
TITLE PAGE

CRANFIELD INSTITUTE OF TECHNOLOGY

SCHOOL OF AERONAUTICAL ENGINEERING 

PhD

Academic Years 1989 - 1992

N P RICHARDS

Integration of Global Positioning and 
Inertial Reference System data inside a 

Flight Management Computer

Supervisor: P THOMASSON

January 1992



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10820952

10820952

Published  by ProQuest LLC ( 2019 ). Copyright of the Dissertation is held  by Cranfield University.



ACKNOWLEDGMENTS

Firstly, I wish to thank Smiths Industries for allowing the 
work presented in this thesis to be submitted.

Secondly, I want to acknowledge the valuable time and 
considerable effort provided by Professor Mike Sanderson, Mr 
Pete Thomasson and Dr Tony Miliman of the Cranfield 
Institute of Technology, and Dr Jim Meredith of Smiths 
Industries, who made up the Total Technology panel.

I am also extremely grateful for the valuable assistance 
given to me by many of my Smiths colleagues during the 
course of the work, particularly Mr Roy Griffin, Mr Tony 
Dymock and Mr John Ward.

Lastly, I want to thank my wife Norma and two children Luke 
and Steffan for their considerable patience and 
understanding during the course of the work.



ABSTRACT

A Kalman filter is used to integrate the outputs from a 
Global Positioning System and an Inertial Reference System 
inside a Flight Management Computer.
To initialise the Kalman filter, account is taken of the 1RS 
errors that get set up during alignment.
Algorithms are developed that allow the Kalman filter to be 
initialised to several 1RS specific alignment conditions.
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NOTATION

A list of principal symbols used within the thesis is given 
and is intended to supplement the definitions given within 
the text.

a Measured accelerometer output

Cp Platform axis to body axis direction cosine
matrix

Cj Platform axis to earth axis direction cosine
matrix

cxy Direction cosine elements where x,y = 1,2,3
cb GPS receiver clock bias error
e2 Earth eccentricity
F Continuous time system matrix
g Gravity vector
gm Mass attraction gravity vector
h Inertial altitude
href Air Data Computer indicated altitude
Hk Kalman filter measurement vector
Kk Kalman filter gain matrix
K12>3 Baro inertial loop gains
M(t, tg) Observability matrix
Pk Discrete Kalman filter covariance matrix
Qk Process noise strength matrix
q Quaternion
qi,2,3,4 Quaternion components
r Position vector
rx GPS pseudo range



Rk Measurement noise strength matrix
R Spherical earth radius
Rx Radius of curvature of the earth for the x

platfrom axis direction
Ry Radius of curvature of the earth for the y

platfrom axis direction
s Laplace operator
Si GPS satellite position vector
t Time
U GPS receiver host vehicle position
Yb Velocity vector expressed in the body axis

frame of reference
Yp Velocity vector expressed in the platform

axis frame of reference
Velocity components expressed in the platform 
axis
True airspeed
Angular velocity vector from platform axis to 
earth axis expressed in the platform axis
Angular velocity components expressed in the 
platform axis
Continuous time white noise 
Frequency
Continuous time noise vector
Spatial rate component expressed in terms of 
the x platform axis
Spatial rate component expressed in terms of 
the y platform axis
Aircraft body velocities
n dimensional continuous time state vector 
n dimensional discrete time state vector

VP P P x / y /  z

V,

Hep

W(t)
CO

W

Wx

u, v,w
X

Xk



X
X,Y,Z

Zk

GREEK SYMBOLS

a

7
AVb

At
S(prefix)

e x,y,z

5V
61

5 0x,y,z

e
5
X

X,Y,Z accelerometer bias error 
Vector cross product
Earth Centered Earth Fixed (ECEF) axis set 
Kalman filter measurement data

Alpha angle 
Flight path angle
Acceleration measurement expressed in the 
body axis frame of reference
Simulation iteration rate
Error term for the prefixed variable
X,Y,Z gyro bias components
Velocity error vector
Position error vector
Attitude error vector
x and y platfrom axis position error 
componets

x,y,z platfrom axis tilt error componets 

Pitch
Meridian convergence 
Latitude
Rms values for x and y variable
Variance
Time constant



$

0
*

n

a.

Transition matrix associated with the plant 
equation
Longitude
Roll
Az imuth
Earth rate
Earth rate component expressed in terms of 
the x platform axis
Earth rate component expressed in terms of 
the y platform axis

SUPERSCRIPTS
b
e
i
k

P
T

Body axis frame of reference 
Earth axis frame of reference 
Inertial axis frame of reference 
Skew symmetric
Platform axis frame of reference 
Transpose

SUBSCRIPTS
b
c
e
i
m

P
x,y,z

Body axis frame of reference
Computed variable
Earth axis frame of reference
Inertial axis frame of reference
Measured variable
Platform axis frame of reference
Component values
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CHAPTER 1.0

INTRODUCTION

1.1 THESIS OVERVIEW

The work presented in this thesis was carried out as part of 
a Smiths Industries / Boeing Aerospace contract to integrate 
a Global Positioning System and an Inertial Reference System 
inside a Flight Management Computer. The Flight Management 
Computer is produced by Smiths Industries and is fitted to 
a United States Navy Command and Control aircraft called the 
E6. The Global Positioning System is produced by Rockwell 
Collins and the Inertial Reference System is produced by 
Litton Aeroproducts.

The thesis contains a technical and a non technical content. 
The technical content is covered by chapters 2 to 8, the non 
technical work is the subject of chapter 9, while Chapter 10 
gives the conclusion for both the technical and the non 
technical work.

The main body of original work is contained in chapter 8, 
where the subject of matching the Kalman filter to meet 
specific 1RS alignment conditions is considered.
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1.2 LITERATURE REVIEW
The integration of the global positioning system with an 
inertial navigation system via the technique of Kalman 
filtering is now the accepted way of combining such 
navigation systems. The specific techniques of integrating 
the two systems are varied however, with each offering its 
own advantages and disadvantages.

Barckley (1987) discusses three possible vehicle integration 
schemes. The first and simplest scheme described is to use 
the GPS position as a precise fix to which the inertial 
navigation system indicated position is periodically 
initialized. The resulting navigation performance should be 
almost as good as the GPS assuming that the GPS is working 
normally. The scheme has the disadvantage that in-flight 
alignment of the inertial navigation system is not possible. 
Alignment of the inertial navigation system is the process 
whereby the system gets ready to start navigating. Normally 
this alignment process is carried out on the ground when the 
inertial navigation system is stationary. There are 
techniques however, where the alignment can be performed 
when in motion where the term in air alignment is used to 
describe the process. In air alignments normally require the 
use of some source of information that is provided external 
to the inertial navigation system, the global positioning 
system is one such source of information.

Scheme two uses both position and velocity information as 
fixes to periodically re-initialize the inertial navigation 
system outputs. The paper states that for this scheme as for 
scheme one, no in air alignment is possible. The advantage 
of scheme two over scheme one is that scheme two uses 
velocity information from the GPS and therefore the inertial 
navigation system velocity is corrected and bounded. Scheme 
three uses GPS position and velocity as measurements in a 
navigation filter to estimate inertial navigation system 
errors. The estimates of error are then fed back to the 
inertial navigation system so that it can correct for the 
errors. This scheme has the advantage that it offers the 
possibility of in air alignment. Its disadvantage compared 
with the other two schemes is that it is much more 
complicated to implement as a solution in a practical 
system.
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The techniques discussed in this paper have all assumed that 
the outputs from the inertial navigation system and the 
global positioning system are combined and processed in a 
separate avionics computer, which could be a flight 
management computer in the case of a commercial airline 
application.

Napier (1989) discusses several different methods of 
integrating GPS and INS data. The simplest approach 
discussed is a cascaded Kalman filter method, which can be 
described as a system consisting of a GPS subsystem with 
associated GPS kalman filter, and an inertial navigation 
subsystem with associated INS Kalman filter. The output from 
the GPS subsystem is GPS position and velocity, which is fed 
into the inertial navigation system Kalman filter. The other 
input to the inertial navigation system Kalman filter is the 
raw ie uncorrected inertial system outputs. The resultant 
output from the inertial system Kalman filter is then an 
estimate of the error in the raw inertial system data. The 
error in the inertial system can then be accounted for in 
some way. The advantages stated for this scheme are those of 
redundancy and easy implementation, since in the event of a 
single failure the non failed system can continue to 
navigate. The main disadvantage given is the fact that the 
output from the GPS receiver has already been passed through 
its own Kalman filter, which means that special care must be 
taken when using the GPS output measurements in the inertial 
system Kalman filter, to ensure that the GPS measurements 
used are not correlated.

The next approach discussed is that of full integration. 
Here there is no Kalman filter dedicated to processing the 
GPS data, since the outputs from the global positioning 
system are no longer position and velocity but range and 
range rate measurements. The range and range rate 
measurements are fed directly into the inertial navigation 
system Kalman filter, with the function of the filter being 
to estimate errors in both the inertial system and the 
global positioning system. In this scheme velocity 
information is fed back to the GPS module to facilitate 
better GPS code tracking. The disadvantage of this 
integration approach is that the technical task is much 
greater due to consideration of implementation of the GPS 
equations being required.

For both the integration schemes discussed, there is the 
option of operating either in an open loop or closed loop 
configuration.
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In the closed loop configuration the estimate of the 
inertial system errors are fed back to the inertial system 
so that the system can correct its inherent errors. In the 
open loop configuration the inertial errors are not fed 
back to the system for correction, but they are used to 
modify the raw inertial system output.

Frazier (1987) discusses the flight test of a GPS aided 
inertial navigation system. The stated objective of the 
flight test was to assess the performance of a single 
channel GPS receiver, integrated with a high accuracy 
gimballed inertial navigation system. The flight test was 
carried out at the Yuma proving ground, where a laser 
tracking facility was available. A cascaded integration 
scheme was used to combine GPS with the inertial system. The 
GPS Kalman filter has 8 states, and the inertial system 
Kalman filter has 15 states (note throughout this thesis the 
word state is used to mean state variables). Velocity aiding 
data is provided from the inertial system to the GPS, to 
assist the GPS during periods of satellite outages. The GPS 
receiver provides measurements of position to the inertial 
system Kalman filter. The possibility of instability due to 
the use of two separate Kalman filters has been evaluated 
and found not to be a problem. In processing the GPS data, 
the inertial system Kalman filter takes account of the 
figure of merit provided by the GPS, which is an indication 
of the accuracy of its measurements.

The inertial system sub optimal Kalman filter was designed 
using a covariance analysis computer program, where a 60 
state truth model was used as a reference for the design. An 
error model is used for GPS fixes, which is based on errors 
in the GPS range. Equations are stated which give the GPS 
error in terms of circular error probability (CEP). General 
details are given of the 10 flight tests carried out at the 
Yuma proving ground. A examination of one set of typical 
results obtained indicates, that predicted and measured 
values of GPS were in close agreement. For the inertial 
navigation system, the errors recorded show that the INS 
performance was better than the GPS stand alone performance 
for some parts of the flight test. This result was explained 
by the fact that the inertial system under evaluation was a 
high accuracy gimballed system which was calibrated in 
flight by the GPS.

Dayton (1989) describes the results obtained from a flight 
test of two different INS/GPS integration techniques of the 
types discussed by Napier (1989).



5
The stated objective of the flight test is to compare the 
navigational performance of the two integration techniques. 
It is stated that there is some controversy over which is 
the best method of integration for a given application. A 
brief history of the design of the two integration schemes 
is given. The technique of covariance analysis is used to 
develop the implemented Kalman filter. For the cascaded 
design a 12 state Kalman filter is used, and for the 
integrated approach, a 14 state solution is used.

For the cascaded filter the problem of using GPS data that 
may be correlated is overcome by processing the GPS 
measurements every 12 seconds. The flight tests carried out 
were typically of two to three hours duration. A total of 
nine flights in all were carried out. The basic method used 
to evaluate the navigation performance of the system was to 
difference the position data obtained from the filters with 
a reference GPS position. Results for north position error 
and east position error for the two integration techniques 
are provided from a sample of the results. The results 
recorded were post processed to evaluate the root mean 
square of the position errors of the ensemble of runs for 
both filters. The results obtained show that the performance 
of the integrated approach is better than that obtained by 
the cascaded filter.

Hartman (1989) discusses an integration system for GPS/INS 
that is intended for civilian aircraft use, and is currently 
under development with the system due to be certificated by 
the aviation authorities in 1990. The total navigation 
system consists of two main components an inertial 
navigation system and a global positioning system. The 
global positioning system can act as a stand alone GPS where 
it provides position and velocity information, or it can 
function in an integrated form, where its outputs of range 
and range rate are fed as inputs into an integrated Kalman 
filter, where the role of the integrated filter is to 
predict both INS and GPS errors. The integration function is 
open loop because no attempt is made to feedback the 
inertial corrections to the INS. A brief discussion of the 
results obtained from van and lab testing are given.

The situation is investigated where the global positioning 
system is operating with four satellites for a period of 
time and then reduces to three satellite operation. During 
three satellite operation the GPS solution drifts.
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The inertial system considered is classified as being a 2 
knot system. When the two systems were combined, the results 
obtained showed that the errors due to both the GPS and the 
INS were reduced. Two dimensional plots of latitude error 
against longitude error were used to observe this fact.

Mickelson (1989) discusses the development and flight 
evaluation of an integrated GPS/INS navigation system. The 
integration scheme uses two Kalman filters, one for the GPS 
and one for the INS. The input to the INS Kalman filter is 
range and range rate from the GPS set. In-flight alignment 
of the inertial system is also mechanized. The inertial 
system Kalman filter is referred to as an INS/GPS filter 
because it predicts GPS clock bias and clock drift errors, 
which allows processed GPS data to be turned into raw GPS 
data, as it is raw GPS data that the GPS/INS Kalman filter 
requires. The data output from the GPS is pre-processed 
because the GPS has its own 8 state Kalman filter. A 
discussion of inertial navigation and global positioning 
system errors is given, with statistical values for each 
error source provided. A brief mention of a special design 
feature is given, where the covariance terms relating to 
position error in the Kalman filter are modified as a 
function of the GPS satellite coverage, to overcome the 
problem of unwanted biases that can occur when new 
satellites are initially used in the GPS solution. Results 
from lab tests, van tests and flight tests are given. From 
the flight test results the recorded data was processed to 
obtain a circular error figure of performance. The figure 
achieved from flight tests for the navigation system 
performance was compared to a predicted value obtained by 
the method of covariance analysis. The two results were in 
close agreement. It is concluded from the flight tests that 
the integrated system provides a navigation solution that is 
more accurate than a stand alone GPS solution.

Griffiths (1984) discusses the results of an assessment of 
integrated navigation system accuracy, for two flight 
trajectories via the technique of covariance analysis. The 
investigation considers what is likely to happen in terms of 
navigation performance if one inertial navigation system is 
substituted for another, without making any changes to the 
integrating Kalman filter to account for the exact 
characteristics of the substituted inertial system. The 
inertial navigation systems considered are referred to as 
standard, a concept developed by the United States Air Force 
Aeronautical Systems Division, whereby certain parameters of 
an INS such as size, shape, weight, position and velocity 
accuracy are standardized.
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A covariance analysis is carried out to predict the system 
accuracy for various integrated combinations. There are 
three basic components used in the covariance analysis, 
these being a trajectory generator which provides values for 
true parameters such as latitude, longitude, velocity etc. 
An INS error model which has 45 states, although the states 
do not relate to any particular manufacturer's inertial 
system. The third component is a 17 state Kalman filter, 
which models the inertial system and the doppler radar 
error. From the results of a Covariance simulation it is 
concluded that with very accurate GPS, and with the system 
operating in an aided mode, (this being when GPS 
measurements are valid and being used by the Kalman filter), 
performance is independent of the INS and Kalman filter 
configuration. For periods of unaided INS operation however, 
the mismatch between INS and Kalman filter was found to be 
significant.

Graham (1986) provides the results of further related work 
to that discussed by Griffiths (1984). The paper discusses 
the idea of a standardized integration Kalman filter, such 
that different types of avionic equipment can be 
interchanged with the minimum of cost. Several areas where 
a standardized approach to Kalman filter design could result 
in a significant reduction in cost and technical risk are 
discussed. A covariance analysis type evaluation is carried 
out to formulate and tune the proposed standard Kalman 
filter. The basic technique applied in the design of the 
standard filter was to first develop an optimal filter, and 
then from the optimal solution develop a standard model 
which is sub optimal. A description of the error sources 
used for the inertial system model is given together with 
statistical values for the various terms.

To test the sub optimal Kalman filter, several different 
flight profiles were investigated. The subsequent results 
were evaluated for the inertial system level axis and 
vertical axis errors separately. For the level axis results 
it is stated that the sub optimal Kalman filter was found to 
operate to within 10% of the optimal Kalman filter. For the 
vertical axis performance the sub optimal filter was found 
to operate to within 5% of the optimal filter, this lower 
figure being partly explained by the fact that the vertical 
channel operates in an aided mode ie, it has an external 
source of reference information provided by a barometric 
altimeter.
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From the results obtained it is concluded that the sub 
optimal standard filter developed is suitable to integrate 
all variants of the standard inertial navigation system with 
GPS.

The integration of GPS with other navigation sensors is not 
limited to inertial navigation systems, attitude and heading 
reference systems (AHRS) can also benefit from such 
techniques.

Brown (1984) discusses the integration of GPS and AHRS. An 
AHRS system is discussed as having low quality inertial 
instruments compared with those used in an inertial 
navigation system such that the navigational accuracy is 
lower than would be obtained from an inertial system. The 
advantage of the AHRS system over an inertial system is one 
of cost. By using an integrated GPS/AHRS solution improved 
navigation accuracy can be obtained at a much lower cost 
than that offered by an equivalent inertial system. The 
integration of GPS and AHRS is carried out using a Kalman 
filter in much the same way as for an inertial system is 
integrated. Two integration techniques are discussed these 
being described as a GPS-aided AHRS system and an integrated 
GPS/AHRS system.

In the GPS-aided AHRS system, both the GPS subsystem and the 
AHRS have an associated Kalman filter. In the integrated 
approach only one combined Kalman filter is used to predict 
errors in both the AHRS and the GPS. The filter contains 18 
states. Inputs to the Kalman filter are GPS measured range 
and range rate which can be processed directly. For the GPS 
aided AHRS the GPS Kalman filter has 12 states and the AHRS 
Kalman filter has 14 states. The AHRS instrument error 
states are feed back from the filter to the AHRS so that it 
can compensate for these unwanted errors. To simulate the 
performance of the two integration schemes a covariance 
analysis technique is employed. Brief details of the flight 
profile used in the simulation are given, this being a 
racetrack type scenario. The GPS coverage is simulated as 
being initially perfect and then degrading due to the loss 
of one satellite. From the results obtained it is concluded 
that the best performance is achieved from the integrated 
system where better position and velocity accuracy was 
obtained. The improved accuracy from the integrated system 
compared with the GPS-aided AHRS solution was most 
noticeable during the period of degraded GPS coverage. Both 
integration schemes were found to offer improved performance 
over stand alone operation.
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Cunningham (1988) discusses the problem of instability that 
can occur with some GPS/INS integration methods. The main 
theme of the paper is the investigation into the behaviour 
of inertial navigation system errors under high dynamic 
conditions. It is stated that whereas the instabilities in 
the vertical channel of an inertial system are understood, 
instabilities that can occur as the result of high dynamic 
manoeuvres have not been characterized. It is also stated 
that the accuracy and stability limitations of a sub 
optimally integrated INS/GPS in a dynamically manoeuvring 
vehicle are not understood.

The paper sets out to investigate that when two sub optimal 
Kalman filters are used for the cascaded filter integration 
approach, interaction of the two sub optimal filters during 
high dynamic manoeuvres may result in a rapid degradation of 
navigational accuracy, with the degree of accuracy being 
strongly linked to the degree of departure from the sub 
optimal model to the optimal Kalman filter model. The 
investigation is carried out using two techniques. A 
covariance analysis is carried out where the performance of 
two filters are compared, one filter containing the optimal 
truth model solution and the other the sub optimal solution.

The second method used is that of evaluating the system 
eigenvalues. Eigenvalues are given first for a non 
manoeuvring inertial system where a brief explanation of how 
the nine eigenvalues obtained, relate to the classical 
inertial theoretical results is given. Eigenvalues are then 
computed for a manoeuvring fighter aircraft where 9g turns 
are simulated. The results obtained for the 9g level turn 
indicate the presence of an unstable complex pair of 
eigenvalues. The magnitude of the positive real parts of 
both the complex pairs is greater than the magnitude of the 
eigenvalues associated with the known instability that 
occurs in the unaided vertical channel.

Turns at 3g were simulated, and also showed instability but 
of smaller magnitude compared with the 9g case. A brief 
discussion of the results obtained from the covariance 
analysis is given. A covariance analysis is carried out for 
a joint solution Kalman filter using 3 6 states, this being 
the same number of states as the truth model. Results for 
the degradation of position error and velocity error during 
a constant g turn are given. The results show no degradation 
of position error over three complete turns.
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For velocity a large transient which rapidly subsides to 
zero was observed. It is concluded that if this velocity 
error exceeds the linear region of the code loop operation, 
loss of GPS lock may occur which could destabilize the 
closed loop operation of the system. Results for the 
covariance analysis of the two sub optimal Kalman filters is 
not given as the performance investigation of this scheme is 
deferred to a future study.

The literature survey considered here is specific to the 
subject of GPS/1RS integration. Appendix A gives details of 
a further survey that was carried out to review some further 
issues associated with the subject.

1.3 CHAPTER SUMMARY
The objective of the technical part of this thesis is the 
development by simulation of a Kalman filter that can be 
used inside a flight management computer to combine the 
position and velocity outputs from two external aircraft 
navigation systems, for the purpose of improving navigation 
performance. The two navigation systems are a ring laser 
gyro strapdown inertial reference system and a global 
positioning system.

An inertial reference system is an autonomous navigation 
system providing position and velocity on a continuous 
basis. The two instruments used in an inertial system are 
gyros and accelerometers. Both instruments suffer from 
errors and cause therefore, a resultant error in the 
inertial system output. The inertial reference system errors 
can be modelled mathematically, in chapter 2 an error model 
of the customer inertial reference system is developed. This 
error model is then used in a computer program to simulate 
the outputs generated by the customer inertial system. The 
1RS simulation module is just one of several modules that 
make up the simulation program. The simulation program is 
the main tool that is used to develop the Kalman filter. The 
simulation program is discussed in detail in chapter 5.

The global positioning system is discussed in chapter 3. GPS 
is a space based radio navigation system which provides 
position and velocity on a continuous basis. The system 
works by receiving radio signals transmitted by orbiting 
satellites whose position relative to the earth is known.
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By measuring the distance to the orbiting satellites the GPS 
receiver can determine its own position relative to the 
earth. Although the GPS system also suffers from errors, its 
navigation accuracy is very much greater than the 1RS, it is 
ideal therefore, for use as a source of reference in a 
Kalman filter.

The Kalman filter is discussed in chapter 4, it is the means 
by which the inertial reference system and the global 
positioning system outputs are combined inside the flight 
management computer. The reason for using a Kalman filter to 
combine 1RS and GPS data is to gain improved navigation 
system performance when operating in the 1RS only mode, this 
being when the GPS signal is lost.

The navigation techniques that are needed to measure the 1RS 
and Kalman filter navigation performance are developed in 
chapter 6. In chapter 7, these techniques are used to assess 
the performance of the Kalman filter.

The results obtained from chapter 7 provide an understanding 
of the limitations of the Kalman filter design. From this 
understanding some original Kalman filter work is carried 
out, this being the subject of chapter 8. In this further 
work, the general Kalman filter initialization parameters 
that were first thought to be adequate, are modified to 
become instrument specific values that take account of 
particular 1RS alignment conditions. A general algorithm is 
developed that can be used by the Kalman filter to meet the 
specific alignment conditions of the customer 1RS. It is 
shown how the specific Kalman filter initialization 
parameters produce an improvement in the Kalman filter 
navigation performance compared with the general parameters 
that were used for the analysis carried out in chapter 7. 
The selection of the Kalman filter initialization parameters 
to take account of specific 1RS alignment conditions is 
referred to as Kalman filter matching. Although the major 
part of the work in chapter 8 deals with matching the Kalman 
filter to the specific alignment conditions of the customer 
1RS, consideration is also given to applying the matching 
technique to other types of alignment conditions that can 
occur in other 1RS systems.

From the simulations carried out in chapter 8 it is 
concluded that to obtain the best Kalman filter performance, 
the filter must be matched to the 1RS alignment condition. 
This requirement has implications on the methods that can be 
used to simulate the 1RS navigation performance when 
developing the Kalman filter.
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In chapter 6, three techniques to simulate 1RS navigation 
performance are developed, these being Monte Carlo analysis, 
Sensitivity Analysis and Covariance Analysis. The results 
obtained from chapter 8 show that the Monte Carlo and 
sensitivity analysis techniques cannot easily be applied to 
deal with the 1RS alignment condition, the technique of 
covariance analysis is therefore recommended as the best 
method to use to develop the Kalman filter.

The topic to be investigated for the non technical aspect of 
the thesis is the marketing of GPS/1RS technology. This 
subject is covered in chapter 9 where, a new trend in the 
market for the integration of GPS/1RS is identified and the 
possible impact of this new market on the Smiths Industries 
Flight Management Computer is investigated.

A conclusion for the technical and non technical work is 
given in chapter 10.
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CHAPTER 2.0

INERTIAL REFERENCE SYSTEM

2.1 INTRODUCTION
The type of navigation system being considered in this work 
is a strapdown ring laser gyro inertial reference system. 
One of the major tasks involved in integrating a global 
positioning system and an inertial reference system, using 
a Kalman filter, is the development of the Kalman filter 
error model for the specific inertial system being 
integrated.

There are several different ways of developing an inertial 
reference system error model. Friedland (1978) discusses the 
development of an inertial error model using the technique 
of quaternions. In this present work the approach taken is 
based on vectors.

The error model to be developed in this chapter is in the 
form of a state transition matrix, where the states 
represent position, attitude, velocity and instrument 
errors. For the position, attitude and velocity errors the 
approach taken is to first develop the 1RS equations, then 
to form general error equations, and then finally to apply 
specific conditions to these general error equations to 
generate the 1RS specific error model. The conditions that 
are applied to the general error equations to form the 1RS 
specific error model, have been supplied by the customer.

The final error model to be developed has 17 states and is 
referred to as an optimal 1RS error model as shown in figure 
2.6.



14

2.1.1 NOTATION
Before the development of the strapdown ring laser gyro 
inertial reference system error model is discussed, the 
notation to be used in this section is reviewed and some 
background mathematics discussed.
Vectors are represented by a bold letter with an underscore, 
and a superscript denoting the coordinate frame in which the 
vector is expressed. For example Ve is the velocity vector 
consisting of three components expressed in the e frame.
Angular velocity vectors will additionally have two 
subscripts denoting the two reference frames between which 
the angular velocity exits.
Components of vector quantities are denoted by the same 
letter but without the underscoring and the bold notation. 
Also components have a subscript x,y or z. For example wPpx is 
the x axis angular velocity component.
A direction cosine matrix that transforms a vector from one 
coordinate frame to another is denoted by a bold letter but 
without an underscore. The lack of underscoring makes a 
matrix distinct from a vector. The letter will have a 
subscript denoting the original frame of reference, and a 
superscript for the new frame of reference.
A skew symmetric matrix is indicated by the addition of a 
superscript k for example, the skew form of the vector Wj-p 
which will form a 3 x 3 matrix is indicated as W%p where the 
underscore has been dropped, because a matrix is being 
considered.
In this chapter 1RS error models are developed, and the 
concept of true and computed values are used. Terms will 
therefore be bracketed to allow a subscript to be placed 
outside the bracket to indicate a computed value, for 
example [CP]c is the computed value of the direction cosine 
matrix. A measured value will be indicated by a subscript m 
outside the bracket, and a true value will be shown by a 
lack of subscript outside the bracket, for example [C%] is 
the true value of the direction cosine matrix. When an error 
term is being considered then brackets will not be used, for 
example SCI.
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2.1.2 MATHEMATICAL BACKGROUND
The development of the theory for the strapdown inertial 
reference system is heavily based on the mathematical 
concept of frames of reference. Before considering the 
development of the 1RS specific frames of reference, some 
basic mathematics will be reviewed.
A 3 x 3 direction cosine matrix transforms a vector from one 
coordinate frame of reference to another. For instance Cjj is 
the matrix that transforms a vector from the b frame to the 
p frame as :

Vp = Cpb Vb (2.1)

The 3 x 3  direction cosine matrix is updated from the 
following differential equation :

Here Wgpk represents the skew symmetric form of the vector 
Wgp which represents the angular velocity between the p and 
b frames expressed in terms of the p frame.
The transpose of the direction cosine given by equation 2.2 
can be written as :

(2.2)

Where

(2.3)

- w * w/ 0

(2.4)

The update equation for the transposed direction cosine 
matrix is then given by :



Which can be written as :

Where the following relationship has been assumed
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2.2 INERTIAL REFERENCE SYSTEM DESCRIPTION
A block diagram showing the major functions of a general 
strapdown inertial reference system is given in figure 2-1. 
Acceleration measurements expressed in the body axis frame 
of reference AVb. are transposed into equivalent components 
in the local level platform axis AV% by the body to platform 
direction cosine matrix Cg. The components of the body to 
platform direction cosine matrix can be used to obtain the 
following aircraft attitude values, pitch (6), roll (0) and 
azimuth (^).

The acceleration vector in the platform axis is then 
integrated to obtain platform velocity. Components of the 
platform axis velocities, are used to generate the angular 
rate vector W£p commonly referred to as transport rate, which 
is used to update the earth to platform axis direction 
cosine matrix C£. The components of the matrix C% can be used 
to form the following aircraft position values, latitude 
(X), longitude ($), and alpha angle (a). An alpha angle is 
required because the strapdown system being considered is a 
wander azimuth system, the platform axis is therefore 
referred to as the local level wander azimuth axis.

The angular rate vector Wj!p is combined with the earth rate 
vector WPe to form the spatial rate vector W?p. The transpose 
of the body to platform direction cosine matrix Cp, is used 
to transform the components of the spatial rate vector from 
platform axis to body axis. The body referenced spatial 
vector Wbp is then combined with the angular rate term Wjb to 
form the angular rate vector w£b, which is used to update the 
matrix Cg. The angular rate term Wbb is obtained from the raw 
gyro measurements A0bb, where the gyros being considered in 
this strapdown system are rate integrating gyros.

Now that the functionality of the strapdown inertial 
reference system has been reviewed, the body to platform and 
earth to platform direction cosine matrices will be 
developed. These equations will then allow general 1RS error 
equations for position and attitude to be developed.
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2.2.1 EARTH AXIS TO WANDER AZIMUTH AXIS RELATIONSHIP
Consider the earth axis and the local level wander azimuth 
axis as shown in figure 2-2. The direction cosine matrix 
that transforms a vector from the platform axis to the earth 
axis will now be developed by considering the product of 
individual rotation matrices, where for the initial 
condition the earth axis and platform axis are aligned.

A positive rotation about Ye gives :

COS# 0 sin# 7'
r; = 0 1 0 K

K -sin# 0 cos# K

A negative rotation about the displaced X axis gives :

cos$ 0 sin# 
0 1 0  

-sin# 0 cos$

0 0 
D cosX sinX
3 -sinX cosX

(2.9)

A positive rotation about the displaced Z” axis gives :

K COS# 0 sin# 1 0 0 3osa -sina o 7'"
K - 0 1 0 0 cosX sinX since cosa 0 7;'
K_ -sin# 0 cos# 0 -sinX cosX r o o 1 7f

(2.10)

The final displaced triple axis set is equal to the wander 
azimuth local level frame of reference.
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Carrying out the matrix multiplication gives the final 
relationship :

cos$cosa 
-sinXsinasin# ,

-sinacos# 
-sin§sinXcosa , sin$cosX

7y = cosXsina , cosXcosa , sinX (2.11)
-sin§cosa 

-sinXsinacos$ ,
sinasin# 

-cos§sinXcosa , cos$cosX fz

This equation expresses components of the wander azimuth 
local level frame into equivalent components in the earth 
frame.
In vector notation the equation is :

Ve = Cep Vp (2.12)

From the direction cosine matrix C® values for wander angle, 
geodetic latitude and longitude can be evaluated as follows

For wander angle

a = tan'^ — ) (2.13)
C 22

For latitude

X = sin'1(c22) (2.14)

For longitude

$ = tan-1( -- — ) (2.15)
C11C22 ~ C12C21
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The direction cosine matrix C% can be updated using the 
following angular velocity vector whose components are 
expressed in terms of the platform axis velocities.

cü = <  cj (2.16)

Where :

0 -w* A
i

n < 0

-< < 0

(2.17)

And the matrix components are given by

(2.18)

(2.19)

(2 .20)

The z component is zero for a wander azimuth system.
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2.2.2 WANDER AZIMUTH AXIS TO BODY AXIS RELATIONSHIP
Consider the local level wander azimuth axis and the 
aircraft body axis as shown in figure 2-3. The direction 
cosine matrix that transforms a vector from the platform 
axis to the body axis will now be developed by considering 
the product of individual rotation matrices, where for the 
initial condition the platform axis and body axis are 
aligned.
A positive rotation about Zp gives :

K cosx// sirup 0

K = -sint/' cosxp 0 'yP

K 0 0 1 7>

A positive rotation about the displaced X’ axis gives :

7?
7" h

y

1 0  0 
0 cos# sin# 
3 -sin# cos#

cost/' sinx// 0 
-sint/' cosÿ 0 
0 0 1

(2.22)

A positive rotation about the displaced Y” axis gives :

7?

y

3os0 0 -sin# 
0 1 0 

sin# 0 cos#

1 0  0 
0 cos# sin# 
0 -sin# cos#

cost/' sint/' 0 
-sint/' cosxp 0 
0 0 1

(2.23)

The final displaced triple axis set is equal to the body 
axis frame of reference.
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Carrying out the matrix multiplication gives the final 
relationship :

z» COS0COS^- sinÿcos0+ -sin0cos0sin0sin0sinÿ , sin0sin0cosÿ.
7; = -cos^sinÿ, cosOcosÿ f sind

sin0cos^+ sin0sin^- COS0COS0
rJ. sin#sin^cos0, cos0sin0cosÿ.

(2.24)

This equation expresses components of the wander azimuth 
local level frame into equivalent components in the body 
frame.
In vector notation the equation is :

Vb = Cbp Vp (2.25)

From the direction cosine matrix Cg, which is the transpose 
of Cp, values for pitch, roll and azimuth can be evaluated as 
follows :
For pitch

6 = sin~1(c32) (2.26)

For roll

0 = tan-i(-fH) (2.27)
C 33

For azimuth

ÿ = tan'1 ( — ) 
C 22

(2.28)
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The direction cosine matrix Cg which represents attitude can 
be updated using the following equation :

c? = -<c£ (2.29)

The components for the angular velocity vector are not 
directly related to the gyro output measurements, because 
the gyro measures angle between the aircraft body axis and 
inertial space. An angular velocity vector expressed in 
terms of the body axis can be computed using the following 
relationship :

Wbu = Whu - Ylb (2.30)—pb —û> —ip '

Where Wjp is a computed rate vector expressing the angular 
rate between the inertial and wander azimuth frames, and Wib 
is a measured rate vector consisting of the x,y and z gyro 
measurements expressed in the body axis frame of reference.
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2.3 GENERAL 1RS ERROR MODEL EQUATIONS
The development of general 1RS error model equations for 
attitude and position will now be considered.

2.3.1 DEVELOPMENT OF A DIRECTION COSINE MATRIX ERROR
To develop the 1RS error model equations, error equations 
for the direction cosine matrices Cg and C% are required.
In section 2.2.1 the direction cosine matrix that transposes 
a vector from the platform axis to the earth axis was 
developed. By introducing a true and a computed value of 
earth to platform direction cosine matrix, then an error 
direction cosine matrix can be defined as the difference 
between the computed direction cosine matrix and true matrix 
as shown below :

Consider element Cn (see equation 2.11) of the earth to 
platform direction cosine matrix :

An increment in Cn can be formed from small increment theory 
where terms to first order only are considered :

scfe = [cpe]c - [cn (2.31)

cn = cosScosa - sinXsinasin# (2.32)

(2.33)

This gives :

S C n  = 5$(-sin$cosa - sinXsinacos$)
+ <Sa (-cos$sina - sinXsin$cosa) (2.34)

+ S \ (-sinasinScosX)
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Here the equation for 5CU is expressed in terms of latitude, 
longitude and alpha angle. However, because the 1RS error 
model equations being developed are required to be expressed 
in terms of the 1RS platform axis frame of reference, an 
alternative approach to developing error direction cosine 
matrices is sought.
An alternative development can be obtained by considering 
the earth to platform direction cosine matrix update given 
by equation 2.16. Consider the term Cn :

Cil = WZC21 - < C31 (2.35)

This equation can be written as :

C „ ( t . W  -C„(t) , ̂  „  ,,Cn  ,2.36,

Expressing the angular rate as an angle increment over time, 
and cancelling the At components gives the following 
alternative form of equation for 5Cn :

6Cn = SOpzC2l - 66^C31 (2.37)

A similar procedure can now be repeated for the remaining 8 
direction cosine components. A summary of the final results 
for the error terms is given below :

SC,2 = S^C32

sc13 - «0^33

(2.38)

(2.39)

SC21 = S0£C31 - SflfC,, (2.40)
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s c22 = s e pxc 32 - s e pzc l2 (2.41)

5C23 = 6^C33 - S0jC13
(2.42)

5C31 = S6'Cn - SOpC2l (2.43)

5C32 = 65?C12 - 5^C22 (2.44)

6C33 = - 60ÏC23 (2.45)

The nine equations can be written in the following matrix 
form :

SCj = S0p[Ĉ ] (2.46)

Where [C%] is the true value earth to platform direction 
cosine matrix and &0V is a position error expressed in terms 
of the platform axes.

