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Constrained Quasi-Spectral MPSP with
Application to High-Precision Missile Guidance

with Path Constraints

Sabyasachi Mondal
School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK ∗

Radhakant Padhi
Department of Aerospace Engineering, Indian Institute of Science, Bangalore,India †

ABSTRACT
This paper extends the recently-developed Quasi-Spectral Model Predictive Static Programming (QS-MPSP) to

include state and control path-constraints and yet retain its computational efficiency. This is achieved by (i) for-
mulating the entire problem in the control variables alone by (a) converting the system dynamics to an equivalent
algebraic constraint and (b) converting the state constraints to equivalent control constraints, both of which is done
by manipulating the system dynamics, (ii) representing the control variables in Quasi-spectral form, which makes
the number of free-variables independent of time-grids and (iii) using a computationally-efficient optimization algo-
rithm to solve this low-dimensional problem. This generic computationally-efficient technique is utilized next as an
effective lead angle, and lateral acceleration constrained optimal missile guidance to intercept incoming high-speed
ballistic targets with high precision successfully. Both of these constraints, as well as near-zero miss-distance, are
of high practical significance for this challenging problem. Extensive three-dimensional simulation studies show the
effectiveness of the newly-proposed constrained QS-MPSP guidance algorithm. Six degree-of-freedom simulation
studies have also been carried out using autopilot in the loop to validate the results more realistically.

1 Introduction
Optimal control offers a very powerful framework to solve a host of challenging control synthesis problems in practice

as it has the capability to handle various types of constraints on states and control variables. In addition to the state equa-
tion constraint, additional constraints may appear during the control operation time (path constraints) and initial and/or final
points of time (terminal constraints). They can be imposed on state or control or both. Optimal control theory addresses
every possible combination of constraints successfully. Usually, these constraints are augmented to different kinds of prob-
lems such as regulator problems, tracking problems and so on. Quite naturally it finds its applications in many different
engineering fields such as aerospace, electrical, mechanical, robotics, process control and biomedical, to name a few. Many
classic books have been written on optimal control and its capability to solve various classes of problems in the past (see,
e.g. [1–3]). Some recent books have also appeared containing a few recently-developed algorithms and several challenging
applications [4–7].

Solutions methods of optimal control problems are broadly divided into two categories, e.g., a) indirect method and
b) direct method. The indirect method follows the calculus of variations approach and results in the state equation, adjoint
equation, control equation, and the transversality condition [3], thereby leading to a two-point boundary value problem [1].
However, this approach suffers from the well-known ‘curse of complexity’ [8]. Generally, the analytic closed-form solution
to these equations is possible only if the plant dynamics and constraints are simple, and the dimension of state and control
variables is limited (e.g., the standard linear quadratic regulator theory [9]). However, most of the real-life problems not only
include a complex nonlinear system but also have inequality path constraints. In this case, the numerical approach is a better
candidate. It can be mentioned that, the shooting method [10] and gradient method [1] are mostly used among all the existing
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numerical methods for the indirect approach. The direct method is the dynamic programming which uses the principle of
optimality to calculate the control. It leads to the Hamilton-Jacobi-Bellman (HJB) equation [2], a partial differential equation
(PDE) in state-space and there are techniques to numerically compute approximate solutions [11]. However, this approach
suffers from Bellman’s ‘curse of dimensionality’ and is restricted to the small state dimensions.

One of the popular approaches for solving optimal control problem is to transcribe it into an equivalent NLP [12] which
can be solved by several numerical optimization techniques. The approach is often called as ‘first discretize, then optimize’.
The primary advantage of this approach is that the inequality constraints are handled easily because the well developed NLP
methods are capable of dealing with inequality constraints and active set changes. Unfortunately, this technique leads to
a large-dimensional optimization problem and needs huge computational burden making it impossible to apply in its basic
form for many practical problems. This disadvantage paves the way for model predictive control (MPC) [13, 14], which
is well-established predictive control theory, including convergence and optimality guarantees for both linear and nonlinear
problems under relevant assumptions [15,16]. However, MPC suffers from the associated computational burden, and hence,
applicable to slow-varying systems (such as chemical and biomedical process control applications). The larger control
update time window helps in computing the control in real-time. Even though of late literature has appeared for Economic
MPC [17] relaxing it from regulator problems and Fast MPC to address the computational time issue [18], these are still
restricted mainly to relatively slow-varying linear systems, since the computations involved are typically not sufficiently fast.

Problems in the aerospace domain are usually governed by complex fast-changing system dynamics. Therefore, such
problems need a rapid update of the control variables, so that the objectives and constraints should be satisfied (e.g. ensuring
zero miss distance in missile guidance in addition to satisfying the path constraints). For such challenging problems, the
existing ‘Fast MPC’ algorithms cannot provide the desired computation speed. Keeping such applications in mind, however,
innovative optimal control solution approaches were proposed over the last three decades, such as pseudo-spectral optimal
control [19, 20], adaptive critic technique [21] and so on. One such powerful and innovative approach is Model Predictive
Static Programming (MPSP) [22, 23]. MPSP provides a solution to optimization problems with nonlinear plant dynamics
and satisfies the terminal constraints in a fixed final time setting. The key idea is to convert the nonlinear optimal control
problem to a static optimization problem with control variables being the only optimizing variables, resulting in a reduction
of problem size. In addition, recursive computation of the sensitivity matrices that form the core of this algorithm, the MPSP
technique has been found to be computationally very efficient. Over the last decade, the original version of MPSP has been
modified to include variability in the final time [24], tracking problems [25], problems with uncertainty in time-invariant
system parameters and/or initial conditions [26], and impulsive nature of the control action [27]. The MPSP technique
has also been applied to a host of challenging problems such as missile guidance [28, 29], re-entry guidance [23], mobile
robotics [25], lunar soft-landing [30] and so on. It is important to note that in the basic MPSP and most of its variants, the
number of optimizing variables depends on the number of grid points. Hence, it can increase the size of the optimization
problem depending on the time-horizon and grid size, which may reduce its computational efficiency. To address this issue,
inspired by the pseudo-spectral philosophy, the Quasi-Spectral MPSP (QS-MPSP) [31] philosophy has also been proposed
recently, which enhances the computational efficiency of MPSP even further. A major advantage of QS-MPSP is the reduced
number of optimizing variables which are nothing but the coefficients of the basis function that are used to represent the
control variable, and thus the optimizing variables are independent of the grid points. Therefore the computation burden
is reduced substantially. Note that the number of optimizing variables being independent of the number of grid points is
a well-known property in all spectral approaches. In fact, the pseudo-spectral optimal control thrives on that, and the QS-
MPSP philosophy is inspired by that as well. It is because of the fundamental basis-function based representation approach.
Another advantage is the smoothness of control, which helps the inner-loop autopilot to operate in reduced bandwidth.

QS-MPSP approach presented in [31] deals with terminal constraints but did not include the inequality path constraints
on state and control variables. In the context of missile guidance problems, the constraint on look angle (a function of
the states of missile model) needs to be satisfied during the entire terminal phase since the seeker cannot afford to lose
the target. Moreover, because of the high-altitude engagement, where the dynamic pressure is low owing to substantially
reduced atmosphere density, one must explicitly ensure that the lateral acceleration demand is restricted to an achievable
limit throughout the trajectory.

