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ABSTRACT

This work is concerned with the design of a pitch-rate-command- 
attitude-hold Command and Stability Augmentation System in order that 
the augmented aircraft meets the Gibson dropback criterion, the Gibson 
phase-rate criterion and MIL-F—8785C requirements. The work shows two 
methods of design, pole-placement and optimal control, and discusses 
the design procedures, the advantages and disadvantages of each 
method. The work is also concerned with the redundancy aspect of the 
control law design, and so not only a sensor based design but also an 
observer-based design are investigated. In order to design the 
observer-based control law, a Doyle-Stein observer was implemented. 
Two methods showing how to design the observer are discussed and 
presented, and the special characteristics of this kind of observer 
are also considered. The performance of the observer-based control 
law was compared with that of the sensor-based control law. The 
failure transients and characteristics of the control law are also 
studied and presented. Finally an evaluation of the control law was 
carried out with a non-linear model of the B-747 aircraft, and a 
simple altitude-hold autopilot was designed to work together with the 
stability augmentation control law.
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Bap Control matrix of the augmented aircraft with autopilot

BIBO bounded input bounded output system
c mean aerodynamic chord
C Output matrix of the aircraft.
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Control Law_Observer Based__0.

OB Dropback parameter.

d Parameter of the state-space model of the lead filter.
dB decibels,
deg degrees.

e error with respect to the demanded reference state.
e error relative to the sensed state x1 1
e error relative to the observed state x2 2
E matrix of the state-space model of the aircraft when there

is a reference input
input to a general phase lead controller 

E^ output to a general phase lead controller
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F
ft
FC #
g

G
G
G

Gf

G0

G
Gd
G1

G2

GAP
Gu
Gw
Gq

Gh
G
£ h

GUI1

GUI2

State matrix of the observer.

aircraft control matrix relative to the disturbance vector 
feet.

Flight condition, 
acceleration due to gravity

vector of the feedback gains of the control law.
Optimal control law gain obtained by the LQR method
matrix used in the Observer state space model relative to 
the system output

vector of the feedback gains of the control law with some 
feedback chanel failed.

feedforward gain of the control law, or feedforward gain 
vector relative to the exogenous inputs

feedforward gain vector relative to the reference input

feedforward gain vector relative to the disturbance input
sub-vector of the vector of feedback gains 
relative to the measured states.

sub-vector of the vector of feedback gains 
relative to the estimated states.
vector of the feedback gains of the autopilot.

feedback gain of the u feedback path of the autopilot
feedback gain of the w feedback path of the autopilot
feedback gain of the q feedback path of the autopilot
feedback gain of the e feedback path of the autopilot

feedback gain of the h feedback path of the autopilot
feedback gain of the eh feedback path of the autopilot

auxiliary matrix used in the autopilot
mathematical model

auxiliary matrix used in the autopilot
mathematical model



sub-vector of the vector of feedback gains of 
the autopilot relative to the measured states, 
sub-vector of the vector of feedback gains of 
the autopilot relative to the estimated states.
Gain margin.
matrix used in the observer state space model relative to 
the control input
Hertz ( cycles per second ).
altitude above the earth.
reference altitude.

longitudinal manoeuvre margin controls fixed

closed loop transfer function with full state feedback
Identity matrix

Moment of inertia referred to x body axis
Moment of inertia referred to y body axis
Moment of inertia referred to z body axis

Product of inertia referred to body axis

feedback gain of the w feedback path of the control law
feedback gain of the q feedback path of the control law
feedback gain of the feedback path of the control law

constant used in the pole placement control law design to 
recover the zero steady state pitch rate error with 
respect to the reference pitch rate
observer gain vector for a full order observer

i = 1 to 7, inertial parameters used in the non linear
aircraft model
inertial parameter used in the non linear aircraft model 
observer gain vector for a reduced order observer
observer gain vector for a reduced order observer



gain constant of the transfer function ( q/rj ) obtained 
from the reduced order short period model
longitudinal static stability margin
Gain matrix of the observer.

aerodynamic force ( lift ) perpendicular to the total 
velocity vector in the aircraft's plane of simetry
distance between the aircraft centre of gravity and the
aerodynamic centre of the horizontal tail

derivative of the rolling moment in x body axis with
respect to sideslip

derivative of the rolling moment in x body axis with
respect to yaw rate in z body axis

derivative of the rolling moment in x body axis with
respect to roll rate in x body axis

derivative of the rolling moment in x body axis with
respect to aileron deflection

derivative of the rolling moment in x body axis with
respect to rudder deflection

Riccati matrix obtained from the solution of the Riccati 
diferential equation in the solution of the LQR problem.
Algebraic Riccati matrix obtained from the solution of the 
algebraic Riccati equation in the LQR problem

submatrix of M
submatrix of M

submatrix of M
submatrix of M
submatrix of M

submatrix of M

derivative of the pitch moment in y body axis with respect 
to longitudinal velocity in x body axis



M.w

m
mach
M
m
r?

mq
MIMO
N

derivative of pitch moment in y body axis with respect to 
normal velocity in z body axis
derivative of pitch moment in y body axis with respect to 
normal velocity acceleration in z body axis.
derivative of pitch moment in y body axis with respect to 
pitch rate in y body axis
derivative of pitch moment in y body axis with respect to 
elevator deflection
Gain matrix of the observer, obtained as a submatrix of
the P"1 matrix in the observer design.

aircraft mass
mach number
resonant peak.
non dimensional Mc derivativeoe
non dimensional M derivative q
multiple input multiple output system
Gain matrix of the observer, obtained as a submatrix of 
the matrix P"1 in the observer design.
derivative of yaw moment in z body axis with respect to 
sideslip
derivative of yaw moment in z body axis with respect to 
yaw rate in z body axis
derivative of yaw moment in z body axis with respect to 
roll rate in x body axis
derivative of yaw moment in z body axis with respect to 
ailerion deflection
derivative of yaw moment in z body axis with respect to 
rudder deflection
Coefficient relative to s3 in the numerator of 
the transfer function of ( q / q )dp



N Coefficient relative to s2 in the numerator of2

o

the transfer function of ( q/ q )dp
N Coefficient relative to s in the numerator of1

the transfer function of ( q/q )dp
N Coefficient relative to s° in the numerator of

the transfer function of ( q/q )dp
, n^ normal load factor along the z-body axis

OS overshoot
OCL optimal control law

OwOqjw failure mode from the observer based control law with w
output to the observer based control law with q output
after a failure of w sensor.

OwO0_w failure mode from the observer based control law with w
output to the observer based control law with Q output
after a failure of w sensor.

OqOw__q failure mode from the observer based control law with q
output to the observer based control law with w output
after a failure of q sensor.

OqO0_q failure mode from the observer based control law with q
output to the observer based control law with Q output
after a failure of q sensor.

O0Owm0 failure mode from the observer based control law with Q
output to the observer based control law with w output
after a failure of Q sensor.

O0Oq_0 failure mode from the observer based control law with Q
output to the observer based control law with q output
after a failure of Q sensor.

P Transformation matrix used in the observer design,
phase-margin.

P.R. pitch-attitude phase-rate.
PIO pilot induced oscillation.



PLF
PPCL

P
Q

q

q

qm
qmax

q .m i n

R
r

rad
S
s
sec
SBOujq

SBOw_8

SBOq„0

phase lead filter
pole placement control law
perturbed roll rate

Weight matrix of the states in the performance index, 
perturbed pitch—rate. 
estimated perturbed pitch-rate 

commanded pitch-rate.

commanded pitch-rate after the lead pre filter, or output 
of the lead pre filter, 
steady-state pitch-rate.
first peak of the pitch-rate response.

positive end stop of the pitch rate sensor considered in 
the hardover failure simulations
negative end stop of the pitch rate sensor considered in 
the hardover failure simulations

Weight matrix of the controls in the performance index.
perturbed yaw rate
radians.
wing area
Laplace operator.
seconds.
failure mode from the sensor based control law to the
observer based control law with w output after a failure
of q sensor.
failure mode from the sensor based control law to the
observer based control law with w output after a failure
of Q sensor.
failure mode from the sensor based control law to the
observer based control law with q output after a failure
of Q sensor.



SBOq__u

SBO0__q

SBO0 w

SISO
SIMO
T

02

t

T

TDH

failure mode from the sensor based control law to the 
observer based control law with q output after a failure 
of w sensor.

failure mode from the sensor based control law to the 
observer based control law with 0 output after a failure 
of q sensor.

failure mode from the sensor based control law to the 
observer based control law with 0 output after a failure 
of w sensor.

single input single output system 
single input multiple output system

matrix obtained from the solution of the Lyapunov equation 
in the second observer design method.

parameter of the transfer function of a general phase lead 
controller.

time to double the amplitude of the phugoid oscillation
numerator time constant of the open loop transfer function 
of ( q/q ) obtained from the reduced order short period 
model

time in the pitch-rate response at which the 
first peak occurs.
time.

transponse of a matrix, 
threshold time.

total forward ( longitudinal ) velocity in x body axis of 
the aircraft

steady-state forward ( longitudinal ) velocity in x body 
axis of the aircraft

forward ( longitudinal ) perturbed velocity in x body 
axis of the aircraft.

estimated forward ( longitudinal ) perturbed velocity in 
x body axis of the aircraft



control Input to the aircraft 
reference control input 
total control input 
aircraft velocity 

steady-state trim velocity, 
control rate effort.
performance index used in the design of the inner loop 
optimal control law design

performance index used in the design of the autopilot 

horizontal tail volume ratio
total lateral velocity in y body axis of the aircraft
steady state lateral velocity in y body axis of the 
aircraft

perturbed lateral velocity in y body axis of the aircraft 
velocity of the sound
normal perturbed velocity of the aircraft

estimated normal perturbed velocity in z body axis of the 
aircraft
aircraft weight component in x body axis is steady state 
flight

derivative of the longitudinal force in the x body axis
with respect to the longitudinal velocity in the x body 
axis.
derivative of the longitudinal force in the x body axis
with respect to the normal velocity in the z body axis
derivative of the longitudinal force in the x body axis
with respect to pitch rate

derivative of the longitudinal force in the x body axis
with respect to elevator deflection
state vector of the aircraft.



state vector of the short period longitudinal reduced 
order model

state vector of the complete longitudinal model.

estimated state vector 

disturbances state vector 

state vector of the exogenous inputs 
reference state vector

state vector of the actuator state space model,
state vector of the aircraft that is sensed,

state vector of the aircraft that is not sensed,
state vector of the aircraft augmented with autopilot

estimate of the sensed state vector of the aircraft

estimate of the non sensed state vector of the aircraft 
state of the lead filter.

aircraft weight component in y body axis in steady state 
flight

derivative of lateral force in y body axis with repect to 
lateral velocity in y body axis
derivative of lateral force in y body axis with respect to 
yaw rate in z body axis

derivative of lateral force in y body axis with respect to 
roll rate in x body axis

derivative of lateral force in y body axis with respect to 
aileron deflection

derivative of lateral force in y body axis with respect to 
rudder deflection
output of the aircraft.

estimated output of the aircraft



aircraft weight component in z body axis in steady state 
flight

mode of failure in which the sensor output fails to zero, 
matrix ( 1 x 2 )  with all elements equal to zero 
matrix ( 1 x 3 )  with all elements equal to zero 
matrix ( 1 x 4 )  with all elements equal to zero 
matrix ( 2 x 1 )  with all elements equal to zero
matrix ( 3 x 1 )  with all elements equal to zero
matrix ( 3 x 3  ) with all elements equal to zero

matrix ( 4 x 1  ) with all elements equal to zero
state vector of the observer.

derivative of normal force in z body axis with respect to 
normal velocity in z body axis

non dimensional Z derivativew

derivative of normal force in z body axis with respect to 
normal acceleration in z body axis

derivative of normal force in z body axis with respect to 
longitudinal velocity in x body axis
derivative of normal force in z body axis with respect to 
pitch rate in y body axis

derivative of normal force in z body axis with respect to 
elevator deflection

non dimensional Z. derivativew
normal steady state aircraft velocity in z body axis 
normal total velocity of the aircraft in z body axis

normal perturbed velocity of the aircarft in z body axis 
perturbed angle of attack, 
total angle of attack.

trim angle of attack or steady state angle of attack



a positive end stop of the angle of attack sensor considered
max

in the hardover failure simulations
a negative end stop of the angle of attack sensor considered
min

in the hardover failure simulations

0 sideslip angle
0 perturbed pitch-attitude.
0 estimated perturbed pitch-attitude

0^ steady state pitch attitude
0 total pitch-attitude.T
0 positive end stop of the pitch attitude sensor considered
max

in the hardover failure simulations 
0 negative end stop of the pitch attitude sensor considered
min

in the hardover failure simulations
integral of the state, or demanded pitch attitude 

demanded pitch attitude 
integral of the pitch rate error 
integral of the altitude error 
control effort or elevator deflection 

input to the actuator, 
designed control law

control effort of the autopilot, 

maximum control effort, 
minimum control effort.

maximun control rate effort.

minimun control rate effort, 
air mass desity
damping ratio of the short-period mode, 
damping ratio of the phugoid mode.
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natural frequency of the short-period mode, 
natural frequency of the phugoid mode 
bandwidth.
frequency at -180° phase in the closed loop attitude 
frequency response

frequency of the closed loop attitude frequency response 
which corresponds to the phase .

frequency of the closed loop attitude frequency response 
which corresponds to the phase <p̂ .

frequency at which occurs the maximun phase lead in the 
phase lead controller.

phase shift necessary to bring the point in which the 
frequency is 1 Hz to -180° phase.

increment necessary to add in 0^ or to obtain the P.R. 
attitude parameter to the phase rate criterion.
Coefficient of the denominator of the transfer 
function ( q/q ) relative to s°.dp

Coefficient of the denominator of the transfer 
function ( q/q ) relative to s1.dp

Coefficient of the denominator of the transfer 
function ( q/q ) relative to s2.dp

Coefficient of the denominator of the transfer
function ( q/q ) relative to s3. 

dp

Coefficient of the denominator of the transfer 
function ( q/q ) relative to s4.dp

increment in the steady-state altitude, 

longitudinal characteristic equation 
longitudinal relative density factor 
flight path angle.



resolvent of the system

maximum phase lead given by the phase lead controller 
phase of the closed loop attitude frequency response 
phase of the closed loop attitude frequency response 
perturbed bank angle 
elevator deflection

positive end stop of elevator deflection 

negative end stop of elevator deflection

positive end stop of elevator rate deflection

negative end stop of elevator rate deflection

aileron deflection 
rudder deflection 
perturbed yaw angle



1 INTRODUCTION

1.1 PROBLEM DEFINITION AND OBJECTIVE OF THE RESEARCH

The problem studied is how redundancy with respect to sensor failures 
can be obtained in a flight control system without introducing changes 
in the stability level of the augmented aircraft or changes in its 
level of flying qualities. The main objective of this work is to 
explore the use of observers in flight control systems. Specifically, 
the study was directed to investigate the use of observers in 
redundant flight control system design with respect to sensor 
failures. The research was seeking to design observers that don't 
affect the flying qualities and stability of the augmented aircraft. 
Although a flight control system designed specifically to meet the 
Gibson dropback criterion1 and phase-rate criterion2 was used, the 
research can also be applied to a flight control system designed to 
meet other criteria. Since the main objective of this work is not an 
evaluation of the criteria themselves, the Gibson1’2 criteria were 
used as an example because they correlate very closely with features 
found in other advanced dynamic handling criteria. Also referring to 
a recent study performed by Blagg3 they have been considered as 
acceptable criteria for guidance in flight control system design.

It is also an objective of this research to use methods that are not 
only applicable to SISO systems but also to MIMO systems. So, 
although a SISO system has been studied in this work, the methods used 
in the flight control system design and observer design are also 
applicable to a MIMO system. In this research the aircraft model used 
is the Boeing 747 since at the time of the work this was the only 
aircraft for which a reasonable aerodynamic data bank was available. 
It also must be taken into account that this fact does not invalidate 
the findings of this research program when applied to a more advanced 
civil aircraft.
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1.2 POSSIBLE PROBLEMS AND SOLUTIONS

In general in the design of a redundant flight control system the 
designer uses two, three or even four sensors. For example, the same 
for actuators, computers and other systems, in a parallel redundant 
configuration. This fact causes many problems, like for example, 
adding extra weight to the system, location problems with respect to 
the sensors and redundancy management. Figure 1.1 is an example of 
a duplex redundant configuration showing the system lanes. Figure 
1.1. shows a system that uses three sensors, that is, an angle of 
attack sensor ( a ), a pitch-rate ( q ) sensor, and a pitch-attitude 
sensor ( 6 ).

sensors 1

actuator(X sensor
q sensor

sensor

computer

LANE

to control 
surfaces

sensors 2

actuator(X sensor
q sensor

ensor

computer
n . 2

to control 
surfaces

LANE 2

fi gure 1. 1 example of parallel lanes

To maintain the highest possible system integrity these parallel lanes 
should ideally be physically and electrically isolated from one 
another in every respect, which is another problem to deal with in the
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design. It is desirable to obtain total lane independence because in 
this way fault propagation across the lanes is avoided. This research 
is focussed only o n t h e  redundancy aspect of the sensors, not 
actuators or computers. In military applications the sensors must be 
distributed in the airframe to reduce the risk of physical damage and 
as mentioned this is an extra problem. It must also be pointed out 
that the use of two different computing algorithms for the observers 
was used in the design, a fact that also contributes to the redundancy 
if the computer aspect is considered. In addition, redundant sensors 
need to sense the same signal and their outputs should idealy be 
identical. It is therefore usualy necessary that they be placed 
together in close physical proximity thus increasing the possibility 
for a common mode physical fault.

1.3 INTENDED APPROACH

The approach to the problem in this work is to use observers in order 
to obtain redundancy with respect to sensors. So the necessity to use 
two, three or four sensors will be eliminated. The design is carried 
out by using observers that maintain the flying qualities of the 
augmented aircraft. Here, observers are investigated for the purpose 
of estimating state variables in cases where the appropriate sensor 
has failed. The observer uses inputs from the "healthy" sensors and 
control surface demands and also means fewer sensors in the flight 
control system. Figure 1.2 is an example of the intended approach 
with respect to figure 1.1.
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actuator
<X sensor

q sensor

ensor

sensor based 
control law

observer based 
control law that 
uses q input
observer based 
control law that 
uses 6 input_____

observer based 
con tr o l, l aw  that 
uses a  input

sensor

example of intended des ign approach

computer

to control
surfaces

As can be seen in figure 1.2, redundancy with respect to sensor 
failures is introduced analytically in the flight control system 
computer.

The work will be directed to design a flight control system that 
satisfies the Gibson criteria*'2 MIL—F—8785C4, and also to obtain 
redundancy with respect to sensor failures. The observers must not 
destroy the good flying qualities and stability level obtained for the 
augmented aircraft. The observers must also be able to work not only 
with the stability agmentation system but with other systems like, for 
example, an autopilot. Different algorithms to implement the 
observers are also investigated in order that redundancy in this 
aspect can also be introduced. The approach will also focus on the 
failure aspects, that is, how the designed system responds to a 
failure condition. The work is not concerned with faulty element 
identification, isolation and replacement. Also, redundancy
management is not considered, since it is not the objective of this 
work. As the control law would be implemented in a digital computer 
it is very difficult to recognise all potential failure modes and so 
only the sensor failure modes are analyzed.
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1.4 AN OVERVIEW OF THE PERFORMED WORK

In order to obtain good flying qualities and stability a 
pitch-rate command attitude-hold system was designed by two methods, 
the pole-placement method and an optimal control method. Modern ideas 
concerning the flying and handling qualities of high performance 
aircraft have shown that a controller with this structure can give an 
aircraft excellent handling qualities The design was tailored to 
satisfy the requirements of MIL-F-8785C4, the requirements of the 
Gibson dropback criterion1, and also the requirements of the Gibson 
phase-rate criterion2. With the design completed, to implement the 
control law it is necessary to have the required complement of motion 
sensors available. If for some reason the aircraft loses one ,or 
more of the necessary sensors, the flying and handling qualities, and 
also the level of stability may be seriously degraded. In order to 
obtain a degree of redundancy observer-based control laws have been 
designed to operate on a single output variable in order to achieve 
the same level of stability and flying qualities as obtained with the 
full sensor-based control law design. To perform this design task the 
method proposed by Rynaski5 has been followed, and the theory of 
robust observers as developed by J.C.Doyle and G.Stein6 has been 
applied. The observer—based control law designed in this way is able 
to maintain the same phase and gain margins as the sensor-based 
control law, and it preserves the original robustness of the system in 
the event of a sensor failure. The principal beneffit of the 
Doyle—Stein observer design is that it does not introduce phase lags 
that degrade flying qualities as most observers in general do. 
Another adavantage of the Doyle-Stein observer is that it is not 
necessary, in some cases, to measure the control surface deflections. 
With this design, it is possible to introduce analytical redundancy 
into the flight control system.

This work has also evaluated two methods of design for the control 
law, the pole placement method and an optimal control method, in order 
to assess which is most flexible with respect to subsequent 
modification whilst still satisfying the stability requirements and 
the handling criteria. The observer control law was designed using
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two methods and the advantages and disadvantages of each are compared 
and discussed. The problems that occur in the design of observers 
with a pitch-rate sensor or a pitch-attitude sensor are studied and 
the results reported. Finally, the aircraft was evaluated with a 
sensor-based control law and three observer-based control laws, and 
the best order of control law reconfiguration in the event of sensor 
failures is suggested. The method used to design the observer-based 
control law can be called ecletlc control, as suggested by Powell7 
because it uses the best features of classical control and of modern 
control. The work also considers some aspects of control law 
implementation, such as numbers of gain parameters to be scheduled.

In the execution of this work the following computer software packages 
have been used, CODAS8 , MATLAB9, and ACSL10. The aircraft example 
used to evaluate the control law designs was the B-747 and the 
aerodynamic data used was obtained from Heffley11. The ACSL computer 
simulation used in this work is fully described in the report by Oliva 
and Cook12. In the development of this work each control law design 
starts with the reduced order short period longitudinal model of the 
aircraft. Subsequent developments make use of the complete aircraft 
model and actuators. Finally the observer and the autopilot are
included in the model for total system evaluations.
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2 CRITERIA AND DESIGN TECHNIQUES USED

2.1 BACKGROUND MATERIAL AND LITERATURE SURVEY

2.1.1 BACKGROUND MATERIAL

The foundations of this research are based on the work of Rynaski5 
concerning the use of observers to obtain redundancy in the flight 
control system. It should be noted that the work of Rynaski was 
basically founded on the observer theory developed by Doyle-Stein6 
which has developed a robust observer. With respect to flying 
qualities the work refers to the Gibson dropback criterion1 and the 
Gibson phase-rate criterion2. Concerning stability requirements the 
principal reference used was MIL-F-8785C4. The control law design was 
based, on the use of pole-placement methods, described by 
Friedland13,Powell7 ,Chen14,Patton15,Shapiro16 and many other 
references and also was based on Optimal control methods found in 
Friedland13,Anderson and Moore17, Lewis-Stevens18,and Lewis19. The 
observer design method was based on Chen14,Friedland13,Doyle-Stein6 
,and Powell-Franklin-Naeini7 .

2.1.2 LITERATURE SURVEY

Some useful references related to the subjects treated in this work 
will be given although they have not necessarily been used directly in 
this work. With respect to a similar design, 
Monahemi-Barlow-01 Leary20 describes a very useful procedure, that is, 
it uses reduced-order observers to obtain precise loop transfer 
recovery. Now, with respect to observers
Phillips-Wilson-Graf—Starks21 show the observer as a noise filter, 
also discussed in Chen14. Sobel-Banda22 and Andry-Chung-Shapiro23 both 
discuss the design of modal observers, also mentioned by Chen14, and 
both applied to flight control system design. Another interesting 
application is given by Panossian24 with respect to servoactuator 
states and parameter estimation. An application to systems with
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uncertainties is given by Walcott-Zak25. Examples of observers 
applied to disturbance estimation are given by Bossi-Bryson26 and
Levin-Kreindler27. The problem of errors in realization are studied

28by Stefani . The case when the input is not available is studied by 
Wang-Davidson-Dorato29 and Yang-Wilde30. Comparison of algorithms are 
given in Tsui and Tsui32. The problem of observer design for time 
varying linear systems is studied in Carroll-Shafai33 and 
Nguyen-Lee34.
With respect to control law synthesis, in particular with optimal 
control methods the works of Blight-Gangsaas-Richardson35 and 
Gangsaas-Bruce-Blight-Ly36 are very illustrative. Again, with respect 
to pole-placement the work of Sobel-Yu37 is also very useful. 
Classical references with respect to flying qualities include, for 
example McRuer-Graham38, Ashkenas39, Phillips40, and Harper-Cooper41. 
With respect to the application of criteria the works of Stengel42 and 
Mooij-Gool43 are important. Examples of flight control systems design 
can also be obtained from Govindaraj-Rynaski44, which compares two 
design methods based on optimal control theory, Cunningham-Pope45, 
which discusses modern control analysis and synthesis techniques and 
in particular Stevens—Lewis—A1 Sunni46,which develops an approach to 
design control laws for shaping the closed loop step response that 
uses linear quadratic output feedback techniques. Robustness is 
considered in F ranklin-Acke rmann 4 7, Horowitz-Golubev-Kopelman 4 8, 
Ashkenazi-Bryson 4 9, Schaechter5 0,Yanushevsky51,Okada-Kihara-Ikeda 5 2, 
and Burrows-Patton15. In particular the work of Chalk53 is related to 
the flight control system structure used in this research. Also, 
alternative methods, such as the low order approach is studied in the 
works of Mitchell-Hoh54,Bischoff55, and Shafer56. With respect to the 
selection of weighting matrices for use in optimal control studies the 
work of Harvey—Stein5  ̂ can be aplied to more complex problems. 
Finally ,with respect to stability and control the work of Roskam58 is 
very interesting and relevant.
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2.2 CONTROL ANTICIPATION PARAMETER ( CAP )

2.2.1 INTRODUCTION

The CAP is implicit in the Flying Qualities Requirements MIL-F-8785C4 
and defines the upper and lower frequency limit requirements on the 
short-period pitching oscillation. The CAP is much more specific than 
damping ratio or frequency in the description of what it is that a 
pilot is particularly aware of in the short period motion parameters 
implicit in the handling characteristics of an aircraft.

2.2.2 DEFINITION

When a pilot applies a pitch command to the aircraft there is a finite 
time lapse before the steady state condition is reached and during the 
finite time lapse the transient short period response dynamics are 
seen. To have good handling the pilot needs some earlier indication 
of the likely steady state response. Speaking more generally, it is 
possible to say that the initial transient response and the final 
steady state response must not be too sensitive to or too insensitive 
to the commanded flight path change. So CAP is defined as

transient peak pitch acceleration 
CAP =   ( 2.1 )

steady state normal acceleration

In terms of the usual aircraft response parameters CAP is defined in 
the flying qualities requirements documents as the ratio of the 
initial pitch acceleration to the final steady normal load factor in 
response to controls. Using the reduced order pitch-rate transfer 
function

q(s) kq(l+sTe2)
  ( 2.2 )
r}(s) A(s)
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m
where , k ■ ='q

r?
_ 2 
62 “sp

( 2.3 )

The pitch-acceleration response to a unit step input of elevator angle 
is.

q(s) =
kq(l+sTe2)

A(s)
( 2.4 )

Applying the initial value theorem

q(0) = kq J82 %  “ mrj ( 2.5 )

The normal load factor is derived from normal acceleration referred to 
the C.G. of the aircraft as follows.

nz - ( 2.6 )
e.g.

and it is possible to show that

-, V -
9 w A(s) sp

( 2.7 )

Applying the final value theorem, assuming a unit step input

nz(oo) _ %  Z* Ve2
9 %

( 2.8 )

Hence,

CAP =
q(o)

n z (co)
9 “sp T62

( 2.9 )
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n Vsince, z e
 : ’ ( 2.10 )
a 9 T02

it is possible to obtain an alternative expression for CAP as

%
C AP =   ^ ---- ( 2.1, )

a

2.2.3 INTERPRETATION

CAP can be interpreted in terms of the classical description of static 
and manoeuvre stability margins. In manoeuvering flight the lift of 
an aircraft is given by.

p V S a <x
L = ( 2.12 )

and n = z m g
0.5 p V S a a

m g
( 2.13 )

So it can be written

a

0.5 p V  S a
m g

( 2 . 1 3 . a )

Allowing perturbations to be small, in limit it is possible to write 
that V ^ Ve
possible to use.
that V ^ and from the reduced order longitudinal model is

(0sp
Z M w q
m I

V Me w ( 2.14 )
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with Z , M and M dimensional stability derivatives given 
approximately by.

zu  —  P v p s a ( 2.15 )2

M q =  -  —  P V e S c2  a i V T  ( 2.16 )

Mw ”  p Ve S c a ( 2.17 )

where, is the longitudinal static stability margin, 
Then it is possible to write:

Ogp = a c (0.5 p Ve S)2 aiVT 1T
m I 0.5 p S I

( 2.18 )

Subtituting equation (2.13.a) and (2.18) into equation (2.11) it is 
possible to write :

m g c
CAP =

c p S m
k - — -----s
11 2 m

( 2.19 )

Defining the longitunidal relative density factor as

m
= p S c

( 2.20 )

it is possible to write

m g c
CAP =

m
k -

r? 2 ^
( 2.21 )
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where

m
H m =  V  7 7 - ( 2 22 )

is the longitudinal manoeuvre margin controls fixed.

2.2.4 REQUIREMENTS ON CAP

In MIL—F—8785C4 a requirement for acceptable values of CAP is not 
quoted explicitly but it is implicit in the limiting requirements for 
short period mode frequency. The limits on short period frequency are 
quoted as a function of n̂ /oc for each of the flight phase categories. 
Since the values of CAP are given in MIL-F-8785C4 these may be read 
off and used as a constraint in the flight control system design. For 
level 1 flying qualities the limiting values of CAP may be summarised 
as follows,

CAT A 0.28 £ CAP £ 3.6
CAT B 0.085 CAP 3.6
CAT C 0.16 £ CAP 3 3.6

2.3 GIBSON CRITERIA

2.3.1 INTRODUCTION

Although the mission of a civil aircraft differs from that of an 
advanced fighter, there are tasks, or flight phases, where the 
handling qualities requirements may be equivalent and where the 
military criteria can be applied to the civil case. With this is mind 
this work has used the Gibson criteria. The criterion comes from the 
necessity to know what kind of approach must be taken when designing a
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stability augmentation system in order that the resulting augmented 
aircraft presents good flying and handling qualities. The basis for 
the criterion comes from a very extensive analytical study of the 
longitudinal response characteristics of many aircraft whose flying 
and handling qualities were known. Gibson was able to identify the 
parameters which are important in determining the handling 
characteristics to which pilots are most sensitive. With the 
determination of limits on the system parameters it is then possible 
to design flight control systems with an improved probability of 
providing acceptable flying and handling qualities. Some of the 
features found within the Gibson criterion correlate very closely with 
features found in other advanced dynamic handling criteria.

2.3.2 INITIAL CONSIDERATIONS

In common with several other criteria the Gibson criterion is 
primarily concerned with the longitudinal tracking response of the 
aircraft since this is an aspect of handling qualities associated with 
some of the more critical piloting tasks. Traditional measures of 
flying and handling qualities are based on the assumption that the 
short term response behaviour of the aircraft is basically second 
order and so mainly governed by the short period dynamics. In such 
aircraft the provision of correct short period mode damping and 
frequency characteristics effectively guarantees acceptable normal 
acceleration n^ ,pitching acceleration q and pitch rate q responses 
which are, in general sufficient to ensure good handling qualities. 
As a result it follows that the pitch attitude Q and flight path angle 
y responses are also well behaved due to the second order behaviour of 
the aircraft. Consequently little direct attention has been paid to 
the role of Q and y in the determination of handling qualities, but it 
is known that both pitch attitude 0 and flight path angle y are very 
important responses with respect to the perception of handling 
qualities by the pilot. With the increasing complexity of the 
aircraft and its flight control system the dynamic behaviour is today 
more and more less second order like and, even if its basic short 
period mode stability characteristics may be correctly designed it is
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quite possible for its pitch attitude and flight path angle behaviour 
to be unsatisfactory. The main reasons for this are :

- Flight control system dynamics may introduce additional
modes with frequencies close to the short period mode.

- It is easy to inadvertently modify attitude response
characteristics since in the design of the stability
augmentation system to meet the traditional requirements no
emphasis is placed on attitude response directly.

From the aircraft model it is possible to establish some simple, but 
important, response parameters as might apply to the pitch tracking 
task, these are illustrated on figure (2.1). • j

55
A

©

A

figure 2.1 Typical pitch tracking response characteristics 
and useful parameters to the criterion.
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With respect to figure (2.1) the input to the aircraft is a unit step 
of elevator angle which is held for a few seconds and then returned to 
zero, which corresponds to the trim datum value. The pitch rate and 
pitch attitude responses that follow are shown and the parameters 
related with handling qualities important to the pilot are identified 
as follows,

- pitch rate overshoot ratio
qss

- pitch attitude dropback or overshoot

If, as usual, B > A (in figure 2.1 ), the pitch attitude drops back 
to a final value which is less than the value at the time when the 
pitch demand was removed. If, A > B ( in figure 2.1 ), then the 
reverse behaviour is seen and this is referred to as overshoot. In 
general dropback is most common in typical aircraft pitch attitude 
responses. It is possible to see from figure (2.1) that the value of 
pitch attitude dropback, or overshoot, is given by the intercept of 
the projection of the response plot on to the Q axis at t = 0, or it 
is obtained by the displacement of the linear part of the response 
plot from the line defined by the equation 0 = t as shown on
figure 2.1.

2.3.3 THE DROPBACK CRITERION

The dropback criterion, Gibson1 , was originaly defined in terms of 
limiting values on pitch rate overshoot ratio and on the ratio of 
attitude dropback ( overshoot ) to steady state pitch rate, (DB/q^) 
the requirements on these parameters are shown on figure (2.2). A 
recent study performed by Blagg3 has concluded that the criterion
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could be used as a handling qualities criterion for transport 
aircraft, if the upper limit of (DB/q^) = 0.3 sec in figure (2.2) is 
increased to allow lower values of necessary for quick flight path 
response. However, this modification has not been validated or 
tested.

C ON T IN U OU S  GOBBLINGss

///

AB RU P T BOBBLE 
T EN D EN C YSLUG G IS H

S AT I SF A C T O R Y

OS
- 0.2qs s

DB (sec)

figure 2.2 - Gibson dropback cri t er i on  ev a lu a ti o n chart

It is necessary to say that:

- If the pitch rate overshoot ratio (qm/qss) < 1 then dropback
is not possible and the lower part of the satisfactory region 
cannot be attained.