An error equation for the body to platform direction cosine 
matrix can be formed in a similar manner to equation 2.46 
above, the final result only is shown below :

6c£ = (2.47)

Where [Cg] is the true body to platform direction cosine 
matrix and 50p is an attitude error expressed in terms of the 
platform axes.
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2.3.2 DEVELOPMENT OF THE ATTITUDE ERROR EQUATION
The attitude error vector equation will now be developed 
where the various parts of the equation are coordinated in 
terms of the platform axis. The final form of the equation 
to be developed is shown below :

&<t>p = &WPp + x W?p (2.48)

Consider a perfect alignment, then the computed value of the 
body to platform direction cosine matrix will equal the true 
value as shown below :

[CÎL = [c?] (2.49)

The update equation for the direction cosine matrix is given 
by equation 2.29. On entering navigation mode, errors that 
existed in the alignment but were forced to zero, start to 
propagate. The computed value for the update equation for 
the body to platform direction cosine matrix then becomes :

[<%], = ([<] + SWg) ([C£] + S(ft) (2.50)

Where the following error terms are assumed 

«? = [Cj], - -[Cf] (2.51)

* <  = [<]„ ' [<] (2.52)

Carrying out the multiplication for equation 2.50, and 
substituting for the body to platform direction cosine 
matrix error term given by equation 2.47 gives :

= ([<] 60'’ + «wg) [Cj] (2.53)
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Now consider the development of an alternative form for 
equation 2.53 obtained by differentiation of equation 2.47 
as shown below :
Differentiation of equation 2.47 gives :

SCfb = + 50* [Cg] (2.54)

Equation 2.47 be combined with equation 2.53 to give : 

50*[Cj] + 50*[C*] = [^]50P[C*] + 5<[C£] (2.55)

Re-arranging and making use of equation 2.29 gives :

= [<]*0P[CJ] + 5Wg[Cj] - 50'’[Wg] [Cj] (2.56)

The term [Cg] can now be eliminated to give :

Si" = [<] 60p + 5<‘ - 60* [Wg] (2.57)

Equation 2.57 can be written in vector form using the 
following relationship, where the symmetric matrix is 
expressed in terms of a vector :

[<]S0P - 50p[<] = -[»£,■] X M p (2.58)

The vector equation équivalant to equation 2.57 is then : 

64>p = SWPp - [WPp] xS£p (2.59)

The final stage of the development of equation 2.48, is to 
arrange for the angular vectors in equation 2.59 to be 
expressed in terms of the angular rate between inertial and 
platform frames of reference, as opposed to the present body 
and platform axis set.
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The transforming of the coordinate frames of reference from 
body and platform to inertial and platform will now be 
examined :
Consider the following two equations :

[<%] [<]

And

(2.60)

[»£] - [»£] - 1*5] (2.61)

Combining the two equations gives :

[Eg,] = [»p - [C?] [0&] (2.62)

Now the error angular vector can be expressed in terms of a 
computed and a true value as :

«£-[»&],-[!£] (2-63)

Substituting the value for equation 2.62 gives :

- (t%h ~ [<5]e[Wt]J - ([^] - (2.64)

By combining true and error terms this can be re-written as

Mg, = - ( [CSLIB&L " CCD (^]m) (2-65)

Expressing the true body to platform direction cosine matrix 
in terms of a computed value, and an error value gives :
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§ %  = W p -  ([<%],[*&]. - [Cj]c[^]n + «CJ[W^]J (2.66)

By cancelling terms and applying the result of equation 2.47 
the result becomes :

§Klp = (2'G7)

The final form of equation 2.48 can now be obtained by 
substituting equation 2.67 and 2.62 into equation 2.59 to 
give after some processing :

&&  = 6WP + 5 0 p x  W? ( 2 . 6 8 )—r .   tp —^  —ip

This is the desired result where the angular velocity 
vectors will be seen to represent the angular velocity 
between the platform and inertial frames of reference with 
the values expressed in the platform axis. For the purposes 
of simulation, the angular error vector needs to be
expressed in terms of an earth rate and a transport rate 
error term as follows :
Expressing the angular error vector in terms of a transport 
rate and an earth rate error gives :

&W = SWp + SW (2.69)

The components of the earth rate error vector can be
developed by considering equation 2.70 below :

[Wf] = [ti] [Wf] (2.70)

Where the angular vector representing the rotation of the 
earth with respect to inertial space and expressed in terms 
of the earths' axes is :

9 

0
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An error in the direction cosine matrix will cause a 
resultant error in the earth rate vector. The computed value 
of earth rate in terms of the platform axis can therefore be 
expressed as :

(2.72)

Using equation 2.46 this becomes 

Sm = S0̂ [Cfe] [We] (2.73)

Which reduces to

sm = senmj (2.74)

Where

0 60; -60;
60p = -<S0£ 0 60;

-60; 0

(2.75)

Finally, substituting equations 2.69 and 2.74 into equation 
2.68, allows the attitude error vector to be written in the 
following component form that is suitable for simulation.

s# = « C  + sepz - S6py Wfa + Stfwr,- S<?z W?, (2.76)

Stf; = SW^ + sep <  - sepz wf + Stf wpx - Wp: (2.77)
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= 6^z + Sepy Ml - S$l Ml + Stt Ml - &<% Ml (2.78)

These equations can be used to simulate the attitude error 
for a general inertial system. These general equations will 
be developed into customer specific equations in section2.4.2.
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2.3.3 DEVELOPMENT OF THE POSITION ERROR EQUATION
A position error vector equation can be developed along the 
same lines as for the attitude error vector equation of the 
last section.
The final form of the equation to be developed is shown 
below :

S$p = SWP - Wp~ep x SOP (2.79)

The starting point is to consider the computed value for the 
update equation for the earth to local level direction 
cosine matrix. Assuming an error in the transport rate 
vector then the computed value for the direction cosine 
matrix update equation can be expressed as :

[<%], = ([<] + «»£]) [cj]4P- (2.80)

Where

= [<], - [<]4P 4P- (2.81)

This leads to the following equation :

SC”' = «wÿ[C^] + (2.82)

An alternative equation can be developed for the direction 
cosine matrix error differential. Consider equation 2.46, 
differentiation gives :

SC* = sèpi(fe] + SOPIC*] (2.83)

Combining equations 2.82 and 2.83 gives :

(2.84)
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Using the following relationship :

= -£8̂ ,] x ii" (2.85)

Equation 2.84 can be re-written to give the final form of 
equation 2.79.
In component form the general position error equations are

s¥x = S W ^  + W ^ s e py - W ^ S 9PZ (2 .86 )

S6py = SW^ + W^sep - (2.87)

s¥z = (2.88)

In the next section these general error equations will be 
further developed to give 1RS specific error equations.
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2.4 IRS SPECIFIC POSITION AND ATTITUDE ERROR EQUATIONS
General 1RS error equations have been developed for position 
and attitude. These general equations will now be further 
developed to provide a customer specific instrument error 
model.
2.4.1 1RS SPECIFIC POSITION ERROR EQUATION
The fundamental step in developing the instrument specific 
error equation is to apply the condition of equations 2.89 
and 2.90 below to the general position error equations 
developed in the last section :

These conditions that allow the general position and 
attitude error equations to be developed into JRS specific 
error equations, have been supplied by the customer. The 
conditions define the true 1RS alpha angle and the computed 
1RS alpha angle to be equal. Applying these results to 
equation 2.88 gives :

Applying the condition of equation 2.91 to the x component 
position error given by equation 2.86 gives :

s e pz = 0 (2.89)

(2.90)

M y  - sei) (2.91)

s K  = s w ^  + ( w ^  se; - se;) se; (2.92)

Ignoring the product of error terms gives :

M ;  = sw;px (2.93)

Where

(2.94)
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A similar development follows for the y component position 
error component. Applying the condition of equation 2.91 to 
equation 2.87 gives :

sfr; = s w ^  - (&?£, se; - sepx) se; (2 .95 )

Ignoring the product of error terms gives : 

se; = SW^ (2.96)

Where

5̂  = T r ~ ^ T T  (2-97)

Applying the instrument specific conditions of equations 
2.89 and 2.90 to the general error equations for position, 
has removed the need for the z position error state. The 
remaining x and y position error equations are modelled as 
two states in the optimal 1RS state transition matrix as 
shown in figure 2-6.
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2.4.2 IRS SPECIFIC ATTITUDE ERROR EQUATION
The 1RS specific attitude error equations can be developed 
by applying the conditions of equations 2.89, 2.90 and 2.91 
to the general attitude error equations developed in section
2.3.2.
Substituting for equation 2.91 into equation 2.78 gives :

- w^sepx + sepL - se&z, + (2-98)

Now Using

[»P = [*g] + [Wp (2.99)

The final form of the instrument specific attitude error 
equation for the z component is obtained by substituting for 
equation 2.99 into equation 2.98 above, to give :

s# = wLsepy - W?sepx + sfytL - setoL (2 .1 0 0 )

Having developed the z component, the x component will now 
be considered. Applying the condition of equation 2.89 to 
equation 2.76 gives :

6# = « C  - S»? K  + 5<p? WT - (2.101)

Now from equation 2.99, the z angular component for earth 
rate can be written as :

(2 .102)
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And from equation 2.90

(2.103)

Substituting equations 2.90 into equation 2.102, and 
applying the result of equation 2.101 gives :

s#  = « C  - S0py Kpz + nr? - s<g w?, (2.104)

The final form of the instrument specific attitude error 
equation for x component can be written by substituting for 
the value of £W£px provided by equation 2.94 to give :

5# = ~ S6y wh + s<%wbz- S€  Mb (2.105)
K y  K y

The development of the y instrument specific equation 
follows the same pattern as for the x case, so only the 
final result is shown below :

8<jl = -
6V„ 6R

R
+ 6cffz W?px - Stf Wfp:ipz (2.106)

The final instrument specific attitude error equations for 
the x, y and z axis are modelled as states in the optimal 
1RS state transition matrix as given in figure 2-6.
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2.5 IRS VELOCITY EQUATIONS

2.5.1 DEVELOPMENT OF THE 1RS VELOCITY EQUATIONS
Each of the body mounted accelerometers measures a component 
of acceleration along its sensitive axis according to the 
laws of Newtonian Mechanics. Using vector notation, the 
accelerometer output is given by :

a = _—  - gm (2.107)
dt2

where gm is the mass attraction gravity vector, and d2rydt2 
is the second rate of change of the position vector 
expressed in terms of an inertial frame of reference. From 
the accelerometer output and using a computed value of gm 
the navigation computer is able to solve for r, the vector 
indicating the position of the vehicle. The actual equation 
that will be developed here, is the rate of change of the 
velocity vector as seen by the wander azimuth frame of 
reference.

The mass attraction gravity vector can be written as :

2® = 3 + * %  x r) (2.108)

Where
g is the gravity vector 
and
W:„ is the earth rate vector
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Combining equations 2.107 and 2.108 gives :

^ r = a + ç[ + W. x (W. x r) (2.109)
dt‘

Having arrived at this equation using Newtonian Mechanics, 
a similar equation can be derived using the theorem of
Coriolis.

By the theorem of Coriolis

+ W. x r (2.110)
dt dt —*e —

Which gives:

= V + W. x r (2.Ill)dt — —te —

By differentiating equation 2.111 the second derivative for 
the rate of change of the position vector expressed in terms 
of the inertial frame of reference can be found :

d2r‘ dV1
= + ^ieX ^ + W ieX W ieX r (2.112)

We Can now equate equation 2.112 to the previous equation 
for d2rydt2 obtained from Newtonian Mechanics, to give :

sffri = a + g - W. x V (2.113)dt — ^ — te —
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Having obtained the rate of change of the velocity vector y 
in terms of the inertial frame of reference, an equation can 
be formed for the rate of change of the velocity vector in 
terms of the wander azimuth frame of reference.
From the theorem of coriolis :

S  = ^  ( 2 . 1 1 4 )dt dt — 'p ~

Which gives :

^  ^  - W. X V  (2.115)
dt dt — v —

Combining equations 2.113 and 2.115 gives :

^  = a + £ - W .  x V - W .  x V  (2 • 116)
d t ~  — k  —  “ ip

Which can be written in final form as :

= a + ig - (2W. + W ) x V (2.117)—  — ie — ep —

Where the relationship from equation 2.99 has been used, 
and the final vector equation has been expressed in terms of 
components of the wander azimuth frame. Writing the final 
vector equation in component form gives :

VPX = 9x (2.118)

(2.119)

Vpz = ' + - y;2w%, (2.120)
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Equations 2.118 to 2.120 are general equations in that they 
can be modified for application with either a Gimballed or 
a Strapdown Inertial Naviqation System. For the specific 
Strapdown Inertial System of interest in this work the 
component equations become :

epy
(2.121)

(2.122)

Vf = af + gf + Vf2^ + V %  - Vf2^ - V % (2.123)

Where

rP = 0, 0, -g‘ (2.124)

And

K z  = o (2.125)

For the gravity vector gp the effects of gravity anomaly and 
deviations of the vertical are ignored. The Z axis gravity 
component has a negative value, this is due to the non 
standard axis set used in the customer 1RS for the wander 
azimuth frame of reference, ie the Z axis is positive up. 
The term Wppz equal to zero corresponds to a wander azimuth 
mechanization.
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2.6 GENERAL 1RS VELOCITY ERROR EQUATION
Equation 2.117 gives the rate of change of the velocity 
vector expressed in components of the wander azimuth axis 
with the component form of the equation being given by 2.118 
to 2.220. An error equation for the rate of change of 
velocity coordinized in the wander azimuth axis can be 
formed by considering the difference between the computed 
(subscript c) and true value (no subscript) of the various 
terms of the velocity equation as follows :

SVp = [Vp]c - [Vp] (2.126)

From equation 2.117 this gives :

To proceed with the development of the vector velocity error 
equation the cross product terms can be replaced by their 
skew symmetric matrix equivalent form to give :

SV" = [aph + lg.nc - ([2W£]C + ) X  [vnc
-([a"] + [gp]c - Q2W£] + [»£]) x [V»])

SVP = [a"], + [g'L + ([2<]c + [<]c ) [VP]C
- ([a'] + [gP]c - ([2Wÿ] + [«$]) [?'])

(2.128)

Now introducing the error terms :-

§vp = \vnc - [F] (2.130)

§Jkp = [aHc - [5p] (2.131)

= [3p]c - [gf] (2.132)
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Ignoring products of error terms which are small, the above 
result can now be used to re-write the equation for <SVP in 
its final form :

§V* = SaP + + ([2BÇ ] + [^  ] ) 6VP 133)
+ 5([2^ ] + ]) [F]

This is a general velocity error vector equation which can 
be applied to Strapdown Inertial Reference Systems.
The Component form of the general velocity error vector 
equation is :

Wfj' = 51^ - (2?% +
+ (25^ + - (2#% +

(2.134)

Sap + 8gp - (2Pf& + + (2^

- (25^ + - (25% + 5 % ) ^epx*

(2.135)

«Vf «a/ + figr/ - (2< + W?) SV? - (2< + W') SV?
+ (25< + W '  )yf - (2S< + «W' )V.

(2.136)

Where the values for the acceleration and gravity error 
components are given as follows. For the acceleration error 
components :

8apx = Scfta; - Scftaï (2.137)

8ap = 8(ÿxap - 8<fzap (2.138)
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Saf = S 0 X  - 6^a; (2.139)

The components of the gravity error equation can be 
developed from equation 2.124 and shown to be :

Sg' = 0 (2.140)

Sg; = 0 (2.141)

(2.142)
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2.7 IRS SPECIFIC VELOCITY ERROR EQUATION
The instrument specific velocity error equations are 
obtained by applying the assumptions of equations 2.89 and 
2.90 to the general velocity error equations developed in 
the last section.
Consider first the x axis general velocity error equation 
given by 2.134. The various terms that make up the total 
velocity equation will now be examined and the conditions of 
equations 2.89 and 2.90 applied.
Applying the instrument specific conditions to the third 
term from equation 2.134 gives :

The fourth term of equation 2.134 is not affected by the 
instrument specific equations, but using equation 2.19 it 
can be written as :

Considering the fifth term of equation 2.134 and applying 
the instrument specific condition of equation 2.91 and the 
component result from equation 2.74 gives :

Ignoring the small product of error terms gives :

(2< + PC ) 6V£ = 2FC SVf (2.144)

( 2 <  + ) SV[ = 2W& SVZP + -JL SVf
Kx

(2.145)

(2 5 <  + SW^ )VP = 2 Vf + V*) Sep -
(2<. Vp + W py Vp) S6PX (2.146)
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Considering the sixth term of equation 2.134 and applying 
equations 2.74 and 2.97 gives :

(2SWiP
iey )SVPZ = (250? <  - 2 50? <  + (2.147)

Using equation 2.89 this reduces to :

(25w£, + SWpep>, )SVPZ = (250? + -Isv/ - ̂  (2.148)

These four terms can now be combined with the first and 
second terms from equation 2.134 to give the final 
instrument specific error equation for the x component of 
velocity :

SVP = 5a/ + 2WpaSVp - Y±SVP + {2WpaVp + W^V^) 50?

- (2WP„VP + WPVP) 50? - 256pxWpaVp (2.149)ieyry ”  epyr y

v p v p
- ^-SVP + w^ J L sr?

The development of the equations for the y and z velocity 
error components follows the same method as for the x case 
above, so only the final result for the y and z components 
are shown :

8ap
y- 2W&5V/ + -JL5V/ - {2WpaVp + WPVP) 50?

+ (2^y; + f^ - 2 f % y
yp yp

- -±*r; - »P̂ S R p

(2.150)
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4af + fgf + (2Pf& + 2 ^ )  ̂  - ( 2 %  + 2 ^ )  fy;

+ 2 f % y f  - nr̂ -JLaa,
X

+ asflX^ + K ^ SR

(2.151)

The x and y velocity error equations above are mechanized as 
states in the optimal 1RS state transition matrix as shown 
by figure 2-6. The z velocity error equation given by 2.151 
above, requires further processing as it is unstable in its 
present form. The next section deals with the further 
processing required for the z velocity error equation.
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2.8 BARO INERTIAL LOOP
The gravity term in the Inertial Reference system unaided 
velocity equation (see eq 2.151) is the source of potential 
instability, as it is a function of position and altitude. 
The altitude term used in the evaluation of the gravity 
value will potentially be in error due to any vertical 
accelerometer bias. The vertical channel velocity equation 
is therefore unstable.

To overcome the problem of instability, measurements from an 
outside reference source are combined with the inertial 
system vertical channel information, to form a stable 
system. The external reference source used in this instance 
is a barometric altimeter, which provides a measurement of 
barometric altitude. The barometric altitude is combined 
with the inertial system data by using a third order filter 
as shown in figure 2-4.

Ignoring the effect of transients, in a stationary condition 
the damped inertial altitude will follow the baro reference 
altitude, which is supplied from an air data computer 
system.

2.8.1 BARO INERTIAL LOOP ERROR MODEL DEVELOPMENT
The inertial reference system vertical channel unaided 
velocity equation is given by 2.123 as :

Af = v? - sr/ + (2W&. + W & v ;  - (2PC + W^)Vyp (2.152)

Where the equation used for the computed gravity value is :

gf = 32.087448 + 0.1697sin2(X) - 64.613- (2.153)
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A baro inertial error model can be formed by assuming error 
components for the calculated gravity, rate of change of 
vertical velocity and coriolis terms. Figure 2-5 shows a 
block diagram of the baro loop error model.

The term <Shref represents the error term from the baro 
inertial reference source. In practice there is often a lag 
effect associated with the baro inertial instrument.

The term DVZ represents the error value for the 1RS rate of 
change of vertical velocity and computed coriolis terms as 
shown below :

The computed gravity error term 5g in figure 2-5 is a 
function of altitude and is given by equation 2.142. The 
terms Klf K2 and K3 in figure 2.5 are gain terms chosen as 
follows :

+ 2 8 0 Z w l v E  - W£

(2.156)

3 (2.157)T2

(2.158)

Where tau is the filter time constant which has been chosen 
to be 100 seconds.
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The following state space equations can be applied to the 
error model :

Sh 1 0 Sh 0
SV = 0 -1 SV + k 2

8 h ref + DVZ

SX * 3 0 0 SX -k3 0

The states used to represent the baro inertial error model 
are mechanized to form part of the overall 1RS error model 
state transition matrix, as shown in figure 2-6.

Now that specific 1RS error model equations for position, 
attitude and velocity have been developed, the form of the 
model to be used for the two 1RS sensors will be examined.
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2.9 INERTIAL REFERENCE SYSTEM SENSORS
The strapdown inertial reference system has two sensors, 
gyros and accelerometers. Information about the specific 
errors associated with these instruments has been provided 
by the customer in the form of an 1RS error budget table. 
Since it will be referred to in several other chapters of 
this thesis, the customer 1RS error budget table is shown in 
appendix B.

2.9.1 RING LASER GYRO
The ring laser gyro measures rate, which is then integrated 
to get angle, thus it is a rate integrating gyro. The 
inertial reference system contains three ring laser gyros 
for the three input axes Xb, Yb and Zb (see figure 2-3) . The 
error budget table (see appendix B) shows that the ring 
laser gyro has two sources of error, a random walk error, 
and a fixed gyro bias error.
The random walk is an error source that varies randomly with 
time. The term random walk refers to random walk in angle 
which is caused by integrating white noise in rate. To 
represent random walk in the 1RS error model no states are 
required. The fixed bias error is a random constant error, 
that remains constant with time. The error budget table 
shows that the fixed bias values for the local level X and 
Y gyros have a lower value than for the Z gyro, this is due 
to the fact that the Z gyro quality does not need to be as 
good as the local level gyros as its impact on the resultant 
1RS performance is not as great. Three states are required 
to represent the three gyro bias errors. The states are 
shown in figure 2-6 by the terms ex, ey and ez.

2.9.2 ACCELEROMETER
The inertial reference system consists of three 
accelerometers for the three input axes (see figure 2-3) . 
The accelerometers are single degree of freedom devices that 
use a proof mass suspended in a pendulous manner to measure 
acceleration. The error budget table shows that the 
accelerometer has three sources of error, a fixed bias, a 
wide band noise and a gravity anomaly error. The error 
values for all three accelerometers are the same. To 
represent the accelerometer correlated noise no states are 
required. To represent the accelerometer bias errors, three 
states are used, as shown by the terms vx,vx, and vx in figure 
2—6 .
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2.10 COMMENTS
The customer specific 1RS error model has been developed in 
this chapter. It is in the form of a state vector matrix 
differential equation consisting of 17 states. The 1RS error 
model is used as the basis for an 1RS simulation module, 
which forms part of a total simulation program that is used 
to develop the Kalman filter.
The simulation program is discussed in chapter 5, where 
details are given of the method used to implement the 1RS 
error model.
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CHAPTER 3

G L O B A L  POSITIONING S Y S T E M

3.1 INTRODUCTION
The Navstar Global Positioning System (GPS) is a space based 
radio navigation system which provides position, velocity 
and time both globally and continuously. The GPS system 
comprises three major segments Space, Control, and User. The 
GPS development and production program for all three 
segments is managed by the US Air Force System Command, 
Space Division, Navstar GPS Joint Program Office at Los 
Angeles Air Force Station, California.

3.1.1 SPACE SEGMENT
The GPS space segment when fully operational will consist of 
18 operational satellites and 3 active spares. The 
satellites will be placed in 6 orbital planes with 3 
operational satellites in each plane and an active spare in 
every other plane to provide continuous 4 satellite 
coverage. The satellite orbital planes will have an 
inclination relative to the equator of 55 degrees and the 
orbit height will be 10,900 miles. The satellites will 
complete an orbit in approximately 12 hours. An observer on 
the ground will observe the same satellite ground track each 
day however, the satellite will become visible 4 minutes 
earlier each day due to a 4 minute / day difference between 
the satellite orbit time and the rotation of the earth.
The satellites radiate two spread spectrum pseudo random 
noise radio signals, at the following frequencies : L̂  =
1575.42 MHZ and 1% = 1227.6 MHZ. Both frequencies are derived 
from a highly stable on-board atomic clock. The spread 
spectrum techniques used are a Coarse / Acquisition code 
(C/A code) and a Precise code (P code ) . The Lj frequency is 
sent using a C/A code and a P code, while the U, frequency is 
sent using only a P code. The C/A code is available to any 
GPS user either military or civilian, but the P code is only 
available to US Military users, NATO military users and 
other military users as determined by the US Department of 
Defense.
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Both the P code and C/A code enable a receiver to determine 
the range between the satellite and the user. Since only the 
P code is on both frequencies, military users can make a 
dual frequency comparison to compensate for ionospheric 
propagation delay in the different transmission times.
The C/A code user must use a model for the ionosphere which 
results in a lesser navigation accuracy being obtained when 
compared to the P code user. Ananda (1988) reviews the 
navigation accuracy that can be achieved using GPS, by 
defining the concept of a user range error. Both the Space 
Segment, Control Segment and User Segments are analyzed.

3.1.2 CONTROL SEGMENT
The control segment consists of one Master Control Station 
(MCS) at Falcon Air force Station in Colorado Springs, USA 
plus monitor stations at Hawaii, Kwajalein, Diego Garcia and 
Ascencion. The monitor stations passively track all GPS 
satellites in view, collecting ranging data and satellite 
clock data from each satellite. This information is passed 
on to the MCS where the satellite future ephemeris and 
clock drift are predicted. Updated ephemeris and clock data 
are up-loaded to each satellite for later transmission to 
users. The control segment is also responsible for 
maintaining the health of the satellites.

3.1.3 USER SEGMENT
Navstar GPS can be used for different purposes including 
navigation for space, air, sea and land vehicles. The user 
segment consists of equipment with antenna, receiver, signal 
processing and data processing capabilities. Due to the 
large variety of users, several different types of GPS 
receivers are required.

3.2 BASIC GPS RECEIVER OPERATION
Satellite signals from each of the orbiting satellites can 
be received by the GPS receiver. Each satellite transmits a 
Navigation Message (NAV MSG) via almanac and ephemeris data. 
Almanac data contains information about all satellites in 
the constellation, whereas ephemeris data is specific to a 
single satellite. Before the Nav Msg can be read, the 
receiver has to track the carrier frequency being 
transmitted by the satellite, this is achieved via a carrier 
tracking loop.
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Also the receiver has to track the C/A code and P code 
signals, this is achieved with a code tracking loop. The 
carrier tracking loop provides a measurement of relative 
velocity between the GPS receiver and the satellite being 
tracked. This measurement is commonly referred to as a delta 
range measurement. By using the relative velocity to four 
satellites the GPS receiver can determine its velocity 
relative to the earth.

Once the carrier tracking loop and the code tracking loop 
have locked on to the received signal the Nav Msg can be 
demodulated and the resultant satellite information 
processed. Contained within the Nav Msg is the time of 
transmission of the satellite signal, the GPS set can use 
this information together with the time it received the 
signal to make a measurement of range to the satellite.

To make an accurate measurement of range using time, the GPS 
receiver time source needs to be referenced to the GPS 
system time. This can be achieved by using an atomic time 
standard in the GPS receiver, however this type of time 
standard is expensive and not normally considered. Instead 
a cheaper crystal oscillator is used and the GPS receiver 
corrects its offset from GPS system time before calculating 
position. Because the GPS receiver clock introduces a bias 
to the true range to the satellite, the range measurement 
made is referred to as a pseudo range. By making four pseudo 
range measurements, the GPS receiver can estimate its 
position and GPS system time.

The GPS receiver calculates its position relative to the 
earth by using pseudo range measurements, and satellite 
position information which it obtains by decoding the Nav 
Msg. Consider figure 3-1. it shows the GPS receiver and 
satellite position (S^ relative to the earth. The Earth 
Centred Earth Fixed (ECEF) frame of reference is shown by 
the axis set XYZ. The ECEF frame is defined as a frame which 
is fixed to the earth with its centre at the earths centre. 
Its X axis is defined as passing through the Greenwich 
meridian and the equator and the Z axis passing through the 
North pole. The frame of reference rotates about the Z axis 
with respect to inertial space at earth rate (n).
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The satellite position in terms of ECEF coordinates is : 

—! = (Sk, Slyf siz) (3.1)

Similarly the receiver position in terms of ECEF coordinates 
is:

(Ux, Uy, Uz) (3.2)

The satellite position relative to the earth is obtained by 
decoding the Nav Msg from satellite Sj. The user position 
relative to the earth is computed using the pseudo range 
information from a total of four satellites, one of which is 
shown in figure 3-1. The actual range of satellite Sl to the 
user is given by the distance however, because of the GPS 
receiver clock bias, the actual pseudo range measured is (rx 
- cb) where cb is the user clock bias.

Thus an equation for the pseudo range measurement from 
satellite Ŝ  can be formed as follows :

(r, - c , ) 2  = (Sk - eg2 + (Sly - eg2 + (su - uz)2 (3 .3)

This equation contains three unknowns relating to the user 
position, and one unknown relating to the receiver clock 
bias. Although the pseudo range measurement from each 
satellite is different, the user clock bias cb, is the same. 
To solve for these four unknowns, three additional satellite 
equations are needed.

Once a value for user position has been evaluated, it will 
be in terms of ECEF coordinates. It will then have to be 
transformed into geodetic coordinates to provide latitude, 
longitude and altitude information. The transformation from 
ECEF to geodetic coordinates must be carried out by 
iteration or direct approximation, as an exact solution does 
not exist. Olson (1988) reviews several possible methods of 
calculating geodetic coordinates from ECEF coordinates.
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The inverse transformation from geodetic to ECEF coordinates 
is exact, the transformation is shown below :

X = (Rc + h)Cos(X)Cos(§) (3.4)

Y = (R + h)Cos(\)Sin($) (3.5)

Z = ((1 - e2)Rc + h)Sin(\) (3.6)

Where the earth radius value Rc is given by

R =  ------- — 5-----  (3.7)
(1 - e2Sin2\)1

In most GPS receivers, the measurement equations for 
position and velocity are implemented in a Kalman filter. 
For position, an estimate of pseudo range is made which is 
then used to update a state vector. The choice of GPS states 
chosen for the state vector generally includes position, 
velocity, clock bias and clock bias rate. Acceleration 
states can also be included to provide a smoother velocity 
estimate when operating in a dynamic environment.

No attempt is made here to discuss GPS Kalman filter design, 
as this information is not needed to understand the GPS 
error model used in this thesis. However, it is important to 
be aware of the GPS Kalman filter as it can have an impact 
on the 1RS/GPS integration.
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Two measurements have been discussed above, delta range 
relating to velocity and pseudo range relating to position. 
If these two raw measurements are output by the GPS 
receiver, then GPS position and velocity can be calculated 
by an external processor. Alternatively the GPS receiver can 
output its calculated position in terms of 
latitude/longitude and its velocity in terms of velocity 
north/east. Techniques to integrate GPS and 1RS can utilize 
both types of GPS output, although the actual implementation 
is very dependant on which of the two possible GPS outputs 
is being used. Dayton (1989) discusses the advantages and 
disadvantages of both schemes.

3.3 ROCKWELL COLLINS 5 CHANNEL GPS RECEIVER
The type of GPS system being considered in this thesis is 
the Rockwell Collins 5 channel Receiver. This is a military 
system capable of tracking both C/A code and P code signals. 
It has a dedicated Control Display Unit (CDU) to allow the 
user to communicate with the system. Data is output to the 
Flight Management Computer via a MIL STD 1553 Communications 
Bus. This bus can also be used to control the GPS receiver, 
thus replacing the need for a dedicated CDU.

3.4 COMMENTS
A GPS simulation module is implemented as part of the 
overall simulation program used to develop the Kalman 
filter. Details of the GPS simulation module are given in 
chapter 5, where the simulation program is discussed.
The next chapter deals with the Kalman filter.
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CHAPTER 4
K A L M A N  FILTER

4.1 INTRODUCTION
The Kalman filter is the means by which the outputs from the 
inertial reference system and the global positioning system 
are combined inside the flight management computer. In this 
chapter the theory relating to the Kalman filter is reviewed 
but not derived.

The 1RS was discussed in chapter 2 where details were given 
for the development of an inertial reference system error 
model. From the 1RS error model a Kalman filter error model 
can be developed. The development of the Kalman filter error 
model is discussed in this chapter.

The final part of the chapter deals with specific issues 
relating to the implementation of the Kalman filter in the 
flight management computer. Firstly, the solution of the 
Kalman filter transition matrix is discussed. This leads to 
the development of a fast/slow loop mechanization. Then, the 
technique used by the Kalman filter to model the 1RS gyro 
and accelerometer errors is described.
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4.2 KALMAN FILTER THEORY
Figure 4-1 shows a block diagram of a Kalman filter. The 
discrete Kalman filter equations relating to the diagram can 
be summarized as follows (reference Gelb 1987) :
System Model And Measurement Model Equations

(4.1)

(4.2)

(4.3)

Where
W% is process noise of strength Qk 
Y,, is measurement noise of strength Rk
State Estimate And Error Covariance Extrapolation

(4.4)

(4.5)

State Estimate And Error Covariance Update

& ( + )  = & ( - )  + x kl * k ~ a * 4 ( - ) ] (4.6)

Pk(+) = [ J  -  Kfik]Pk(-) (4.7)

Kalman Gain Matrix

(4.8)
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The Kalman filter incorporates a system model in the form of 
a state transition matrix as shown by equation 4.1. 
Identification of the system model is one of the most 
difficult aspects in designing a Kalman filter. The form of 
the Kalman filter transition matrix used to represent the 
1RS error model is discussed in this chapter in section 4.3, 
and is shown to consist of 12x 12 matrix.
The Kalman filter takes a measurement Z* and subtracts from 
it the best prediction of its value before the actual 
measurement is made. In this work the measurements take the 
form of two position values, latitude and longitude, and two 
velocity values, velocity north and velocity east. These 
four data values are formed as the difference between 1RS 
and GPS outputs. The measurement difference is then passed 
through an optimal weighting matrix K% and used to correct 
the best estimate of the state equation at the time instant 
before the measurement is taken. The optimal gain matrix K% 
is computed from the covariance prediction provided by 
equation 4.5, which can be interpreted as the Kalman filter 
uncertainty in its estimate of the system states. The gain 
matrix can be computed off line where the gain values can 
then be stored in a look up table for future use. In this 
application however, the gain matrix is computed in real 
time.

4.2.1 OBSERVABILITY
Observability is an important part of Kalman filter theory. 
Gelb (1986) gives the following statement for the 
observability condition for a continuous system :- A system 
is observable at time > t0 if it is possible to determine 
the state X(t0) by observing Z (t) in the interval (tQ, tj . If 
all states X(t) corresponding to all Z(t) are observable, 
the system is completely observable. A necessary and 
sufficient condition that the system defined by equations
4.1 and 4.2 be completely observable is that the 
observability matrix shown below be positive definite for 
some t > t0 (reference Sorenson 1970) .

The observability matrix can be seen to be dependant in part 
on the system state transition matrix. For the Kalman filter 
developed in this work the transistion matrix is of order 12 
x 12. The analytic computation of the observability matrix 
can only realistically be applied therefore using a 
computer.
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When applying equation 4.9, the observability of the system 
is indicated by the fact that the resultant matrix is 
positive definite. In chapter 7 and 8 of this work the 
Kalman filters ability to observe states is discussed, no 
attempt is made however to apply equation 4.9.

4.3 SELECTING THE KALMAN FILTER STATE MODEL
In the chapter 2 an 1RS error model suitable for modelling 
the customer inertial reference system was developed. In 
its final form the model contained 17 states, this being the 
total number of states thought necessary to accurately 
represent the inertial system behaviour for the proposed 
application. This 17 state 1RS error model can be used as 
the basis for a Kalman filter error model, by making the 
Kalman filter state vector X and system matrix F, equal to 
the 1RS state vector and system matrix. In this form the 
Kalman filter is referred to as being an optimal Kalman 
filter because it contains the same number of states as the 
1RS error model. Although the Kalman filter should be able 
to accurately represent the 1RS error performance using an 
optimal model, it is not often practical to implement the 
Kalman filter with such a large number of states, and 
therefore an alternative Kalman filter solution with a 
reduced number of states is developed. This reduced order 
filter is referred to as a sub optimal Kalman filter.

One method of producing a sub optimal Kalman filter is to 
use the technique of sensitivity analysis. Here the 
covariance equations of the optimal and sub optimal Kalman 
filters are compared in a systematic way, to determine the 
best choice of states that meet the requirements of the sub 
optimal design while still being representative of the real 
world system. One sub optimal design requirement may be for 
example that no more than 10 states can be accommodated in 
the state vector equation, as this is the maximum number of 
states that the real time software can process. Assume that 
the total number of states in the optimal Kalman filter 
model is 20, then in attempting to meet this sub optimal 
system requirement the Kalman filter designer would need to 
carry out a sensitivity analysis, where various states were 
selected for inclusion into the sub optimal Kalman filter 
model, and the filter performance for each selection of 
states, examined against the optimal filter performance.
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A general outline of the sub optimal Kalman filter design 
process has been discussed above. No attempt has been made 
to describe in detail the equations needed to implement the 
technique, because for this particular thesis the states 
necessary to form a sub optimal Kalman filter were provided 
by the customer, thus it was felt that because of this the 
_engthy process of sub optimal filter design was not needed. 
The philosophy behind this thinking was, that the states 
necessary to form a sub optimal Kalman filter have been 
provided, so the optimal 1RS model could be used as a 
baseline with which to compare the sub optimal Kalman filter

sssrs- «fa as. .-«ras:filter covariance initialisation parameters P(0) and the 
noise matrix Q, could be used to tune the sub optimal filter 
to make its response to learning 1RS errors slightly pessimistic. y 2

The 12 states as supplied by the customer that make up the 
Kalman filter sub optimal model and the associated system 

tre .sl?0.wn in figure 4-2. The system matrix can be
rnnofSo  ̂^ lngn-7 t °Ptimal IRS system matrix which 
ïwlî of 17 x 17 states, and deleting those rows/columns 
that are not associated with the 12 sub optimal states. It 
is of interest to compare the optimal and sub optimal state 
ectors to gain an understanding of the reasons behind the 

i ^  sub optimal states. The comparison of the 
1RS and Kalman filter state vectors is shown in figure 4-3

•Can4.J3e Ste.n that all of the states that are included in the optimal state vector, but not the sub 
optimal state vector, can be associated with the 1RS 
vertical channel. It was stated in chapter 2, section 2.8, 
that the inertial reference system vertical channel is 
unstable, and because of this a baro inertial loop is 
mechanized. As a result of using the baro inertial loop, the 

ln H  vertical channel are bounded, and have little 
affect on the local level axis errors. Therefore, the 
vertical channel effect can be ignored when choosing the 
f^ates for the sub optimal Kalman filter. in some 
applications, the vertical channel is modelled in a separate 
filter. Graham (1986) discusses such a scheme intended for 
use in a standard integration filter.

Now that the form of the sub optimal Kalman filter system
STS £ £ £ .to the ̂ — tation
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4.4 TRANSITION MATRIX EQUATION
The Kalman filter system matrix (F) used to represent the 
customer 1RS error model has been shown to consist of a 12 
x 12 matrix. The system matrix is needed to form the state 
transition matrix as used in equation 4.1. The solution of 
the transition matrix and its implementation in the Kalman 
filter will now be examined.
Consider a continuous system described by the linear 
stochastic vector differential equation as shown below :

X = F{t)X + W (4.10)

Where :
X is an n x 1 state vector
F (t) is an n x n system matrix whose elements are continuous 
functions of the independent variable t.
W is an n dimensional gaussian white noise process with the 
following statistics :

£[!£] = 0 (4.11)

Where Q(t) is a n x n symmetric, non negative definite 
matrix and 5(t - t ) is the dirac delta function.