In this paper, the QS-MPSP algorithm is modified to include the path constraints on states and control. It is named
as ‘Constrained Quasi-Spectral MPSP’ (Constrained QS-MPSP) for obvious reasons. An inspiring innovation here is the
fact that the path constraints on states have been converted into equivalent constraints on the control variables. Hence, it
retains a significant advantage of the QS-MPSP philosophy, i.e., the number of free variables to optimize is still restricted
only to the number control variables multiplied by the number of coefficients of the basis functions used to represent those.
This is a critical factor for retaining its computational efficiency. Next, all applicable constraints are imposed as a set of
“linear constraints” in terms of control deviations, which in turn leads to linear constraints in terms of the coefficients to be
optimized. Therefore, these constraints, along with a quadratic cost function in terms of the coefficients, leads to a standard
linear-quadratic static optimization problem, which has many efficient solutions with well-established theory. In summary,
transforming the entire optimal control problem in terms of control variables alone and posing all applicable constraints as a
set of linear constraints contributes to the computational efficiency of the algorithm significantly.
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Next, attention is focused on applying the proposed technique to solve the challenging problem reported in [31], but by
imposing necessary constraints on the lead angle and lateral acceleration throughout the path, which are quite relevant for
the problem, thereby making the problem substantially more challenging. This requirement comes from the fact that it is
required to continuously track the target within the available field-of-view of the onboard seeker. Moreover, the commanded
lateral acceleration must be within the achievable limits of the autopilot. Note that the concept of ‘lead angle’ (which is
the angle between the line-of-sight and velocity vector) has been accounted here as the true look angle (which is the angle
between the line-of-sight and the seeker x-axis) is not available in a point-mass engagement dynamics. However, as long
as the seeker is mounted along the body x-axis (which is typically the case) and both angles of attack and side-slip angles
are small (which is usually also true), the two angles are not significantly different. Hence, imposing constraints on the lead
angle generally suffices the need. To make this point clear, one can refer to Fig. 1. The seeker antenna is fixed at the nose
of the interceptor along its body ‘x’ axis (Xb in Fig. 1) on a gimbal platform. One of the objectives of the guidance system
is to maneuver the interceptor in such a way that the seeker can always maintain a line-of-sight (LOS) (‘R’ in Fig. 1) to the
target, i.e., to keep the target within the field-of-view (FOV). The seeker tracking module tries to point the antenna bore-sight
axis (XA) towards the target. However, as the seeker’s field of view is limited, if the velocity vector (Vm) departs away from
the LOS beyond a specific angle (due to maneuver), the seeker may lose sight of the target. Hence the angle between the
velocity vector and LOS must be confined within a specific limit. This angle is known as the ‘Lead angle’ (‘σ’ in Fig. 1).
If the angle between velocity and body axis (angle-of-attack ‘σT ’) is assumed to be small, the lead angle is approximately
equal to look angle, i.e., σ ≈ σT . Therefore, constraints on the lead angle are very important and must be considered while
designing a guidance law. It can also be pointed out here that the guidance commands are the lateral acceleration that helps

Fig. 1 Seeker Antenna and Lead angle

the interceptor to maneuver. However, the commanded lateral acceleration is achieved by the deflection of the fins, which
can be deflected only to a maximum angle. Hence, the constraints on lateral acceleration should also be considered in the
guidance formulation.

It is interesting to note that some guidance laws with applicable constraints on the lead angle and lateral acceleration
have been reported in the recent literature. One of them happens to be the circular navigation guidance [32] with a hybrid
guidance logic. It is designed to handle the lead angle saturation. However, this paper does not impose the lead angle
constraint directly. Instead, it considers the lead angle saturation and attempts to address the concern indirectly. In [33],
Proportional Navigation (PN) guidance law is used to design an impact angle constrained guidance law, which also considers
constraints on the lead angle and lateral acceleration. Different navigation ratios are used to design different phase of the
proposed guidance scheme. For the initial guidance phase, the navigation ratio is selected as 1, while the final guidance phase
is designed with navigation ratio greater than 2. In [34], a bias shaping method is proposed for biased-PN guidance. This
guidance law keeps the target within the field-of-view of the seeker during the terminal phase of engagement. An alternate
two-phased PN guidance scheme is presented in [35], where the lead angle and lateral acceleration are considered to be
constraints. The navigation gains are obtained by the numerical solution. In [36], the lead angle constraint is handled by
biased proportional navigation scheme. These papers, however, present variants of the conventional proportional navigation
(PN) guidance, which can only be used under restrictive assumptions.

It can be mentioned that the lead angle constrained guidance problem has also been formulated in the Optimal control
framework. In [37], optimal control theory has been applied to handle the lead angle constraint. The lead angle is considered
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to be a function of state variables. The maximum limit is imposed on the lead angle as inequality constraints. The problem
is solved by applying optimal control theory with state constraints. The proposed guidance scheme provides three types
of acceleration commands. The first command is for attaining the maximum lead angle. The second one is to maintain
the lead angle at the constraint boundary. The third one is designed to intercept the target with the desired terminal impact
angle. In [38], the lead angle constraint problem is formulated in an optimal control platform, and a closed-form guidance
expression is obtained considering linearized engagement kinematics.

In this paper, on the other hand, the applicable nonlinear engagement dynamics is considered without any approximation.
The relevant path constraints are also imposed. Even though the proposed Constrained QS-MPSP guidance compromises on
the closed-form nature of the solution, it leads to a very powerful guidance logic indeed. This iterative logic is computation-
ally fast (owing to the technical reasons explained before) and hence the authors sincerely believe that it can be implemented
in on-board processors. The simulation results are quite satisfactory not only in terms of the performance measures such
as near-zero miss-distance and constraint handling capability but it also leads to satisfactory results in terms of significantly
less number of iterations for convergence, very less time for each iteration cycle and so on.

The specific contributions in this work are given as follows:

i. The inequality state and control path constraints were not included in our earlier formulation in [30]. Once these
constraints are introduced, the complexity of the problem grows substantially, and, unlike [30], iterations can no longer
be done in closed form. Significant new contributions of in this paper include (i) transforming the entire optimal control
problem in terms of control variables alone (thereby reducing the number of free variables to be optimized), (ii) including
transforming the state constraints to control constraints, and (iii) posing all applicable constraints as a set of linear
constraints. These three factors enhance the computational efficiency of the algorithm significantly.

ii. The look-angle constraint (or lead angle constraint to be precise in the context of point mass dynamics) throughout the
trajectory is being given prominence in the recent literature because of the significant reason that at no point of the
missile trajectory in the homing phase it should result in loss of tracking of the target. In [30], this important practical
issue was not taken into consideration. Hence, the problem discussed here, even though sounds like the one in [30] at
first glance, it, in fact, is a “new application problem” having a lot more practical significance. The proposed Constrained
QS-MPSP does give a platform to solve such challenging application problems.

iii. An important analysis of the computational complexity of the proposed Constrained QS-MPSP is included in this paper.
This analysis reflects the insight of the computation burden. It was not included in [30] and [38].

iv. Mathematical details of the method to find the initial guess for coefficients of basis functions is included. Also, a
guideline (useful but not strict) has been provided to select the number of basis function. It was not included in [30] and
[38].

v. In earlier work [38], the guess history was collected using PN. In this paper, the guess history is collected using Biased
PN. All the engagement scenario and results have been presented in a more realistic way with detailed explanation.

vi. A comparison with Impact Angle Control Guidance (IACG) is presented in this paper. It was not included in [38].
vii. The generated guidance commands are applied to Six-DOF dynamics to get the feel of practical implementation. It was

not included in [30] and [38].

2 Constraints in Constrained QS-MPSP
Constrained optimal control problem is formulated by considering two categories of constraints viz., path, and terminal.

Path constraints appear as inequality constraints on states and control or both. Terminal constraints appear at final time
instant, and they are primarily equality constraints on states or function of states. A general form of constrained optimal
control problem can be given as follows.

min J = E(X(tf))+
∫ tf

t0
L(X(t),U(t))dt (1)

subject to state dynamics

Ẋ(t) = f(X(t),U(t)) (2)

with path constraints

g(X(t),U(t))≤ 0, ∀t ∈ [t0, tf] (3)
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and terminal constraints

φ(X(t0),X(tf)) = 0 (4)

where, X(t) ∈ℜn, U(t)ℜm. This problem is transformed in NLP using MPSP platform where the key idea is to express the
path and terminal constraints in terms of constraints on the control variable only. The control variables are represented in
spectral form, i.e., the weighted sum of basis functions. It is important to note that these weights are known as coefficients
whose values are unknown. Therefore the constraints on states and control are represented as constraints on these coefficients
only. The mathematical details are given in the following sections.