- Subsequently Gibson redefined the criterion such that zero 
dropback only is acceptable. The satisfactory region then 
collapses to the ( qm/qss) axis and in the event that this 
cannot be obtained then it is better to lie on the side of 
attitude dropback rather than overshoot.

- The acceptable value of pitch rate overshoot lies in the range
1.0 z ( V ) < 3.0.

2.3.4 THE PHASE-RATE CRITERION

Even when the flying and handling qualities of a high order aircraft 
are acceptable it is possible that the closed loop gain and phase 
characteristics may be such that the addition of the pilot in the loop
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leads to the propagation of pilot induced oscillation ( PIO ) at 
certain conditions. The phase-rate criterion may be applied at the 
design point after the feedback loop has been developed, in order to 
reduce the likelihood of PIO ocurrence, that is, after the basic 
stability characteristics satisfy completely the MIL—F—8785C 
requirements. The probability of PIO ocurrence is determined by the 
degree of gain and phase compensation instinctively introduced by the 
pilot when controlling the aircraft. The required compensation, in 
general, is determined by the closed loop gain and phase 
characteristics of the aircraft at frequencies close to the resonant 
frequency of the human pilot. Gibson2 studied the problem of PIO 
occurrence in satisfactory aircraft and identified the desirable gain 
and phase characteristics for the closed loop high order aircraft if 
PIO is to be avoided. The Gibson phase-rate criterion has an 
advantage with respect to other PIO criteria, in that a pilot model is 
not necessary. The criterion is basically concerned with the closed 
loop attitude frequency response in the region of —180° phase and is 
evaluated from a plot of the closed loop attitude frequency response 
on the Nichols chart as shown in figure (2.3).

gain
(dB)

-90-180270

phase 
(deg )

Closed loop attitude freq u en c y response on 
Ni chols chart as required by Gibson cr it e ri o n

figure 2.3
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Referring to figure (2.3), the point of interest is the cross over 
point, where the phase first passes through -180* ,the frequency 
corresponding with this point and the rate of change of phase with 
frequency at cross over. Again with reference to figure (2.3) the 
phase-rate is simply defined as :

phase—rate = P.R. = ---------- < 2.23 )
“2 -  “1

and, ideally, Gibson has established that,

P.R. 3 100* / Hz ( 2.24 )
is desirable in order to avoid PIO with a reasonable safe margin.
The criterion can be simply summarised on figure (2.4).

phase-rate ( P.R.)

400
SEVERE PIO

300

SEVERE PIO TRENDS OF HIGH ORDER 
PHASE RATE

200
\  MODERATE 
\  PIO

100
NO

OPTIMUMPIO LOW ORDER

0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

180 phase lag frequecy ( Hz )
figure 2.4 - Chart for evaluation of the Gibson

phase rate criterion.
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In general, it is required that the cross-over point should occur at a 
frequency of 1 Hz and that the phase-rate should be less than 100° per 
Hz. If an aircraft does not meet the criterion, then a suitable gain 
and phase compensation can be introduced into the command path with 
the help of a suitable pre filter resulting in a flight control system 
structure shown on figure (2.5).

FILTER
PRE - A UT O S T A B

CONTROL
LAW

AIRCR AF T
D YNAMICS

When command path compensation is required it is also necessary to 
include some high frequency gain compensation in order to maintain the 
slope of the closed loop attitude frequency response plot to a 
reasonable value at cross over.

2.4 THE POLE-PLACEMENT TECHNIQUE

2.4.1 INTRODUCTION

In the control law design the pole-placement technique will be used as 
the first method. There are so many references in the literature 
about pole-placement that is impossible to refer to all here. 
However, it is possible to refer to some useful design techniques as 
presented in Patton13!̂ D'Azzo59, Shapiro16, and Friedland13 for 
example. Obviously the pole-placement technique is a state-space 
method. In a controllable system, with all the state variables
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accessible for measurement and feedback, it is possible to place the 
closed loop poles anywhere in the complex s-plane. This means that in 
principle it is possible to completely specify the closed loop dynamic 
performance of the system, as for example MIL-F-8785C4 requirements ( 
CAP ), and Gibson1 dropback criterion. So in principle it is 
possible to satisfy any criteria, but in pratice it is also_necessary 
to ensure that large control signals are not required. If so ,signal 
limiting as a result of saturation on the actuator might be possible, 
that is, the actuator will not be able to deliver large control
signals. So it is necessary to not only focus on satisfactory 
handling criterion and stability criterion but also on feasible 
feedback gains. The first step in the pole-placement design approach 
is to decide the desired closed-loop pole locations. When selecting 
pole locations, it is necessary to keep in mind that the control
effort required is related to how far the open loop poles are moved by
feedback. Furthermore, open-loop zeros attract poles, so considerable 
control effort is required to move a pole away from a nearby zero. 
Therefore a pole-placement philosophy that aims to fix only the 
undesirable aspects of the open-loop response will typically allow 
smaller control actuators than one that arbitrarily picks all the 
poles in some location without regard to the original open-loop poles. 
In aircraft flying qualities specifications, such as MIL-F-8785C4, 
closed-loop pole locations are implied. It is also possible to use 
the technique of a prototype design, such as the ITAE or Bessel 
responses, for higher order systems. However it is essential to 
recognise that these techniques deal with pole selection without
explicit regard for their effect on control effort.

2.4.2 FLIGHT CONTROL SYSTEM DESIGN

To use the pole-placement technique on problems in which there are 
reference inputs and/or disturbances, it is frequently desirable to 
represent these inputs and disturbances by additional state variables. 
The particular dynamic process to be controlled may be described by 
the following state equation.
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x = A x + B u + F xd ( 2.25 )

where is a disturbance vector, which may or may not be subject to 
direct measurement and u is the control input to the aircraft. In 
addition it is also desirable that the state x track a reference state 
x^ . Figure (2.6) is the state-space representation of a system with 
disturbances and reference input.

dis turbance 
mode 1 <

reference 
mode 1

d istur b an c es

o

o

A-A

X  , cy X d

system
error

O
output

figure 2.6 - Sta te - sp a ce  r ep r es e n t a t i o n  of a system w it h 
distur ba n ce  and reference i n p u t .

To formulate the problem in terms of state variables, it is often 
expedient 
equations
expedient to assume that x^ and x^ satisfy known differential

X d =  A d X d ( 2.26 )

* r =  A r * r ( 2.27 )
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These supplementary states are surely not subject to control by the 
designer, so that these are unforced differential equations. The 
system comprising x, , and is necessarily uncontrollable. In 
general the objective is concerned with the error defined by :

e = x — x ( 2.28 )

So the differential equation for the error using (2.25) and (2.27) 
will be :

e = x - ><r = A(e+xr ) + F x^ + B u - Ayx^ ( 2.29 )

e = A e + (A - Ar)xr + F xrf + B u ( 2.30 )

or, e « A e + E X g + B u ( 2.31 )

where, E = ( A - A ^ j F ) ( 2.32 )

and. xo = ( 2.33 )

The vector xQ represents the exogenous inputs to the system. To the 
differential equations of the error is adjoined the equations for the 
reference and disturbance states to produce a system of order 2k+l 
having the metastate vector.

x - ( 2.34 )

and satisfying the metastate equation

X = A X + B U ( 2 . 3 5 )

23



where, A =

and

B =

L l l:
- - ■ : 

o ! A

B 

0

0
( 2.36 )

C 2.37 )

V 0

0

----1
c"”

( 2.38 )

The design method described here is used in this research program. 
First it is necessary to refer to figure (2.7) concerning the control 
system structure.

distu r ba n ce s

fee d fo r wa r d

-e

error

reference 
state

x = Ax + Bu

figure 2.7 - S c hematic of feedback system for an aircraft wi t h
reference state and d is t ur b an c e input.

This method applies to a more general objective, that is, to control 
the system error not only for initial disturbances, but also for 
persistent disturbances, and also to track reference inputs, as 
required by the Gibson dropback criterion for example.
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The error is defined by : e = x - xr ( 2.39 )

where x is the system state vector
x^ is the reference input vector

and also x^ is assumed to satisfy a differential equation

xr ( 2.40 )

A disturbance x . is also included and so the error is given by:d

e = A e + ( A  — A )x + F x. + B u r r d
e = A e + B u + E X g

( 2.41 )

( 2.42 )

As in terms of control theory the metasystem is not controllable it is 
convenient to work directly with the error differential equation 
(2.42) and so the exogenous vector xQ is treated as an input just like 
u. A linear control law is assumed, which takes the general form.

From figure (2.7) it is possible to see the presence of two signal 
paths in addition to feedback path. There is a feedforward path with 
a gain and a path through the gain Gy, and the objective is to 
minimise the effect of the disturbances x^. For the present, the 
objective is limited to the design of the gain matrices G and G^. The 
closed loop dynamics are described by,

e = A e + E xQ - B(G e + GQ xQ) ( 2.44 )

which is the differential equation of a linear system excited by xQ. 
If possible, it is desirable to choose the gains G and GQ to keep the 
system error zero, however more reasonable performance objectives are 
the following:

(a) the closed loop system should be asymptotically stable.
(b) A linear combination of the error state variables is to be 

zero in the steady state.
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In order for the closed loop system to be asymptoticaly stable the 
closed loop dynamics matrix,

Ac = A - B G c 2.45 )

must have its characteristic roots in the left half s-plane. If the 
system is controllable, this can be accomplished by a suitable choice 
of the gain matrix. The steady state condition is characterized by a 
constant error state vector, i.e., in the steady state

e = 0 ( 2 .46 )

and from (2.44), this means that

(A - B G)e - (B G0 ~ e)xq ( 2.47 )

If the closed loop system is asymptoticaly stable, = A-BG has no 
characteristic roots at the origin, and so its inverse exists. So the 
steady state error is given by:

e = (A - BG) 1(B Gg—E)Xg ( 2.48 )

It is not reasonable to expect that e be zero, instead it is required
that

y = C e = 0 ( 2.49 )

where C is a singular matrix of suitable dimension.
Then it is possible to write:

C (A—BG)—1(BGq—E ) x q  = 0  ( 2.50 )

and it must hold for any xQ ,that it is possible if and only if the
coefficient matrix multiplying xQ vanishes:

C(A -BG) ^(BGq-E) = 0  ( 2.51 )

or

C(A-BG)“:LBG0 = C(A—BG)—1E ( 2.52 )
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Now the dimension of C becomes significant.
If the dimension of y is j, then C i s a ( j x k )  matrix, (A-BG) 1 is a
(k x k) matrix, and B is a (k x m) matrix, where m is the number of 
control variables. The product of the three matrices multiplying GQ 
is thus a ( j x k) matrix. If j > k, then (2.52) is over determined, 
there are too many conditions to be satisfied by G^ and, except for 
special values of E, no solution to (2.52) for GQ exists. On the other 
hand if j < k, then (2.52) is underdetermined, GQ is not uniquely 
specified by (2.52). This poses no problem; it only means that GQ can 
be choosen to satisfy not only (2.49), but also to satisfy other 
conditions. Analytically the simplest case is when the number of 
inputs m is equal to the dimension of y. In this case, when the 
matrix multiplying GQ is not singular, the desired gain matrix is 
given by

Gq = [ C(A-BG) ^  ] 1 C(A-BG) 1 E ( 2.53 )

The big matrix

B# = [ C(A-BG) S  ] 1 C (A-BG) 1 ( 2.54 )

that multiplies E has the property that

I ( 2.55 )

and so it is possible to write:

G0 = B* E ( 2.56 )

It can be shown that C(A-BG) ^B possesses an inverse, see 
Friedland13.
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2.5 THE LINEAR QUADRATIC OPTIMAL CONTROL TECHNIQUE

2.5.1 INTRODUCTION

There are several good reasons to use optimal control for the design 
of flight control systems. The first is that in a MIMO system, the 
pole placement technique does not completely specify the controller or
compensator parameters, that is the gains. Another good reason is
that the designer may not really know the most satisfactory closed 
loop pole locations. In fact, the designer who has acquired extensive 
experience with a particular type of problem generally has an 
intuitive "feel" about the proper closed loop pole locations. However 
when faced with a new problem or a lack of time to acquire the
necessary insight, the designer will benefit from a design method that 
can provide an initial design and at the same time acquire "feel" 
about the problem. Another good reason is that the optimal control 
theory can be applied to processes which are not controllable in terms 
of control theory. Optimal control theory was developed to
specifically address the issue of achieving a balance between good 
system response and control effort. It is important to note that 
Optimal control theory does not provide direct specification of the 
transient response in the way that other methods do. In fact Optimal 
control theory selects poles that result in some defined balance 
between system errors and control effort. The designer can easily 
examine the relationship between shifts in that balance ( by changing 
the weighting matrices in the performance index ) and system root 
locations, time response, and feedback gains.

2.5.2 THE DESIGN PROCESS

Again, the model considered initially is the same as in the pole 
placement technique, that is,

e = A e + B u + E X g  ( 2.57 )
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where xQ is the exogenous vector, and u the input to the aircraft. 
Lb;

equation.
As in the pole placement technique xQ satisfies a known differential

xo = flo xo ( 2.58 )

and so the entire metastate satisfies the differential equation.

where

x = A x + B u ( 2.59 )

( 2.60 )

A =

B =

An appropriate performance integral is :

( 2.61 )

( 2.62 )

00

V = J (xTQ x + uT R u )dr ( 2.63 )

thus, the weighting matrix for the metastate is of the form.

0 = ( 2.64 )

This is the clasical problem of optimal control ( LQR ), with the 
matrix M as the solution of the matrix Riccati equation, the theory
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and solution of this problem is well described in many books, for 
example Anderson-Moore17, and in particular as applied in this work in 
Friedland . The problem can be solved without theoretical difficulty, 
and with the partition of the performance matrix M for the metasystem 
will give:

M =
M. hi1 __2_

T hiM ‘2 3
( 2.65 )

It is well known that the performance matrix M satisifes the algebraic 
quadratic equation ( algebraic Riccati equation ).

o = m a  + at m - m b r  1bt M + Q ( 2.66 )

and that the optimum gain is given by

—  — I T  —G = R B M ( 2.67 )

The gain matrix G for the metasystem is given by.

G = R 1 [ BT | 0 ]

2 ! 3

( 2.68 )

G = [ R 1BT M1 j R 1BT M2 ] ( 2.69 )

and it is possible to notice that the submatrix is not needed to 
solve the problem. Performing the matrix multiplications required by 
the Riccati equation it is possible to obtain the differential 
equations for the submatrices in (2.65).
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-M1 = M1 A + f\Tni - MjB R V n  + Q ( 2.70 )

-M2 = 1^ E + M2 Aq+ (AT - M1B R 1BT )M2 ( 2.71 )

( 2.72 )

Due to the special structure of A, B, and Q, the following facts about 
the submatrices of M emerge:

is the same as it would have been with xQ absent from the
problem,i.e., if the design were for the simple regulator
problem ( clasical optimal control problem ), so a steady state
solution for can be obtained if the pair (A,B) is
controllable.

(b) The differential equation for M2# from which the gain R 1BTM2 is 
determined, does not depend on M^, and in fact is a linear 
equation, which can be written as.

—1 Twhere A^ — A — B R B ( 2.74 )

is the closed loop dynamic matrix of the regulator subsystem.

A steady state solution also can be found, and it must satisfy.

and so the necessary gains to realize the control law are 
obtained as:

(a) The solution of ,and hence the corresponding gain R 1 BT ,

( 2.75 )
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—I T — —1 T —u = - R B M1 x - R B M2 xq ( 2.76 )

(c) The differential equation for is also linear. However is 
not used in the determination of the gain matrix.

2.5.3 CASE WITH CONSTANT REFERENCE INPUT

The most frequently tracked signal corresponds with the condition, 
AQ = 0, so for this case the equations for and become simply.

—  ["I = MiE "I "2 ( 2.77 )

and

M3 = M2 E + ET M2 - M2 B R V  M2 ( 2.78 )

The correct relationship for M2 is given by the solution of (2.77) 
with M2 = 0 .

Mg = -

-1 —1

Mi E ( 2.79 )

where M^ is the steady state solution of (2.70), i.e., the control 
matrix for the regulator design. Thus the gain for the exogenous 
variables is.

( 2.80 )

where B* = - R V  [ flT ] 1 Ml ( 2.81 )
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2.5.4 COMMENTS ABOUT THE SELECTION OF Q AND R

The question of concern to the control system designer is the 
selection of the weighting matrices Q and R. To quote, Friedland13

" In candor one must admit that m i n i m i z a t i o n  of a quadratic integral 
is rarely the true de s ign objective. The p r o b l e m , h o w e v e r , is that 

the true design o b je ctive often cannot be ex p re s se d  in math em a ti c al 

terms. ”

In the performance index two terms contribute to the integrated cost 
of control: the quadratic form xTQ x which represents a penalty on the 
deviation of the state x from the origin and the term uTR u which 
represents the cost of control. It should be obvious that the choice 
of the state weighting matrix Q depends on what the system designer is 
trying to achieve. Again Friedland's words are appropriate to be 
written :

" The r e l a t io n sh i p between the w e i g h t i n g  m at r i c e s  Q and R and the 
dynamic behavior of the c 1 osed-loop system depend of course on the 
matr ic e s A and B and are quite comp lex. "
” It is impratical to pre d ic t  the effect on closed loop be h av i or  of a 

given pair of w e i g h t i n g  matrices. ”

And finally, it is useful to again quote Friedland's words with 
respect to the design process when working with optimal control. It 
must also be pointed out that the same advice is given by Brogan60, 
and by many other references related to optimal control. So Friedland 
says :

" A suitable appro a ch  for the designer w o u ld  be to solve for the gain 
matrices G that result from a range of w e i g h t i n g  matri ce s  Q and R , and 
calculate ( or simulate ) the c o r r e s p o n d i n g  c l os e d- l oo p  r e s p o n s e . The 
gain matrix G that produces the response closest to m e e t in g  the d e si g n 

objectives is the ultimate selection. In a few hours time, dozen or 
more c om b inations of Q and R can be determined, and a suitable 
selection of G can be m a d e . "
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It is also useful at this time to repeat the guidance given by 
Brogan60about the problem of selection of the weighting matrices Q and 
R, that is very appropriate to this work :

" For small problems w i t h  only a few p a rameters it m ay be feasible to
p a r a m e t r i c a l l y  examine the range of possibilities. For most problems

a more focussed appro a ch  is desirable. The expand e d q ua d ratic will
2 2contain terms of the form x Q +u R .If x is a posit i on  varia bl ei i i i ii i

w i t h m ag n i t u d e  of thousands of feet, and if u . is an angle of say 0.01 
radian, it is clear that u. will have no effect on V unless R . »  Q ..

The point is that scaling units and vari ab l e m a g n i tu d es  are 
important, as well as the subjective choice of the importance of 
keeping u small comp a re d  to k e eping x small. "

Finally Brogan60 says about Q and R :

The relative ma g ni t ud e s are all that matter *

2.6 OBSERVER DESIGN TECHNIQUE

2.6.1 INTRODUCTION

In order to design the observer two methods have been used, here the 
design methods are summarised and explained. Both methods are 
suitable for full order observers or for reduced order observers, 
however here the discussion relates to the reduced order observer 
only, which is the one used in this research. The reason for using a 
reduced order observer is because it requires fewer parameters to be 
implemented in the flight control system, and so it is more suitable. 
The reduced order observer has a much higher bandwidth from sensor to 
control when compared with the full order observer. Therefore, if 
sensor noise is a significant factor, the reduced order observer is 
less attractive, since the potential savings in complexity may be more
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than offset by the increased sensitivity to noise. In this research, 
as in the work of Rynaski5 the sensors are assumed to be essentially 
noise-free in themselves.

2.6.2 FIRST METHOD

The method here developed can be found in Friedland13, and Chen14. It 
is assumed that the dynamic system is described by the following state 
equation.

x = A x + B u ( 2.82 )

It is also assumed that it is possible to group the state variables 
into two sets: those that can be directly measured x , and those that
depend indirectly on the former x^. The state vector is partitioned 
accordingly :

x = ( 2.83 )

with :
x1 = A11x1 + A12x 2 +  BjU ( 2.84 )

X2 = A21X1 + fl22X2 + B2U ( 2.85 )

The output equation is given by : y = C^x^ C 2.86 )

The standard observer for (2.84) and (2.85) is given by

x1 = A11x1 + A12x2 + Blu + K (y-C x ) ( 2.87 )

X2 = A21X1 + A22X2 + B2U + K2(y"ClXl } ( 2.88 )

But it is not necessary to implement the observer for x^ because x^ is

35



already available as.
*i = = Ci1 y ( 2.89 )

So the observer for will be:

.-1
x2 = fl21Cl > + A22X2 + B2U ( 2.90 )

which is a dynamic system of the same order as the number of state 
variables that cannot be measured directly. The dynamic behaviour 
of the reduced order observer is governed by the eigenvalues of A22
which is a submatrix of the open-loop dynamic matrix A, a matrix over 
which the engineer has no control. If the eigenvalues of A ^  are 
suitable, then (2.90) could be a satisfactory observer. Since there
is no assurance that the eigenvalues of A ^  are suitable it is 
necessary to devise a more general system to estimate x^. A suitable 
general structure for the estimation of x^ is given by.

*2 = L y + z ( 2.91 )

with z the state of a (k—l)th order system, and L is the gain matrix 
of the observer.

z = F z  + G y  + H u  

The estimation error is defined by.

( 2.92 )

e = x - x =

X1X A1 1 1

X 1 X 
>

e_2 2 2
( 2.93 )

but. e1 = xi - xx = 0 ( 2.94 )

So it is necessary only to consider e^, described by the differential 
equation.
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e2 = *2 “ x2 = *21*1 + *22*2 + B2U ~ Ly ~ Z ( 2.95 )

e2 = fl21x1 + fl22x2 + B2u - L[Cl(fiu xl+A12X2+BlU)]

- F z - G y - H u  ( 2 . 9 6 )

but it is known that = L y + z , equation (2.91), and then

z = x2 - L y = x2 - e2 - L y = x2 -e2 - LC^x^ ( 2.97 )

and

e2 = F e2 + (fl21 - LC1fl11 - GC^ + FLC^) +

(A22 - LC1A12 —F ) x 2 + (B2 - LC1B1- H)u ( 2.98 )

In order for the error to be independent of x^, x2 and u, the matrices 
multiplying x^, x2, and u must vanish, that is, the following 
equations must apply,

F =  A22 -  LC1A12 ( 2.99 )

H = B2 ~ LC1B1 ( 2.100 )

5ci “ A21 - LC1A11 * FLC1 < 2 1 0 1  >

Then (2.98) becomes e2 = F e2 ( 2 .98.a )

and hence, for asymptotic stability, the eigenvalues of F must lie in 
the left half s-plane.

Having selected the matrix L to place the reduced order observer 
poles, the matrix H is determined from (2.100) and the matrix G is 
determined from (2.101), that is,

G = (A21 - + FL ( 2.102 )

37



and so:

z = F x2 + (Agi- LC1A 1 1 )y +  Hu ( 2 . 1 0 3 )

Figure (2.8) represents a block diagram of these equations.

++

+

figure 2.8 - R educed order observer for o b s e r va t io n  y = 
wi th  nonsingular.

The observer is defined by :

z = F x2 + (A21 “ LClAll^y + Hu ( 2.104 )

%2= L y + z ( 2.105 )

—1x^= C1 y = X1 ( 2. 106 )
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2.6.3 SECOND METHOD

The method here described can be found in Chen14as an alternative
method when the previous one described is not applicable.
Now consider again the dynamic system given by,

x = A x + B u 
y = C x

where A is a matrix (nxn), B (nxp) and C (qxn)
Suppose again that the observer is given by

z = F z  + G y  + H u  ( 2.109 )
a (n-q) dimensional dynamic equation, with F, G and H constant 
matrices to be designed and with dimensions:
F (n-q)x(n-q), G (n-q)xq and H (n-q)xp
In this method the following algorithm is given by Chen14, and it will
be applied in this research.

( 2.107 ) 
( 2.108 )

(1) Choose a real constant matrix F so that all of its eigenvalues
have negative real parts and are distinct from those of A.

(2) Choose a matrix G so that {F,G} is controllable.
(3) Solve the unique T in : TA - FT = GC , a Lyapunov equation

with T a (n-q) x n matrix.
(4) If the square matrix of order n

P = ( 2.111 )

is singular, go back to step (1) and/or step (2) and repeat the 
process. If P is non nonsingular, compute H = TB. Then the 
equation (2.109) is an estimate of Tx and so the original state 
can be estimated by.
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2.7 THE DOYLE-STEIN OBSERVER

One of the main questions that must be considered when designing an 
observer is the robustness of the closed loop dynamic process. 
The observer described in this section was developed by Doyle-Stein6 
and is also discussed by Friedland13. Considering first figure (2.9),

H (s)

figure 2.9 - schematic of a general feedback control system

Where : x = A x + B u  ( 2.114 )
ü = uQ - G x = uQ - u ( 2.115 )

—1
and </>(s) = (si—A) ( 2.116 )

The transfer function from the input uQ to the state x is ,
X(S) = <f> B Û(S) ( 2.117 )

Using (2.115) and (2.117),
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x(s) = (I+0BG) 1(p B U Q ( 2.118 )
So the transfer function from uQ to the state x, using full state
feedback, is

Hq(s) = (I + 0 B G) 1<p B C 2.119 )
HQ(s) = [I+CsI-AT^B G] (si—A)-1 B ( 2.120 )

Now suppose that an observer will be used with the control law as in 
figure (2.10)

+

+ +

O B S ER V ER

figure 2.10 - schematic of a general control system w i t h  control 
 ________________ law and observer._______________________________________________

The observer is simply given by,

x = A x + B u + K y - K C x  ( 2.121 )

which can be found in Chen14, described as an asymptotic state 
estimator, the output of the system is y = C x ( 2.122 )
and K is the observer gain matrix.
Again, the transfer function from uQ to x is required, but now the
input will be : _

U (s) =  U Q - G x(s) ( 2.123 )
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For an arbitrary gain matrix G, the transfer function from uQ to x in 
figure (2.10) will not be the same as that of figure (2.9) unless the 
transfer function from ü to x in figure (2.10) is the same as that 
from u to x in figure (2.9). The transfer function from ü to x in 
figure (2.9) is given by (2.117). From figure (2.10) it is possible 
to obtain.

x(s) = (0 VKC) 1[ B u(s) + K C 0 B u(s) ] ( 2.124 )

The transfer function from u(s) to x(s) given by (2.122) is 
not generally the same as that given by (2.117) as shown by
Doyle-Stein6. However, they are equal when the Doyle-Stein condition 
is satisfied

K (I + C 0 K) = B (C 0 B) (2.125 )

and with the help of the Schur matrix inequality

(0 + KC) = 0 — 0 K(I+C 0 K) 0 ( 2.126 )

it can be shown that (2.124) becomes,

x(s) = [0 - 0 K(I+C 0 K)~1C 0]Bu(s) +

[ 0 - 0  K(I+C 0 K)-1C 0]K C 0 Bu(s) ( 2.127 )

Using the Doyle-Stein condition (2.125), the matrix multiplying u(s) 
becomes zero and the matrix multiplying u(s) becomes B.
Then

x(s) = 0 B u(s) 

which is the same as (2.117).

What is noted is that the Doyle—Stein condition depends only on the
open-loop characteristics of the observer; it is independent of the
control gain G. When the Doyle-Stein condition holds, the transfer 
function from the reference input uQ to the state x is given by
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(2.118), independent of the observer. Therefore the dynamics of the 
observer do not influence this transfer function.

Another property of a Doyle-Stein observer, i.e. , an observer 
satisfying the Doyle-Stein condition, is obtained by computing the 
transfer function from the observable output y to the state estimate
x. Referring to figure (2.10) it is possible to see that:

x = (4>“1+KC)“1Ky - (4T1+KC)“1BG x ( 2.128 )

but, by the Doyle-Stein condition,

(4)-1+ KC) 1B = 0 ( 2.129 )

This means that the transfer function from y to the estimated state x 
does not entail feedback of the control signal u. The path from u 
to z may be omitted. So if K ( the observer gain ) can be selected to 
satisfy the Doyle-Stein condition (2.125), the closed-loop system of 
figure (2.10) can be replaced by that shown in figure (2.11).

+

figure 2.11 - schematic of control system w i th  D o y l e - S te i n 
o b s e r v e r .
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Since there is no feedback from the control u to the observer through 
the control distribution matrix B, the observer transfer function,

Hq (s ) = ( 0_1+ K C)_1K = (si — A + KC)-1 K ( 2.130 )

is the same as it would be for the unforced system x = A x , with
output equation y = C x .

The Doyle-Stein condition has another interesting interpretation, that
is, the left hand side of (2.125) can be written as ,

K(I+C 0 K) 1 = K[I+C(sI-A)“1K]“1 = (sI-a)(sI-A+KC)“ 1K (2.131)

and the Doyle-Stein condition can be written as,

(sI-A)H0(s) = B[C(sI-Ar1B]“1 ( 2.132 )

thus the transfer function of a Doyle-Stein observer is,

H0(s) = (sI-A)“1B[C(sI-A)B]“1 ( 2.133 )

And the closed-loop system of figure (2.11) can be depicted as shown 
in figure (2.12).
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figure 2.12 - A l t er n at e  re p re s en t at i on  of c lo s ed - l o o p  system 
w i t h  D o y l e - St e in  observer.

Referring to figure (2.12) it may 
from uQ to x is simply,

H^(s) = (p B (I+G <p B) 1

which is the same as the transfer 
when full state feedback is used, 
be obtained,

x = 0 B u 

ü = Ug- G 0 B u 

u = (I+G 0 B) 1Ug 

x = 0 B(I+G 0 B) 1u„

be seen that the transfer function

( 2.134 )

function of the closed loop system 
From figure (2.9) the following may

( 2.135 ) 

( 2.136 ) 

( 2.137 ) 

( 2.138 )

The transfer function in the presence of the closed loop process, with 
a Doyle-Stein observer in place, is the same as it would be for 
full-state feedback.
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In order for a Doyle-Stein observer to exist it is necessary that the 
open-loop system be square, i.e., that there are exactly as many 
outputs as inputs. Otherwise the open loop matrix

C 0 B = C(sI-A)~1B

would not be a square matrix and its inverse, needed in the
calculation of H0(s) in (2.133) would not be defined. However, the 
Doyle-Stein condition has been generalized to nonsquare systems by 
Madiwale and Williams61.

Note that the transfer function of the Doyle-Stein observer H^(s) is :

adj[C adj(si—A) B ]
H (s) = adj(sI-A) B ----------------------  ( 2.139 )

| C adj(sI-A) B |

The denominator of HQ(s) is thus the determinant of the numerator of 
the transfer matrix of the open loop aircraft, that is, the
transmission zeros of the aircraft. Consequently, if the open-loop 
aircraft has one or more transmission zeros in the right half of the 
s-plane ( that is, nonminimum phase zeros ) then a stable Doyle-Stein 
observer does not exist.
If it is not possible to realize an observer having all the properties 
of a Doyle-Stein observer, it may be possible to design an observer 
that has some of its properties. For example,

- Makes the closed-loop transfer function from uQ to x the same as
it is for full state feedback.

- Has its poles at the transmission zeros of the open loop aircraft.

- Does not require feedback of the control signal and thus has a 
constant transfer function independent of the control gain.

An observer having some, if not all, of these properties might be 
called a robust observer.



3. CONTROL LAW DESIGN TO SATISFY THE GIBSON DROPBACK CRITERION 
AND THE MIL—F—8785C FLYING QUALITIES REQUIREMENTS

3.1 INTRODUCTION

In order to design a control law, such that with this control law the 
aircraft satisfies both MIL—F—8785C4 ( CAP ) and the Gibson dropback
criterion1, two methods have been used, pole-placement and an optimal 
design method. The guidelines to the pole-placement method used are 
those described above in chapter 2, section 2.4.2, also as described 
in the notes of Cook62 and in particular the method developed in 
Friedland13.
The method used for the Optimal control law design was also described 
in chapter 2, sections 2.5.2 and 2.5.3, and also in references such as

A O  4 rj A QFriedland ,Anderson—Moore , Lewis and others. The approach 
developed by Friedland has been followed in this work since his 
approach is an engineering approach. The subject aircraft used in the 
design studies was a small perturbation model of the Boeing B-747 
since some aerodynamic data was available. The aircraft mathematical 
model used in the design studies is completely described in 
Oliva-Cook12, and data for five flight conditions is given in appendix 
A. The design was carried out for all 18 flight conditions but only 
five are presented in this work, that is, one case for each altitude, 
1000 ft, 10000 ft, 20000 ft, 30000 ft and 40000 ft, in order to be 
representative of the flight envelope of the aircraft. The flight 
conditions analyzed cover the aircraft envelope from sea level to 
40000 ft altitude and from Mach 0.30 to Mach 0.90. The aircraft was 
assumed to be in a cruise configuration at all flight conditions and 
obviously the control law designs are not valid for other 
configurations. The data contained in Heffley11 for the Boeing B—747 
is almost all relative to the cruise configuration with few 
aerodynamic data for landing or take off configurations. The B-747 
is considered a class III aircraft according to MIL—F—8785C 
classification, and for the cruise configuration the flight phase is 
considered cat.B. So the requirements of MIL-F-8785C for the 
longitudinal short period mode characteristics are the following :
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for level 1 0.085 £ CAP £ 3.6
for level 2 0.038 <; CAP 3 10.0

for level 1 0.30 5 C ^ 2.0
*Pfor level 2 0.20 3 r ^ 2.0sp

for level 3 r £ 0.15sp

For the phugoid mode the requirements are as follows:

for level 1 V £ 0.040
for level 2 cph k 0.0

for level 3 T2 k 55 seconds

where T is the time to double amplitude if the mode is unstable.2

Table (3.1) lists the basic aircraft longitudinal characteristics and 
table (3.2) lists the longitudinal open loop poles of the basic 
aircraft.

TABLE 3.1 - DYNAMIC CHARACTERISTICS OF THE BASIC AIRCRAFT

FCti G)sp
rad/s

Ç SP “ ph
rad/s

V Tez

8

CAP
-2U

h

ft

mach

3 1.619 0.63 0.058 0.083 1.00 0.13 1000 0.60
6 1.338 0.51 0.070 0.040 1.58 0.13 20000 0.70
9 0.992 0.41 0.052 0.062 2.85 0.12 40000 0.80

13 1.070 0.53 0.115 0.050 1.79 0.15 10000 0.40
17 1.100 0.44 0.071 0.051 2.33 0.13 30000 0.70

Obviously the B-747 already satisfies MIL-F-8785C without the addition 
of a control law, however it does not satisfy the Gibson dropback 
criterion.
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TABLE 3.2 - OPEN LOOP POLES OF THE BASIC AIRCRAFT
FC# short-period phugoid h

(ft)
Mach

3 -1.02 ± i 1.25 -0.0049 ± i 0.0580 1000 0.60
6 —0.68 ± i 1.15 -0.0028 ± i 0.0700 20000 0.70
9 -0.40 ± i 0.90 -0.0032 ± i 0.0516 40000 0.80

13 -0.56 ± i 0.91 -0.0061 ± i 0.1158 10000 0.40
17 -0.49 ± i 0.98 -0.0036 ± i 0.0709 30000 0.70

3.2 CONTROL LAW STRUCTURE

The design is carried out for a rate command-attitude hold control law 
including a proportional plus integral controller acting on pitch rate 
and angle of attack, both fed back to elevator. Modern aircraft with 
this structure of controller have shown good handling qualities. The 
proportional feedback enables the rate command characteristics to be 
designed as required and the integral feedback drives the error signal 
to zero, and so good longer term "holding" characteristics are 
obtained. As the integral of pitch-rate is pitch-attitude the 
attitude hold characteristic is implicit in this kind of controller.