The solution for equation 4.10 is given by :

Where #(t/r) is the transition matrix and is the solution of 
the matrix differential equation :

E[W WT] = Q(t) 6 (t ~ T) (4.12)

(4.13)

(4.14)
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The transition matrix has the properties that :

= *(tkft{) for all tkltjfti (4.15)

With 
$(0) = I

When implementing the Kalman filter a discrete form of the 
transition matrix equation is required. One possible 
solution for the transition matrix is the matrix exponential 
form as shown below :

F(T)dT (4.16)

Which can be expanded to give the following solution for the 
transition matrix :

$(t,t0) = J + FAt + F2—  (4.17)

Equation 4.17 is a solution for the transition matrix only 
if the following commutation property is valid :

F(t) J.F(T)dT = J>(T)dT F(t) (4.18)

For the Kalman filter implementation in this work, the 
exponential solution was not used, instead a Taylor series 
solution was implemented.
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4.4.1 TAYLOR SERIES SOLUTION
The Taylor series solution for equation 4.14 is given by : 

S(t,t0) = I + FAt + + F2̂ .  (4.19)

This equation shows that the taylor series solution requires 
a value for the differential of the F matrix. One possible 
way of avoiding the need to generate the differential of the 
F matrix is to use a Runge Kutta method of integration, 
which requires a knowledge of certain functions ahead of 
time. For the implementation of the Kalman filter in the 
target system this information was not available, as the 
flight management computer which houses the Kalman filter 
only reads 1RS and GPS measurements at certain times.
For the simulation program, generating the rate of change of 
the F matrix is not a problem, however for the actual Kalman 
filter implementation in the flight management computer, 
generation of the differential of the F matrix was 
considered to be a time intensive task, and therefore 
consideration was only given to a first order taylor series 
solution.

For a first order solution the transition matrix takes the 
following discrete form :

= X + F(t)At (4.20)

The discrete transition matrix operates on the state vector 
as follows :

4  = *(t*,tiw)X*_i (4.21)

Thus the state transition matrix in this discrete form 
describes the influence of the state vector over one time 
period only, it does not provide the relationship between 
state vectors over all time.
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4.4.2 KALMAN FILTER FAST LOOP SLOW LOOP MECHANISATION
The Kalman filter works on the assumption that its input 
measurements are un-correlated over time. In this 
implementation, to avoid any possibility of correlated 
measurements, the 1RS and GPS measurements are processed by 
the Kalman filter every 30 seconds. The interval of 30 
seconds was chosen by the fact that the GPS contains its own 
internal Kalman filter, which means that the GPS position 
and velocity outputs potentially become correlated with 
previous measurements if they are processed at to high a 
rate. Sturza (1984) also suggests a processing interval of 
30 seconds.
As well as processing position and velocity information from 
the 1RS, the Kalman filter also receives aircraft attitude 
information in the form of pitch, roll and azimuth. This 
data is used to form the Kalman filter F matrix, which in 
turn is used to compute the transition matrix. The fact that 
the 1RS position and velocity information is required to be 
processed every 30 seconds, would normally mean that the 
computation of the F matrix would be carried out at the same 
rate. Consideration needs to be given to increasing the 
speed of computing the F matrix in this implementation 
however, because of the restriction that is placed on the 
transition matrix which is, that it can only be computed to 
first order.
An investigation was carried out to compare the results 
obtained from two Kalman filter modules, with the first 
module having the transition matrix coded using terms to 
first order, and the second module having the transition 
matrix coded using terms to second order. Using these two 
modules the results for different Kalman filter iteration 
times were investigated. A Taylor series expansion was used 
for the solution in both cases. The form of the transition 
matrix for each case is given below :
For 1st order : 

i(k+l,k) = I + F At (4.22)

For 2nd order :

i(k+l,k) = I + F At + (F + F) At2/2 (4.23)
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To investigate the effect of different Kalman filter 
iteration rates, runs for 30 seconds, 15 seconds, 5 seconds 
and 1 second were carried out for the two modules. The 
Kalman filter results for the two cases called at 30 seconds 
are shown in figure 4-4. The data shown in figure 4-4 is the 
first 8 states of the Kalman filter state vector X. The 
result shows a noticeable difference between each of the 8 
states. The result for the two filters being called at 15 
seconds (result not shown) also showed a noticeable 
difference between states.
For the 5 second iteration rate the difference between the 
results for the two modules was very small as is shown by 
figure 4-5, indicating that at this rate the first order 
equation provides a similar result to the second order 
equation.
The 1 second results (not shown) were similar to the 5 
second case. The Kalman filter design was therefore modified 
to include a fast loop and a slow loop. The fast loop being 
called at 5 seconds and the slow loop at 30 seconds. In the 
fast loop the Kalman filter state equation and the Kalman 
filter covariance extrapolation equation are computed.
The remainder of the Kalman filter equations are implemented 
in the slow loop. The 3 0 second slow loop is needed since 
the Kalman filter measurements need to be processed at this 
rate to avoid the effects of measurement correlation, as 
discussed. A summary of the Kalman filter equations 
implemented in the fast loop and slow loop are given below

Fast loop

Kk = *t 4-, + B?t-, (4.24)

Pt(~) = (+)*tr + Q m (4.25)
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Slow loop

(4.26)

Pt(+) = [J - %]P;(-) (4.27)

&(+) = Kt(~) - % ( - ) ] (4.28)

4.5 KALMAN FILTER MEASUREMENT PROCESSING
The Kalman filter state estimate equation 4.6, and the error 
covariance update equation 4.7, are all computed during the 
slow loop cycle as is the Kalman filter gain equation 4.8. 
The implementation of these equations will now be examined.
During the Kalman filter measurement process, four 1RS and 
GPS measurements are made, these being two position
measurements corresponding to the states X(l) and X(2) in 
the Kalman filter state vector, and two velocity
measurements corresponding to the states X(3) and X(4) in 
the state vector. The GPS and 1RS measurement residuals 
determine the form of the Kalman filter measurement matrix 
(H). Consider that initially a vector measurement is to be
made such that the measurement matrix is required to be of
order 4 x 12. The matrix order of the filter gain equation 
can now be examined. From equation 4.8 the gain matrix is 
given by :

(4.29)
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Which has the following matrix order :

K = [12x12][12x4]([4x12][12x12][12x4] + [4x4] T 1 (4.30)

This reduces to :

X = [12 x 4] + [4 x 4]_1 (4.31)

From this equation it can be seen that to process the vector 
measurement an inversion of a 4 x 4 matrix is required which 
is a processor intensive activity. To avoid the need for a 
matrix inversion, a scalar form of measurement processing 
was implemented.

To implement a scalar measurement process, the gain equation 
is computed four times. The form of the measurement matrix 
H for the four measurements is given below :

For the position measurement associated with the state X(l)

H = [1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (4.32)

For the position measurement associated with the state X(2)

H = [0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (4.33)

For the velocity measurement associated with the state X(3)

H = [0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (4.34)

For the velocity measurement associated with the state X(4) 

H =  [0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (4.35)
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The matrix form of the gain equation for the scalar 
measurement is :

K = [12 x 1] [1 x I]"1 (4.3 6)

Establishing the form of the Kalman filter gain equation 
also establishes the form of the covariance update equation 
as shown below.

From equation 4.7 the Kalman filter update equation is : 

Pk(+) = [I - KkHk'\Pk(-) (4.37)

Which has the following matrix order

Pk(+) = ([12x22]-[12x12][12x2][1x22][12x22]) (4.38)

In the implementation of the scalar measurement, equations 
4.26, 4.27 and 4.28 need to be processedxfour times for
each measurement. The Kalman filter covariance estimate 
equation as given by equation 4.25 is not dependant on the 
form of the measurement matrix, and therefore it only needs 
to be computed once during the scalar measurement scheme.

4.5.1 IMPLEMENTATION ISSUES
The implementation of the covariance update equation has 
some specific issues associated with it which need to be 
considered. The covariance update equation requires a long 
word length if it is to be calculated accurately, as the 
equation is often concerned with the small difference of 
large numbers. If implemented on a fixed word length 
computer, then the covariance update equation can lose its 
accuracy due to the accumulation of round off errors. This 
leads to numerical instability where the computed covariance 
matrices become non positive semi definite.
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Potter (1963) aware of this potential problem in the 
conventional Kalman filter, formulated an alternative 
covariance algorithm in terms of a matrix square root which 
guarantees non negativity of the computed covariance matrix, 
whilst resulting in a stable update equation. Bierman (1976) 
produced a modified square root algorithm by use of a U-D 
factorization procedure. The Bierman U-D factorization 
approach achieves the same computational precision as the 
square root filter, but is computational more efficient, 
since it avoids any real time square root operations.

Since Potter and Bierman, there has been considerable work 
carried out in this area by various authors. Upadhyay (1979) 
discusses a solution to the processor loading problem that 
places a major constraint on the real time Kalman filter 
implementation, while Brown (1983) discusses how the U-D 
factorization algorithm which is normally associated with a 
scalar measurement scheme, can be extended to the more 
general vector measurement case, where the measurement 
noises are correlated.

The form of the covariance update equation implemented in 
this thesis is not based on the U-D factorization or the 
Potter square root approach. It is essentially the 
conventional Kalman filter equation, mechanized for a scalar 
measurement, carried out using double precision arithmetic. 
A trade study was not carried out to compare the accuracy of 
the U-D or Potter approaches against a double precision 
approach, because of development time limitations associated 
with the project. However, during the simulation development 
phase, a constant monitor was kept on the values of the 
covariance matrix diagonal terms to detect for negative 
values.

4.6 DEVELOPING THE KALMAN FILTER INSTRUMENT ERROR MODELS
Having established the form of the Kalman filter sub optimal 
system model, there is the need to develop the values 
required to initialize the Kalman filter covariance matrix 
P (0) and the process noise matrix Q(0). From the Kalman 
filter sub optimal state vector, two sources of instrument 
errors can be identified, gyro bias errors, and 
accelerometer bias errors. Associated with the gyro bias 
error is a gyro random walk. Associated with the 
accelerometer bias error is wide band noise, and a gravity 
anomaly error. The values needed to initialize the Kalman 
filter covariance matrix and the process noise matrix can be 
obtained by considering these instrument errors.
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4.6.1 COVARIANCE MATRIX INITIALIZATION
The Kalman filter uncertainty of its estimate of the state 
vector X is given by the values of the diagonal terms of the 
Kalman filter covariance matrix. The initial value given to 
the diagonal elements of the covariance matrix therefore 
represents the initial uncertainty of the Kalman filter 
states. Appendix C gives the relationship between the 
diagonal elements of the Kalman filter covariance matrix and 
the 1RS states. The determination of the values needed to 
initialise the covariance matrix is often based on some a 
priori knowledge of the system. In this instance details of 
the gyro bias error values and the accelerometer bias error 
values are provided by the customer error budget table (see 
appendix B). For the remaining 7 states, engineering 
judgement was used. A summary of the 12 initialisation 
parameters for P (0) is given in table 4-1.
This particular selection of the Kalman filter 
initialisation parameters does not take into account the 
various alignment conditions that may be encountered when 
operating with the customer inertial reference system. (In 
chapter 8, the topic of setting the Kalman filter covariance 
initialisation values to reflect a particular alignment 
condition is considered in detail. It is shown there, how 
the navigation performance of the Kalman filter can be 
improved by matching the initialisation values to the 1RS 
alignment condition. The need to match the covariance 
parameters to the 1RS alignment condition was only 
discovered as a result of the initial Kalman filter 
development work that was carried out in chapters 6 and 7. 
Therefore, for the Kalman filter work that is discussed in 
chapters 6 and 7 of this thesis, the general unmatched 
covariance values of table 4-1 are used.)

4.6.2 PROCESS NOISE MATRIX INITIALISATION
The values used in this matrix relate to gyro random walk 
and accelerometer correlated noise.

4.6.2.1 GYRO RANDOM WALK
The subject of gyro random walk was briefly discussed in 
chapter 2, where it was stated that gyro random walk is 
obtained by passing white rate noise through an integrator. 
To account for gyro random walk the elements of the 12 x 12 
process noise matrix Q, that need to be initialized are 
those elements that correspond to the platform axis tilt 
states in the sub optimal state vector, these being X(5) , 
X (6) and X(7) see figure 4-2.
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The process noise matrix is mechanized in terms of the body 
axis, therefore to obtain the correct value of process noise 
on elements that are mechanized in the platform axis, a 
similarity transformation is needed. The direction cosines 
that relate body axis to platform axis can be used to carry 
out the similarity transformation, as shown below :

08p = (4.39)

The direction cosine matrix Cg was developed in chapter 2.
The elements of the process noise matrix Qj| that correspond 
to the three body mounted gyros are as follows :
Qg (1,1) - Relates to the x gyro random walk
Qg (2,2) - Relates to the y gyro random walk
Qg (3,3) - Relates to the z gyro random walk

The values used for the gyros to account for random walk are 
obtained from the customer error budget table (see appendix 
B). From the table the value for the X,Y and Z gyro random 
walk can be seen to be 0.002 deg/sqrt hr.

4.6.2.2 ACCELEROMETER CORRELATED NOISE
The customer error budget table given in appendix B lists 
the following two sources of accelerometer noise, wide band 
noise and gravity anomaly. Both of these noise sources need 
to be accounted for in the Kalman filter process noise 
matrix. An examination of the error budget table reveals 
that both of these noise sources are exponentially time 
correlated. For the wide band noise a correlation time is 
given, however for the gravity anomaly filter a spatial 
correlation distance is given as opposed to a correlation 
time. A correlation time of 225 seconds for example, can be 
obtained for the gravity anomaly filter by considering the 
correlation distance of 25 nm to be taken at a speed of 400 
nm/hr.
Since the noise associated with the accelerometer is 
correlated, then a state is required if the correlated noise 
is to be modelled exactly.
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One way of avoiding the need for additional states is to 
replace the exponentially time correlated noise with a white 
noise approximation, because white noise requires no states.

An equivalent equation will now be developed for the white 
noise approximation, to the accelerometer correlated noise. 
Consider an exponentially correlated error, it can be 
described by the following continuous state equation :

X(t) = -JLx(t) + W(t) (4.40)

Where
Tc - correlation time
W(t) - white noise
X(t) - has variance o2
E{ W(t).W(t + t) } = [2 a2/Tc] S(t)

The steady process auto correlation function for the 
correlated error is given by :

l M T) = tr2e ( 4 ‘4 1 >

The power spectral density function can be formed from the 
auto correlation function using the fourier transform pair 
equation shown below :

+0° -ili
Sf(u) = 2 J <j2e ï* Cos (cot) dr (4.42)
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Evaluating this equation gives the following power spectral 
density function :

Figure 4-6 shows the power spectral density versus frequency 
plot for equation 4.43 . At zero frequency the amplitude of 
the power spectral density plot is given by :

This equation gives the required value of noise needed for 
the white noise approximation to the correlated model. The 
value of Q needed for the Kalman filter implementation can 
be calculated using the discrete equivalent form of equation 
4.44 which is :

Q = 2cr2TcGoAt (4.45)

Where
G0 is the scaling term from g to nm/hr

At is the Kalman filter iteration time
To take account of the two accelerometer noises, the rms 
values for wide band noise and gravity anomaly are Rssed. 
The 1 sigma values used for the two noises are 30 ug for the 
gravity anomaly and 3 ug for the wide band noise, these 
values having been obtained from the customer error budget 
table (see appendix B).

The process noise values that account for the accelerometer 
correlated noise are placed on the elements of the Q matrix 
that corresponds to platform axis velocity, these states 
being X(3) and X(4). The value of process noise obtained 
from equation 4.45 is mechanized in terms of the body axis.

(4.43)

Sf(œ) = 2a2Tc (4.44)

And
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A similarity transformation is therefore needed to obtain 
the correct values of process noise in terms of the platform 
axis. The form of the similarity transformation needed is 
shown below :

oî = (4.46)

Where
QÎ(1,1) - Relates to the total x accelerometer process noise 
Q\(2,2) - Relates to the total y accelerometer process noise

The similarity transformation for the accelerometer process 
noise, and the gyro process noise shown above consist of two 
separate 3 x 3  matrix processes. For the actual Kalman 
filter implementation a single Q matrix of order 12 x 12 is 
required, therefore the output from the two matrices Q| and 
Ql has to be mapped into a 12 x 12 result.
It has been stated that for the gyro random walk, the 
associated process noise gets placed on elements relating to 
the platform axis tilt states, the corresponding mapping 
needed to achieve this for the elements of the Q£ matrix is 
shown below, where the left matrix is part of the final 12 
x 12 result.

2(5,5) 0(5,6) 0(5,7) 2(1,1) 0(1,2) 0(1,3)
2(6,5) (2(6,6) 0(6,7) = 2(2,1) 0(2,2) 0(2,3)
2(7,5) 0(7,6) 0(7,7) 2(3,1) 0(3,2) 0(3,3)

(4.47)

Similarly the mapping for the x and y accelerometer elements 
from the Ql matrix to the final 12 x 12 result is given by :

2(3,3) 0(3,4)“ 2(1,1) 0(1,2)"
2(4,3) 0(4,4) 2(2,1) 0(2,2)

(4.48)

Although the mapping technique described above is not very 
elegant, and a more complete technique is certainly required 
for the final algorithm implemented in the target system, it 
was found to be useful during the simulation phases of 
development.
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4.7 COMMENTS
In this chapter the Kalman filter error model for the 
customer inertial reference system has been developed. The 
Kalman filter error model consists of 12 states. In chapter 
2, the 1RS error model was developed which consists of 17 
states. The Kalman filter error model is therefore referred 
to as a sub optimal error model, since it contains a smaller 
number of states than the 1RS error model.
The Kalman filter is implemented in the simulation program 
in two modules. These two modules form just part of the 
total simulation program. The simulation program is 
discussed in detail in the next chapter, where, specific 
details are given on how the Kalman filter equations are 
implemented.
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CHAPTER 5
S I M U L A T I O N  P R O G R A M

5.1 INTRODUCTION
The Kalman filter development work has been carried out 
using a Fortran simulation program running on a Vax 
computer system. The simulation program is of modular design 
consisting of 11 main modules as shown by figure 5-1. The 
1RS and GPS modules simulate the two instruments that the 
flight management computer interfaces to, while the Kalman 
filter module, the KFMUPD module, the FIX module and the CDU 
module all simulate functions that are carried out inside 
the flight management computer.
The executive module is the main program module that 
controls the calling rates of the other subroutines. The 
Executive module calls the Rig, Kalman Filter, CDU, Fix and 
Data Storage modules. The Rig module calls the 1RS, GPS and 
Rworld modules, and accepts user inputs to the simulation.
The Rworld module is used to generate true aircraft 
parameters for position, velocity and attitude. The 1RS 
module uses the outputs from the Rworld module to generate 
1RS parameters for position, velocity and attitude, by 
corrupting the true aircraft values with errors. The 1RS 
errors are generated as outputs from the 1RS error model 
equation. The GPS module is similar to the 1RS module in 
that it accepts true aircraft parameters from the Rworld 
module, and then corrupts the parameters with errors, to 
form GPS position and velocity outputs.
The Kalman filter equations are split between the Kalman 
filter module and the KFMUPD module. The Kalman filter 
module uses outputs from the 1RS routine to form the Kalman 
filter transition matrix equation. The transition matrix is 
then used to form estimates for the Kalman filter state 
vector, and covariance update equations. Outputs from the 
1RS and GPS modules are used by the Kalman filter module to 
form the Kalman filter input measurements. Once the input 
measurements have been formed, the Kalman filter calls the 
KFMUPD module, where the filter gain and update equations 
are implemented.
The Fix module is used to initialise the Kalman filter 
covariance matrix.
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The CDU module takes outputs from the 1RS, GPS and Kalman 
filter modules and computes values for FMC, 1RS, GPS and 
Kalman filter position error.
The remaining modules are the Data Storage and Maths 
Routines. The Data Storage module controls the recording of 
all program parameters. The Maths module contains various 
matrix and vector routines as well as geometric routines, 
which are used by other program modules.
A full listing of the simulation program as used, is given 
in a separate document Smiths (1991). Before each simulation 
module is discussed in detail, the accuracy of the 
simulation program will be examined.
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5.2 SIMULATION ACCURACY
A Vax 3100 satellite terminal linked to a Vax 780 mainframe 
was used as the host computer to carry out all of the 
simulation work. It is important particularly for the 
computation of the Kalman filter covariance matrix equations 
to be aware of the accuracy of numbers that are represented 
in single precision and double precision format. The 
accuracy of single and double precision numbers can be 
assessed in the following way.
Consider the machine unit of a digital device denoted by u*, 
to be the smallest possible increment in a stored mantissa. 
The precision of such a digital device, which is defined as 
the maximum number of significant decimal digits that it can 
store accurately, is given by the integer value of k in the 
following formula (reference Maron 1987) :-

l0-<* + » < um * 10'* (5.1)

For single precision numbers stored on the Vax, the mantissa 
is 23 bits, this gives k an integer value of 6 as shown 
below

10~7 -< 2~23 d 10"6 (5.2)

So numbers stored using single precision on the Vax are 
accurate to six decimal places. For double precision 
representation, the mantissa is 55 bits, which gives an 
accuracy of 2'55. Double precision arithmetic is used for all 
of the simulation modules.

5.3 EXECUTIVE MODULE
The Executive module controls the calling rates for all of 
the program modules. An overview of the calling rates and 
the modules called by the Executive is given in figure 5-2. 
It can be seen from figure 5-2 that the Executive first 
calls a module called Rig, which in turn calls three other 
modules, Rworld, 1RS and GPS. All of the other program 
modules are called directly from the Executive. As well as 
calling other modules, the Rig module is used to accept the 
user input values used by the simulation. The iteration 
rates used in the Kalman filter simulation module, 
correspond to the rates used in the actual flight management 
computer system.
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5.4 EWORLD MODULE
The purpose of this module is to simulate a realistic 
aircraft and generate true aircraft parameters, which can 
then be passed as inputs to other modules. The Rworld module 
is specific in that it is designed for use with the customer 
Inertial Reference System, which has a non standard platform 
axis set, where the z axis is defined positive up. The 
Rworld simulation module consists of three parts, the 
velocity mechanization, the position mechanization and the 
turn mechanization. These three parts will now be examined.

5.4.1 AIRCRAFT VELOCITY MECHANIZATION
The simulation program generates values for the aircraft 
body axis velocities. These velocity components are then 
transposed via a direction cosine matrix into the 1RS 
platform axis, before being finally resolved into 
North/South and East/West velocity.
Figure 5-3a shows the aircraft body axis velocity parameters 
u, v and w. The Rworld module does not simulate aircraft 
side slip, therefore the velocity parameter v is taken to be 
zero. The other aircraft velocities u and w can be formed 
from values of angle of attack (a) and true airspeed (VT) . 
The true airspeed parameter (vT) is a user input to the 
program, while the angle of attack parameter (a) is 
calculated from an empirical relationship which is a 
function of true airspeed.

The following equations express the aircraft body velocities 
in terms of true airspeed and angle of attack :

w = -Vasina (5.3)

u = -Vjcosa (5.4)

For non level flight, the flight path angle (y) also needs 
to be calculated. Figure 5-3b shows the relationship between 
flight path angle, angle of attack and pitch (0) for an 
aircraft in non level flight.
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The following equation expresses the relationship between 
these parameters.

6  =  y  +  cl (0 = 0) (5.5)

The flight path angle is calculated as follows :

siny = —  (5.6)
vT

Where the vertical speed vz is a user input.
Once the aircraft body axis values have been obtained they 
are transformed into equivalent values in the 1RS platform 
axis. A transformation from body axis to platform axis 
parameters can be made by using the direction cosine matrix 
Cg whose elements are functions of pitch (0), roll (0) and 
azimuth (xp) . The required transformation is shown below.

= C? (5.7)

Where Cg is given by :

DosxpcosO - sin^sin0sin0, -sinxpcosO, cos^sin0 + sinÿsin0cos0 
sini/'cos0 + cos^sin0sin0, cosxpcosd, sin^sin0 - sin0cos0cos^ 

-cos0sin0, sin0, cos0cos0

The direction cosine matrix Cg is formed from the transpose 
of the matrix c£ which was developed in chapter 2, section 
2.2.2.
Once the local level platform axis velocities are obtained, 
they can finally be resolved via the 1RS alpha angle into 
true values of North/South and East/West velocity. Both 
platform axis velocity and geographic velocity are available 
as outputs to the other modules. Platform axis velocities 
are used by the 1RS and GPS modules where they are corrupted 
with an error term to form 1RS and GPS velocity values.
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5.4.2 AIRCRAFT TURN MECHANIZATION
To mechanize a turn in the simulation program the following 
aircraft turn equation is implemented.

* = ^  (5.8)
V T

Where :
yp - rate of change of aircraft heading (rads/sec)
g - gravity (ft/sec2)
vT - true airspeed (ft/sec)
0 - roll (rads)

The user is required to input a desired aircraft heading 
(VO • This desired heading value is then compared with the 
present aircraft heading, if the two heading values are 
different, then a roll (0) is applied to turn the aircraft. 
During the turn the rate of change of aircraft heading is 
computed from equation 5-8, this allows the actual aircraft 
heading to be calculated. The desired aircraft heading and 
computed aircraft heading are compared, when the two values 
are equal the roll command is removed.

A roll delay, similar to that encountered in a conventional 
autopilot is also simulated using the equation shown below, 
where the time constant value (r) has been chosen to be 2 
seconds.

1 + TS

Where :
0 - commanded roll
0d - demanded roll
t - time constant
The computed value of aircraft pitch, roll, heading and rate 
of change of heading are available as outputs to the other 
modules.
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5.4.3 AIRCRAFT POSITION
The Rworld module provides aircraft position in terms of 
latitude, longitude and alpha angle. These parameters are 
obtained from the direction cosine matrix C\, which provides 
the relationship between the 1RS platform axis and the earth 
geographic axis. This direction cosine was discussed in 
chapter 2, section 2.2.1, where it was shown how geodetic 
latitude, longitude and alpha angle could be derived from 
elements of the direction cosine matrix.
To simulate normal flight, the direction cosine matrix 
elements need to be constantly updated to keep track of the 
changing aircraft position. One possible method to update 
the direction cosine matrix is to use the following 
differential equation which was previously discussed in 
chapter 2, section 2.2.1 :

C* = Vf̂ fe (5.10)

Where :

0 -w* A
i

•8% ll < 0 -<
-< < 0

(5.11)

The terms w|, wj and w£ are angular rates which can be written 
in terms of the platform axis velocities as follows :

nrf = -?L (5.12)
Ry

Wy = R
(5.13)

(5.14)

The value of the rate term w% is taken to be zero, because 
the 1RS system being simulated is a wander azimuth system.
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The above equations show how starting with the platform axis 
velocities, platform axis transport rates can be formed, 
which can then be used to update the direction cosine 
matrix, to provide updated values for latitude, longitude 
and alpha angle.

Although this direction cosine matrix update technique is 
valid, one of the requirements for the aircraft model is 
that it should be able to simulate flights in the polar 
regions, particularly the North pole. The direction cosine 
technique is not able to easily cope with polar region 
transitions because at the pole the value of some of the 
terms can become indeterminate. Because of this an 
alternative mechanization using quaternions was used. In the 
quaternion implementation, the direction cosine matrix is 
still used to form latitude, longitude and alpha angle 
values, the only difference is that the quaternion is 
updated from the platform axis velocities, and the 
direction cosine matrix elements are formed from the updated 
quaternion equation.

5.4.3.1 QUATERNION REPRESENTATION OF POSITION
Quaternions is a body of mathematics which is commonly used 
in the field of navigation to describe rigid body rotations. 
They were first developed by Sir William Rowan Hamilton. In 
this work Quaternions are used to represent position in the 
Rworld simulation module. Quaternions are also used in the 
actual customer inertial reference system where they 
transform measurements made by the gyro into components of 
the platform axis frame of reference. This use of 
quaternions in the 1RS is discussed by Edwards (1971) and 
Bronkhorst (1978).

A quaternion (q) is defined as a combination of a scalar (X) 
and a vector (P) with orthogonal components, the basic form 
of the quaternion is shown below :

g = (X,P) (5.15)

Where X is a scalar and P is a vector.
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The use of the quaternion to represent position in the 
Rworld module is shown in figure 5-4. Three quaternions q., qb and qc can be formed for the three parameters latitude, 
longitude and alpha angle as follows :

For longitude

qa = (cosf ,0,sin_Ê,0) (5.16)

For latitude

These three quaternions can be combined to form a final 
quaternion which transforms a vector with coordinates 
expressed in the platform frame of reference, into an 
equivalent vector expressed in components of the earth frame 
of reference. This quaternion operation is shown 
mathematically as :

q vpq* = ve (5.19)

The multiplication of the three quaternion elements 
representing latitude, longitude and alpha angle is carried 
out in the following order :

(5.17)

For alpha angle

qc = (cos.|,0,0,sin-|) (5.18)

Oab = QTa'tfjb (5.20a)
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Followed by :

9 a c  9 a b  ■ 9 T c (5.20b)

The final quaternion result qac is given by :

q = (cos$/2 cosX/2 cosa/2 - sin§/2 sinX/2 sina/2, (5.20c) -cosa/2 cos$/2 sinX + sin$/2 cosX/2 sina/2, cosa/2 sin$/2 cosX/2 + cos$/2 sinX/2 sina/2, cos$/2 cosX/2 sina/2 + cosa/2 sin$/2 sinX/2)

This final result shows how the quaternion can be 
initialized to a particular starting position, when the 
latitude, longitude and alpha angle for the initial position 
are given.

Once the quaternion has been initialized, it needs to be 
updated to keep track of the changing aircraft position. A 
quaternion differential equation can be developed in terms 
of the platform axis velocities. The result is shown in its 
final form below :

(5.21)

Where the rotation vector W has the components :

(5.22)

(5.23)

w z -  0 (5.24)
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The quaternion differential equation above (see eq 5.21) 
needs to be solved to give a discrete time solution that can 
be implemented in the simulation program. The discrete 
solution is :

The final stage in using the quaternion to represent 
position, is to generate from the updated quaternion a value 
for the direction cosine matrix Cjî, from which, the final 
values for latitude and longitude and alpha angle can be 
formed.
The equations linking the quaternion and the direction 
cosine matrix C% are shown in component form below :

q(t + At) = q(t)[(1,0) +(0,£/2)] (5.25)

cn = g? - gf - <û + g42 (5.26)

Cn = 2 (g,?2 + g3g4) (5.27)

C13 = 2 (g,g3 - g2g4) (5.28)

c21 = 2 (g1g2 - g3g4) (5.29)

C22 = - gf + g2 - g32 + g2 (5.30)

c23 = 2 (g2g3 + g,g4) (5.31)

c3i = 2 (g4g3 + g2g4) (5.32)
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c3i = 2 (g2g3 - g,g4) (5.33)

c33 = - gi - g2 + g3 + g< (5.34)

The computed value of the true direction cosine matrix C% is 
output to the 1RS and GPS modules, where the value is 
corrupted to form the 1RS and the GPS position parameters.
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5.5 INERTIAL REFERENCE SYSTEM MODULE
The 1RS module receives inputs from the Rworld module, these 
inputs can be considered to be true aircraft values which 
are then corrupted by error values to form the final 1RS 
position and velocity outputs. The error values that are 
used to corrupt the true position and velocity parameters 
are generated as outputs from a state vector matrix 
differential equation. The state transition matrix for the 
customer 1RS error model was developed in chapter 2 (see 
figure 2-6), where the 1RS time state vector was shown to 
consist of 17 states. The discrete form of the state vector 
matrix differential equation which is implemented in the 
simulation program is shown below :-

Kk = (5.35)

Where the following Taylor series solution is used for the 
transition matrix :-

= X + F^t + (5.36)

From the updated state vector the two position states 601 and 
60v which correspond to the vector elements x(l) and x(2) are 
used to corrupt the true value of the earth to . platform 
direction cosine matrix C%. This is achieved using the 
following equation :-

[CD,* = [CD,™ + S(fe (5.37)

With the value for the direction cosine error being given by

= S9"[cpe]l (5.38)

This direction cosine matrix error equation was developed in 
chapter 2 (see equation 2-46).
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Once the 1RS direction cosine matrix update has been 
calculated, values for 1RS latitude, longitude and alpha 
angle can be obtained. These values of 1RS position are 
output to the Kalman filter module where they are combined 
with GPS position values, to form a Kalman filter position 
measurement.
1RS platform axis velocity parameters are formed by 
combining the true values of platform axis velocity, which 
are output by the Rworld module, with velocity error terms 
obtained from the 1RS state vector.
The velocity equations implemented are shown below

+ SVX (5.39)

[Vyli, = rv;],„c + «V, (5-4°)

Here, the velocity error terms 5V£ and 5V£ correspond to the 
state vector elements X(4) and X(5). The 1RS platform axis 
velocities are finally resolved via the computed value of 
1RS alpha angle, into components of North and East velocity. 
The geographic velocity values are output to the Kalman 
filter module where they are combined with GPS velocity to 
form a velocity measurement input to the Kalman filter.

5.5.1 SIMULATION OF THE 1RS GYRO ERRORS
The errors associated with the ring laser gyro are a gyro 
bias error and a random walk error. The ring laser gyro is 
a rate integrating device, so the random walk figure refers 
to a random walk in angle which is caused by integrating 
white rate noise.
To simulate gyro bias, an initial value is given to the 
appropriate gyro bias element in the state vector X(0). The 
elements of the state vector that correspond to the x,y and 
z gyro bias are X(10), X(ll) and X(12).
To simulate random walk, an in-house computer module called 
Rgauss is used, which when called produces data with an RMS 
value of unity. Thus by scaling the output from the module, 
the rms value of the output data can be controlled.
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The single sided power spectral density plot for the Rgauss 
module is given in figure 5-5a , and shows a cut off
frequency of l/2At, where At is the rate that the Rgauss 
module is called.
A ring laser gyro with a specific value of angle random walk 
is simulated by the method shown in figure 5-5b . The
constant k is chosen to give a value of rate white noise 
which when integrated, gives the desired angle random walk. 
The equation for choosing k is given below :

RW - Gyro Random Walk value (deg/sqr root hr) 
At - 1RS module iteration time (seconds)

5.5.2 SIMULATION OF THE 1RS ACCELEROMETER ERRORS
The main sources of error associated with the accelerometers 
are a fixed bias error, and a random correlated error which 
is made up of two components, wide band noise and gravity 
anomaly.
To simulate accelerometer bias an initial value is given to 
the appropriate accelerometer bias element in the state 
vector.The elements of the state vector that correspond to 
the x,y and z accelerometer biases are X(13), X(14) and

To simulate accelerometer correlated noise, the model shown 
in figure 5-6a is used. This is a general model which will 
now be analyzed to develop the specific models that are used 
for the simulation of wide band noise and gravity anomaly. 
The transfer function for the model is given by :-

(5.41)

Where

X (15) .

7(g)
x(s) 1 + TS

1 (5.42)

Where t - Time Constant
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The equivalent equation for the discrete model as shown by 
figure 5-6b is given by :

Zt = Zt-i + ^  (xt-! - yt-i) (5.43)

It is necessary for the purposes of the simulation to form 
an equation for the rms of the input in terms of the rms of 
the output. This relationship can be formed by taking the z 
transform of the discrete model above, where the term At/r 
is not considered as it only a scaling term.
From the discrete equation can write

(5.44)

Taking the z transform gives

y(z) = y(z)z-i(l - AË) + x(z) (5.45)

Which gives

y (z) = _____________
1 - (1 - ^)z-' (5-46)

By using a binomial expansion the equation can be written as

y(z) = [1 + (1 - + (1 - ^ ) 2 z~2 + — ]x(z) (5.47)

The equation can now be written in terms of variance as 
follows

= 1 + (1 - — )2 + (1 - — )4 + —  
Ox T T

(5.48)
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Which can be written as

1 - (1 - ^5)2
T

(5.49)

By expansions of the lower bracket the equation can finally 
be written as :

O" = 2 At (5.50)

Where

A 2 is small (5.51)T2

This final equation gives the rms value of input noise that 
must be passed through the correlated model, to produce the 
desired value of output.
The form of the final simulation model for the two 
correlated noise sources is given by figure 5-7. The 
constants and kg are used to scale the white noise 
obtained from the Rgauss function, so that the correct value 
of input noise is generated in each case, to give the 
desired level of correlated output noise. The values of k 
for the two correlated noise sources is given below

For the wide band noise

K  = 3 x IQ-6” 0.5
(5.52)
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And for the Gravity Anomaly

#  30 X l 0 '6
(5.53)

Where
At is the 1RS module iteration rate.

5.6 GLOBAL POSITIONING SYSTEM MODULE
The methods used in the GPS simulation module to generate 
values of position and velocity are based on the same 
techniques as used for the 1RS error model discussed above. 
The GPS error model simulation is therefore, not a 
sophisticated error model covering orbiting satellites, 
radio signal transmissions, GPS Kalman filter modelling etc. 
To generate values for GPS latitude and longitude, the true 
value of the earth to platform direction cosine matrix 
received from the Rworld module, is corrupted by an error 
direction cosine matrix to form a GPS direction cosine 
matrix. The equation used to form the GPS direction cosine 
matrix is shown below :

[Cf]Gra = [Cf]rauE + sc; (5.54)

Where the direction cosine error (see eq 5.38) in its 
component form is :

0 0 - s e py -11 Ci2 w 
1

6C * = 0 0 -21 *-22 *-23

0 -31 ^32 ^33

In the 1RS simulation module the X and Y platform axis tilts 
are obtained as states from a state vector matrix
differential equation. This method cannot be applied to the 
GPS module however, as a GPS state vector matrix
differential equation is not being simulated.
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A simpler approach to generating the GPS X and Y tilt values 
is therefore taken as shown below :

60* = - R9auss x GPS noise (5.56)
re

SQP = _ Rgauss x Gps noisey r k • j

The values chosen for the GPS noise are dependant on the 
type of GPS receiver being modelled. The simulation can 
model both P code and C/A code receiver noise. In this 
application the C/A code noise was chosen to be 10 times 
greater than the P code noise. The actual rms value used for 
the C/A code noise is 0.1 nm, and for the P code noise the 
value is 0.01 nm. To implement these noise values in the 
actual simulation program, a software module called Rgauss 
is used. The Rgauss module was previously discussed in 
section 5.5.1, where it was stated that the unsealed module 
produces data with an rms value of unity. By scaling the 
Rgauss output with either of the two values above, the 
desired value of rms position error in the platform axis is 
obtained.
Once the GPS earth to platform direction cosine matrix 
update has been formed, values for GPS latitude, longitude 
and alpha angle can be computed. These values of GPS 
position are then output to the Kalman filter module where 
they are combined with the 1RS position values to form the 
Kalman filter measurement residuals.
The model for the GPS velocity error is formed by taking 
true values of velocity from the Rgauss module and adding on 
a component of velocity error. The rms value of north and 
east velocity error is taken to be 1 kt. To generate the 
velocity noise values in the simulation program, the Rgauss 
function discussed above is used. The actual GPS velocity 
equations implemented in the simulation are shown below :

GPS TRUE + R Ç ^ U S S (5.58)



[ V e]GPS TRUE + RÇf&USS (5.59)

The Rgauss function as discussed in section 5.5.1 has an rms 
output value of 1, since this is also the rms value chosen 
for the velocity noise then no scaling is needed for the 
Rgauss output data. Once formed, the GPS velocity values are 
output to the Kalman filter module.

