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ABSTRACT

This work is-concerned with the design of a pitch-rate—command-
attitude~-hold Command and Stability Augmentation System in order that
the augmented aircraft meets the Gibson dropback criterion, the Gibson
phase—rate criterion and MIL-F-8785C requirements. The work shows two
methods of design, pole-—placement and optimal control, and discusses
the design procedures, the advantages and disadvantages of each
method. The work is also concerned with the redundancy aspect of the
control law design, and so not only a sensor based design but also an
observer—based design are investigated. In order to design the
observer-based control>law, a Doyle-Stein observer was implemented.
Two methods showing how. to design the observer are discussed and
presented, and the special characteristics of this kind of observer
are also considered. The performance of the observer-based control
law was compared with that of the sensor-based control law. The
failure transients and characteristics of the control law are also
studied and presented. Finally an evaluation of the control law was
carried out with a non-linear model of the B-747 aircraft, and a
simple altitude-hold autopilot was designed to work together with the

stability augmentation control law.
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aircraft state matrix

aircraft state matrix of the reduced short period
longitudinal model

aircraft state matrix of the complete longitudinal model.
disturbance model state matrix

reference model state matrix

exogenous inputs model state matrix

closed loop system state matrix

State matrix of the actuator state space model.

Sub-matrix of the state matrix of the aircraft.

Sub-matrix. of the state matrix of the aircraft.

Sub-matrix of the state matrix of the aircraft.

Sub—-matrix of the state-matrix of the aircraft.

Parameter of the sgate—space model of the lead filter.
State matrix of the augmented aircraft with autopilot
aircraft normal acceleration parallel to the z body axis
aircraft 1lift curve slope

parameter of the transfer function of a general phase lead
controller.

horizontal tail 1lift curve slope

Control matrix of the aircraft.

Control matrix of the aircraft short period reduced order
longitudinal model.

Control matrix of the aircraft complete longitudinal model.

matrix - related to the feedforward gain. of the pole
placement design method.

matrix related to the feedforward gain of the
optimal control law design method.

Control matrix of the actuator.
Sub—matrix of the control matrix of the aircraft
Sub-matrix of the control matrix of the aircraft

Parameter of the state-space model of the lead filter.
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BIBO

[+
LF
CL_SB

CL_0B w
CL_OB_q
CL_OB_©

DB

d
LF
dB

deg

Control matrix of the augmented aircraft with autopilot

bounded input bounded output system
mean aerodynamic chord
Output matrix of the aircraft.

Output matrix of the disturbance model

Output matrix of the error

Output matrix of the reference model

Control anticipation parameter.

Output matrix of the aircraft relative to the sensed state

X .
1
Parameter of the state—space model of the lead filter.

Sensor-based control law, that means, Control Law_Sensor

Based.

Observer-based control law with alpha sensor, that means,

Control Law _Observer Based w

Observer—based control law with q sensor, that means,

Control Law_Observer Based q.

Observer-based control law with @ sensor, that means,

Control Law_Obserwver Based §.

Dropback parameter.

Parameter of the state-space model of the lead filter.
decibels.

degrees.

error with respect to the demanded reference state.
error relative to the sensed state x1

error relative to the observed state X,

matrix of the state-space model of the aircraft when there
is a reference input

input to a general phase lead controller

output to a general phase lead controller



F State matrix of the observer.

F - alrcraft control matrix relative to the disturbance vector
ft feet.
FC # Flight condition.
g acceleration due to gravity
G - vector of the feedback gains of the control law.
G Optimal control law gain obtained by the LQR method
G matrix used in the Observer state space model relative to
the system output
Gf vector of the feedback gains of the control law with some
feedback chanel failed.
GO feedforward gain of the control law, or feedforward gain
vector relative to the exogenous inputs
G feedforward gain vector relative to the reference input
r
Gd ‘ feedforward gain vector relative to the disturbance input
G1 sub-vector of the vector of feedback gains
relative to the measured states.
G2 sub-vector of the vector of feedback gains
relative to the estimated states.
GAP vector of the feedback gains of the autopilot.
G feedback gain of the u feedback path of the autopilot
u
G feedback gain of the w feedback path of the autopilot
w
G feedback gain of the q feedback path of the autopilot
q y
G6 feedback gain of the @ feedback path of the autopilot
Gh feedback gain of the h feedback path of the autopilot
G8 feedback gain of the £y, feedback path of the autopilot
h
Gw1 auxiliary matrix used in the autopilot
mathematical model
Gwz auxiliary matrix used in the  autopilot

mathematical model
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2

sub-vector of the vector of feedback gains of

the autopilot relative to the measured states.