The design begins with the short period reduced order model of the 
aircraft,

x = A x + B n (3.1)RO RO RO RO '

where xj = [ w q ] and rj is the elevator displacement.

A is the state matrix of the short period reduced order model.RO
B is the control matrix of the short period reduced order model.RO
A and B are also given in appendix A.RO RO y rr

It is necessary to include an extra state in order to allow for 
the pitch rate error defined by:
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£ = q - q q dp (3.2)

and
£ = f (q - qj )dt q J dp (3.3)

where e is the integral of the error.
qSo, with the addition of this extra state the state equation (3.1) is 

now given by:

RO
0 'ARO 0

0 1 0

RO RO

dp (3.4)

Or, (3.4) can be written as :
x = A x  + B q  + E q

where now : x = [ w q e ]
q

dp

ARO
0 ' 
o

BRO
A = (3.7) , B =

0 1 0 0
(3.8) , E

-1

(3.5)

(3.6)

(3.9)

Now the control law will be of the form:
n = —G x + G q' 0 dp ( 3.10)

which is exactly the form developed in chapter 2, for both design 
methods, pole-placement and optimal control. Obviously G is the 
feedback gain vector and G^ is the feedforward gain. The aircraft 
with this control law is shown on figure (3.1), and the feedback gain 
vector will be of the form:

G = [ K K K ]w q £q
(3.11)

50



-  £- £

A IR C RA F T
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figure 3.1 - control law structure a dopted in the design.

Substituting (3.10) into (3.5) the closed loop equation of the system 
is obtained as :

x = (A - BG) x + (BG + E) q (3.12)0 dp

where q is the pilot input to be tracked, or in other words, as in
dp

chapter 2, it is the exogenous variable.

3.3 THE POLE-PLACEMENT METHOD

The first design is carried out by pole-placement as described in 
chapter 2. The problem is to find the feedback gains and the 
feedforward gain such that the augmented aircraft satisfies:

MIL—F—8785C, or more specifically CAP requirements.
( It is known that the aircraft already satisfies the CAP ) 
Gibson dropback criterion.



- The augmented aircraft should behave in a second order like
way, that is, the additional dynamics introduced by the
controller should not be visible to the pilot in the aircraft 
response to controls.

- The integral term in the control law should have a time
constant comparable with the short period natural frequency.

As already known from equation (3.10), G will completely specify the 
closed loop poles and hence the stability of the closed loop system. 
It is necessary to choose three poles, as the characteristic equation 
of the closed loop system is of third order. So with equation (2.9 ) 
for CAP and equation (3.14) for dropback, which is derived in appendix 
B, it is possible to build a system with two equations for two
unknowns, that is o and r .sp sp
So the equations:

g T U2 T o, . 2 Ç
CAP = --------22— (3 .i3 ) and DB =- — ------(3.14)

V  G)e sp

are the basis for the short period mode pole allocation.
In equation (3.14) by choosing DB = 0 an equation relating u and Çsp sp
is obtained. Now with equation (3.13) it is possible to assess if the 
choice of g) satisfies the CAP requirement. If so, with the choosen

sp
value of G) it is possible to obtain r from equation (3.14). Insp sp
this way two closed loop poles are specified which satisfy the CAP 
requirement and the dropback criterion. This procedure to find g)sp
and r is, in fact, a simple iterative procedure. Now, it is

sp
necessary to choose the third pole of the characteristic equation of 
the closed loop system. To choose this third pole it is necessary to 
take into account that in order to maintain second order like dynamics 
of the augmented aircraft it is important not to introduce significant 
changes to the overall gain and phase at frequencies close to the 
short period natural frequency. As seen from table (3.1) the short 
period natural frequency is around 1 rad/sec ( except for flight 
conditions 3 and 6 ), and so this third pole is chosen as s = —1. A 
better design can be achieved if the pole is chosen based on the short
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period natural frequency at each flight condition. However, for 
simplicity, it is reasonable to consider this third pole constant over 
the flight envelope. So, in this way, the three closed loop poles 
have been selected and the closed loop equation to be satisfied is 
simply:

2 2( s  + 2 C  (0 s + w ) ( s + 1 ) = 0 (3 .15)sp sp sp

and with the aid of MATLAB the feedback gain vector can easily be 
obtained.
The feedforward gain is simply obtained from (2.53), or :

Gq = [C(A-BG)^B]^C (A-BG)-:LE (3.16)

where C is given by: C = [ 0 1 0 ]
since y = C x and so y = q.
A, B, E and G are already defined in (3.7), (3.8), (3.9) and (3.11) 
respectively.
In table (3.2-A) the control law gains obtained with this design are 
sumarized and in table (3.3) the corresponding short period 
characteristics are listed.

TABLE 3.2-A -- CONTROL LAW GAINS
FCff K K K G h Machw q e 0

„  -1 q
f t sec sec rad sec ft

3 0.0012 -0.588 -1.219 -1.219 1000 0.60
6 0.0012 -0.889 -1.183 -1.183 20000 0.70
9 0.0011 -1.875 -1.697 -1.697 40000 0.80
13 0.0026 -1.094 -1.270 -1.270 10000 0.40
17 0.0013 -1.249 -1.252 -1.252 30000 0.70
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TABLE 3.3 - SHORT PERIOD CHARACTERISTICS OF THE 
CLOSED LOOP SYSTEM

FC# POLES (0sp 
rad/ s

CAP
-28

h

ft

Mach

3 ~1•08 ± i 1.11 -1 1.55 0.70 0.117 1000 0.60
6 -1.02 ± i 0.63 -1 1.20 0.85 0.101 20000 0.70
9 -1.61 ± i 0.45 -1 0.85 1.21 0.086 40000 0.80
13 -0.58 ± i 0.59 -1 0.83 0.70 0.092 10000 0.40
17 —0.86 ;fc i 0.25 -1 0.90 0.96 0.087 30000 0.70

From the results it was noticed that in order to satisfy the dropback 
criterion the CAP at high altitudes ( 30000 ft and 40000 ft ) becomes 
marginal. This can be explained since in order to satisfy the 
dropback criterion (3.14) it is necessary to decrease the short period 
natural frequency. In fact this is not a good design philosopy, since 
reducing the short period natural frequency also reduces the aircraft 
bandwidth.
In figure (3.2) plots of the augmented aircraft are shown with respect 
to the dropback criterion boundaries.

8 8

FC 4

FC 11,16,17
FC 18

FC 15

FC 8
FC 9 FC 10

FC 6,7

0.0 0.2 0.3
DB/qFC 5 FC 12,13,14OS/q

88 8 8

figure 3.2 - Dropback c r i te r io n  plot of the p o 1e - p 1acement design.
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3.4 THE OPTIMAL CONTROL LAW METHOD

An alternative design is now performed using optimal control methods 
as described in chapter 2. The control law structure is the same as 
before, but the approach is now completely different. It must be 
mentioned that a first approach following Athans63,and then Parker64 
failed to give designs that satisfied the Gibson dropback criterion 
since both approaches only gave the feedback gains. Obviously, both 
designs gave zero steady state error at all flight conditions. A 
better design approach subsequently adopted for this work, is the 
approach sugested by Friedland13 which is also described in chapter 2. 
It is necessary to emphasize again here, that it is not a necessary 
prerequisite to choose the closed loop poles. The approach now is to 
work with the performance index:

oo
r T TV = ( x Q x  + r) R r ) ) d T  (3.17)
t

as described in chapter 2 ( alternative performance indices can be
found in Lewis-Stevens18). The state vector is given by (3.6) and 77
is the elevator displacement. The matrix Q is the state weighting
matrix and the matrix R is the control weighting matrix. In the choice
of these two matrices, note that in this case R is a scalar, the
guidelines given by Friedland13 and Brogan60 are followed; also
already described in chapter two. In this problem it is possible to
achieve good values for Q and R by means of a parametric study as
sugested by Friedland13. Obviously Q is a (3x3) matrix and since the
design is mainly concerned with the maintenance of zero steady state
error only the state " c ..." will be weighted in the performance index.q
In view of this a suitable choice for the state weighting matrix is,

0 0 0
Q = 0 0 0 (3.18)

0 0 1

The states w and q are not weighted because it is not as important
that they go to zero as it is for e . So with this choice of Q aq
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parametric study can be performed varying the parameter R, as also 
advised by Pouell—Franklin-Naeimi7 . For each pair ( Q„R ) the closed
loop poles, feedback gains, CAP, w and r can be obtained andsp sp
evaluated against the specification requirements. This is the first
step of the design method, and is easily performed with MATLAB Having
defined A, B, Q, and R MATLAB gives G and the algebraic Riccati
matrix M^ ( as mentioned in chapter 2 ) that is required in the
calculation of G .o _
It is obvious that G is obtained from equation (2.80) where M is theo i
algebraic Riccati matrix obtained when the above regulator problem is 
solved. It is clear that this is an iterative procedure that can be
sumarized as follows;

(i) Solve the regulator problem with A, B, 0 and R, this will 
give the feedback gain vector G, and the algebraic Riccati 
matrix M1

(ii) Look at the closed loop poles obtained. It is not desirable 
that the closed loop poles be located too far from the open 
loop poles. Look also at the feedback gain obtained, it is 
not desirable to obtain high gains say, for example maximum 
magnitudes of 4. Finally check that CAP is satisfied using 
equation (3.13).

(iii) Obtain Gq, with the help of equation (2.80)
(iv) With G and Gq obtained verify that the augmented aircraft 

satisfies the dropback criterion. Check that the gains are 
not too high and that CAP is satisfied, if not go back to 
step (i) and change the parameter R.

This is basically the approach given by Friedland13, which is an 
engineering approach. It is also given by Brogan60 and
Powell-Franklin-Naeimi7 . Experience has shown that this design 
procedure is very easily performed and compares favourably with the 
pole placement design procedure. In fact one can obtain the control 
law gains very quickly with the optimal control method compared with 
pole-placement design method. In addition, it is clear that no attempt 
is made to choose the poles of the closed loop equation since, first, 
it is not necessary in the design procedure, and second, the choice of
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one parameter ( R ) is more easily made than the choice of three poles 
in the s-plane. It must also be mentioned here that the pole placement 
method obtains the feedforward gain for perfect zero steady state 
error, since its calculation is based on pole-zero cancellation. The 
optimal control method obtains a feedforward gain that does not give a 
perfect steady state zero error, but for engineering considerations 
close enough. In fact as the control weight R goes to zero the steady 
state error also goes to zero.

In table (3.4) the control law gains obtained by optimal control are 
listed together with the selected control weight R, and this table can 
be compared with table (3.2) which refers to the pole-placement 
method. In table (3.5) the short period characteristics obtained with 
the optimal method are summarized, and can be compared with those of 
table (3.3) obtained by pole placement.

TABLE 3.4 - CONTROL LAW GAINS

FC# K K K G R h Machw q e 0q
f t sec sec rad sec ft

3 0.0002 -0.1348 -0.3162 -1.290 10 1000 0.60
6 0.0003 -0.2157 -0.4470 -1.280 5 20000 0.70
9 0.0005 -0.5433 -0.8160 -1.720 1.5 40000 0.80

13 0.0006 -0.2800 -0.4470 -1.910 5 10000 0.40
17 0.0004 -0.2570 -0.4470 -1.540 5 30000 0.70

TABLE 3.5 - SHORT PERIOD CHARACTERISTICS OF THE 
CLOSED LOOP SYSTEM

FC* POLES tosp
rad/s

Csp CAP
-2s

h

ft

Mach

3 -1.03 ± i 1.27 -0.23 1.64 0.63 0.130 1000 0.60
6 -0.75 ± i 1.20 -0.27 1.42 0.53 0.140 20000 0.70
9 -0.61 ± i 1.03 -0.24 1.19 0.51 0.170 40000 0.80

13 -0.60 ± i 0.93 -0.19 1.11 0.54 0.170 10000 0.40
17 -0.56 ± i 1.03 -0.21 1.18 0.48 0.150 30000 0.70
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In figure (3.3) a plot of the augmented aircraft with the optimal
control law design with respect to the dropback criterion is shown.

A preliminary comparison of both designs shows that:

— The optimal control law design satisfies the CAP requirement 
better than the pole-placement design. This can be seen since the 
poles have moved less with respect to the open loop aircraft in 
the optimal design than in the pole-placement design.

— In both designs the most difficult flight condition corresponds 
with 40000 ft, a fact indicating that the design must be carried 
out for several flight conditions in order to obtain an idea of 
how it works Thus the analysis of a few flight cases only can 
sometimes leads to wrong conclusions.

— The optimal design always gives an augmented aircraft with an 
oscillatory short period mode. This is good since the second 
order like characteristics are maintained.

— The feedforward gain of the optimal design is always greater than 
that of the pole-placement design, a fact that leads to a lower 
frequency integrator pole, but also to a higher control effort 
with respect to the reference input.

— This preliminary design results in lower feedback gains in the 
optimal control law design, a fact that gives lower control effort 
with respect to the regulator characteristics.
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D ropback cri te r io n  plot of the optimal control design

The results of both design exercises show that the optimal control law 
design obtains an augmented aircraft that better satisfies not only 
the dropback criterion but also the CAP ( MIL-F-8785C ) requirement. 
To attempt to choose the closed loop pole locations was not as 
successful as the attempt to choose the control weight R. In the pole 
placement method the procedure for allocating the short period closed 
loop poles has lead to the reduction of o in order to satisfy the

sp
dropback criterion, which is not good practice, as mentioned. To 
summarize, it is possible to conclude that the optimal control method 
offers a better design procedure for meeting both the closed loop pole 
location requirements as well as handling qualities criteria 
requirements.
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3.5 THE INFLUENCE OF AN ACTUATOR ON CONTROL LAW PERFORMANCE

3.5.1 INTRODUCTION

It is instructive to assess the performance of both control law 
designs when an actuator is included in the system. First, the study 
was performed with the reduced short period model of the aircraft. Two 
actuator models have been used, both described by a second order 
mathematical model. Obviously, a more searching study could assess 
actuators with alternative characteristics such as a third order model 
or a non-linear model. The mathematical models of the actuators are 
described by the following state equations.

Actuator no.l is given by :

r?

0 0 

450 -30

Actuator no.2 is given by :

r? 0 0

-100 -14

The model is simply: x 
♦

> II AA

with : xT = A [ i?V
where n is 'c the input to the

n +
0

% (3

-
V

_ n
450

1
r? +

0
% (3

V
. *7.

100

a 'c (3.21)

(3.22)

effort.
Actuator no.l has a natural frequency of 21.2 rad/sec and a damping 
ratio of 0.70. Actuator no.2 has a natural frequency of 10 rad/sec 
and a damping ratio of 0.70. Figure (3.4) shows the aircraft with 
control law and actuator. The reason for the choice of actuators with 
these characteristics was due to the fact that the short period
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natural frequency is around 1 rad/sec and so it allows to explore 
their influence on the system performance with respect to stability 
and flying qualities.

+

-e

- £

A CT U AT O R
DYNAMICS

AI RC R AF T

DYNAMICS

figure 3.4 - control law structure w i th  actuator in the loop.

As before the control law is given by:

n = -G x + G q (3.23)C 0 dp

where G = [ K K K ] and G is simply a single gain, w q C 0q

The aircraft may be described by the state equation,
x = A x + [ B Z31 ] x + E q (3 .24)A dp

where A is given by (3.7) and is a (3x3) matrix, B is given by (3.8) 
and is a (3x1) vector and E is given by (3.9) and is also a (3x1) 
vector.

Z31T = [ 0 0 0 ]  (3 .25)
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and x is given by (3.6), or x = [ w q e ].q
Substituting (3.23) into (3.21) and considering equation (3.24) the 
closed loop model is given by :

A [B Z31] 
A-B G A

X E+
X A B G-* A 0 -

dp (3.26)

With this model it is possible to obtain the trasnfer function of q in 
response to q^ . The effect of the actuator on the closed loop 
performance of the aircraft with both control law designs is assessed 
with particular reference to pitch rate response.

3.5.2 THE RESULTS OF ASSESSMENT

An evaluation was performed with both control laws and both actuators 
and a summary of the results is listed in tables (3.6), (3.7), (3.8) 
and (3.9). A review of the assessment leads to the following 
conclusions.

(i) The inclusion of an actuator in the loop, in general gives an 
increase in the pitch-rate overshoot of the response in both 
designs. However, this effect with the pole placement control 
law design is less than with the optimal design. ( tables (3.6) 
and (3.7) ).

(ii) With both actuators the same value for the dropback parameter is 
obtained.

(iii) The pole-placement control law design has little advantage over 
the optimal control law design with respect to actuator effects 
when measured in terms of the dropback criterion. The reasons 
are clearly seen on tables (3.6) and (3.7).

(iv) The inclusion of the actuator in the loop with the pole 
placement control law design prevented the aircraft meeting the 
CAP requirement at pratically all flight conditions. On the 
other hand, the aircraft with optimal control law design and 
actuator satisfies CAP level 1 for all flight conditions. This
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can be seen in tables (3.8) and (3.9). The short period natural
frequency with the pole placement control law design is
decreased with respect to the basic aircraft without actuator,
the dropback performance is improved but CAP deteriorates.

(v) The speed of aircraft response ( t ) is about the same as seenm
from tables (3.6) and (3.7).

TABLE 3.6 - INFLUENCE OF THE ACTUATOR WITH RESPECT TO 
DROPBACK CRITERION IN THE POLE-PLACEMENT DESIGN

FC !el.
qss

DB
qss 
( sec)

tm

( sec)

no act act 1 act 2 no act act 1 act 2 no act act 1 act 2

3 1.251 1.302 1.344 0.09 0.13 0.13 1.4 1.4 1.4
6 1.220 1.250 1.268 0.15 0.20 0.20 1.6 1.6 1.6
9 1.110 1.090 1.090 0.02 -0.05 —0.06 2.1 2.1 2.1

13 1.238 1.250 1.270 0.11 0.12 0.12 2.6 2.6 2.6
17 1.162 1.170 1.180 0.07 0.10 0.11 2.1 2.2 2.1

TABLE 3.7 - INFLUENCE OF THE ACTUATOR WITH RESPECT TO 
DROPBACK CRITERION IN THE OPTIMAL CONTROL DESIGN

FC
qss

DB
qss 

C sec )

tm

( sec )

no act act 1 act 2 no act act 1 act 2 no act act 1 act 2

3 1.320 1.320 1.340 0.05 -0.06 —0.06 1.2 1.3 1.3
6 1.470 1.470 1.510 0.01 -0.06 -0.07 1.3 1.3 1.4
9 1.490 1.520 1.560 0.02 0.03 0.02 1.5 1.5 1.6

13 1.440 1.450 1.470 0.09 0.10 0.09 1.7 1.8 1.8
17 1.590 1.620 1.650 0.03 0.15 0.14 1.5 1.6 1.6
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TABLE 3.8 - INFLUENCE OF THE ACTUATOR WITH 
RESPECT TO SHORT PERIOD CHARACTERISTICS ON 

POLE PLACEMENT CONTROL LAW DESIGN

FC G)sp
(rad/sec)

CAP

-2s

h

ft

Mach

no act act 2 no act act 2 no act act 2

3 1.55 1.46 0.70 0.72 0.117 0.103 1000 0.60
6 1.20 0.94 0.85 0.83 0.101 0.062 20000 0.70
9 0.85 0.60 1.21 1.03 0.086 0.043 40000 0.80

13 0.838 0.78 0.70 0.70 0.092 0.082 10000 0.40
17 0.90 0.71 0.96 0.88 0.087 0.054 30000 0.70

TABLE 3.9 - INFLUENCE OF THE ACTUATOR WITH 
RESPECT TO SHORT PERIOD CHARACTERISTICS ON 

OPTIMAL CONTROL LAW DESIGN

FC G)sp
rad/sec

Ç ep CAP
-2s

h

ft

Mach

no act act 2 no act act 2 no act act 2

3 1.64 1.67 0.63 0.62 0.13 0.134 1000 0.60
6 1.42 1.46 0.53 0.51 0.14 0.149 20000 0.70
9 1.19 1.25 0.51 0.50 0.17 0.185 40000 0.80

13 1.11 1.11 0.54 0.54 0.17 0.165 10000 0.40
17 1.18 1.19 0.48 0.48 0.15 0.153 30000 0.70

In summary it is possible to conclude that the optimal control law 
design is more robust with respect to stability requirements ( CAP ) 
when an actuator is included in the loop. As can be seen from table 
(3.9) CAP is maintained for all flight conditions whereas, whith the 
pole placement design CAP is not maintained as seen in table (3.8). 
With respect to the dropback criterion both designs have about the
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same behaviour as seen in tables (3.6) and (3.7). Therefore, in order 
that an actuator may be included in the model it is necessary to 
redesign the optimal control law for flight conditions 3 and 6 in 
order to meet the dropback criterion and to redesign the pole 
placement control law for all flight conditions in order to meet CAP.

3.6 ASSESSMENT OF THE CONTROL LAWS WITH THE FULL AIRCRAFT MODEL

3.6.1 INTRODUCTION

Now, it is also necessary to investigate the performance of both 
control law designs when the phugoid is introduced into the model. 
The state vector is now given by :

xT = [ u w q 0 e ]  (3.27)q
The control law structure is given by figure (3.5).

+

dp -e-e

A IR C RA F T
DYNA MI C S

figure 3.5 - control law structure with phugoid model included
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The mathematical model is simply: 
x = A x  + B n  + E q dp

and the aircraft longitudinal model is given in appendix A as :

(3 .28)

x = A x 
LM  LM LM BLMrl (3.29)

with ; LM *  £ u w  q e  ] (3.30)

A is the full longitudinal state matrix given in appendix A, and 
LM

is the longitudinal control matrix given in appendix A.
Thus,

A =
0

A 0
LM 0

0
[0 0 10] tO]

(3.31) and B = LM (3.32)

E = [ o o o o -i ]
xT = [ u w q 0 £ ] q =  [ X LM £ 3 q

again the control law is, rj = 

but now the gain vector is given by ;

G = [ O K  K O K  3v q eq
and G is the same as before, o

G x + G q0 dp

(3.33) 
(3.33.a)

(3.34)

(3.35)

The closed loop equation is of the same form as equation (3.12), that 
is ,

x = (A-BG)x + (BG + E)q0 ^dp (3.36)

Based on the solution of equation (3.36) an analysis was performed as 
for the introduction of the actuator and the findings are as follows :

(i) The inclusion of the phugoid model caused the aircraft with 
optimal control law design to fail to meet the dropback 
criterion at any flight condition. The aircraft with pole
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placement control law design still satisfies the dropback 
criterion for some flight conditions.

(ii) Again the aircraft with optimal control law design still
satisfies CAP level 1 at all flight conditions but the aircraft 
with pole placement control law design does not satisfy CAP 
level 1 at 30000 ft and 40000 ft.

(iii) At 30000 ft , mach 0.50, the aircraft with pole placement
control law design has a phugoid that even fails to meet level 3
of MIL—F—8785C requirements.

(iv) The aircraft with optimal control law design has a stable 
phugoid satisfying level 1 of MIL—F—8785C at all flight 
conditions.

(v) The optimal control law design fails completely to maintain the
relation {q/q ) ^ i, at almost all flight conditions. Indp
contrast, the aircraft with pole placement control law design 
maintains the relation in the range (0.90 ^ q/q ^ 1.10) at alldp
flight conditions.

3.6.2 SUMMARY OF AIRCRAFT CHARACTERISTICS WITH BOTH 
CONTROL LAW DESIGNS

In tables (3.12) and (3.13) the short period characteristics obtained 
with both control law designs are summarized for comparison. In table
(3.14) the steady state pitch rate gain is listed for both control law 
designs.
In figures (3.6), (3.7) and (3.8) step response time histories for
both designs with the full aircraft model are given for comparison. 
In figures (3.9) and (3.10) a comparative short term step response 
time histories for both control law designs are shown with the reduced 
order aircraft model and with the full order aircraft model.
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TABLE 3.12 - SHORT PERIOD CHARACTERISTICS OBTAINED 
WITH THE POLE PLACEMENT CONTROL LAW DESIGN

FC ff

REDUCED ORDER MODEL FULL ORDER MODEL

h
ft

Mach(0sp
rad/s

C SP CAP
-2s

G)sp
rad/s

CAP
-2s

3 1.55 0.70 0.117 1.52 0.69 0.113 1000 0.60
6 1.20 0.85 0.101 1.12 0.85 0.089 20000 0.70
9 0.85 1.21 0.086 1.29 1.02 0.205 40000 0.80
13 0.83 0.70 0.092 0.83 0.71 0.097 10000 0.40
17 0.90 0.96 0.087 0.81 0.93 0.068 30000 0.70

TABLE 3.13 - SHORT PERIOD CHARACTERISTICS OBTAINED 
WITH THE OPTIMAL CONTROL LAW DESIGN

FC if

REDUCED ORDER MODEL FULL ORDER MODEL

h
ft

MachG>sp 
rad/ s

ç =p CAP
-2s

G)sp
rad/s

:,p
CAP
-2s

3 1.64 0.63 0.130 1.664 0.62 0.135 1000 0.60
6 1.42 0.53 0.140 1.445 0.52 0.149 20000 0.70
9 1.19 0.51 0.170 1.199 0.51 0.177 40000 0.80
13 1.11 0.54 0.170 1.116 0.54 0.175 10000 0.40
17 1.18 0.48 0.150 1.176 0.48 0.144 30000 0.70

TABLE 3.14 - STEADY STATE RESPONSE OBTAINED WITH
BOTH CONTROL LAW DESIGNS AND THE COMPLETE MODEL

FC if POLE PLACEMENT 
DESIGN

OPTIMAL CONTROL 
DESIGN

h
ft

Mach

3 1.06 0.61 1000 0.60
6 1.02 0.58 20000 0.70
9 1.10 0.87 40000 0.80
13 0.81 0.35 10000 0.40
17 1.05 0.52 30000 0.70
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1.5
Pole. P.C. law acting with the j 
 complete mode 1_ _(_u. u ._c£._tet_a )_

Optimal C.law acting with tlie 
complete model ( u.w.g.teta )_

FC » 5
10

figure 3.6 - pi tch-rate time response of both designs with the 
________________ complete model of the aircraft at 20000 ft, mach 0.50

1.5
| Pole. P.C. taw acting with the 
q complete model ( u ,w,q,teta

g with the! 
u , q, teta )l

! Optimal C. law actii 
; .complete model ( u

10Time •s
figure 3.7 - pi tch-rate time response of both designs with the 
 ____________ complete model of the aircraft at 40000 ft, mach 0.70

1.5
Pole.P.C.law acting with; 

comp1ete mode1 w.q,teta )

(rad/s )

 Optimal C.law acting with
model ( u.w,q,teta ) !

omplete

FC » 12
10

figure 3.0 - pi tch-rate time response of both designs with the 
_________________ complete model of the aircraft at 10000 ft, mach 0.30
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1.5

Y
( rail/ >: >

---- L--- 1----1____ I

n e

| Pole. P,C. law ui tli simple' 
! mode I ( w , q  )

r'-'

i .J--—* I
I . .— - "  I ____ i _ _ ________; ____________

Pole. P.C. law with completei i i i
model ( u ,u ,q ,teta );I I I :I I I )  I I I .

I l l ’ > l
[Comparison^ of Pole. P.C. law with; 
■[complete mode 1 and simplified

FC # 1
Time ( s e c ) 10

figure 3.9 - effect of the phugoid mode on the aircraft response 
with p o 1e- p 1acement control law design at 1000 ft mach 0.30

1.5

( r a d / s )

-i -J-Optimal C. law acting with the-».
simplified model

^.Optimal C . law acting with the _[ 
complete linear model C u ,w ,q ,teta )i i i i

■FC # 11----- .----- j----- f----- ;----- !------

T ime ( s e c ) 10

figure 3.10 - effect of the phugoid mode on the aircraft response 
with optimal control law design at 1000 ft mach 0.30

70



3.7 THE PERFORMANCE OF BOTH CONTROL LAW DESIGNS WITH THE 
COMPLETE MODEL OF THE AIRCRAFT AND THE ACTUATOR

Now an evaluation of both control law designs whith the full aircraft 
model including the actuator is performed. The actuator to be 
considered is actuator N- 2 from section 3.5, since its natural 
frequency is closer to the short period natural frequency than the 
natural frequency of actuator N— 1, and also for simplicity. The 
control law structure is shown in figure 3.11.

-e ++- £ A C T UA T OR
DYNA M IC S

AIRC R AF T

D YNAMICS

f i gure 3.11 - control law structure w it h  p hugoid model and a ct u at o r 
model included. ___________

Obviously the state vector is now :
xT = [ u w q 0 £ ? 7 v ]  (3.37)q n

The state equation describing the mathematical model is given by:

x = A x + B n  + E q (3.38)c dp

Considering
A as the state matrix of the aircraft longitudinal model given in 
LM

appendix A, B as the control matrix of the aircraft longitudinal
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model as given in appendix A. Then the matrix A in (3.38) can be 
written

0 0
0 0A BLM 0 LM 0
0 0

0 0 1 0 0 0 0
0 0 0 0 0 A0 0 0 0 0 A

A is the actuator state matrix defined in section 3.5, equation 
A
(3.20). The matrix B is given by,

BT = [ 0 0 0 0 0 8 ]  (3.40)A
where B is the actuator control matrix defined in section 3.5, 

A
equation (3.20), and

ET = [ 0 0 0 0 - 1 0 0 ]  (3.41)

Again the control law is,
n = —G x + G q (3.42)c o dp

but now, G = [ 0 K  K O K  0 0 ]  (3.43)w q eq
and is the same as before. The closed loop model is given by the 
state equation,

X = (A-BG)x + (BG +E)q (3.44)0 dp
As already mentioned the evaluation was performed only with actuator 
no.2. Table (3.15) shows a comparison of the dynamic characteristics 
of the aircraft when it is considered only with the reduced order 
aircraft model without actuator, as in section (3.3), and with full 
order aircraft model including actuator, all for the pole-placement 
control law design. In table (3.16) the same results are listed for 
the optimal control law design.
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TABLE 3.15 - SHORT PERIOD CHARACTERISTICS OBTAINED 
WITH THE POLE PLACEMENT CONTROL LAW DESIGN

FC ff

RE DUCED ORDER MODEL 
NO AC T UA T O R

FULL ORDER MOD E L  
WITH A C TU A T O R  N° 2

h
ft

MachG)sp
rad/s

CAP
-28

G)sp
rad/s

c *p CAP
-28

1 0.87 0.70 0.125 0.82 0.72 0.120 1000 0.30
5 0.84 0.85 0.092 0.72 0.85 0.071 20000 0.50
8 0.76 1.17 0.085 1.42 1.19 0.297 40000 0.70
12 0.68 0.70 0.099 0.66 0.72 0.103 10000 0.30
16 0.70 0.90 0.084 0.63 0.86 0.067 30000 0.50

TABLE 3.16 - SHORT PERIOD CHARACTERISTICS OBTAINED 
WITH THE OPTIMAL CONTROL LAW DESIGN

FC »

R EDUCED ORDER MODEL 
NO A CT U AT O R

FULL ORDER MODEL 
WITH A C TU A T O R  N<> 2

h
ft

MachG)sp
rad/s

c =p CAP
-28

G>sp
rad/s

C,P CAP
-28

1 1.02 0.59 0.172 1.04 0.57 0.193 1000 0.30
5 1.11 0.49 0.162 1.13 0.48 0.175 20000 0.50
8 1.05 0.48 0.164 1.07 0.48 0.175 40000 0.70

12 0.86 0.56 0.158 0.88 0.54 0.184 10000 0.30
16 0.91 0.47 0.142 0.91 0.46 0.141 30000 0.50

From these tables it is clear that there is a degradation in CAP with 
the pole-placement control law design, and again the optimal control 
law design is more robust with respect to maintenance of CAP. As 
stated in section 3.1 CAP requirement for level 1 is,

0.085 Z CAP 3 3.60
The results obtained with both designs with respect to the dropback 
criterion shows that the optimal design has lost the zero steady state
error characteristic ( e ) = o for almost all flight conditions,q ss
figures (3.12), (3.13) and (3.14) illustrate very well this aspect. In 
contrast, the pole-placement design has maintained this relation, that
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is, 0.80 < ( q/q ) ^ 1.27 for all flight conditions. In view ofdp ss
this it is clear that, with respect to steady state characteristics, 
the pole placement design is much more robust than the optimal design. 
With respect to dropback characteristics both designs no longer meet 
the criterion. Table (3.17) shows the performance of the 
pole-placement design with respect to the dropback criterion.

TABLE 3.17 - PERFORMANCE OF THE POLE PLACEMENT 
DESIGN WITH RESPECT TO DROPBACK CRITERION

FC ff

R EDU C ED  ORDER MODEL FULL ORDER MODEL
h

ft

Machtm

sec

qm DB tm

sec

qm DB

q ss
sec

q ss
sec

q ss q ss

1 2.5 1.24 0.12 2.3 1.34 -0.27 1000 0.30
5 2.4 1.19 0.10 2.4 1.25 -0.07 20000 0.50
8 2.5 1.12 0.05 2.2 1.09 -0.22 40000 0.70
12 3.1 1.23 0.11 2.9 1.35 -0.52 10000 0.30
16 2.9 1.17 0.07 2.6 1.22 -0.17 30000 0.50

Table (3.18) shows the steady state pitch rate response obtained with 
both control law designs applied to the complete model and actuator, 
and it is clear how the optimal control law design has deteriorated in 
this respect.