5.7 KALMAN FILTER MODULE
The Kalman filter was discussed in detail in chapter 4, 
there, the system model that is used by the Kalman filter to 
represent the 1RS errors was described. Figure 5-8 shows a 
block diagram of the Kalman filter as implemented in the 
simulation module. The Kalman filter receives position and 
velocity inputs from the 1RS and GPS modules. These inputs 
are in the form of latitude and longitude, and velocity 
north and velocity east. To form a Kalman filter 
measurement, these inputs need to be transformed into 
components of the platform axis, this is because the Kalman 
filter error model of the 1RS represents the position and 
velocity states in terms of the platform axis. The position 
and velocity transformation equations needed to form the 
Kalman filter measurement residuals are developed below.

5.7.1 POSITION MEASUREMENT
The Kalman filter receives 1RS and GPS latitude and 
longitude values. These are first combined as follows :

X - XDISP^Xjxs , r̂-GPS '̂ GPŜ  (5.60)

^ YDISP ( r ̂ GPS f ̂ gps) (5.61)

XDISP is an in-house fortran routine that computes the 
distance (X) between the 1RS and GPS in terms of nautical 
miles along the north geographic axis. YDISP is a similar 
routine that computes the distance (Y) along the east 
geographic axis.
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The north distance (X) and the east distance (Y) are then 
transposed into components of the platform axis via Kalman 
filter computed value of alpha angle ((%) as shown below:-

Xm = -(X sina^ + Y cosa^ ) (5.62)

Ym = -(X cosa^ - Y sina*f ) (5.63)

The Kalman filter value for alpha angle is computed from the 
values of 1RS platform heading (̂ pirs) and 1RS true heading (̂ p 
irs) as shown below : -

aV = tpir, - (5.64)

In chapter 4, section 4.5, the measurement processing for 
the Kalman filter was discussed. There it was stated that a 
scalar measurement processing routine as opposed to a vector 
measurement processing routine is implemented, this means 
that the two Kalman filter measurement residuals are 
processed separately. The two measurement residuals are in 
units of nautical miles per hour, whilst the corresponding 
states in the Kalman filter state vector X(l) and X(2) are 
in units of radians. The Kalman filter measurement scalar H 
therefore contains the following scaling terms :
For X*

H = R0 (5.65)

And for Ym

H = -Rq (5.66)

Where Rq is the value of earth radius in nautical miles. In 
the Kalman filter simulation module Rq is taken to be a 
constant.
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5.7.2 VELOCITY MEASUREMENT
The Kalman filter simulation module receives a velocity 
north value and a velocity east value from the 1RS and GPS 
modules. These velocity values are then combined to form a 
difference value for velocity north (U) and a difference 
value for velocity east (V) . To compute the velocity 
difference values, the GPS velocity is first resolved to the 
1RS position using a meridian convergence factor £, which is 
calculated as follows :

£ = (̂ gps ~ m̂s ) sinXjRg (5.67)

Then the velocity difference values are computed as :

U = [Vn]ms - [Vn]GPS cose - [Ve]GPS sine (5-68)

V = [Ve]ms - [Ve]GPS cose + lVn]GPS sine (5.69)

The north velocity difference value (U) and the east 
difference value (V) are then transposed into platform axis 
velocity values using the Kalman filter computed value of 
alpha angle as given by equation 5-64.
The two velocity equations implemented are shown below :

Um - U sina^ + V cosa^ (5.70)

Vm = V cosa^ - V sina^ (5.71)

These two Kalman filter velocity values are in the same 
units as the corresponding states X(3) and X(4) in the state 
vector, therefore the value needed for the Kalman filter 
measurement scalar H is unity in each case.
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5.7.3 KALMAN FILTER FAST LOOP / SLOW LOOP MECHANIZATION
In discussing the Kalman filter in chapter 4, details were 
given of a slow loop / fast loop mechanization that allows 
the Kalman filter state equations to be computed at a faster 
rate that the measurement processing equations. The fast 
loop iteration rate was chosen to be 5 seconds and the slow 
loop rate was chosen to be 30 seconds.
Implementing a fast loop allows the Kalman filter state 
vector matrix differential equation to be computed to first 
order. The form of the equation implemented in the Kalman 
filter simulation module is shown below :

• = I + Fk At (5.72)

The terms needed to form the Kalman filter system matrix Fk 
are obtained as outputs from the 1RS module. All of the slow 
loop equations are implemented in a module called KFMUPD. 
This module is called from the Kalman filter module four 
times during each 30 second Kalman filter measurement update 
cycle, the four calls correspond to the four scalar 
measurements.
Once computed, the values of the Kalman filter state vector 
and the covariance matrix are output to the CDU module for 
further processing.

5.8 CDU MODULE
The main tasks carried out by the CDU module is the 
evaluation of the Kalman filter performance figure and the 
computation of the flight management computer position 
output.
For the Kalman filter navigation performance figure, both 
the 95% circular error value and the radial error are 
computed (these parameters are for position error and are 
discussed in detail in chapter 6).
The CDU module computes the flight management computer 
position output by taking the two elements of the Kalman 
filter state vector that correspond to position, and 
computing a corresponding value of Kalman filter latitude 
error and longitude error. The Kalman filter latitude and 
longitude error is then added to the 1RS latitude and 
longitude values to give the final flight management 
computer output.
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The CDU also computes a value for the 1RS position error by 
computing the difference between the true value of latitude 
and longitude received from the Rworld module and the 1RS 
value of latitude and longitude. This allows the 1RS 
position errors and the Kalman filter position errors to be 
compared.

5.9 FIX MODULE
The two main functions carried out by the Fix module are the 
initialization of the Kalman filter covariance parameters, 
and the computation of the alpha angle as used by the Kalman 
filter.

5.10 REMAINING MODULES
The remaining modules which all form part of a program 
library can be considered to carry out two main tasks, data 
storage and computation of the various geometric and matrix 
parameters required by the other program modules.
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CHAPTER 6
M E T H O D S  T O  E V A L U A T E  N A V I G A T I O N  S Y S T E M  
P E R F O R M A N C E

6.1 INTRODUCTION
This thesis is concerned with the integration of GPS and 1RS 
using a Kalman filter, to gain improved navigation system 
performance. In this chapter three techniques that can be 
used to asses the navigation performance of the customer 
inertial reference system and the Kalman filter are
developed. These methods are monte carlo analysis,
sensitivity analysis, and covariance analysis.
The method used to assess the Kalman filter navigation
performance is to record and compare the position errors 
obtained from the Kalman filter and the 1RS. The navigation 
specification of the 1RS is such that it meets the 1RS 
accuracy requirements of FAR 121, Appendix G, Para 6(a)(1) 
which states "For flights up to 10 hours duration, no 
greater than 2 nautical miles per hour of circular error on 
95 percent of system flights completed is permitted". It 
should be noted that there are other FAR requirements 
relating to system accuracy that the 1RS system is required 
to meet, although these will not be considered in this 
thesis. Thus, the first task that must be carried out before 
the Kalman filter performance can be assessed, is to
simulate an 1RS with a performance figure of 2 nm/hr.

Using the 1RS accuracy figure of 2 nm/hr, the performance of 
the Kalman filter can then be specified in terms of a 95 
percent circular error value. The exact performance figure 
for the Kalman filter as agreed by Boeing and Smiths 
Industries will not be discussed, as this information is 
confidential.

Before the 1RS performance figure can be simulated, the 
specification "2 nm/hr, 95% circular error" needs to be 
understood. This specification is one of several that is 
used to measure navigation system performance. Other similar 
specifications include Circular Error Probability (CEP), and 
Distance Root Mean Squared (Drms) also referred to as radial 
error. These three specifications will now be considered, 
after which the three navigation performance analysis 
techniques will be developed.
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6.2 95% CIRCULAR ERROR
To understand the meaning of the 95% circular error as it 
applies to the 1RS and Kalman filter, the Bivariate Normal 
Distribution needs to be examined. The bivariate 
distribution is required, as opposed to the univariate 
distribution because the position measurements made for the 
1RS and Kalman filter are two dimensional, since they 
involve both latitude and longitude.
Figure 6-1 shows the bivariate normal distribution where the 
assumption has been made that the RMS values <jx and oy are 
equal and also the correlation between the x axis and the y 
axis is zero. The probability density function equation for 
this specific case is given by (reference Leenhouts 1985) :

Under these conditions, figure 6-1 shows that an area of 
constant probability is enclosed by a circle. If the rms 
values (7X and ay were not equal, then a similar area would be 
traced out by an ellipse, with the values of <jx and ay 
corresponding to the ellipse major and minor axis, depending 
on their ratio. Therefore making the assumption that the rms 
values <jx and oy are equal has the effect of simplifying the 
distribution from an elliptical case to a circular case.
The 95% circular error figure assumes a circular 
distribution, therefore it requires the rms values to be 
equal and also the correlation coefficient to be zero. If 
these conditions do not hold, then the resultant 95% 
measurement will be slightly inaccurate. Valstar (1970) 
discusses a possible method of dealing with correlated 
errors. Leenhouts (1985) discusses the error that results 
from assuming a circular error probability, when the actual 
probability is described by an ellipse.
Leenhouts (1985) provides a solution, shown below, to 
equation 6-1 where the further assumption has been made that 
the mean values jux and juy are zero, this implies that the 
measurement observations are unbiased.

f(x,Y) = —^ e x p O - L c  (x  -  jit,)2 + ( y  -  At,)2] ]
277-0, 2(7, (6.1)

(6.2)
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Using this result, the radius of a circle (k) to give 95% 
probability can be evaluated, and found to be k = 2.4477. 
This leads to the following equation being used for 95% 
circular error.

95% Err = 2.4477 + Gy\ (6.3)2

Where 95% Err is a quantative measure of navigation 
performance.
6.3 CIRCULAR ERROR PROBABILITY
The circle of equal probability (CEP) implies that the 
probability of a point falling inside the circle is equal to 
it falling outside, this means that CEP is a 50% probability 
figure. Using equation 6.2, the radius value k, for a 50% 
probability is worked out to be k = 1.1774. This leads to 
the following equation being used for CEP :

CEP = 1.1774— -3̂. (6.4)2

Where CEP is another accepted measure of performance.
6.4 DISTANCE ROOT MEAN SQUARED ERROR
The Distance Root Mean Squared probability is computed as 
follows :

Drms = (ol + Oy)̂  (6«5)

For a circle with axis <jx and cry, the Drms value equates to 
the radius of the circle, hence it is often referred to as 
a radial error. Drms is often confused with the one sigma 
probability of the univariate distribution, the two are not 
the same since the mean probability for Drms is 66.03%, and 
the probability for one sigma is 68%.
Although these three statistical probabilities are common 
there are still other measurements such as 2Drms, that are 
also used. One of the reason that performance is specified 
in so many different ways, is that various bodies choose to 
adopt different approaches. NATO documents are quoted at the 
95% probability level as laid down by STANAG 4278 for 
example, while the United States DoD tends to use the 50% 
probability level.
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6.5 NAVIGATION PERFORMANCE ANALYSIS TECHNIQUES
Each of the three probability measurements, 95% circular
error, CEP and Drms requires an rms value of latitude and 
longitude to be generated. Three possible methods of 
generating rms position data will now be discussed, these 
are Monte Carlo simulation, sensitivity analysis and 
covariance analysis.

6.5.1 MONTE CARLO SIMULATION
The customer 1RS error model was developed in chapter 2, 
there the gyro error model was shown to consist of a gyro 
random walk and a gyro bias, and the accelerometer error 
model was shown to consist of a correlated noise and an 
accelerometer bias. The gyro random walk and accelerometer 
correlated noise are both types of error sources that 
produce random data with time, and are referred to as random 
time series errors. The gyro bias and accelerometer bias are 
error sources that produce constant data with time, although 
their initial data value is random, they are therefore 
referred to as random constants. For the 1RS state vector 
(see appendix D) there are six random constants comprising 
three gyro and three accelerometer terms.
In the simulation program, the 1RS error model is 
implemented as a vector matrix differential equation of the 
form :

X = F(t)X(t) + W(t) (6.6)

Where :
X(t) - is the system state vector (17 x 1)
F (t) - is the system matrix (17 x 17)
W(t) - is the a random forcing function (17 x 1)

The gyro random walk and accelerometer correlated noise are 
elements of the noise vector W(0), while the gyro bias and 
accelerometer bias are elements of the state vector X(0).
For a Monte Carlo simulation, a series of runs are carried 
out, 100 being a typical figure, where for each run, values 
for the random time series and random constant error sources 
are generated. The purpose of the simulation is to compute 
RMS values for 1RS latitude and longitude error, and then to 
use equation 6.3 to evaluate the 95% performance figure.
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The random constant and random time series error values are 
generated using a series of random number generators. Each 
individual error source has an associated random number 
generator which produces the required statistical data. For 
example, in the case of a random constant, for each 100 runs 
an initial random value is generated. If all 100 values for 
the random constant are processed to form an rms value, then 
the resultant value will equal the required statistical 
value given for the error source. The 1RS error budget given 
in appendix B gives the statistical values needed for each 
error source for the customer 1RS. Assuming the random 
constant and random time series errors are representative, 
recordings are made of the state vector X over time for each 
of the 100 runs. The elements of the state vector relating 
to 1RS position, x(l) and x(2) , (see appendix D for a 
summary of the 1RS states used in the state vector) can then 
be processed to compute rms values for 1RS latitude and 
longitude error. The elements X(l) and X(2) , give the 1RS 
position error in terms of the platform axis. These two 
elements can be transformed into components of latitude and 
longitude, by first resolving the platform axis values into 
components of the north and east axis via the 1RS alpha 
angle, and then using an appropriate value of radius to find 
latitude and longitude. Finally equation 6.3 can be used to 
compute the 1RS 95% circular error figure.

6.5.1.1 SIMULATION RESULTS
using a suitable flight profile, a Monte Carlo simulation 
was carried out. Figure 6-2 shows the flight profile, which 
represents a typical long distance commercial flight, 
consisting of a great circle navigation route. The objective 
of the simulation was to evaluate the 1RS navigational 
performance in terms of the 95% circular error. A total of 
100 runs were carried out with each run consisting of a 10 
hour simulation. For each run, values of latitude and 
longitude error were recorded every minute for the full 10 
hours of the simulation. Values of rms latitude and 
longitude error were then calculated by taking each one 
minute sample across the ensemble of runs.
The resultant ensemble rms values for latitude and longitude 
error are shown in figure 6-3 and 6-4 respectively. From 
these two results, the 95% circular error value for the 1RS 
was computed using equation 6.3 and found to be :

95% Err = 2.4477.T0,52 * °-53] m/HR (6.7)

95% Err = 1.285 EM/HR (6.8)
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6.5.2 SENSITIVITY ANALYSIS
A sensitivity analysis is similar to a Monte Carlo 
simulation in that it is based on a vector matrix 

s differential equation (see equation 6.6). The main 
difference between the two methods is the way that the 
sensitivity analysis uses the error sources during each run. 
In the Monte Carlo simulation, for each run, random samples 
are generated for all of the error sources of interest.

In a sensitivity analysis some runs are carried out based on 
single error sources. Consider as an example the x gyro bias 
random constant, if a single run is carried out with the 
value of the x gyro bias being set to its one sigma value, 
then assuming a linear system, the resultant latitude and 
longitude errors produced will be rms values. The rms 
latitude and longitude errors are obtained by the same 
method as discussed for the monte carlo simulation. 
Recordings of the position error states X(l) and X(2) which 
are in units of radians, are transformed via the 1RS alpha 
angle into components of North and East axis, and then using 
a suitable value for earth radius, values of latitude and 
longitude error are computed. The simulation equation in 
this instance does not contain random time series errors. 
The simulation equation as shown below can be considered to 
be linear :

X = F(t)X(t) (6.9)

Having obtained rms values for latitude and longitude for 
the x gyro bias random constant error source, the process 
can be repeated for each of the other 1RS random constant 
errors. Once all the random constant type runs are 
completed, the effect of the random time series errors can 
be investigated.
As with the random constant errors, the random time series 
error sources can be considered on an individual basis, 
although this requires a large series of runs to be carried 
out as explained. Consider the affect of the x gyro random 
walk on position, a series of runs, typically 100, needs to 
be carried out to calculate the rms affect of this error on 
latitude and longitude.
To produce the rms result, an ensemble of runs needs to be 
processed in a similar way to the method described for the 
Monte Carlo simulations, where one minute data points are 
combined across the 100 runs to form an ensemble rms value.
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Since such a large number of runs are needed to evaluate the 
rms affect on position of a single random time series error 
source, it is usual to group together all random time series 
error sources, and just investigate their combined affect on 
position. This method was adopted in this work.

6.5.2.1 SIMULATION RESULTS
A sensitivity analysis was carried out using the same flight 
profile as for the Monte Carlo simulation (see figure 6-2). 
To investigate the effect of the random constant error 
sources, six runs were carried out, while 100 runs were 
carried out to investigate the effect of the random time 
series errors. Details of the 106 runs are given below :

RUN NUMBER ERROR SOURCE VALUE USED NO OF RUNS
1 X GYRO BIAS la 1
2 Y GYRO BIAS la 1
3 Z GYRO BIAS la 1
4 X ACCEL BIAS la 1
5 Y ACCEL BIAS la 1
6 Z ACCEL BIAS la 1

7 — 106 X,Y,Z GYRO 
RANDOM WALK 
AND X,Y,Z 
ACCEL NOISE

RANDOM
SAMPLES

100

Results for latitude and longitude error for each of the 106 
runs were recorded and processed as follows : - For the 
random constant error sources, the six results produced were 
in rms form. For the random time series errors, the 100 
results had to be processed to produce ensemble rms values, 
this then provided a total of seven rms values for latitude 
error and 7 rms values for longitude error. Final values for 
latitude and longitude error were then produced by Rssing 
the 7 rms values. The resultant Rssed values of latitude and 
longitude were then processed using equation 6.3, to compute 
the 95% circular error. Figure 6-5 summarizes the overall 
method of combining results for the sensitivity analysis 
method. The final 95% error value for the simulation was 
calculated to be 1.302 nm/hr.



112

6.5.3 COVARIANCE ANALYSIS
Covariance analysis is different from the Monte Carlo and 
sensitivity analysis methods, because it does not use the 
vector matrix differential equation (see eq 6.6). Instead, 
it is based on the Kalman filter covariance estimate 
equation. The Kalman filter was discussed in chapter 4, 
where the covariance estimate equation was shown to be of 
the following form :

p A ~ )  = * Q*-, (6.io)

Using this equation random constant and random time series 
errors are considered on an individual basis. Random 
constants are accounted for in the P(0) matrix, while random 
time series errors use the Q matrix. For each of the two 
types of error source the one sigma value of the error 
source is used.

The covariance estimate equation is a statistical equation, 
and therefore its outputs are statistical predictions. Its
diagonal elements corresponds to the states in the state
vector X. Appendix C gives the relationship between the 
Kalman filter covariance matrix diagonal elements and the 
Kalman filter states. Estimates of position error are given 
by the covariance elements P(l,l) and P(2,2) which 
correspond to the position states X(l) and X(2). The 
estimates are in terms of variance expressed in terms of the 
platform axis, so taking the square root enables the rms
value to be calculated. Final rms values for latitude and
longitude can be formed by transposing the platform axis 
components into equivalent values of north and east using 
the system alpha angle.

For the monte carlo and sensitivity analysis, simulations 
were carried out using the 17 state optimal 1RS error model. 
To perform a covariance analysis using the same optimal 
model, then a covariance matrix equation of order 17 x 17 is 
required. In discussing the Kalman filter in chapter 4, the 
point was made that an optimal Kalman filter model was not 
going to be used to develop a sub optimal Kalman filter 
model, because a suitable sub optimal Kalman filter error 
model was being supplied by the customer. In this work 
therefore, a covariance analysis will refer to the 12 state 
sub optimal Kalman filter error model.
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The results of the covariance analysis can be viewed as a 
Kalman filter prediction of 1RS error performance. If the 
Kalman filter error model of the 1RS is close to the actual 
optimal 1RS error model, then the Kalman filter predictions 
of performance should be very close to the actual 1RS 
performance. Therefore, if a covariance analysis is carried 
out using the same flight profile as a monte carlo or 
sensitivity analysis simulation, then a comparison of the 
Kalman filter performance compared to the 1RS performance 
can be carried out.

6.5.3.1 SIMULATION RESULTS
A covariance analysis was carried out using the same flight 
profile as for the monte carlo and sensitivity analysis 
simulations (see figure 6-2). A series of 10 runs were made 
to examine the individual effect of the 10 error sources 
associated with the sup optimal Kalman filter. Details of 
the 10 runs are given below :

RUN NUMBER ERROR SOURCE VALUE USED NO OF RUNS
1 X GYRO RW la 1
2 Y GYRO RW la 1
3 Z GYRO RW la 1
4 X ACCEL NOISE la 1
5 Y ACCEL NOISE la 1
6 X GYRO BIAS la 1
7 Y GYRO BIAS la 1
8 Z GYRO BIAS la 1
9 X ACCEL BIAS la 1
10 Y ACCEL BIAS la 1

Runs 1 to 5 relate to the random time series errors, these 
were carried out by placing the appropriate variance value 
in the Q(0) matrix (see eg 6.10), with the P (0) matrix 
initialized to zero.
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Runs 6 to 10 relate to the random constants, these were 
carried out by placing the appropriate variance value in the 
P (0) matrix, with the Q(0) matrix set to zero. The 10 values 
used for the covariance error terms were obtained from the 
1RS error budget table given in appendix B, by computing the 
appropriate variance value from the one sigma values given. 
Values of latitude and longitude error were recorded at 
intervals of 1 minute throughout the 10 hour simulation. The 
values of latitude and longitude error produced from the 10 
covariance runs are all rms values. They were combined by 
Rssing to give two final values of latitude and longitude 
error. An illustration of the overall method used to combine 
the results from the covariance analysis is given in figure 
6-6. From the rms values of latitude and longitude error, a 
95% circular error value was then calculated using equation
6-3 and found to be 1.26 nm/hr.

6.6 COMPARISON OF RESULTS
The covariance analysis 95% circular error value is a Kalman 
filter prediction of the navigation performance that is 
expected from the inertial reference system. The covariance 
result of 1.26 nm/hr is very close to the actual 1RS values 
obtained from the monte carlo and sensitivity analysis which 
were 1.28 nm/hr and 1.3 nm/hr respectively. These results 
show that the covariance analysis carried out using the sub 
optimal Kalman filter model, produces a good estimate of the 
actual 1RS error performance. Figures 6-7 and 6-8 show a 
comparison of position errors for the three methods, with 
the data being presented in terms of the x platform axis 
position error (see DTHX in figure 6-7), and the y platform 
axis position error (see DTHY in figure 6-8) . The two 
results confirm the close agreement between the three 
methods.

In both the covariance analysis and sensitivity analysis 
techniques, the effect of individual error sources on 
position were examined. The results for the individual error 
sources obtained from the two methods can be compared to 
gain further useful information on the performance of the 
sub optimal Kalman filter. Two different methods of 
comparing results will now be examined. The two methods are 
a comparison of results which show the effect of a single 
random constant error source, and a comparison of results 
which show the effect of random time series error sources.
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6.6.1 COMPARISON OF RESULTS FOR RANDOM CONSTANT ERRORS
When investigating the effect on position of a single random 
constant error, both the covariance analysis and sensitivity 
analysis methods produced a single rms result. The rms 
results from the two methods can therefore be directly 
compared. The covariance analysis did not consider the 
effect of the z accelerometer state because, this state is 
part of the optimal 1RS error model, but not the sub optimal 
Kalman filter error model. Results for the z accelerometer 
state cannot be compared therefore. All of the other 5 
instrument errors are common to both models, so their 
results can be examined.
Figure 6-9 shows a comparison of results for the y gyro bias 
random constant error source, where the position error is 
shown in terms of the x and y platform axis. The x platform 
axis position error is shown by DTHX in figure 6-9, and the 
y platform axis tilt by DTHY. For both position error terms, 
the result from covariance analysis and the sensitivity 
analysis are very close. Figure 6-10 shows a similar 
comparison for the z gyro bias random constant error source. 
Again the results for the two error terms show a close 
agreement for the covariance analysis and sensitivity 
analysis cases.

6.6.2 COMPARISON OF RESULTS FOR RANDOM TIME SERIES ERRORS
In the sensitivity analysis, the effect of the six time 
series errors relating to the optimal 1RS error model were 
investigated by carrying out a series of 100 runs. It was 
explained that to reduce the amount of simulation runs from 
600 to 100, the time series errors were considered together, 
rather than on an individual basis. A resultant rms value 
for the time series errors, was then computed by taking data 
samples across the ensemble at a specific time interval.

In the covariance analysis, the effect of the 5 individual 
time series error sources relating to the sub optimal 1RS 
error model were investigated. A resultant rms value was not 
computed for the effect of only the time series errors, but 
rather a resultant rms value was computed for all of the 10 
error sources of interest. Since the random time series 
results were considered on an individual basis and were 
separated from the random constant error sources, then an 
overall Rss value for the effect of the random time series 
results only, can be easily computed. This allows the random 
time series results from the covariance analysis, and the 
random time series results from the sensitivity analysis to 
be compared.
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Figure 6-11 illustrates the process of combining and 
comparing the time series results for the covariance 
analysis and the sensitivity analysis methods. Actual 
results obtained from the simulations are not discussed.

6.7 COMMENTS
In this chapter three techniques have been discussed that 
are suitable to assess navigation system performance, Monte 
Carlo analysis, sensitivity analysis and covariance 
analysis. The monte carlo and sensitivity analysis 
techniques use the solution to the state vector matrix 
differential equation as the basis for the simulations. The 
covariance analysis uses the Kalman filter covariance 
estimate equation as the basis for the simulation. As well 
as providing a figure for overall navigation performance, 
the sensitivity analysis and covariance analysis techniques 
can also be used to provide information on the contribution 
of individual error sources to overall navigation 
performance.
In the introduction it was stated that the customer inertial 
reference system is a 2 nm/hr, 95% circular error system. 
The computed values of 95% circular error obtained from the 
three methods although all in close agreement were only in 
the range 1.2 nm/hr to 1.3 nm/hr. The performance figure of 
2 nm/hr was therefore not been obtained. Since in all of the 
simulations, the error values used were obtained from the 
customer 1RS error budget table (see appendix B), it was not 
clear at this time why a figure of 2 nm/hr 95% has not been 
achieved. This point will be further discussed in chapter 8, 
section 8.6.5, where the reason for not obtaining a 
performance figure of 2 nm/hr is explained.
In the next chapter the three techniques developed above are 
used to assess the navigation performance of the Kalman 
filter.
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CHAPTER 7
INVESTIGATIONS INTO K A L M A N  FILTER P E R F O R M A N C E

7.1 INTRODUCTION

In chapter 6, three different methods applicable to the 
investigation of navigation system performance were 
investigated, these were Monte carlo simulation, sensitivity 
analysis and covariance analysis. In this chapter, these 
methods are used to analyze the performance of the 
development Kalman filter.

To evaluate Kalman filter performance using the Monte carlo 
and sensitivity analysis techniques, then values of Kalman 
filter latitude and longitude error are needed. To generate 
these values, a similar method can be applied as used for 
the 1RS in the last chapter ( see section 6.5.2) . That is, 
the Kalman filter x and y position error states which are in 
components of the platform axis, can be transformed into 
components of the latitude and longitude error by first, 
transforming the platform axis components into north and 
east axis using the Kalman filter alpha angle. Then, using 
a suitable value for earth radius, the north and east axis 
components can be transformed into Kalman filter latitude 
and longitude error.
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7.1.1 SENSITIVITY ANALYSIS SIMULATION DETAILS
The Kalman filter was discussed in chapter 4, where details 
were given of the 12 state sub optimal 1RS error model which 
the Kalman filter is implementing. Using the 10 hour flight 
profile of the previous chapter (see figure 6-2), a 
sensitivity analysis was carried out to investigate the 
Kalman filter performance.

Following the outline of the sensitivity analysis method 
discussed in the last chapter (see section 6.5.2), a total 
of 100 runs were carried out to simulate the effect of the 
1RS random time series error sources, with a further 6 runs 
to simulate the effect of the gyro and accelerometer random 
constant errors. For each run perfect GPS measurements were 
available for the first 4 hours of the flight, after which 
time GPS was switched out. This period of GPS coverage was 
purposely chosen, as it allows the Kalman filter a four hour 
period in which to observe 1RS errors. After the 4 hour 
period, the Kalman filter reverts to 1RS only operation, and 
therefore its ability to predict 1RS errors can be examined.

Results were recorded at one minute intervals for 1RS 
latitude and longitude error, and Kalman filter latitude and 
longitude error. The recorded data was then processed to 
obtain the following 3 sets of results, total error due to 
random time series and random constant error sources, 
partial error due to the combined effect of random time 
series errors only, partial error due to the combined effect 
of the random constants only.

Figure 7-1 shows the three sets of results for the 1RS 
latitude error. The continuous line in figure 7-1 represents 
the overall latitude error due to random constant and random 
time series error sources. The dashed line shows the 
latitude error for random' time series error sources only, 
while the dotted line gives the latitude error for random 
constant sources only. A similar set of results was obtained 
for the 1RS longitude error, but is not shown. Figure 7-2 
gives the corresponding result for the Kalman filter 
latitude error. A similar result was obtained for the Kalman 
filter longitude error but is not shown. Using the results 
for 1RS latitude and longitude error, and Kalman filter 
latitude and longitude error, the 95% circular error for the 
three sets of results were evaluated using the equation 
developed in the last chapter (see eg 6.3).
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7.1.2 EVALUATION OF OVERALL 1RS AND KALMAN FILTER 
PERFORMANCE

The 95% circular error value for the 1RS is given by :

95% Err = [°»5174 + 0.5467] NM/HR (7.1)

95% Err = 1.3023 NM/HR (7.2)

The 95% circular error for the Kalman filter is given by : 

95% Err = [°-3866 + 0.3866] NM/HR (7.3)

95% Err = 0.94628 NM/HR (7.4)

7.1.2 EVALUATION OF PERFORMANCE DUE TO RANDOM TIME SERIES 
ERROR SOURCES

The results for random time series errors consisting of gyro 
random walk and accelerometer noise, are evaluated below :

The 95% circular error value for the 1RS result due to 
random time series errors only is given by :

95% Err = [Q-172 + 0.212] m/HR (7.5)

95% Err = 0.46995 NM/HR (7.6)
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The corresponding 95% circular error for the Kalman filter 
is given by :

95% Err = [°-362 + 0.354] m/HR (7.7)

95% Err = 0.876 NM/HR (7.8)

7.1.4 EVALUATION OF PERFORMANCE DUE TO RANDOM CONSTANTS
The 95% circular error value for the 1RS due to random 
constant errors only is given by :

95% Err = [°-488 + 0-504] m/HR (7.9)

95% Err = 1.2140 NM/HR (7.10)

The corresponding 95% circular error for the Kalman filter 
is given by :

95% Err = [°»146 + NM/HR (7.11)

95% Err = 0.3573 NM/HR (7.12)

7.1.5 DISCUSSION OF RESULTS
An examination of the 1RS and Kalman filter results for the 
total position error due to random constants and random time 
series error sources shows, that the effect of the Kalman 
filter is to improve the overall system performance from a 
1.3 nautical mile per hour system to a 0.95 nautical mile 
per hour system.
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Considering the effect of the random time series errors 
only, the results show that the Kalman filter performance is 
no better than the 1RS performance, in fact it is worse. An 
examination of the effect due to random constant error 
sources only, shows that the Kalman filter 95% performance 
figure is 0.36 nautical miles per hour compared with 1.2 
nautical miles per hour for the 1RS.
From the 1RS results it is concluded that the random 
constant error sources make up the major proportion of the 
total 1RS position error. From the Kalman filter results, it 
is concluded that the major contributor to the total Kalman 
filter position error is the random time series noise. From 
the results for the random constant error sources only, it 
is concluded that the Kalman filter is able to make a good 
estimate of the gyro and accelerometer random constants 
during the initial 4 hour period of GPS. During the 
subsequent 6 hour period of 1RS only operation, the Kalman 
filter was able to make a good prediction of the 1RS random 
constant errors.
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7.2 INVESTIGATION INTO THE KALMAN FILTER TESTING METHOD
The Kalman Filter performance has been investigated by the 
technique of sensitivity analysis. Using this method the 
kalman filter performance was recorded for the effect of two 
different sets of 1RS error sources, random time series 
errors and random constants. During the simulations no 
adjustments were made to the kalman filter design values the 
kalman filter covariance matrix was therefore initialised 
with values relating to random constants, and the filter 
noise matrix was initialised with values relating to the 
random time series errors. The values used to initialise 
the Kalman filter were discussed in chapter 4, section 4.6.1 
(see table 4-1 for a list of the values used).
It is of interest to investigate an alternative 
configuration for initialising the kalman filter when 
carrying out the simulations for the random time series 
results. The alternative configuration is to set the Kalman 
filter covariance matrix P (0) to zero at initialisation for 
each of the 100 runs, to account for the fact that the 
kalman filters initial uncertainty in the estimate of the 
random constant states is zero.
Using the flight profile of the last chapter (see figure 6- 
2) a series of 100 runs were carried out to investigate the 
kalman filter performance for the random time series errors 
with the kalman filter covariance matrix set to zero at 
initialisation.
Values of kalman filter latitude and longitude error were 
recorded at one minute intervals, and then processed to 
compute an ensemble rms value for latitude and longitude 
error. A 95% circular error value was then computed for the 
random time series error sources. The result is detailed 
below :-

95% Err = [Q-213 + 0-235] m/HR (7.13)

95% Err = 0.5482 NM/HR (7.14)

This 95% circular error result of 0.5482 nm/hr is an 
improvement over the previous case for the random time 
series error sources, which was shown to 0.876 nm/nr. It is 
concluded therefore, that setting the Kalman Filter 
covariance matrix to zero has a significant impact on the 
kalman filter performance.
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7.3 VERIFICATION OF THE KALMAN FILTER TESTING METHOD
In applying the sensitivity analysis technique to measure 
the effect of the random time series errors on Kalman filter 
performance, two different methods of initialising the 
Kalman filter covariance matrix have been used. These two 
methods provided different results but without any 
indication of which technique is correct. To establish 
which of the two methods is correct, a Monte Carlo 
simulation was carried out.

The Monte Carlo technique is representative of the real 
world situation as it generates both random time series 
errors and random constant errors simultaneously. The 
selection of the Kalman filter initialisation parameters is 
straight forward for the Monte Carlo case, with both the 
covariance matrix P(0) , and noise matrix Q(0), being 
initialised with the design values that are intended to be 
used in the final implementation. (The Kalman filter 
initialisation parameters were discussed in chapter 4, see 
section 4.6.1 and table 4-1).

A Monte Carlo simulation was carried out using the flight 
profile of the last chapter (see figure 6-2). Latitude and 
longitude error was recorded at one minute intervals for 
both the 1RS and Kalman Filter for each of the 100 runs. 
The results from the 1RS and Kalman Filter were then 
processed to produce a resultant rms value of latitude and 
longitude error. The final values obtained, give the rms 
latitude and longitude errors for the combined effect of 
random constant and random time series error sources.

Figure 7-3 shows the Kalman Filter result for the final rms 
latitude error for the Monte Carlo simulation, compared with 
the same results obtained from the two sensitivity analysis 
cases. The continuous line in figure 7-3 is for the Monte 
Carlo result, while the dashed line is for the sensitivity 
analysis case where the covariance matrix was not reset to 
zero. The figure shows that these two results are almost 
identical. The case for the alternate Kalman filter 
configuration where the covariance values were set to zero, 
is shown by the dotted line in figure 7-3. This sensitivity 
analysis result can be seen to be significantly different 
from the Monte Carlo case. The result for Kalman filter 
longitude error is shown by figure 7-4, where the same trend 
as for the latitude error case can be observed.
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From these results it is concluded that when investigating 
the effect of random time series errors by the method of 
sensitivity analysis, the Kalman filter covariance matrix 
P (0) , should not be set to zero, but initialised with the 
Kalman filter design values.



125

7.4 A SECOND INVESTIGATION INTO KALMAN FILTER PERFORMANCE
Having established the correct technique for initialising 
the Kalman Filter covariance matrix when applying the 
sensitivity analysis technique, it was decided to repeat the 
investigation discussed in section 7.1 but under a slightly 
different alignment condition. The initial alignment heading 
was chosen to be 225 degree instead of 090 degree. The 
sensitivity analysis was carried out along the same lines as 
the investigation discussed in section 7.1.1, where 100 runs 
were carried out to simulate the effect of the random time 
series errors and a further 6 runs were carried out to 
investigate the effect of the random constant error sources. 
Results were recorded for latitude and longitude error at 
intervals of one minute throughout the 10 hour simulation 
period for each run. The results were processed into three 
sets in the same manner as described in section 7.1.1. 
Using the final processed vales of rms latitude and rms 
longitude error, the 95% circular error for the 1RS and 
kalman filter were computed and found to be as follows:-

7.4.1 1RS CIRCULAR ERROR PERFORMANCE
The 95% circular error value for the overall 1RS error is 
evaluated as :

The corresponding 95% circular value for the overall Kalman 
filter error is evaluated as :

95% Err = -L-.‘,388 * °» 683 NM/HR (7.15)

95% Err = 1.3070 NM/HR (7.16)

95% Err = [°«2933^+ 0»32] m/HR (7.17)

95% Err = 0.7505 NM/HR (7.18)
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7.4.2 DISCUSSION OF RESULTS
The 95% circular error performance figure for the overall 
1RS performance was found to be 1.3070 nautical miles per 
hour. This result which is for an alignment heading of 225 
degree, is very close to the previous value achieved for the 
090 degree alignment case (see section 7.1.2) which was 
1.3023 nautical miles per hour.
For the kalman filter the result for the 225 degree 
alignment case was found to be 0.7505 nautical miles per 
hour compared with a value of 0.9462 nautical miles per hour 
for the 090 degree case. These results show that changing 
the alignment heading from 090 degree to 225 degree causes 
a reduction in the overall kalman filter performance of 
approximately 0.2 nautical miles per hour but does not 
significantly affect the resultant 1RS error performance. 
By comparing the results for the random constant sources for 
the two alignment cases, it was noted that the kalman 
filters ability to learn the z gyro bias was quite different 
for the two runs, with the 225 degree alignment case 
providing the best result.
It is concluded therefore that the kalman filters ability to 
observe the z gyro bias is a function of vehicle heading.
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7.5 INVESTIGATION INTO DIFFERENT PERIODS OF GPS COVERAGE
The previous investigations into Kalman filter performance 
were carried out using a suitable flight profile, where GPS 
measurements were available for the first four hours of a 10 
hour flight. The amount of time that real GPS measurements 
will be available cannot be predicted. The intention is for 
GPS to be able to provide continuous coverage, although this 
will only be possible when the full constellation of GPS 
satellites are launched. At the present time GPS coverage is 
intermittent, and because of this it is of interest to 
examine the effect on the Kalman filter performance of 
different periods of GPS coverage.
Using the flight profile shown in figure 7-5, three separate 
sensitivity analysis simulations were carried out. For each 
simulation perfect GPS measurements were mechanized to 
provide the following periods of GPS coverage, 42 minutes, 
60 minutes and 3 hours. After each of these times, the 
pattern for the remainder of the 3 runs was the same with 
GPS being switched out until the 5 hour point. At 5 hours 
GPS was again switched in for a period of 42 minutes before 
being finally switched out for the remainder of the 10 hour 
flights.
Results for the diagonal elements of the Kalman filter 
covariance matrix were also recorded for the three GPS 
cases, so that a covariance analysis could be carried out.

