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Optical remote sensing (RS) with robust algorithms is needed for accurate assessment of

crop canopy features. Despite intensive studies on algorithms, their performance using

RS needs to be improved. We evaluated five different algorithms (partial-least-squares

regression (PLSR), support vector regression (SVR), random forest regression (RFR),

locally-weighted-PLSR (PLSRLW) and PLSR with feature selection (PLSRFS)) for rapid assess-

ment of leaf area index (LAI) and canopy water content (CWC) for rice canopies using

canopy reflectance spectra over visible to short-wave infrared region. Two pooled datasets

of LAI (600) and CWC (480) were collected from two replicated field experiments during

2014–15 and 2015–16 rice growing season. The performance of each algorithm was evalu-

ated using coefficient of determination (R2). Results showed that PLSRLW performed more

accurately than other algorithms with R2 values 0.77 and 0.66 for LAI and CWC, respec-

tively. We also used a bootstrapping approach to generate a kernel density estimator of root

mean squared error values for each model. The results suggested that the improvement in

prediction accuracy of LAI and CWC can be achieved if a suitable algorithm is selected by

assigning higher weights to calibration samples, which has similar canopy structure as the

test sample. Subsetting of the canopy spectral data results large error values in test dataset,

therefore the use of entire season canopy spectral data should be used for model

calibration.

� 2020 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Optical remote sensing (RS) is emerging as a fast and non-

destructive technique for quantifying vegetation canopy
parameters [1–5]. Using RS, several vegetation biophysical

and biochemical parameters may be estimated from a single

spectral signature measured over the visible, near-infrared

and shortwave infrared region (wavelength: 350–2500 nm) of

the electromagnetic spectrum [6–7]. Fast, accurate and robust

algorithms and large crop specific spectral libraries are

needed for implementing RS approach [7–8]. In the last dec-

ades, several retrieval algorithms such as empirical regres-

sions partial-least-squares regression (PLSR) [9–12]; support

vector regression (SVR) [13–16]; random forest regression
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(RFR) [16–18]; and artificial neural network (ANN) [19–20]; and

physical basedmethods such as radiative transfer models [21]

have been applied to relate between reflectance spectra and

in-situ vegetation data. In this study, empirical regression

algorithms are focused over physical based methods because

of their ill posed nature of the model inversion and less suit-

ability for retrieval applications [5,21]. Some of the studies on

empirical algorithms and their performance for prediction of

vegetation canopy parameters are shown in supplementary

material (Table S1). Despite using several algorithms on differ-

ent vegetation parameters, the coefficients of determination

(R2) achievable are moderate to poor. Therefore, efficient algo-

rithms that are performed well for other spectroscopic stud-

ies need to be tested for vegetation parameters.

Crop specific spectral libraries have been developed over

the last decade to implement and improve the predictive

power of spectral reflectance- based algorithms [22–25]. In

crop specific spectral libraries, an individual crop spectral

reflectance is often collected from an individual leaf or

from a whole crop canopy depending on the parameter of

interest. However these spectral libraries are region specific

and depend on several factors such as sensors used, quality

of radiation source, atmosphere, vegetation canopy, soil

nutrients and water availability [26]. The prediction accu-

racy of a spectral model calibrated from a field campaign

may be influenced by the sources of data, which may

include the nature of crop and selection of sampling loca-

tions. Many crop attributes are expected to change with

time and space [6]. As the crop spectral libraries are dealing

with complex datasets exhibiting nonlinear attribute rela-

tionships, the algorithms based on linear transformations

may not always be valid [5]. To overcome this problem algo-

rithms such as SVR and RFR which captures non-linearity

or PLSR-combined approaches such as locally-weighted-

PLSR (PLSRLW) and PLSR with feature selection (PLSRFS)

approaches are recently proposed [27–29].

Leaf area index (LAI) and canopy water content (CWC) are

the main vegetation properties that can be investigated by

remotely sensed spectral reflectance data. Both the vegeta-

tion variables are considered as important indicators of veg-

etation growth and productivity because they affect the

exchanging of water and energy with the atmosphere [30–

31]. Most of the present research using remotely sensed

spectral reflectance data to link LAI and CWC has been con-

ducted for assessing vegetation conditions and plant water

status [31–35]. Leaf area index and canopy water content

have been estimated by several algorithms for example

using PLSR [6,10,17,36–42], SVR and RFR [10,18]. These stud-

ies suggest that the coefficient of determination (R2) varied

in the range of 0.62 to 0.94 for LAI and CWC with different

vegetation type and environmental conditions. From the

above literature, it is also evident that spectroscopic data

need to be explored further and tested with newly developed

algorithms and different vegetation types for prediction of

LAI and CWC.