TABLE 3.18 - STEADY STATE RESPONSE OBTAINED WITH
BOTH CONTROL LAW DESIGNS AND THE COMPLETE MODEL 
PLUS ACTUATOR [ q / q  1

L V  L
FC n POLE PLACEMENT 

DESIGN
OPTIMAL CONTROL 

DESIGN
h
ft

Mach

1 0.87 0.27 1000 0.30
5 0.80 0.34 20000 0.50
8 1.04 0.55 40000 0.70
12 0.81 0.25 10000 0.30
16 1.09 -0.78 30000 0.50
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As a general conclusion, both control law designs require adjustments 
to satisfy the dropback criterion, however, the pole placement design 
also requires adjustments to meet CAP level 1. The reasons for the 
findings can be attributed to the fact that in this preliminary design 
the pole placement control law has moved the poles from the original 
open loop position much more than the optimal control law design, 
which is obvious from the relative feedback gain magnitudes of both 
designs. The method for obtaining the feedforward gain in each control 
law design is different. The pole-placement design is more robust 
with respect to zero steady state error characteristic so, as already 
shown the feedforward gain of the pole-placement design is based on 
exact pole-zero cancellation whereas, the feedforward gain in the 
optimal design is based on the performance index, as explained in 
chapter 2.
The gains used in flight conditions 1, 5, 8, 12 and 16 are listed in 
table 3.18—A for the pole placement control law design and also for 
the optimal control law design. The aircraft data for the same flight 
conditions are contained in appendix A.

TABLE 3.18-/k - CONTROL LAW GAINS

FCff Kw 
-1f t sec

Kq
sec

Keq
rad

G0
sec

R

1 0.0037 -1.4267 -1.711 -1.711 -
POLE 5 0.0020 -1.3270 -1.346 -1.346 -

PLACEMENT 8 0.0013 -2.065 -1.743 -1.743 —
CONTROL 12 0.0040 -1.828 -1.684 -1.684 —
LAW 16 0.0021 -1.832 -1.544 -1.544 -

1 0.0005 -0.2131 -0.3162 -2.183 10
OPTIMAL 5 0.0005 -0.2723 -0.4472 -1.813 5
CONTROL 8 0.0006 -0.5297 -0.7071 -1.828 2
LAW 12 0.0008 -0.3782 -0.4472 -2.309 5

16 0.0006 -0.3492 -0.4472 -1.906 5
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2
Comparison of Pole.P. C .Law and Optimal C.Lauj 

'"with complete model (u,u,q,teta,e) and actuator

Pole.P.C.law

1

Optimal c.lau

FC # 5

0 100 Time (««cl

figure 3.12 - pi tch-rate time response of both designs w i t h  the 
c ompl e te  model of the a ir c ra f t and actuator at 20000 ft, mach 0.50

Comparison of Pole. P. C .Law and O^t ima 1 C . Law
w th complete model (u,u,q,teta,e) and

i i i i i i L
Iator

Pole. p.c. la*/

ir / i i i "X i i 
/  : : !

!/ ! Optimal C.Lauj | ' -----

! ! J FC tt 12 !

/ i i i i i 1 1 1 1 1 1 1 * 1 1? 1 ... ..1 ----1--:---1---

figure 3.13 - pi tch-rate time response of both d esigns w i t h  the 
c om p le t e model of the a i rc r af t  and a ctuator at 10000 ft, ma c h 0.30

Comparison of Pole.P. c.lau and Optimal c.lau! 
uith complete model (u.u,q,teta,e) and actuator

i i i i i i i i i

Pole.P.C.law
(rad/s

Optimal c.lau

10Time (sec)

figure 3.14 - pi tch-rate time response of both designs w i t h  the 
c omplete model of the aircra f t and actuator at 30000 ft, ma c h 0.50
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3.8 CLOSED LOOP POLE LOCATIONS COMPARISON FOR EACH FLIGHT CONDITION

3.8.1 INTRODUCTION

It is interesting to compare the pole locations for each of the flight 
conditions studied in order to evaluate the variations.

3.8.2 POLE PLACEMENT CONTROL LAW DESIGN

In table (3.19) the closed loop pole locations for the reduced order 
short period model are listed, that is, the aircraft obtained in 
section (3.3), as showed in table (3.3). In table (3.20) the closed 
loop poles are shown for the case of the reduced order short period 
model with actuator, that is, the aircraft obtained in section (3.5), 
as showed in table (3.8). In table (3.21) the closed loop poles of 
full order aircraft model are listed, that is, the aircraft obtained 
in section (3.6), as showed in table (3.12). Finally, in table (3.22) 
the closed loop poles of the full order aircraft model plus actuator 
are listed, that is, the aircraft obtained in section (3.7), as showed 
in table (3.15). The actuator referred to is actuator number 2, as 
above.

TABLE 3.19 - SHORT PERIOD CHARACTERISTICS 
REDUCED ORDER MODEL AND CONTROL LAW

FCff POLES G)sp 
rad/ s

h

ft

Mach

3 —1.08 ± i 1.11 -1 1.55 0.70 1000 0.60
6 -1.02 ± i 0.63 -1 1.20 0.85 20000 0.70
9 -1.61 ± i 0.45 -1 0.85 1.21 40000 0.80
13 -0.58 ± i 0.59 -1 0.83 0.70 10000 0.40
17 -0.86 ± i 0.25 -1 0.90 0.96 30000 0.70

77



TABLE 3.20 - SHORT PERIOD CHARACTERISTICS 
REDUCED ORDER MODEL - C.LAW and ACTUATOR N-2

FC# POLES COsp 
rad/ s

h

ft

Mach

3 -1.06 ± i 1.01 -1.36 1.46 0.72 1000 0.60
6 —0.79 ± i 0.52 -2.20 0.94 0.83 20000 0.70
9 -0.78 , -0.47 -3.10 0.60 1.03 40000 0.80
13 -0.54 ± i 0.56 -1.35 0.78 0.70 10000 0.40
17 -0.62 ± i 0.33 -2.26 0.71 0.88 30000 0.70

TABLE 3.21 - SHORT PERIOD CHARACTERISTICS 
FULL AIRCRAFT MODEL - CONTROL LAW and NO ACTUATOR

FC# POLES G)sp
rad/s

Ç 3P h

ft

Mach

3 -1.06 ± i 1.08 -1.04 -0.016 0 1.52 0.69 1000 0.60
6 -0.95 ± i 0.59 -1.12 -0.016 0 1.12 0.85 20000 0.70
9 -1.55 , - 1.07 -0.42 -0.015 0 1.29 1.02 40000 0.80

13 -0.59 ± i 0.58 -0.94 -0.038 0 0.83 0.71 10000 0.40
17 -0.75 ± i 0.29 -1.20 -0.014 0 0.81 0.93 30000 0.70

TABLE 3.22 - SHORT PERIOD CHARACTERISTICS 
FULL AIRCRAFT MODEL - C.LAW and ACTUATOR N- 2

FCff POLES (0sp 
rad/s

h

ft

Mach

3 -1.06 ± i 1.00 -1.35 -0.016 0 1.46 0.72 1000 0.60
6 -0.78 ± i 0.51 -2.21 -0.016 0 0.94 0.84 20000 0.70
9 —0.78 , — 0.45 -3.14 -0.015 0 1.57 1.25 40000 0.80
13 —0.55 ± i 0.55 -1.30 -0.038 0 0.77 0.71 10000 0.40
17 -0.62 ± 1 0.33 -2.25 -0.014 0 0.70 0.88 30000 0.70
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The following observations resulting from the comparisons may be 
noted.

(i) table (3.19) with table (3.20)
The influence of the actuator is significant, the closed loop 
poles have moved considerably with respect to the closed loop 
poles obtained in table (3.19).

(ii) table (3.19) with table (3.21)
The influence of the phugoid is minimal, the closed loop poles 
have moved little with respect to the closed loop poles obtained 
in table (3.19)

(iii) table (3.19) with table (3.22)
Table (3.22) is basically the same as table (3.20), and so the 
phugoid dynamics do not influence the short period dynamics as 
much as the actuator does.

3.8.3 OPTIMAL CONTROL CONTROL LAW DESIGN

In table (3.23) the closed loop pole locations for the reduced order 
short period model are listed, that is, the aircraft obtained in 
section (3.4), as showed in table (3.5). In table (3.24) the closed 
loop poles are shown for the case of the reduced order short period 
model with actuator, that is, the aircraft obtained in section (3.5), 
as showed in table (3.9). In table (3.25) the closed loop poles of 
full order aircraft model are listed, that is, the aircraft obtained 
in section (3.6), as showed in table (3.13). Finally, in table (3.26) 
the closed loop poles of the full order aircraft model plus actuator 
are listed, that is, the aircraft obtained in section (3.7), as showed 
in table (3.16). The actuator referred to is actuator number 2, as 
above.
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TABLE 3.23 - SHORT PERIOD CHARACTERISTICS 
REDUCED ORDER MODEL and CONTROL LAW

FC# POLES (i)sp
rad/s

C sp
h

ft

Mach

3 -1.03 ± i 1.27 -0.23 1.64 0.63 1000 0.60
6 -0.75 ± i 1.20 -0.27 1.42 0.53 20000 0.70
9 -0.61 ± i 1.03 -0.24 1.19 0.51 40000 0.80

13 -0.60 ± i 0.93 -0.19 1.11 0.54 10000 0.40
17 -0.56 ± i 1.03 -0.21 1.18 0.48 30000 0.70

TABLE 3.24 - SHORT PERIOD CHARACTERISTICS 
REDUCED ORDER MODEL - C.LAW - ACTUATOR N- 2

FCff POLES G)sp
rad/s

Ç ep h

ft

Mach

3 -1.03 ± i 1.31 -0.23 1.67 0.62 1000 0.60
6 -0.75 ± i 1.25 -0.27 1.46 0.51 20000 0.70
9 -0.62 ± i 1.08 -0.25 1.25 0.50 40000 0.80

13 -0.60 ± i 0.93 -0.20 1.11 0.54 10000 0.40
17 -0.56 ± i 1.04 -0.21 1.19 0.48 30000 0.70

TABLE 3.25 - SHORT PERIOD CHARACTERISTICS 
FULL ORDER AIRCRAFT MODEL - C. LAW and NO ACTUATOR

FCff POLES G)sp
rad/s

:,P

3 -1.04 ± i 1.29 -0.20 ,-0.032 0 1.66 0.62
6 —0.75 ± i 1.23 -0.23 ,-0.032 0 1.45 0.52
9 -0.60 ± i 1.03 -0.23 ,-0.021 0 1.20 0.51

13 -0.60 ± i 0.94 -0.10 ± 10.075 0 1.12 0.54
17 -0.56 ± i 1.03 -0.18 ,-0.033 0 1.17 0.48
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TABLE 3.26 - SHORT PERIOD CHARACTERISTICS 
FULL ORDER AIRCRAFT MODEL - C.LAW and ACTUATOR N- 2

FCff POLES 0)sp 
rad/ s

ÇSP

3 -1.03 ± i 1.31 -0.21 ,-0.032 0 1.67 0.62
6 -0.75 ± i 1.25 -0.25 ,-0.032 0 1.46 0.51
9 -0.62 ± i 1.08 -0.24 ,-0.020 0 1.24 0.49

13 -0.60 ± i 0.95 -0.105 ±i0.075 0 1.12 0.81
17 -0.56 ± i 1.05 -0.18 ,-0.033 0 1.19 0.47

The following observations resulting from the comparisons may be 
noted;

(i) table (3.23) with table (3.24)
The actuator here practically does not affect the pole locations 
as it does in the case of pole placement control law design. 
This is probably due to the fact that the integrator pole in the 
pole placement design is much closer to the actuator dynamics 
than it is in the optimal control law design.

(ii) table (3.23) with table (3.25)
Again the phugoid dynamics have practically no effect on the 
pole locations.

(iii) table (3.23) with table (3.26)
Here again table (3.26) is basically the same as table (3.24).

It is noticed that the choice of s = —1 in the pole placement control 
law design, giving the integrator a time constant close to the short 
period natural frequency, is not a very good choice or perhaps the
choice of w and £ based on equations (3.13) and (3.14) is not sosp sp
good as the choice of the weighting parameter in the performance index 
in the optimal control law design. Table (3.20) clearly shows that 
the inclusion of the actuator influences the pole placement design
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much more than it influences the optimal control law design, shown in 
table (3.24). It appears that optimal design methods can offer a 
better control law design than methods that directly place closed loop 
poles on the s-plane. Again, looking at table (3.19) compared to 
table (3.20) it is evident that flight conditions 3 and 13 are 
influenced as much as flight conditions 6, 9 and 17, once again this 
emphasizes that the analysis of just one, or a small number of, 
flight cases can sometimes lead to wrong conclusions. It must be 
mentioned that the actuator poles have not been listed in these tables 
for reasons of simplicity.
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4 CONTROL LAW DEVELOPMENT TO SATISFY GIBSON DROPBACK 

AND PHASE-RATE CRITERIA

4.1 INTRODUCTION

As shown in chapter 3, both control law designs fail to meet the 
dropback criterion when the phugoid dynamics and actuator are included 
in the model. So it is necessary to carry out some adjustments to the 
optimal control law design in order to meet the dropback criterion and 
to the pole-placement control law design to meet not only the dropback 
criterion but also CAP. The process adopted in the redesign is 
described in this chapter.

4.2 THE ADJUSTMENT OF BOTH DESIGNS IN ORDER TO SATISFY THE 
DROPBACK CRITERION AND CAP REQUIREMENT

4.2.1 THE POLE—PLACEMENT CONTROL LAW DESIGN

As seen in chapter 3, to redesign the pole-placement control law it is
necessary to recover the steady state characteristic ( q/q ) ^ l,dp ss
and an acceptable dropback. In order to recover good steady state
characteristics it is necessary to adjust the gains K and K , whilew £q
looking simultaneously at the CAP requirement. To perform this 
adjustment an analytical approach was followed, and for this approach 
the actuator dynamics were not included, just the short period mode 
and phugoid mode together.
The control law is:

n = -Gx + G q (4.1)0 dp

and for the reduced order model without actuator,
xT = [ w q e ]  (4.2)q

and G = [ K K K ] (4.3)w q £qNow if the phugoid model is included in the dynamics, the state vector 
becomes,

xT = [ u w q 6 ] (4.4)
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and the basic control law is.

H = -K w -K q -K e + G

however e = q — qq dp

so, £ = q/s - q /sq dp
but 0 = q / s
and then, e = 0 - q /s q dp

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

substituting (4.9) into (4.5) it is possible to write the control law 
in the form:

T} — —K w —K q —K 0 + K dp + G qw q £ £ ———  0 dpq q S
(4.10)

and so. 77 = —Gx + dp (4.11)

now with x = [ u w q 0 ] 
and

(4.12)
(4.13)G = [ 0 K k K ]w q £qSo the analytical approach to adjust K and K was obtained with the

qstate vector (4.12) and the control law (4.11). From the mathematical 
model for the closed loop system it is possible to obtain the transfer 
function of q to q , which is of the form:dp

=
qdP

N s3+ N s2+ N s + N0
A s4 + A s3+ A s2+ A s  +  A4 3 2 1 0

(4.14)

Applying the final value theorem to (4.14), it is possible to obtain a 
relationship :

N
=   —  =  K (4.15)

dp 0
as N and A are functions of the aircraft aerodynamics, K and K ,0 0  w £q(4.15) can be written as: K = function (K ,K ), and so it is

88 W £ qpossible to obtain an approximation for K as a function of K and K
£ W 8 8q

where K is simply the desired steady state constant to be achieved.
88
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If K is choosen around 1, lets say in the range 0.98 to 1.02, thens s
it is possible to adjust K and K whilst monitoring the value ofw 6
CAP. It must be mentioned that it is not possible to choose K

88
exactly 1 due to numerical problem in the calculation of . In

q
this way new gains K and K were obtained for all flight conditions.w £qIt is useful now to remember from chapter 3 that the zero steady state 
characteristic of the pole placement control law design was well 
behaved even when the actuator was included, and so the method is a 
good approximation for finding new feedback gains K and

q
The method can be summarized as:
(i) choose a constant K ( 0.98 to 1.02 )s s
(ii) with the old K ( from the reduced order model ) obtain a new Kw £q
(iii) with the new gains K ,K and old K find the CAP with thew £ qq

complete model and actuator. If CAP is satisfyied, then it is 
all right ( as is the case of flight conditions 9 and 17 ). If 
not go back to (ii) with a small change in K

This procedure will recover good CAP and good steady state 
characteristics, it remains now to recover good dropback. The 
dropback characteristics will be recovered by the feedforward gain G^. 
The technique for obtaining a new Gq is simple and widely used in the 
aeronautical industry, by simulating the aircraft response and 
adjusting the gain Gq based on the original value obtained with the 
reduced order model.

With the new feedback gains and the original feedforward gain 
obtain the dropback parameter, if it satisfies the criterion then 
no adjustment is necessary, if the criterion is not satisfied 
then change the Gq just a little, beginning with 5% change. 
Obtain the aircraft response, and so on until the criterion is 
satisfied. The convergence is fast, with few iterations. Around 
five iterations are required to obtain a new value of the 
feedforward gain.

With this procedure the new gains obtained are listed in table (4.1). 
and in table (4.2) the new short period characteristics are compared 
to the original short period characteristics.

85



TABLE 4.1 - NEW GAINS COMPARED WITH THE OLD 
GAINS FOR THE POLE-PLACEMENT CONTROL LAW

FC ff 3 6 9 13 17

Kw
f i"1s

old 0.0012 0.0012 0.0011 0.0026 0.0013

new 0.0009 0.0018 0.0011 0.0030 0.0013
Kq old -0.588 —0.889 -1.875 -1.094 -1.249
s new -0.588 -0.889 -1.875 -1.094 -1.249
K£ old -1.219 -1.183 -1.697 -1.270 -1.252

r adq new -1.600 -2.857 -2.200 -3.755 -3.429
G0 old -1.219 -1.183 -1.697 -1.270 -1.252
s new -1.389 -0.592 -2.036 -1.600 -1.410

TABLE 4.2 - NEW SHORT PERIOD CHARACTERISES 
COMPARED WITH THE OLD SHORT PERIOD CHARACTERISTICS

FC ff 3 6 9 13 17

G)sp 
rad/ s

old 1.55 1.20 0.85 0.83 0.90

new 2.03 2.19 1.91 1.88 2.42

C SP old 0.70 0.85 1.21 0.70 0.96
new 0.57 0.50 0.99 0.35 0.45

CAP
-2s

old 0.117 0.101 0.086 0.092 0.087
new 0.099 0.156 0.235 0.264 0.252

In table (4.3) the new and old dropback charactristics are compared, 
and some comments are in order now:

i It is seen from table 4.1 that K has changed very little but Kw 6q
has changed more, this is due to the fact that has the main

q
influence in the steady state error.

ii The feedforward gain has in general increased with respect to the
old values, in fact this is not so good, since it represents
higher control effort.
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iii The damping ratio has decreased in all flight conditions, but 
still satisfies level 1 of MIL—F—8785C.

iv It is interesting to note that the short period natural 
frequency has increased in all flight conditions, a fact that 
contradicts the approach followed in the pole placement control 
law design followed in chapter 3.

v The aircraft response is now faster than it was before, that is,
t is now lower.m

TABLE 4.3 - NEW DROPBACK CHARACTERISTICS COMPARED 
WITH THE OLD DROPBACK CHARACTERISTICS

FC ti 3 6 9 13 17

2 m _
q ss

old 1.25 1.22 1.11 1.24 1.16
new 1.44 1.48 1.21 1.51 1.46

—  (sec) 
q ss

old 0.09 0.15 0.02 0.11 0.07
new 0.05 0.16 0.24 0.12 0.08

tm
( sec )

old 1.4 1.6 2.1 2.6 2.1
new 1.1 1.4 1.2 1.4 1.1

q ss
(rad/s)

old 1 1 1 1 1
new 0.99 1 1 0.98 1

4.2.2 THE OPTIMAL CONTROL LAW DESIGN

It was necessary to make changes to the optimal control law 
design in order to recover good dropback characteristics, the 
gains were adjusted as follows. In the initial design process a 
constant state weighting matrix Q was used and the control 
weighting matrix was varied. Here the procedure is reversed, 
that is, a constant control weighting matrix R is used, in this 
case R is taken to be equal to 1, and the state weighting matrix 
Q is varied. Only the element Q(3,3) is varied as in the 
preliminary design. The procedure can be summarized as:
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i With the reduced order short period model, that is with the same
model used in chapter 3 to design the control law, obtain a set 
of new feedback gains varying only the element Q(3,3). The 
design attempts to ensure that the closed loop poles don't move 
too far from the open loop poles and that the gain magnitudes are
not too high ( say no more than 4 ). By varying 0(3,3) from
0.01 to 20 a set of feedback gains and feedforward gains were
obtained, in the same way as described in chapter 3, for each
flight condition.

ii Evaluate the steady state error response of the full aircraft
model with actuator and the new gains obtained in (i). Choose 
the set of gains that offer the best steady sate error response 
recovery.

iii Obtain the dropback characteristics with the new set of feedback
gains and feedforward gain obtained in (ii). If acceptable do
not change the feedforward gain. If not acceptable try a new 
feedforward gain based on the value obtained in (ii) and changing 
it by 5%, 10% and so on until the dropback criterion is
satisfied.

^  must be mentioned here that in this case it is possible to obtain 
analytically full state feedback gains with the full model, that is, 
with the state vector:

Tx = [ u w q 0 e  r jv 3 (4. 15.a)q n

However, since the design was not intended to have feedbacks of u, r? 
and v^, this approach was not adopted. In contrast with 
pole-placement method, it is not possible to obtain analyticaly the 
gains with the full model since the system is not controllable in 
terms of control theory. After the redesign the new gains obtained 
are listed in table (4.4) compared with the old gains. Table (4.5) 
shows the new and old short period characterisitcs and table (4.6) 
shows the new and old dropback characterisitcs.
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TABLE 4.4 - NEW GAINS COMPARED WITH THE OLD 
GAINS FOR THE OPTIMAL CONTROL LAW DESIGN

FC U 3 6 9 13 17

Kw
f t - 1.

old 0.0002 0.0003 0.0005 0.0006 0.0004

new 0.0008 0.0007 0.0009 0.0014 0.0008
Kq old -0.135 -0.216 -0.543 -0.280 -0.257

s new -0.898 -1.016 -1.343 -1.356 -1.228
Ke old -0.316 -0.447 -0.816 -0.447 -0.447

radq new -2.236 -2.236 -2.236 -2.236 -2.236
G0 old -1.290 -1.280 -1.720 -1.910 -1.540
s new -1.927 -1.973 -2.188 -3.230 -2.282

TABLE 4.5 - NEW SHORT PERIOD CHARACTERISTICS 
COMPARED WITH THE OLD SHORT PERIOD CHARACTERISTICS

FC ti 3 6 9 13 17
(0sp

rad/s

old 1.64 1.42 1.19 1.11 1.18
new 2.59 2.56 1.95 1.74 2.13

Cep old 0.63 0.53 0.51 0.54 0.48
new 0.61 0.59 0.59 0.60 0.59

CAP
sf2

old 0.13 0.14 0.17 0.17 0.15
new 0.127 0.182 0.240 0.245 0.222

TABLE 4.6 - NEW DROPBACK CHARACTERISTICS COMPARED 
WITH THE OLD DROPBACK CHARACTERISTICS

FC U 3 6 9 13 17

2 m _
q ss

old 1.32 1.47 1.49 1.44 1.59
new 1.56 1.60 1.47 1.74 1.60

—  (sec) 
q ss

old 0.05 0.01 0.02 0.09 0.03
new 0.07 0.12 0.03 0.01 0.15

tm
(sec)

old 1.20 1.30 1.50 1.70 1.50
new 0.90 0.90 1.10 1.10 1.00

q ss
(rad/s)

old 1 1 1 1 1
new 0.99 1 0.99 0.94 0.98
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4.2.3 CONCLUSIONS AND OBSERVATIONS

The results obtained with the revised pole placement control law
design and optimal control law design led to the following
observations:
i Again the optimal control law design requires higher feedforward 

gains than the pole placement control law design. This is not a 
good feature with respect to control effort.

ii Although the feedback gain K has increased with respect to the
qoriginal value in the optimal control law design, it is constant 

over the flight envelope, which is very good in terms of 
implementation, since it is not required to be scheduled.

iii Again the optimal control law design satisfyies CAP requirement 
much better than the pole-placement control law design. In the 
process of gain adjustment some difficulty was experienced in 
trying to keep CAP in level 1 with the pole placement control 
law design for some flight conditions.

iv Again the pole placement control law design gives better steady 
state characteristics than the optimal control law design. This 
was already known since the method of calculation of the 
feedforward gain used in the pole placement method is based on 
pole-zero cancellation ( chapter 2 ).

v The aircraft with optimal control law design continues to
present a greater pitch-rate overshoot compared with the
aircraft with pole placement control law design.

vi The short period damping is pratically unchanged in the optimal
control law design. Since it was already satisfying the CAP
requirement the redesign of the optimal control law was 
basically concerned with the dropback criterion.

vii The optimal control law design still gives the better phugoid
performance with respect to MIL-F-8785C.

viii The pole placement control law design gives a greater phase and 
gain margin than the optimal control law design. In optimal 
control design methods one can expect to obtain better phase and 
gain margin characteristics than with other methods, however, 
this is true only when full state feedback is used, which is not 
the case here.
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ix The optimal control law design results in higher bandwidth and 
resonant peak than the pole placement control law design. 
However, both designs give a performance which falls outside the 
desired bandwidth range as specified in D'Sousa65.

x As seen, the feedforward gain Gq in both designs was finely
adjusted by trial and error about the nominal feedforward gain
value obtained in the redesign. Adjustment by simulation is
very straightforward, in fact no more than four or five
iterations were necessary in order to obtain the final G .o

Table (4.7) shows the gain margin G , and phase margin P obtained forM M
the augmented aircraft with both designs and also the resonant peak
M , and bandwidth cj .P b

TABLE 4.7 - DYNAMIC CHARACTERISTICS OF THE AUGMENTED
AIRCRAFT WITH BOTH DESIGNS

FC U 3 6 9 13 17

GM CdB) PPCL 12.8 13.6 12.5 15.3 12.4
OCL 9.4 9.4 12.5 11.6 10.5

PM (deg) PPCL 82 62 110 64 70
OCL 62 60 80 74 70

U b PPCL 4.9 3.7 4.7 3.3 4.6
( rad/s) OCL 6.7 6.8 4.9 5.3 5.8

MP PPCL 4.4 4.6 1.8 6.8 4.9
(dB) OCL 5.3 5.8 4.8 6.2 5.7

In figure (4.1) the time response of both designs are compared. In 
figure (4.2) the frequency response of both designs are compared on 
the Nichols chart and in figure (4.3) the frequency response of both 
designs are compared on the bode plot. All these figures refer to 
flight condition 6.
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figure 4.1 - pitc h -r a te  time response of both designs at 20000 ft 
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figure 4.2 - Nichols plot of pi tch-rate fr e q u e n c y  response of both 
_________________ designs at 20000 ft, mach 0.70__________________________ .
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figure 4.3 - Bode plot of pi t ch-rate frequency response of both 
_________________ designs at 20000 ft, mach 0.70_______________________ ___
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4.3 FURTHER DEVELOPMENT OF THE CONTROL LAWS TO MEET 
THE PHASE—RATE CRITERION

4.3.1 INTRODUCTION.

The Gibson phase-rate criterion was developed specially to deal with 
the problem of pilot induced oscillations ( PIO ), which occurs mainly 
in approach and flare. However, here the study is carried out for the 
cruise configuration only, since the reference used, Heffley11, does 
not contains aerodynamic data for the landing configuration. Other 
useful references concerned with the PIO problem are Hess—Kalteis66 
and Powers67. In particular Hess-Kalteis66 offers an interesting 
method for dealing with the PIO problem based on the use of optimal 
control methods.

4.3.2 EVALUATION OF BOTH CONTROL LAWS RELATIVE 
TO THE PHASE-RATE CRITERION

To evaluate both control law designs with respect to the phase-rate 
criterion the aircraft model considered is that described in chapter 
3, section 3.7, the state vector as given by equation (3.37) is,

xT = [ u w q 0 £  n v  ] (4.16)q rj

and describes the full aircraft model plus actuator. From this point 
on actuator no.2 is used in this work. The aircraft model is given by 
the following state equation (3.38),

x = A x  + B n  + E q  (4.17)dp

So the control law structure is that given in Figure (3.11). The
closed loop model is,

x = (A - BG)x + (BG + E)q (4.18)0 dp

with A given by equation (3.39), B given by equation (3.40), E given 
by equation (3.41) and the gain vector G is given in table(4.1) for

93



the pole placement control law, and in table (4.4) for the optimal 
control law. Plotting the closed loop attitude frequency response on 
Nichols chart it is possible to obtain the necessary data to evaluate 
the control law designs with respect to the phase-rate criterion. 
Referring to figure (4.4),

dp J gainf req u en c y at which 
the phase is 0

phase rate

f req u en c y at wh i ch  
the phase is 0 (4.19)

PR
f req u en c y at dp-* phase
-180 phase (deg)

LD
phase lead n e c e s s a r y

PR w h i c h  the f r eq u e n c y  is

LD
figure 4.4 - N e c es s ar y  param e te r s for e v a l u a ti o n of the
phase rate c ri t erion obtai n ed  from the closed loop atti t ud e  
______________ frequency response on the Nichols chart.___________

which describes the parameters needed in order to evaluate the
criterion, these parameters were obtained for both control laws and 
the findings are listed in table (4.8).

Figure (4.5) shows the performance of both control law designs with
respect to the phase rate criterion. From this figure it is obvious 
that the optimal control law is always located in the region of 
moderate PIO whereas, the pole placement control law design shows
greater variations since it is located in this region and also in the 
region of severe PIO. To bring both designs into the optimum region 
it is necessary to introduce of a lead filter into the command path of 
the control laws,as described in chapter 2, section 2.3.4.
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TABLE 4.8 - PHASE-RATE PARAMETERS FOR BOTH DESIGNS

FC ti P OL E - P L A C E M E N T  DESIGN O PTIMAL DESIGN

P.R.
(deg/Hz)

A $ l d
(deg)

^ PR
(Hz)

P.R. 
( d e g / H z )

A * l d
(deg)

^ P R
(Hz)

3 -147 49.7 0.52 -160 46 0.60
6 -317 77.8 0.38 -163 48 0.60
9 , -129 46.4 0.60 -149 52 0.50
13 -344 66.8 0.36 -136 50 0.50
17 -243 63.8 0.45 -156 50 0.55

400
# p o 1e-plac em e nt  
1* optimal control

phase
rate 13

deg
Hz

300
TR EN D S OF HIGH ORDER 

PHASE RATESEVERE
PIO 17

200

MODERATE
PIO

13
100

OPTIMUMNO PIO

figure 4.5 - phase rate cr i te r i o n  plot of both 
_________________ control law designs___________________
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With the extra dynamics of the lead filter in the system it can be 
represented as in Figure 4.6 below.

+

-c
- £

FILTER

PRE A CT U AT O R
DYNAMICS

A IR C R A F T

DYNA M IC S

figure 4.6 - flight control system w i th  lead pre filter in the
__________________ command path_________________________________________________

Referring to figure (4.6) the error is now given by,
£ = q -  q , (4.20)q d

With the introduction of the lead filter in the command path the good 
dropback characteristics obtained in chapter 3 are degraded for both 
control law designs, and so it is necessary to adjust the gains of 
both control law designs. Certainly it can be predicted that the gain 
adjustment will be more difficult for the pole placement control law 
design than for the optimal control law design since the performance 
of the pole placement control law design falls almost entirely in the 
region of severe RIO. With reference to table (4.8) it is noticed that 
the maximum phase rate of the optimal control law is about -136 
deg/Hz, and the minimum is about -165 deg/Hz. For the pole placement 
control law the maximum phase rate is about —124 deg/Hz and the 
minimun about -317 deg/Hz. Thus it is clear that the optimal control
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law design comes closer to meeting the criterion than the 
pole-placement control law design. As seen in chapter 2, section 
2.3.4, a desirable phase rate is less than 100 deg/Hz. Also, a 
comparison of the phase lead A$ld necessary to bring the design into 
agreement with the criterion, that is to put the frequency of 1 Hz in 
the closed loop attitude frequency response on the Nichols chart at 
-180° phase, for both designs shows that.

(i) For the optimal c.l.design 45.1 ^ A$ld <51.7
(ii) For the pole p.c.l. design 44.9° ^ A® ^ 77.8

And it is clear that the values of phase adjustment required by the 
pole placement control law design for some flight conditions can not 
be obtained with phase lead only but, require some redesign of the 
control law gains as well.

4.3.3 THE POLE-PLACEMENT CONTROL LAW DESIGN

To design the lead filter the method of Kuo68 has been followed. The 
transfer function of the phase lead filter can be written as;

1 + aTs 
Ti" a > 1 (4.21)

phase lead 
f i 1 ter

fi gure 4 . 7

Shown on the bode plot, the phase lead controller has two corner 
frequencies, one at to = l/(aT) and the other at to = 1/T . A relation 
of to and 0 with a and T is obtained in Kuo68 as;

m m
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w  = — t t -t —  (4.22) and sin 0 =  =—  (4.23)m /a I m a + 1

In figure 4.8 the bode plot of the phase lead controller is shown.

20 dB/decade 
slope 20 log,0a

dB

w
w,

aT

-9 0 '

aT

figue 4.8 - bode plot of the phase lead c o n t r ol l er

As 0 is the maximum phase lead obtained at the frequency o . In this m m
case to is 1 Hz for all flight cases and the required 0 varies with m m
flight case. Since the average phase lead required by the pole 
placement control law design is around 57°, before attempting to 
design the lead filter it was decided to redesign the control law 
gains for the flight conditions located in the region of severe PIO. 
The redesign procedure was carried out for flight conditions at 10000 
ft, 20000 ft and 30000 ft only, that is flight conditions 6, 13 and 
17. The redesign was performed based on the gains obtained in the 
preliminary design with the reduced order model, chapter 3, section
3.3, and by choosing to adjust only. So flight condition 3 and 9 
have no changes in the feedback gains, they are the same as obtained 
in section 4.2.1. To obtain the new feedback gain K for flight cases 
6, 13 and 17 the starting point was the gains obtained in section 3.3 
, K , K and K .w q e q
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The redesign was made by adjusting K in order to obtain a phase ratew
lower than 200 deg/Hz, and an acceptable CAP. This choice was based 
mainly on the option to keep the changes as simple as possible. The 
new feedback gains obtained by this procedure are listed in table 4.9.

TABLE 4.9 - NEW GAINS COMPARED WITH THE OLD 
GAINS FOR THE POLE-PLACEMENT CONTROL LAW

FC # 3 6 9 13 17
Kw old 0.0009 0.0018 0.0011 0.0030 0.0013

f t _ 1 S new 0.0009 0.0010 0.0011 0.0026 0.0010
Kq old -0.588 -0.889 -1.875 -1.094 -1.249

s new -0.588 -0.889 -1.875 -1.094 -1.249
K£ old -1.600 -2.857 -2.200 -3.755 -3.429
rad^ new -1.600 -1.183 -2.200 -1.270 -1.252
G
0 old -1.389 -0.592 -2.036 -1.600 -1.410

s new -0.834 -1.065 -1.629 -1.461 -1.439

The steps in the procedure can be summarized;

(i) for flight cases 6, 13 and 17 go back to the feedback gains 
obtained in table (3.3). For flight conditions 3 and 9 the 
feedback gains K K and K are maintained at the same valuesw q £qobtained in table (4.1).