7.5.1 DISCUSSION OF RESULTS FROM THE COVARIANCE ANALYSIS
Figure 7-6 shows the result for an overlay of the various 
diagonal terms of the Kalman filter covariances matrix for 
the three cases. Appendix C gives the relationship between 
the diagonal elements of the Kalman filter covariance matrix 
and the corresponding 1RS states. From the covariance terms 
associated with the X and Y accelerometer biases these being 
sd(ll) and sd(12) , it can be seen that the difference 
between the three plots for both accelerometers is small, 
compared with the initial value of uncertainty of the two 
states. Examination of the result for the 3 hour case (the 
dotted line on the graph) reveals that for both the X and Y 
accelerometer states, the plots reach a minimum value at a 
time of one and a half hours, which means that at this time, 
the Kalman filter has its best estimate of the two states.
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For the gyro case, the covariance plots relating to the X,Y 
and Z gyro are shown by sd(8),sd(9) and sd(10) respectively. 
For the level axis gyros the trend that can be observed from 
the three cases is as follows :-
After 42 minutes the Kalman filter uncertainty is still high 
when compared to the initial value of uncertainty of the two 
states. The uncertainty reduces quite rapidly between the 
42 minute and 60 minute intervals for both gyros, reaching 
a minimum value of uncertainty at approximately the one and 
a half hour point.

For the vertical axis gyro the trend is quite different. For 
the 42 minute and 60 minute case, the Kalman filter does not 
have time to estimate Z gyro bias (see SD(10) ) , thus the 
uncertainty in the state does not change from its initial 
value. For the 3 hour case, the filter is able to estimate 
the state, and as shown by the graph (see dotted line for 
plot SD(10)) the uncertainty reduces rapidly after 
approximately 1.2 hours to a minimum value at approximately 
3 hours.

From the results obtained above for the gyro cases, it can 
be concluded that for the 42 minute case, the Kalman filter 
does a poor job of estimating the local level and vertical 
axis gyro biases. For the 60 minute case, the Kalman filter 
is able to make a reasonable estimate of the local level 
gyro biases, but is unable to make any estimate of the 
vertical axis gyro bias. For the 3 hour case, the Kalman 
filter is able to make a good estimate of all gyro bias 
errors.

7.5.2 DISCUSSION OF THE RESULTS FOR THE SENSITIVITY ANALYSIS
1RS latitude and longitude information that was recorded at 
one minute intervals was processed to produce 3 sets of 
results. Figure 7-7 shows the 3 results which are, overall 
1RS latitude error due to random constant and random time 
series error sources (continuous line), 1RS latitude error 
due to random constants only (dashed line), and finally 1RS 
latitude error due to random time series errors only (dotted 
line). Similar results were obtained for 1RS longitude error 
but are not shown. From figure 7-7 it can be seen that the 
major contributor to the 1RS latitude error is the random 
constant error source. This result is consistent with the 
findings of section 7.1.5.
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The Corresponding results for the Kalman filter latitude 
error for the 42 minute GPS case is given by figure 7-8, 
figure 7-9 shows the result for the 60 minute case and 
figure 7-10 shows the result for the 3 hour case. Similar 
results were obtained for the Kalman filter longitude case 
but are not shown.

From the graph showing Kalman filter latitude error for the 
60 minute case, figure 7-9, the following trend is observed 
: - After 60 minutes of continuous coverage, GPS is lost. 
With the loss of GPS the Kalman filter latitude error starts 
to increase, reaching a final value of 1.88 nm after 5 
hours.
Also shown in figure 7-10, are the contributions of random 
noise and random constants to the overall error. It can be 
seen that the biggest contribution to the overall error 
comes from the random constants. At 5 hours, GPS provides 
coverage again for a period of 42 minutes, after which time 
it is switched off for the remainder of the test. After loss 
of GPS for the second time, the Kalman filter latitude error 
starts to increase once again, reaching a final value of 
1.66 nm at the end of the 10 hour run. For this second phase 
however, the random noise error provides the largest 
contribution to the overall error. The pattern observed here 
can be explained by the fact that during the first period of 
unaided operation, the Kalman filter has not been able to 
observe the Z gyro bias, this fact being confirmed from the 
covariance analysis results discussed above. Further 
evidence that this is indeed the case is given from figure
7-12, which shows the contribution of each of the individual 
5 random constant error sources, to the total random 
constant error. The dashed dotted line is the contribution 
of the Z gyro random constant which can be seen to be 
dominant.

Figure 7-8 shows the Kalman filter latitude error for the 42 
minute case. After the initial loss of GPS the latitude 
error can be seen to increase to a final value of 2.2 nm 
after 5 hours. As observed in the 60 minute case, the random 
constant error is the major contributor to the overall 
latitude error. Figure 7-11 shows the breakdown of the 5 
random constant error sources for the 42 minute case. It is 
apparent from this set of graphs, that the Z gyro random 
constant is the major contributor to the overall random 
constant error. By making a comparison of the results from 
figure 7-11 and figure 7-12, it can be seen, that for the 42 
minute case, the magnitude of the X and Y gyro bias error 
for the first period after loss of GPS, is greater than the 
corresponding values observed in the 60 minute case.
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This result confirms the conclusions made in the covariance 
analysis results, which was, that the Kalman filter does a 
good job of observing the local level gyro bias errors 
during the 60 minute period of GPS coverage, but not the 42 
minute period.

Figures 7-10 shows the make up of the Kalman filter latitude 
error for the 3 hour case. The figure shows that the random 
noise is the major contributor to the Kalman filter error 
for both periods of GPS outage. This result confirms the 
conclusions drawn from the covariance analysis above about 
the 3 hour operation, which was, that the Kalman filter is 
able to make a good estimate of all three gyro biases after 
having this initial phase of GPS coverage.

7.5.3 95% CIRCULAR ERROR PERFORMANCE FIGURES

The overall 95% performance figure for the 1RS is evaluated 
as follows :

The corresponding 95% circular value for the overall Kalman 
filter error for the 42 minute GPS case is evaluated as :

95% Err = [°-712 + 0.365] EM/HR (7.19)

95% Err = 1.3180 EM/HR (7.20)

95% Err = .[Q-712 + 0.3255] EM/HR (7.21)

95% Err = 1.26994 EM/HR (7.22)
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Similarly, the 95% circular value for the overall Kalman 
filter error for the 60 minute GPS case is evaluated as :

95% Err = .IP*46 * 0-2125] EM/HR (7.23)

95% Err = 0.8230 EM/HR (7.24)

Finally, the 95% circular value for the overall Kalman 
filter error for the 3 hour GPS case is evaluated as :

95% Err = ?:2 3 EM/HR (7.25)

95% Err = 0.8811 EM/HR (7.26)

7.5.4 DISCUSSION OF RESULTS FOR CIRCULAR ERROR PERFORMANCE
The 95% circular error performance figure for the effect of 
all of the 1RS errors was computed to be 1.3180 nautical 
miles per hour. For the Kalman filter 42 minute GPS case, 
the 95% performance figure was computed to be 1.2699 
nautical miles per hour, this figure relating to the first 
period of GPS outage. For the 60 minute and 3 hour cases the 
corresponding 95% performance figures were found to be 
0.8230 nautical miles per hour and 0.8811 nautical miles per 
hour.
The Kalman filter result for the 60 minute case shows that 
there is an improvement in performance of approximately 0.4 
nautical miles per hour when compared with the same result 
for the 42 minute case. This is explained by the fact that 
at 42 minutes the Kalman filter is still estimating the 
value of the x and y local level gyros. The Kalman filter 
uncertainty in its estimate of the local level gyros reaches 
a final minimum after one and a half hours, but between the 
42 minute and 60 minute points, the uncertainty is rapidly 
decreasing.
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The result for the Kalman filter performance for the 3 hour 
case is 0.8811 nautical miles per hour, which is slightly 
greater than the value for the 60 minute case. This can be 
explained by the fact that the Kalman filters uncertainty in 
its estimate of the x and y gyro and accelerometer biases 
reaches a minimum at the one and a half hour point. After 
this time the Kalman filter uncertainty in these states 
starts to increase due to the presence of process noise. The 
fact that the filter uncertainty for a state starts to 
increase implies that the filter is no longer able to 
observe that state. Itzhack (1980) discusses the problem of 
observing 1RS errors and provides details of several 
manoeuvres that enhance a Kalman filters ability to observe 
certain 1RS errors.
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7.6 COMMENTS
In this chapter techniques that measure navigation system 
performance that were previously developed in chapter 6, 
have been applied to the inertial reference system and the 
Kalman filter, to assess the Kalman filter navigation 
performance.
The results obtained show that the Kalman filter provides a 
reduction in the EMC position error compared to the 1RS 
position error. This improvement in the EMC result is 
achieved during the 1RS/GPS and 1RS only mode of operation. 
For the 1RS/GPS mode of operation an improvement in the EMC 
performance against the 1RS is expected, since accurate GPS 
measurements are being used in the form of position and 
velocity. The effect of using GPS position and velocity as 
measurement inputs to the Kalman filter is that the Kalman 
filter tracks the 1RS position and velocity states very 
closely, with the result that a very accurate EMC position 
is obtained.
For the 1RS only mode the results show how the Kalman filter 
provides an improvement in the EMC position compared to the 
1RS. In this mode of operation the Kalman filter is 
predicting the 1RS errors. The result for the EMC position 
compared to the 1RS position is therefore an indication of 
how well the Kalman filter has been able to observe the 
various 1RS states. In the case of the z gyro bias error 
source, the results have shown the Kalman filters ability to 
observe this state is sensitive to heading.
At the end of chapter 6, the comment was made that although 
the customer inertial reference is quoted as being a 2 nm/hr 
95% circular error system, results obtained from simulation 
only showed performance in the range 1.2 to 1.3 nm/hr, 95%. 
In this chapter, a similar set of results not demonstrating 
the 1RS 2 nm/hr figure were obtained. Therefore, the Kalman 
filter performance figure could only be evaluated for a 
corresponding 1RS performance figure which was, less than 2 
nm/hr.
In reviewing the monte carlo analysis, sensitivity analysis 
and covariance analysis techniques, it was recognised that 
although the values used for the simulations were obtained 
from the customer error budget table (see appendix B) , no 
consideration was given to the 1RS alignment and the way 
that the alignment might affect the error values. Therefore, 
for all of the simulations carried out in chapter 6 and 
chapter 7, the error budget values used were assumed to be 
independent of each other.In the next chapter, the alignment 
process that is relevant to the customer inertial reference 
system is considered, and its impact on the Kalman filter 
assessed.
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CHAPTER 8.0

K A L M A N  FILTER M O D I F I C A T I O N  T E C H N I Q U E S

8.1 INTRODUCTION
The results from the study carried out in the last chapter, 
into the effects of different periods of GPS, has shown that 
not all of the 1RS errors are observed at the same time, and 
as a consequence of this, the Kalman filter performance 
varies according to when GPS is lost. In particular, the 
results revealed that under certain circumstances the Kalman 
filter takes a considerable time to learn the Z gyro bias. 
Also it was noted that an 1RS performance figure of 2 nm/hr 
was not able to be simulated, this value being the 
perfomance figure quoted for the customer 1RS.
In this chapter, the 1RS alignment which occurs in the 
customer inertial reference system is examined in detail. 
Consideration is given to the initialisation of the Kalman 
filter, so that it reflects the 1RS alignment condition.
The first part of the work deals with alignment conditions 
which are specifically related to the customer inertial 
reference system. Covariance values are developed that can 
be used to initialize the Kalman filter so that the filter 
is matched to a specific 1RS alignment condition. Then a 
more general alignment conditions not directly related to 
the customer 1RS is investigated, and Kalman filter 
initialisation parameters developed.
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8.2 INERTIAL REFERENCE SYSTEM ALIGNMENT DESCRIPTION
During the alignment and navigation phases of operation of 
the customer 1RS, one of several different processes can 
take place which are dependent on real time conditions. 
There are two types of alignment modes referred to as a 
normal alignment and extended alignment. Normal alignment 
can be considered to take place, when the aircraft has been 
parked overnight and is switched on for the first flight of 
the day. Once normal alignment is completed which takes 
about 10 minutes, the system enters the navigate mode where 
the extended alignment phase is entered if the aircraft has 
not taxied for the first time. Assuming that an extended 
alignment has taken place, the resultant errors in the 
inertial system that remain uncorrected are a Z gyro bias 
and the components of the level axis gyro bias errors along 
the east axis. Whereas the normal alignment phase takes 
place when the inertial system is in alignment mode, the 
extended alignment solution takes place when the system is 
in the navigate mode.
This last point causes a potential design problem, which is 
where to start the integrated GPS/1RS Kalman filter 
solution. If the Kalman filter is started immediately the 
1RS system goes into navigate mode after completion of a 
normal alignment, then the Kalman filter will start to learn 
what it considers to be 1RS errors. If at the same time, the 
1RS has entered extended alignment mode, then it will be 
trying to learn and thus reduce its own errors. The 
consequence of this being the Kalman filter will be trying 
to learn 1RS errors that may not be present at the end of 
the extended alignment phase of operation. To gain a better 
understanding of the extended alignment process and the 
requirements it places on the Kalman filter design, the 
following investigations were carried out.

8.2.1 DESCRIPTION OF THE EXTENDED ALIGNMENT SOLUTION
In the extended alignment solution, estimates of X and Y 
platform axis tilt rates are made by the 1RS, in an attempt 
to resolve system errors. The estimated tilt rates are 
resolved through the wander angle into equivalent rates 
about the north and east axis. The north axis tilt rate is 
assumed to be due to components of only level gyro bias 
error along the north axis, this component of level axis 
gyro bias error is therefore corrected. The equation for the 
north axis bias correction is developed below.
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Consider the axis set shown in figure 8-1 where the platform 
axis is misaligned from the north / east axis set by an 
angle a. If the total gyro output is made up of a true value
and an error value, then for the x and y gyros the total
gyro outputs ex and ey, can be written in terms of the x and
y platform axis as follows :

ex = Cos (X) Sin (a) n + ebx (8.1)

Ey = Cos (X) Cos (a) n + 6jby (8.2)

Resolving into the north axis gives : 

eN = Cos(a)eY + Sin(a) ex (8.3)

Which becomes :

eN = Cos(X)n(l - Sin2(a) ) +Cos(a)ebY
+ Sin2 (a) Cos (\) n + Sin (a) eb}

(8.4)

This reduces to : 

eN = Cos (X) f2 + Cos (a) ebY + Sin (a) ebx (8.5)

Finally the north axis tilt rate error becomes: 

ebN = Cos (a) ebY + Sin(a) ebx (8.6)

Once a value for the north axis tilt rate error has been 
obtained, it is resolved back into components of x and y 
gyro bias in terms of platform axis via the angle a, and 
then into body axis components via platform heading. Once 
values for the gyro biases have been obtained in body axis, 
they are added to gyro bias terms from calibration.
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After these bias corrections have been carried out, the gyro 
bias errors in the system that remain uncorrected are the Z 
gyro bias error which primarily causes azimuth gyro drift, 
and the component of level axis gyro bias along the east 
axis. The 1RS state that accounts for the azimuth error is 
the Z platform axis tilt. The value of this error is related 
to the unknown component of east gyro bias by the following 
equation.

4>z = (8-7)

In terms of x and y gyro biases this becomes :

= Cos(a)ex  ̂Sin(a)eY 
z n n

8.2.2 1RS THEORETICAL ERROR MODEL FOR GYRO BIAS
It has been stated that at the end of the extended alignment 
solution there is a z platform axis tilt error associated 
with an unknown component of east gyro bias. These two error 
sources exist because they cancel each other out. To explain 
this point a single channel error model showing the effect 
of gyro bias on velocity will be developed using classical 
control theory. Consider the single channel inertial system 
model given in figure 8-2. The transfer function for this 
system can be obtained using the laplace transform operator 
as follows :

V(s) _
eb(s) 1 +

Rs-

(8.9)

For a step input

eb (s) = JL 
s (8.10)
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The equation then becomes

V(s) = eg
s (s2 + ( (8.11)

The inverse transform gives

V(t) = Re(l - Cos (8.12)

Which can be written in convenient form as

V'(t) = 60.1 e(l - Cos(4.46t) ) (8.13)

Where :
v - Velocity (kts) 
e - gyro bias (deg/hr) 
t - time (hours)

The transfer function shows that the effect of a gyro bias 
error on velocity, is to cause an error with a one minus 
cosine characteristic that repeats itself after 84 minutes, 
this being the Schuler period. The peak of the waveform 
therefore appears after 42 minutes. In the inertial system 
then an east gyro bias if it existed on its own, would cause 
a north velocity error in nav mode with the characteristic 
discussed above. At the end of the extended alignment there 
is a heading error associated with the east gyro bias error. 
If the heading error existed on its own, it would also cause 
a north velocity error in nav mode with the same 
characteristic as the gyro bias but of opposite sign, but 
because both errors exist together they cancel each other 
out because of their opposite signs.
If the inertial system is rotated through 180 degrees, then 
the two error sources no longer cancel, they become 
additive.
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This is because the east gyro bias error is caused by gyros 
which are in the body axis of the system, and the body axis 
changes its orientation with respect to the platform axis 
when the inertial system is rotated. The heading error or 
azimuth error is in the platform axis, and its orientation 
does not change with heading.
This uncoupling of the balanced errors is peculiar to 
strapdown inertial navigation systems where the gyros are 
physically mounted to the body of the unit. In a gimballed 
system although the two errors sources may exist the error 
sources do not become uncoupled, because for a gimballed 
system the gyros are space stable and therefore the platform 
orientation does not change as system heading changes.

8.2.3 SIMULATION DETAILS
Simulations for a non moving aircraft (stationary 
simulations) were set up to model the effect of the customer 
1RS extended alignment condition, using the optimal 1RS 
error model simulation discussed in chapter 5. The 
simulation runs were carried out at latitude 0 degrees with 
an initial heading of 090 degrees, as this corresponds to an 
east alignment. Under this condition the unknown component 
of east gyro bias is equal to the full value of the y gyro 
bias, and the component of the north bias is the full value 
of the x gyro bias. Since the north gyro bias component is 
measured and removed during the extended alignment phase, 
then the value of the x gyro bias used in the simulation was 
taken as zero. The value for the y gyro bias was set equal 
to 1.398 x 10-4 rads/hr which is the équivalant rms value 
obtained from the customer 1RS error budget as given in 
appendix B. The remaining z platform axis tilt error source 
value was determined using equation 8.8, and found to be 533 
x 10-6 rads.
A theoretical value for peak velocity error which occurs at 
42 minutes, was also computed using equation 8.13, and found 
to be 0.9615 kts. The theoretical model solution is useful 
in that it can produce theoretical predictions, which can be 
used to validate results obtained from simulation, where the 
simulation model is different from the theoretical model.
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8.2.4 SIMULATION RESULTS
Three separate simulations were carried out to investigate 
the effects of the y gyro bias, and z platform axis tilt, 
error sources at alignment time. For the first simulation, 
a y gyro bias having a value of 0.008 deg/hr was used.
For the second simulation, a z platform axis tilt value was 
chosen from equation 8.8.
For the third simulation the y gyro bias and z platform axis 
errors were combined, so that the resultant effect of the 
two error sources could be examined.
Figure 8-3 shows the combined results for the three 
simulations all of which were run for a 2 hour period. For 
the case of the y gyro bias (EPSY) , the continuous line 
shows that this error source causes a velocity error in the 
x platform axis (DEL VX) of approximately 1 knot at 42 
minutes, with almost zero velocity error in the y platform 
axis (DEL VY) . By using the theoretical result obtained from 
the single axis 1RS model, the x platform axis velocity 
error was found to be 0.95046 kts. So there is a good 
agreement with the value observed from the simulation and 
the theoretical prediction.
The y platform axis velocity error is zero due to the fact 
that the system is simulated as being stationary with the 
values of latitude, longitude and alpha angle all chosen so 
that there is no cross coupling of errors in the local level 
1RS axis.
The dashed line in figure 8-3 shows the result for the z 
platform axis tilt error (PHIZ). Before considering the 
result, it is useful to examine the effect of a z platform 
axis tilt error on the x and y local level axis as shown in 
figure 8-4. The z tilt can be seen to causes the y platform 
axis to be displaced towards the south axis, and the x 
platform axis to be displaced towards the west axis. The 
value of the y platform axis tilt error (PHIY) will 
therefore be significant compared to the value of the x 
platform axis tilt error (PHIX), because the y axis is moved 
towards the south axis where the full value of earth rate is 
sensed.
Examination of figure 8-3 shows that the value of the y 
platform axis tilt error is significant when compared with 
the x platform axis tilt error. The plot for the y axis tilt 
error shows a sinusoidal type variation which can be 
explained as follows :
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The y platform axis tilt error starts to build up due to the 
displacement of the y axis towards south. The y tilt error 
generated, causes the vertical component of acceleration 
which is gravity for this case, to be resolved into the x 
platform axis as a velocity error. This velocity error is 
then fedback to level the offset y axis, causing a Schuler 
related oscillation in the y platform axis tilt error term.

The result for the x platform axis velocity error can be 
seen to be of the form of a "1-cosine" graph, which is 
similar to the result obtained for the first simulation but 
of opposite sign.

The result for the y platform axis tilt error for the first 
simulation above (see continuous plot for PHIY) also shows 
an oscillation 180 degrees out of phase when compared with 
the same result for the second simulation.

The two previous results have shown the effects of the 
individual 1RS error sources. The third simulation as shown 
by the dotted line in figure 8-3, gives the result for the 
combined effect of the two error sources. For the x platform 
axis velocity error, the result can be seen to be zero. 
Similarly for the x platform axis tilt error the result can 
be seen to be zero. For the case of the Y platform axis 
velocity error, and the x platform axis tilt, although the 
results are not zero, they are very small.

This third simulation has shown that the effect of combining 
the two 1RS error sources is to produce a zero velocity 
error. This is the result expected from the extended 
alignment phase of operation.

The next phase of the work deals with the Kalman filter and 
how it can be set up to reflect the conditions of the 1RS 
extended alignment.
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8.3 MATCHING THE KALMAN FILTER TO THE ALIGNMENT CONDITION
The objective for this section of the work is to find a 
method whereby the Kalman filter covariance matrix can be 
initialised to reflect the particular conditions of the 
customer 1RS extended alignment. When a suitable solution is 
found the Kalman filter will be referred to as being matched 
to the 1RS extended alignment condition. The approach taken 
to find the Kalman filter matched parameters is based on the 
discrete Kalman filter equations which have been discussed 
in chapter 4 and are summarized below.

Kalman Filter Covariance Estimate Equation
Pt(-) = *A-i(+) <  + C m

Kalman Filter Gain Equation

= [P* ( -) < ]  [ffA( -> < )  +«i] (8-15)

Kalman Filter Covariance Update Equation 

Pk(+) = [X - Kfik}Pk(-) (8.16)

The previous phase of work has dealt with the extended 
alignment condition, by considering one particular alignment 
heading and showing how the 1RS functions at that heading. 
The particular heading of 090 degrees was specifically 
chosen because, on this heading the y gyro platform axis, 
and the east geographic axis are coincident, thus at the end 
of the extended alignment phase of operation, the unknown 
component of east gyro bias is simply equal to the total 
value of the y gyro bias. The x gyro bias is assumed to be 
removed for this particular alignment orientation, because 
the x platform axis is coincident with the north geographic 
axis, and the north gyro bias is measured and removed during 
extended alignment.
This initial development of the Kalman filter matched 
solution will assume the above extended alignment conditions 
for the 1RS, and therefore the covariance initialisation 
parameters that are developed will be appropriate for only 
one specific heading. This solution will lay the framework 
however, for the more general case to be considered later.
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The first task in the development of the covariance 
parameters for a matched Kalman filter solution, is to 
choose values to initialize the Kalman filter covariance 
matrix.

These values are chosen on the basis of what is known about 
the 1RS system. In this instance because there are only two 
1RS error sources being considered, a y gyro bias in balance 
with a z platform axis tilt, then all of the off-diagonal 
elements of the 12 x 12 Kalman filter covariance matrix are 
taken as zero at initialization. All of the leading diagonal 
elements are set to unity, except for the two values 
relating to the 1RS error sources. These two covariance 
parameters are P77(0) for the z platform axis tilt state and 
P99(0) for the y gyro bias state. Appendix C gives the 
relationship between the Kalman filter diagonal covariance 
elements and the 1RS states.
Having set the values for the initial covariance matrix, the 
first and where necessary second iterations of the 
covariance estimate (see 8.14), Kalman filter gain (see 
8.15) and covariance update equations (see 8.16) are worked 
out, so that the conditions that are required for a matched 
filter solution can be identified. The results for the first 
iteration of the Kalman filter covariance update equation 
for a stationary system will now be considered, where the 
initial value of the covariance matrix P (0) is taken to be 
zero except for the two elements P77 (0) and P9 9(0) .
From the result for the first iteration of the covariance 
update equation P (+) it was found that the first five 
diagonal terms were zero. The sixth diagonal term which is 
the Kalman filter update for the y platform axis tilt was 
not zero and is discussed below.

8.3.1 Y PLATFORM AXIS TILT
The result for the covariance update equation for the Y 
platform axis tilt after the first iteration is :

,̂6(+) =PW (-> - VW(-) (8.17)
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Substituting in the value for the gain K63 gives :

^ 6,6 (+) = ^ 6,6 (-) * (8.18)

where the Y tilt value obtained from the covariance estimate 
equation (8.14) is :

Similarly, the cross correlation term relating the Y tilt 
and X platform axis velocity, obtained from the first 
iteration of the covariance estimate equation is :

For the 1RS extended alignment condition being considered 
here, the Y gyro bias and Z platform axis tilt errors are 
taken to be balanced, which means that the value of the 1RS 
Y tilt error is zero. For the Kalman filter to be matched to 
this 1RS condition then, the value of Kalman filter 
covariance update equation for the y axis tilt P66(+) must 
also be zero, since if it is not zero the Kalman filter will 
think it is uncertain of the Y tilt state and will try to 
learn the value of the tilt state. It will be unable to do 
this however, because in the 1RS the value of the Y tilt 
state is zero due to the balancing effect of the Y gyro bias 
and the Z platform axis tilt.
For P66(+) to be zero, then P66(-) must be zero also. By 
examining equation 8.19 above, it can be seen that the 
equation for P6 6 (-) can only be made equal to zero by the 
addition of extra terms. The terms needed to obtain a zero 
condition for P66(-) are developed in section 8.3.3.

P»/-) = P7,7(0)H^At2 + P9i9(0)C222At2 (8.19)

*6,3(-> = p 3,3(°) - ^ . « ( O l g A t  + P 7 7 ( 0 ) A ^ t 2 (8.20)
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8.3.2 Y GYRO BIAS
The result for the covariance update equation for the Y gyro 
bias after the first iteration is :

P9,9(+) =P 9,9(-) - K9i3P3i9(-) (8.21)

substituting in the value for the gain K,, gives :

*,.,( + ) ~ - p   pw(-) (8-22)
3,3 ' ) velx

where the Y gyro bias value obtained from the covariance 
estimate equation is given by :

P9,9(-) = P9,9(0) (8.23)

Similarly, the cross correlation term relating the Y gyro 
bias and the X platform axis velocity obtained from the 
covariance estimate equation is :

P9,3(-) = 0 (8.24)

For the second iteration of the covariance update equation 
the value for the Y gyro bias becomes :

Expressing values in terms of the covariance matrix 
initialisation parameters gives :

- (Pp ((°\C2f ^ t2)2 (8-26)
3,3 ' / velx
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This last equation shows how the Kalman filter uncertainty 
in the Y gyro bias estimate starts to decrease. The equation 
models the effect of the Y gyro bias first getting into the 
Y axis tilt, and then into the X velocity. Providing an X 
velocity measurement therefore allows the Kalman filter to 
estimate the Y gyro bias effect.

For the Kalman filter to be matched to the 1RS condition, 
the value of the update equation P99( + ) must be constant and 
equal to P99 (0) , since this is the initial uncertainty in the 
Kalman filter estimate of the Y gyro bias state. To achieve 
this condition, the term P93(-) must be zero. From equation 
8.26 above the value for P93(~) after the second iteration 
can be seen to be :

= i V ° ) C 2,2çrAt2 ( 8 . 2 7 )

This equation cannot be made equal to zero in its present 
form since P99(0) is non zero and C2)2 is unity. The additional 
terms that are needed to make P9 3 (-) zero are discussed in 
the next section.

8.3.3 SELECTING THE MATCHED KF INITIALISATION PARAMETERS
The analysis of the Kalman filter covariance equations has 
shown that if the Kalman filter is to be matched to 1RS 
extended alignment condition, then additional terms are 
required. These parameters can be generated by choosing 
certain cross correlation terms to be non zero in the 
initial Kalman filter covariance matrix P (0). Identifying 
which cross correlation terms to choose is the difficult 
task and is discussed below.
Based on the fact that the Y gyro bias and the Z platform 
axis tilt errors are balanced during the 1RS extended 
alignment, the following set of cross correlation terms, P7>9 
and P97, were chosen and found to satisfy the above 
requirements. The terms P79 and P97 are the cross correlations 
between the y gyro bias and the z platform axis tilt. The 
way that these cross correlation terms can be used to 
produce a balanced Kalman filter will now be examined.



Consider first the initial covariance matrix P (0), it now 
has four non zero values which are :

*7.7(0)

*7,9(0) 

*9,7(0) 

*9,9 ( 0 )

Value to be determined
Value to be determined
Value to be determined
Value chosen according to the one sigma value 
of the y gyro bias given in the error budget 
table.

At this stage no attempt is made to consider possible 
numeric values for the first three unknown parameters above. 
Numeric values can be found once the relationships between 
the parameters has been established.

8.3.3.1 Y PLATFORM AXIS TILT ERROR
Using the four non zero values for the Kalman filter initial 
covariance matrix P (0), the covariance estimate for the Y 
platform axis tilt and the covariance update for the Y gyro 
bias are recomputed.
The results for the first iteration of the covariance 
estimate equation for the y platform axis tilt becomes :

To meet the balanced Kalman filter condition the value of 
P66(-) is required to be zero. A comparison of the equation 
with its previous form (see equation 8.19) shows that it now 
contains extra terms P97 and P79. Additional information is 
still needed however, before actual values for the 
parameters can be determined, so it is necessary to proceed 
with the analysis and examine the covariance update 
equations for the y gyro bias state.

P6,6(-) = P7,7(0)W,2At2 + P79(0)WxC2i2àt2 +
P,>9(0)C^t2 + P9i7(0)W,C2]2At2

(8.28)
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8.3.3.2 Y GYRO BIAS STATE
The first iteration of the covariance update equation for 
the y gyro bias state is :

P9,9( + > = P9,9(°) (8.29)

For the second iteration the update equation becomes :

*9.9<+ ) “ * W (-> - p  f l v V f i -  p3-9(_) ( 8 , 3 0 )3.3 ' ) vebc

where

^9,3(-) = P9,9(0)C22çrAt2 - P97(0)^gAt2 (8.31)

And

P3,9(-) = p 9 .9 ( ° ) c 2 .2 SrAt2 -  P19( o )WxgAt9,9 '2,2
(8.32)

To meet the balanced Kalman filter condition, the 
uncertainty in the estimate of the y gyro bias is required 
to remain constant at its initialised value of P99(0).
This constant condition can be satisfied by choosing the 
value of P97(0) in the equation for P93(-) (see 8.31) above as 
follows :

*9.7 (0 ) = _ *9,9(0)
FIT (8.33)

The value for the cross correlation term P79(0) must also be 
equal to P9 7 ( 0 ) due to the fact the covariance matrix is 
symmetrical. If the covariance term P7 9 ( 0 ) is chosen such 
that it is not equal to the value P97(0) then a covariance 
matrix may be set up that is not positive definite.
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If the chosen values for P97 ( 0) and P7 9 ( 0) are now substituted 
into the equation for P6>6(-) (see 8.28), then the value for 
the final unknown term P7 7 ( 0 ) can be found :
Substituting in values for P9 7 ( 0 ) and P7 9 ( 0 ) into equation 
8.28 gives :

The value for P77(0) that makes P66(-) equal is then found to 
be :

8.3.3.3 SUMMARY OF RESULTS
The analysis has shown how the Kalman filter can be matched 
to the 1RS extended alignment condition by suitable choice 
of the parameters contained in the initial covariance 
matrix. The relationship between the four parameters has 
been developed and is summarized below.

Where <j2 is the variance of the Y gyro bias state obtained 
from the error budget table.

(8.35)

p9j,(0) = a7 (8.36)

(8.37)

(8.38)

(8.39)
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8.3.4 KALMAN FILTER SIMULATION RESULTS FOR THE MATCHED 
FILTER

Simulations for a non moving aircraft were carried out to 
investigate the performance of the Kalman filter where the 
Kalman filter covariance matrix was initialised with the 
design values developed above (see equations 8.36 to 8.39). 
Stationary simulations were carried out at two locations, 
latitude north 0 degrees and latitude north 45 degrees. For 
each location the effect on the Kalman filter of uncoupling 
the 1RS errors with a 180 degree was investigated. In all 
cases the 1RS alignment heading was taken to be 090 degrees 
ie an easterly alignment. The 1RS error sources were chosen 
to be representative of the extended alignment condition 
where the Y gyro bias error is balanced by a Z platform axis 
tilt.
The actual value chosen for the Y gyro bias was 0.008 
degs/hr this being the rms value for the Y gyro bias 
obtained from the customer 1RS error budget (see appendix 
B) . The corresponding value for the z platform axis tilt was 
determined using equation 8.8 where the value of the earth 
rate term (D) is 0.2618 rad/hr for the zero latitude case 
and 0.1851 rad/hr for the 45 degree latitude case.

Figure 8-5 shows the result for the Kalman filter 
covariances for a stationary simulation carried out at 
latitude north zero degrees, where a 180 degree rotation was 
applied after one hour to uncouple the 1RS error sources. 
GPS was simulated as perfect for the two hour run.
The variables SD(1) to SD(12) in figure 8-5 are covariance 
values which correspond to the values of the Kalman filter 
covariance matrix diagonal terms. The 1RS states 
corresponding to the covariance diagonal terms are 
summarized in appendix C. The result for the Kalman filter 
uncertainty for the Y gyro bias SD(9) , and the Z platform 
axis tilt SD(7), can both be seen to be constant during the 
first hour of the two hour simulation. The fact that the two 
values are constant means the Kalman filter is not able to 
improve on its initial estimate of the two 1RS states. The 
two states are therefore un-observable to the Kalman filter, 
and the filter can be considered to be correctly matched to 
the 1RS condition.
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For the second hour of the simulation the results show that 
the filter uncertainty in both states starts to decrease, 
reaching a final value of zero. This is due to the 180 
degree rotation being applied at the one hour point, which 
causes the 1RS error sources to become uncoupled, thus 
making the error states observable to the Kalman filter. The 
final value of the two covariances SD(7) and SD(9), reach a 
zero value because the process noise has been set to zero. 
A zero covariance value means that the Kalman filter is 
totally certain of its estimate. Figure 8-6 shows the result 
for the 1RS states v Kalman filter estimates. It can be seen 
that the Kalman filter has been able to learn the full value 
of the 1RS states for the Y gyro bias (EPSY) and for the Z 
platform axis tilt (PHIZ). Figure 8-7 shows the results for 
the Kalman filter covariances where the simulation was 
carried out at latitude north 45 degrees, with a 180 degree 
rotation applied after one hour.
The same trend in the Kalman filter covariances is noted as 
for the zero latitude case above, this being a constant 
value of covariance during the first hour of the simulation, 
followed by a decreasing value finally reaching zero, during 
the second hour. The constant value of covariance for the Z 
platform axis tilt state is different for the two latitude 
cases, as its value is a direct function of latitude.

The above results show, that the Kalman filter can be 
matched to a specific 1RS post alignment condition by 
suitable selection of the Kalman filter initialization 
values for the covariance matrix. The results show that the 
technique is not limited to low latitudes. During the time 
that the 1RS errors are in balance, the Kalman filter 
uncertainty remains constant. The un-balancing of the 1RS 
errors by rotation, is correctly detected by the Kalman 
filter.

8.4 KALMAN FILTER MATCHING WITH THE Z GYRO BIAS
The last sections dealt with the general problem of matching 
the Kalman filter to the particular 1RS post alignment 
conditions where the East gyro bias and Z platform axis tilt 
errors were balanced. Consideration is now given to the 
effects of including the Z gyro bias error source. Inclusion 
of the 1RS z gyro bias error term does not affect the 
previously developed covariance parameters (equations 8.36 
to 8.39), but it does mean that an additional term relating 
to the z gyro bias state is required when initialising the 
Kalman filter covariance matrix. This additional term is P10)io 
which is set equal to 7.7982 x 10"8 this being the variance 
of the Z gyro bias as given by the 1RS error budget table 
(see appendix B).



152

8.4.1 SIMULATION DESCRIPTION
The results presented here are for simulations carried out 
under different latitude conditions. The first set of 
results follow the pattern described above where runs were 
carried out at latitude zero with and without a 180 degree 
rotation, followed by two similar cases carried out at 
latitude north 45 degrees. In each case the 1RS alignment 
heading was taken to be an east heading of 090 degrees. The 
1RS error sources were chosen to be representative of the 
extended alignment condition as discussed above. The value 
for the z gyro bias error source used in the 1RS error model 
was chosen to be equivalent its one sigma value as given by 
the error budget table.

8.4.2 DISCUSSION OF RESULTS FOR THE ZERO LATITUDE CASE
Figure 8-8 shows the result for the zero latitude case 
without a turn. The result shows that the Kalman filter 
uncertainty in its estimate of the 1RS Y gyro bias error 
source (SD 9) remains virtually constant at its initialised 
value, due to the fact that the 1RS Y gyro bias error source 
is balanced by a Z platform axis tilt, and is thus not 
observable to the Kalman filter. For the Z platform axis 
tilt the Kalman filter uncertainty in its estimate (SD 7) 
can be seen to increase from the initialised value reaching 
a peak value after approximately 30 minutes before 
decreasing again and finally settling out with a value equal 
to the initialization value.

The additional uncertainty in the filter estimate of the Z 
platform axis is due to the inclusion of the Z gyro bias. 
The Kalman filter uncertainty in this state (SD 10) starts 
decreasing from its initial value after a time of 
approximately 24 minutes, reaching a final value of zero 
approximately one hour later.

Figure 8-9 shows an overlay of the 1RS and Kalman filter 
states for the same simulation. The plot for the Kalman 
filter estimate of the Z gyro bias (EPSZ) reveals how well 
the Kalman filter is able to estimate this constant 1RS 
error, during the two hour simulation period, thus 
confirming the observations made above from the covariance 
matrix result, about the uncertainty of the Kalman filter 
estimate of the Z gyro bias.
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The result for the Kalman filter estimate of the Z platform 
axis tilt error (PHIZ) shows how only part of the total 1RS 
error source is learnt. This is due to the fact that the Z 
platform axis tilt error can be considered to be made up of 
two components, one part due to the Y gyro bias error and 
another part due to the direct integration of the Z gyro 
bias. The Kalman filter is able to estimate the first 
component of the Z tilt caused by the integration of the Z 
gyro bias, but not the second component, because this part 
of the error is in balance with the Y gyro bias and is 
therefore not observable to the Kalman filter as discussed 
above. The Kalman filter estimate of the Y gyro bias (EPSY) 
can be seen to be zero.