PLSR redesigned into locally-weighted PLSR (PLSRLW) and

feature selection-based PLSR (PLSRFS) have been used in

optical remote sensing applications for estimating soil

properties, which improves the prediction accuracy signifi-

cantly [28–29]. However these algorithms are new and yet
to be tested in crop studies. Therefore, there is a need to

test the aforementioned algorithms and evaluate their

capability to estimate crop canopy parameters. Here, we

evaluated five different algorithms for the rapid assess-

ment of LAI and CWC for rice canopies using canopy

reflectance spectra over visible to short-wave infrared

regions. The suitability of each algorithm was analyzed

and compared in terms of root mean squared error (RMSE)

and coefficient of determination (R2). To fully control the

consistency of the measurements, a replicated field exper-

iment was conducted with three varieties of rice and five

levels of soil water potential.
2. Materials and methods

2.1. Study site and experimental details

Two year replicated field experiments were carried out on

the experimental farm of Agricultural and Food Engineering

Department, Indian Institute of Technology Kharagpur, West

Bengal (22� 180 510’ N; 87� 180 540’ E) during the dry seasons

(December–April) of 2014–2016. Soils of the experimental

plots are acidic with sandy loam in texture. Soil types are

classified as Typic-Haplustalf according to the United States

Department of Agriculture (USDA) system of soil taxonomy

[43]. The climate in the area is humid subtropical character-

ized by short winter and long hot summer with an average

rainfall of about 1600 mm yr�1 and pan evaporation of about

700 mm yr�1. Thirty experimental plots (6 m � 5 m) were

used for growing two drought-susceptible (Satabdi and

IR36) and one drought tolerant (Vandana) rice varieties

(Fig. 1). Satabdi and IR36 are medium duration (110–130 days)

varieties suitable for lowland irrigated environment while

Vandana is a short duration (90 days) upland variety. Rice

seedlings of 28 and 18 days durations were transplanted in

the puddled plots in the year 2014–2015 and 2015–2016,

respectively. Five water stress treatments as soil water

potential levels (�30 kPa, �50 kPa, �70 kPa, �120 kPa and

�140 kPa) were applied with two replications in completely

randomized block design. Water stress treatments were

applied during vegetative growth stages by withholding irri-

gation and allowing soils to dry out naturally. Recommended

fertilizers doses containing 120 kg ha�1 nitrogen (Urea),

50 kg ha�1 phosphate (P2O5) and 60 kg ha�1 potash (K2O)

were applied as basal before transplanting, 25% N at mid til-

lering and remaining 50% N at flowering stages. Insects and

pests were controlled using recommended doses of chemical

pesticides.
2.2. Field and laboratory data collection

2.2.1. Canopy spectral reflectance measurements
Canopy reflectance spectra were measured in each treatment

plots at the canopy during 11 AM– 2 PM on cloud free days

using a handheld spectroradiometer (Field Spec 3 FR, Analyt-

ical Spectral Devices Inc., Colorado, USA; spectral range: 300–

2500 nm). Canopy spectral measurements were taken from

canopy height of 0.5 m with a field of view of 8�. A spectralon

white reference panel (Labsphere, Inc., Sutton, NH) was



Fig. 1 – Field view of the experimental site.
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mounted on a tripod stand, which was placed between two

adjacent plots. The panel was mounted at the same level of

the canopy on which spectral measurements were done.

Canopy spectral reflectance data were collected five times in

two different locations in each plot during 2014–15 and

2015–16 growing seasons (55, 62, 66, 83 and 103 different days

after sowing (DAS) in 2014–15 and 55, 73, 81, 99 and 120 differ-

ent days after sowing (DAS) in 2015–16). This resulted in 600

(30 plots � 2 locations � 5 DAS � 2 growing seasons) canopy

spectra and associated rice canopy parameters.

2.2.2. Leaf area index and canopy water content
measurements
Leaf area index and canopy water content measurements

were obtained, immediately after canopy spectral measure-

ments. To create variations in leaf area index and canopy

water content, the measurements were taken at different

days after sowing (transplanting to harvest maturity) during

the drying season. An indirect method was used to measure

LAI [44]. In this method, all the leaves from a rice hill were

harvested and three sample leaves were taken to measure

leaf area using an optical planimeter (Model no. 211, Systron-

ics, India). The total leaf area was then estimated by multiply-

ing the resulting leaf area with the weight ratio between the

total number of leaves and three selected leaves. Total ground

area for each hill was calculated from the spacing used for

transplanting (0.2 m � 0.2 m). Leaf area index was calculated

as:

LAI m2 m�2
� � ¼ Half of total leaf area m2ð Þ

Total ground area m2ð Þ ð1Þ

Canopy water content was estimated by measuring the

equivalent water thickness (EWT) of the leaves harvested

from a rice hill. Leaves on the rice hills were collected and

packed in zip lock bags for taking fresh weights (FW). Dry

weights (DW) were taken after drying the leaves at 70 �C in

an oven for 48 h until constant weight was reached. CWC

was calculated using EWT as:

EWT ðg=m2Þ ¼ FW�DW
Half of total leaf area

ð2Þ

CWC ðg=m2Þ ¼ EWT� LAI ð3Þ
A pool datasets of 600 LAI and 480 CWC measurements

were obtained during the two year field experiments.