2.1 Derivation for State Inequality Constraints
In guidance design, nonlinear model of the plant is considered. The model is given by

Ẋ = f (X,U) (5)
Y = h(X) (6)

where, X∈ℜn, Y∈ℜp, and U∈ℜm denote state, output, and input or control of the system. MPSP deals with the discretized
model which is obtained (Eqns. 7 and 8) using Euler discretization method

Xk+1 = Xk +4t f (Xk,Uk) = F(Xk,Uk) (7)
Yk = h(X k) (8)

where k = 1, . . . ,N− 1 are the discrete time instants. Usually, in a state constrained problem, the value of a variable needs
to be constrained. This variable might be a state or derived from states of the model. The variable can be represented by
Z(X) ∈ Rq. The value of this variable at kth time instant and ith iteration is denoted as Zi

k = Z(Xi
k) (shown in Fig. 2). In ith

iteration, Zi
k does not satisfy the constraints. It is required to restrict the variable in the next iteration, i.e., Zi+1

k within the
constraints (Zmax and Zmin). The requirement can be fulfilled by correcting Zi

k by an unknown amount of dZi
k at ith iteration.

dZk
i = Zi+1

k −Zi
k = Z

(
Xi+1

k

)
−Z

(
Xk

i) (9)

The correction can be achieved by updating the control at ith iteration i.e., by Ui
k, k = 1,2, . . . ,N−1, by an unknown quantity

Fig. 2 Conceptual diagram of Constrained QS-MPSP [39]

dUi
k, to find an updated control Ui+1

k = Ui
k +dUi

k (Fig. 3) in the present iteration and apply it to the system to obtain bounded
Zi+1

k .
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Fig. 3 Definition of error in control (dUi
k) in consecutive iteration [39]

The optimal changes in U i
k at k = 1, . . . ,k− 1, i.e., dUi

1,dUi
2, . . . ,dUi

k−1 affect the function Zi
k to obtain the required

correction dZi
k and constraints are satisfied. Therefore the optimizing variables are dUi

1,dUi
2, . . . ,dUi

k−1, . . . ,dUi
N−1.

The change in control, i.e., dUi
k will change the states in the next iteration. The states at ‘i+ 1th’ iteration can be

represented as Xi+1
k = Xi

k +dXi
k. Therefore the function Zk can be represented as Z(Xi+1

k ). The effect of change in states on
the function can be obtained by expanding it using Taylor Series as follows

Z(Xi+1
k ) = Z(Xi

k)+

[
∂Zi

k

∂Xi
k

]
dXi

k +H.O.T (10)

Neglecting the higher order terms (H.O.T) in Eqn.(10), the expression of Z(Xi+1
k ) becomes

Z(Xi+1
k ) = Z(Xi

k)+

[
∂Zi

k

∂Xi
k

]
dXi

k (11)

Eqn.(9) can be written as

dZk
i =

[
∂Zk

i

∂Xk
i

]
dXk

i (12)

where dZk
i represents the change in Zk between the subsequent iterations and dXi

k is the first variation of Xi
k which is obtained

from Eqn.(8) as

Xi
k = Xi

k−1 +4t f (Xi
k−1,U

i
k−1) = F(Xi

k−1,U
i
k−1) (13)

Therefore dXi
k is given as

dXi
k =

[
∂F

∂Xi
k−1

]
dXi

k−1 +

[
∂F

∂Ui
k−1

]
dUi

k−1 (14)

It can be observed that Eqn.(14) contains dXi
k−1 which can be written in similar fashion in terms of Xi

k−2 and Ui
k−2 as follows

dXi
k−1 =

[
∂F

∂Xi
k−2

]
dXi

k−2 +

[
∂F

∂Ui
k−2

]
dUi

k−2 (15)
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Similar expressions can be obtained for dXi
k−2, . . . ,dXi

1. These expressions are substituted in Eqn.(12) to obtain the expres-
sion of dZi

k as

dZk
i = Pi

1dUi
1 +P2

idU2
i + · · ·+Pi

k−1dUi
k−1

=
k−1

∑
j=1

Pj
idUi

j (16)

where,

Pi
j =

[
∂Zi

k

∂Xi
k

][
∂F i

k−1

∂Xi
k−1

]
. . .

[
∂F i

j+1

∂Xi
j+1

][
∂Fj

i

∂U j

]
(17)

and Pi
j ∈ℜq×m. It can be observed from Eqn.(9) that expression of Zi+1

k becomes

Zi+1
k = Zi

k +dZk
i (18)

Zi+1
k needs to satisfy the constraints (lower boundary (Zkmin) and upper boundary (Zkmax )), i.e.,

Zkmin ≤ Zi+1
k ≤ Zkmax (19)

Substituting the expression of Zi+1
k from Eqn.(18) in Eqn.(19) gives

Zkmin ≤ Zi
k +dZi

k ≤ Zkmax (20)

Simplification of Eqn.(20) leads to

Zkmin −Zi
k ≤ dZi

k ≤ Zkmax −Zi
k (21)

Substituting dZi
k by

(
k−1
∑
j=1

Pi
jdUi

j

)
(Eqn.(16)) in Eqn.(21) gives

Zkmin −Zi
k ≤

k−1

∑
j=1

Pj
idU j

i ≤ Zkmax −Zi
k (22)

It can be observed that Eqn.(22) imposes inequality constraint for each k = 2, . . . ,N. These constraints can be written in a
compact form as follows

Zl ≤ PdUi ≤ Zu (23)

where,

Zl =


Z1min −Zi

1
Z2min −Zi

2
...

ZN−1min −Zi
N−1

 Zu =


Z1max −Zi

1
Z2max −Zi

2
...

ZN−1max −Zi
N−1

 P =


Pi

1 0 0 · · · 0
Pi

1 Pi
2 0 · · · 0

...
...

...
. . .

...
Pi

1 Pi
2 Pi

3 · · · Pi
N−1



dUi =
[
dUi

1 dUi
2 . . . dUi

N−1
]T
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Eqn.(23) can be represented as

[
Pi

−Pi

]
dUi ≤

[
Zl
−Zu

]
(24)

Terminal constraints appears as equality constraint equation which are same as shown in [40]

dYi
N = Bi

1dUi
1 +Bi

2dUi
2 + · · ·+BN−1

idUi
k−1

=
N−1

∑
j=1

Bi
jdUi

j (25)

Eqn.(25) can be written in matrix form as

BidUi = dYi
N (26)

where,

Bi =
[
Bi

1 Bi
2 · · · Bi

N−1
]

(27)

At this stage, it is clear that the path and terminal constraints on states are represented by constraints only on the control
variable (Eqns.(24) and (26)). In this process, the number of optimizing variables is reduced. Finally, the number of
optimizing variables dUi is m×N− 1 (since, N− 1 steps and U ∈ ℜm). The minimizing function is the updated control
energy Ui+1T

Ui+1. The optimization problem can be written as follows

min
dUi

J =
1
2
(Ui +dUi)T R(Ui +dUi) (28)

subject to

BidUi = dYi
N[

Pi

−Pi

]
dUi ≤

[
Zl
−Zu

]
(29)

The dimension of the optimization problem given in Eqns.(28) and (29) varies with N (grid points or optimizing horizon) and
m (number of control variables). Obviously, the dimension increases with an increase in either or both of them. Therefore the
conventional efficient NLP techniques like Interior-point, Active-set, Sequential Quadratic Programming requires a larger
time to converge.

To use the optimization techniques in real-time processes, the dimension of optimizing variables should be reduced.
Relevant work has been published by the authors [40], where the number of optimizing variables is made independent of
grid points by implementing the idea of spectral representation of control variable as follows.

U(tk)i+1 =
Np

∑
l=1

Ci+1
l ϕl(tk) (30)

where, Ci+1
l ∈ ℜm. The control in Eqn.(30) is the weighted sum of finite number (Np) of basis functions (ϕ). The spectral

representation of control reduces the number of optimization variables from N to Np (number of basis functions) and Np <<
N. The impact of this idea can be realized in terms of computational complexity. Generally, a QP problem with n states
variables, m input variables, N prediction horizon requires O(N3(n + m)3) operations per iteration in the Interior-point
method [41]. Here the QP is made more efficient by reformulating the problem in terms of control variables alone. Hence,
the overall complexity per iteration is reduced to O(N3

pm3)<< O(N3(n+m)3).
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The expression of Ui+1
k in dUi

k = Ui
k−Ui+1

k is replaced by the expression in Eqn.(30) to obtain
k−1
∑
j=1

Pi
jdUi

j as follows

k−1

∑
j=1

Pi
jdUi

j =
k−1

∑
j=1

Pi
0 j
−

[
k−1

∑
j=1

Np

∑
l=l

Pi
jCl

i+1
ϕl (t j)

]
(31)

where, Pi
0 j
∈ℜq. Substitution of expressions of

k−1
∑
j=1

Pi
jdUi

j in Eqn.(22) gives

Zkmin −Zi
k−

k−1

∑
j=1

Pi
0 j
≤−

k−1

∑
j=1

Np

∑
l=1

Pi
jC

i+1
l ϕl (t j)≤ Zkmax −Zi

k−
k−1

∑
j=1

Pi
0 j

(32)