Figure 8-10 shows the result for a 180 degree turn applied 
after one hour. The Kalman filter uncertainty in the Y gyro 
bias (SD 9) and the Z platform axis tilt (SD 7) is constant 
during the first hour due to the fact that the two 1RS error 
sources are balanced. During the second hour the Kalman 
filter uncertainty for the two states can be seen to 
decrease to a zero value, due to the fact that the applied 
rotation has caused the two 1RS error sources to become 
unbalanced, making the individual errors observable to the 
Kalman filter. The Kalman filter covariance plot for the Z 
gyro bias (SD 10) starts to decrease from its constant value 
after a period of approximately 30 minutes, and reaches a 
final value of zero after approximately 1 hour 30 minutes. 
When this result is compared with the same result for the 
non turn case above (see figure 8-8) it is seen that the 
Kalman filter learns the Z gyro at the same rate for both 
cases.
For these two covariance results it has been shown how the 
180 degree rotation allows the Kalman filter to learn the 
value of the Z gyro bias and the two unbalanced 1RS error 
sources. Figure 8-11 (1RS v KF) shows the comparison of 1RS 
and Kalman filter states for the turn case. The result shows 
how the Kalman filter is able to correctly predict the 1RS 
values of the three states Y gyro bias (EPSY), Z platform 
axis tilt (PHIZ) and Z gyro bias error (EPSZ) as a result of 
the 180 degree turn.

The result for the Z platform axis tilt is of particular 
interest because it shows how the Kalman filter was first 
able to estimate part of the 1RS state during the first hour 
of the simulation, which agrees with the previous result 
observed in figure 8-9 above, and then the full value of the 
error source once a 180 degree rotation was applied.
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This set of results has shown how the Kalman filter can be 
matched to the customer 1RS extended alignment condition 
when the alignment is carried out at the coordinates north 
0 degrees / east 0 degrees. The next set of results 
considers the effect of an alignment carried out at the 
coordinates north 45 degrees / east 45 degrees. Both turn 
and non-turn cases are considered.

8.4.3 DISCUSSION OF RESULTS FOR THE NON ZERO LATITUDE CASE
The result for the comparison of 1RS and Kalman filter 
states for the non turn case is shown in figure 8-12. The 
Kalman filter estimate of the Z platform axis tilt error 
(PHIZ) shows that only part of this 1RS error has been 
observed due to the fact that the error source is made up of 
two components, one component due to the Y gyro bias and the 
other, the direct integration of the Z gyro bias. As 
discussed above for the zero latitude case (see figure 8-9), 
the 1RS Y gyro bias error is balanced by a component of the 
Z platform axis tilt error making the Y gyro bias also un
observable to the Kalman filter. This fact can be seen by 
examination of figure 8-12 which shows that the Kalman 
filter estimate of the Y gyro bias error (EPSY) is zero.
Figure 8-13 shows the result for the comparison of 1RS and 
Kalman filter states for the case where a 180 degree 
rotation was applied after one hour. The result for the 
Kalman filter estimate of the Y gyro bias, and the Z 
platform axis tilt, shows that the filter was able to 
estimate both of the error sources once they had been 
unbalanced by the 180 degree rotation. This result is 
similar to the one obtained for the zero latitude case above 
and proves that in respect to these error sources the Kalman 
filter is correctly matched to the 1RS extended alignment 
condition. The result for the Z gyro bias (EPSZ) shows that 
the Kalman filter is only able to learn the Z gyro bias 
error to within 95% of its value during the two hour 
simulation period.
An examination of the two results for the turn case carried 
out at zero latitude (see figure 8-11) and the mid latitude 
case carried out at north 45 degrees (see figure 8-13), 
shows that the Kalman filter takes a shorter time to learn 
the Z gyro bias in the zero latitude case compared to the 
mid latitude case. The reason that the Kalman filter is able 
to learn the error source faster in the zero latitude case 
is due to the fact that there is no cross coupling between 
the local level axis at this latitude.
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8.5 COMPARISON OF RESULTS FOR A MATCHED AND UNMATCHED KF
In this work the matched Kalman filter refers to the case 
where the covariance matrix P (0) is initialized with 
specific diagonal and off diagonal elements as developed in 
section 8.3.3. The unmatched Kalman filter refers to the 
case discussed in chapter 4 section 4.6.1, where arbitrary 
non zero initialization values are chosen for all 12 of the 
diagonal covariance terms, and zero values are given to all 
of the off diagonal terms. The actual values used to 
initialise the Kalman filter to the unmatched condition are 
given in table 4-1.

8.5.1 A COMPARISON OF RESULTS FOR A MATCHED AND UNMATCHED 
KALMAN FILTER UNDER STATIONARY CONDITIONS

The above results have shown how the Kalman filter performs 
when it is matched to the 1RS extended alignment condition. 
It is of interest to compare these results with similar 
results obtained from an unmatched Kalman filter, so that 
the improvement in performance for the matched filter over 
the unmatched filter can be seen.
Figure 8-14 shows a comparison of results for a matched and 
unmatched Kalman filters for the zero latitude alignment 
case carried out without a turn. Plots of Kalman filter 
covariances for the three states of interest are given, 
these states being the Y gyro bias (SD 9), the Z gyro bias 
(SD 10), and the Z platform axis tilt (SD 7). For the case 
of the matched Kalman filter, the covariance plots for the 
Y gyro bias, and the Z platform axis tilt, show a constant 
level of uncertainty during the two hour simulation. For the 
unmatched filter however, the Kalman filter uncertainty for 
the same states can be seen to decrease from their initial 
value after a period of approximately six minutes and 
finally settle out at a non zero value.
This result shows clearly the fact the Kalman filter is 
unmatched to the 1RS condition because in the 1RS simulation 
the Y gyro and Z platform axis tilt errors were chosen so 
that they balanced each other out which means the Kalman 
filter has no way of observing these errors and hence its 
uncertainty in its estimate of these errors should not 
decrease. From figure 8-14 it can also be seen that, 
compared to the matched Kalman filter, the unmatched Kalman 
filter takes a longer time to estimate the z gyro bias. This 
is a significant finding since in chapter 7, the fact that 
the Kalman filter was not easily able to estimate the Z gyro 
bias state was a major contributor to the limited 
performance obtained from the FMC.
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8.5.2 RESULTS FOR A MATCHED AND UNMATCHED KALMAN FILTERS 
CARRIED OUT UNDER NON STATIONARY CONDITIONS

Here a comparison of results is given for a matched and 
unmatched Kalman filter for a non stationary case where the 
simulations have been carried out based on the details of 
the airfield at the Boeing company based in Seattle, whose 
coordinates are latitude north 47 degrees, longitude west 
122 degree. As was the case for the stationary results, the 
alignment has been simulated for an initial heading of 090 
degrees ie an east alignment. Details of the flight profile 
are given in figure 8-15. It consists of a 10 hour great 
circle flight with a 180 degree turn after takeoff to 
evaluate performance on a typical long range corridor 
flight. Normally the 180 degree turn would be carried out a 
few minutes after takeoff, but to provide some consistency 
with the previous results, the turn has been applied after 
1 hour.
The 1RS error sources are a Y gyro bias and an associated Z 
platform axis tilt, a Z gyro bias, and random noise 
consisting of gyro random walk and accelerometer correlated 
noise. The values of the 1RS Y gyro bias and Z gyro bias 
have been set at one sigma from the error budget table. 
Since the simulation is for a non stationary case random 
noise has been included in the 1RS simulation model, to 
account for this the Kalman filter Q matrix is also 
initialised to non zero.

8.5.2.1 ANALYSIS OF 1RS ERRORS
Figure 8-16 shows a comparison of results for 1RS and 
matched Kalman filter radial errors for the Boeing field. 
Details are given for the total radial error due to the 
combination of 1RS error sources as well as for the radial 
errors due to the individual error sources. By examining the 
results in this way it is possible to see how the individual 
error sources contribute to the overall radial error. The 
results show that the major contributor to the total radial 
error during the first five hours of the flight is the Y 
gyro bias and associated Z platform axis tilt. At about the 
five hour point the effect of the Z gyro bias error sources 
on the total radial error starts to increase, and after 10 
hours its effect on the radial error is as large as the 
effect of the Y gyro bias. The effect of the random noise on 
the total radial error can be seen to be small compared with 
the effect of the Y gyro bias.
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8.5.2.2 KALMAN FILTER V 1RS COMPARISON
Figure 8-16 also shows the result for the matched Kalman 
filter radial errors for the various 1RS error sources. To 
obtain these results, the Kalman filter was run without a 
Gps measurement input. Also the Kalman filter covariance 
matrix was initialised with a single value which was 
dependant on the particular 1RS source being investigated, 
the results obtained are therefore Kalman filter predictions 
of the radial error that a particular 1RS error should 
cause.

For the Y gyro bias (and associated Z platform axis tilt) 
and Z gyro bias, the 1RS and Kalman filter radial errors 
show a close agreement which is to be expected since the 
values chosen for the 1RS error model were the 1 sigma 
values from the 1RS error budget table. For the random noise 
there is also a close agreement between 1RS and Kalman 
filter radial error even though for this simulation the 1RS 
result is obtained from one run and cannot therefore be 
thought of as an 1 sigma result.

For the total 1RS and Kalman filter radial errors, there is 
a close agreement up to the 5 hour point after which time 
the two results start to show a different trend. This result 
is expected since the total 1RS radial error was also 
obtained from one run and is therefore not a 1 sigma value.

The above results have been produced using a combination of 
the covariance analysis and sensitivity analysis performance 
techniques. The results show that the matched Kalman filter 
predictions of radial error are closely related to the 
actual 1RS radial errors. For the unmatched Kalman filter a 
similar simulation was carried out to predict the total 1RS 
radial error due to all 1RS error sources.

8.5.2.3 MATCHED V UNMATCHED KALMAN FILTER
Figure 8-17 shows the result for the comparison of total 
radial errors for the matched and unmatched Kalman filters, 
also shown is the 1RS radial error from a single run. There 
is a large difference between the matched and unmatched 
Kalman filter radial error results. By examining the two 
results at time zero a clear difference can be seen between 
the two filter radial error values.
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The matched filter value is zero, which is also the value of 
the 1RS radial error. This is the expected value since 
during the extended alignment phase of operation the 1RS 
system accepts a position input from the operator, and under 
normal circumstances this position input will be accurate. 
The value at time zero for the unmatched Kalman filter can 
be seen to be 1.45nm, this is because the covariance values 
SD ( 1) and SD (2 ) which relate to position have each been 
given an initial value of 9.0E-08 radsA2.

8.5.3 ASSESSING KF PERFORMANCE FOR VARYING PERIODS OF GPS
Figure 8-18 shows a comparison of radial error results for 
a matched and unmatched Kalman filter, for different periods 
of GPS coverage. For the 0.5 hr GPS case, the result for the 
matched filter (see dashed line) and for the unmatched 
filter (see dotted line) show a radial error difference at 
the end of the 10 hour simulation of 1.5 nm. Similarly for 
the one hour case, the radial error difference at the end of 
the 10 hour simulation is 1.5 nm. For the 2 hour GPS case, 
the radial error difference at the end of the 10 hour 
simulation is 0.8 nm. In each of the three cases the matched 
Kalman filter radial error at the end of 10 hours, is less 
than the corresponding value for the unmatched filter. This 
is clear evidence therefore of the benefits of matching the 
Kalman filter to the 1RS extended alignment condition.

8.5.4 CONCLUSION OF RESULTS FOR THE MATCHED AND UNMATCHED 
KALMAN FILTER

The comparison of results for the matched and unmatched 
Kalman filter for the stationary case has shown that if the 
Kalman filter is not matched to the 1RS alignment condition 
then the filter can start to miscalculate the value of some 
of the 1RS states, namely the Y gyro bias and the Z platform 
axis tilt as seen in the results discussed in section 8.5.1 
Also it has been shown that it takes the unmatched Kalman 
filter a longer time to observe the Z gyro bias error 
source.
For the non stationary case, the results show that over a 10 
hour simulation period the radial error for the unmatched 
Kalman filter is significantly larger than the corresponding 
radial error for the matched filter.
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The above results show that the EMC Kalman filter can be 
matched to the customer 1RS extended alignment condition by 
use of the covariance initialisation values developed above, 
plus an additional term to take account of the Z gyro bias 
error. By using the matched Kalman filter initialization 
parameters a large improvement in navigation performance can 
be obtained compared to the unmatched filter.

8.6 DEVELOPMENT OF A GENERAL KALMAN FILTER MATCHING 
ALGORITHM
The last section dealt with matching the Kalman filter to a 
particular extended alignment condition. The alignment 
heading chosen for investigation was 090 degrees, because at 
this heading the unknown component of east gyro bias is due 
only to the y gyro bias, the x gyro bias having been 
corrected. Values to initialise the Kalman filter were 
developed for this particular condition, and via simulation 
these values were shown to provide a matched Kalman filter 
solution. In this section of work a similar analysis is 
carried out, to develop a general algorithm that can be used 
to initialise the Kalman filter for any heading.

8.6.1 THEORETICAL DEVELOPMENT
An alignment heading of 030 degrees has been chosen for 
investigation because at this particular heading the unknown 
component of east gyro bias is made up of both an x and a y 
gyro bias component. Because the y gyro bias is no longer 
coincident with the east axis as was the case for the 090 
degree alignment above, there will be a non zero value of 
earth rate measured in both the y platform axis, and the x 
platform axis. The fact that there is a value of earth rate 
in both platform axis means, that both the x and y velocity 
measurements become important and need to be considered in 
the analysis of the discrete Kalman filter equations.
The previous work showed that where there was a y gyro bias 
error and an associated z platform axis tilt error, then it 
was necessary to include the Kalman filter covariance terms 
Pg ? ( 0 ) and P7 9 ( 0 ) to account for the cross correlation between 
the gyro and z platform axis tilt. For the 30 degree 
alignment case, there is an additional correlation between 
the x gyro and the z platform axis tilt, so as a first step 
in solving this case, the initial covariance terms P87(0) and 
P78(0) are included. In addition to the above four cross 
correlation terms the Kalman filter covariance matrix was 
initialised with non zero values for the y gyro bias P9 9(0), 
the x gyro bias P88(0) and the z platform axis tilt P7’7(0) . 
All other covariance terms were set to zero.



The values used to initialise the covariance terms P9 9(0) and 
P8 8 ( 0 ) are now a function of heading, as shown by the 
following equations :

P99(0) = Sin2(ct)o2 (8.40)

PM (0) = Cos2{a) a2 (8.41)

Where :
a - system alpha angle
The result for the first iteration of the Kalman filter 
covariance estimate equation for the x and y platform axis 
tilts will now be evaluated. In the last section (see 8.3.3) 
only the value of the Y platform axis tilt was considered 
because there the alignment heading being considered was 090 
degrees, which meant that only an east gyro bias or Y 
platform axis tilt needed to be examined. Now the alignment 
heading being considered is 030 degrees and therefore both 
an X and Y gyro bias and an X and Y platform axis tilt are 
needed.

8.6.1.1 X AND Y PLATFORM AXIS TILTS
For the x platform axis tilt the covariance estimate 
equation is :

For the y platform axis tilt the covariance estimate 
equation is :

For the Kalman filter to be matched to the 30 degree 
alignment condition, then the value of the filter 
covariances for the x and y platform axis tilt states must 
be zero, and remain at zero assuming no turns.

5̂,5 ( — ) = P7>7(0)Wy2At2 + P88 (0) C2jAt2
- f?,s(0)q%At2 - P ^ c . ^ A t 2

(8.42)

P6,6(~) = P7,7(0)P/>t2 + P99(0)C22>2At2
- P7,9(0)C2> > t 2 - P ^ C ^ t 2

(8.43)
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8.6.1.2 Y GYRO BIAS
The result for the second iteration of the Kalman filter 
covariance update equations for the y gyro bias state is 
considered next.

» (n) - (F,.,(0)C&9At2 - r,/0)<%AtY ,8.44)
9-9{ ’ 9-9{ 1  P33(-) + R---------

2 _

3,3 V "") ‘ X\e lx

This is the equation for the y gyro covariance update due to 
an x velocity measurement, it is identical to the equation 
developed previously for the 90 degree alignment case.
Similarly :

p w ( + ) = p w ( 0 )  -  ( ^ ( O ) C ^  - ^ ( O ) ^ ) -  ( 8 . 4 5 )2 - P9i7( 0 ^ ^ 2'2
4,4 V ) + ^ vely

This is the equation for the y gyro covariance update due to 
a y velocity measurement. Previously this equation had not 
been considered, as the y platform axis earth rate variable 
Wy was zero as a result of the alignment heading being 090 
degrees, and also the direction cosine term C12 was zero, due 
to the platform axis frame of reference, and the body axis 
frame of reference being coincident at alignment time.
For the Kalman filter to be matched to this present extended 
alignment condition, where the alignment heading is 030 
degrees, then the Kalman filter uncertainty in its estimate 
of the y gyro bias needs to remain constant at its 
initialised value, P99(0) . To achieve this condition the sum 
of the bracketed terms must equal zero, in equations 8.44 
and 8.45 above.
For equation 8.44 this can be achieved by choosing the 
initial value of P97(0) as follows :

P97(0) = - P9’9(0) (8.46)

To maintain the symmetry of the Kalman filter covariance 
matrix the term P7 9 ( 0 ) must be set equal to P9 7 ( 0 ) .
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Since the value of P97(0) has now been fixed, and the value 
of the direction cosine term C12 in equation 8.45 is zero at 
alignment time, then the bracketed terms in equation 8.45 
cannot be made equal to zero without the introduction of 
additional terms. The additional terms needed are developed 
in section 8.6.2.

8.6.1.3 X GYRO BIAS
The equation for the covariance update relating to the x 
gyro bias will now be considered. In the previous work where 
the initial heading was 090 degrees, this equation was not 
required, because at this heading the alignment process was 
able to detect and thus remove the full value of the x gyro 
bias error.
The result for the second iteration of the Kalman filter 
covariance update equation for the x gyro bias due to an x 
velocity measurement is :

» ( n ,  -  + f , , 7 ( 0 ) ç % A t Y  f 8 . 4 7 )
M( ’ M(  }  *M (-> ----------

Similarly the result for a y velocity measurement is :

D f.) (n) _ (P„(0)C?.igAt’ - P w (0)g«^t*) .
m (  ) M < )   i V - )  + * * ---------

For a matched Kalman filter condition, the filter 
uncertainty in its estimate of the x gyro bias needs to 
remain constant at its initialised value of P88(0).

To meet this conditions the sum of the two bracketed terms 
in equation 8.47 and 8.48 need to be zero. For equation 
8.48 this can be achieved by setting P87(0) as follows :

P87(0) = P8’8(Q) (8.49)
wy

To maintain symmetry of the Kalman filter covariance matrix 
P78(0) is set equal to P87(0) .



163
Since the value of P87(0) has now been fixed, and the value 
of the direction cosine term C2>1 in equation 8.47 is zero at 
alignment time, then the bracketed terms in equation 8.47 
cannot be made equal to zero without the introduction of 
additional terms. The additional terms needed are developed 
in the next section.

8.6.2 SELECTION OF THE MATCHED KALMAN FILTER PARAMETERS
Using engineering judgement and after a certain amount of 
experimentation, the extra Kalman filter covariance terms 
that are needed to satisfy the conditions for a matched 
Kalman filter were found to be P9 8 ( 0) and P8 9 (0) . These are 
cross correlation terms which provide a relationship between 
the X and the Y body axis gyro biases. The results for the 
Kalman filter covariance update equations relating to the x 
and y gyro bias states, where these two new cross 
correlation terms have been included, is given below.
8.6.2.1 X AND Y GYRO BIAS
The second iteration of the x gyro bias covariance update 
equation due to an x velocity measurement is given by :

The second iteration of the y gyro bias covariance update 
equation due to an y velocity measurement is given by :

^8,8 ( + ) -*8,8 ( 0 ) ( ( *8,8 ( 0 ) C2>ig+P8 7 ( 0 ) g[tfx P89(0) grC22) At2) (8.50)
*3,3 (") + R velx

*9,9 (+) = *9,9(0) -
( (p9,9 ( 0 ) c&g-r,,7 ( ° ) ( ° ) gc2,2) At Y  (g.si,

*4,4 (~) + R vely

For a matched Kalman filter condition, the sum of the 
bracketed terms in equations 8.50 and 8.51 are both required 
to be zero.
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For equation 8.50 this can be achieved by choosing the value 
for P8 9(0) as follows :

Similarly for equation 8.51, the value of P9 8 ( 0) is chosen to 
be :

Equations 8.52 and 8.53 represent the final terms needed to 
initialise the Kalman filter so that, it can be matched the 
1RS extended alignment condition where the alignment heading 
can take on any general value.
A summary of the equations necessary to meet the general 
extended alignment condition is given below :

*8,9(0 ) = -p8/7(0)nx (8.52)

*9,8(0) = p9,7(0)n. (8.53)

P99(0) = Sin2 (a) o2 (8.54)

P8 8(0) = Cos2(a) o2 (8.55)

_ *8,8 (0) + *9,9(0)
m2 (8.56)

(8.57)

*9,8(0) = P9,7(0)^ (8.58)



165

(8.59)

■̂ 8,9 ) _ -̂ 8,7 (0 ) ̂ (8.60)

Where

o.2 Gyro bias covariance value obtained form 
the 1RS error budget table.
X axis earth rate value.n.'X

y Y axis earth rate value.
All other terms in the Kalman filter covariance matrix are 
set to zero.
Due to the symmetric nature of the Kalman filter covariance 
matrix, the terms P8 9 ( 0 ) and P9 8 ( 0 ) will be equal, so 
equations 8.58 and 8.60 above could have been formed into a 
single equation. Leaving the equation in the above form, 
will provide a useful way of checking for inconsistencies or 
errors.

Simulations were carried out to evaluate the performance of 
the Kalman filter, where the covariance matrix P (0) was 
initialised with theoretical values above, and the initial 
alignment heading was taken to be 030 degrees.

8.6.3 DISCUSSION OF RESULTS OBTAINED FROM SIMULATION
Figure 8-19 shows the result for the Kalman filter 
covariances for a stationary simulation that was carried out 
based on the coordinates of the Boeing company airfield in 
Seattle, where the coordinates are north 47 degrees, west 
122 degrees. A 180 degree rotation was applied after 1 hour 
of the simulation to show the effect of a turn on the Kalman 
filter result.
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The Kalman filter uncertainty for the x gyro bias SD(8) , the 
y gyro bias SD(9), and the z platform axis tilt SD(7), can 
all be seen to be constant during the first hour of the two 
hour simulation. The fact that the three values are 
constant during this time, means the Kalman filter is not 
able to improve on its initial estimate of these states. The 
three states are therefore not observable to the Kalman 
filter, and the filter can be considered to be correctly 
matched to the 1RS extended alignment condition during this 
period.
During the second hour of the simulation the results show, 
that the Kalman filter uncertainty for all three of the 
states starts to decrease, and approaches a value of zero at 
the two hour point. The 180 degree rotation has uncoupled 
the error sources, thus making the error states observable 
to the Kalman filter.
Figure 8-20 shows the Kalman filter covariance results for 
the non zero latitude case. Up to the time the turn is 
applied the results for the x gyro, y gyro and z platform 
axis tilt can be seen to be constant. Applying the 180 
degree rotation, causes the Kalman filter covariances to 
decrease towards a zero value.

8.6.4 CONCLUSION OF RESULTS FOR THE GENERAL KALMAN FILTER 
MATCHING ALGORITHM

These results show that the Kalman filter covariance matrix 
can be initialised using equations 8.54 to 8.60 so that its 
operation is correctly matched to the 1RS extended alignment 
condition. The developed equations are general and can be 
applied for any alignment heading, and any latitude.

8.6.5 COMMENTS
At the end of chapter 6 and 7, the comment was made that 
although the customer inertial reference system navigation 
performance is quoted as being 2 nm/hr (95% circular error 
figure), the results obtained from the simulations carried 
out in these chapters only showed an 1RS performance figure 
in the range 1.25 to 1.3 nm/hr. Three different methods of 
simulation were used to compute the results, Monte Carlo 
analysis, sensitivity analysis and covariance analysis. For 
each method the values used in simulations were obtained 
from the 1RS error budget table as supplied by the customer 
(see appendix B).
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The fact that the navigation performance figures was not 
observed to be 2 nm/hr was therefore a puzzling result that 
could not be explained at the time.
In this chapter, where consideration has been given to the 
effect of alignment errors when simulating navigation 
performance, results showing a 95% circular error figure of 
approximately 2 nm/hr have been observed. Consider figure 8- 
16 as discussed in section 8.5.2.1, the continuous line 
shows the 1RS radial error for a 10 hour flight. The 
computed value of radial error is approximately 1 nm/hr for 
this simulation, which corresponds to a 95% circular error 
value of approximately 2 nm/hr.
It is concluded therefore that the effect of the 1RS 
alignment needs to be taken into account when simulating 
navigation performance. This requirement has an affect on 
the type of simulation technique that can be used to 
simulate navigation performance as the Monte Carlo and 
sensitivity analysis techniques cannot be easily applied to 
take account of the alignment conditions. The covariance 
analysis technique is therefore recommended as the best 
method to use to develop the Kalman filter as it can be 
easily applied to take account of the alignment condition as 
shown in this chapter.
One of the reasons for not initially considering the 
alignment conditions when simulating the navigation 
performance of the customer 1RS, was the fact that the 1RS 
error budget table as supplied by the customer made no 
mention of any alignment related errors. Obtaining 
information from the customer about the performance of the 
inertial reference system was a very sensitive issue during 
this project, as the inertial reference system is supplied 
by a third party who were not engaged in the Smiths 
Industries / Boeing contract. So, although it has been 
mentioned that the 1RS error budget table was supplied by 
the customer (Boeing) , it was more a case of Smiths 
Industries drawing up the error budget table and Boeing 
confirming the choice of values. Fortunately enough 
information was available from the technical description of 
the inertial reference system to allow the alignment details 
as discussed in this chapter to be worked out.
For future work it is recommended that any alignment details 
that need to be considered when developing the Kalman filter 
should be included in the 1RS error budget table.
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8.7 FURTHER INVESTIGATION WORK
The previous work dealt with matching the Kalman filter to 
a particular extended alignment conditions encountered when 
operating with the customer inertial reference system. 
Different manufacturers mechanize their inertial systems in 
different ways, and although the overall objective of the 
alignment phase of operation may be the same for each 
system, the means by which this objective is achieved will 
be entirely different. Itzack (1983) discusses another type 
of inertial error source which is not encountered during the 
extended alignment phase of operation in the customer 
inertial system, but may occur in other inertial systems 
where different alignment techniques are used. The 1RS error 
sources considered by Itzack is an accelerometer bias error 
and an associated platform axis tilt error.
These sources of error will now be investigated, and 
suitable values to initialise a Kalman filter covariance 
matrix will be developed, so that the filter is matched to 
the 1RS alignment condition.

8.7.1 1RS THEORETICAL CONSIDERATIONS
It is possible to develop a control model for a single axis 
strapdown inertial system using conventional control 
techniques, to show the effect of an accelerometer error on 
velocity. The theoretical model is useful in that it can 
produce theoretical predictions, which can be used to 
validate results obtained from simulation, where the 
simulation model is different from the theoretical model.
Figure 8-21 shows a block diagram of a single axis inertial 
reference system. The system transfer function can be 
written in terms of velocity output over acceleration input 
as follows

V(s) = 1 s
A(s) (8.61)

Where
R - Earth radius (ft) 
g - Gravity (ft/sec2)
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For a step input (8.62)

The output velocity becomes

V{s) =

I s2 + ( (8.63)

The inverse laplace transform gives

— Sin( 
9

(8.64)

And finally

V{t) = 15.35 A0 Sin(4.46t) (8.65)

Where
A0 - Acceleration bias (mg's) 
t - Time (hours)
V - Velocity (kts)
The final equation shows that the velocity error due to a 
acceleration bias term is sinusoidal in nature having a 
period of 84 minutes this being the Schuler period.
Now consider that an inertial system which is aligned on a 
cardinal heading of 090 degrees, has a y accelerometer bias 
error. If the accelerometer bias is the only error source 
present, then it will cause an east velocity error output 
which will be sinusoidal in nature. Alternatively, If the 
only error source in the inertial system was an x platform 
axis tilt error, it would also cause an east velocity output 
which would be sinusoidal in nature but of opposite sign to 
the error caused by the acceleration bias.
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In a real alignment situation both of these error sources 
are present, but they combine to cancel each other out, so 
the resultant velocity error output is zero. The error 
sources will continue to cancel each other out as long as 
there is no change in system heading, when there is a change 
in system heading the error sources will start to uncouple. 
The error sources start to uncouple because the 
accelerometer is fixed to the body of the system and 
therefore rotates with the system. If the system is rotated 
through 180 degrees for example, then the velocity output 
caused by the acceleration bias will change sign, due to the 
fact that the accelerometer input axis has been physically 
rotated.
In the case of the platform axis tilt error, rotation of the 
system by 180 degrees, does not effect the sign of the 
resultant velocity output, because the tilt error source is 
mechanized to exist in the platform axis frame of reference, 
which does not rotate when system heading changes.

8.7.1.1 DISCUSSION OF RESULTS OBTAINED FROM SIMULATION
Figure 8-22 shows the results for three stationary 
simulations that were carried using an alignment heading of 
090 degrees, at a latitude of zero degrees. The 1RS error 
sources used in each case were : - 1) A single y axis
acceleration bias of 40 micro g's. 2) An x platform axis 
tilt of -4 x 10"5 rads. 3) A combination of 1 and 2.
The continuous line in figure 8-22 shows how the y 
acceleration bias error effects the 1RS system states. For 
the case of the y platform axis velocity (DVELY) , the 
results show that the acceleration bias error causes a 
sinusoidal velocity output with a peak of 0.6 kts at 21 
minutes. Using the equation developed from the single axis 
theoretical 1RS model above, the value of the velocity
output at 21 minutes was also found to be 0.6 kts, so there
is good agreement between the theoretical model and the 
simulation model in this instance. The simulation details 
were purposely chosen to allow a direct comparison to be 
made of the theoretical and simulation results. Carrying out 
the simulation at a latitude of north 47 degrees for 
example, would result in the simulation and theoretical 
values not being exactly equal, because of the fact that the 
theoretical model assumes a single axis 1RS and does not
account for any cross coupling effects that can occur at
high latitudes.
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The dashed line in figure 8-22 shows how the x platform axis 
tilt error (PHIX) effects the 1RS states. The result for the 
y platform axis velocity shows how the tilt error has caused 
a sinusoidal oscillation in its output. The peak value of 
the velocity occurs at 21 minutes and has a value of 0.6 
kts. This result is very similar to the one obtained above 
for the acceleration case, the only difference being, the 
opposite sign observed for the two waveforms.
It is now possible having seen the effect of these two 
separate error sources on velocity, to postulate that the 
value of the y platform axis velocity output if the two 
error sources were to be combined, would be a zero, assuming 
the system is linear, and the superposition theorem holds 
true. The dotted line in figure 8-22 shows the result on the 
1RS system states for the two error sources combined. The y 
platform axis velocity plot, shows a zero velocity output as 
predicted.

In a real alignment situation, these two error sources will 
cancel each other out, as long as the alignment heading is 
not changed. If the alignment heading is changed, then the 
two error sources will start to uncouple. Figure 8-23 shows 
the effect of uncoupling the two balanced error sources, by 
applying a turn of 180 degrees at a time of 12 minutes. The 
result has been over laid with the previous result above for 
comparison. The case for the y platform axis velocity is 
shown by the dashed line in plot DELVY. During the first 
twelve minute interval the velocity output can be seen to be 
zero. After the application of the turn, the velocity error 
starts to build up, and reaches a peak negative value of - 
1.25 kts after a period of approximately 21 minutes. The 
value of -1.25 kts can be recognized as being twice the 
value of the peak velocity error caused by the individual 
error sources, and illustrates how the two error sources 
combine as a result of the turn.

These simulations have demonstrated the process whereby the 
y acceleration bias and x platform axis tilt error sources, 
are able to combine to form a zero velocity output, and then 
as a result of a single rotation, they become uncoupled and 
cause a sinusoidal velocity output. Now that this process 
which takes place in the 1RS is understood, Kalman filter 
initialisation parameters can be developed, so that the 
filter can be matched to this particular 1RS alignment 
condition.
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8.7.2 SELECTION OF THE MATCHED KALMAN FILTER PARAMETERS
This section of work deals with the development of the 
parameters that are needed to initialise the Kalman filter
covariance matrix so that, the filter can be correctly
matched to the 1RS alignment condition where, the Y 
acceleration bias and the X platform axis tilt errors are 
balanced. The approach taken to develop the initialised 
Kalman filter parameters, is, to consider only a single axis 
1RS error model, by ignoring the effect of the other two 1RS 
channels.
Figure 8-24 shows a Kalman filter error model for the 1RS y 
channel axis. The model shows how the y channel interacts 
with the x and z platform axes. To develop the Kalman filter 
covariance parameters, the interaction between the x and the 
z axes are ignored by taking the z platform axis tilt (0Z)
and the y platform axis tilt (0y) to be zero.
A single axis 1RS error model can then be formed using 
states for velocity error, attitude error and position error 
as shown below :

s v
■ 1 gAt C22gAt~

S V

0 = _ At 
~R

1 0 0
V fc+1 0 0 1 V

(8.66)

Using this state transition matrix, the parameters used to 
initialise the Kalman filter covariance matrix P (0) are 
chosen to be :

P<0) =
o o
0 P2,2(0) 
D 0

0
0

f3,3(0)
(8.67)

These values have been chosen to reflect the specific 
alignment condition where the tilt and accelerometer errors 
are balanced resulting in a zero velocity output. Thus the 
variance of the velocity state P1(1(0) is set to zero.
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The variance of the accelerometer bias state P3 3(0) is chosen 
from the system error budget (see appendix B), its value is 

\ It has been stated that in the extended1.6 10-9
alignment mode of operation, the customer inertial reference 
system does not suffer from this particular type of 
alignment error. The customer 1RS error budget table has 
been used however, to select a value for the accelerometer 
bias state since it provides a realistic value for the 
magnitude of the error.

The variance of the tilt state ( 0) is not available from
the system error budget as this error is a function of the 
alignment condition, so obtaining a numerical value for 
P2)2 ( 0 ) is one of the tasks that needs to be carried out 
before the Kalman filter can be hoped to be matched to the 
1RS alignment condition.
Using the initial covariance matrix equation P (0), the 
Kalman filter covariance estimate equation for the first 
iteration can be shown to be :

P2|2 (0 )g2At2+P3 3(0 )C22g2At2 P2a(0 )gAt P1;}(o)C2agAt
P ( - )  = P22(0)gAt 

^3,3 (0) C22gAt
’2,2 (°) 
0 *”3,3(0)

(8.68)

Similarly, the Kalman filter gain matrix after the 1st 
iteration can be shown to be :

K =

P2,2 (0 )g2At2+P3-3 (0 ) C22g2At
P2 2(0 )grAt
°3,3 ( 0 ) C22gAt

(8.69)

P2 2(0)g2At2 + P33 ( 0 ) C2 2g2At2 + RVEL

From the Kalman filter covariance estimate equation, and the 
Kalman filter gain equation above, the covariance update 
equation for the first iteration can be formed. The update 
equations for the three states are of particular interest 
and are shown below.
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8.7.2.1 TILT STATE
The update equation for the platform axis velocity state is 
given by the covariance term i (+) where :

p w ( + >  =  P 2,2( 0 ) s r 2A t 2 +  p 3 3 ( o  ) c | 2sr2A t 2

( p , , ( o  ) ? 2A t 2+ P 3 , ( o  ) c ,  2gr2A t 2 ) (8.70)
P 22( 0 ) g 2A t 2 +  P 3,3( 0 ) C 22gr2A t 2 +

For a balanced Kalman filter condition the value of this 
update equation is required to be zero, to match the fact 
that the 1RS velocity error is zero. In its present form the 
equation does not give a zero condition, this fact can be 
seen by examining the terms in Pu (+) that relate to the 
covariance estimate these being :

P i , , ( - )  =  P 2,2( 0 ) g 2A t 2 +  P 3]3( 0 ) C 222çr2A t : (8.71)

The point has been discussed above that a numeric value for 
P2)2(0) has not yet been determined, however its value cannot 
be negative as this would lead to an illegal covariance 
matrix condition, so assuming P 22(0) is positive, and P 33( 0 ) 
is non zero, the value of P i , i(-) will be non zero. If P lfi ( - )  

is to be maintained at a zero value therefore, it will be 
necessary to introduce additional terms into the equation. 
From a practical point of view, equation 8.70 above is 
showing the fact that the Kalman filter uncertainty in its 
estimate of the velocity error is increasing due to the 
effect on velocity of the tilt error and the accelerometer 
bias error. The determination of the additional covariance 
terms is discussed in section 8.7.3.
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8.7.2.2 VELOCITY STATE
The update equation for the platform axis tilt state is 
given by the covariance term P2>2(+) shown below :

P 2 2 ( + )  =  P 22( 0 )  -  --------------------- ( P 2,2( ° ) g À t ) ----------------------  ( 8 . 7 2 )

P 22( 0 ) ç f2A t 2 +  p 33(0)C22g 2A t 2 +

For a matched Kalman filter condition the value of this 
covariance term is required to be constant and equal in 
value to the initial covariance term P^CO) . This is because 
for a balanced condition the value of the covariance update 
term must reflect the fact that, at alignment time there is 
a tilt error in the 1RS which is balanced by a corresponding 
accelerometer bias error, this means the 1RS tilt error 
cannot be observed unless the system undergoes a rotation.
Examination of equation 8.72 shows that the equation P2>2 (+) 
will not be constant due to the non zero value of the terms 
shown below :

[ P 22( 0 ) g A t ] 2 ?î 0 (8.73)

In its present form the update equation P2>2(+) does not 
represent a balanced Kalman filter condition,'so additional 
terms are needed.