2.3. Spectral preprocessing

Each spectrum was corrected for the sensor adjustment.

Smoothing was acquired by third order Savitzky-Golay

smoothing method with a span length of 9 nm to remove

noise for optimizing the signal to noise ratio [45]. Normality

check of each canopy attributes were performed using

Kolomogorov-Smirnov test at 5% significance level. Water

absorption bands over 1 350�1 460 nm, 1 804�1 971 nm and

noisy reflectance values before 400 nm and after 2 447 nm

were removed from each reflectance spectrum. The remain-

ing 1 809 wavebands were used for analysis. The standard

normal variate (SNV) transformation was used to remove

the noise from the spectra.

2.4. Algorithm descriptions

Three types of algorithms were used in this study: a) general

PLSR, SVR and RFR, b) locally-weighted-PLSR (PLSRLW), and c)

combined PLSR and feature selection (PLSRFS) algorithms. In

the PLSR algorithm, input features are projected onto a space

such that the covariance between the features in the pro-

jected space and response variable is maximized. In the SVR

approach, a function from a given training sample is esti-

mated in such a way that the predicted response for each

training data is at most away from the observed response

[46]. Since training data points serve as support vectors for

the estimated function, this approach is relatively less influ-

enced by the presence of outliers in the calibration or valida-

tion datasets compared with the general PLSR. RFR is a

classifier ensembling classification trees, in which, each tree

gives a classification, and the tree ‘‘votes” is used to classify

samples. The forest chooses the classification having the

most votes. RFR is resistant to overfitting and usually per-

forms well in problems with a low ratio of number of samples

to number of features, like spectrometric data [47].

Because the modeling results from the PLSR, SVR and RFR

approaches were comparable, attempts were also made to

improve the performance of a PLSR model using the PLSRFS
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and PLSRLW approaches. PLSRFS approach was applied by

implementing an ordered predictor selection (OPS) approach

in which a parsimonious set of predictors could be selected

for a specific regression model. The variables selected in this

approach are PLSR dependent variables (regression coeffi-

cients (b), variable importance of projection (VIP), squared

residual (SqRes), net analyte signal (N)) and PLSR independent

variables (correlation vector (r), biweight midcorrelation vec-

tor (bicor), mutual information based adjacency vector

(AMI), signal to noise vector (StN) and covariance procedure

(CovProc)). Calculation and details on the spectral variable

indicators used have been described in [28]. In addition,

new sets of spectral variable indicators were generated by

pair-wise combination of a) PLSR-dependent indicators only

(6 combinations), b) PLSR-dependent and independent indica-

tors (20 combinations). The combined indicator was the result

of element wise product of absolute values of the normalized

spectral variable indicators. Thus, a total of 35 spectral vari-

able indicators (9 individual + 26 combinations) were exam-

ined in this study. The OPS approach was applied to each of

these sets to identify a parsimonious set of predictor variables

such that a reduced and effective set of predictor variables

may be used in the regression model. Such a feature selection

approach increased the prediction accuracy of the final PLSR

model [28]. The PLSRFS approach was implemented for all

the spectra. Results corresponding to the best combination

of features with highest prediction accuracy based on root

mean squared error (RMSE) and complexity (in terms of num-

ber of optimum spectral variables (NSV)) used are compared.

Optimum models with RMSE value within 5% proximity (in

magnitude) to the lowest RMSE were selected. Among these,

the model with low NSV was treated as the best model and

respective variable indicator as the ‘best’ for both the crop

parameters.