(ii) Maintain K and K at the values of table (3.3), for flight
q q 

conditions 6, 13 and 17.
(iii)For flight conditions 6, 13 and 17 the following procedure was 

adopted;
Adjust K in order to obtain a CAP that satisfies Level 1, aw
reasonable phase-rate ( less than 200° deg/Hz ), a reasonable
A$ and a good (q/q ) = 1. This adjustment was performed byLD dp ss
simulating the system and looking for these parameters
iteractively. As convergence is not difficult to obtain.

(iv) The new feedback gains are then determined.
(v) Design the lead filter based on the results obtained in (iii) for
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A$ and P.R.LD
(vi) With the lead filter, actuator, full aircraft model, feedback 

gains obtained in (iv), and the feedforward gain obtained in 
table(4.1), obtain the dropback characteristics. If the dropback 
criterion is satisfied then it is not necessary to change G^. If 
the criterion is not satisfied then adjust by simulation using 
the value in table (4.1) as the starting point. After a few 
iterations the new G^ is obtained and the redesign is then 
completed.

It should be noted that in steps (i), (ii), (iii) and (iv) no filter 
is included in the process, and in the steps (v) and (vi) then the 
lead filter is considered in the process. With this redesign of 
feedback gains, the pole placement control law is now located entirely 
in the region of moderate RIO. Table (4.10) shows the aircraft 
characteristics for the control law with redesigned gains but 
excluding the effects of the lead filter.

TABLE 4.10 - NEW AIRCRAFT CHARACTERISTICS 
WITH THE NEW FEEDBACK GAINS

fc a CAP
-2s

q

. V s s
P.R.

deg/Hz

A0 LD
deg

3 0.099 0.99 -147 49.7
6 0.109 0.95 -122 46.6
9 0.235 1.07 -129 46.4

13 0.109 0.80 -120 53.0
17 0.157 0.93 -122 48.3

A comparison with table (4.8) shows the improvements obtained.

Now that the performance at all flight conditions is improved with 
respect to the requirements of the phase rate criterion, that is, they 
now require less than 50° of phase lead and they have less than
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150°/Hz of phase rate, it is possible to design the phase lead filter. 
The filter was designed choosing the phase lead as 49.5° at 1 Hz, for 
all flight conditions. The resulting lead filter is:

(1 + 0.431 s )
PLF =    (4.24)

(1 + 0.059 s )

( s + 2.32 )
or, PLF = 7.3--- ------------  (4.25)

( s + 17 )

The 7.3 represents the necessary gain compensation in order to keep 
the slope of the closed loop attitude frequency response plot at a 
reasonable value at cross over, that is, lower than 100°/Hz . With 
this lead filter and the redesigned feedback gains, the control law 
satisfies CAP and the phase rate criterion. However, it must also
satisfy the dropback criterion obtained with the redesign of the
feedforward gain Gq as already described before. Table (4.11) shows 
the phase rate criterion and dropback criterion parameters for the 
aircraft witlj ̂ pne redesigned control law.

TABLE 4.11 - FINAL DROPBACK AND PHASE RATE OBTAINED

FC H 3 6 9 13 17
DB
( rad) 0.05 0.06 0.18 0.09 0.01

P.R.
( d e g / H z ) -76.5 -90.4 -100 -76.1 -91.2

It was noticed that, for some flight conditions the dropback is very 
sensitive to changes in the feedforward gain, as can be seen from the 
example of table (4.12). Thus the robustness of this design is poor 
with respect to dropback criterion when the feedforward gain is 
varied. If the design were performed for just one flight condition 
this problem would not be visible, which also shows that in order to 
get some "feel" for the design several flight cases must be analyzed.
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TABLE 4.12 - VARIATIONS IN DB WITH CHANGES IN THE
FEEDFORWARD GAIN AT 20000 FT MACH 0.80

G (s ) 0 DB ( rad )

-1.135 -0.008

-1.156 -0.041
-1.245 0.170

4.3.4 THE OPTIMAL CONTROL LAW DESIGN

To adjust the optimal control law to satisfy the phase rate criterion 
it was not necessary to redesign the feedback gains as in the case of 
the pole placement control law. Since all the flight cases are 
located in the region of moderate PIO, and the phase rate obtained is 
less than 200°/Hz a phase lead filter can be designed directly. 
Considering the average phase lead required for all flight cases as 
48.5° the resulting filter is:

(s + 2.38)
PLF = 6.96   ( 4.26)

(s + 16.58)

With the introduction of this filter in the command path the phase 
rate criterion and CAP are satisfied, but, the dropback criterion is 
not satisfied. So it is necessary to redesign the feedforward gain 
only in order to restore good dropback characteristics. The redesign 
is based on the feedforward gain obtained in chapter 3, section 3.4, 
as the starting point for iterative adjustment. A new feedforward 
gain was obtained by simulating the aircraft response with full model, 
actuator, lead filter and control law with original feedback gains. 
Then with small changes to the initial value of Gq it is easy to find 
a new value that satisfies the dropback criterion. Here the 
convergence is very fast, and the sensitivity of dropback to 
variations in Gq is not a problem as with the pole placement control 
law design. So with this procedure the redesign is completed and the 
resulting feedforward gain, dropback and phase rate are listed in 
table (4.13)
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TABLE 4.13 - FINAL FEEDFORWARD GAINS, DROPBACK AND 
PHASE-RATE OBTAINED

fc n CD O CO DB ( rad ) P.R. (deg/Hz)

old new old new
3 -1.927 —1.156 0.07 0.08 -91
6 -1.973 -1.184 0.12 0.09 -92
9 -2.188 -1.641 0.03 0.06 -83

13 -3.230 -2.584 0.01 0.12 -81
17 -2.282 -1.255 0.15 0.02 -84

4.3.5 CONCLUSIONS AND OBSERVATIONS

The final design characteristics of the aircraft with pole placement 
control law design are summarized in table (4.14) and the
corresponding results for the aircraft with the optimal control law 
design are included in table (4.15). Now the following observations 
may be made,

(i) The optimal control law design has a greater pitch rate 
overshoot than the pole placement control law design as well as 
giving a faster response.

(ii) The optimal control law design results in a greater bandwidth 
than the pole placement control law design.

(iii) The pole placement control law design always has a greater 
phase and gain margin.

(iv) The inclusion of the phase lead filter has increased the 
bandwidth, phase margin and gain margin in both control law 
designs compared with the aircraft without lead filter.

(v) The magnitude of the feedforward gains has decreased in both 
designs, which is a good feature, since it represents lower 
control effort.

(vi) In the pole placement design the feedback gain K has also
qdecreased, which also represents lower control effort.
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(vii) The dropback characteristic has been improved in both designs.
(viii) The pole placement design is not so robust as the optimal 

design with respect to the dropback characteristic when the 
feedforward gain is changed.

TABLE 4.14 - FINAL RESULTS WITH THE POLE-PLACEMENT DESIGN

FC
# qm

rad
sec

tm
sec

q ss
rad
sec

DB
rad

W b
rad
sec

M
P

dB
g m
dB

PM
deg

P.R.
deg
Hz

3 1.34 0.80 0.99 0.05 7.60 3.92 14.2 103 -76.5
6 1.32 0.60 0.99 0.06 9.30 2.65 12.4 90 -90.4
9 1.34 0.60 1.00 0.18 9.40 2.40 11.9 78 -100

13 1.31 1.70 0.92 0.09 5.50 3.50 15.6 133 -76.1
17 1.30 0.60 0.98 0.01 9.50 2.40 12.3 85 -91.2

TABLE 4.15 - FINAL RESULTS WITH THE OPTIMAL DESIGN

FC
ft qm

rad
sec

trn

sec
q ss
rad
sec

DB

rad
U b

rad
sec

M
P

dB
g m
dB

PM
deg

P.R.

deg
Hz

3 1.56 0.60 0.99 0.08 10.0 5.30 10.9 64 -90.9
6 1.61 0.60 0.99 0.09 10.0 5.75 10.3 63 -91.6
9 1.49 0.70 0.99 0.06 9.0 5.00 12.3 82 -82.8
13 1.68 0.60 0.94 0.12 10.3 6.42 10.9 68 -81.3
17 1.41 0.70 0.99 0.02 8.5 4.40 13.0 91 -83.5

In addition the optimal control law design is more tolerant to 
adjustment than the pole placement control law design. As mentioned 
in Powell7, the fact that the optimal design procedure is based on the 
choice of just one parameter, the weight matrix, simplifies the design 
very much. Whereas,the pole placement design is based on the direct 
choice of closed loop poles, i.e.,more than one parameter. In figure 
(4.9) the time response of both designs are compared, in figure (4.10) 
the frequency response of both designs are compared on the Nichols 
chart and in figure (4.11) on the bode plot, all for flight condition 
6. Finally figure (4.12) shows the performance of the final pole 
placement design with respect to the dropback criterion and figure 
4.13 shows the performance of the final optimal control law design 
with respect to the dropback criterion.
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figure 4.9 - pi tch-rate time response of both designs with command 
_________________ path filter at 20000 ft, mach 0.70.__________________
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Aircraft - actuator and
lead pre filter
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figure 4.10 - Nichols plot of pitch - ra t e f r e q u e n c y  response of both 
________________designs wi t h c o mm a nd  path filter at 20000 ft, m ach 0.70
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figure 4.11 - Bode plot of p i t c h - ra t e f r e q u e n c y  response of both 
______________ designs with comm a nd  path filter at 20000 ft, mach 0.70
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figure 4.13 - Dropback criterion plot of the au g mented aircr af t  

w ith command path lead filter and optimal control law design
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5. FLIGHT CONTROL SYSTEM DESIGN USING THE DOYLE STEIN OBSERVER

5.1 INTRODUCTION

Having designed a satisfactory control law the design will now be 
extended to incorporate a Doyle-Stein observer. The inclusion of an 
observer is useful because it will allow the introduction of 
redundancy in the designed flight control system with respect to 
sensor failures. The Doyle-Stein observer is described in chapter 2, 
section 2.7, and also in the Doyle-Stein6 classical paper. In the 
design a reduced order observer is used and the two methods of design 
described in chapter 2 will be used. Other references that also 
present comparable methods for observer design are Miron69,Nelson70 
and D ,Azzo59.It is useful to remember that the Doyle-Stein observer 
has the following important properties:

(i) It Makes the closed loop transfer function from the reference
input to the output the same as it is for full state feedback.

(ii) It has its poles at the transmission zeros of the open-loop
system.

(iii) It does not require feedback of the control signal and thus
has a constant transfer function, independent of the control 
gain.

Three observers will be designed, as follows:

(i) Observer when the sensed output of the aircraft is w
(ii) Observer when the sensed output of the aircraft is q
(iii) Observer when the sensed output of the aircraft is Q

The observer (i) is designed by the first method described in chapter 
2, section 2.6.2, and the observers (ii) and (iii) are designed by the 
second method described in chapter 2, section 2.6.3.
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5.2 THE DOYLE-STEIN OBSERVER WHEN THE OUTPUT IS u

When the output of the aircraft Is w, normal velocity, the first 
design method is used. The aircraft state equation is given by.

x = A x + B rj 
and it can be partitioned as.

X A A X B1 11 12 1 1. —
X A A X B2 21 22 2 2

(5.1)

(5.2)

with x = ui
and x* = [ u q 0 ]
obviously y = C x^ = w
and 0^=1 , or I the identity matrix
As described in chapter 2, the observer is of the form, 

z = F z  + G y  + Hî7
x = L y + z2

and figure 5.1 represents the aircraft plus the observer.

(5.3)

(5.4)
(5.5) 

(5.5.a)

(5.6)

(5.7)

+

+

O BS E RV E R

figure 5.1 - aircraft and observer block di ag r am  for the first 
m et h o d  of observer design.
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the state x is the estimate of x and the matrices F, G, and H are.2
obtained as in (2.99), (2.100) and (2.102) respectively and take the 
form:

F = A - L C A22 1 12

G = (A - L C A ) C"1 + F L 
2 1  l  I V  i

(5.8)

(5.9)

H = B - L O B  2 11 (5.10)

L is called the gain matrix of the observer. It is clear in this 
method that to obtain the condition of zero feedback from the control 
input signal to the observer it is necessary that H = 0. It is
interesting to note that this is not always possible, and when it is 
not possible then it is necessary to use the second design method. So 
for H = 0 it is necesary that;

B - L O B  = 0 2 11 (5.11)

Solving equation (5.11) the gain matrix L of the observer can be 
found. With L determined it is possible, in equation (5.8), to obtain 
F and then in equation (5.9) to obtain G. With this procedure the 
poles of the observer are automatically located at the transmission 
zeros of the open loop system, this is shown in Friedland13. In this 
case the zeros fall exactly on the transmission zeros of the open loop 
transfer function w/rj . In this way the Doyle-Stein observer is 
designed, and its properties are maintained. In appendix D the 
matrices L, F and G obtained are listed for the flight cases studied, 
for example these matrices for flight case 3 are.

-
-0.011 111

= 0.056 = 121
0. 0 1

31

(5.12)

It is noted that 1 = 0  for all flight cases and 1 is pratically
constant with flight case.
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0.0482
-2.1774 9 21 'L :! 1 ... (5.13)
0.0564 [ -c i

It is noted that g = 1  for all flight cases. 31 21

F =

-0.0099 -0.0550 -32.2 f11 f12 f13
0.0082 -39.62 0.0217 f f f21 22 23

0 1 0 f f f31 32 33

(5.14)

It is noted that for all flight cases f = 0, f = 1, f = 0  and f31 32 33 13
is constant. Such features are very good in terms of implementation. 
So this observer design requires that the following gains are 
scheduled with flight condition.

11 21 

that is 8 parameters

g , f , f , f , f and f11 11 12 21 22 23

5.3 THE DOYLE STEIN OBSERVER WHEN THE OUTPUT IS q

5.3.1 INTRODUCTION

When the output is pitch rate q, the same method can be applied to 
design the observer. However, in this case, the design will have a 
problem because one of the transmission zeros of the transfer function 
q/rj is zero, and so one of the observer poles will be located at zero. 
Then the closed loop aircraft will therefore have two poles at zero 
since the aircraft already has a pole at zero. With two poles at zero 
the aircraft will not be BIBO stable and so it is impossible to 
implement this observer design. The solution is to use a second 
method to design the observer, as described in chapter 2, section
2.6.3.
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5.3.2 THE DESIGN

The procedure for design is as follows. The observer dynamics are 
again given by.

z = F z  + G y  + Hr? 

the estimated vector is now given by,

(5.15)

(5. 16)

Again the aircraft state equation is,

x = A x + B r) 
y = C x = q 
C = [ 1 0 0 0 ]  

and again it can be partitioned as ;

X A A X B1 11 12 1 1+
X A A X B2 21 22 2 2

r)

(5.17) 

( 5. 1 7. a) 

(5 .1 7 .b)

(5.18)

with.

and

x = q l
TX [ u w 0 ] 

C u w 0 ]

(5.19)

(5.20)

( 5. 2 0 . a)

Figure 5.2 shows a block diagram representation of the aircraft plus 
observer in this case.
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O BSERVER

figure 5.2 - a ircraft and observer block d iagram for the second

As already explained in chapter 2, it is necessary first to choose the 
observer poles, that is, the eigenvalues of the F matrix. However, 
since the design is for a Doyle-Stein observer, the observer poles 
must be located at the transmission zeros of the open loop system. 
Then F is choosen as a diagonal matrix with the transmission zeros of 
the open loop tranfer function q/rj in the main diagonal. One of the 
transmission zeros of q/rj is zero and, as explained before, it is not 
possible to use this transmission zero, but it is possible to use a 
negative number as close as possible to zero to replace this 
particular transmission zero. The first choice for all flight cases 
was -0.01, and the results have shown that this value works quite 
well. This choice can be made based on the performance of the system, 
so it is iterative. That is , once a value is choosen the performance 
of the aircraft with observer is assessed, if satisfactory this pole 
is obviously a good choice if not, then try other pole. The 
convergence is very fast with the available software in these days.
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Now, it is also necessary to choose G, and the method says to choose G 
with the condition that the pair (F,G) be controllable. For
simplicity G was choosen initially as

_ T
G = [ 1 1  1 ] (5.21)

This choice was maintained for all flight cases, and the 
controlability of the pair (F,G) for each flight case was checked in 
order to proceed with the design.

The next step is to find H, obtained as a solution of, 
H = T B

where T is given by solving the Lyapunov equation,

F T + T (—A) = - G C

and the estimated state vector will be:
-i

x = = P-i

(5 .22)

(5.23)

(5.24)

where, x = [-x ! x2 3 (5.25)

p =
c
T

(5 . 2 5 . a)

and, x^ can be expressed as equation (5.10) 
x = M y + N z (5.26)

So the matrices M and N are simply submatrices of P~ and the design 
is completed. By way of eaxmple these matrices are listed here for 
flight condition 3, the remaining flight conditions are contained in 
appendix E,

H =
0 r h iii
0 = h 21

-0.016 hL 31 J

( 5 . 2 6 . a)
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M =
35.4 
1 2 . 6 
■0.019

m ii
m
21:;-:

mL 31 J

( 5 . 26 . b )

4482 -102 -4349 "
" "il n 12 n 13

N = -658 704 634 n21 n22 n 23
-1.4 0.03 2.3 - n 31 n 32 n 33 -

(5.26.c)

-0.0175 0 0

1

f 12 f 13
F = 0 -0.9859 0 f 21 f 22 f 23 ( 5 . 2 6 .d)

0 0 -0.01 - f 31 f 32 f 33

In this case it is necessary to schedule the following parameters:
f , f » m , m , n , n11 22 11 21 11 12
n , n , n , n , n , h13 21 22 23 31 31

That is, 12 parameters, this is a disadvantage with respect to the 
previous design in terms of implementation.
The parameters m31» n32 and n ^  are basically constant for all flight
cases. It is also noticed that the element h in the matrix H is not31
exactly zero and, as expected, this is due to the fact that an 
approximation to the exact transmission zero was used in the design. 
For this flight case, and all other flight cases, this element is very 
small, and as will be seen later its influence on performance can be 
regarded as negligible.

5.4 THE DOYLE-STEIN OBSERVER WHEN THE OUTPUT IS 0

Here the design method is the same as in the previous section. So 
again, the aircraft state equation is;

x = A x + B r/ (5.27)

the observer is given by; z = F z  + G y  + Hr) (5.28)
the estimated state is ; x^= M y + N z (5.29)
The design procedure is the same as in the previous section. However,
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here the problem is not that one of the transmission zeros of 0/17 is 
zero but, one of the transmission zeros of 0/17 is at infinity, thus 
the design is based on the choice of an approximate pole as close as 
possible to infinity. The choice must be made based on the 
performance obtained, so one must choose a value for this third pole ( 
Q/n has two real transmission zeros ). Design the observer, check 
that all elements of H are close to zero, compare the frequency 
response of the aircraft with control law and the observer with the 
frequency response of the aircraft and control law, if so, then the 
choice is acceptable. If not, then another choice must be made and 
the problem repeated. This iterative procedure is in fact fast, for 
this design three choices were evaluated, s = —50 ; s = — 15 , and s = 
— 4 , and the analysis showed that s = -4 has an acceptable
performance. That is, the aircraft with control law and observer 
including this pole and the other two poles in the real transmission 
zeros of 0/77, has a performance that matches the aircraft with only 
the control law and no observer. Also the matrix H has its elements 
close to zero.
The results obtained for flight condition 3 for example are listed 
here. Appendix F contains the observer matrices for the other flight 
cases studied.

H =

F =

- 0.0001 
-0.0008 

0.1433

43.6 -33.2 2.6
-677 4.9 247
0.52 - 0 . 0 0 2 - 1 4

■7 . 3 
737 

3

(5 . 2 9 . a)

(5.29.b)

(5.29-c)

•0.9859
0
0

0
-0.0175

0

0
0

-4
(5.29.d)
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For this case the elements; f , f , h , m , m11 22 31 11 21
n . ̂.. . n ■ •  ̂n * n » - * n11 13 21 22 31

must be scheduled with flight condition. It is noted that in this 
design the element h^ is not so close to zero as in the previous 
cases. The performance of the design shows that this does not destroy 
the Doyle—Stein condition. So the Doyle-Stein observer has some
degree of robustness with respect to variations in the elements of the 
matrix H, that is variations in H within reasonable limits do not 
destroy the match between the frequency response of the sensor based 
control law and the observer based control law or, as the literature 
of today says, the loop tranfer recovery ( Stevens-Lewis18 ).

5.5 A COMPARISON OF THE PERFORMANCE OF THE OBSERVER BASED
CONTROL LAW WITH THE PERFORMANCE OF THE SENSOR BASED CONTROL LAW

5.5.1 INTRODUCTION

Having designed the alternative observers for a range of flight 
conditions these were evaluated with the previously designed 
pole-placement or optimal control law designs. Since various 
combinations were evaluated the following identification is used;

CL_SB sensor based control law, with the pole placement or with 
the optimal design. The baseline control law for 
comparative purposes.

CL__OB__w observer based control law, that is the control law with
observer when the output of the aircraft is w, again with
the optimal design or with the pole-placement design.

CL_OB_q observer based control law, that is the control law with
observer when the output of the aircraft is q, again with
the optimal design or with the pole-placement design.

CL_OB_0 observer based control law, that is the control law with
observer when the output of the aircraft is 0 , again with
the optimal design or with the pole-placement design.
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The study was performed by simulating each complete control law system 
with an ACSL program, and by comparing the results. An analytical 
study was also performed in order to compare the frequency response of 
each system as well as the time response. The same reference input 
was applied in each case and the results, comprising the time 
histories appropriate to a height of 20000 ft at mach 0.70 only are 
shown, also shown is the frequency response comparison.

5.5.2 SENSOR BASED C0NTR0L LAW

The control law designs considered here are those obtained in chapter 
4, that is, a control law that satisfyies CAP, dropback criterion and 
phase-rate criterion. Considering figure 4.6 which defines the basic 
control law, that is, the sensor based control law.

£ — q - q (5.30)q d

and n = -K w -K q - K e + G q (5.31)C w q £ q O d

where r]c is the input to the actuator.
now q is the output of the lead filter introduced in chapter 4 ,and

d
shown in figure 4.6, and q is the reference input, that now is alsodp
the input to the lead filter.
It is possible to write ; 0 = q (5.32)
and so , 0 = —5— (5.33)

q
From (5.30) e = — ----—  (5 .34)

Defining 0 = (5 .3 5)

than £ = 0 - 0  (5.36)q d

substituting into (5.31)
n = —K w —K q —K 0 + K 0 + G q (5 .37)c w q e C d 0 d

9 9

n = - [ O K  K K ] x + K 0 + G q (5.38)c w q £ £ d 0 dq q
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the state vector is xT = [ u w q 0 ]
The system can be represented by figure (5.3).

(5.39)

dp FILTER
ACTUATOR
DYNAMICS DYNAMICS

AIRCRAFT

figure 5.3 - alterna t iv e  r e p re s en t at i on  of control law design 
obtai ne d  from figure 4.6

The lead filter considered was obtained in chapter 4, section 4.3.3 
for the pole placement control law design and section 4.3.4 for the 
optimal control law design. In state space model form the lead filter 
can be written as:

x = a x + b q (5.40)LF LF LF LF dp

q = c x + d q (5.41)d LF LF LF dp

For the pole-placement control law design the filter parameters are:
a = —16.95 , b = 1 , c = —106.8 , d = 7.3 LF LF LF LF

and for the optimal control law design,

a = —16.66 , b = 1 , c = —100.0 , d =7.0LF LF LF LF
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the mathematical model of the actuator can be given as ;

XA = Aa Xa + BA (5.42)

with x = [ ?7 v ]A (5.43)

and the actuator considered is actuator no.2 used in chapter 3. The 
aircraft dynamics can be written as ;

x = A x + [ B Z41 ] x (5.44)

with Z41 = [ 0 0 0 0 ]  (5 .45)
The matrix A, and matrix B are given in appendix A for the flight 
cases studied , and the state vector of the aircraft is ,

x = [ u w q 0 ] 

The control law is given by.
n — —G x + G q + K 0 'c 0 d £ dq

with G = [ 0 K K k ]w q £q

(5.46)

(5.47)

(5.48)

and 0 is defined in (5.35). With these equations the closed loop 
d

model can be obtained as follows.

(5.49)X A [B Z41] Z41 Z41 X 0

X A —B GA AA B G c A 0 LF B KA £q
X A +

B G dA 0 LF

X LF Z14 Z12 aLF 0 X LF bLF

. v
Z14 Z12 o

. v dLF

with Z14 = [ 0 0 0 0 ] , Z12 = [ 0 0 ]

dp

That is, the control law will be considered as if implemented with 
three sensors, for w, for q and for 0, as in figure 5.3. The 
reference command input used in the ACSL simulations is shown in 
figure (5.4). It is commonly used to represent a pilot input to the 
aircraft since it is more representative of reality than a step.
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(deg/sec)

5

10.0 time0 0.2

figure 5.4 - pilot input used in the ACSL s i m u l a t i o n s .

In figure (5.5) the time histories obtained with the optimal control 
law at 20000 ft, mach 0.70 with CL__SB are shown. The study has shown 
that the dropback criterion was satisfied as already reported in 
chapter 4. In figure 5.6 the frequency response of the closed loop 
system is reported and is used for comparison with the observer based 
control laws.
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figure 5.6 - pi tch-rate fre q ue n cy  response of the a i rc r af t  w ith 
_________________ optimal control law design CL_SB at 20000 ft mach 0.70
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5.5.3 OBSERVER BASED CONTROL LAW CL__OB__w

The same simulation exercise was performed with the aircraft and 
observer based control law CL_OB__w, that is, with an angle of attack 
sensor only. Figure 5.7 shows the structure considered:

dp

PRE
FILTER ACTUA TO R

DYNA M IC S

A I R C RA F T
DYNAM IC S

OBSE RV E R

DYNAMICS

figure 5.7 structure of the o bs e r v e r - b a s e d  control law CL_OB_w

The lead filter is again given by,

X LF =  a LFX LF +  b LFq dp ( 5 -50)

qd = CLFXLF + dLFqdp <5-51)

Again the actuator is actuator no.2 with the mathematical model,

x. = A x + B n  (5 .52)A A A A c

w i t h  =  E H  V ^  ] (5.53)
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Now the aircraft is given by,

X =  A X +  A X +  [B 0] X (5.54)1 1 1 1  12 2 Iv ; A

X = A X + A X + [B Z31] X (5.55)2 21 1 22 2 2 A

W i t h  Z31T = [ 0 0 0 ]  (5 .55.a)
w i t h  X ^ =  W  (5.56)

Tand X2 = [u q 0] (5.5 6.a)
The observer dynamics are described by,

z  =  F z  +  G x  ̂ +  H ï7 (5.57)

X =  L X +  Z (5.58)2 1

with x^ = [ u q 0 ] (5.59)

F, G, H and L are obtained as explained in section (5.2) and are
listed in appendix D for the flight cases analyzed. The control law
is given by ;

n — —G x —G x + G q + K 0 (5.60)'c 1 1 2 2 0 d e dq
w i t h  G = K (5.61)1 w
and G = [ 0 K K ] (5.62)2 q Gq
The closed loop model is then.

x = A x + B u (5.63)

with xT = [ x x x z q x ] (5 .64)1 2 A d LF

and u = q (5.65)dp
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A11 A; 12 EB1 0] Z13 0 0

A21 [ P g Z 3 i ] ; y Z33 Z31

A = -BA
G

(G +G L)1 2 Z23
Z33

AA
[H Z31]

-B G A 2
F

B K A £
qZ31
B G cA 0 LF
Z31

(5

0 Z13 Z12 Z13 0 cLF
0 Z13 0 Z13 0 aLF J

BT = [ o Z31 B G A
d Z31 0 LF d bLF LF ] (5

where ; Z31 = [ 0 0 0 ]

Z23 =
0 0 0 
0 0 0

( 5. 6 7. a)

(5.67.b)

Z33 =

0 0 0 
0 0 0 
0 0 0

(5.67-c)

Z13 = [ 0 0 0 ] (5.67.d)

In Figure (5.8) the time histories obtained with the optimal control 
law design are shown and a comparison with the results of figure 5.5 
shows a very good agreement between both. The match between CL SB and 
CL__0B_w is not exactly perfect because CL_0B__w was designed with a 
MATLAB model incorporating the matrix A and B of the aircraft but, in 
the ACSL model the A and B matrix of the aircraft were a little 
different from those used in the aircraft MATLAB model. The 
differences in the elements of both matrices are around 12 % and arise 
due to the fact that the ACSL model takes the values of the elements 
from an aerodynamic data base and so uses interpolation functions to 
obtain the values whereas, the values used in the MATLAB model were 
taken directly from Heffley11. This fact has shown that CL__0B__w is 
not so robust to aircraft parameter variations when compared with 
CL_SB. This means that if the aircraft parameters vary then the time 
histories obtained with the aircraft augmented with CL_0B_w will not
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be exactly the same as the time histories obtained with the aircraft 
augmented with CL_SB. Figure 5.9 shows the bode plot frequency 
response of the pitch rate transfer function of the aircraft with 
CL__OB__w, and a comparison with figure 5.6 shows a very good agreement, 
and so it shows that the Doyle-Stein observer works perfectly. This 
was expected since CL_OB_w was designed with an observer with poles 
exactly at the transmission zeros of the open loop tranfer function 
w/r).
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figure 5.9 - pitch- r at e  fr e qu e n c y  response of the airc r af t  w i t h  
__________ optimal control law desig n  CL_OB_w at 20000 ft mach 0.70
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5.5.4 OBSERVER BASED CONTROL LAW CL_OB_q

Figure 5.10 shows the aircraft augmented with the observer based 
control law CL__0Bmq .

dp

PRE
FILTER A CT U AT O R

DYNAM I CS

AI RC R A F T
DYNA M IC S

OBSERVER

D YNAMICS

f igure 5.10 structure of the o bs e r v e r - b a s e d  control law C L _O B _q

In this case the observer dynamics are written as ,

z = F z  + Gx^ + Hî7 (5 .68)
X = M X + N Z (5.69)2 1

F, G, H , M and N are obtained in section (5.3) and are listed in
appendix E for the analyzed flight cases. Here x^= q (5.70)

and x^= [ u w 0 ]  (5.71)

The control law is ,



with G = K i q (5.73)
(5.74)and G = [0 K K ]2 w £qthe aircraft model, actuator model and lead filter are the same as 

described in section 5.5.3. The closed loop model is.

x = A x + B u
with x = [ x x x z 0 x ] 1 2 A d LF

A =

u = qdp

A11 A12 [Ba 0] Z13 0 0

A21 A22 [B2 Z31] Z33 Z31 Z31

-B (G +G M)A 1 2 Z23 AA -B G NA 2 B Ka eq
B G c A 0

G Z33 [H Z31] F Z31 Z31

0 Z13 Z12 Z13 0 cLF
0 Z13 Z12 Z13 0 aLF

[ 0  Z31 B G dA 0 LF Z31 dLF bLF 3

(5.75)
(5.76) 

(5.76.a)

(5.77)

(5.78)

with Z12 = [ 0  0] (5.78.a)
and Z31, Z13, Z33 , Z23 have been defined previously. Similar
simulations were performed with CL_0B_q and the resulting time 
histories are shown on Figure 5.11, these plots show a very good 
agreement between CL__SB and CL__0B_q which also shows that CL_0B_q has 
more robustness with respect to aircraft parameters variations than 
CL_0B_w when compared with CL__SB in terms of aircraft response. 
Figure 5.12 shows the pitch rate frequency response bode plot obtained 
with CL__0B__q, and a comparison with figure 5.6 also shows a very good 
match between both. In this case the observer was designed with a 
pole close to zero to approximate the zero transmission zero of q/rj 
and the results show that both frequency responses are very close so 
maintaining the same frequency response characteristics of the sensor 
based control law as required.
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figure 5.12 - p i tch-rate fre q ue n cy  response of the a ir c r a f t  w i t h  
__________ optimal control law design CI_0 B _q  at 20000 ft m a c h  0.70
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5.5.5 THE OBSERVER BASED CONTROL LAW CL_OB__6

In this case figure 5.13 represents the augmented aircraft with 
observer based control law CL OB 0 .

dp

PRE
FILTER AC TU A TO R

D YNAMICS

A I R C R AF T
D YN A MI C S

OBSER VE R

DYNAMICS

figure 5.13 - structure of the o b s e r v e r - b a s e d  control law C L _O B _0

The mathematical model is similar to that described in section 5.5.4 
the differences now are,

x =  0 (5.79)1

and = [ u w q ] (5.80)

x2 = [ u w q ] (5.81)

and G = K (5.82)1 £q
G = [ 0 K K ] (5.83)2 w £q
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Performing the simulations as before the results are shown in figure 
5.14, and again the agreement with CL_SB is also very good, possible 
better than CL_OBmq. In figure 5.15 the pitch rate frequency response 
bode plot of the aircraft augmented with CL__OB_0 is presented, and if 
compared with those of the CL__SB in figure 5.6 a very good agreement 
is seen. Again the Doyle-Stein condition is maintained showing good 
robustness of this design with respect to observer pole selection, 
that is, when the observer poles are not exactly at the transmission 
zeros of the open loop transfer function 6/77 in this case.
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5.5.6 COMPARISON OF THE RESULTS

The figures presented above show the results obtained and can be used 
to form a comparative idea of the performance of each design with 
respect to the sensor based control law as well as with respect to the 
Doyle-Stein observer condition. However, to quantify the results the 
four control law designs are compared in the following tables.

5.5.6.1 THE DROPBACK CHARACTERISTICS

From the simulations performed the attitude dropback parameter was 
obtained for each control law implementation, and summarized in table
(5.1) ,

TABLE 5.1 - DROPBACK CHARACTERISTICS 
DROPBACK ATTITUDE ( DB ) ( in deg )

OPTIMAL C.LAW DESIGN POLE-PLACEMENT C.LAW DESIGN
FC CL_SB CL__0B__w CL__0B__q CL__0B__e CL_SB CL_0B__w CL__0B__q CL__0B__e
3 0.54 -4.0 0.40 0.32 0.37 -4.1 0.13 0.00
6 0.43 — 6 .1 0.26 0.13 1.18 —5.6 0.59 0.40
9 0.70 -4.3 0.37 0.13 1.65 -3.6 0.59 0.84
13 0.80 1.9 0.52 0.59 1.70 2.6 0.62 0.62
17 0.13 -4.3 -0.13 -0.33 1.00 -3.4 0.37 0.00

It is obvious that CL OB w has the worst performance as already 
noticed from the time histories. It is known that the aircraft 
parameters used in the ACSL model are little different from those used 
in the MATLAB model, as mentioned the differences are around 12 % . 
So, looking at table 5.1 it is seen that the baseline control law with 
the optimal design offers a better robustness, with respect to 
aircraft parameter variations, than the baseline control law with the 
pole-placement design, relative to the attitude dropback paramameter. 
In both designs ( pole-placement and optimal) the CL__OB_w has a poor 
robustness with respect to aircraft parameter variations considering 
the dropback attitude parameter. This can be attributed to the fact
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that the complex pair of poles of the observer in CL_OBjw are very 
close to the origin in the s—plane, consequently the poles have some 
influence on the dynamics of the closed loop system. In the other 
observers there is no one pole so close to the origin as in this case. 
Here perhaps the observer design method as used in CL_OB q and CL__0B__8 
would give a better performance by using an approximation for the 
transmission zeros of w/rj very close to the origin. It is also noted 
that CL__OB__q or CL_OB_0 both have a very good performance and so both 
are tolerant to variations in the aircraft parameters with respect to 
the dropback criterion.