Simplification of the term

(
k−1
∑
j=1

Np

∑
l=1

Pi
jCl

i+1
ϕ j (t j)

)
in Eqn.(32) is shown below

k−1
∑
j=1

Np

∑
l=1

Pi
jCl

i+1
ϕl (t j)

=
[
Pi

1ϕ1 (t1)+ · · ·+Pi
k−1ϕ1 (tk−1)

]
C1

i+1 + · · ·+
[
Pi

1ϕN p (t1)+ · · ·+Pi
k−1ϕN p (tk−1)

]
CNp

i+1

=

[
k−1

∑
j=1

Pi
jϕ1 (t j)

k−1

∑
j=1

Pi
jϕ2 (t j) · · ·

k−1

∑
j=1

Pi
jϕNp (t j)

]C1
i+1

...
CNp

i+1

 (33)

Eqn.(33) is substituted in Eqn. (32) to obtain

−

[
k−1

∑
j=1

Pi
jϕ1 (t j)

k−1

∑
j=1

Pi
jϕ2 (t j) · · ·

k−1

∑
j=1

Pi
jϕNp (t j)

]C1
i+1

...
CNp

i+1

≤ gk (34)

where,

gk = Zkmax −Zi
k−

k−1

∑
j=1

Pi
0 j

The inequalities for each k = 1,2, . . . ,N−1 can be written in a matrix form as shown below

DCi+1 ≤ G (35)

where,

D =−



Pi
1ϕ1 (t1) Pi

1ϕ2 (t1) · · · Pi
1ϕNp (t1)

...
...

...
...

k−1
∑
j=1

Pi
jϕ1 (t j)

k−1
∑
j=1

Pi
jϕ2 (t j) · · ·

k−1
∑
j=1

Pi
jϕNp (t j)

...
...

. . .
...

N−1
∑
j=1

Pi
jϕ1 (t j)

N−1
∑
j=1

Pi
jϕ2 (t j) · · ·

N−1
∑
j=1

Pi
jϕNp (t j)


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G =
[
g1 g2 . . . gN−1

]T
and

Ci+1 =
[
C1

i+1 C2
i+1 . . . CNp

i+1]T
Eqn.(32) is rewritten as

lk ≤−

[
k−1

∑
j=1

Pi
jϕ1 (t j)

k−1

∑
j=1

Pi
jϕ2 (t j) · · ·

k−1

∑
j=1

Pi
jϕNp (t j)

]C1
i+1

...
CNp

i+1

 (36)

where,

lk = Zkmin −Zi
k−

k−1

∑
j=1

Pi
0 j

Eqn.(36) is equivalent to

[
k−1

∑
j=1

Pi
jϕ1 (t j)

k−1

∑
j=1

Pi
jϕ2 (t j) · · ·

k−1

∑
j=1

Pi
jϕNp (t j)

]C1
i+1

...
CNp

i+1

≤−lk (37)

These inequalities for k = 1,2, . . . ,N−1 are written in matrix form as follows

−DCi+1 ≤ L (38)

where,

L =
[
−l1 −l2 . . . −lN−1

]T
Eqns.(35) and (38) are combined to represent all the state inequality constraints as

[
−D
D

]
Ci+1 ≤

[
L
G

]
(39)

For simplicity, Eqn.(39) is written as

WCi+1 ≤V (40)

where,

W =

[
−D
D

]

and

V =

[
L
G

]
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Spectral control expression in Eqn.(30) is substituted in Eqn.(25) to obtain

dYi
N = B1dU1 +B2dU2 + . . .+BN−1dUN−1

= B0−
N−1

∑
k=1

Np

∑
l=1

Bi
kCl

i+1
ϕl (tk) (41)

where, B0 =
N−1
∑

k=1
Bi

kUi
k. Expression of

(
N−1
∑

k=1

Np

∑
l=1

Bi
kCl

i+1
ϕl (tk)

)
in Eqn.(41) can be written as

N−1

∑
k=1

Np

∑
l=1

Bi
kCl

i+1
ϕl (tk) =

[
N−1
∑

k=1
Bi

kϕ1 (tk)
N−1
∑

k=1
Bi

kϕ2 (tk) · · ·
N−1
∑

k=1
Bi

kϕNp (tk)
]

Ci+1
1

Ci+1
2
...

Ci+1
Np

 (42)

The expression of
(

N−1
∑

k=1

N p
∑

l=1
Bi

kCl
i+1

ϕl (tk)
)

(shown above) is substituted in Eqn.(41) to obtain

BCi+1 = B0−dYi
N (43)

where,

B =

[
N−1
∑

k=1
Bi

kϕ1 (tk)
N−1
∑

k=1
Bi

kϕ2 (tk) . . .
N−1
∑

k=1
Bi

kϕNp (tk)
]

For convenience, Eqn.(43) is written as

BCi+1 = E (44)

where,

E = B0−dYi
N

Maximum value of control expression in Eqn.(30) is obtained as

|Ui+1
k | = |C

i+1
1 ϕ1(tk)+Ci+1

2 ϕ2(tk)+ . . .+Ci+1
Np

ϕNp(tk)|

≤ |Ci+1
1 ϕ1(tk)|+ |Ci+1

2 ϕ2(tk)|+ . . .+ |Cl+1
Np

ϕNp(tk)|

≤ |Ci+1
1 ||ϕ1(tk)|+ |Ci+1

2 ||ϕ2(tk)|+ . . .+ |Ci+1
Np
||ϕNp(tk)| (45)

The basis functions are selected by the user and their values (|ϕl(tk)|; l = 1, . . . ,Np) at every time instants k = 1, . . . ,N−1, are
known. Therefore minimization of unknown coefficients Ci+1

l , l = 1,2, . . . ,Np will result in minimization of Ul+1
k . Hence

the number of optimizing variables is independent of the grid points N. The minimization problem is given as follows

min
Ci+1

J =
1
2

Ci+1T
RCi+1 (46)

subject to

BCi+1 = E (47)
WCi+1 ≤ V (48)

The state constraints are discussed so far. Next, the inequality constraints on control variables need to be written in terms of
spectral coefficients as well. They are discussed in the following section.
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2.2 Derivation for Control Constraint
Constraints on the control variable are an obvious event. The physical limitations of systems are the cause of these

constraints. In the context of a missile, the control constraint means that the control surfaces of a missile can be deflected
by limited angle. Therefore the guidance algorithm must produce the control command, which satisfies the constraints. The
control input should be constrained within Umax and Umin, as shown in Fig. 4. Mathematical representation of this constraint
is given by

Ukmin ≤ Ui+1
k ≤ Ukmax (49)

The control in spectral form is given by

Ui+1
k = Ci+1

1 ϕ1(tk)+Ci+1
2 ϕ2(tk)+ · · ·+Ci+1

Np
ϕNp(tk)

=
[
ϕ1(tk) ϕ2(tk) . . . ϕNp(tk)

]


Ci+1
1

Ci+1
2
...

Ci+1
Np

 (50)

The expression in Eqn.(50) is substituted in Eqn. (49) to obtain

Ukmin ≤
[
ϕ1(tk) ϕ2(tk) . . . ϕNp(tk)

]


Ci+1
1

Ci+1
2
...

Ci+1
Np

≤ Ukmax (51)

Similar inequalities can be obtained for k = 1,2, . . . ,N−1. These inequalities can be written in a matrix form as

Umin ≤ΦCi+1 ≤ Umax (52)

where

Φ =


ϕ1(t1) ϕ2(t1) . . . ϕNp(t1)
ϕ1(t2) ϕ2(t2) . . . ϕNp(t2)

...
...

. . .
...

ϕ1(tN−1) ϕ2(tN−1) . . . ϕNp(tN−1)


Umin = [U1min . . . UN−1min ]

T and Umax = [U1max . . . UN−1max ]
T . It can be seen that Eqn.(52) has both type of inequalities.