In PLSRLW, PLSRmodels are calibrated by assigning weights

to each calibration sample based on its similarity to the

respective validation sample [29]. The similarity between cal-

ibration and validation samples was calculated using a dis-

tance metric as follows:

dc;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc � xvð ÞTh xc � xvð Þ

q
ð4Þ

where dc,v is the distance between cth calibration and vth val-

idation samples, xc (p � 1) is the calibration sample, xv (p � 1)

is the validation sample, h is an identity matrix to calculate

the similarity between observe and predictor variables, and

p is the total number of predictor variables. Two approaches

were used to calculate dc,v. In the first approach, h was calcu-

lated based on the correlation between response and predic-

tors, abbreviated as hcorr. In the second approach, h was

calculated based on the covariance between predictors and

response, abbreviated as hcov:

hcorr ¼ diag
kXTyk
kXkkyk

� �
ð5Þ

hcov ¼ XTyyTX

kXTyk2
ð6Þ

where diag{} represents the diagonal matrix, X is an (n � p)

matrix of predictors with the number of samples n and num-
ber of predictors p, and y is the column vector of response

variable. The weights for each sample were calculated from

estimated dc,v as follows:

wc;v ¼ exp �/dc;v

ds

� �
ð7Þ

where wc,v is the weight of the cth calibration sample for the

vth validation sample, / is the localization parameter, and

ds is the standard deviation of distance of all the calibration

samples from the vth validation sample. The localization

parameter / is a user-defined value, which determines the

extent of localization. The value of / = zero gives unit weight

to each calibration sample which is essentially the PLSR.

PLSRLW approach is expected to perform better than the PLSR

because of its capability to capture non-linearity in the data

[48].

2.5. Spectral model development

The algorithms discussed above were used to build the spec-

tral models between the rice canopy parameters and reflec-

tance spectra. The residuals (significance level = 5%)

between observed and predicted response variables from

the principal component regression were examined for out-

lier removal using the rcoplot function in MATLAB [49]. After

outlier removal, the remaining dataset was partitioned into a

calibration (70%) and validation (30%) dataset. The partition

was performed using a stratified sampling approach [50]. In

this approach, the LAI and CWC datasets were sorted in an

ascending order and every third sample was selected for val-

idation. Subsequently, the number of latent variables or com-

ponents that gave minimum RMSE in cross-validation was

used for model calibration [51].

2.6. Evaluation of the model over-fitting

The spectral reflectance dataset was generated by measuring

in situ canopy spectra at different growth stages of rice during

two rice-growing seasons. In essence, such a dataset captures

time series of spectra for rice. Second, canopy spectra were

also from a single replicated trial. The spectral model cali-

brated from such a dataset requires critical validation

through multi-site, multi-variety, and even multi-season tri-

als, which was beyond the scope of this study. Nevertheless,

resulting spectral model from this study was tested for over-

fitting using the following three simulation approaches:

(a) Cross-year validation of the spectral dataset: This exer-

cise was done to test the model transferability by cali-

brating and validating with individual year dataset

(b) Deletion of spectral data for specific dates followed by

partitioning remaining data into 70:30 calibration and

validation samples through sorting: This exercise was

done to test if a reduced dataset (by deleting data for

a specific day of observation) yields acceptable perfor-

mance statistics for selected models.

(c) Selection of spectral data for one sampling date from

each year as validation sample and remaining as cali-

bration sample: This exercise was done to test if a cal-

ibrated model developed from a selected set of
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observation dates during the crop growth season is cap-

able of predicting selected crop parameters for an

entirely different date of observation which is not part

of the training dataset at all.

Case 1: A cross year validation of the dataset was per-

formed. During the process, the model was tested for individ-

ual year. In this case, model was developed and tested with

individual year data. Model simulations are performed for

the five modeling approaches (PLSR, RFR, SVR, PLSRFS, and

PLSRLW) used in this study.

Case 2: Deletion of spectral data for specific dates followed

by partitioning remaining data into 70:30 calibration and val-

idation samples through sorting: In this case, spectral data for

a specific DAS were completely removed from each year’s

modeled data. The remaining data was sorted in ascending

order with every third sample used as validation data and

remaining samples as calibration data. Simulations were per-

formed separately for each growing season. Thus, out of 300

samples (5 sampling DAS � 60 samples per sampling) in a

growing season, 60 samples were removed. Remaining 240

samples were divided into 160 calibration samples and 80 val-

idation samples. We also merged data for both the growing

seasons and followed the same procedure to have a calibra-

tion dataset of 320 samples and validation dataset of 160 sam-

ples by removing 120 samples from the total of 600 samples.

Five regression algorithms (PLSR, SVR, RFR, PLSRLW and

PLSRFS) were evaluated for each of these three datasets

(2014–15 growing season, 2015–16 growing season and pooled

data). These combinations led to 15 modeling scenarios as

summarized in Table 1.

Case 3: Selection of spectral data for one sampling date

from each year as validation sample and remaining as cali-

bration sample: In this case, data for a selected DAS were

used as validation data and the remaining were used to train

a chemometric model as shown for scenarios b to f in Table 2.

The data used for the validation data was indeed completely

censored from the training dataset. Simulations were per-

formed with all the five regression algorithms (PLSR, RFR,

SVR, PLSRFS, and PLSRLW).

2.7. Assessment of model performance

The accuracies of the developed algorithms were evaluated

using the coefficient of determination (R2), root-mean-

squared error (RMSE).