“.sub—vector of .the vector of feedback gains of

the autopilot relative to the estimated states.
Gain margin.
matrix used in the observer state space model relative

the control input

Hertz ( cycles per second ).

altitude above the earth.

reference altitude.

longitudinal manoeuvre margin controls fixed

closed loop transfer function with full state feedback
Identity matrix

Moment of inertia referred to x body axis

Moment of inertia referred to y body axis

Moment of inertia referred to z body axis

Product of inertia referred to body axis

to

feedback gain of the w feedback path of the control law

feedback gain of the q feedback path of the control law

feedback gain of the sq feedback path of the control law

constant used in the pole placement control law design to

recover the zero steady state pitch rate error with

respect to the reference pitch rate

observer gain vector for a full order observer

i =1 to 7, inertial parameters used in the non linear

aircraft model

inertial parameter used in the non linear aircraft model

observer gain vector for a reduced order observer

observer gain vector for a reduced order observer
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gain constant of the transfer function ( q/n ) obtained

from the reduced order short period model
longitudinal static stability margin
Gain matrix of the observer.

aerodynamic force ( 1lift ) perpendicular to the total

velocity vector in the aircraft's plane of simetry

distance between the aircraft centre of gravity and the

~aerodynamic centre of the horizontal tail

derivative of the rolling moment in x body axis with

respect to sideslip
derivative of the rolling moment in x body axis with
respect to yaw rate in z body axis

derivative of the rolling moment in x body axis with

respect to roll rate in x body axis

derivative of the rolling moment in x body axis with

respect to aileron deflection

derivative of the rolling moment in x body axis with

respect to rudder deflection

Riccati matrix obtained from the solution of the Riccati

diferential equation in the solution of the LQR problem.

Algebraic Riccati matrix obtained from the solution of the

algebraic Riccati equation in the LQR problem

submatrix of M

=

submatrix of

b 4

submatrix of

=)

submatrix of

=|

submatrix of

=)

submatrix of

derivative of the pitch moment in y body axis with respect

to longitudinal velocity in x body axis



derivative of pitch moment in y body axis with

normal velocity in z body axis

- derivative.of.pitch.moment.in y:body axis with

normal velocity acceleration in z body axis.

derivative of pitch moment in y body axis with

pitch rate in y body axis

derivative of pitch moment in y body axis with

elevator deflection

Gain matrix of the observer, obtained as

-1

the P matrix in the observer design.

aircraft mass
mach number
resonant peak.

non dimensional M derivative

Se

non dimensional M derivative
q

multiple input multiple output system
Gain matrix-of the observer, obtained as
the matrix P~' in the observer design.

derivative of yaw moment in z body axis

sideslip

derivative of yaw moment in z body axis

yaw rate in z body axis

derivative of yaw moment in z body axis

roll rate in x body axis

derivative of yaw moment in z body axis

ailerion deflection

derivative of yaw moment in z body axis
rudder deflection

Coefficient relative to s3

the transfer function of ( q / qd )
p

respect

respect

respect

respect

a submatrix

a submatrix

with

with

with

with

with

in the numerator

respect

respect

respect

respect

respect

of

to

to

to

to

of

of

to

to

to

to

to



N Coefficient relative to s2 in the numerator of

the transfer function of ( q/ q, )
; P

N Coefficient relative to s in the numerator of

the transfer function of ( q/qd )
p

N0 Coefficient relative to s° in the numerator of

the transfer function of ( q/qd )
p

NZ > N, normal load factor along the z-body axis

0s overshoot

OCL optimal control law

Owlq_w failure mode from the observer based control law with w
output to the observer based control law with ¢q output
after a failure of w sensor.

0wog_w failure mode from the observer based control law with w
output to the observer based control law with 6 output
after a failure of w sensor.

0qOw_g failure mode from the observer based control law with ¢
output to the observer based control 1law with w output
after a failure of q sensor.

0q06_q failure mode from the observer based control law with q
output to the observer based control law with 6 output
after a failure of q sensor. '

000w_6 failure mode from the observer based control law with ©
output to the observer based control law with w output

- after a failure of 9 sensor.

080q_0 failure mode from the observer based control 1law with @
output to the observer based control law with q output
after a failure of 9 sensor.

P Transformation matrix used in the observer design.

PM phase-margin.

P.R. pitch-attitude phase-rate.

PIO pilot induced oscillation.



PLF phase lead filter

PPCL . .  pole placement control law

p perturbed roll rate

Q Weight matrix of the states in the performance index.

q perturbed pitch-rate.

a estimated perturbed pitch~rate

qdp commanded pitch-rate.

q commanded pitch~rate after the lead pre filter, or output
of the lead pre filter.

q_. steady-state pitch-rate.

qm first peak of the pitch-rate response.

Q.. positive end stop of the pitch rate sensor considered 1in

the hardover failure simulations

q negative end stop of the pitch rate sensor considered in

the hardover failure simulations

R Weight matrix of the controls in the performance index.

r perturbed yaw rate

rad radians.

S wing area

s Laplace operator.

sec seconds.