These inequalities are converted in ‘lesser than inequality’ only. Therefore, Eqn.(52) is written as

QCi+1 ≤ Ub (53)

where,

Q =

[
Φ

−Φ

]

and

Ub =

[
Umax
−Umin

]

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Dynamic Systems, Measurement and Control. Received October 20, 2019; 
Accepted manuscript posted September 22, 2020. doi:10.1115/1.4048488 
Copyright (c) 2020 by ASME



Fig. 4 Control Constraints [39]

It can be observed that the control constraints (Eqns.(53) and (48)) have the similar form as the state constraints with same
unknown coefficients Ci+1

1 ,Ci+1
2 , . . . ,Ci+1

Np
. Therefore the constraints are combined together to obtain the complete set of

constraints on state and control. [
W
Q

]
Ci+1 ≤

[
V
Ub

]
(54)

Hence, the optimization problem becomes

min
Ci+1

J =
1
2

Ci+1T
RCi+1 (55)

subject to

BCi+1 = E (56)[
W
Q

]
Ci+1 ≤

[
V
Ub

]
(57)

The constrained optimal control problem given in Eqns. (1)-(4) is transformed in Eqns.(55)-(57). It is a convex optimization
problem with quadratic cost, linear equality, and inequality constraints. There are various nonlinear optimization techniques
that can solve this problem. Some of them are Sequential Quadratic Programming, Active-set, Interior Point (IP) etc. In this
work, IP is used.

3 Lead Angle and Lateral Acceleration Constrained Guidance
In this section Constrained QS-MPSP algorithm is used for the guidance design of the interceptor to engage an incoming

ballistic target. In general, the incoming ballistic missiles come with very high speed. The gravity turning effect is usually
very small, but it has been accounted for in the target model. Punishing re-entry conditions coupled with very small time-to-
go offers a very limited window in all such manoeuvres. Sometimes, however, due to the asymmetry in the mass distribution,
targets go through unintentional “spiral manoeuvres” during the re-entry. Realizing its benefit to confuse an interceptor,
some modern targets intend to introduce limited intentional spiral manoeuvres to enhance its probability of survival. Very
few targets also intentionally introduce lateral acceleration to aim for a different ground target, which adds to its deception
factor. Such a study falls under “target state estimation”, which is beyond the scope of this paper. However, note that as
long as the target state is accurately estimated from a good estimation logic, the same will automatically be exploited in the
proposed predictive guidance in this paper. Hence, for the demonstration of the concept proposed in this paper, a ballistic
target with no manoeuvring capability has been assumed.

The interceptor has limited maneuvering capability, i.e., it can produce limited lateral acceleration. It carries an active
seeker which tracks the target in its terminal phase of guidance. It is required to keep the target inside the Field of View (FOV)
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of the seeker. Since the FOV of a seeker is limited, the look angle is also limited. Considering a point mass dynamic model
and assuming the Angle-of-attack (AoA) and Side-slip angle to be small, the lead angle becomes an important parameter to
deal with. Therefore, it is necessary to engage the target with lead angle constraint and limited lateral acceleration capability.

3.1 Simulation of 3D Engagement
The simulation study is performed in a 3D engagement scenario. The lateral accelerations cause the interceptor to

maneuver in pitch and yaw direction. In this work, the point mass dynamics of interceptor and target is considered, which
are given in the following subsections. The simulation study is performed using MATLAB R2019a on a Laptop with
processor i5 6th generation 2.30 Ghz and 4 GB RAM. Even though the onboard processors are typically less capable in
computational speed, onboard programs are typically written in the assembly language, which is substantially faster than
MATLAB. Moreover, quite capable space-grade processors are also available in the market [42], which can be used to
harness the advantage of the proposed technique.

3.1.1 Dynamic Model of the Interceptor and Target
The point-mass dynamic model of the interceptor in 3D is given as follows


V̇m
γ̇m
ψ̇m
ẋm
ẏm
żm

=



−D
m −gsin(γm)
az−gcos(γm)

Vmay
Vm cos(γm)

Vm cos(γm)cos(ψm)
Vm cos(γm)sin(ψm)

Vm sin(γm)


(58)

where, Vm,γm, ψm,xm,ym,zm denote the velocity, flight-path angle, heading angle, x, y and z positions in inertial reference
frame of the interceptor, respectively.

The point-mass dynamic model of the target in 3D is given as follows


V̇T
γ̇T
ψ̇T
ẋT
ẏT
żT

=



−0.5ρV 2
T

β
−gsin(γT )

− gcosγT
VT
0

VT cos(γT )cos(ψT )
VT cos(γT )sin(ψT )

VT sin(γT )


(59)

where, VT ,γT ,ψT xT ,yT ,zT denote the velocity, flight path angle, heading angle, x, y and z positions of target in inertial
reference frame respectively.

3.1.2 Calculation of Lead Angle in 3D
The lead angle for 3D engagement scenario can be computed as the angle between the velocity (~Vm) and LOS vector (~R)

in space. The dot product of velocity vector and LOS vector can be given as

~Vm.~R = |~Vm|.|~R|cos(σ) (60)

cos(σ) =
~Vm.~R
|~Vm|.|~R|

(61)

where, ~Vm = [ẋm ẏm żm]
T and ~R = [(xT − xm) (yT − ym) (zT − zm)]

T . It can be observed that the lead angle is a function of
states. Z = cos(σ) is considered as the function to be constrained. Since the lead angle is calculated in 3D, the value will be
bounded within a certain upper limit of σmax.

3.2 Initial Guess for Coefficients C
It has been described that the control is expressed as a weighted sum of basis function ϕ(t) and the weights or coeffi-

cients are determined by a static optimization process. Hence, the initial guess control history is approximated by using Np
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coefficients denoted by Cl , l = 1,2, . . . ,Np. These values of C serve as the initial value in the optimization process. It can be
mentioned that there are N grid points and Np unknown coefficients. At each grid points or time instant tk, the control value
is expressed as

U(tk) =C1ϕ1(tk)+C2ϕ2(tk)+ . . .+CNpϕNp(tk) (62)

Therefore, it is obvious that the control values at Np time instants are required for evaluating C1,C2, . . . ,CNp . However, there
are approximation errors in this process. Hence, the values of the coefficients are obtained considering N time instants. For
example, consider the following expressions

C1ϕ1(t1)+C2ϕ2(t1)+ . . .+CNpϕNp(t1) = U(t1) (63)
C1ϕ1(t2)+C2ϕ2(t2)+ . . .+CNpϕNp(t2) = U(t2) (64)

... (65)
C1ϕ1(tN−1)+C2ϕ2(tN−1)+ . . .+CNpϕNp(tN−1) = U(tN−1) (66)

Eqns.(63)-(66) can be written as

Ay = b (67)

where

A =


ϕ1(t1) ϕ2(t1) . . . ϕNp(t1)
ϕ1(t2) ϕ2(t2) . . . ϕNp(t2)

...
...

. . .
...

ϕ1(tN−1) ϕ2(tN−1) . . . ϕNp(tN−1)



y =
[
C1 C2 . . . CNp

]T

b = [U(t1) U(t2) . . . U(tN−1)]
T

The solution of y is obtained as

y = (AT A)−1AT b (68)

In this work, the guess control history is collected by simulating the engagement scenario (in Tab. 1) using Biased PN
guidance [43]. The lateral accelerations are shown in Figs. 5 and 6.

Table 1 Initial Conditions for the Engagement

Vehicle γ, deg ψ, deg V , ms−1 x,m y,m z,m

Interceptor 45 36 1200 15500 15000 16000

Target missile 39 50 1600 28000 28000 28000
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Fig. 5 Vertical Acceleration BPN Fig. 6 Horizontal Acceleration BPN

After obtaining the lateral acceleration, the initial values of the coefficients are extracted by the method described above.
It can be mentioned that in a 3D scenario, there is vertical and horizontal lateral acceleration, which causes the missile to
turn in space. Hence the dimension of the control U is two, i.e., U ∈ℜ2 and consequently the dimension of each coefficient
is two, i.e., Cl ∈ ℜ2. In this work, the control is represented as a weighted sum of five basis functions (i.e., Np = 5) which
are polynomials of tgo (i.e., ϕ1(tgok) = 1,ϕ2(tgok) = tgok , . . . ,ϕ5(tgok) = t4

gok
). The expression of the control can be written as

U(tgok) =
5

∑
l=1

Clϕl(tgok) (69)

It can be mentioned that, there is no strict rule for selecting the value of Np. As a heuristic, the minimum number of basis
functions that can approximate the guess control with an acceptable error margin can be selected as the value of Np. The
control guess history is shown in Figs. 5 and 6. Corresponding initial values of the coefficients are given as follows

C1 =

[
−10.01
−20.73

]
, C2 =

[
14.63
15.55

]
, C3 =

[
−2.41
−1.85

]
, C4 =

[
0
0

]
, C5 =

[
0
0

]

These values of the coefficients are the inputs to the Interior-Point algorithm to start with. It can be mentioned that this way
of initialising an optimization algorithm is regarded as warm-starting which helps the algorithm to converge to the optimal
value faster.