R2 ¼ 1� SSerror

SStotal
ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

Yi � Yi

	 
2
s

ð9Þ

where SSerror is the sum of the square of the errors and SStotal
is the sum of the square of the observed response variable. N

is the total number of samples, Yi, and Yi are actual and pre-

dicted response variable, respectively, for ith sample. Also, a

significance test was carried out to check if algorithms were

statistically different or not. For checking the robustness of

regression algorithms, a bootstrapping approach was also

implemented on the validation dataset using 1000 bootstrap
events. The RMSEswere calculated on 1000 bootstrap samples

of the validation dataset for both LAI and CWC and a two-

sample t-test was carried at 5% significance level [52]. Our null

hypothesis was that the RMSEs obtained by the models came

from independent datasets from normal distributions with

equal means but unknown variances and the alternate

hypothesis was that it came from two distributions with

unequal means. All the necessary data processing, calibration

sampling and regression modeling were executed in the

MATLAB (R2012a, The Mathworks, USA) environment.
3. Results and discussion

3.1. Descriptive statistics of LAI and CWC

Descriptive statistics of LAI and CWC are shown in Table 3,

which suggests that the average values for both the rice

parameters were within their expected range. Similar findings

were reported for LAI [53–55] and CWC [56–57]. The experi-

mental protocol ensured a wide range of variation in LAI

(m2 m�2) and CWC (g m�2). LAI varied from 1.21 m2 m�2 to

8.59 m2 m�2 with an average of 4.05 m2 m�2. Similarly, CWC

varied from 61.9 g m�2 to 1 130.7 g m�2 with an average value

of 382.4 g m�2. Wide variability in LAI and CWC may be the

result of reduced leaf sizes and changes in canopy architec-

ture during water stress. Other factors such as different vari-

eties, growth stage and soil health may have been responsible

for such variability. The coefficient of variation (CV) values for

LAI and CWC data collected for both the season were found to

be higher (CV = 44.9% and 45.6%, respectively), which sug-

gests that the data generated in this study has desirable vari-

ability to develop regression models. The frequency

distributions of both vegetation parameters were relatively

less skewed and flattened. The Kolomogorov-Smirnov test

at the 5% significance level suggested that both the vegetation

parameters followed normal distribution. Hence, these two

crop parameters were estimated without applying any trans-

formation on them.
3.2. Rice canopy spectral reflectance

Large variability in the range of observed canopy variables

could potentially influence the canopy reflectance. Fig. 2(a)

shows the average canopy spectra (n = 600) along with their

variations. The boxplots with median, lower and upper quar-

tile values of spectral reflectance over visible (VIS; wave-

length: 350�700 nm), near infrared (NIR; wavelength:

700�1 300 nm), first half of shortwave infrared band (SWIR1;

wavelength: 1500–1803 nm), and second half of shortwave

infrared band (SWIR2; wavelength: 1 971�2 440 nm) are

shown in Fig. 2(b). These figures illustrate the influence of

canopy traits and leaf optical properties in terms of high

reflectance in the NIR and SWIR1 and low reflectance in the

VIS and SWIR2 regions. Surface soil characteristics in the

experimental site were relatively similar across 30 different

plots (supplementary material, Fig. S1). Thus, the variability

of the canopy spectra can be attributed to variations in the

canopy architecture and their optical properties. Similar

assumptions are also reported in literature [30,58].



Table 1 – Modeling scenarios obtained by considering spectral data for selected days after sowing (DAS) for model calibration
and validation; deleted DAS valueswere completely removed frommodeling dataset thereby reducing the size of themodeled
data.

Modeling scenario Calibration Validation Deleted
DAS

DAS for 2014 growing season
1 62, 66, 83 &103 62, 66, 83 &103 55
2 55, 66, 83 & 103 55, 66, 83 & 103 62
3 55, 62, 83 & 103 55, 62, 83 &103 66
4 55, 62, 66 & 103 55, 62, 66 & 103 83
5 55, 62, 66 & 83 55, 62, 66 & 83 103

DAS for 2015 growing season
6 73, 81, 99 & 120 73, 81, 99 & 120 55
7 55, 81, 99 &120 55, 81, 99 &120 73
8 55, 73, 99 & 120 55, 73, 99 &120 81
9 55, 73, 81 & 120 55, 73, 81 &120 99
10 55, 73, 81 & 99 55, 73, 81 & 99 120

DAS for pooled samples
11 62, 66, 83 &103

73, 81, 99 & 120
62, 66, 83 &103
73, 81, 99 & 120

55 and 55

12 55, 66, 83 & 103
55, 81, 99 &120

55, 66, 83 & 103
55, 81, 99 &120

62 and 73

13 55, 62, 83 & 103
55, 73, 99 &120

55, 62, 83 & 103
55, 73, 99 &120

66 and 81

14 55, 62, 66 & 103
55, 73, 81 &120

55, 62, 66 & 103
55, 73, 81 &120

83 and 99

15 55, 62, 66 & 83
55, 73, 81 & 99

55, 62, 66 & 83
55, 73, 81 & 99

103 and 120

Table 2 – Modelling scenarios obtained by considering spectral data for selected days after sowing (DAS) for model calibration
and validation.