5.5.6 .2 CONTROL RATE EFFORT r)

The control rate effort required by each control law is compared in 
tables 5.2 and 5.3, below.

TABLE 5.2 - CONTROL RATE EFFORT 77
FOR THE OPTIMAL CONTROL LAW DESIGN

FC CL..SB CL_OB_w 0 1 0 CO 1 •C CL_OB_0
(deg/sec) (deg/sec) (deg/sec) (deg/sec)

\ i n
Hmax ^min T)max /Lin T)max %min 17max

3 -72 28 -72 27 -72 27 -72 28
6 -72 30 -72 32 -72 32 -72 32
9 -96 43 -95 43 -95 42 -95 43

13 -144 65 -145 64 -145 64 -145 65
17 -78 30 — 78 29 —78 32 -78 30

From both tables it is clear that the pole placement control law 
design demands less control rate effort than the optimal control law 
design, and that was already expected from the analysis of chapter 3 
and 4. It is also observed that for either control law, baseline or
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observer-based, the control rate effort is much the same irrespective 
of the choice of CL_SB, CL_OBjw, CL_OB_q or CL_0B_8 control laws.

TABLE 5.3 - CONTROL RATE EFFORT 17
FOR THE POLE PLACEMENT C.LAW DESIGN

FC CL_.SB 01hju CL_OB_q CL_OB_0
(deg/sec) (deg/sec) (deg/sec) (deg/sec)

in T)max V » r?max Imin r)max %min nmax

3 — 56 16 -56 16 -55 16 -56 16
6 -62 27 — 61 27 — 64 27 -64 27
9 -95 48 -95 48 -95 49 -95 51

13 -84 32 -83 32 -83 32 —83 32
17 -83 40 -80 40 -80 42 -81 41

5.5.6.3 CONTROL EFFORT 17

The minimum control effort required for each control law design is 
summarized in table 5.4 below.

TABLE 5.4 - CONTROL EFFORT in degrees

FC if 3 6 9 13 17

CL_SB P.P.C.L. -10.0 -11.4 -17.8 -16.1 -15.0
O.C.L. -13.6 -13.9 -18.0 -27.2 -14.5

CL_OB_w P.P.C.L. -10.0 -11.4 -17.8 -16.0 — 15.0
O.C.L. -13.6 -13.9 -18.0 -27.0 -14.4

CL_OB_q P.P.C.L. — 10.0 -11.4 -17.8 -15.8 -15.0
O.C.L. -13.6 -13.9 -18.0 -27.0 -14.5

CL _OB_0 P.P.C.L. -10.0 -11.7 -17.8 -16.1 -15.0
O . C . L . -13.6 -14.4 -18.0 -27.2 -14.4
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Again, the pole placement control law design requires less control 
effort than the optimal control law design, and again the control 
effort is much the same for both control law designs irrespective of 
the choice of CL_SB, CL_OB_w, CL_OB__q or CL_OB__0 control laws.

5.6 INTERIM CONCLUSIONS AND OBSERVATIONS

From the study performed it was observed that the control laws 
CL__OB_w, C L O B q  and CL OB 0 can offer the same level of flying 
qualities and stability in the event that a full complement of sensors 
is not available. That is, they are able to maintain the same CAP as 
obtained with CL__SB, the same performance with respect to dropback 
criterion ( except CL__OB_w ) and the same performance with respect to 
the phase-rate criterion. It was obvious from the analysis that 
CL__OB__q and CL_OB__0 give a better performance than CL_OB_w, but only 
with respect to the dropback criterion. So in the event of a sensor 
failure it is best to first switch to CL_OB_q or CL_OB_0, and only in 
the event of a second failure to switch to CL__OB_w. Although it has 
not been reported, the maximum pitch rate q handling parameter is 
about the same with each control law as is the steady state pitch-rate 
q It has also been verified that other response parameters, suchS S
as normal load factor, altitude and angle of attack in all the 
observer—based control laws evaluated maintain a similar response to 
CL__SB. In conclusion, control law CL__OB_w needs some improvement in 
order to be able to maintain the same dropback performance as CL_SB. 
An improvement could be tried by designing the observer by the second 
method, that is, by using an approximation to the transmission zeros 
that are very close to the origin in the s-plane.
With respect to the number of parameters to be scheduled, it has been 
noticed that CL__OB_w requires only 8 parameters, CL_OB__q requires 12 
and CL__OB_0 requires 10, so in this respect CL_0B__w has an advantage 
over CL_0B__q and CL__OB__0, a fact that suggests that the second method 
used to design the observer in general requires more parameters to be 
scheduled with flight condition. Therefore it has been demosntrated
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that the incorporation of an observer operating on one output variable 
only can confer some analytical redundancy to the original control lav 
design, whilst maintaining the same stability level and flying 
qualities of the baseline control law.
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6 THE FAILURE ANALYSIS OF THE CONTROL LAWS AND 
ROBUSTNESS TO GAIN VARIATIONS

6.1 INTRODUCTION

Having designed the control laws to meet the requirements, a failure 
analysis was carried out to evaluate the effect of loosing feedback 
paths. The control laws were also investigated to see how robust they 
are with respect to gain variation. That is, if the control law gains 
experience some variation how does this variation affect the aircraft 
response and the ability of the augmented aircraft to meet the 
dropback criterion, MIL-F8785C and phase rate criterion. Finally, an 
investigation was carried out to evaluate the effect of a failure in 
some of the feedback paths followed by the system switching from one 
control law to another. In particular, when the aircraft is working 
with the baseline control law and a sensor failure occurs, then the 
aircraft switches to an observer-based control law. In this final 
study the threshold detection time, the time elapsed from the moment 
that the failure happens until the moment when the aircraft switches 
to the reversionary control law, was also varied and sensor signals 
were varied to represent maximum, minimum, zero and passive failures 
for steady flight, and manoeuvering flight.

6.2 CONDITIONS ANALYZED IN THE STUDY

In the analytical study only the sensor based control laws were 
considered and the study was split into two cases :

(i) control law implemented with w and q sensors.
(ii) control law implemented with w, q and 0 sensors.
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In the first case two conditions were studied :

(1.1) complete loss of w feedback
(1.11) complete loss of q feedback

In the second case the following conditions were studied :

(11.1) complete loss of q feedback
(11.11) complete loss of 0 feedback

In this case the condition of complete loss of w feedback was not
studied since it is the same as in the first case.

6.2.1 CONTROL LAW IMPLEMENTED WITH w AND q SENSORS
COMPLETE LOSS OF w FEEDBACK

In this case figure 6.1 is the baseline control system for the
analysis.

dp -e
- £

FILTER

PRE A CTUATOR
DYNAMICS

A IR C R A F T
DY NA M IC S

figure 6.1 - control law structure implemented with w and q sensors
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The mathematical model of the lead filter can be written as,

X ~  a LFX LF +  b LFq dp (6 '1 }

%  =  =LFX LF +  (G.2)

and as already known e = q - q (6.3)q d

The control law is.

ri = —K w —K q —K £ + G q (6.4)C w q £ q 0 dq

With G = [ 0 K K 0 ] ,  then (6.4.a)w q

n = —G x —K £ + G q (6.4.6)'c £ q 0 dq

but when w feedback is lost the control law becomes,
n =  —K q —K £ + G q  (6.5)'c q £ q 0 dq

or,with G = [ 0 0 K 0 ] then, (6.5.a)
f q

n = —G x —K £ + G q (6.5.6)'c f £ q 0 dq
The actuator model is represented by the state equation,

x = A x + B n (6.6)A A A A'c

XA = [ 11 Vq ] (6.7)
The aircraft mathematical model is represented by the state equation,

x = A x + [B Z41]x (6.8)A
where, Z41T = [ 0 0 0 0 ]  (6.8.a)

and, with xT = [ u w q 6 ] (6.9)

The A and B matrices are given in appendix A, the lead filter was 
developed in chapter four, the actuator is actuator no.2 of chapter 3, 
and the gains were obtained in chapter 4. With this is mind the 
closed loop model is simply,

x = A x + B u (6 .1 0)
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with xT = [ x x x eA LF q 3 (6 .1 0 .a)

and. u = q
dp ( 6.10.b)

A [B Z41] Z41 Z41

A =
—B G A A f A B G c A 0 LF -B K a eq ( 6. 1 0. c)

[0 0 0 0] [0 0] aLF 0

[0 0 1 0 ]  [0 0] -C LF 0

bt == [ Z41 B G d bA 0 LF LF - V  ] ( 6 . 10 . d)

In figures 6.2 and 6.3 the time history comparison for both control 
law designs respectively are shown for flight condition 6. The 
results show that the failed aircraft has an increase in the short 
period natural frequency compared with the baseline aircraft, and the 
failed aircraft has a decrease in the short period damping ratio 
compared with the baseline aircraft. It has also been noted that the 
failed aircraft no longer satisfies the dropback criterion, however 
the deterioration is only small. Table 6.1 shows the short period 
dynamic parameters compared.
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2

v feedback failed

0

figure 6.2 - pi t ch-rate time response of the aircra f t with optimal 
_________________ design at 20000 ft m ac h  0.70 with w feedback failed

TABLE 6.1 - SHORT PERIOD DYNAMIC CHARACTERISTICS 
OF THE NON FAILED AIRCRAFT AND THE FAILED AIRCRAFT 

WITH THE OPTIMAL CONTROL LAW DESIGN

13 17FC #

non sp
rad/s

1.95 1.742.59 2.56 2.13
failed

sp 0.59 0.590.59 0.590.61

sp
rad/s 2.19 2.002.88 2.412.98

f a iled
sp

0.52 0.510.52 0.50 0.51
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failedv  feedback

Pole placement c.lau - FC

10

figure 6.3 - p i tch-rate time response of the aircraft w i t h  pole 
pla ce m en t  design at 20000 ft mach 0.70 w i t h  w feedback failed

The CAP is satisfied with both control law designs in the failed 
condition, and so the stability level is not changed significantly.
The study also showed that q ,t and q are very little changed withm m  s s
respect to the non failed condition. As a general conclusion it can 
be said that both designs demonstrate good tolerance to this kind of 
failure, in particular the optimal control law design, is better since 
its K gain is lower than the corresponding K of the pole placementw w
design and so it is less susceptible to this failure.

6.2.2 CONTROL LAW IMPLEMENTED WITH w AND q SENSORS 
COMPLETE LOSS OF q FEEDBACK

In this case figure 6.1 is the reference control system again. The 
lead filter is the same as before, given by (6.1) and (6.2), the 
control law is :

î7c =  -G x -K e +  G Qq d (6.11)
q
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with x = [ u w q 0 ] 
and, 6 = [ 0 K K 0 ]w q

Now the failed control law is given by ;
G = [ 0 K 0 0 ]f w

but, £ = q — qq d
So when q feedback is lost and then 
and the control law can be written,

n = —G x — K £ + G q'c f £ q o dq
The aircraft is again given by, 

x = A x + [B Z41]x

£q = "qd

(6.12)
(6.13)

(6.14)

(6. 15) 

(6.16)

(6.17)

(6.18)

and the actuator by ,
X =  A

A x  + B 
A A (6.19)

with
* 1 - * n  ] (6.20)

The closed loop model is given by, x =- A x + B u (6.21)
where xT = [ X X A £ x q LF ] (6 .21.a)
and u = qdp
Thus,

(6 . 21. b )

A [B Z41] Z41 Z41

A =
—B G 

A f AA -B K
a  e

q
B G c A 0 LF (6 .21.c)

Z14 Z12 0 —C LF
Z14 Z12 0 3 l f

and.
b t = [ Z41 B G dA 0 LF -dLF b LP 3 (6 .21.d)

The analysis of the closed loop characteristic equation when the 
aircraft is subject to this kind of failure shows two poles at zero, 
that is s = 0. Thus the system is not BIBO stable. Table 6.2 shows a 
comparison between the closed loop poles location of the non failed 
aircraft and the failed aircraft.
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TABLE 6.2 - CLOSED LOOP POLE LOCATIONS OF THE FAILED 
AND THE NON FAILED AIRCRAFT

FC # OPTIMAL CONTROL LAW

NON FAILED FAILED

6
-1.5 ± i 2.07 
-0.576 
-0.018 
0

-0.75 ± i 0.49 
-0.0026 ± i 0.066 
0.0 
0

13
-1.035 ± i 1.39 
-0.462 
-0.040 
0

-0.604 ± i 0.44 
-0.0011 ± i 0.1318 
0 
0

POLE PLACEMENT CONTROL LAW

6
-1.45 ± i 0.50 
-0.819 
-0.0175 
0

-1.259
-0.289
-0.0043 ± i 0.055 
0 
0

13

-0.55 ± i 0.54 
-1.30 
-0.0378 
0

-1.218 
-0.1515 
0.053 ± i 0.152 
0 
0

Note that at some flight conditions the pole placement control law
design has a pole located on the right half s-plane, and that the
short period characteristics are very deteriorated. This was expected 
since q feedback is a critical feedback. As the system is no longer 
BIBO stable the aircraft response diverges very quickly. In
conclusion, if q feedback is lost the aircraft will demonstrate
dangerous characteristics if the control law is implemented as in 
figure 6.1.

6.2.3 CONTROL LAW IMPLEMENTED WITH w, q AND 0 SENSORS FOLLOWED BY 
COMPLETE LOSS OF q FEEDBACK

Now figure 6.4 must be considered as the implementation of the control 
law.

149



FILTER

PRE
ACTUATOR
DYNAMICS

AIRCRAFT

DYNAMICS

figure 6.4 - control law structure implemented w it h  " w ", " q ", 
and ” Q " sensors

The state vector is again xT = [ u w q 0 ]  (6.22)

the control law is now, n = -K w -K q -K £ + K Q + G q (6 .23)C w q £ q £ d 0 dq q

with, 0 = q , where, (6 .24)d d
n = -G x + K 0 + G q (6 .25)c £ d 0 dq

and. In the failed condition G = [ 0  K K K ] (6 .26)w q £ q

n = —K w - K  0 + K 0 -t-Gq (6.27)C w £ E d  0 dq q
or, n = -G x + K 0 + G q (6 .28)c f £ d 0 dq

where, G = [ 0 K 0 K  ] (6.29)f w £q
The aircraft state equation is, x = A x + [B Z41] x (6 .30)

and the actuator state equation is, x = A x + B n (6 .31)
A A A A c

With = [ D ] (6.32)
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The matrices A and B of the aircraft model are contained in appendix 
A. Thus, the closed loop model is given by.

x — A x  + B u ( 6 . 3 3 )

where x = [ x x x 6 ]
A LF d

( 6 . 3 3 . a )

u = q
dp

( 6 . 3 3 . 6 )

A —

A [B Z41] Z41 Z41

-B G A B G c B K
A f A A 0 LF A C

Z14 Z12 a
LF

0

Z14 Z12 c
LF

0

( 6 . 3 3 . c )

B1 = [ Z41 B G d b d ]
A 0 LF LF LF

(6.33.d)
In figures 6.5 and 6.6 the pitch-rate time response comparison for the 
optimal control law design is shown, for flight cases 3 and 6 
respectively, for the failed and non failed aircraft. The failed 
control law no longer satisfies the dropback criterion however, the 
aircraft remains stable at all flight conditions. The results also 
show that the short period damping is very much reduced whilst the 
frequency is practically unaffected. The pitch—rate response with the 
failed control law takes longer to reach the steady state than is the 
case with the non failed aircraft. In conclusion, a failure of q 
feedback is not so critical when the control law is implemented as in 
figure 6.4. However, if the implementation shown in figure 6.1 is 
used this kind of failure can be very dangerous.
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"Opt ina 1 c

q feedback failed

10

f i g u r e  6 . 5  -  p i t c h - r a t e  t i m e  r e s p o n s e  o f  t h e  a i r c r a f t  w i t h  o p t i m a l  
___________________ d e s i g n  a t  1 0 0 0  f t  ma c h  0 . 6 0  w i t h  q f e e d b a c k  f a i l e d

1 Optimal c.lau

q feedback failed

Aesjcrn__
Lkfc:....:...

10

f i g u r e  6 . 6  -  p i t c h - r a t e  t i m e  r e s p o n s e  o f  t h e  a i r c r a f t  w i t h  p o l e  
p l a c e m e n t  d e s i g n  a t  2 0 0 0 0  f t  ma c h  0 . 7 0  w i t h  q f e e d b a c k  f a i l e d

152



6.2.4 CONTROL LAW IMPLEMENTED WITH u, q AND 0 SENSORS FOLLOWED BY 
COMPLETE LOSS OF 0 FEEDBACK

The implementation considered here is also that of figure 6.4, but 
since 0 feedback is lost it is necessary to write,

G - [ O K  K 0 ] (6.34)
f w q

Otherwise the equations are exactly the same as in section 6.2.3,
except that it is necessary to use (6.34) instead of (6.29) in the
closed loop model. The analysis shows that in this case the steady
state response characteristic of ( q/q ) ^ 1 is no longer maintained.

dp
Referring to the characterisitc equation of the closed loop system, it 
is evident that the stability is maintained in all flight conditions 
with the optimal control law design, but not with the pole placement 
control law design. Table 6.3 shows a comparison of the poles for 
the two control law designs.

TABLE 6.3 — CLOSED LOOP POLES COMPARISON FOR THE 
FAILED AND NON FAILED C.LAW AT FC # 9

OPTIMAL CONTROL LAW

NON FAILED FAILED

-1.15 ± i 1.57 -2.88
-0.317 -0.416
-0.0176 -0.0071 ± i 0.0156
0 0

POLE P L ACEMENT CONTROL LAW

NON FAILED FAILED
-1.89 ± i 0.21 -4.67
-0.398 -0.23
-0.016 -0.0567
0 0.0285

0
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With respect to stability robustness, the optimal control law is more 
robust than the pole placement control law with this kind of failure 
because, in no one flight condition the optimal design gives a 
positive pole in the s-plane. However this kind of failure is not so 
important as the others studied, since if Q feedback is lost it is 
possible to obtain 6 by integrating q ( pitch-rate ), so it is 
possible to say that in this respect, figure 6.4 is also a redundant 
implementation of figure 6.1.

6.3 ROBUSTNESS TO GAIN VARIATIONS

Now it is useful obtain some idea of how robust or tolerant the 
control laws are with respect to variations in the magnitude of the 
designed gains. To perform this evaluation the control law 
implementation is that described in figure 6.1. The closed loop model 
is given by (6.10) except that instead of using Gf (6.5.a), G is used
as in (6.4.a). The gains considered in the study are K , K , K andw q £ qG Two conditions have been analyzed, the first is called +10% and o'
is obtained by multiplying the nominal gains by 1.10, the second one 
is called -10%, and is obtained by multiplying the nominal gains by 
0.90. So, as the nominal control law is given by

G = [ K K K ] (6.35)nom w q £q
G =  G (6.3 5. a)0 Onom

the condition of 10% is obtained by writing,
G — 1.10 G (6.36)+10% nom

G = 1.10 G ( 6. 3 6. a)0 0+10% nom

and the condition of -10% is obtained by writing,
G = 0.90 G (6.37)-10% nom
G = 0.90 G ( 6. 3 7. a)0 , 0-10% nom
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So all gains are varied simultaneously by the same percentage. 
Obviously a more detailed study could be performed by varying one gain 
at a time. The results of this study show that the pole placement 
control law design is more sensitive to this kind of variation in the 
gains than the optimal control law design when the short period 
characteristics are considered. In figure 6.7, the pitch-rate 
frequency response of the optimal control law design is shown with 
nominal gains and with the variations in the gains. It is clear that 
an increase in the gains results in a small decrease in gain and phase 
margin, that is, about 10° in phase margin and 2 dB in gain margin. 
Figure 6.8 shows the corresponding pitch-rate time response of the 
optimal control law design and figure 6.9 shows the pitch-rate time 
response of the pole placement control law design. It is clear that 
small variations in the gains ( ± 10% ) has little effect on control 
law performance with either control law design. Table 6.4 gives some 
indication of the variation in short period characteristics with 
nominal gains and with the variations.

TABLE 6.4 - SHORT PERIOD CHARACTERISTICS WITH GAIN 
VARIATIONS TO FLIGHT CONDITION 6

CONTROL
LAW

(0sp
( r a d / s e c )

-10% n o m i n a 1 + 10% -10% n o m i n a 1 + 10%

«•JUo 2.42 2.56 2.71 0.56 0.59 0.61

P.P.C.L 1.58 1.54 1.02 0.86 0.94 0.95
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+  10%

■ !  - 1  1 ' 1  * 1  ! t  — *  I ( ■ !  ■ ' 1 I 1

. \  design
- 10%

Optimal C .Law - FC ft 3 -/ Gain Variations/Z J
-270 Phase (Oifâr') 8

figure 6.7 - p it c h- r at e  f r eq u en c y response of the aircraft with 
optimal design at 1000 ft m ac h  0.60 w i t h  gain va r ia t io n s_______

design
- - 10% - -

.Optimal C.Law - FC # 3 - Gai 
Aircraft - actuator - lead

18
figure 6.8 - pi t ch - ra t e time response of the aircraft wi t h  optimal 
_________________ design at 1000 ft m a ch  0.60 w i t h  gain va r ia t io n s______

des ign '
-- 10%— :

Pole Placement c .law -

Gain variations effects
leadAircraft - actuator

figure 6.9 - pitc h- r at e  time response of the aircraft wi t h  pole 
placement design at 1000 ft mach 0.60 w i t h  gain variations.
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The dropback criterion, phase rate criterion and CAP continue to be 
satisfied with this magnitude of gain variation. A more searching 
study could be performed by increasing the magnitude of the gain 
variation to find the tolerance limits of the control laws. That 
could be a useful study to perform since the gains must be scheduled 
and some errors might occur in the schedules. Thus the study could 
guide the designer by defining the acceptable tolerance in gain 
scheduling. The results also show that the closed loop poles with the 
optimal control law design would seem to be marginally better with 
respect to changes in the closed loop poles location.

6.4 INTERIM CONCLUSIONS

From the performed study some useful conclusions can be drawn :

i The control law implementation shown in figure 6.4 is safer than
the implementation shown in figure 6.1. It is also more robust
to the effects of q feedback failure with respect to the
maintenance of stability , dropback criterion and phase rate
criterion.

ii The control law is much more robust with respect to the effects
of failures in w feedback than in either q or 0 feedback with
respect to stability and flying qualities maintenance. This was
expected since the magnitude of K is smaller than the magnitudew
of K and K . In particular, the optimal control law is more 

q %
robust than the pole placement control law.

iii The optimal control law is more robust with respect to feedback
gain variations and also to feedback path failures than the pole 
placement control law.

iv In conclusion the implementation of figure 6.4 is advisable with
the optimal design, since it is safer and more robust.

157



6.5 THE SIMULATION STUDY

6.5.1 INTRODUCTION

The computer simulation was used to study the dynamic failure
characteristics of both control laws that is, the sensor based and the 
observer—based. The study considered the following failure modes;

(i) The signal of a sensor fails to zero, called a zero failure.
(ii) The signal of a sensor fails to its maximum positive or

maximum negative value, called a hardover failure.
(iii) The signal of a sensor fails to its present value, called a

passive failure.

Also two conditions have been considered as follows,

(a) steady-state-flight
That is, there is no pilot input and the aircraft is considered 
to be flying in trimmed steady flight. In this condition 10 
seconds of flight was simulated and the failure occurs after 0.10 
seconds.

(b) pilot manoeuvering
That is, there is a pilot input, again 10 seconds of flight have 
been simulated, and the failure occurs after 0.30 seconds.

The study was performed for one flight condition only, 20000 ft at 
mach 0.70. The optimal control law design only was used. The study 
also considered two values of failure detection threshold time , 0.10 
seconds and 0.30 seconds.

6.5.2 THE FAILURE DYNAMICS

The failure dynamics were studied by first assuming the aircraft to be 
fully controlled by the sensor based control law. After a short
predetermined time a fault situation was applied and after the 
threshold detection delay the control law was reconfigured to an
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observer based alternative ( reversionary control law ). Figure 6.10 
shows the sequence of events in the steady-state—flight situation.

time at whi c h the failure occurs
T
i threshold 
j delay 
I time (TDH)

! îj<------------>!
T--:— I ---------- :— I— — ------------------------->
0 0.1 0.1 +T D H time (sec)

   >4,
aircraft w o r k i n g  w i th  a 
s e c ondary control law 
( r e v er s io n ar y  c. law ) 
w i t ho u t failure conditions

figure 6.10 - sequence of events in the s te a dy-state flight 
failure conditions

In this study for reasons of simplicity the failure is assumed to be 
instantaneous, that is, there are no dynamics associated with the 
signal of the failed sensor as it changes to its failed value.
The study have considered primary failures, which means that the 
control of the aircraft switches from the sensor based control law to 
an observer-based control law, and also secondary failures, which 
means that the control of the aircraft switches from an observer-based 
control law to an alternative observer-based control law. Figure 6.11 
illustrates the situation, for primary failures and figure 6.12 the 
possible situations for secondary failures.

aircraft 
w ork i ng 
w i t h  the 
initial 
c . 1 aw 
w ithout 
f a ilure

aircraft 
w o r k i n g  with 
the initial 
c.law but 
w it h  failure 
conditions
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o b s e r v e r - b a s e d  c .law
based on w output

sensor failurebased o bs e r v e r - b a s e d  c.law
control
law happens

based on q output

observer based c.law 
based on 0 output

figure 6.11 - prim a ry  failure a lt e rnatives

ob se r ve r - b a s e d  c.law
ob se r ve r - b a s e d failure based on q output

w output happens
o bs e r v e r - b a s e d  c.law 
based on 0 output

o b s e r v er - ba s ed failure
ob se r v e r - b a s e d  c.law 
based on w output

c.law based on
q output happens

o bs e r v e r - b a s e d  c.law 
based on 0 output

__ _ o b s e r v e r - b a s e d  c.law
o b s er v er - ba s ed  
c.law based on f a ilure

based on w output

6 output
happens

o b s e r v e r - b a s e d  c.law 
based on q output

figure 6.12 - se co ndary failure alte r na t iv e s

The pilot input used to simulate manoeuvering is shown in figure 6.13 
together with the sequence of events representing the failure with 
pilot input. This input was chosen in order to be more representative 
of a typical flight situation.
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time at w h i c h  the failure occurs
t

thr es h ol d  
delay 
time ( T D K )

Î

~~T~
0.3

 T —
0.3+TDH

I
a ircraft 
w o r k i n g  
w i t h the 
init i a 1 
c .1 aw 
w ithout 
f a ilure

a i rcraf t 
w o r k i n g  with 
the initial 
c.law but 
w it h  failure 
cond itions

time (sec)

a ircraft w o r k i n g  w i th  a 
s ec ondary control law 
( r ev e r s i o n a r y  c. law ) 
w i t h o u t  failure conditions

0.3 + TDH time (sec)

figure 6.13 - sequence of events in the m a n o e u v e r i n g  flight 
failure conditions

6.5.2.1 PRIMARY FAILURES ANALYZED

In order to identify the cases analyzed the following shorthand 
identification is adopted from here on. There are six possible cases 
of primary failures.
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(i) CL„SB ------- > CL_OB_w
The aircraft is initially controlled by sensor based control law 
( CL__SB ) and switches to observer-based control law CL__OB__w,
following a failure of the q sensor. This failure is identified
as SBOw_q, that is, mode failure from CL_SB to CL_OB_w following 
failure of q sensor.

(ii) CL_SB ------- > CL_OB_w
The aircraft is initially controlled by sensor based control law
C CL__SB ) and switches to observer-based control law CL__OB__w,
following a failure of the 0 sensor. This failure is identified
as SBOw__0, that is, mode failure from CL__SB to CL_OB_w following 
failure of Q sensor.

(iii)CL_SB ------- » CL_OB„q
The aircraft is initially controlled by sensor based control law 
( CL__SB ) and switches to observer-based control law CL__OB_q,
following a failure of the Q sensor. This failure is identified
as SBOq__0, that is, mode failure from CL__SB to CL_OB_q following 
failure of 0 sensor.

r-
(iv) CL_SB ------ > CL__OB__q

The aircraft is initially controlled by sensor based control law 
( CL__SB ) and switches to observer-based control law CL__OB__q,
following a failure of the w sensor. This failure is identified
as SBOq_w, that is, mode failure from CL_SB to CL_OB_q following 
failure of w sensor.

(v) CL„SB  > CL_OB_0
The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL__OB__0,
following a failure of the q sensor. This failure is identified
as SBO0_q, that is, mode failure from CL_SB to CL__OB_0 following 
failure of q sensor.

(vi) CL__SB  > CL__OB__0
The aircraft is initially controlled by sensor based control law
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( CL_SB ) and switches to observer-based control law CL_OB__0, 
following a failure of the w sensor. This failure is identified 
as SB06_w, that is, mode failure from CL_SB to CL_0B_6 following 
failure of w sensor.

For the hardover failures the following limiting values are assumed,
0 =50° 6 = -50°max min

S... = S0°/s q _max n = —50 /s

(X = 3 0  (x — —30max min

These values are assumed for the purposes of this exercise, and are 
representative of a typical failure. In a real design situation the 
engineer will have access to sensor data enabling him to perform a 
more realistic analysis.

6.5.2.2 SECONDARY FAILURES ANALYZED

Six secondary failure cases are also analyzed and these cases are 
identified by the following shorthand identification.

(i) CL__0B_w ------ > CL__0B__q
The aircraft is initially controlled by the observer-based 
control law ( CL__0B_w ) and switches to the observer-based 
control law CL_0B_q, obviously following an a sensor failure 
identified simply by, 0w0q_w

(ii) CL__0B__w ------ > CL__0B__8
The aircraft is initially controlled by the observer-based
control law ( CL__0B_w ) and switches to the observer-based
control law CL__OB__0, obviously following an a sensor failure 
identified simply by, OwO0__w

(iii)CL__0B__q ------ > CL__0B__w
The aircraft is initially controlled by the observer-based
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control law ( CL__pB__q ) and switches to the observer-based
control law CL__OB__w, obviously following a q sensor failure
identified simply by, OqOw__q.

(iv) CL_OB__q ----- > CL„OB_0
The aircraft is initially controlled by the observer-based
control law ( CL__OB__q ) and switches to the observer-based
control law CL_OB__0, obviously following a q sensor failure 
identified simply by, OqO0__q.

(v) CL„OB„0 ---— ^ CL_OB_w
The aircraft is initially controlled by the observer-based
control law ( CL„OB__0 ) and switches to the observer-based
control law CL_OB__w, obviously following a 0 sensor failure
identified simply by, O0Ow_0.

(vi) CL„OB„0 ----- > CL__OB__q
The aircraft is initially controlled by the observer-based
control law ( CL_OB_0 ) and switches to the observer-based
control law CL__OB_q, obviously following a 0 sensor failure
identified simply by, O0Oq_0 .

6.5.3 THE RESULTS AND CONCLUSIONS

For each failure mode 12 cases were simulated and the total number of
simulations performed was 144. So it is impratical to show time
histories representative of all cases. Thus a summary of the findings
only is reported. The analysis of the results has shown that the most
hazardous case is the 0 sensor failure mode, the q sensor failure is
less hazardous and the least hazardous is the w sensor failure. This
is due to the fact that the gain K£ has a greater magnitude than the

qgains K or K . The simulations were performed without limits on rj or
w q

77. The actual aircraft has the following hard elevator control 
limits.
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ô ■— —23 Ô = 17°e . emin max

ô = —37 /s ô = 37°/se e
m i n  max

However, in the context of the present day technology it is considered 
reasonable to have a control rate limit greater than 37°/s, and a
reasonable value is assumed to be 100°/s. In order to avoid dangerous
failure transients it is advisable to have amplitude limiters on the 
feedback paths of 6 and q to protect the aircraft in the event of a
hardover failure. The simulations have shown that in the event of a
hardover failure the aircraft can experience a dangerously high load 
factor and high angle of attack. Sumarizing the results obtained, the 
various failure modes can be grouped as described in table 6.5

TABLE 6.5 - FAILURE MODES

SENS OR  FAILED

W q e

P RIMARY
FAILU RE S

SB0q_w
SB0e_w

SB0w_q
SB08__q

SBOw_0
SB0q__8

S E CO N DA R Y

F AILURES

0w0q__w
OwO0_w

0q0w_q
OqO0„q

OQOw 0 

O0Oq„0

Table 6.6 illustrates the maximum values of control effort and control 
rate effort required in the case SBOq w, table 6.7 illustrates the 
case for SB0w__q and table 6.8 illustrates the case for SBOw__0.
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TABLE 6.6 - CASE SBOq_w - STEADY FLIGHT
MAXIMUM CONTROL EFFORT REQUIRED

sensor 
f a ilure 
mode "■in

(deg)
T)max
(deg) (deg/s)

r?max
(deg/s)

threshold 
delay 
time (sec) 

TDK

amax -7.2 3.2 -78 46
0.10

« . m i n -3.3 6.8 -44 76

amax -15 9.0 -78 100
0.30

a .m i n -9 15 -100 77

TABLE 6.7 - CASE SBOwjq - STEADY FLIGHT 
MAXIMUM CONTROL EFFORT REQUIRED

sensor
failure
mode \ i n

(deg)
T?max
(deg)

%mi» 
(deg/s)

T]max 
(deg/s)

thresho1d 
de 1 ay 
time (sec) 

TDH

qmax -13 9 -100 162

0.10q .m i n -32 9 -290 162

zero -12 0 -66 38
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TABLE 6.8 - CASE SB0w_6 -  TDH =  0.10 sec
MAXIMUM CONTROL EFFORT REQUIRED

sensor
failure
mode w

Cdeg)
nmax
(deg)

V n
(deg/s)

nmax
(deg/s)

flight 
condition 
considered

emax -22 44 -277 500 steady
state
trimmed
flight0 . m i n —46 22 -500 324

0max -27 31 -250 432

manoeuvering 
flight

0 . min -61 22 -583 324

zero -14 0 -72 32

(A) PRIMARY FAILURES

A comparison of SBOqjw with SBOGjw shows that they are practically 
identical with respect to control effort, control rate effort, angle 
of attack, load factor, pitch rate, pitch attitude, altitude and 
forward speed transient responses. They differ only with respect to 
dropback criterion performance, as previously seen in chapter 5 where 
CL__0B_q and CL_OB_0 are compared with CL_SB, and observer performance. 
Similarly comparison of SB0w__q with SBO0_q and SB0w_8 and SB0q__8 leads 
to broadly similar conclusions.