3.3 Results and Discussion
The objective of the mission is to intercept the target with minimum miss distance which is a terminal constraint. It

can be mentioned that to satisfy the terminal constraint, the instantaneous position of the interceptor is chosen as output
vector, i.e., Y = [xm ym zm]

T . Ideally, at the time of interception, the interceptor should reach Predicted Interception Point
(PIP), i.e., Y∗ = [xPIP yPIP zPIP]

T . The interception point for BPN is considered as PIP. Therefore the engagement time for
Constrained QS-MPSP guidance is the same as that for BPN. It is important to note that the limitation on vertical acceleration
is considered as 60% of the maximum value of vertical acceleration generated by BPN in the positive and negative direction.
Due to the symmetrical structure, it is assumed that the missile can produce the same lift in both pitch and yaw directions.
Therefore, the bound on horizontal acceleration is considered the same as that on vertical acceleration. The trajectories
generated by Constrained QS-MPSP is different from Biased PN (Fig. 7) for the same initial conditions given in Tab. 1.
This difference in trajectories is resulted due to different lateral accelerations generated by two guidance algorithms. Vertical
and horizontal accelerations are shown in figs. 9 and 10, respectively. It can be observed from Fig. 9 that vertical acceleration
generated by BPN (guess control) violets the bound for 0−1.4sec and 4.7−7.2sec (around 47% of total flight time). With
this control as initial guess, that Constrained QS-MPSP has produced optimal lateral acceleration within the bound in such
a way that the lead angle constraint (18deg) is satisfied. The constraint on the lead angle is considered to be around 5deg
less than the maximum value of lead angle generated by BPN. The lead angle generated by BPN and Constrained QS-MPSP
is shown in Fig. 8. It can be observed from the figure that the lead angle generated by BPN violets the constraint for almost
3sec, which is around 35% of total flight time. Performance of Constrained QS-MPSP is shown in Tab. 2. It can be observed
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Fig. 7 Engagement
Fig. 8 Lead Angle

Fig. 9 Vertical Acceleration Fig. 10 Horizontal Acceleration

Table 2 Performance of Constrained QS-MPSP

iteration Convergence time, sec Miss dist., m

7 0.94 0.41

that Constrained QS-MPSP has converged in 7 iterations by spending 0.94sec, and the miss-distance is 0.41m, which is
fairly acceptable. The time taken by the algorithm will be reduced significantly (more than 100 times) if the simulation is
performed in ‘C’ language with a dedicated embedded processor.

3.4 Comparison with Impact-Angle Control Guidance
In this section the comparison study is performed between Constrained QS-MPSP and Impact Angle Control Guidance

(IACG) given in [44]. First the engagement is performed by using Biased PN and the interception point is considered as
PIP for IACG. The engagements are shown in Fig. 11. The trajectories generated by the guidance algorithms are different.
The lead-angles for the guidance algorithms are shown in Fig. 12. As expected, the IACG performs better that BPNG,
which helps in the convergence process of QS-MPSP as well. However, the lead-angle constraint is getting violated at the
beginning, which can have the grave implication of no/delayed starting of the terminal homing phase. Moreover, the vertical
acceleration (Fig. 14) obtained by IACG violets the acceleration limit by a large amount. The horizontal acceleration is within
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Fig. 11 Comparison of Engagement Fig. 12 Comparison of Lead Angles

Fig. 13 Comparison of Horizontal Accelerations Fig. 14 Comparison of Vertical Accelerations

the limit but pulls little more ‘g’ than Constrained QS-MPSP, especially towards the end. Hence, the overall performance of
Constrained QS-MPSP is much better as compared to the IACG.

3.5 Variation of Flight path angle
In this case, only the flight path angle of the interceptor (γm) is varied, keeping other initial conditions of the interceptor

fixed as shown in Tab. 3. Target initial conditions are the same as shown in Tab. 1. The performance of Constrained

Table 3 Initial Conditions of the engagement for variation in γm

Vehicle ψm, deg Vm, ms−1 xm, m ym, m zm, m

Interceptor 39 1200 15500 15000 16000

QS-MPSP with variation of flight path angle is shown in Tab. 4. Four cases are considered where flight path angle is
varied from 40deg to 52deg. It can be observed that the algorithm is converged within 6− 8 iterations in short time, and
miss distances are acceptable (less than 1m). Engagement plots with Constrained QS-MPSP for these cases are shown in
Fig. 15. Magnified view of the engagements in X−Z plane, and around interception is also shown in this figure. Trajectories
generated for these cases are shown with different line formats. The curvature of the trajectories is resulted due to the
difference in lateral acceleration generated by Constrained QS-MPSP. Vertical and horizontal accelerations are shown in
figs. 16 and 17, respectively. For each case, the guess control is different and therefore the bound are also different (since
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Table 4 Performance of Constrained QS-MPSP for variation in γm

Case γm, deg iteration Convergence time, sec Miss dist., m

1 40 8 1.06 0.39

2 44 6 0.79 0.66

3 48 6 0.77 0.32

4 52 6 0.89 0.71

Fig. 15 Engagement with varying γm

Fig. 16 Vertical Acceleration with varying γm Fig. 17 Horizontal Acceleration with varying γm

the bound is considered as 60% of lateral acceleration generated by BPN). Similar line formats are used to represent the
lateral accelerations (generated by both BPN and Constrained QS-MPSP) and the bounds for each case. Since the flight path
angles are varied, a significant change in vertical acceleration for all the cases can be observed. Lead angles generated by
BPN and Constrained QS-MPSP are shown in Fig. 18. Lead angle generated by BPN in each case violets the bound (18deg)
for a significant amount of time (about 30−35% of flight time), and Constrained QS-MPSP makes the lead angle to confine
within the bound for all the time of flight.

3.6 Variation of Heading path angle
In this section, heading angle is varied keeping other initial conditions fixed. Target initial conditions are considered

same as given in Tab. 1. Four cases are considered where heading angle (ψm) is varied from 30deg to 50deg keeping the
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Fig. 18 Lead angle with varying γm

Table 5 Initial Conditions of the engagement for variation in ψm

Vehicle γm, deg Vm, ms−1 xm, m ym, m zm, m

Interceptor 44 1200 15500 15000 16000

other initial conditions fixed as shown in Tab. 5. The performance of Constrained QS-MPSP is shown in Table 6.

Table 6 Performance of Constrained QS-MPSP for variation in ψm

[h!]

Case ψm, deg iteration Convergence time, sec Miss dist., m

1 30 6 0.83 0.41

2 36 6 0.85 0.67

3 42 6 0.86 0.34

4 50 5 0.77 0.64

Table 6 shows that Constrained QS-MPSP is converged within 5− 6 iterations in a short time and miss distances are
in acceptable range (less than 1 m). Engagements for all cases in Tab. 6 with Constrained QS-MPSP are shown in Fig. 19.
This figure also shows the magnified view of engagement in X −Y plane and around interception. Trajectory generated for
each case is shown with different line format. Lateral acceleration generated for each case is shown in figs. 20 and 21,
respectively. Lateral accelerations and bounds for each case are shown in a similar line format. Vertical accelerations in
Fig. 20 change by a small amount while the horizontal accelerations change significantly. It happens due to the fact that the
heading angles are changed, keeping the flight path angle fixed. The guess vertical control for all cases is very close to each
other. For this reason, the bounds are very closely placed. A magnified view of these bounds is shown to make them visible.
A portion of the accelerations is also magnified for better clarity. The lead angle and its magnified view are shown in Fig. 22.
Lead angle generated by BPN violets the bound for 30− 35% of flight time, but Constrained QS-MPSP has restricted it
within the bound for all the flight time.