Modeling Scenario Collection dates (DAS) for spectra in 2014 and 2015 growing season

Calibration Validation

Scenario with Un-censored Data
a 2014 season: 55, 62, 66, 83 &103

2015 season: 55, 73, 81, 99 & 120
Validation data obtained by sorting
followed by partitioning and all the 600 samples are used.

Scenarios with Censored Data
b 2014 season: 62, 66, 83 &103

2015 season: 73, 81, 99 & 120
2014 season: 55
2015 season: 55

c 2014 season: 55, 66, 83 & 103
2015 season: 55, 81, 99 &120

2014 season: 62
2015 season: 73

d 2014 season: 55, 62, 83 & 103
2015 season: 55, 73, 99 & 120

2014 season: 66
2015 season: 81

e 2014 season: 55, 62, 66 & 103
2015 season: 55, 73, 81 & 120

2014 season: 83
2015 season: 99

f 2014 season: 55, 62, 66 & 83
2015 season: 55, 73, 81 & 99

2014 season: 103
2015 season: 120
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3.3. Prediction of LAI and CWC using different modelling
algorithms

Fig. 3 and Table 4 list the validation R2, RMSE values of LAI and

CWC using different algorithms in the pooled dataset. LAI

was predicted with higher accuracy than CWC for the algo-

rithms used. Canopy spectral reflectance is functionally

linked with LAI [36,59], which has led to the development of
several retrieval algorithms for LAI from multispectral data.

Similarly, among algorithms, PLSR combined approaches of

PLSRLW and PLSRFS performed better than those of PLSR,

SVR and RFR algorithms for LAI (R2 = 0.77 and 0.73) and

CWC (R2 = 0.67 and 0.63), respectively. Scatter plot between

observed and predicted values of LAI and CWC values sug-

gested that the PLSRLW and PLSRFS algorithms may be used

as robust algorithms for the estimation of both the vegetation



Table 3 – Descriptive statistics of leaf area index and canopy water content.

Vegetation parameters N Min Max Mean CV Skewness Kurtosis

LAI (m2/m2) 600 1.21 8.59 4.05 44.90 0.11 �1.31
CWC (g/m2) 480 61.87 1 130.7 382.43 45.60 �0.06 0.57

n, Sample size; Min, Minimum; Max, Maximum; Mean; CV, Coefficient of variation; Skewness; Kurtosis; LAI, Leaf area index; CWC, Canopy

water content.

Fig. 2 – Average spectral reflectance (n = 600) with their variation (a) and the boxplots with median, lower and upper quartile

values of spectral reflectance over visible (VIS; wavelength: 350�700 nm), near-infrared (NIR; wavelength: 700�1 300 nm),

first half of shortwave infrared band (SWIR1; wavelength: 1 500�1 803 nm), and second half of shortwave infrared band

(SWIR2; wavelength: 1 971�2 440 nm).
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parameters (Fig. 3). In general, there was no improvement in

prediction accuracy upon using PLSR, SVR and RFR, which

may be due to the poor waveband selection and inconsistent

weight adjustment to minimize the estimation error [8,60].

Estimated RMSE values of our study are similar to or better

than those reported for LAI prediction on rice canopies with

RMSE values in the range of 0.85–1.04 using MLR, PLSR and

LS-SVM models [60]. In contrast, lower RMSE values

(0.23�0.41) were observed for vegetation water content

(VWC) using canopy spectra from pot experiments and PLSR

and artificial neural network algorithms [41]. Resulting RMSE

values in our study for LAI ranged from (0.85�0.94) for PLSRLW

and PLSRFS to as high as (0.97�1.05) for PLSR, SVR and RFR

approaches. Similarly, RMSE values for CWC ranged from

96.25 to 99.92 for PLSRLW and PLSRFS to as high as

(101.2�105.3) for the remaining algorithms. These results sug-

gest that LAI and CWC can be estimated from canopy spectral

data with reasonable accuracy using PLSRLW and PLSRFS

algorithms.

3.4. Assessment of the model performance and their
significance test

The RMSE values were computed for both the vegetation

parameters (Table 4). Results show that RMSE reduction in
LAI improved the performance of proposed PLSRLW algorithm

about 15.3%, compared to the poor performing model SVR.