8.7.2.3 ACCELEROMETER STATE
The update equation for the accelerometer bias state is 
given by the covariance term P33 (+) shown below :

P 33 ( + )  =  P 33 ( 0 )  -  ------------------ ( P 3,3( 0 ) C 2'2 ? A t : ) -------------------  ( 8 . 7 4 )
P 22(0)g2A t 2 +  P 33 (0) C22g 2A t 2 +
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The same comments made for equation 8.72 above apply to this 
case. The terms that cause the value of P^(+) not to be 
constant are given below :

8.7.3 SELECTION OF THE COVARIANCE CROSS CORRELATION TERMS
The analysis of the above covariance equations has shown 
that to achieve a matched Kalman filter condition, 
additional cross correlation terms are needed. The 
covariance matrix in this instance is a 3 by 3 matrix which 
means that the selection of possible combinations of cross 
correlation terms is small, so it is possible to work 
through all the various combinations in an attempt to find 
the set that provides the correct answer. This systematic 
approach of working through all the combinations is not 
ideal however, as it soon becomes a major task when higher 
order systems are involved. A better approach is to make 
some engineering judgement on the likely cross correlation 
terms that may be involved.
For this case the required cross correlation terms necessary 
to produce a balanced Kalman filter were found to be P23 and 
P3>2. These terms provide the cross correlation between the 
accelerometer bias and the platform axis tilt. A analysis 
will now be carried out to show how these cross correlation 
terms can be used to develop a balanced Kalman filter 
solution.
The initial value of the Kalman filter covariance matrix is 
chosen to be :

[P,,(0)gAt]2 * 0 (8.75)

3 0 0
P(0) = 3 2̂,2 (°) P 2,3

3 P3>2 P3>3(0)
(8.76)
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8.7.3.1 VELOCITY STATE
Using the initial covariance matrix equation P (0), the 
estimate equation for the velocity state Pu (-) becomes :

= P2,2(0)gr2At2 + P33(0)c|2gr2At2 + 2P23(0)C22gr2At2 (8.77)

For a balanced Kalman filter condition this equation is 
required to be zero. This gives :

2P2,3(0)C2,2sr2At2 = - (P22(0)gr2At2 + P33(0)C222Sf2At2) (8.78)

Where the value of (0) has not yet been chosen.

8. 7.3.2 TILT STATE
The covariance update equation for the tilt state is :

P,2(+) = p22(0) - (^(O)srAt + P2,C2,2SrAt)2 (8.79)
VEL

For a balanced Kalman filter condition, the update equation 
is required to be a constant.
This gives :

^2,3(0)C2)2grAt = - P2>2(0)gAt (8.80)

A solution for the value of the term P2)2 ( 0 ) can now be found 
by combining this last result, with the solution from 
equation 8.78 to give :

P2,2(0) = P3,3(0) (8.81)
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8. 7.3.3 ACCELEROMETER STATE
The covariance update equation for the accelerometer state 
is :

*w (+> =̂ 3,3(0) - (P33(0)y r A t  ^0)grAt)» (8.82)

For a balanced Kalman filter condition, the update equation 
is required to be a constant. This qives :

P3)2(0)gAt = - P3>3(0)C22gAt (8.83)

This result is consistent with the previous findings for 
P2)3(0) and P2)2(0 ) above.

8. 7.3.4 SUMMARY OF RESULTS
The parameters necessary to initialise the covariance matrix 
to produce a balanced Kalman filter condition have been 
evaluated and are summarized below.

P33 (0) = o2 (8.84)

f>2,2(0) =*3,3(0) (8.85)

P2i3(0) = - P2j2(0) (8.86)

P3>2(0) = - P3i3(0) (8.87)

Where :
a2 is the accelerometer bias covariance value obtained 

from the 1RS error budget table.
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8.7.4 DISCUSSION OF RESULTS OBTAINED FROM SIMULATION
A stationary simulation was carried out to investigate the 
effect of running the Kalman filter using the covariance 
initialization values developed above and summarized in 
equations 8.84 to 8.87. The actual value of the covariance 
term for the y accelerometer bias Pi2,i2 (0 ) was chosen to be 
1.6x10* g's. The run was carried out at coordinates north 
zero / east zero with a 180 degree rotation applied after 
one hour. The 1RS alignment heading was taken to be 090 
degree. The 1RS error sources were a single y axis 
accelerometer bias of 40 micro g's and a corresponding x 
platform axis tilt of -4 x 10*5 radians, this being the value 
needed to set up a balanced 1RS alignment condition.
Figure 8-25 shows the result for the diagonal terms of the 
12x12 Kalman filter covariance matrix.(Appendix C gives the 
relationship between diagonal elements of the Kalman filter 
covariance matrix and the corresponding 1RS states). From 
the results it can be seen that the covariance plots for the 
y accelerometer bias SD(9) , and the x platform axis tilt 
SD(5), are constant during the first hour of the simulation. 
This means the Kalman filters uncertainty in its estimate of 
these two states remains fixed. This result is the expected 
result because, during this period the two 1RS error sources 
are balanced, the resulting 1RS velocity error is zero, 
which means the Kalman filter is unable to observe either of 
the two balanced errors.
The effect of uncoupling the 1RS errors by introducing a 180 
degree rotation is detected by the Kalman filter. This is 
clearly shown from the step like response observed in the 
plots for the accelerometer bias SD(12), and the x platform 
axis tilt SD(5), at the time the turn is applied. It can be 
seen that as a result of the 180 degree rotation both plots 
rapidly decay from their initialized value to a final value 
of zero. The fact that both the covariance results reach a 
final value of zero is to be expected, and is explained by 
the fact that the simulation was carried out with the Kalman 
filter system noise matrix (Q matrix) set at zero to reflect 
the absence of random 1RS noise.
Figure 8-26 shows an overlay of the 1RS and Kalman filter 
states for the above case. The result shows that for the 
first hour of the simulation the 1RS errors for velocity 
(DELVX and DELVY) and position (DTHX and DTHY) are 
approximately zero due to the balanced alignment condition. 
The Kalman filter estimate of the 12 1RS states as shown by 
the dotted line in figure 8-26, can also be seen to be zero 
over this initial period.
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This result is in agreement with the observations made from 
the covariance plots above, confirming the fact that the 
Kalman filter is matched to the balanced 1RS condition and 
cannot therefore learn the value of the y accelerometer bias 
(DELVY) or the x platform axis tilt (PHIX).
During the second hour of the simulation as a direct result 
of the 180 degree rotation, the plots in figure 8-26 show 
how the 1RS errors build up. Similarly the plots for the 
Kalman filter show how the filter is able to correctly 
estimate the value of the y accelerometer state (DELAY) and 
the x platform axis tilt state (PHIX).
These results have shown how the theoretical values used to 
initialise the Kalman filter covariance matrix can produce 
a filter output that is matched to the 1RS alignment 
condition.

8.7.5 CONCLUSION
In this further work a general type of alignment condition 
not encountered in the customer 1RS system has been 
investigated. A single axis 1RS theoretical model was used 
to simulate the 1RS alignment condition. Using a single axis 
1RS error model, Kalman filter initialisation parameters 
were then developed to match the Kalman filter to the 1RS 
alignment condition.

8.7.6 FURTHER WORK
During the development of the Kalman filter covariance 
parameters the analysis of the 1RS alignment condition was 
limited to a y platform axis accelerometer error and an x 
platform axis tilt. Although this is a general result and 
not a function of a specific heading, it is quite likely 
that some component of x accelerometer error and y platform 
axis tilt may also be present during the alignment process. 
In this instance, to develop the matched Kalman filter 
initialisation values, then the single axis 1RS error model 
would need to be developed to take account of the 
interaction between the three 1RS axes.
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No attempt has been made to pursue this area of work because 
the cross coupling between the 1RS axes is dependant on the 
actual transition matrix and state vector being used to 
represent the 1RS error model.
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CHAPTER 9.0

M A R K E T  ANALYSIS

9.1 INTRODUCTION
This chapter covers the non technical aspect of the thesis, 
the subject to be discussed is the marketing of GPS and 1RS 
integration technology.

The integration of a global positioning system and an 
inertial reference system can be carried out by one of two 
main methods: in the first method the integration is
performed inside the inertial reference system while in the 
second method the integration is carried out inside a flight 
management computer System. Recent trends in the market 
suggest that the FMC integration scheme is the one that is 
most attractive to the major customers. The main aim of this 
chapter is, therefore, to examine the market potential for 
a Smith's FMC product that provides GPS/1RS integration.

The total market for GPS and 1RS integration covers both 
civilian and military aircraft. In this work, however, the 
main emphasis will be consideration of the commercial 
aircraft market. The main framework for analysis will be the 
"strategic triangle", comprising key customers, competitors 
and Smiths Industries.

9.1.1 SCHEMES FOR GPS/IRS INTEGRATION
Before considering the strategic triangle a general summary 
is given below of the various GPS/1RS integration schemes 
that can be applied.

SCHEME 1 Integration of the GPS/IRS inside the 1RS where 
the GPS and 1RS are separate systems which 
communicate over an ARINC 429 interface.



183

SCHEME 2 Integration of the GPS/1RS inside the 1RS where 
the GPS function is carried out on one or more 
cards that slot into the 1RS.

SCHEME 3 Integration of the GPS/1RS inside a flight 
management computer where the GPS, 1RS and FMC are 
separate line replaceable units.

SCHEME 4 Integration of the GPS/1RS inside a flight 
management computer where the 1RS and GPS are 
separate line replaceable units, but where the FMC 
is part of a larger avionics functions.

The major products produced by Smiths Industries and its 
major competitors will now be examined.

9.2 SMITHS INDUSTRIES
Smiths has two main sites that are involved in the 
manufacture of flight management computer systems, these 
sites are Cheltenham in the United Kingdom and Grand Rapids 
in the United States.
9.2.1 SMITHS CHELTENHAM
Development of the flight management computer started at 
Cheltenham in 1980. Since that time Smiths has successfully 
manufactured and sold systems to 10 major airlines operating 
the Airbus A300-600 and A310 aircraft. Although the FMC can 
be considered to be a mature product, recent enhancements to 
the system has produced further sales with more sales 
expected.
With the success of the initial FMC on the Airbus A300/A310 
aircraft, Smiths tendered for further Airbus work in 1989, 
by submitting proposals for the A330 /A340 FMC. The company 
was not successful with the bid, however, finally losing out 
to Honeywell.
Following successful development of the first FMC, Smiths 
(Cheltenham) were awarded a contract by Boeing to supply the 
flight management computer system for the United States Navy 
command and control (E6) aircraft.
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This FMC was very similar to the original FMC developed for 
the Airbus aircraft except that the E6 aircraft did not 
require vertical guidance. The first completed E6 FMC was 
delivered to Boeing in 1987. Since that time Smiths has won 
a follow on contract to integrate GPS and 1RS inside the 
flight management computer. The first enhancement to the E6 
FMC providing GPS/IRS integration was delivered in 1991. 
Although the E6 aircraft is operated by the military, the 
inertial reference system that is used is a commercial type 
product. In fact, it is the same inertial product that is 
fitted to some variants of the airbus A300/A310 aircraft. 
Therefore, the expertise that Smiths has gained in the 
integration of GPS/1RS can be easily applied to the 
commercial aircraft market.
At the time of writing. Smiths (Cheltenham) does not have a 
commercial flight management computer system that can 
provide GPS/1RS integration, but it does have inhouse 
expertise that will allow such a product to be developed in 
a relatively short time scale and at relatively low cost, by 
producing an update to the existing Airbus flight management 
computer system.

9.2.2 SMITHS GRAND RAPIDS
Smiths Industries facility at Grand Rapids also produces a 
flight management computer system which was first developed 
in the early eighties. This FMC is a successful product as 
it is currently being used by over 50 airlines on the 
Boeing 737 aircraft. With the initial success of the FMC, 
Smiths bid for further work on the Boeing 747-400, and 777 
aircraft. In each case however, the work was awarded to 
Honeywell.
In common with the Cheltenham site, Smiths at Grand Rapids 
has been involved in the integration of GPS/1RS on a 
military project. The Grand Rapids site has therefore gained 
expertise in the integration of GPS/1RS which it could 
easily apply to the commercial aircraft market.

9.3 KEY COMPETITORS
The two major competitors involved in the area of IRS/GPS 
integration are Honeywell, and Litton Aeroproducts. A 
comparison will now be made for the various 1RS/GPS systems 
produced by the two companies.
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9.3.1 LITTON V HONEYWELL
Honeywell and Litton have been developing ring laser gyro 
strapdown inertial reference systems for some considerable 
time. Indeed, the first generation Honeywell 1RS systems 
began to fly as early as 1974, with certification being 
received on the HG1050 1RS in 1981. In the Litton case, the 
design and development of their first inertial reference 
system, the LTN 90, started in February 1979. In June 1980 
the Litton LTN 90 system was selected by Aerospatiale for 
the Airbus A310 aircraft. The first production units were 
delivered to Aerospatiale in July 1981. In early 1982 the 
LTN 90 was flown for the first time on the A310 aircraft and 
in March 1983 full certification for the system was 
obtained.
The strapdown ring laser gyro inertial reference system has 
the advantage over the traditional gimballed gyro system in 
that it is more reliable and easier to maintain. The ring 
laser gyro comes housed in its own metal case. It is easily 
removed and replaced, unlike a gimballed gyro which is a 
complex mechanical instrument, requiring a skilled 
technician to maintain it.
Since the early developments, a series of successful 
civilian products has been produced and sold both by 
Honeywell and Litton to over 127 airlines worldwide. Today, 
both Litton and Honeywell supply a range of products.
Early inertial reference systems required an input from an 
air data computer system which was separately housed from 
the inertial system. Honeywell produces its own air data 
computer systems but Litton does not. About 8 years ago, a 
significant change occurred and the air data computer 
function was built into the inertial reference system. This 
offered the airlines the advantage of reduced weight and 
rack space and improved maintainability. This product is 
referred to as an Air Data Inertial Reference System 
(ADIRS). During the development of this product, both 
Honeywell with their HG1150 and Litton with their LTN 90-200 
were targeting the Airbus A3 20 aircraft. Honeywell 
eventually won the A320 contract, probably because Honeywell 
was ahead of Litton with the development work when the 
contract was awarded.
The fact that Honeywell had a working ADIRS while Litton 
were still developing the system was due to Honeywell being 
able to develop and manufacture its own product, while 
Litton was reliant on an outside company to develop the air 
data module. That outside company was Smiths Industries.
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As a result of Honeywells' success with the A320 aircraft, 
Litton effectively cancelled their LTN 90-200 ADIRS 
development program to concentrate their effort on their 
next generation inertial product which they call the 
Flagship.
The Litton Flagship or the LTN-101, is a global positioning 
air data inertial reference system. Thus the unit has an air 
data module housed within it which Litton eventually 
produced on their own.
The Litton Flagship is designed for a wide range of 
applications. It can be used in single, dual or triple 
installation as an 1RS, 1RS/GPS, ADIRS or ADIRS/GPS. To 
provide this flexibility the Flagship hardware consists of 
five components:- an air data inertial reference unit 
(ADIRU), an air data module (ADM), a global positioning 
system sensor unit (GPSSU), a mode select unit (MSU) and a 
control display unit (CDU).
The global positioning system sensor unit caters for both 
ARINC 743 configurations. The two configurations are a bay 
mounted avionics unit that uses a remote antenna and an 
internal preamplifier to produce GPS outputs of position and 
velocity, or a remote GPS sensor that is physically located 
near the passive antenna that also provides GPS position and 
velocity but via some form of connecting cable.
In both configurations the GPS sends information to the 
ADIRU where it is processed by a Kalman filter to provide 
improved position and velocity data, also 1RS alignment 
during taxi or inflight is possible. If required the GPS can 
also provide raw position and velocity information in the 
form of pseudo range and delta range.
Honeywell produce a similar product to the Litton Flagship, 
the HG2001 IRU. The HG2001 accommodates air data integration 
in accordance with ARINC 738. It also has provision for GPS 
integration. The integration function is carried out within 
the existing IRU software. There is no need therefore for 
any additional cards or modules. As with the Litton system 
the integration of GPS also allows alignment to be carried 
out while in motion.
Functionally the Litton and Honeywell inertial products are 
the same, both systems use the same integration scheme where 
a Kalman filter inside the 1RS is used to integrate the GPS 
and 1RS signals. Since the Kalman filter models the 1RS 
errors, this scheme is easily implemented by Litton and 
Honeywell since both companies are experts in this field.
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To complement its range of inertial products Litton also 
produces global positioning systems. Litton have been 
developing GPS receivers for over nine years. The first 
generation product was the LTN 700 GPS which operates as a 
C/A code receiver. This system has been successfully flight 
tested by Boeing, Aeritalia, Lassait, Lockhead and the US 
Navy. The second and third generation products are the LTN 
710 and the GPSSU. The GPSSU can easily be integrated with 
any ARINC 704 1RS and any ARINC 738 ADIRS. Litton is the 
only company in the world that has developed both inertial 
systems and GPS receivers.

The key competitors for Smiths Industries in the GPS/1RS 
integration market are Litton and Honeywell. The range of 
products produced by these two companies has been examined. 
In summary, both Litton and Honeywell have a history of 
producing successful products and supporting them. Each 
company has product support facilities at several locations 
worldwide. Both companies are well established in the 
market, and from their range of current products, it is 
concluded that both companies intend to stay in the market.

Having examined Smiths and the key competitors, the major 
customers will now be considered.

9.4 KEY CUSTOMERS
The main market segment being considered in this work is the 
commercial jet aircraft market consisting of large
commercial jets with over 200,000 lbs take off weight,
medium commercial jets with 110,000 - 200,000 lbs take off
weight and small commercial jets with 80,000 - 110,000 lbs
take off weight. For these markets there are three key 
manufacturers, Boeing and McDonnell Douglas in the USA, and 
Airbus Industries in Europe.

The range of present and future aircraft manufactured by 
these companies is listed in the tables 9-1 and 9-2 for the 
large and medium aircraft types.

9.5 MARKET ANALYSIS
Having introduced the major competitors and the key 
customers the present state of the market will now be 
examined.
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9.5.1 MARKET SHARE
Table 9-3 shows the distribution of FMC equipment 
manufactured by Honeywell (H) and Smiths (S) , and the 1RS 
equipment manufactured by Honeywell (H) and Litton (L) for 
the various customer aircraft. The table shows that 
Honeywell dominates both the FMC and the 1RS market with 
equipment distributed across all aircraft, except for, the 
Boeing 737 where Smiths supplies the FMC.
Table 9-4 shows the estimated market share of the FMC and 
1RS products for the three companies. In the case of 
Honeywell, its market share for the FMC is 69%, and for the 
1RS, 82%. In the case of Smiths, the market share for the 
FMC is 31%. Approximately 30% of this total figure is for 
FMC sales on the Boeing 737 series aircraft, with the 
remaining 1% representing Airbus A300/A310 sales.

9.5.2 CURRENT MARKET TRENDS
The civilian market for the integration of GPS/1RS can be 
considered in two broad segments. Firstly, there is the new 
aircraft market; and secondly, the retrofit market.
The decision over which type of integration scheme to adopt 
for the new aircraft market is influenced by the aircraft 
manufacturer and the airlines. In the case of Boeing for 
example, and the new 777 aircraft, two major airlines United 
Airlines and American Airlines approached Boeing early in 
1991 expressing their views on GPS/1RS integration. Both 
airlines favour the integration scheme being carried out 
inside the flight management computer.
Since that time, a further meeting between Boeing and 
several other major airlines has taken place, with the 
consensus being that the airlines prefer the integration of 
GPS/IRS to be carried out inside the flight management 
computer. The airlines involved were Delta, Continental, 
North West, British Airways, Lufthansa, Quantas, Japan, 
Cathy Pacific, USA Air and All- Nipon airways. Several of 
these major airlines have already placed orders for the new 
Boeing 777 aircraft, including British Airways, United, 
American and All-Nippon.
In expressing their view on the new aircraft market, the 
airlines are also affecting the retrofit market. United 
airlines for example, are considering retrofitting their 
existing fleet of Boeing 737, 757, 767 and 747-400 aircraft 
with GPS.
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If the integration scheme is to be carried out inside the 
1RS, then United will have to purchase a modified 1RS, a GPS 
and update the existing software inside the flight 
management computer system to accommodate the new 1RS 
outputs. If they choose the FMC integration scheme however, 
then they do not need to update the existing 1RS. It is 
worth mentioning also that each aircraft has three IRS's, 
and two FMC's so there will be a substantial cost saving to 
the airlines.
To gain an understanding of the airlines reason for choosing 
the FMC integration scheme, consideration should be given to 
the advantages and disadvantages of the FMC scheme over the 
alternative 1RS scheme.

9.5.2.1 ADVANTAGES OF CARRYING OUT THE GPS/IRS INTEGRATION 
INSIDE THE FMC.

There are some clear advantages to the FMC integration 
scheme particulary from the point of view of the airlines 
when retrofitting GPS. These advantages are summarized 
below:-

No modification to the inertial reference unit 
required.
Maintains interchangeability of IRU's if GPS is 
installed in only a few aircraft.
GPS sensor will be interchangeable between FMS and non 
FMS aircraft.
No hardware modification to the FMC required.
Uses common FMC software package as integrated GPS/IRS, 
which can be certified by the airframe manufacturer.
Provides position data comparison from 3 IRU's and dual 
GPS sensors for integrity monitoring.
Allows GPS manufacturers to be competitive in the 
market place.
Allows airlines to certify use of GPS.
Simplified / lower installation cost.
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9.5.2.2 DISADVANTAGES
The benefit of 1RS alignment while in motion cannot be 
achieved.
Correction of 1RS errors cannot be achieved.
Development of the 1RS error model to be used by the 
Kalman filter would require the cooperation of the 1RS 
supplier.

In summarizing the present market, therefore, it is correct 
to say that Litton and Honeywell have been driving the new 
GPS/IRS technology by offering an inertial product that 
takes GPS as an input and performs the GPS/1RS integration. 
The market is now being influenced by the major airlines, 
however, as they have expressed their combined interest in 
the GPS/1RS integration being carried out inside the EMC.

9.5.3 THE THREAT FROM HONEYWELL FOR THE NEW AIRCRAFT MARKET
Assuming that the airlines are successful in their attempts 
to have the GPS/1RS integration carried out inside the 
flight management computer system then Honeywell will have 
a competitive advantage over Litton and Smiths in both the 
new aircraft market and the retrofit market since the 
company produces both inertial systems and flight management 
systems. Take as an example the new Boeing 777 aircraft, 
Honeywell has already been selected for both the flight 
management function and the inertial reference system which 
is an ADIRS.
The EMC on the Boeing 777 is different to previous systems 
as it is not a stand-alone unit but forms part of the 
Airplane Information Management System (AIMS). The AIMS 
function provides a major portion of the 777 avionics 
capability. These include display functions, onboard 
maintenance functions, flight management functions, engine 
data interface functions and communications management. This 
approach to the flight management function is very different 
to previous approaches where the EMC consisted of a plug in 
box. Since Honeywell produces both the inertial system and 
the flight management function for the 777, the company can 
easily accommodate the desires of the various airlines by 
carrying out the GPS/1RS integration inside the EMC.
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9.5.4 THE THREAT FROM HONEYWELL FOR THE RETROFIT MARKET
Honeywells dominance of this new AIMS concept in the new 
aircraft market could also extend to part of the retrofit 
market. For example, the Boeing 737 is to have a major 
avionics update in 1998/99 and the AIMS concept is being 
considered.
For a non AIMS type GPS/1RS integration scheme where the FMC 
is a stand-alone line replaceable unit, then Litton and 
Smiths are also under threat from Honeywell, since Honeywell 
manufacture both FMC and 1RS. This type of integration 
scheme is relevant to the Airbus A300/A310 aircraft and the 
Boeing 737 aircraft.
Littons 1RS sales are under threat from Honeywell for this 
aircraft despite the fact that one of the advantages to the 
airlines of carrying out the GPS/1RS integration in the FMC 
is thought to be that there is no need to change the 
existing inertial system. The fact that the 1RS system may 
need to be changed when carrying out the GPS/IRS integration 
inside the FMC is discussed later in section 9.6.
If Smiths and Litton are to compete effectively against 
Honeywell then they need to combine forces. The strengths 
and weaknesses of the two companies are considered next.

9.5.5 STRENGTHS AND WEAKNESSES
Both Smiths and Litton have strengths and weaknesses as far 
as this GPS/IRS technology is concerned. For Litton the 
major weakness is that they do not manufacture flight 
management systems or any of the other major AIMS functions 
such as the display function and the engine interface 
function. Littons strength lies in its inertial system 
experience and its global positioning experience.
For Smiths the weakness is the lack of inertial systems 
experience while its strengths are its flight management 
experience and also its experience in cockpit displays, 
engine instruments and auto throttles, since this experience 
could be used to advantage in developing an AIMS type 
function.
If Smiths is to combat the threat from Honeywell and remain 
in the flight management business then it needs to link up 
with a major manufacturer of inertial systems and Litton 
Aeroproducts is the obvious choice. Some of the key reasons 
are listed below :
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Smiths and Litton already have a successful track 
record of working together on the development of the 
air data computer card for the Litton 90-200 inertial 
air data system.

Smiths (Cheltenham) has already successfully carried 
out the integration of a Litton 1RS and a GPS inside 
their FMC. Although this scheme did not include 
vertical guidance, the major technical risks associated 
with such a project are well understood. The technical 
expertise needed to carry out such a task already 
exists in house. It is just a matter of applying it. To 
perform the GPS/1RS integration inside the FMC for a 
non AIMS type function, then only minor hardware 
changes are needed with the major effort being in 
software.
Together Litton and Smiths posses the breadth of 
engineering experience needed to implement an AIMS type 
function.
Litton could benefit by the sale of GPS systems if they 
were offered as part of the Smiths/Litton GPS/1RS 
integration scheme.

9.6 SCENARIO ANALYSIS
The second point listed above raises a very important issue 
which emphasises the opportunities that would come from, a 
union of Smiths and Litton and also explains why Littons 
share of the 1RS market is under threat from Honeywell. 
During the integration of the Litton 1RS and a GPS inside 
the Smiths FMC, Smiths discovered that particular attention 
must be paid to the inertial reference system error model 
particularly its alignment characteristics, if a successful 
integration is to be carried out. Such information can only 
be obtained from the inertial manufacturer because of the 
highly theoretical and specific nature of the data. Also, 
data that is relevant to one manufacturers inertial product 
is not compatible with another manufacturers systems, (ie 
each inertial system error model is unique). It is doubtful 
if the airlines are aware of this fact but its consequences 
affect both the FMC and the 1RS.
In view of the above statement that the error model for each 
inertial system is unique, it is of interest to consider 
each of the combinations of FMC and 1RS in terms of Smiths, 
Litton and Honeywell and consider the cases for an AIMS type 
FMC and a non AIMS type FMC. The various combinations are 
given in table 9-5.
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9.6.1 AIRCRAFT INSTALLATION TYPE 1
This type covers the case where Smiths supplies the FMC and 
Litton the 1RS, and is found on the Boeing 737 and A300-600 
/ A310 aircraft.

9.6.1.1 AIMS
Consider the airline required an AIMS type update with the 
GPS/IRS integration to be carried out inside the flight 
management function then this is a worst case scenario for 
Litton and Smiths since in this situation Smiths would lose 
the FMC because of the requirement for an FMC within AIMS, 
and Litton would also lose because Honeywell could not carry 
out the GPS/IRS integration in the FMC using the Litton 1RS.
Table 9-3 shows that it is on the Boeing 737 series aircraft 
that Litton and Smiths share the 1RS and the FMC slots and 
where Smiths make their major sales accounting for 30% of 
the total 31% of the their current market. It is on this 
aircraft, therefore, that the greatest threat to Smiths 
exists.
To combat this threat, Litton and Smiths could combine to 
produce an equivalent AIMS function. Mechanization of the 
GPS/1RS inside the FMC would be a relatively easy and risk 
free exercise, the major effort being in the development of 
the other AIMS functions.

9.6.1.2 NON AIMS
Smiths and Litton are in a strong position to defend their 
market share for a standard FMC update offering GPS/1RS 
integration. For the Boeing 737 aircraft, Smiths Grand 
Rapids could work with Litton to provide the required 
enhancement, while for the A300-600 / A310 Smiths Cheltenham 
could work with Litton. The Cheltenham site has the 
advantage that it has already carried out a successful 
GPS/1RS integration inside the FMC using a Litton inertial 
system. Although the major volume of sales for the Smiths 
FMC are gained from the 737 aircraft, it is still viable for 
the Cheltenham site to offer an FMC with GPS/1RS integration 
for the low volume A3 00-600 / A310 market, since the
development costs associated with updating the existing 
product would be very low because of the inhouse expertise 
that already exists and the fact that a similar type of 
integration has already been carried out.
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9.6.2 AIRCRAFT INSTALLATION TYPE 2
This type covers the case where Smiths supplies the FMC and 
Honeywell the 1RS, and is found on the Boeing 737 and A300- 
600 / A310 aircraft.

9.6.2.1 AIMS
Assuming an AIMS type flight management function is 
required, then Smiths would be under direct threat from 
Honeywell on the Boeing 737 aircraft because Smiths does not 
produce an AIMS. Also Honeywell supplies the 1RS for the 
aircraft so a GPS/IRS integration could be easily carried 
out. Even if Litton/Smiths could produce and offer an AIMS, 
Honeywell would still have the advantage of supplying the 
inertial systems.

9.6.2.2 NON AIMS
For the standard flight management function Smiths could not 
provide the GPS/IRS integration without the assistance of 
Honeywell. For this situation there are at least three 
possible scenarios that can be considered :
Firstly there is the case where Honeywell may provide Smiths 
with the technical data needed to carry out the GPS/IRS 
integration, although it is doubtful if Honeywell would 
volunteer this information. Since the combination of Smiths 
and Honeywell exists on the largest portion of the aircraft, 
the airlines could force Honeywell to cooperate. As 
Honeywell does not supply any of the 737 aircraft with 
flight management systems, then their FMC sales are not 
under threat.
There would be a technical risk here for Smiths because to 
be sure of success with the minimum of cost Smiths would 
probably require some engineering assistance from Honeywell 
as well as the technical data relating to the 1RS error 
model.
As a second scenario Honeywell could refuse to supply the 
technical data preferring to offer the GPS/1RS solution to 
be carried out inside the 1RS. The airlines have already 
indicated that they do not favour this approach because it 
is not the most cost effective solution. However, it is not 
clear at this time if the Airlines are aware of all of the 
technical risks involved in performing the GPS/IRS 
integration inside the FMC.
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For a third scenario, Litton and Smiths could combine to 
offer an FMC that was capable of providing the GPS/1RS 
integration using the Litton 1RS. This combination could 
encourage further sales of the Litton 1RS for future 737 
aircraft, particularly to those airlines that might already 
have Litton equipment on other aircraft.

Both the Type 1 and the Type 2 installation are found on the
Boeing 737 and A300-600 / A310 aircraft, but as far as the
AIMS is concerned only the Boeing 737 needs to be
considered. It is evident from the analysis for the Type 1
and Type 2 schemes that Honeywell posses a real threat to 
Litton and Smiths, the size of the threat depending to a 
great extent on the ratio of Litton's IRS's to Honeywell's 
IRS's on the Boeing 737 aircraft. For the current market the 
ratio is Honeywell 99% and Litton the remaining 1%. This 
means Smiths is under a serious threat from Honeywell for 
future Boeing 737 FMC sales.

9.6.3 AIRCRAFT INSTALLATION TYPE 3
This type covers the case where Honeywell supplies the FMC 
and Litton the 1RS, and is found on the A300-600 / A310 
aircraft. The AIMS case is not discussed since at the 
present time AIMS is not being considered for the A300- 
600/A310.

9.6.3.1 NON AIMS
If the GPS/1RS integration is to be carried out inside the 
FMC then without access to the Litton inertial error model, 
Honeywell will not be able to offer a GPS/1RS solution.
It seems very unlikely that Litton would allow Honeywell 
access to their inertial system error model as this data 
could then be used by Honeywell to gain an in depth 
understanding of the performance limitations of the Litton 
1RS. This type of detailed information could then be used to 
advantage by Honeywell when competing with Litton for future 
1RS business. One option open to Honeywell would be to swap 
out at reduced cost the Litton IRS's recovering the cost on 
the sale of the enhanced FMC offering GPS/1RS integration 
and possible also a maintenance contract on the repair of 
the 1RS's.
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An alternative would be for Smiths/Litton to replace the 
Honeywell FMC since Smiths could easily offer the GPS/1RS 
integration for the Litton 1RS. Smiths/Litton could offer an 
attractive alternative to the various airlines by offering 
the Litton GPS and the Smiths FMC as a combined package. 
Smiths has a small proportion of the A300-600/A310 FMC 
business compared to Honeywell, Litton however holds 80% of 
the 1RS sales, so despite the fact that production of the 
aircraft is due to finish in 1997, there is still an 
attractive market for a Smiths (Cheltenham) FMC which can 
offer the GPS/IRS solution with the Litton 1RS.
In summarizing this third scenario it is a case of Honeywell 
maintaining the FMC position and swapping out the Litton 1RS 
or Litton maintaining the 1RS and Smiths swapping out the 
Honeywell FMC. The airlines' decision on which option to 
select is clearly going to be influenced by the sales 
prices, and any further costs for certification. The 
reliability of the existing inertial system might also have 
a bearing on the decision process. Airlines have various 
maintenance agreements with inertial systems manufacturers 
which can range from the airline sending back the failed 1RS 
to the manufacturer to the airline carrying out its own 
level one, two and 3 maintenance.
Airlines have become very sensitive to the failure rate of 
inertial systems which arise mainly due to the complex 
sensing instruments (strapdown ring laser gyros) that it 
uses. To repair an inertial system where a ring laser gyro 
has failed can typically take up to 10 hours because of the 
lengthy calibration process that is required. So, even if 
the cost of replacing an 1RS ship set was made attractive, 
airlines would be very reluctant to consider replacing a 
manufacturers 1RS that had a good record of reliability.

9.6.5 FUTURE BUSINESS
In terms of future Airbus business. Federal Express have 
recently announced an order for some 75 A300-600 aircraft to 
be purchased in three stages, with the first delivery being 
due in early 1994. From the airline point of view it makes 
sense to consider only two options for the 1RS and FMC as 
shown in table 9-6.
For these options it is feasible for the GPS/IRS integration 
to be carried out in the FMC or the 1RS. The second option 
assumes that Litton and Smiths will join forces. If they 
don't, then the airline might well consider that Honeywell 
offers the only cost effective solution as it will be the 
only company that can offer the GPS/1RS solution to be 
carried out inside the FMC or the 1RS.
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9.7 SUMMARY
The potential market for the Smiths industries flight 
management computer that offers GPS/IRS integration has been 
examined. The major customers and competitors have been 
considered with the conclusion that Honeywell dominates both 
the 1RS and FMC market, except for the case of the Boeing 
737 series aircraft where Smiths supplies the FMC and the 
Airbus A300-600/A310 aircraft where Litton hold 80% of the 
1RS sales. If the airlines demands for the GPS/1RS 
integration is to be carried out inside the FMC are to be 
met, then Smiths future position on the Boeing 737 aircraft 
is under serious threat from Honeywell because of two main 
reasons. Firstly, Honeywell supplies 99% of the inertial 
systems for the aircraft, and secondly Honeywell is the only 
company that can offer an AIMS. To counter the threat from 
Honeywell the possible scenario of Smiths and Litton 
combining forces has been examined.
Similarly on the Airbus A300-600/A310 Smiths and Litton face 
direct competition from Honeywell. The possibility of Litton 
and Smiths combining to counter the threat on this aircraft 
has been examined, with the conclusion that Smiths could win 
further business by being able to offer an FMC that provides 
GPS/1RS integration using the Litton 1RS.
It is interesting to note that Litton has filed a law suit 
(see Interavia 1990) against Honeywell Inc alleging that 
Honeywell's Commercial flight systems group has monopolised 
the sale of inertial reference systems used in commercial 
aircraft. Litton alleges unlawful Honeywell tactics on 
several European aircraft sales, including the Airbus 
A330/A340 and the Fokker 100. Litton says that it is 
Honeywell's only competitor in the 1RS market and estimates 
the value of the market at more than 1,000 million dollars 
over the next decade. In view of this action it is quite 
likely that Litton would welcome the chance of combining 
forces with Smiths industries to attack the Honeywell 
1RS/FMC market.

9.8 COMMENT
In this work, the topic of pricing, cost structure and 
return on investment has been considered but not included, 
as information on this subject is company confidential.
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CHAPTER 10.0
C O N C L U S I O N S

This thesis has dealt with the integration of a global 
positioning system and an inertial reference system inside 
a Smiths Industries Flight Management Computer. Both 
technical and non technical aspects of the subject have been 
considered. The major findings from the technical and non 
technical work are summarized below :

10.1 TECHNICAL WORK

1) The navigation performance figure for the customer 
inertial reference system being considered in this work 
is given as 2 nm/hr circular error on 95% of system 
flights. To simulate an 1RS with this navigation 
performance it is necessary to correctly model the 
effect of balanced 1RS errors that get set up during 
alignment.
During alignment, certain sources of 1RS error exist 
that can become balanced, so that the combined error 
sources do not affect the 1RS output. The results 
obtained from simulation show that as long as the 1RS 
heading is unchanged, then the 1RS error sources remain 
balanced. A change of heading causes the error sources 
to become unbalanced, with the error sources becoming 
completely unbalanced when the 1RS heading is changed 
by 180 degrees. Therefore, if an 1RS simulation is 
carried out and the 1RS heading is relatively 
unchanged, then the resultant 1RS navigation 
performance figure measured as a position error drift, 
will be much less that the specified value for the 1RS. 
If however, the aircraft heading is changed by 180 
degrees, then the simulated 1RS navigation performance 
figure will be optimal.

2) When initialising the Kalman filter, which combines the 
1RS and GPS information within the flight management 
computer, consideration must be given to the balanced 
1RS errors that get set up during alignment, if the 
Kalman filter is to be correctly matched to the 1RS 
condition.
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A Kalman filter matching technique has been developed 
that uses a series of equations to obtain 
initialisation values for the Kalman filter covariance 
matrix. The chosen covariance values account for the 
balanced errors that are set up during the alignment 
process of the 1RS.
If the Kalman filter is not correctly matched to the 
1RS alignment condition, then the filter will start to 
incorrectly estimate the value of certain 1RS states, 
with the result that, the navigation performance of the 
system is degraded.
The types of 1RS error sources that exist, and the way 
that different error sources become balanced are 
particular to each 1RS type. The covariance values 
necessary to match the Kalman filter to the 1RS are 
therefore specific to the 1RS type.

3) In developing the Kalman filter three analysis 
techniques were investigated, these being Monte Carlo 
simulation, covariance analysis and sensitivity 
analysis. Each of the three techniques can be used to 
measure overall navigation system performance. The 
sensitivity analysis and covariance analysis techniques 
can also provide data on individual error sources, so 
that the effect of single error sources on overall 
navigation performance can be examined.
To develop the necessary parameters for a matched 
Kalman filter the technique of covariance analysis was 
found to be the most suitable. This technique allows 
the Kalman filter uncertainty in its estimate of 1RS 
errors to be observed. Using this method, the correct 
conditions for a matched Kalman filter can be clearly 
identified.

4) Results obtained from simulations showed that the 
Kalman filter's ability to estimate the Z gyro bias 
error source varies with heading. The Kalman filters 
ability to estimate this 1RS error is therefore a 
function of the vehicle's heading.
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5) The Kalman filter equations can be coded using a 
fast/slow loop mechanization. To implement the Kalman 
filter equations, a discrete solution to the state 
vector matrix differential equation is needed. A first 
order solution can be used provided the iteration rate 
for the equation is suitably high. The equation can 
then be implemented in the Kalman filter fast loop.
When implementing the Kalman filter measurement 
equations, consideration must be given to the rate at 
which the 1RS and GPS measurements are processed. If 
the rate chosen is too fast, then the Kalman filter 
measurement inputs may be correlated. Hence these 
equations need to be processed at a lower rate than the 
other Kalman filter equations. The measurement 
equations are therefore, implemented in the Kalman 
filter slow loop.