3.7 Variation of Constraint bounds
This section describes the performance of Constrained QS-MPSP with variation in constraint bound. The initial condi-

tions considered for this purpose are shown in Tab. 7. In previous cases the bound on lead angle is considered as 18deg.
In this study, the bound is varied by 1deg. Therefore, the bounds on the lead angle have become 17,18, and 19deg. The
performance of Constrained QS-MPSP corresponding to each case are shown in Tab. 8. It can be observed from the ta-
ble that Constrained QS-MPSP requires 7− 9 iterations to converge. It converges in 9 iterations for case 1 because it is
a tighter bound compared to other bounds. Engagements and their magnified views around interception are shown in Fig.
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Fig. 19 Engagement with varying ψm

Fig. 20 Vertical Acceleration with varying ψm Fig. 21 Horizontal Acceleration with varying ψm

Fig. 22 Lead angle with varying ψm

23. Trajectories corresponding to each case are shown in different line formats. Lateral accelerations generated by BPN
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Table 7 Initial Conditions of the engagement for variation in Constraint bounds

Vehicle γm, deg ψm, deg Vm, ms−1 xm, m ym, m zm, m

Interceptor 41 39 1200 15500 15000 16000

Table 8 Variation in Constraint bounds

Case Lead Angle bound, deg iteration Convergence time, sec Miss dist., m

1 17 9 1.36 0.81

2 18 7 1.02 0.62

3 19 7 0.97 0.66

Fig. 23 Engagement for varying Constraint bounds

and Constrained QS-MPSP are shown in figs. 24 and 25 respectively. Horizontal accelerations in Fig. 25 varies more than

Fig. 24 Vertical Acceleration for varying bounds Fig. 25 Horizontal Acceleration for varying bounds

vertical acceleration (Fig. 24). The lead angle for BPN and Constrained QS-MPSP are shown in Fig. 26. It can be observed
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that the lead angle history generated by Constrained QS-MPSP varies for each case. Magnified view of these lead angle
histories is also shown in this figure. It is clear that Constrained QS-MPSP generates the lateral accelerations in such a way
that lead angle constraints are satisfied for each case.

Fig. 26 Lead Angle for varying Constraint bounds

3.8 Variation of Barrier Parameter µ
In this section, the barrier parameter µ of the Interior-Point method is varied, keeping all the initial conditions fixed as

shown in Tab. 7. The values of µ are varied from 0.09−0.0005, and the lead angle corresponding to these values is shown

Fig. 27 Lead angle with varying Barrier Parameter µ

in Fig. 27. It can be observed that the lead angle closes the boundary with a decrease in value of µ. Therefore, the user can
select a value for ‘µ’ to push it closer to the boundary.

4 Validation of Constrained QS-MPSP Guidance with Six-DOF Simulation
The guidance commands generated in the guidance loop are validated using Six-DOF simulation studies. Guidance com-

mands are essentially the lateral accelerations that are required for maneuvering of the interceptor in vertical and horizontal
planes. In this study, Constrained QS-MPSP is used as a guidance algorithm to generate the lateral acceleration commands
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for a 3D engagement with point mass dynamics. Then these guidance commands are provided as input to autopilot and
six-DOF dynamics to verify the lead angle satisfies the constraint.

4.1 Six-DOF Plant Dynamics
The six-DOF model [45] of the interceptor is considered in inertial and fin frame. The inertial frame is considered as

a launcher fixed VEN (Vertical-East -North) frame. The fins are the control surfaces which ate attached to the tail of the
missile. The fin frame has its x axis aligned to Xb, but Yf and Z f axes are rotated about Xb by an angle of 45o, as shown in
Figs. 28 and 29.

Fig. 28 Vertical Acceleration for varying bounds Fig. 29 Horizontal Acceleration for varying bounds

Six-DOF dynamics is given as follows

u̇ = vr−wq− QSCD

m
−Q11g (70)

v̇ = wp−ur+
QSCNBN

m
−

QSCNδ

m
δy−

(Q11 +Q31)√
2

g (71)

ẇ = uq− vp+
QSCNAN

m
−

QSCNδ

m
δp−

(Q31−Q21)√
2

g (72)

ṗ =
1

IXX

(
−QSdCRm −QSdClζ δr +

QSd2CLp p
2Vm

)
(73)

q̇ =
1

IYY

(
−QSdCMXCGA −QSCNδ

(XCPδ
−XCG)δp− (IXX − IZZ)pr+

QSd2CMqq
2Vm

)
(74)

ṙ =
1

IZZ

(
−QSdCMXCGA −QSCNδ

(XCPδ
−XCG)δy− (IYY − IXX )pq+

QSd2CNRr
2Vm

)
(75)
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q̇1 =
1
2
(q4 p−q3q+q2r) (76)

q̇2 =
1
2
(q3 p−q4q+q1r) (77)

q̇3 =
1
2
(−q2 p+q1q+q4r) (78)

q̇4 =
1
2
(−q1 p−q2q−q3r) (79)ẋm

ẏm
żm

 = T I
F

u
v
w

 (80)

ζ̇ = p (81)

The velocity components along the fin frame axes are u,v, and w. The body rates along these axes are p,q, and r. Fin
frame attitude is expressed in terms of quaternions q1,q2,q3, and q4. The interceptor position in the inertial frame is given
by xm,ym, and zm. It can be mentioned that the roll attitude of the interceptor need not change. The primary reason for the
setting is rolling creates difficulties in seeker gimbal stabilization and difficulties in implementing the required fin deflections.
Therefore the roll is stabilized at some preferred roll attitude, which is achieved by introducing a new roll state (ζ) in the
dynamics (Eqn. (81)). The parameters used in the six-DOF model are described in Tab. 9. Aerodynamic coefficients in the
six-DOF model have been given in Tab. 10. The body to inertial frame transformation is achieved by a transformation

Table 9 Description of the Parameters

Notation Description

Q Dynamic pressure in Pa(N/m2)

δ Fin (control surfaces) deflections in deg

S Reference area in m2

m Mass of the interceptor in kg

d Diameter in m

g Acceleration due to gravity m/s2

matrix T B
I .

T B
I =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 (82)

The matrix components of T B
I in Eqn.(82), i.e., Q11, ...,Q33 are the functions of the quaternion q1,q2,q3,q4. As discussed

earlier, the transformation from the body to fin frame is achieved by a rotating matrix

T F
B =

1 0 0
0 cosπ/4 sinπ/4
0 −sinπ/4 cosπ/4

 (83)

Consequently, the transformation matrix from inertial to fin frame can be written as T F
I =T F

B T B
I . The total velocity magnitude

is calculated as Vm =
√

u2
b + v2

b +w2
b, where, ub,vb, and wb are the velocity components along the body axes Xb,Yb, and Zb,

respectively. u
v
w

= T F
B

ub
vb
wb

 (84)
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Table 10 Aerodynamic Coefficients and their units

Parameters Description

IXX , IYY , IZZ Moment of inertia about body axes kg−m2

CD Drag coefficient

CNAN Pitch force coefficient

CNBN Yaw force coefficient

CNδ
Tail normal force coefficient per unit δ

CRM Rolling moment coefficient

Clζ Roll moment control coefficient per unit roll deflection

CLp ,CMQ ,CNR Damping derivatives

CMXCGA Pitching and yawing moment coefficients

XCPδ Tail moment arm (with respect to nose) m

XCG Axial position of center of gravity from nose m

The guidance commands are realized by the autopilot designed using Dynamic Inversion. It can be noted that the rotational
dynamics is faster than translational, which is known as the time-scale separation property. Nonlinear Dynamic Inversion
philosophy [46] exploits this property to remove the problem, which appears due to the non-minimum phase behaviour of
the airframe transfer function. Nonlinear Dynamic Inversion controller designed for the interceptor has two loops, as shown
in Fig. 30. The slow dynamic variables (α and β) are used in the outer loop, and the fast dynamic variables (p,q,r) are
used in the inner loop. The outer loop variables are controlled by the fast dynamics. The inner loop controller uses the fin
deflection to control the fast dynamics.

Fig. 30 Block Diagram of Autopilot
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4.2 Outer Loop of DI
The objective of the outer loop is to produce required body rates (roll (pc), pitch (qc), and yaw (rc)). After obtaining the

guidance command (azc , ayc ), commanded side-slip angle βc, and angle-of-attack αc are calculated as

βc =
mayc

QSCyβ

(85)

αc =
mazc

QSCNα

(86)

where, Q = ρV 2
m

2 . It can be observed that α̇c and β̇c can be obtained by using the following equation

[
α̇c

β̇c

]
=

[
ȧzc

m
QSCNα

ȧyc
m

QSCY
β

]
(87)

Eqn.(87) needs ȧzc and ȧyc which are calculated by enforcing a first order dynamics written as [47]

[
ȧyc

ȧzc

]
=

[
ωα(ayc −ay)
ωβ(azc −az)

]
(88)

The commanded body rates are generated using the dynamics (ζc, α̇, β̇) which are given as follows [47]

pc
qc
rc

=


ωζ(ζc−ζ)

α̇c +
[
(pcosα+ r sinα)sinβ+ 1

mVm
(−0.5ρV 2SCL−mgvel)

]
1

−cosα

[
β̇c− psinα− 1

mVm
(0.5ρV 2SCY +mgvel)

]
 (89)

The aerodynamic coefficients are given in Eqn.(90).