Similar results are also observed in CWC with a reduction in

RMSE of about 9.4%, However, the PLSRFS improves the model

performance about 4.3% and 5.5% for LAI and CWC, respec-

tively. These results are shown in Figs. 4 and 5. Left panels

in these figures show the kernel-smoothed density functions

and the right panels show the resulting boxplots for possible

error distributions in using the calibrated model for these two

parameters. In the PLSRFS approach, the percent difference in

RMSE values between full-spectrum model and optimum

models using different variable indicators for both crop

parameters are shown in Fig. 6. The baseline value of zero cor-

responds to the RMSE of full-spectrum model. The negative

and positive bars represent the improvement and deteriora-

tion (possibly, information loss) in the prediction accuracy

accomplished with the OPS approach, respectively. The best

variable indicators identified for LAI is CovProc. However,

the OPS approach performed by b-StN and N-StN appears to

be the best variable indicators for CWC. The performance of

best model was found to be superior to full-spectrum model

for both the crop parameters. The percent decrease in RMSE

value attained using OPS approach was found to be highest

for LAI (6.37%). About 4% decrease in RMSE was noted for

CWC.



Fig. 3 – Scatter plots between observed and predicted values of leaf area index (LAI) and canopy water content (CWC).
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Bootstrapped RMSE results suggest that the RFR model

leads to maximum error in predicting the LAI in the validation

datasets while the local modeling approach with PLSR per-

forms the best with minimum RMSE and low interquartile
range for the resulting RMSE values. For the CWC, PLSR,

SVR and RFR models show similar performance while the

PLSRLWagain showing minimum RMSE value with low narrow

interquartile range. In both the cases of LAI and CWC, PLSRFS



Table 4 – Regression statistics for prediction of LAI and CWC.

Vegetation parameters PLSR SVR RFR PLSRLW PLSRFS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LAI (m2/m2) 0.70 0.97 0.70 0.98 0.66 1.05 0.77 0.85 0.73 0.94
CWC (g/m2) 0.61 102.46 0.59 105.30 0.62 101.23 0.66 96.25 0.63 99.82

LAI, Leaf area index; CWC, Canopy water content; R2, Coefficient of determination; RMSE, Root mean squared error; PLSR, Partial least squared

regression; SVR, Support vector regression; RFR, Random forest regression; PLSRLW, Partial least squared regression- locally weighted; PLSRFS,

Partial least squared regression- feature selection.

Fig. 4 – Distribution of (a) probability density function (pdf) estimated by kernel density estimator of the 1000 RMSE values

and (b) the boxplots with median, lower quartile and upper quartile from all the boot strapped calibration approaches used

for estimating LAI.

Fig. 5 – Distribution of (a) probability density function (pdf) estimated by kernel density estimator of the 1 000 RMSE values

and (b) the boxplots with median, lower quartile and upper quartile from all the boot strapped calibration approaches used

for estimating CWC.
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was the second best performing spectral aalgorithm among

the five algorithms tested in this study. Therefore, it may be

concluded that these modified PLSR-based approaches and,
specifically, the locally-weighted PLSR model appears to be a

promising approach for estimating LAI and CWC from field-

measured canopy spectra.



Fig. 6 – Comparison of RMSE of full-spectrum with optimum spectral models using variable indicators used (b: regression

coefficient, VIP: variable influence on projection, SqRes: squared residual vector, r: pearson correlation coefficients, bicor:

biweight mid correlation vector, AMI: mutual information based adjacency vector, StN: signal to noise ratio, CovProc:

covariance procedure and their pairwise combinations). NSV: number of spectral variables.
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3.5. Assessment of simulations designed for testing model
over-fitting

Simulation 1: In addition to the pooled dataset prediction per-

formances, a cross year validation of the datasets were tested

and the results shown in supplementary material (Table S.2).

The model accuracies in terms RMSE are within (0.73�1.04)

for LAI and (79.04�124.64) for CWC. These results are similar

in range to the pooled datasets shown in Table 4 and Fig. 3.

These results show that pooled datasets yields similar model

performances with individual year dataset. In addition to the

LAI and CWC, the modelling results for EWT are shown in

supplementary material (Table S.2). The model accuracies

are within the range of (14.13�18.11). These results show that

modelling EWTwith all the five algorithms do not provide rea-

sonable performance.

Simulation 2: Deletion of spectral data for specific dates

followed by partitioning remaining data into 70:30 calibration

and validation samples through sorting: Simulation results

are examined using R2 statistics (supplementary material,

Fig. S.2) for illustrating over-fitting issue. For LAI, the R2 values

for the validation datasets ranged from 0.38 to 0.90 for RFR

model to as high as 0.61–0.90 for the PLSRLW modeling

approach. When all the data were considered, the R2 value
ranged from 0.60 to 0.88 (as shown in Table 4). We also

repeated this exercise for CWC and observed similar perfor-

mance statistics. These results show that a reduced sample

size (derived by removing data from specific dates) yields sim-

ilar model performance as was shown for the whole dataset.