10.2 NON TECHNICAL WORK
Smiths Industries supplies Flight Management Computer 
Systems for the Boeing 737 series aircraft and the Airbus 
A300-600/A310 aircraft, while Honeywell Inc and Litton Aero 
Products supply the inertial reference systems. Since some 
of the major airlines have recently expressed an interest in 
a flight management computer that can provide GPS/IRS 
integration, the market potential for such a system being 
produced by Smiths Industries has been examined. The main 
conclusions are listed below :

1) The major customer threatening Smiths future FMC 
business on both the Boeing 737 series aircraft and the 
Airbus A300-600/A310 is Honeywell.

2) Smiths and Litton could collaborate in the development 
of a flight management system that provides GPS/1RS 
integration. This would provide direct competition for 
Honeywell, and improve the chances of Smiths and Litton 
gaining a future market share on the Boeing 737 series 
aircraft.

3) In meeting the airlines demands for an FMC that provide 
GPS/1RS integration, there is potential for Smiths to 
gain further sales on the Airbus A300-600/A310 series 
aircraft by collaborating with Litton, since on this 
aircraft Litton supplies 80% of the inertial systems.
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APPENDIX A

INERTIAL NAVIGATION SYSTEMS
Inertial navigation systems have been used as a source of 
navigation information since the late 1950's. The 
fundamental principle of an inertial navigation system as 
discussed by Edwards (1971), is that accelerometers measure 
acceleration with respect to an inertial frame of reference. 
From the acceleration measurement, velocity and position can 
be derived. Gyro's are used to measure angular motion with 
respect to inertial space. In doing so, a frame of reference 
can be set up, such that the velocity and position evaluated 
from the acceleration measurement can be obtained relative 
to an earth frame of reference.

In the early developments of inertial navigation systems the 
type of gyro's used were of the mechanical spinning type, 
with the basic principle being that a spinning mass is space 
stable and does not rotate as the earth rotates. Navigation 
systems that used this type of gyro are called gimballed 
inertial navigation systems.

Gimballed gyros were then replaced by ring laser gyros. The 
basic principle of the ring laser gyro as discussed by 
Killpatrick (1967), is that two beams of light are passed in 
opposite directions around a fixed length cavity. The two 
beams of light are combined by use of a prism to form light 
and dark fringes. As the laser gyro is rotated, a change in 
the fringe occurs such that light and dark patterns can be 
detected by suitably placed photodiodes. The photodiodes 
provide a corresponding electrical output which can then be 
processed. The use of ring laser gyros in inertial 
navigation systems results in a special type of navigation 
system called a strapdown inertial navigation system (INS) 
since, the ring laser gyros are fixed to a base which moves 
with the aircraft body.

The use of ring laser gyros in inertial navigation systems 
has several advantages over gimballed gyro systems, as 
discussed by Edwards (1971). The main advantages being lower 
weight, lower cost and higher reliability. By the mid 
1970's, development of ring laser gyro technology had 
progressed to the point where strapdown inertial navigation 
systems could be flight tested.
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Since the early developments, ring laser gyro technology has 
improved, but the errors associated with such instruments 
remain. The fundamentals of ring laser gyros are very 
complex as explained by Killpatrick (1967).

The theory of inertial navigation systems is well known, but 
often the development of strapdown system algorithms is 
unique to a particular manufacturers system. Schneider 
(1959), gives an explanation of basic inertial navigation 
system theory. Bronkhorst (1978) gives a discussion of 
strapdown algorithms.

There is a direct relationship between gyro errors and the 
resultant navigation performance that can be expected from 
an inertial navigation system. Nuttall (1985) discusses gyro 
requirements for a navigation system to meet the performance 
of 1 nm/hr position error.

Due to instrument errors, strapdown inertial navigation 
systems are not perfect. Efforts have been made therefore to 
try and model such errors mathematically. Huddle (1983) 
describes the development of an inertial navigation system 
error model. The paper starts by discussing the frames of 
reference used in the error model development. A direction 
cosine approach is used to describe frames of reference. The 
errors in various parameters within the system are then 
discussed, and equations are developed that describe errors 
in terms of system position, velocity and attitude. The 
resultant overall error model is presented using state space 
theory. It is noted that the error model developed is 
suitable for use in a Kalman filter. Several possible 
versions of the derived error model suitable for use in a 
Kalman filter are discussed, with the merits of each method 
outlined.

There is a body of mathematics called quaternion algebra, 
which is widely used in the application of strapdown 
inertial navigation systems. Friedland (1978) discusses the 
use of quaternions to form the basic equations of a 
strapdown inertial navigation system. An inertial navigation 
system error model using quaternions is also formulated. The 
paper starts by developing the equations for position, 
velocity and angular velocity in terms of quaternions where 
the various parameters are expressed in terms of an 
inertial frame of reference. Via quaternion algebra, a 
special quaternion matrix is established, which is found 
useful in the development of the inertial system error 
model.
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The concept of errors in the inertial system parameters are 
discussed. A set of 10 differential equations are then 
developed in terms of quaternions, that form the basis of 
the system error model. A brief discussion of the 
interpretation of the terms in the derived error model is 
given. The paper concludes by saying that the quaternion 
error model developed should be useful for system behaviour 
analysis.

KALMAN FILTERS
By using certain alternative navigation sources as a
reference, and combining this reference data with the 
information provided by the inertial navigation system ,the 
errors in the navigation system can be reduced. This offers 
the potential for improved navigation system performance. 
The technique of combining inertial navigation information 
with another source of navigation data is best carried out 
using a Kalman filter.

A Kalman filter is essentially a technique of determining an 
optimal estimate of some parameter that is corrupted by the 
effects of noise. The early equations that were developed 
were limited in that they could only be solved for certain 
problems. Kalman (1961) introduced the modern approach to 
the problem of filtering which had the advantage that the 
solution could be implemented on a digital computer, and 
thus offered a practical solution to the filtering problem 
as opposed to a pure analytical one. A nonlinear 
differential equation is derived for the covariance matrix 
of the optimal filtering error. The Solution of this Riccati 
type equation then specifies the optimal filter.

GLOBAL POSITIONING SYSTEM
For todays application, the Global Positioning System (GPS) 
provides an ideal source of navigation information that can 
be combined with inertial navigation system data via the 
technique of Kalman filtering, to improve the overall 
performance of the integrated navigation system. The Global 
Positioning System as discussed by Milliken (1979) is a 
satellite based radio navigation system intended to provide 
highly accurate three dimensional position ,velocity and 
time on a continuous global basis.
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The system is at present not fully operational, but when it 
is, it will consist of 18 satellites in 6 orbital planes 
inclined at 55 degrees. Two classes of GPS service are 
available. The first class is the standard positioning 
service which is available to the general public. The second 
class is the precise positioning service which is intended 
for military use, since its navigational accuracy will be 
much higher when the full system is operational.

Navigation using GPS is accomplished by using the satellites 
transmitted signals to an earth based receiver or a receiver 
installed in an aircraft. Part of the signal transmitted by 
each GPS satellite, contains information relating the 
position of each satellite to the earth. By processing the 
received satellite data from at least 4 different 
satellites, a user can determine the receiver position 
relative to the earth. In addition to position, GPS can 
provide velocity information in three dimensions. Although 
it is capable of providing precise navigation information, 
the global positioning system does have several limitations.

The main GPS limitations are :-
1) The radio signals that are used to communicate the 
satellite information to the ground based receiver are 
susceptible to jamming or interference.
2) It takes time for the GPS receiver to track and lock onto 
the satellite signals. This happens when the Gps is required 
to track and lock onto the satellite signal initially when 
it starts navigating, and also when it loses sight of one 
satellite and starts to track another.

KALMAN FILTER INSTABILITY
Although the Kalman filter has been proved to be a suitable 
way to integrate INS and GPS systems, care must be taken 
with the actual Kalman filter implementation equations to 
avoid the problems of filter instability. Instability in 
this context can be thought of as the Kalman filter 
producing an unexpected and unusable result. The problem of 
instability can be overcome by using a certain set of 
equations called, the Bierman U-D factorization equations. 
Bierman (1976) discusses the U-D equations. The paper 
suggests that some but not all of the original equations 
developed by Kalman can be written in an alternative form. 
Where the alternative equations are presented in the form of 
upper triangular matrices.
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The paper acknowledges that there are other forms of 
possible mechanization, the square root covariance approach 
suggested by Potter (1963) is quoted. The paper also claims 
that the U-D factorization method is as accurate as Potters 
square root formulation, with the advantage that it is more 
efficient in terms of computation time.

The U-D factorization technique appears to be the preferred 
method of implementing Kalman filter algorithms. Upadhyay 
(1979) discusses the implementation of a U-D factorization 
in an extended Kalman filter as used in a GPS solution. The 
basic equations relating to the extended Kalman filter are 
described. The U-D factorization equations are given that 
are used to propagate the covariance matrix and to update 
the covariance matrix. The rest of the paper discusses the 
GPS system model used in the GPS Kalman filter, and the 
tests carried out to evaluate the performance of the filter. 
From the results obtained, it is concluded that by using 
the U-D factorization in the extended Kalman filter , a 
stable Kalman filter is achieved.

Efforts have continued since Bierman founded the initial U-D 
factorization algorithms to generate more efficient methods 
of solving for the Kalman filter instability problem. Tapley 
(1978) discusses a method of propagating an alternative U-D 
factorization method, which is claimed to be more efficient 
with respect to computer storage and computation time than 
the original Bierman U-D factorization method.

Brown (1983) discusses a method by which the Bierman U-D 
factorization algorithms can be extended to cope with a 
special case of Kalman filter implementation, where the 
filter measurement noise is correlated.

SPECIFYING NAVIGATION SYSTEM PERFORMANCE
For all navigation systems it is possible to specify 
navigation performance in several different ways. Leenhouts 
(1985) discusses in some detail the various ways of 
assessing performance. In introducing the topic, Leenhouts 
makes the point that the commonly adopted conventions for 
the computation of radial navigation error are not 
consistent in probability. This inconsistency is 
investigated and the bivariate normal distribution is 
discussed. Special cases of the equation that result in a 
circular distribution are considered. The probability circle 
is then introduced. A comparison is given of methods to 
measure circular error.
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Distance root mean squared (Drms), circle of equal 
probability (CEP), and geometric dilution of precision are 
discussed. An equation for circle of error probability can 
be written in several different forms. The various commonly 
used formula are given.

The inconsistency mentioned above is described as being due 
to the fact that some methods of evaluating radial error 
make the assumption that navigation parameters (specifically 
latitude and longitude), are uncorrelated and have equal 
statistics to describe them thus leading to a circular 
distribution. If the two assumptions are not valid however, 
then the distribution obtained is not circular, but becomes 
elliptical. Thus applying the circular error theory to these 
elliptical cases will result in some error in the value of 
navigation performance. Graphs are given that show what 
error can be expected when circular theory is applied to 
elliptical responses.

Identifying the fact that the latitude and longitude errors 
are correlated is not an easy task in practice. Valstar 
(1970) , discusses a method of uncorrelating latitude and 
longitude errors if they are correlated, so that the 
circular error theory can then be correctly applied to form 
a measure of navigation performance.

TECHNIQUES TO EVALUATE PERFORMANCE
One of the major tasks involved in the integration of 
inertial navigation systems with GPS via a Kalman filter, is 
that of evaluating system navigational performance. Tucker 
(1985) discusses the evaluation of navigation errors in 
inertial navigation systems. Three different types of 
evaluation technique are discussed, these being Monte Carlo 
analysis, error analysis and covariance analysis. Typical 
error sources expected from an inertial navigation system 
are summarized, amounting to some 29 individual sources. It 
is assumed that each error source is independent of all 
other error sources, which allows the combined effect of 
individual error sources to be investigated, this being the 
principle of the error method of analysis.

The Monte Carlo method of analysis is described as a 
statistical experiment, where the combined effect of all 
error sources is determined by generating random samples of 
each error source, and processing a large number of such 
experiments. The third method of analysis discussed is the 
technique of covariance analysis.
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This method differs from the first two, as it deals with the 
dynamics of the errors themselves. The mathematical 
development of the error covariance equations is discussed. 
The use of the equations are restricted to a certain type of 
error referred to as random constant, although it is 
concluded that the equations could be extended to the more 
general type of application by including the effects of 
random noise. Results for all three methods of analysis as 
applied to the inertial system error model, are compared. It 
was found that all three methods provided results that were 
in close agreement.

Savage (1975) discusses the testing of a Laser Gyro Inertial 
Navigation System. Laboratory and flight tests are 
discussed. Statistical results are given of alignment tests 
carried out in the laboratory where the inertial system was 
first aligned to north and then east. The results quoted are 
for root mean squared (RMS) heading error versus alignment 
time.

The relationship between alignment time and gyro random walk 
is discussed, where it is implied that the lower the gyro 
random walk the faster the alignment time. This relationship 
was seen from the results, where the X gyro random walk and 
the Y gyro random walk had different values which resulted 
in different values of RMS heading error for the north and 
east cases. A total of 13 flight profiles were tested.

Brockstein (1976) discusses the performance of a 15 and a 22 
state Kalman filter used for the integration of GPS/INS. The 
evaluation of the system is carried out by the method of 
Monte Carlo analysis. The integration scheme discussed is 
open loop since no attempt is made to feed back INS 
corrections to the actual IN system. Corrections to the raw 
INS data are used however in the computations of GPS range 
and range rate estimates. There is only one Kalman filter 
used to model both the INS and GPS errors. The measurement 
input into the Kalman filter is a range and range rate 
residual, which is the difference between the range and 
range rate measured by the GPS receiver, and the range and 
range rate estimates computed as a function of the corrected 
INS variables.

The truth model, which is a model of all known errors 
associated with GPS and INS is discussed. The total number 
of error sources used in the truth model is 106. A brief 
description of the 106 error sources is given. After an 
extensive period of simulation and study a 15 state Kalman 
filter was developed from the reference truth model.
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A Monte Carlo simulation was carried out to investigate 
system performance. The results obtained showed that the 15 
state Kalman filter with a 1 second update rate performed 
well as a sub optimal Kalman filter solution. It was noted 
that jamming of the GPS system affects level axis position 
and velocity, although its effect on vertical axis 
performance is not so great if a baro-inertial loop is 
implemented, this is to be expected since the barometric 
altimeter acts as an external source of information.

Maybeck (1978) also discusses the performance analysis of a 
Kalman filter where a strapdown inertial navigation system 
is integrated with a radiometric area correlator (RAC). The 
RAC provides a number of accurate fixes by correlating a 
radiometric picture of the terrain immediately below the 
vehicle with a pre-stored reference map of the region. The 
Kalman filter is used in a closed loop mode where the 
estimates of the INS errors are feed back to the INS for 
correction. The Kalman filter design consists of two 
decoupled level axis filters which are used to model the INS 
errors. It is stated that the common approach to this type 
of problem is to use a single coupled filter.

An explanation of how the two decoupled filters can be 
justified is given. Evaluation of the sub optimal Kalman 
filter is carried out via the technigue of covariance 
analysis. A truth model is used which represents an ideal 
model of an inertial system. The truth model chosen has 46 
states which are detailed. Using the covariance analysis 
technique the sub optimal Kalman filter was tuned by 
comparing its performance against the truth model. Once a 
suitable design was arrived at, its performance was assessed 
against the required specification, details of which are not 
given. The paper concludes that the performance of the sub 
optimal filter is within the required specification.

Chen (1978) discusses the accuracy requirements for GPS 
aided inertial navigation systems. The paper deals with an 
INS intended for use in a missile system. A covariance 
analysis program was used to investigate the performance of 
a GPS aided INS during enroot navigation. A 15 state INS 
error model is used in the inertial system Kalman filter 
which accepts GPS position. Estimates of inertial system 
errors obtained from the Kalman filter are fed back to the 
INS for calibration. A simulation was carried out to assess 
unaided inertial system performance after a one hour period 
of GPS coverage. The performance of the simulated INS before 
calibration is given as 1 nm/hr CEP. Results are given for 
the horizontal position error and velocity error obtained 
from the simulation.
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A technique is then discussed that allows the one sigma 
velocity error obtained from the Kalman filter covariance 
analysis to be converted into a one sigma ensemble statistic 
that is suitable for use to describe weapon system 
performance. Conclusions are drawn about the accuracy 
required of an inertial navigation system such that a weapon 
system can meet its required specification.

INERTIAL NAVIGATION SYSTEM ALIGNMENT
Inertial navigation systems can generally be considered to 
have two basic modes of operation, these being alignment 
mode and navigate mode. The alignment mode is where the 
inertial system orientates itself with respect to the earth 
in preparation to start navigating, and also tries to 
estimate the errors in the inertial system and hence 
calibrate for them. The alignment is normally carried out 
via a Kalman filter. It is not always possible to detect all 
of the inertial system errors during the alignment phase 
because some of the errors may be unobservable.

Itzhack (1980) considers the observability of certain INS 
errors during the alignment phase of an inertial system. An 
in-air alignment is considered. A discussion is given on the 
observability of the azimuth error, which can be thought of 
as being an error in the inertial system heading. It is 
stated that the time to estimate the azimuth error can be 
reduced if certain manoeuvres are carried out such that 
accelerations are introduced into the system. It is possible 
to produce one of two types of acceleration, these being 
axial and lateral. The paper investigates the effect of both 
of these types of manoeuvre on the observability of the 
azimuth error source. The inertial system error model used 
to carry out the investigation consists of 5 states.

A simulation is carried out by considering the continuous 
time matrix Riccati equation which is solved for several 
cases of interest. Analytic solutions are also obtained to 
compare with the results obtained from simulation. Two 
manoeuvres are considered which simulate the generation of 
axial and lateral accelerations. For the first case of 
interest the 5 state error model is reduced to third order 
by making assumptions about the size of the azimuth gyro 
errors, the assumption being that the error is small. The 
analytic solution to the problem is given where it is noted 
that the solution depends on the stochastic observability 
matrix of the system.
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Two solutions are generated, one where the accelerations are 
assumed to be axial, and one where they are assumed to be 
lateral. By examining the results for the two analytic 
solutions, it is concluded that the axial acceleration 
manoeuvre is superior to the lateral acceleration manoeuvre 
provided the condition assumed for the gyro holds. To 
account for the case when the gyro assumption cannot be 
made, a fourth order model is developed. Similar results are 
analyzed as for the third order model, from which it is 
again concluded that the axial acceleration is superior to 
the lateral acceleration in enhancing the observability of 
the azimuth error. A comparison of results for the analytic 
cases against the simulated cases also showed good 
agreement.

Itzack (1981) is a follow on paper from the work carried 
out in Itzack (1980). Simulations are carried out to 
investigate the effect on azimuth observability of two types 
of acceleration. A circular orbit as opposed to an S shaped 
manoeuvre is considered to examine the first type of 
acceleration, while for the second type a constant axial 
acceleration as opposed to an alternating one is considered. 
Simulation results are presented for the two types of 
acceleration from which it is concluded that for the 
constant axial acceleration case the azimuth misalignment 
estimation error reaches a smaller value than for the 
alternating axial acceleration case. Similarly for the 
circular manoeuvre the azimuth error is smaller than for the 
S shaped manoeuvre. Theoretical results are given for the 
azimuth estimation error as a function of time. Graphs were 
plotted using the theoretical results for the two cases 
above. A close agreement was observed between theoretical 
and simulation results. By examining the theoretical results 
it is concluded that when there is a change in the sign of 
the acceleration, the correlation coefficient that 
correlates the measured velocity error and the azimuth 
misalignment, changes sign and thus crosses zero which 
temporarily halts the estimation process.

Itzhack (1982) discusses a technique whereby the in-flight 
alignment of an Inertial Navigation System is carried out 
using a time sharing filter. The investigation is carried 
out using a covariance analysis simulation which is based on 
a 24 state truth model of an INS. The time sharing filter is 
based on the fact that the INS error behaviour can be 
described by simplified equations during certain manoeuvres. 
Three filters are given to be used with a base line S shape 
manoeuvre that is carried out during the in-flight alignment 
phase. Simulation results are presented for the time sharing 
filter.
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It is concluded from these results that certain errors that 
are estimated namely the level misalignment errors, need to 
be fed back to the INS for correction if the overall filter 
is to function correctly.

Itzhack (1983) discusses the theory relating to heading 
sensitive errors in Inertial Navigation Systems. Results are 
quoted but not derived for INS errors in terms of position 
and velocity, and attitude. An additional equation 
describing velocity error is introduced. Using this equation 
an analysis is carried out to show how in a strapdown 
inertial system alignment errors can be uncoupled by 
rotation.

Itzhack (1988) discusses the observability carried out on a 
three channel inertial navigation system. The difficulties 
of applying classical observability theory to inertial 
navigation systems that are time varying are discussed. The 
paper reports on the use of a special technique that can be 
used to help determine the observability of INS parameters. 
The technique reported is referred to as a stepped 
observability matrix (SOM) which is where a special 
trajectory for in-flight alignment is considered, which 
allows a piecewise constant model to be used as the dynamics 
of the INS model.

The use of the SOM provides a simple way to analyze the 
change of observability that occurs with changes in 
trajectory. The SOM is applied to investigate the 
observability associated with a 12 state inertial system 
error model. A covariance simulation was carried out for the 
same 12 state INS error model as used in the SOM analysis. 
The two sets of results obtained from the SOM and the 
covariance analysis were found to be in close agreement.

Ham (1983) discusses the use of eigenvalues as applied to 
the covariance matrix of a Kalman filter, to help provide 
information on observability of the Kalman states being 
modelled. A mathematical development to obtain the 
eigenvalues and eigenvectors of the Kalman filter covariance 
matrix is discussed. It is stated that the largest 
eigenvalue relates to the state in the system that is least 
observable, while the smallest eigenvalue corresponds to the 
state that is most observable. Because of potential 
difficulties with the range of possible eigenvalues that 
could be encountered, a scheme to normalize the eigenvalues 
is suggested which takes into account the initial conditions 
of the system.
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An example of applying the method to a 6 state inertial 
system is given, which illustrates the fact that the 
smallest eigenvalue corresponds to the state that is most 
observable.

Alignment of an inertial system can benefit from the use of 
GPS as an external source of information. Disel (1988) 
discusses the use of GPS during the alignment phase of a 
strapdown inertial navigation system. The type of errors 
that are expected from a standalone inertial system after a 
typical alignment phase is complete are discussed. It is 
shown that the resultant inertial system performance is 
directly affected by the errors that remain after the 
alignment phase is complete.

The solution of a matrix Ricatti equation is given for 
certain types of instrument errors to illustrate this point. 
The use of GPS in the alignment phase is then discussed. The 
solution of a matrix Ricatti equation is again considered to 
show the improvement that might be expected in terms of 
navigation performance, if GPS is used. The paper considers 
that with the use of GPS, the error sources remaining after 
the alignment phase is complete, are mostly random walk type 
errors. For standalone INS operation, random constant errors 
are dominant.

Tafel (1981) discusses the use of GPS during the alignment 
phase of an inertial system. The study considers the 
increase in speed that can be obtained by the use of GPS 
during the alignment phase, over that achieved by a 
standalone alignment. The paper states that certain types of 
error source are only observable when the inertial system is 
experiencing an acceleration. Two types of acceleration, 
lateral and axial are discussed. It is concluded that to 
observe all the errors of interest during an in-flight 
alignment, certain types of manoeuvre (which are not 
specified) , must be carried out so as to generate 
accelerations in the inertial system.
Itzhack (1987) discusses a control theory approach to the 
analysis of inertial navigation systems. The paper does not 
attempt to expose new features of inertial navigation 
systems, but to examine known features using modern control 
theory. A discussion is given on the type of error model 
used to represent an inertial system which is used 
throughout the paper. Two types of possible error model are 
considered for use, these being the perturbation approach 
and the psi-angle approach. It is stated that most of the 
published work on INS error models adopts the psi-angle 
approach, so this version is selected for use.
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The vector form of the INS error model is given but not 
derived. From this set of vector equations, a resultant 
state space model is produced which contains nine states. 
Certain simplifying assumptions about the conditions under 
which the equations are to be analyzed are given. The main 
condition is that the system is considered to be at rest. 
Further simplifications are then made about the 
characteristics of the instrument errors, allowing the 9 
state error model to be reformulated into a 10 state 
version. The eigenvalues of the corresponding 10 state model 
are then presented. Several of the eigenvalues relate to 
known inertial system characteristics, these are identified.

The concept of controllability and observability are 
examined. Observability is examined by considering the 
alignment and calibration phase of an inertial system. It is 
stated that the quality of the inertial system is related to 
the observability of the system errors. To investigate the 
topic of observability a linearity transformation is applied 
to the 10 state model to produce a corresponding model that 
contains a distinct observable and non-observable part. The 
matrices required to perform the transformation are 
detailed. The transformation matrices relate to the physics 
of the system. The physical reasoning behind the 
transformation is discussed, where it is shown how the 
transformation are based on defining new states for the 
error model. The relationship between the new states and the 
old states used to represent the inertial model is seen to 
be surprisingly simple. Consideration is given to applying 
a Kalman filter to the transformed equations, where the 
expected results from the Kalman filter covariance matrix 
are briefly discussed.

RELATED PAPERS
Hoefenen (1988) considers accuracy aspects of GPS system 
design. The question "how accurate is GPS" is discussed. 
Four major sources of error that affect the accuracy of GPS 
are quoted. Three of the four sources given make up the user 
equivalent range error (UERE). The process whereby the UERE 
affects the final position error is given, this being the 
geometric dilution of precision (GDOP). GDOP is described as 
being a measure of how satellite geometry affects accuracy 
and can be though of as the amplification or scaling of 
pseudorange measurement errors into user position error due 
to the effects of the three dimensional geometry of the 
satellite and user position. Techniques are discussed as to 
how the effects of the UERE error sources can be minimized.
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The principles of differential GPS are described, since it 
offers a method to eliminate the space and control segment 
errors that effect the UERE. Brief details are given of how 
the use of the P or C/A code techniques can aid in reducing 
transmission time errors. Tropospheric errors and there 
relationships to satellite elevation are considered. The 
pseudosatellite, which is a ground based satellite, can be 
used to augment satellite coverage. Two graphs are given to 
illustrate this effect, where PDOP versus time is plotted. 
For the case with no pseudosatellite, a peak in the PDOP v 
time graph is observed at around 10 hours. For the 
corresponding pseudosatellite result, the peak is completely 
removed due to the augmented pseudosatellite. A table 
showing typical accuracies of various GPS receivers for 
several different error sources are given.
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INERTIAL REFERENCE SYSTEM ERROR BUDGET TABLE

ERROR SOURCE 1 SIGMA UNITS
X GYRO BIAS 0. 008 DEG/HR
Y GYRO BIAS 0.008 DEG/HR
Z GYRO BIAS 0. 016 DEG/HR
X ACCELEROMETER BIAS 40 MICRO G
Y ACCELEROMETER BIAS 40 MICRO G
Z ACCELEROMETER BAIS 40 MICRO G
GYRO RANDOM WALK 0.002 DEG SQRT HR
ACCELEROMETER NOISE 3 MICRO G
CORRELATION TIME 30 MINUTES

ACCELEROMETER GRAVITY 6 ARC SECONDS
ANOMOLY
CORRELATION DISTANCE 25 NM
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RELATIONSHIP BETWEEN THE KALMAN FILTER COVARIANCE MATRIX 
DIAGONAL ELEMENTS AND THE 1RS STATES

1RS ERROR 
STATE

GRAPH
NOTATION

COVARIANCE
ELEMENT

x position SD 1 P(l,l)
Y position SD 2 p(2,2)
x velocity SD 3 P (3/3)
y velocity SD 4 P(4,4)
x tilt SD 5 P(5,5)
y tilt SD 6 P (6 / 6)
z tilt SD 7 P (7,7)
x gyro bias SD 8 P (8,8)
y gyro bias SD 9 P(9,9)
z gyro bias SD 10 P(10,10)
x accel bias SD 11 p(ll,ll)
y accel bias SD 12 P (12,12)
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SUMMARY OF 1RS STATES FOR THE OPTIMAL 1RS ERROR MODEL

X(1) X PLATFORM AXIS POSITION ERROR
X (2 ) Y PLATFORM AXIS POSITION ERROR
X (3 ) INERTIAL ALTITUDE ERROR
X (4 ) X PLATFORM AXIS VELOCITY ERROR
X(5) Y PLATFORM AXIS VELOCITY ERROR
X ( 6) Z PLATFORM AXIS VELOCITY ERROR
X(7) X PLATFORM AXIS TILT (OR ATTITUDE) ERROR
X (8) Y PLATFORM AXIS TILT (OR ATTITUDE) ERROR
X (9) Z PLATFORM AXIS TILT (OR ATTITUDE) ERROR
X(10) X BODY AXIS GYRO BIAS ERROR
X(ll) Y BODY AXIS GYRO BIAS ERROR
X (12 ) Z BODY AXIS GYRO BIAS ERROR
X (13 ) X BODY AXIS ACCELEROMETER BIAS ERROR
X (14 ) Y BODY AXIS ACCELEROMETER BIAS ERROR
X (15) Z BODY AXIS ACCELEROMETER BIAS ERROR
X (16) BARO INERTIAL LOOP ERROR
X(17) BARO INERTIAL LOOP REFERENCE SOURCE ERROR
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Table 4-1 - Kalman Filter Initialisation Parameters

1RS ERROR 
STATE

COVARIANCE
ELEMENT

VALUE UNITS

x position P(l,l) 9.0 X 10'12 rads2
Y position P(2/2) 9.0 X 10'12 rads2
x velocity P (3,3) 25.0 kts2
y velocity P(4,4) 25.0 kts2
x tilt P(5,5) 9.0 X 10'8 rads2
y tilt p(6,6) 9.0 x 10*8 rads2
z tilt P(7,7) 1.0 x 10*6 rads2
x gyro bias P(8,8) 1.9 x ÎO8 rads2/hr2
y gyro bias P (9/9) 1.9 x ÎO8 rads2/hr2
z gyro bias P(10,10) 7.7 X ÎO8 rads2/hr2
x accel bias P (11/11) 1.6 x 10'9 g2
y accel bias P (12,12) 1.6 x ÎO9 g2

Note : All other values of the covariance matrix are set
to zero.
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KALMAN FILTER SYSTEM MATRIX

The 12 state sub optimal Kalman filter system matrix is 
given below :

«*;
S0yy

k

k

k

é.

s
èz

V,

1

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1
*0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 -gr 0 0 0 0 C 11 Ci;
0 0 0 0 -gr 0 0 0 0 0 C 21

0 0 1 0 wz -Wy C n C 12 ^13 0 0

0 1
^0

0 -Wz 0 C21 ^22 ^23 0 0

-n . n* 0 0 Wy 0 C 31 ^32 ^33 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

S 0 X

S 6 y

S v x

S v y

<t>X

O y

0Z

s
£z
V, ---

1

Figure 4-2



237

OPTIMAL V SUB OPTIMAL 1RS STATE VECTORS
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66x
sey
Svx
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Figure 4-3
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Figure 4-5
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SIMULATION PROGRAM MODULES

EXECUTIVE

RIG

EWORLD

1RS

GPS

KALMAN FILTER

KFMUPD

CDU

FIX

DATA STORAGE

MATHS ROUTINE

Figure 5-1



SIMULATION PROGRAM EXECUTIVE CALLING ROUTINES

Start

End

Call Rig (0.5 secs)

 Call Rworld (0.5 secs)

 Call 1RS (0.5 secs)

 Call GPS (0.5 secs)

Call Fix (0.5)
Call Kalman (5 secs)

Call KFMUPD (30 secs)
Call CDU (30 secs)
Call TimeHist (60 secs)

Figure 5-2
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NON LEVEL FLIGHT

Figure 5 -3b
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QUATERNION REPRESENTATION OF POSITION

q2

NORTH POLAR 
AXIS

X,Y,Z EARTH FIXED
COORDINATE SYSTEM

Xq1,q2,q3 QUATERNION 
COMPONENTS

90DEGE
LONGITUDE

EQUATOR
GREENWICH

Z
q3

q2
^  NORTH POLAR 
U  AXIS

Z
q3

Q -  (COS4V2, SIN*/2COSa, SIN*f2 COSb, SIN4>/2COSc)

Figure 5-4
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SINGLE SIDED POWER SPECTRAL DENSITY PLOT

S(w)

Figure 5-5a

GYRO RANDOM WALK SIMULATION MODULE

c=>RGAUSS
MODULE
RGAUSS

SCALE 
FACTOR K

RMSOyP-1 RATEWHfTE 
NOISE (rada/sec)

ANGLE RANDOM 
WALK (rads)

Figure 5 -5b
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CORRELATED NOISE MODELS

X(S) Y(S)

Figure 5-6a

AXlx

Figure 5 -6b
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BIVARIATE NORMAL DISTRIBUTION

f (x,y)

Constant f(x,y)

Figure 6-1
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FLIGHT PROFILE 1

GPS LOST AFTER

10 HOUR GREAT CIRCLE FLIGHT 
AT 30,000 FEET AND 400 KTS

<
AUGN 090 DEG 

NORTH 45 DEG 

EAST 45 DEG

180 DEG TURN 

AFTER 10 MINS

Figure 6-2
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Figure 6-3
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Figure 6-4
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METHOD TO COMBINE RESULTS FOR SENSITIVITY ANALYSIS

RANDOM TIME SERIES ERRORS

Random sample for x,y,z gyro bias 
and x,y,z accelerometer noise.

Run 7

Run 8

Run 106

RANDOM CONSTANT ERRORS

Run 1 X gyro random 
constant.(la)

Run 2 Y gyro random 
constant.(la)

v Rss For 
X(2)Run 6 Z accel random- 

constant. (la)
FX

X = FX

X = FX

FX + W

Compute 95% 
Circular Error

Compute 
Rms Ensemble 

For X(l)

Compute Rss 
For 
X(l)

95% circular error

Figure 6-5
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Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

METHOD TO COMBINE RESULTS FOR COVARIANCE ANALYSIS

x gyro rw (la)

y gyro rw (la)

z gyro rw (la)

x accel noise

(la)

y accel noise

(la)

x gyro rc (la)

y gyro rc (la)

RSS Lon err
z gyro rc (la)

x accel rc (la)

95% Error Valuey accel rc (la)
10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

eq 6.10

Compute 95%

Compute
RSS

latitude
error

Figure 6-6
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METHOD TO COMPARE SENSITIVITY ANALYSIS AND COVARIANCE RESULTS 
FOR TIME SERIES ERRORS ONLY

SENSITIVITY ANALYSIS

Run 1 x,y,z gyro rw 
x,y,z accel noise 
random sample

Run 100 x,y,z gyro rw 
x,y,z accel noise 
random sample

COVARIANCE ANALYSIS

Run 1

Run 2

Run 3

Run 4

Run 5

x gyro rw 
variance

x gyro rw 
variance

x gyro rw 
variance

x gyro rw 
variance

x gyro rw 
variance

Compare

RMS
lat
error

Rss
Ion
error

covariance
analysis
equations

covariance
analysis
equations

covariance
analysis
equations

covariance
analysis
equations

covariance
analysis
equations

sensitivity
analysis
equations

sensitivity
analysis
equations

Figure 6-11
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Figure 7-1
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Figure 7-2

CA
SE
 

: 
Ov

er
Lo

y 
oF

 K
aL

mo
n 

Fi
tt

er
 

La
ti

tu
de

 
er

ro
rs

.
: 

Co
nt

i 
no
us
 

Li
ne
 

— 
No
is
e 

an
d 

Rc
. 

Da
sh

ed
 

- 
Rc

. 
Do
tt

ed
 

— 
No

is
e



ENS
EMB

LE 
STA

TIS
TIC

S 
: E

MC 
LAT 

ERR 
(rm

)

262

"0«
It
'D

• CL 30LL0
Ht X■03 0V c<
V0 X->V
11 >

VL0(L c(U -
"01 1>

_) 0 (L0 c -c -  "00 -> 0EX T )  W11 <0r  in> V) —0  VI4J Q  X_)0C 0 c<u -J 0
V) L0 X> U  4J
C 4) >0 V  -c y4J o  -0 Z  «c3 1 11)E (Z)6)C 1
0 _i y_J cL0 3 _>U 0C "Dt> —  yi» V Vc C V0 0  0z  u  o

Figure 7-3



ENS
EMB

LE 
STA

TIS
TIC

S 
: E

MC 
LONG

 E
RR 

(mi
)

263

S

"0<D
IL
"D

L C 0 3 L v  
Lu vi
m v)

"0 X  
3 -JV 0-  cü> <
c
0  X  —) V
IL >Y - V
L -  0 vi 
U- C 

4) -
T>

VI I 4) 
X  — _) 4) IL 
0 C ~  
C -  X) 0 ->
X VV 4) 
-  X
> V)
-  0U Û X

0
C 0 c
0 -J 0
(Z) L 

0 X
> U L
C 0 >
0 V
-  C 4-1
L> 0
0 S_J C
3 1 0
E on
-  0vl C i
0 -J 0

c
L vi
0 3 _>
U 0 C "00 — 0
L> L< L>
C C u
0 0 0
z  U Û

Figure 7-4



264

FLIGHT PROFILE 2

150/250090/250 250/250

045/250
110/250

ALIGN 180 
NORTH 30 DEG 
WEST 80 DEGCLIMB TO 

30,000 FT

270/250

Figure 7-5
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Figure 7-6
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Figure 7-7
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Figure 7-8
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Figure 7-9
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Figure 7-10
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Figure 7-11
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EXTENDED ALIGNMENT AXIS SET

NORTH

yp, xp - 1RS Platform Axis 

a - 1RS Alpha Angle
-a

EAST

Figure 8-1
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Z PLATFORM AXIS TILT AFFECT ON LOCAL LEVEL AXIS

NORTH

Earth Rate

+ z Tilt

p'
p

Figure 8-4
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Figure 8-5
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Figure 8-6
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Figure 8-8
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Figure 8-12
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Figure 8-13
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Figure 8-14
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SEATTLE BASED FLIGHT PROFILE

10 HOUR GREAT CIRCLE FLIGHT 
AT 30,000 FEET AND 400 KTS

ALIGN 090 DEG 

NORTH 47 DEG 

WEST 122 DEG

180 DEG TURN 

AFTER 1 HOUR

Figure 8-15
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Figure 8-2 0



AC
CE
LE
RO
ME
TE
R 

SI
NG
LE
 
CH
AN
NE
L 

IN
ER
TI
AL
 

SY
ST
EM
 
MO
DE
L

292

05I

o>

■HCZ)
1

M
%CC
tË
lS 0â

CC o>

Fi
gu
re
 
8-
21



DTHX
 (

rad)
 

PHIX
 

(ra
ds)

 
EPSY

 (
rod

/hr
) 

0.1
2E-

3T 
0.l

2E-
3r 

IT

293

Figure 8-22
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Figure 8-2 6
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