(B) SECONDARY FAILURES

A comparison of 0w0q__w with 0w08__w again shows identical results, 
similarly when 0q0w__q is compared with OqO0_q and when O0Ow_0 is 
compared with O0Oq__0.
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(C) PRIMARY AND SECONDARY FAILURES

A comparison of SBOq_w, SBO0_w, OuOq_u and OwO0__u leads to the same 
conclusion as when SBOq__w is compared with SBO0_w as noted in (A) 
above. So these four cases demonstrate similar aircraft response 
during the failure transients, except with respect to dropback 
criterion performance, a feature which depends on the particular 
control law, and observer performance, which also depends on the 
particular observer design. The same conclusion can be drawn when 
SBOw__q, SB08__q, OqOw__q and 0q08__q are compared, and also when SBOw_0, 
SBOq__0, O0Ow_0 and O0Oq_0 are compared. So, from a comparison of the 
simulation results it was concluded that in order to continue the 
studies of failure conditions it is only necessary to take into 
account the cases SB0q_w, SBOw__q and SBOw_0. These three cases are 
representative of the transient conditions following the failure of 
each sensor, that is, these three cases are alone sufficient to 
represent the aircraft subject to the failure conditions studied.

Referring to dropback characteristics, the following was observed,

(i) CL_OB__w has a tendency to give an excessive overshoot, dropback 
attitude around -6.9*.

(ii) CL_OB__q and CL__OB__0 have a good response with respect to dropback 
characteristics, giving a reasonable dropback attitude, 1.2* 
for CL__OB__q and -1.7* for CL_OB_0.

It is important to note that the above performances are obtained 
following failure conditions and so they are not the same as those 
obtained without failure conditions. From these observations it is 
concluded that in the event of a primary failure, the implementation 
of CL__OB__q or CL_OB__0 must have preference over the choice of CL__OB__w. 
A comparison of the observer response shows:

(i) Relative to estimates of u ( forward speed ), better estimates of 
u are obtained with CL_OB_q and CL__OB__0.

(ii) Relative to estimates of w ( normal velocity ), control laws.
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CL_OB_q and CL__0B__8 give the same accuracy.
(iii)Relative to estimates of q ( pitch rate ) , CL_0B__8 is better

than CL_OB__w.
(iv) Relative to estimates of 0 (pitch attitude ), CL_OB__q is better 

than CL_OB__w.

Concerning the u estimates, it is also important to note that even in 
the steady state flight cases, there is always an error in the u 
estimate with any of the designed observers. This fact shows that 
these observers are not appropriate for use with a control law that 
requires the use of a u estimate in a feedback path. Comparing the 
primary failure cases; SBOq_w, SB0q_8, SBO0_q and SB08_w with those 
of secondary failures: OwOq_w, 080q_8, 0q06„q and OwO0„w, the u
estimates are better than those obtained following the secondary 
cases. The estimates of w, q and 0 are without error following any of 
the steady state failure cases.

The following performance characteristics were also observed during 
the simulation studies ;

(i) Following a steady-state failure condition the demand for high 
control effort and control rate effort increases with the 
following order of sensor signal failures w, q and 0.

(ii) In the case of a failure during a pilot input, when any of the 
sensors fails to zero, there is no significant difference in 
the control effort or control rate effort required.

(iii) The failure of the q sensor or the 0 sensor is followed by 
saturation of control and control rate when the failure is of 
the hardover type, irrespective of the initial state of the 
aircraft.

(iv) The length of the threshold detection time delay has a much more 
critical effect following the failures of q or 0 sensors.

(v) When a sensor is failed to zero the influence of the threshold 
detection time delay is pratically insignificant.

(vi) A failure of the w sensor does not influence the altitude 
response of the aircraft significantly compared with the other 
sensor failures.
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(vii) The 0 sensor failure leads to the greatest deterioration of the 
flying qualities of the aircraft, followed by the q sensor 
failure and the w sensor failure in order of deterioration.

Consequently it is concluded that it would be advisable to include 
some safety device, such as a limiter, on the feedback paths of q and 
Q, The main problem identified was the saturation of control rate 
effort, a feature also identified in McRuer—Johnston-Myers71. This
problem occurs with both designs, optimal and pole-placement and can 
probably be minimized by designing the control law by optimal control 
methods but with a modified performance index, as suggested by 
Lewis-Stevens18. In order to design the amplitude limiter for each 
feedback path, it is only necessary to perform a study of the 
following conditions:

(i) SBOqjw in hardover failure
(ii) SBOw_q in hardover failure
(iii) SB0wj9 in hardover failure

Finally, if the control laws are to be reconfigured following failures 
then the switching logic should select the control laws in the order 
presented in figure 6.14.

aircraft w sw i tches q s w itches
work ing to tosensor sensor
w it h fail CLOB_q fail CLOB_0

CL_SB

aircraft q swi tches e sw itches
w o r k i n g to tosensor sensor
w ith fail CLOB_0 fail CLOB_w

CL_SB

aircraft 0 swi tches q sw itches
work ing to tosensor sensor
w i th fail CLOB_q fail CLOB_w

CL_SB
figure 6.14 suggested order of r ec o nf i g u r a t i o n  in the

event of sensor failures
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The order suggested in figure 6.14 is capable of closely maintaining 
the original flying qualities of the designed sensor based control 
law. Note that CL__OBjw is only implemented in the case of a double 
failure, this is a result of the analysis performed here as well as in 
chapter 5 which shows that CL_OB__w offers the worst performance 
compared to CL__OB__q and CL_OB_0.
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7 COMPARATIVE FLIGHT CONTROL SYSTEM PERFORMANCE ANALYSIS

7.1 THE REGULATOR CHARACTERISTICS

7.1.1 INTRODUCTION

The Gibson dropback criterion is concerned with the tracking
performance of the control law, that is, the ability of the aircraft 
to track a reference input. It is also interesting to evaluate the 
ability of the flight control system to restore the states if these 
are perturbed. That aspect is commonly assessed in the aeronautical 
industry by simulating an alpha release, that is, simulating the 
aircraft response for an initial perturbation in angle of attack, for 
the longitudinal case, and a beta release, that is simulating the 
aircraft response for an initial perturbation in sideslip. As the
problem considered is the longitudinal case, an alpha release will be
used to assess the regulator performance of the designed control laws. 
The alpha perturbation used was a release at t = 0 from an initial 
condition of ot = 5° , and so an equivalent initial perturbation in w 
was introduced in the equations of motion, that is, the simulation is 
performed with w(0) ?£ 0.

7.1.2 THE SENSOR BASED CONTROL LAW CL„SB

The study was performed for both designs, the pole placement control 
law design and the optimal control law design. The comparison of both 
designs shows that the optimal control law design restores the 
perturbed state w to zero faster than the pole placement control law 
design. It was also noticed that the optimal control law design 
presents a smoother response in pitch rate and in pitch attitude 
compared with the pole placement control law design. In figure 7.1 
there is a time history comparison for both designs at flight 
condition 6 for the same perturbation.
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In table 7,1 the control effort and control rate effort obtained for 
each control law design is presented. It has been noticed that the 
pole placement control law design requires more control rate effort 
and also more control effort. This was expected since the magnitude 
of the feedback gains of the pole placement control law design are 
higher than the magnitude of the feedback gains of the optimal control 
law design.

TAB L E 7.1
CONTROL EFFORT AND CONTROL RATE EFFORT CO M PA R IS O N

FC if
POLE P L AC EMENT OP TI M AL  CONTROL

X i n
(deg) (d e g / s e c )

"■in
(deg)

^in
( d e g / s e c )

3 -3.2 -14.4 -3.3 -13.3
6 -3.9 -17.8 -3.4 -13.4
9 -4.9 -21.3 -3.6 -13.3
13 -5.5 -26.8 -3.7 -15.6
17 -3.9 -17.8 —3.6 -14.2

7.1.3 THE OBSERVER BASED CONTROL LAW CL__OB__w

The same simulations were performed for control law CL_OB_w designed 
by both methods, pole placement and optimal control, and the findings 
are summarized as follows,

(i) In this case the pitch attitude response, 6 , takes more time to 
return to zero compared with the case of CL_SB. This happens 
with both designs, pole placement and optimal control.

(ii) The regulation of w is the same as obtained with CL__SB for both 
designs, pole placement and optimal control.

(iii)The pitch rate, q, response is different with both designs, that 
is, the transient response is different. However, in both 
designs the pitch rate returns to zero. These transients explain 
the finding ( i ).
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(iv) The control effort and control rate effort obtained with CL_OB__w 
are lower than the corresponding efforts obtained with CL_SB.

(v) With respect to the estimates of u, q and 6, it is quite clear
that these estimates are not very precise. This is the
explanation for the findings mentioned above. The estimates are
not very precise due to the observer, which in this case, has a 
pair of complex poles located very close to the s-plane origin ( 
that pair of complex poles corresponds with the transmission zero 
of the open loop tranfer function w/rj ).

In table 7.2 the control effort and control rate effort obtained with 
each control law design are shown, and in figure 7.2 the time
histories obtained for flight condition 6 with the optimal control law 
design are shown.

TABLE 7.2
CONTROL EFFORT AND CONTROL RATE EFFORT COMPAR I SO N

FC ff
POLE P LA C EMENT OPTIMAL CONTROL

^ i n
(deg)

\in
( d e g / s e c ) (deg) ( d e g / s e c )

3 -2.7 -12.8 -2.6 -10.9
6 -3.4 -15.5 -2.8 -10.5
9 -4.2 -18.9 -3.0 -12.0

13 —5.4 -25.4 -3.3 -13.3
17 -3.4 -15.0 -2.9 -11.7

As noticed the regulation characteristics presented by CL__OB_w are 
little different from those of the CLJ5B. The disadvantage here is 
that the pitch attitude, 6 , takes longer to return to zero than it 
does with CL_SB. On the other hand, there is the advantage of lower 
control effort and control rate effort.
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7.1.4 THE OBSERVER BASED CONTROL LAW CL__OB__q

The same alpha release simulation was performed with CL_OB_q with both 
designs, pole placement and optimal control. Here the time histories 
obtained replicate the performance obtained with CL__SB. This fact can 
be attributed to the fact that as can be seen on figure 7.3, the 
estimates of u, w and Q are very precise. In table 7.3 the control 
effort and control rate effort obtained in this case are presented and 
in figure 7.3 the time histories obtained with optimal control law 
design at flight condition 6 are shown.

T ABLE 7.3
CONTROL EFFORT AND CO NTROL RATE EFFORT COMPA RI S ON

FC ff
POLE P LA CEMENT OP TIMAL CONTROL

\ i n
(deg) (deg/sec)

\ i n
(deg)

\ i n
(deg/sec)

3 -3.2 -14.4 -3.2 -13.3
6 —3.8 -17.2 -3.3 -13.3
9 -4.9 -21.3 -3.5 -13.8
13 -5.5 -26.1 -3.7 -15.5
17 -4.0 -17.8 —3.6 -13.8
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7.1.5 THE OBSERVER BASED CONTROL LAW CL__OB__e

The same alpha release simulation was performed with CL_0B__8 with both 
designs, pole placement and optimal control, and again, as in the case 
of CL__OB__q, the time histories are very similar to those obtained with 
CLSB. Certainly this is due to the fact that the observer estimates 
are very precise. In table 7.4 the control effort and control rate 
effort obtained with this control law are presented and in figure 7.4 
the time histories obtained with the optimal control law design at 
flight condition 6 are shown.

TABLE 7.4
CONTROL EFFORT AND CONTROL RATE EFFORT COMPARISON

FC ti
POLE PLACEMENT OPTIMAL CONTROL

(deg) (deg/sec)
n mi„
(deg) (deg/sec)

3 -3.1 -14.4 -3.2 -13.9
6 -3.8 -17.8 -3.3 -13.3
9 -4.9 -21.3 -3.5 -14.4
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7.1.6 INTERIM CONCLUSIONS

From the studies carried out it can be concluded that both control law 
designs are quite good with respect to regulator performance. The 
optimal control law design has a little better performance since it 
restores the disturbed state ( w ) to its initial condition faster 
than the pole placement control law design. Also, there is an 
advantage with the optimal control law design with respect to control 
effort and control rate effort. In conclusion, the only control law 
that does not give an acceptable performance is CL„OB__w, due to the 
responses of pitch rate ( q ) and pitch attitude ( 0 ) being a little 
different from those of CL__SB. This can be corrected by designing the 
observer of CL__OB__w by the same method used to design the observer of
CL__OB_q and CL OB 0 as stated before. So, in the event of a sensor
failure, the same order of reconfiguration suggested in chapter 6 
showed be applied. It is also interesting to perform the same study 
with an initial perturbation in pitch attitude, 0 , or in the forward 
velocity u. That is, the same simulations firstly with 0(0) * 0 and
secondly with u(o) 56 0 in order to assess the regulator performance
when such perturbations are included.

7.2 EVALUATION OF THE CONTROL LAWS WITH THE 
FULL NON-LINEAR MODEL OF THE AIRCRAFT

7.2.1 INTRODUCTION

It is now interesting to review the performance of both control law 
designs, pole placement and optimal control, working with a non-linear 
aircraft model. The sensor based and the observer based control laws 
are investigated in order to give an indication of the behaviour of 
the augmented aircraft with each control law design. In this analysis 
only flight conditions 3, 6 and 9 were used and the study was
performed by simulation only. During the simulation the gains of the 
control laws and the gains of the observers were maintained fixed.
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The actuator used was actuator no.2 ,described in chapter 3, and the 
lead pre-filter used was discussed in chapter 4, for both control law 
designs. In figure 5.3 the control law structure used in the 
simulations is shown for the case of CL SB, with the exception that " 
aircraft dynamics " , now imply the non-linear aircraft dynamics. The 
pilot input considered is shown in figure 5.4., in order to allow 
comparison with the results obtained with the linear aircraft model.

7.2.2 EQUATIONS OF THE NON-LINEAR AIRCRAFT MODEL

The non-linear model used in the simulations was a six degree of 
freedom aircraft model, the equations were obtained from Roskam72, 
Mclean73 and Heffley11. This model includes aerodynamic coefficients 
which vary during the simulation as functions of Mach number, altitude 
and angle of attack. So at each integration step the aerodynamic 
coefficients are updated. The equations comprising this model are the 
following.

u = r V - q W - g sin(0 ) + X /m +T T T 0

X*u + Xw-t-Xq + X£r a (7-1)u w q Oe e

v = p W - r U + g cos(0 )sin(<f>) + Y /m +T T T 0

Y v + Y r + Y p + Y * Ô  + Y* Ô (7.2)
v  r p Oa a Or r

w = (q U - p V )/(l - z.) + [g cos(0 )sin(0)]/(l - Z.) +T T w T w

Z /(I - Z.) + [Z* u + Z w +  Z q +  Z_ 6 e  3/(1 -  Z.) (7.3)0 w u w q Oe w

p = (L0 v)/ U + L r + L p + k p q - k q r +r j3 1 r p 5 6

L-. ôa + L_ ôr (7.4)Oa Or
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q = (I -I )p r/I - I (p2- r2)/I + M* u + M w +x z y xz y u w

M. W + M q + Ôe (7.5)w q Oe

r = (N_ v)/ U + N r + N  p - k q r + k p q +p 1 r p 3 4

n ' ôa +  N ôr (7.6)Oa Or

0 = P + [q sin(0) + r cos(0)] tg(0^) (7.7)

ip = [q sin(0) + r cos(0)]/ cos(G^) (7.8)

0 = q cos(0) - r sin(0) (7.9)

The auxiliary equations also used are as follows.

U = U + U (7.10)T 0
V = V + V (7.11)T 0
W = W + W  (7.12)T 0

a = tg-1( W / U ) (7.13)T T T

0 = 0 + 0  (7.14)T 0

U = 4 u2 + V2 + W" (7.15)J2T T

* =  V  / U (7.16)P 1

a = w / UT (7.17)

Xq = Uf sin(0Q) (7 .18)

Yq = -6/005(0 )̂ sin(<po) (7.19)

=  -AZ 005(0^) C O S (0^) (7.20)

h = U sin(0 ) -V sin(0) cos(0 ) -W cos(<p) cos(0 ) (7.21)T T T  T T  T
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Mach = U / V (7.22)1 sound
The Inertia constants used in these equations are:

k = 1 / [ 1 - I 2 / ( I I ) ]  (7.23)lat xz x z

ki "
i / ixz z (7

k2 I / 1XZ X (7

k3 V l a t  C1 + (Iz-  I )/ Iy %] (7

k4 = k,atC k7" « V I ) / 1 )
X  z

(7

k5 = k2k,atl:i - <%- I ) / 1 )X z (7

k6 = k [ k +  (Ilat 7 z - I ) / 1y x 3 (7

k7 = I 2 / ( I I )
XZ X z (7

The aerodynamic derivatives are all defined in Heffley11, and the 
complete model is described on the report by Oliva and Cook12, which 
also contains a comparison of the linear model and the non-linear 
model responses for the same input. The linear model is also 
described briefly in appendix A. However, for completeness it is 
repeated here. So the equations used in the linear model are simply 
given by,

u = X* u + X w + X q - W q - g  cos(6 ) 8 + X^ Ôe (7.31)u w q 0 0 Oe

w = [Z* /(1-Z.) ] u + [ Z /(1-Z.) ] u + [(Z + U )/(l-Z.)] q +u w w w q 0 w

- [g Sin(e )/(l-Z.)3 e + [ z, /(1-Z.) ] ôe (7.32)0 w Oe w

q = M* u + [M.Z*/(1—Z.)] u + M w + [M.Z /(1-Z.)] w +U W U W  W W W W

M q + [ M. (Z + U )/(l-Z.) ] q - [M. g sin(6 )/(l-Z.)] 0 +q w q O w  w 0 w

hL Ôe + [M.Z- /(l-z.) ] ôe ( 7 . 3 3 )Oe w Oe w
0 = q (7.34)
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Although only a comparison between the control law designs working 
with the linear model and with the non-linear model with respect to 
the dropback criterion have been performed, the non-linear model is 
also useful for other analysis. For example, to evaluate performance 
with an initial bank angle ( <£>o ) or an initial sideslip angle ( )
or, with a pilot manoeuver not only with elevator but also with rudder 
or ailerons. The model is also usefull for evaluating the performance 
of the observers working with the non-linear model, and for studying 
the effects of gain scheduling. A study of a steady turn or other 
steady manoeuver may also be performed with the help of this model in 
order to assess the performance of the designed control laws under 
these conditions. The main non-linear feature of the simulation is 
the fact that the aerodynamic coefficients are not maintained fixed 
during the simulation, that is, they vary with time, angle of attack, 
altitude and Mach number. Another non-linear aspect of the model is 
that small angle approximations, for example, sin 0 ^ 0  have not been 
used. The non-linear model also includes cross coupled inertial terms, 
which are not very relevant in the case of a civil aircraft. The 
simulations were performed for zero initial conditions, that is, u(0) 
= 0, w(0) = 0 v(0) = 0, p(0) = 0, q(0) = 0, r(0) = 0, <f>(0) = 0,
ip(0) = 0 and 0(0) = 0.

7.2.3 THE SENSOR BASED CONTROL LAW CL__SB

The time histories obtained from the simulations performed with CL__SB 
are showed in figure 7.5 for the pole placement control law design and 
in figure 7.6 for the optimal control law design. The time histories 
showed in figure 7.6 can be compared with those showed in figure 5.5 
obtained with the aircraft linear model. From the simulations the 
following may be noted with respect to the same study with the linear 
model:
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(i) The control effort is practically unchanged.
(ii) The same occurs for the control rate effort.
(iii) The peak pitch rate is also unchanged.
(iv) The steady state pitch rate q ^  obtained with the non-linear

model is lower than it was with the linear model, which means 
that possibly, an adjustment of K is necessary in order to

eq
guarantee that the control law continues to work well with the
non linear model and to recover the same steady state pitch 
rate response.

(v) The general tendency of the control law working with the non
linear model is to give a lower pitch attitude dropback than 
with the linear model, which is a consequence of (iv) above.

(vi) The peak angle of attack obtained with the non linear-model is
lower than it was with the linear model, about 3° lower.

(vii) The altitude and the load factor responses are unchanged.

It was therefore necessary to repeat the same study with gain
scheduling in order to assess if it is required to adjust K or not,

eq
since the simulations were performed with fixed gains.
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7.2.4 THE OBSERVER BASED CONTROL LAW CL_OB__w

Figure 5.7 shows the control law implementation for this case, again, 
the only change is that " aircraft dynamics " imply the non-linear 
aircraft dynamics. The results obtained are compared with those 
obtained with the linear model. In this case not only the performance 
of the control law is evaluated but also the observer performance. In 
figure 7.7 the time histories obtained with the pole placement control 
law design are shown and in figure 7.8 those obtained with the optimal 
control law design are plotted. The time histories of figure 7.8 can 
be compared with those showed in figure 5.8 obtained with the aircraft 
linear model. The observations derived from the simulations are 
summarized as:

(i) The control effort is unchanged with respect to the linear 
model, as in the, CL SB case previously.

(ii) The same occurs to the control rate effort.
(îii) The attitude dropback characteristics are much better with the

non-linear model due to the fact that the steady state pitch 
rate is greater here, than it is with the linear model.

(iv) The maximum pitch rate is practically unchanged.
(v) The normal load factor, angle of attack and altitude are also 

practically unchanged.
(vi) The observer performance is better with respect to Q estimate, 

than it was in the linear case. However, at some flight 
conditions the u estimate was deteriorated compared with the 
linear model.

In conclusion here the performance is better than it was with the 
linear model, but it is necessary to assess if this is true when the 
system works with gain scheduling.
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7.2.5 THE OBSERVER BASED CONTROL LAW CL__OB__q

The control law structure used is shown in figure 5.10, again " 
aircraft dynamics ", implies the non-linear aircraft dynamics. In 
figure 7.9 the time histories obtained with the optimal control law 
design are shown. The results showed in figure 7.9 can be compared 
with those showed in figure 5.11 obtained with the aircraft linear 
model. From the study performed with CL__0B__q the following 
observations were noted:

(i) The control effort is unchanged compared with the linear model.
(ii) The same occurs to the control rate effort
(iii) With both control law designs, pole placement or optimal 

control, the attitude dropback characteristic is worse than 
that obtained with the linear aircraft model.

(iv) The steady state pitch rate is only changed at flight condition 
9

(v) The maximum pitch rate is practically unchanged
(vi) The observer estimate now is worse than it was with the linear 

model.
(vii) The angle of attack obtained is about 2° lower than it was with 

the linear model.
(viii) Here the altitude response and load factor have suffered a 

small change compared with the linear model.
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7.2.6 THE OBSERVER BASED CONTROL LAW CL_OB_0

The implementation used is showed on figure 5.13, again using the 
non-linear aircraft dynamics. Figure 7.10 shows the time histories 
obtained with the optimal control law design. The time histories 
showed in figure 7.10 can be compared with those showed in figure 5.14 
obtained with the aircraft linear model. From the results of this 
s t u d y  the following can be summarized,

(i) Again the control effort is unchanged compared with the linear 
model.

(ii) The same is observed for the control rate effort
(iii) The attitude-dropback characteristics are now worse than those 

obtained with the linear aircraft model. However, here the 
deterioration is not so bad as in the case of CL__0B__q.

(iv) The steady state pitch rate is lower than it was in the linear 
case.

(v) The maximum pitch rate ( q ) is practically unchanged.
(vi) The normal load factor and the altitude is practically 

unchanged.
(vii) The angle of attack obtained is in general 2° lower than that 

obtained with the linear model.
(viii) The observer performance, with respect to u, w and q estimates, 

is worse than that obtained with the linear model.
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7.3 INTERIM CONCLUSIONS

The results have shown that control law CLJ3B _q would probably require 
adjustment in order to obtain good regulation of the attitude 
dropback characteristic, CL_OB_0 will also require some adjustment, 
and finally, CL__OB_w will practically not require adjustment. 
However, this is only a preliminary result, since the simulations have 
been performed with fixed gains, and during these simulation it was 
noticed that the altitude varied by as much as 2000 ft in 10 seconds 
and the Mach number v a r i e d  by about 0.12 in 10 seconds. So it would 
be necessary to repeat the study with gain scheduling, for both the 
control law gains and the observer gains, in order to aquire a more 
realistic assessment of likely performance. Then a decision could be 
made on wheter the adjustments are really necessary or not. In 
general it was noticed that the transient characteristics are 
unchanged due to the fact that in the transient response the angle of 
attack, Mach number and altitude are practically the same as in the 
linear model, and so the control effort, control rate effort and 
m a x i m u m  pitch rate are not changed because they occur at the begining 
of the aircraft response by the other way, the attitude dropback, 
steady state pitch rate, steady state angle of attack and all steady 
state parameters are changed due to its occurence at the final time of 
the simulation. In general it has been noticed that the transient 
characteristics are basicaly the same as obtained with the aircraft 
linear model, and the steady state characteristics have changed a 
little bit, this can be explained by the above mentioned facts about 
Mach number variation as also altitude and angle of attack.
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8 ALTITUDE HOLD AUTOPILOT DESIGN

8.1 INTRODUCTION

One of the pilot's many tasks is to hold a specific altitude. As an 
aid to keeping aircraft from colliding, those aircraft on an easterly 
path are required to be on an odd multiple of 1000 ft, while those on 
a westerly path are required to be on an even multiple of 1000 ft. It 
is therefore of some concern to the pilot that the altitude be held to 
within a few hundred feet. A well trained attentive pilot can easily 
accomplish this task to within ± 50 ft, and this kind of tolerance is 
what the air traffic controllers expect pilots to maintain. Since 
this task requires the pilot to be fairly diligent, sophisticated 
aircraft often have an altitude hold autopilot to perform the task. 
This system is fundamentally different from the stability augmentation 
system designed in the previous chapters of this work in that its role 
is to replace the pilot for certain periods of time, while the 
previous stability augmentation system role is to help the pilot fly. 
Dynamic specifications, therefore, need not be such that pilots like 
the aircraft's "feel" ; instead, the design should provide the kind of 
ride that pilots and passengers like. So the damping ratio should be 
in the vicinity of 0.50, but, for a smooth ride, the natural frequency 
should be lower than the short period natural frequency. In this 
chapter the autopilot will be designed by an optimal control method, 
that is, designed specifically by the LQR method to work with the 
augmented aircraft, incorporating the inner loop control laws designed 
in the previous chapters.

8.2 THE DESIGN METHOD

In order to design the autopilot it is necessary to include the height 
equation in the model, which is written as,

h = —w + U^ 0 (a.i)
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In this case the system must track a reference altitude, designated 
h . By the same procedure as used in the design of the inner loop, 
it is possible to define an altitude error.

£ = h - h (8.2)h ref

Considering now the aircraft represented by the state equation,

x = A x + B rj (8.3)

where x is simply xT = [ u w q 0 ]  (8 .4)
and the A and B matrices are given in appendix A. So equation 8.1 can 
be written as,

h = [ 0 —1 0 ] x (8 .5)

As the design is for the augmented aircraft, the feedback gains of 
either stability augmentation control law, optimal or pole placement, 
are written as.

G = [ 0 K K K ] (8.6)w q £qConsidering the inner loop control law implemented as in figure 6.4 
the augmented aircraft is represented by the state equation.

x = (A - BG) x + B T7Ap (8.7)

Where rjAp is the control input to the elevator required by the 
autopilot. With this in mind the complete system can be represented 
as follows.

V  \ p  X AP +  BAP V  +  E h ref C8'8)

where, xT = [ x  h e  ] = [ u w q 0 h £  ] (8 .9 )AP h h

« [ B O O ]  (8.10)

ET = [ 0 0 0 0 0 - 1 ]  (8.11)

198



and.

( A - B G ) 0 0

AAP [0 -1 O U ]0 0 0 (8.12)
[0 0 0 0 ] 1 0

Thus, this model includes the height equation and the error equation. 
Using the LQR theory described in chapter two, as given, for example, 
in Friedland13 and the other references concerned with optimal 
control, a performance index similar to that used in chapter 3 will be 
taken,

co

\ p  =  J  (x I p Q x a p  +  ^ P R V  dc ( 8 1 3 )
0

In this case Q is a matrix (6x6) and R is a scalar. The same design
philosophy, as applied in chapter 3 for the inner loop optimal control
law design will be used here, that is, only the state e will be

h
weighted in the state weight matrix Q of (8.13). Then Q will be taken
as a diagonal matrix with zeros in the diagonal, except the element
q which is designated q - p and R will be taken as unity , that 66 66 H
is, R = 1. Again, as in the previous design, the parameter p was 
found by a parametric search until a reasonable control demand and 
altitude response was obtained. The autopilot control law is.

=  ~  GAPXAP ( 8 1 5 )

where is given by the solution of the LQR problem. With the help 
of MATLAB, given A^, BAp, Q and R ,the feedback gain matrix is easily 
found.

G = [ G G G G G G ] (8.16)AP u w q V h £

As a reasonable control demand is desired the design should not give 
high feedback gains since high gains would require higher control 
demand and higher control rate demand.

tb
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As a guideline, for a step input in h the altitude should reach theref
required h  ̂ in 20 to 30 seconds. A parametric study was performed
by varying p in the state weight matrix until a reasonable h response
was obtained as well as a reasonable control effort. This study was
performed by the method given in Friedland13, that is, by the choosing
p, obtaining the feedback gains, obtaining the time response of h to a
unit step in h , and checking to see if the control effort andref
control rate effort are acceptable or not. With few calculations the 
control law is easily obtained. The design can be compared with the 
design described by Powell7 for the same aircraft, which is also an 
optimal control design. The difference that Powell's design uses 
proportional feedback only, that is, there is no integral feedback of 
the error as used in this design. In figure 8.1 the augmented
aircraft considered in the design is shown, and in figure 8.2 the
autopilot with the augmented aircraft is shown.

AUG ME N TE D
AIRCR AF T

DYNAMICS

BASIC
A IRCRAFT
DYNAMICS

figure 8.1 - augmented aircraft dynamics used in the autopilot 
design
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- £ - £ AP
AIRC R AF T

A UGM E NT E D

DYNAMICS

figure 8.2 - representan of the augmented aircraft from figure 
8.1 and a u ilot control law.

It is important to appreciate that the augmented aircraft was not 
assessed with respect to the dropback criterion or CAP when the 
autopilot was engaged. It is clear that the autopilot design requires 
changed feedback gains on w, q and Q. However, as ML-F-8785C and the 
Gibson dropback criterion are applicable to the piloted flight phases 
only a comparison of the gain values is not relevant in this case. In 
other words, when the autopilot is engaged there is no pilot input, 
since the autopilot replaces the pilot. It is clear that the 
autopilot was designed to work with the augmented aircraft as if the 
augmented aircraft was a new aircraft. When the pilot is manoeuvering 
the aircraft the autopilot is not engaged. Another continent about the 
design is necessary, that is, as stated by Friedland one can think 
that the objective is to minimize 8.13, however this is not the true 
objective. Equation 8.13 is used as a tool to design the autopilot
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control law. In this way the parametric study performed with both 
i n n c i  loop control laws and for flight cases 3, 6, 9, 13 and 17 has 
determined a suitable p as

p = 1 x 10"8

and this was the p choosen in this design. It is necessary to say 
that other values were also found that gave acceptable responses. 
However, higher feedback gains were required, so in order to have 
lower feedback gains the above value for p was used.

8.3 AUTOPILOT ANALYSIS

8.3.1 THE AUTOPILOT GAINS

The autopilot design performed as described gave the gains presented 
in table 8.1 for the inner loop designed by pole placement and in 
table 8.2 for the inner loop designed by optimal control.

TABLE 8.1 - autopilot gains for the pole 

placement inner loop design

FC Gu

(s/ft)

Gw

(s/ft)

G
q

sec

Ge

rad

Gh

ft"1

G
Ch

f t ’ V 1

3 -0.0004 0.0008 -0.1554 -0.9035 -0.0009 -0.0001
6 -0.0005 0.0010 -0.1924 -1.1973 -0.0008 -0.0001
9 -0.0008 0.0021 -0.2441 -2.2985 -0.0011 -0.0001

13 -0.0012 0.0012 -0.2672 -1.0220 -0.0010 -0.0001
17 -0.0007 0.0015 -0.2450 -1.6260 -0.0009 -0.0001
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TABLE 8.2 - autopilot gains for the optimal 

control law inner loop design

FC G
u

(s/ft)

Gw

(s/ft)

Gq

sec

Ge

rad

Gh

ft™ 1

G
£h

f t ' V 1

3 -0.0006 0.0009 -0.1356 -1.0124 -0.0010 -0.0001
6 -0.0008 0.0014 -0.1510 -1.3830 -0.0010 -0.0001
9 -0.0009 0.0023 -0.2441 -2.3253 -0.0011 -0.0001

13 -0.0020 0.0019 -0.2154 -1.3089 -0.0013 -0.0001
17 -0.0011 0.0019 -0.1978 -1.7929 -0.0011 -0.0001

It is interesting to note that the design performed by Powell7,which
is based only on proportional feedback acting in u, w, q, Q and h,
gave gains G and G of much larger magnitude than the corresponding 

q  v
values obtained here. Obviously an autopilot with only five feedback
variables has the advantage that it only requires five feedback gains,
whereas six gains are required in the present design. However, it can
be seen in both tables, 8.1 and 8.2, that the feedback gain G is

6h
constant for all flight cases, and so it is not necessary to be
scheduled. From both tables it would appear to bepossible to use a
constant G , G and G and so only G and G are required to be 

u w h q v
scheduled as function of flight condition. The time responses of both 
designs are also compared, and it is seen that they are very similar, 
the response obtained by Powell is shown in figure 8.3. Perhaps it is 
useful again to quote Friedland's word about the design method:

" A s u i t a b l e  a p p r o a c h  f o r  t h e  d e s i g n e r  w o u l d  b e  t o  s o l v e  f o r  t h e  g a i n  

m a t r i c e s  G t h a t  r e s u l t  f r o m  a r a n g e  o f  w e i g h t i n g  m a t r i c e s  Q a n d  R,  a n d  

c a l c u l a t e  ( o r  s i m u l a t e  ) t h e  c o r r e s p o n d i n g  c l o s e d - l o o p  r e s p o n s e . T h e  

g a i n  m a t r i x  G t h a t  p r o d u c e s  t h e  r e s p o n s e  c l o s e s t  t o  m e e t i n g  t h e  d e s i g n  

o b j e c t i v e s  i s  t h e  u l t i m a t e  s e l e c t i o n .  "

So this was the way in which this autopilot design was performed, the 
method is the same as that used in chapter 3 to design the optimal 
control law for the inner loop. At this point it is also interesting
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to nota that the approach adopted would also permit the design of a 
feedforward loop working on the input h if desired. So anref
interesting exercise would be to design the autopilot in three 
different ways, that is the structure adopted in Powell, the structure 
adopted here and finally a structure that also includes a feedforward 
loop.