Simulation 3: Selection of spectral data for one sampling

date from each year as validation sample and remaining as

calibration sample: Observed vs. predicted LAI and CWC val-

ues for the calibration and validation datasets are shown

along the 1:1 line for the best model (PLSRLW) in Figs. 7 and

8, respectively. These figures show that the observed and pre-

dicted values for the deleted DASs (validation data) generally

fall on the 1:1 line except for the first modeling scenario b

(Table 2). Resulting RMSE values for the validation datasets

are generally larger for LAI and are often lower (scenario c,

e and f in supplementary material (Fig. S.3)) for the CWC val-

ues than those obtained when whole datasets were consid-

ered in modeling. Similar results were obtained for

remaining four modeling approaches (PLSR, RFR, SVR,

PLSRFS). Thus, the censored data shows similar model perfor-

mance to those of uncensored data.

Figures in supplementary material (Fig. S.3 and Fig. S.4)

were generated by bootstrapping procedure on the validation

datasets outlined for the six modeling scenarios in Table 2 for



Fig. 7 – Scatter plot between calibration and validation datasets of LAI (m2 m�2) for PLSRLW model with removal of a specific

date (DAS) from each year dataset.
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LAI and CWC, respectively. The median values, lower and

upper quartile values for the estimated validation RMSE val-

ues scenarios c to scenario e are similar to those of scenario

a. As expected, Subsetting of the spectral data for the first

DAS (scenario b) and last DAS (scenario e) generally leads to

larger RMSE values because the training dataset does not

include low and high LAI values. These results further sup-

port our observations made from Figs. 7 and 8. These simula-

tion analysis suggest that the model calibration resulted
reported in this study may be free from over-fitting issues.

Nevertheless, the method developed herein requires, at least,

multi-site assessment.

3.6. Computational efficiency of algorithms

Computational efficiency of algorithms were also compared

based on their execution time to run each algorithm. Among

the non-parametric algorithms, SVR, RFR and neural network



Fig. 8 – Scatter plot between calibration and validation datasets of CWC (g m�2) for PLSRLW model with removal of a specific

date (DAS) from each year dataset.
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were comparable, but no strong preference was found for any

specific model. In general, PLSRLW had higher computational

time requirement for executing the algorithm, which may

be due to the different distance calculations for each iteration

to optimize the parameters [29]. Similarly, PLSR combined

with feature selection approach is also computationally

intensive, as it take extra time to select the best feature space

from a set of 35 different variable indicators consisting of

regression coefficient (ß), VIP and mutual information-based

adjacency factors and their combinations [28]. High computa-

tional time requirement for local and the variable indicators-
based approaches may be the reason for their minimal use in

remote sensing literature. With the advancement of fast com-

putational technology, it may be possible to use these algo-

rithms for real-time estimation of vegetation canopy

parameters.

4. Conclusions

In this study, optical remote sensing with algorithms were

tested to determine the most efficient empirical model for

the assessment of LAI and CWC for dry rice canopies. Reflec-
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tance spectroscopic approach proved to be a valuable tool.

Results showed that locally- weighted PLSR performed accu-

rately for predicting LAI and CWC with R2 values 0.77 and

0.66 respectively. The improved performance of PLSRLW

appears to be influenced by the choice of suitable weighing

methods to reduce the estimation error in the visible and near

infrared space and its projected spaces. Moreover, the selec-

tion of an appropriate distance measure for constructing

the weighing scheme appears to be a crucial step in PLSRLW

for improving its efficacies in modelling crop canopy parame-

ters. This study proved that locally weighted PLSR, which was

developed based on assigning higher weighing to similar vari-

ables based on their distance metrics is a fast and robust

approach for remote quantification of LAI and CWC on rice

canopies. A specific limitation of this study is that only a sin-

gle experimental field was used in testing our approach. Vari-

ations in soil and crop characteristics require that the present

approach be evaluated at different locations and for different

cropping conditions. Therefore, more varieties and wide

ranges of crop parameters can be studied from remote sens-

ing data using the PLSRLW algorithm in future. A further lim-

itation of this study is the background soil reflectance, which

was not accounted in modeling canopy spectra for LAI and

CWC estimation. Although there may be small variation in

soil properties in this experimental plots, changes in soil wet-

ness may lead to substantial variation in spectral reflectance

values specifically during the early growing season when

much of the soil surface is not covered by the crop canopy.
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