem in a directed acyclic graph,” Automatica, vol. 103, pp.
254–260, 2019.

[10] X. Mo, Y. Xing, and C. Lv, “Recog: A deep learning framework with
heterogeneous graph for interaction-aware trajectory prediction,” arXiv

preprint arXiv:2012.05032, 2020.
[11] X. Mo, Z. Huang, Y. Xing, and C. Lv, “Multi-agent trajectory prediction

with heterogeneous edge-enhanced graph attention network,” IEEE

Transactions on Intelligent Transportation Systems, 2022.
[12] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,

“Vectornet: Encoding hd maps and agent dynamics from vectorized rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 11 525–11 533.
[13] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.

Wolff, “Covernet: Multimodal behavior prediction using trajectory sets,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 14 074–14 083.
[14] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,

“Gohome: Graph-oriented heatmap output for future motion estimation,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 9107–9114.

[15] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory prediction
from dense goal sets,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 15 303–15 312.
[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.
[17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and

Y. Bengio, “Graph Attention Networks,” International Conference on

Learning Representations, 2018.
[18] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang,

Y. Dong, and J. Tang, “Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, 2021, pp. 1150–1160.
[19] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked au-

toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp.
16 000–16 009.

[20] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2019, pp. 793–803.
[21] X. Mo, Y. Xing, and C. Lv, “Graph and recurrent neural network-

based vehicle trajectory prediction for highway driving,” in 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 1934–1939.

[22] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d
tracking and forecasting with rich maps,” in Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.
[23] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-

ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[24] J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and
G. P. Gil, “Multi-head attention for multi-modal joint vehicle motion
forecasting,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020, pp. 9638–9644.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-04-26

Map-adaptive multimodal trajectory

prediction using hierarchical graph

neural networks

Mo, Xiaoyu

IEEE

Mo X, Xing Y, Liu H, Lv C. (2023) Map-adaptive multimodal trajectory prediction using

hierarchical graph neural networks. IEEE Robotics and Automation Letters, Volume 8, Issue 6,

June 2023, pp. 3685-3692

https://doi.org/10.1109/LRA.2023.3270739

Downloaded from Cranfield Library Services E-Repository