CD
CL
CY
CN
Cy

=


Cx cosαcosβ+CN sinα+Cy sinβ

CN cosα−Cx sinα

Cy cosβ−Cx sinβ

CNα
α+CNδq

δq

Cyβ
β+Cyδr

δr

 (90)

Cx,CN , and Cy denote the drag force, normal force, and side force coefficient measured in body axes, respectively. CD, CL,
and CY are coefficient of drag, lift, and side force calculated in the velocity frame. It can be mentioned that the velocity frame
is obtained by rotating the body axes frame by an angle of α and β about Yb and Zb, respectively.

4.3 Inner Loop of DI
The Inner loop is designed to calculate the required control surface deflection (δp, δq, and δr) from the commanded body

rates, which is the input to the inner loop. The desired dynamics of commanded body rates are required to obtain proper fin
deflection. In this work, a second-order dynamics is used to find the desired dynamics for commanded body rates.

p
pc

=
ω2

n

s2 +2ξωns+ω2
n

(91)

Therefore the desired dynamics (ṗd , q̇d , ṙd) as obtained using Eqn.(91) is given as follows

 ṗd
q̇d
ṙd

=

−2ξωp p+ω2
p
∫
(p− pc)

−2ξωqq+ω2
q
∫
(q−qc)

−2ξωrr+ω2
r
∫
(r− rc)

 (92)
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After obtaining desired dynamics ṗd , q̇d , ṙd in Eqn.(92), fin deflections (δr,δp,δy) are required to be calculated. For this
purpose, the desired aerodynamic coefficients are to be calculated. It can be observed that Eqns.(73,74,75) can be written as

ṗ =
QSd
IXX

Cl (93)

q̇ =
−(IXX − IZZ)pr

IXX
+

QSd
IYY

Cm (94)

ṙ =
−(IYY − IXX )pq

IZZ
+

QSd
IZZ

Cn (95)

where,

Cl =

(
−CRm −Clζδr +

CLp pd
2Vm

)
(96)

Cm =

(
−CMXCGA −CNδ

(XCPδ
−XCG)δp/d +

CMqqd
2Vm

)
(97)

Cn =

(
−CMXCGA −CNδ

(XCPδ
−XCG)δy/d +

CNR rd
2Vm

)
(98)

The value of the desired dynamics ṗd , q̇d , ṙd from Eqn.(92) are substituted in Eqns.(93-95) to obtain desired moment coeffi-
cients as follows

Cld
Cmd

Cnd

=


ṗd IXX
QSd

(q̇d+(IXX−IZZ)pr/IYY )IYY
QSd

(ṙd+(IYY−IXX )pq/IZZ)IZZ
QSd

 (99)

After obtaining the desired moment coefficients in Eqn.(99), the required deflections are obtained using Eqns.(96)-(98) as
follows [47]

δr
δp
δy

=


Cld +CRm−CLp pd/2Vm

Cl
ζ

−Cmd +CMXCGA−CMq qd/2Vm

(CN
δ
(XCP

δ
−XCG)/d)

−Cmd +CMXCGA−CNR rd/2Vm

(CN
δ
(XCP

δ
−XCG)/d)

 (100)

The fin deflection generated by the inner loop controller is used to find the required control surface deflection. The required
control surfaces deflections are obtained by a Fin-Mixing logic. Then the control surfaces are deflected to achieve the
maneuver.

4.4 Simulation Study
The initial conditions for the simulation study are given in Tab. 11. The maximum value of the lead angle is considered as

28o. Constrained QS-MPSP took four iterations and 0.83s to converge, with a miss distance of 0.15m. Commanded lateral
acceleration is generated in the velocity frame using Constrained QS-MPSP. For realizing the commanded lateral acceleration
(ayc ,azc ) they are required to transfer to the fin frame. Demanded lateral acceleration in the velocity frame and fin frame are
shown in Figs. 31 and 32 respectively. The Lead angle history during the fight time for Six-DOF simulation is shown in
Fig. 33. It can be observed that the lead angle obtained for the six-DOF model satisfies the constraints. Therefore, the target
always remains within the FOV of the seeker, which is required for a successful interception. The velocity components of
the missile in fin frame is given in Fig. 34. Commanded and achieved pitch and yaw rates are shown in Figs. 35 and 36,
respectively. In Fig. 39 all aerodynamic angles are plotted together. Commanded roll, pitch, and yaw deflections are shown
in Fig. 37. These deflections are realized by the fin deflections. Therefore the commanded deflections are given as inputs to
the fin mixing logic to obtain deflection for the four fins. The deflections of the four fins are shown in Fig. 38.
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Table 11 Initial Conditions and performance of Constrained QS-MPSP

Cases xm0 , m ym0 , m zm0 , m γm0 , deg ψm0 , deg Vm0 , m/s iter time, s miss dist., m

1 13000 9800 9000 48 48 1000 4 0.93 0.17

Fig. 31 Commanded Horizontal Acceleration Fig. 32 Commanded Vertical Acceleration

Fig. 33 Lead angle for Six-DOF model Fig. 34 Velocity components of Missile in fin frame

5 Conclusion
The State and control constrained optimal control problem is successfully converted into a low-dimensional nonlinear

programming problem using the ‘Constrained Quasi-Spectral MPSP’ philosophy. The spectral representation of the control
variable, as well as conversion of all applicable path constraints to equivalent control constraints, results in reducing the
number of optimizing variables significantly. This reduction of the size of the optimization problem is explained through
quantitative analysis of computational complexity as well. The Constrained QS-MPSP is found to be capable of handling
the constraints on both the lead angle and lateral acceleration during engagement of an incoming ballistic target. The
performance of the algorithm is analyzed in terms of iteration, convergence time, and miss distance. In the opinion of the
authors, it is sufficiently efficient to be applied in real-time.
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Fig. 35 Pitch rate Fig. 36 Yaw rate

Fig. 37 Fin deflection Fig. 38 Roll, pitch and yaw deflection

Fig. 39 α,β, and αT

References
[1] Kirk, D. E., 1970. Optimal Control Theory: An Introduction. Prentice Hall.
[2] Sage, A., 1968. Optimum Systems Control. Networks series. Prentice-Hall.

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Dynamic Systems, Measurement and Control. Received October 20, 2019; 
Accepted manuscript posted September 22, 2020. doi:10.1115/1.4048488 
Copyright (c) 2020 by ASME



[3] Bryson, J. A. E., and Ho, Y.-C., 1975. Applied Optimal Control: Optimization, Estimation and Control. Hemisphere
Publishing Corporation, January.

[4] Hager, W. W., and Pardalos, P. M., 2013. Optimal control: theory, algorithms, and applications, Vol. 15. Springer
Science & Business Media.

[5] Hull, D. G., 2013. Optimal control theory for applications. Springer Science & Business Media.
[6] Longuski, J. M., Guzmán, J. J., and Prussing, J. E., 2014. Optimal control with aerospace applications. Springer.
[7] Ben-Asher, J. Z., 2010. Optimal control theory with aerospace applications. American institute of aeronautics and

astronautics.
[8] Ross, I., 2015. A Primer on Pontryagin’s Principle in Optimal Control: Second Edition. Collegiate Publishers.
[9] Naidu, D. S., 2003. Optimal Control Systems. CRC Press, Florida, USA.

[10] Morrison, D. D., Riley, J. D., and Zancanaro, J. F., 1962. “Multiple shooting method for two-point boundary value
problems”. Commun. ACM, 5(12), Dec., pp. 613–614.

[11] Larson, R., and Casti, J., 1982. Principles of Dynamic Programming: Advanced theory and applications. Control and
Systems Theory. M. Dekker.

[12] Betts, J. T., 2001. Practical Methods for Optimal Control Using Nonlinear Programming. Advances in design and
control. Society for Industrial and Applied Mathematics.

[13] Wang, L., 2009. Model predictive control system design and implementation using MATLAB R©. Springer Science &
Business Media.
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