100

Step-response o f altitude- 
hold autopilot.

Time, a

8.3.2 THE EFFECT OF THE ACTUATOR

This autopilot design was performed without the inclusion of the 
actuator dynamics. In order to investigate if the actuator has some 
influence on the performance, the actuator model was included. Thus, 
the state equation for the actuator may be written as before,

x = A x  + a n (a.17)
A A A A c

with XT = C n V  ] (9.19)
a  n
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Thus the autopilot feedback gain vector becomes.

G = [ G  G G G - O O G  G ] 
AP u w q 9 h e

h
(8.19)

and the autopilot control law may be written as

n — -G [ u  w q 0 rj v h e ] 
c  AP tf h

(8 .2 0 )

The closed loop model is then given by.

% = /} x + £  h
r e f

(8 .2 1 )

with, xr = [ u  w q 6 17 v^ h e^] (8 .2 2 )

wiuh,
[ B Z41 ] Z41

-B GAP 
A

[0 -1 0 U ] Z120

Z14 Z12

Z41

—B G —B G
A h  A £

(8.23)

£ ' = [ 0 0 0 0 0 0 0  -1 ] (8.24)

and GAP given by.

GAP = [ G (K + G ) (K + G ) (K + G_) ]
u w w q q e (7q

(8.24.a)

with this model is possible to see that the actuator influence is 
completely neglible on the autopilot performance.
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8.3.3 THE FREQUENCY RESPONSE AND TIME RESPONSE

In figure 8.4 and 8.5 the autopilot frequency responses are shown for
both inner loop control laws respectively, that is, pole placement and
optimal control, for flight condition 6. In figure 8.6 the autopilot
time response for a step input in h  ̂ is shown and can be compared
with figure 8.3 which shows the same response for the design performed
by Powell7 for practically the same flight case. From the results it
can be seen that, in general, the pole placement inner loop design has
a marginally greater bandwidth than the optimal inner loop control law
design. The optimal inner loop control law design in general has a
greater gain margin than the pole placement design. The results have
also shown that, in general, the pole placement inner loop control law
design has a faster response than the optimal inner loop control law
design. In figure 8.7 the control effort for both designs is compared
for the same step input in h , and in figure 8.8 the control rateref
effort for both designs is compared for the same input, all for flight
case 6. It can be seen that the pole placement control inner loop
control law design requires more control effort than the optimal inner
loop control law design. However, as shown the control effort in both
cases is very low. In figure 8.9 the time histories obtained by
simulating the autopilot with optimal inner loop control law design
are shown for a step input in h , for the same flight case, clearlyref
the responses are very smooth, and the load factor varies by about ± 
0.1 g, which means a very comfortable condition in terms of ride 
quality.
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8.4 INTERIM CONCLUSIONS

From the design study it can be concluded that the autopilot responds 
quite well in terms of passenger ride quality, as determined from the 
figures and analysis. However, it was necessary to simulate the 
autopilot working with the non-linear aircraft model in order to 
obtain a better evaluation of the performance. It was also necessary 
to assess the regulator performance of the autopilot, as already done 
with the inner loop control laws, to ensure that following a 
disturbance, the h response does not exceed ± 50 ft. A good feature 
of the design is the lower gains obtained, and as a consequence the 
lower control effort and control rate effort required. A study with
only G_ and G scheduled, the other gains remaining fixed wasv q
considered useful in order to verify if such simplification is 
acceptable. Also, it was necessary to establish the limiting value 
of h that can be applied without compromising the performance.

8.5 THE AUTOPILOT WORKING WITH THE INNER 
LOOP OBSERVER BASED CONTROL LAWS

8.5.1 INTRODUCTION

It is clear that in the event of a sensor failure the sensor based 
control law would no longer be available and so an observer based 
control law would be working in the aircraft. It is necessary to 
verify if the autopilot can function correctly with an observer based 
control law, so in the event of a sensor failure not only does the 
inner loop have a degree of redundancy but also the autopilot.

8.5.2 THE MATHEMATICAL MODEL

Here the description of the mathematical model used to study the 
autopilot working with the observer based control laws, CLOB w, 
CL_0B_q and CL_0B__9 are described as follows.
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To represent the aircraft working with the observer based control laws 
the following equations are useful.

X1 = A11X1 + A12X2 + CB1 0:1 Xft (B-25)

X2 = A21X1 + A22X2 + CB2 °] Xft <8.26)

where ,

in the case of CL__OB_w : x — w C8.27)

><2 -  C u A Q ] (8. 28)

in the case of C L O B q  : = q (8.29)

%2 =  [ LI W  8 ] (8.30)

in the case of CL_0B _8 : x = 0 (8.31)

%2 =  C U W  q ] (8.32)

The actuator is given by,

XA = AAXA * BAr’c <8.33)

=  [ r? ] (8.34)

The height equation is.

h = [ 0 —1 0 ] x = GW^ x^ + GW^ x^ (8.35)

where ;
in the case of CL_0B_w : GW = -1 (8.36)1

GW = [ 0  O U ]  (8.37)2 0
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In the case of CL OB q : GW = 0 (8.38)1

G W = [ 0 - 1  U ] (8.39)2 0

In the case of CL OB 0 : GW = U (8.40)- - 1 0

GW^ = [ 0 - 1 0 ]  (8.41)

The autopilot height error equation is given by.

e = h - h (8.42)h ref

The observer is given by.

z = F z + G x_ + [H 0] X ft (8.43)

where ;

in the case of CL__0B_w : = L + z (8.44)

X 2 = [ U q 0 ] (8.45)

in the case of CL OB q : x_ = M x. + N z (8.46)— 2 1

X 2 = [ u W  0 ] (8.47)

in the case of CL_OB__0 : x = M x + N z (8.48)

x2 = [ u w q ] (8.49)

The gains of the inner loop control law are g i v e n  by.

G = [ 0 K K K ] (8.50)w q £q
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and so,
in the case of CL_OB_w G. = K (a.5i)1 w

G = [0 K K ] (8.52)^ q £

in the case of CL OB q G = K (8.53)
l  q

0 = [0 K K ] (8.54)
£ w £

in the case of CL__0B__8 G^ = K (8.55)
q

= [o K K ] (8.56)^ w q

"he gains of the autopilot are.

GflP = [ G„ G„ Gq Ge Gh Ge ] (8'57’h
and so.
in the case of CL_0B_w G^^ = G (8.58)

l

g a p 2 “ c Gu Gq Ge ] (8'59)

in the case of CL_0B_q Gftp = G (8.60)
1 q

g a p = t Gu Gw Ge 3 (B-61)2

in the case of CL_OB__0 Gfip = G^ (8.62)
1

G = [ G G G ] (8.63)
g u w q

with these definitions the full control law can be expressed as.
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i case CL OB w

%  = “Gfi X1 " (G2+ GAP ) = - G hh “ G E £ h2 h
(8 .64)

where, = (G^ + Gfip ) + (G^ + GAp ) L
1 2

(8.65)

ii case CL OB q and CL OB 0

%  = "GA X1 ■ (G2+ Gap ) N z ■ Ghh " Ge Eh2 h
(8 .6 6 )

where, Gft = (G^ + ) + (G^ + Gflp ) M
1 2

(8.67)

Thus the closed loop model for CL 08_w, CL OB q and CL 08 0 can be 
represented by.

x  = A x  ■+ B u (8 .6 8 )

with.

= : X1 X2 XA h E % 3 (8.69)

£  = I Q Z31 Z21 0 -1 Z31 ] (8.70)

u = h
r e f

(8.71)

in the case of CL OB w ,

*11 *12 [Bi 0]

*21 *22 CB2 Z31] 231 231

Z13

Z31

GW1 GW2 Z12

Z13 Z12

"BAGh "BAG£ “BA(G2+GAP }

Z13

Z13

0 [H Z31] Z31 Z31

(8.72)
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In the case of CL_OB_q and CL_OB_0 ,

*11 CMH<C [B1 0] 0 0 213

*21 A22 [B2 231] 231 231 231

-baga 223 aa -BAGh -B* \ -BA<62+6AP )N2
GW1 gw2 212 0 0 213

0 213 212 1 0 213

G 0 [H 231] 231 231 F

8.5.3 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB__w

A comparison between the responses obtained with the baseline system 
control law CL__SB with autopilot and CL OB w with autopilot show 
excellent agreement. In figure 8.10 and 8.11 the frequency response 
obtained for flight case 6 is shown, and can be compared with figure
8.4 and 8.5 respectively showing a very good match between designs. 
In figure 8.12 the altitude time response for a reference step input 
is shown with CL_0B_w and can be compared with figure 8.6, again 
showing a very good match between both designs. The fact that the 
responses match exactly confirms the special properties of the 
Doyle-Stein observer and allow the same redundancy provided for the 
inner loop control laws to be extended to the autopilot. Here a 
comment is in order; as seen before, the Doyle-Stein observer designed 
for the inner loop control laws does not offer a very precise estimate 
of u, forward velocity. However, this does not have a significant 
influence due to the fact that the autopilot gains that depend on u 
are very small. In figure 8.13 the ACSL simulation performed with 
CL_0B_w and autopilot is shown for flight case 6, for the aircraft 
with optimal inner loop control law. A comparison with figure 8.7 
confirms the perfect match between both sets of responses.
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8.5.4 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB_q

In figures 8.14 and 8.15 the altitude frequency response obtained with
the autopilot working with the CL_OB_q inner loop control law is
shown, and can be compared with figures 8.4 and 8.5 respectively.
Again a very good agreement between both is apparent. In figure 8.16
the altitude time response for a step of h is shown and can beref
compared with figure 8.6, showing a very good match between both. The 
ACSL simulations obtained for flight case 6, with inner loop control 
law CL_OB_q designed by optimal control are in figure 8.17, and can be 
compared with figure 8.7, with a very good similarity between both. 
In conclusion it is clear that the autopilot works satisfactorily with 
CL__OB_q. It can be seen that the u estimates are better here than 
with CL_OB__w, as already expected from the inner loop analysis.
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8.5.5 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB__8

Here again a comparison of the results with the baseline control law 
has shown a very good agreement. In figure 8.18 and 8.19 the altitude 
frequency response obtained with the autopilot working with the 
CL_OB_0 inner loop control law is shown which can be compared with 
figures 8.4 and 8.5 respectively. Again a very good agreement between 
both is evident. In figure 8.20 the altitude time response for a step 
of h is shown and can be compared with figure 8.6, again showing aref
very good match between both. The ACSL simulations obtained for 
flight case 6, with inner loop control law CL_OB_0 designed by optimal 
control are in figure 8.21, and can be compared with figure 8.7, 
indicating a perfect match between both. In conclusion it is 
clear that the autopilot works with CL_OB_0 quite satisfactorily.
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9. CONCLUSIONS AND OBSERVATIONS.

(i)

(ü)

(iü)

(iv)

(v)

(vi)

CONCLUSIONS

The optimal control law design is much easier to adjust than 
the pole-placement control law design. This was also the case 
when the actuator model, the phugoid model, or even when the 
lead pre filter was added to the system. In all these cases 
the optimal design was very friendly and easy to accept new 
changes.

The magnitude of the feedforward gain obtained by the optimal 
control design method is greater than the magnitude of the 
feedforward gain of the pole-placement design method. A 
greater feedforward gain causes greater control rate effort and 
control effort. This was due to the methods by which each gain 
was obtained.

The optimal control law design is always more robust than the 
pole-placement control law design with respect to stability 
requirements. The reason for this is that in the design process 
the optimal control method does not introduce so many changes 
as the pole placement method. That is, it achieves a better 
balance with respect to closed loop pole locations ,control 
effort and in meeting the design criteria.

The pole-placement control law design is more robust than the 
optimal control law design with respect to the Gibson attitude 
dropback criterion when additional dynamics are included in the 
loop.

The pole-placement control law design always has a greater 
phase and gain margin than the optimal control law design.

The method used to design the observer of control laws CL OB q 
and CL_OB 0, leads to an observer with a better performance 
than the observer of control law CL OBw.
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(vii) With respect to aircraft parameter variations, the optimal 
control law design is more robust than the pole-placement 
control law design. When both control laws were designed, the 
aircraft MATLAB model was used however, when both control laws 
were simulated the ACSL aircraft model was used, and in this 
case the optimal designs maintained better performance compared 
with the pole placement designs.

(viii) The control laws CL__OB_q and CL_0B_8 have better overall 
performance than control law CL_OB_w. This can be attributed 
to the method used in the observer designed for each control 
law. The complex poles of the observer used in CLOB _w are
very close to the origin of the s-plane, so the observer has
much more influence on the system dynamics than the observers 
used in CL__OB__q and CL__OB_0.

(ix) The baseline control law CL__SB implemented with sensors for
angle of attack a, pitch-rate q, and pitch-attitude 6 is
more robust, and is also safer than control law CL_SB
implemented with sensors of angle of attack a, and 
pitch-rate q only.

(x) The optimal control law design is more robust with respect to 
feedback gain variations and feedback path failures.

(xi) The order of control law reconfiguration in the event of a
sensor failure should be, CL_OB q, CL_O8_0 and finally CL_OB_w. 
This is the order that guarantees the best maintenance of
flying qualities and stability characteristics.

(xii) Gain scheduling is easier to implement with the optimal control 
law design than it is with the pole-placement control law
design. Obviously, the fact that is constant for all flight

"q
cases in the optimal design simplifies the requirement.
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(xlii) The control law implemented with w, q and Q sensors and
designed by the optimal control method is the best option since 
it is the one that offers the best performance and safety, and
it accepts changes very easily.

(xiv) It appears that the optimal control method is advisable to
design this kind of flight control system, since the approach 
followed in the design by the pole placement method has not
worked so well as expected. The idea of closed loop pole 
allocation presented in chapter 3 does not offer the same
transparency as the optimal control design method offers. In 
addition, when designing the control law, not just one set of 
the pair of weighting matrices ( Q and R ) are able to meet the 
criteria, but various sets of ( Q, R ) and so it is a more 
flexible method.

9.2 SUGGESTIONS FOR FURTHER WORK

(i) It is necessary to design control law CLJDB w by the same 
method as used for CL__OB q and CL 0B_9 in order that a 
meaningful comparison of the control laws may be made.

(ii) It is essential to study the behaviour of the control laws with 
the non-linear model of the aircraft and with fully scheduled 
gains in the control law and the observer.

(iii) It is interesting to study the allocation of poles of the 
observer in control laws CL_OB q and CL_0B_8, that is the 
approximation -0.01 in CL_0B_q and -4 in CL_0B 0.

(iv) It is necessary to study the effects of control rate saturation 
and control displacement saturation, this can be done by 
simulation as described in Lewis-Stevens18, and the use of 
limiters i n  the feedback paths, or as a better option try a new 
design, based on a performance index that weights the control 
rate , control displacement and also gain magnitude, as 
presented in Lewis-Stevens18.
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(v) It may be interesting to design an observer based control law
with a full order Doyle-Stein observer instead of the reduced
order form used in this study.

9.3 CLOSING COMMENTS

In conclusion the designed control laws have been assessed with 
respect to various criteria. However, a better study should be 
performed evaluating the performance of the control laws with the 
gains of the control laws and observers, schedulled with flight 
condition together with the non-linear aircraft model. After this a 
final evaluation can be conducted by the implementation of the control 
laws in a simulator and assessing the augmented aircraft with a pilot 
in the loop. The optimal control method only introduces the necessary 
changes in order that the augmented aircraft meets the criteria. 
Alternatively, the pole placement method introduced unecessary 
changes, this was particularly visible when both methods were assessed 
with respect to the Gibson phase rate criterion. Unless the designer 
has a very strong " feel " of where to locate the closed loop poles, 
it is preferable to design the flight control system by the optimal 
control method. This is specially so with respect to the integrator 
pole in the control law system. A final comment is in order about the 
Doyle-Stein observer. If the system has right half plane zeros the 
procedure may still work, as described in Maciejowski74, particularly 
if the zeros lie beyond the operating bandwidth of the system as 
finally designed. This comment is relevant because in the case of the 
aircraft lateral-directional model there may be right half plane zeros 
and, as mentioned by Maciejowski, the procedure may also be applied in 
such cases.
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APPENDIX A

AIRCRAFT MATHEMATICAL MODEL 

AND FLIGHT CONDITIONS USED IN THE WORK

The flight conditions used in this work are identified in table A-l. 
It can be seen that in general only flight cases 3, S, 9, 13 and 17 
have been used throughout the wole work, with occasional mention of 
cases 1, 5, 8 , 12 and 16 in chapter 3.

TABLE A-l IDENTIFICATION OF THE FLIGHT CASES

FC # Altitude 
( ft )

Mach
number

FC # Altitude 
( ft )

Mach
number

1 1000 0.30 10 40000 0.85
2 1000 0.50 11 40000 0.90
3 1000 0.60 12 10000 0.30
4 1000 0.70 13 10000 0.40
5 20000 0.50 14 10000 0.50
6 20000 0.70 15 10000 0.70
7 20000 0.80 16 30000 0.50
8 40000 0.70 17 30000 0.70
9 40000 0.80 18 30000 0.90

The aircraft model was obtained directly from Heffley11 and for the 
longitudinal model is given by the state space equation.

X LM '  A LM X LM +  B LM 17 (a l)

with, x? = [ u u q 0 ] (a.2)LM
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LM

11 a!2 ai3 a!4

2ÏS' 22 a23 24

31 a32 a33 a34

41 a42 a43 a44

(a.3)

B LM  ̂bll b21 b31 b41 ] ( a  . 4 )

The reduced order short period model is represented by.

x = A x + B n RO RO RO RO ' ( a . 5 )

with.
= [ W q ]RO ( a . 6 )

RO
a22 a23

a32 d33
( a . 7 )

BHO = C b21 b31 ] ( a . a )

with the coefficients a.. and b.. given by :ij ij

, -9 sin @0
an  = xu a2 4 = : :1 —  Z.

- w

012 X u  " Û  +  " u  <
a!3 = Xq - W0 a31 = 1 - z.

w
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The aerodynamic stability derivatives used are referred to body-axes, 
and the definition of each derivative is contained in Heffley11 and in 
Oliva-Cook12. The A and B matrices of the aircraft for flight 
conditions 3, 6 , 9, 13 and 17, are also listed in this appendix in 
table A-2 and A-3, for the MATLAB aircraft model and for the ACSL 
aircraft model. In table A-4 the parameter T ^  is listed for the 
flight cases presented in this work. In table A-5 the trim angle of 
attack and steady state velocity are listed for flight cases 3, 6 , 9, 
13 and 17. In table A-6 the coefficients of the state matrix and the 
coefficients of the control matrix are listed for flight cases 1, 5, 
8 , 12 and 16, as used in the MATLAB aircraft model.



TABLE A—2 - COEFFICIENTS OF THE STATE MATRIX

FC .3 “ e .. .. 9 13. ..  17.

MATLAB -0.00820 -0.00480 -0.00410 -0.00570 -0.00350
ail

ACSL -0.00729 -0.00424 -0.00364 -0.00504 -0.00313
MATLAB 0.06270 0.05960 0.05160 0.10750 0.04800

ai2
ACSL 0.05557 0.05282 0.04570 0.09520 0.04250
MATLAB -7.68850 -21.5287 -60.510 -64.8000 -55.2200

ai3
ACSL -7.68850 -21.5287 -60.516 -64.8059 -55.2260
MATLAB -32.1900 -32.1258 -32.100 -31.8300 -32.0900

ai4
ACSL -32.1979 -32.1858 -32.100 -31.8339 -32.0980
MATLAB -0.14620 -0.12430 -0.0881 -0.12660 -0.11400

a21
ACSL -0.12900 -0.10988 -0.0779 -0.11182 -0.10137
MATLAB -1.03600 -0.66600 -0.3703 -0.58960 -0.48000

a22
ACSL -0.91510 -0.58940 -0.3278 -0.52093 -0.42570
MATLAB 684.96 732.769 768.50 431.290 696.700

a23
ACSL 682.37 731.315 767.82 430.062 695.787
MATLAB -0.38310 -0.9717 -2.5450 -4.96300 -2.584

a24
ACSL -0.38173 -0.9697 -2.5428 -4.94921 -2.581
MATLAB -0.00010 0.00010 0.0 0.0004 0.000100

a31
ACSL -0.00005 0.00007 -0.00003 0.0004 0.000064
MATLAB -0.00230 -0.00180 -0.00110 -0.00190 -0.00140

a32
ACSL -0.00227 -0.00177 -0.00104 -0.00183 -0.00137
MATLAB -1.00950 -0.70700 -0.44340 -0.55220 -0.50600

a33
ACSL -0.98457 -0.68980 -0.43267 -0.53870 -0.49430
MATLAB 0.00010 0.00020 0.00030 0.00080 0.00030

a34
ACSL 0.00008 0.00016 0.00028 0.00077 0.00032
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TABLE A—3 COEFFICIENTS OF THE CONTROL MATRIX

FC 3 .■ 6... 9 13 17

bn
MATLAB 0.39370 0.97830 1.63890 2.52000 1.91800

ACSL 0.34880 0.86670 1.45190 2.23260 1.69958

b21
MATLAB -35.3270 -33.5437 -20.9800 -16.9800 -24.4000

ACSL -31.1799 -29.6590 -18.5760 -15.0039 -21.5880

b31
MATLAB -1.99140 -1.91730 -1.21000 -0.97300 -1.41900

ACSL -1.94418 -1.87160 -1.18123 -0.94980 -1.38570

TABLE A—4 T_ PARAMETER02
FC # T02 FC # T02

3 1.00 1 1.72

6 1.58 5 2.13

9 2.85 8 3.09

13 1.79 12 2.16

17 2.33 16 2.65
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TABLE f 
AND

\-S TRIM ANGLE OF ATTACK 
STEADY STATE VELOCITY

FC # v . . oce 0
(ft/sec) ( deg )

3 667.6 0.66
6 725.8 1.70
9 771.5 4.50

13 430.1 8.70
17 696.3 4.60

TABLE A—6 
COEFFICIENTS OF THE STATE MATRIX AND CONTROL MATRIX

FC 1 5 8 12 16

an -0.00930 -0.00180 0.00030 0.00230 0.01190

a!2 0.14730 0.09040 0.03920 0.12710 -0.01040

ai3 —54.5650 -61.3750 -86.9237 -83.0980 -85.4900

a!4 -31.7600 -31.9700 -31.9300 -31.1170 -31.7200

a21 -0.15330 -0.08320 -0.09350 -0.14610 -0.11300

a22 -0.61770 -0.49810 -0.34150 -0.48920 -0.39700

a23 334.69 518.540 668.719 314.250 490.450

a24 -5.43800 -3.8800 -4.1796 -8.47840 -5.600

a31 0.00050 0.0003 0.0001 0.00050 0.0002

a32 -0.00200 -0.00170 -0.00100 -0.00150 -0.00120

a33 -0.56760 -0.49400 -0.35380 -0.42210 -0.34900

S34 0.00120 0.00050 0.00040 0.00120 0.00060

bll 2.13140 2.27670 2.22680 2.58900 2.43200

b21 -13.290 -19.4415 -17.286 -9.971 -14.119

b31 -0.7582 -1.105 -1.0229 -0.591 -0.842
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APPENDIX B

DERIVATION OF GIBSON ATTITUDE DROPBACK EQUATION

In this appendix the Gibson attitude dropback equation used in chapter 
3, equation (3.14), obtained from Cook62is explained. In order to 
obtain an equation for attitude dropback, DB, in terms of the aircraft 
state description the following analysis is useful. The Laplace 
transform of the aircraft state equations may be written as.

s x(s) = A x(s) + b n(s) (b.1)
q(s) = c’ X(s) (b-2)

Where the output matrix c’ defines the single output variable q(s).
Eliminating x(s) from these equations enables pitch rate output to be
defined in terms of the elevator angle input.

q(s) = c' (si -A) 1 b q(s) (b.3 )

The steady state value of pitch rate response q to a unit step input
s s

is given by writing r](s) - 1/s and applying the final value theorem 
to equation (b.3), Thus

q(t) = lim (s q(s) ) = lim [c*(sI-A)"1b] (b.4)
l-> 00 s -> 0 s 0

qss = = ~c’A“1b (b.5)
t -> 00

Dropback may be defined from the typical steady state pitch attitude 
response, shown on figure ( b.l ), to a unit elevator angle input.
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figure b 1 ..flight path angle responses
________ to" a unit step elevator angle input__________

Given the state equations:

x (t) = Ax(t) + br)(t) (b.e)
q(t) = c' x(t) (b.7 )

the pitch rate response is given by»

A(t-t ) p1
q(t) = c*e x(t^) + c’J <#)(t-r)bi7(T)dT (b.a)

- 0

Making the appropriate substitution for the transition matrix ^(t-t^)

ACt-t ) /  A(t-T)
q(t) = c*e x(t^) + c M  e br)(T)d% (b.9)

‘o
Now, A, c* and b are constant, for a unit step input, rjCt) = 1 , and 
taking tQ » 0, equation (b.9) may be written as.

At 1 A(t-T)
q(t) = c'e x(0) + c* e bdr (b.io)

‘o
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At At
q(t) = c’e x(0) + c’ e

■AT
(b.11)

At
q(t) = c*e x(0) + c,ft-1[ eAt- I ] b (b.12)

Assuming zero initial conditions such that x(0) = 0, then.

q(t) = c’A"1[eAt - I] b = c’A"1 eAt b - c’A^b (b.13)

Substituting for c’A"1b from equation (b.5)

q(t) = c,A-1eAtb + qss (b.14)

Integrating equation (b.14) gives pitch attitude response to a unit 
step elevator input, thus.

0(t) = J  q(T)dr = J  [c’A™1 eAT b + q ^  ] dr Cb.15)

0(t) = c’ A~2[ eAT - I]b + q tss (b.16)

The steady state pitch attitude response may be obtained by letting 
t co and noting that.

At
e = 0  
t-> co

(b.17)

Provided that A describes an assymptotically stable matrix. Thus,

0 = -c’ A~2 b + q  tss ^ss (b.18)
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The pitch attitude response described by equation (b.18) is shown on 
figure (b.2), and it is clear that dropback is defined by.

DB = —c*
-2 

A b (b.19)

figure b.2 - steady state pitch attitude response

Now using the aircraft model based on the reduced order pitch rate 
response transfer function.

q(s)

rj(s) ( s + 2Ç G) s sp sp G)2 )sp
(b .20)

and using the methods for system realisation the state space 
description of the aircraft may be defined in controllable companion 
form with state, input and output matrices as follows.

A =

sp -2r G)sp sp

(b.21)
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b = Cb.22)

e* = [ K K T ] Cb.23)q q v2

Using (b.21), (b.22) and (b.23) into (b.19) it is obtained ;

DB _ 2 ^sP
q ■8 8 sp

Which is equation (3.14) used in the design of the pole placement 
control law design.
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APPENDIX C

RESPONSE TRANSFER FUNCTIONS OF THE BASIC AIRCRAFT

In this appendix the poles and the transmission zeros of the following 
response transfer functions of the basic aircraft are listed;

w/r) , q/17 and 0/77

which were obtained from the complete model :

x = A x + B 77 

with, xT = [ u w q 0 ]

; described in appendix A.

FC # 3 1000 ft - MACH 0.60
POLES -1.02 ± i 1.25 , -0.0049 ± i 0.0580

T.Z. of w/77 -0.0046 ± i0.0814 , -39.62

T.Z. of q/77 -0.9859 , -0.0175 0.0

t .z . of e/n -0.9859 , -0.0175 > 00

FC # 6 20000 ft - MACH 0.70

POLES -0.68 ± i 1.15 , -0.0028 ± i 0.0700

T.Z. of w/77 -0.0035 ±i 0.0735 , -42.59

T.Z. of q/77 -0.6226 , -0.0167 » 0.0

T.Z. of e/77 -0.6226 , -0.0167 • 00
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FC # 9 - 40000 ft - MACH 0.80
POLES -0.40 ± 1 0.90 ' , -0.0032 * i 0.0516

T.Z. of w/rj -0.0038 ±10.0590 , -44.76

T.Z. of q/17 -0.3380 , -0.0173 0.0

T.Z. of 0/17 -0.3380 , -0.0173 , 00

FC # 13 - 10000 ft - MACH 0.40

POLES —0.56 ± i 0.91 -0.0061 ± i 0.1158

T.Z. of w/77 -0.0065 ± 10.0978 , -25.27

T.Z. of q/17 -0.5308 -0.0307 00

T.Z. of e /7 7 -0.5308 -0.0307 00

FC # 17 - 30000 ft - MACH 0.70

POLES -0.49 ± i 0.98 , -0.0036 ± 1 0.0709

T.Z. of w/77 -0.0044 ± 10.0722 , -41.00

T.Z. of q/77 -0.4439 , -0.0155 0.0

T.Z. of 0/77 -0.4439 , -0.0155 00
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APPENDIX D

PARAMETERS OF THEOBSERVER WHEN THE OUTPUT IS w

In this appendix the parameters for the Doyle-Stein observer when the 
output is normal velocity, y = w, are listed. The observer equations 
used in this case are,

z = F z  + G y  + Hr)
*2= L y + z

As known, in this case H = 0 at all flight conditions, so it is only 
necessary to list F, G and L. Here, these matrices are given for 
flight conditions 3, 6, 9, 13 and 17.

-0.0111 -0.0292 -0.0781
0.0564 L6 " 0.0572 Ls = 0.0577

oo oo oo

' -0.1484 ' -0.0786 '
0.0573 L17 = 0.0582
0.0 oo

0.0482 ' 0.0314 " ■ -0.0040 '
-2.1774 IIICD0 -2.3984 IIluT -2.5619
0.0564 0.0572 0.0577

" -0.0218 ' ' -0.0152 '
-1.4171 -2.3597
0.0573 0.0582

F3 =

-0.0099 -0.055 -32.19
0.0082 -39.62 0.0217
0.0 1.0 0.0
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-0.0084 -0.1575 -32.21
F- — 0.0072 —45.59 0.0557

0.0 1.0 0.0

f9 =
-0.0110 -0.4769 -32.29
0.0050 -44.76 0.1471
0.0 1.0 0.0

F13 =

-0.0245 -0.7923 -32.56
0.0077 -25.26 0.2852
0.00 1.0 0.0

F17 =
-0.0125 -0.4548 -32.29
0.0067 -41.02 0.1506
0.0 1.0 0.0

250



APPENDIX E

PARAMETERS OF THE OBSERVER WHEN THE OUTPUT IS q

In this appendix the parameters for the Doyle-Stein observer when the 
output is pitch rate, that is, y = q , are listed. The observer 
equations used in this case are,

z = F z  + G y  + Hr? 

x = M y + N z

In this case a constant G was used in the design at all flight 
conditions, i.e. GT=[ 1 1 1 ] ,  and so it is necessary to give F, H, M 
and N only. Here, these matrices are listed for flight conditions 3, 
6, 9, 13 and 17.

0.0 oo 0.0
0.0001 H6 “

oo

H9 = 0.0
-0.0163 -0.0088 -0.011

oo 0.0
0.0 H17 =

oo

-0.0069 -0.0055

35.4 22.6 42.1
12.6 M6 = 12.9 Mg = 6.68

-0.019 -0.01 -0.02

9.2 22.6
14.7 H3 II 11.2

i-- o R 1 o o R
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N„ =
4482
-658.5
-1.4

-102.6
704.5
0.03

-4349
633.8
2.3

N„ =
5114
-1021
-1.6

-123.5
766
0.02

-4995
985
2.5

=

4983
1255
-1.5

-238
847
0.06

-4785
1173
2.5

N13 =
17255
-426
-0.5

-110.6
467
0.02

-1672
388
1.5

N17 =
-6255 -132.8 -6165
-1588 742 1540
-1.9 0.02 2.9

The F matrices here, as already known, are all diagonal, and so they 
are the following.

F3 =
-0.0175 0.0 0.0
0.0 -0.9859 0.0
0.0 0.0 - 0.01

F6 =

-0.0167 0.0 0.0
0.0 -0.6226 0.0 
0.0 0.0 - 0.01
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-0.0173 0.0 ;
F_ = 0.0 -0.3386

0.0 0.0

0.0
0.0

- 0.01

F13 =

-0.0307 0.0 0.0
0.0 -0.5308 0.0
0.0 0.0 - 0.01

F17 =

-0.0155 0.0 0.0
0.0 -0.4439 0.0
0.0 0.0 - 0.01
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APPENDIX F

PARAMETERS OF THE OBSERVER WHEN THE OUTPUT IS 6

In this appendix the parameters for the Doyle-Stein observer when the 
output is pitch attitude, y = 0 , are listed. The observer equations 
used in this case are.

z = F z  + G y  + Hr]
x = M y + N z

In this case a constant G was used at all flight conditions, i.e. GT
= [ 1 1 1 ] , and so it is necessary to give F, H, M and N only.
Here, these matrices are given for flight conditions 3, 6, S, 13 and 
17.

13

M13 =

-0.0001 ' 0.0001 " " -0.0001 ‘
-0.0008 H6 * -0.0020 H9 “ -0.0019
0.1433 0.1312 0.0804

0.0 0.0001
0.0005 H17 ” 0.0005
0.0665 0.0947

-7.31 ' - 22.37 -64.8
737.62 M6 “ 791 M9 ™ 831.5
2.95 3.26 3.53

-73.35 ‘ -59.8
491.2 M17 “ 757.3
3.41 3.46

r -I

N3 “

43.62 -33.2 2.58
-676.9 4.88 246.7
0.522 -0.002 -13.9

44.6 -33.74 6.91
-466.6 6.79 -255.4
0.25 -0.0038 -14.6
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N- = 9

13

N17 =

41.5 -34.8 19.6
— 275.9 9.07 —260.9
0.081 -0.0022 -15.05

47.55 -35.1 38.1
-243.2 8.8 -255.4
0.1383 -0.0079 -14.62

33.64 -33.5 20.38
-320.9 8.71 -257.38
0.1279 -0.0036 -14.98

The F matrices here, as already known, are all diagonal, and so.

F_ =

F, =

F_ =

13

F17 =

-0.9859 0.0 0.0
0.0 -0.0175 0.0
0.0 0.0 -4.0

-0.6226 0.0 0.0
0.0 -0.0167 0.0
0.0 0.0 -4.0

-0.3386 0.0 0.0
0.0 -0.0173 0.0
0.0 0.0 -4.0

-0.5308 0.0 0.0
0.0 -0.0307 0.0
0.0 0.0 -4.0

-0.4439 0.0 0.0
0.0 -0.0155 0.0
0.0 0.0 -4.0
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