SBOw_q failure mode from the sensor based control law to the

observer based control law with w output after a failure
of q sensor.

SBOw_6 failure mode from the sensor based control law to the
observer based control law with w output after a failure
of 6 sensor.

SB0q_6 failure mode from the sensor based control law to the
observer based control law with q output after a failure

of 6 sensor.
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failure mode from the sensor based control law to the
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failure mode from the sensor based control law to the
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of g sensor.

failure mode from the sensor based control law to the
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of w sensor.
single input single output system
single input multiple output system

matrix obtained from the solution of the Lyapunov equation

in the second observer design method.

parameter of the transfer function of a general phase lead

controller.
time to double the amplitude of the phugoid oscillation

numerator time constant of the open loop transfer function
of ( q/n ) obtained from the reduced order short period

model

time in the pitch-rate response at which the

first peak occurs.
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transponse of a matrix.

threshold time.

total forward ( longitudinal ) velocity in x body axis of

the aircraft
steady-state forward ( longitudinal ) velocity in x body
axis of the aircraft
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axis of the aircraft.

estimated forward ( longitudinal ) perturbed wvelocity in

x body axis of the aircraft
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optimal control law design

performance index used in the design of the autopilot

horizontal tail volume ratio
total lateral wvelocity in y body axis of the aircraft

steady state lateral welocity in .y body axis of the

aircraft
perturbed lateral wvelocity in y body axis of the aircraft

velocity of the sound

normal perturbed velocity of the aircraft

estimated normal perturbed velocity in z body axis of the

aircraft

aircraft weight component in x body axis is steady state

flight

derivative of the longitudinal force in the x body axis

with respect to the longitudinal wvelocity in the x body

axis.

derivative of the longitudinal force in the x body axis

with respect to the normal welocity in the z body axis

derivative of the longitudinal force in the x body axis

with respect to pitch rate

derivative of the longitudinal force in the x body axis

with respect to elevator deflection

state vector of the aircraft.
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disturbances state vector
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reference state vector
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state vector of the aircraft that is not sensed.

state vector of the aircraft augmented with autopilot
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state of the lead filter.
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derivative of lateral force in y body axis with respect to

roll rate in x body axis

derivative of lateral force in y body axis with respect to

aileron deflection

derivative of lateral force in y body axis with respect to

rudder deflection
output of the aircraft.

estimated output of the aircraft
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state vector of the observer.

derivative of normal force in z body axis

normal velocity in z body axis
non dimensional Z derivative
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derivative of normal force in z body axis
normal acceleration in z body axis
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positive end stop of the angle of -attack sensor considered

in the hardover failure simulations

+~negative-end stop of:.the angle of attack -sensor considered

in the hardover failure simulations
sideslip angle

perturbed pitch-attitude.

estimated perturbed pitch—attitude
steady state pitch attitude

total pitch-attitude.

positive end stop of the pitch attitude sensor  considered

in the hardover failure simulations

negative end stop of the pitch attitude sensor considered

in the hardover failure simulations

integral of the qy state, or demanded pitch attitude
demanded pitch attitude

integral of the pitch rate efror

integral of the altitude error

control effort or elevator deflection

input to the actuator.

designed control law

control effort of the autopilot.
maximum control effort.

minimum control effort.

maximun control rate effort.

]

minimun control rate effort.
air mass desity
damping ratio of the short-period mode.

damping ratio of the phugoid mode.
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natural frequency of the short-period mode.

. natural frequency of the phugoid mode - -

bandwidth.
frequency at -180° phase in the closed loop attitude

frequency response

frequency of the closed loop attitude frequency response

which corresponds to the phase ¢1_

frequency of the closed loop attitude frequency response

which corresponds to the phase ¢2_

frequency at which occurs the maximun phase lead in the

phase lead controller.

phase shift necessary to bring the point in which the

frequency is 1 Hz to -180° phase.

increment necessary‘to-add in ¢1‘or’¢2 to obtain the P.R.

attitude parameter to the phase rate criterion.

Coefficient of the denominator of the transfer

function ( q/qd ) relative to sC.
P

Coefficient of the denominator of the transfer

function ( q/qd ) relative to sl.
.

Coefficient of the denominator of the transfer

function ( q/qd ) relative to sZ.
P

Coefficient of the denominator of the transfer

function ( q,l’qd ) relative to s3.
p

Coefficient of the denominator of the transfer
function ( q/"qd ) relative to s?.

p
increment in the steady-state altitude.
longitudinal characteristic equation
longitudinal relative density factor

flight path angle.
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phase of the closed loop attltude frequency response

phase of the closed loop attitude frequency response
perturbed bank angle

elevator deflection

positive end stop of elevator deflection

negative end stop of elevator deflection

positive end stop of elevator rate deflection

negative end stop of elevator rate deflection

aileron deflection
rudder deflection

perturbed yaw angle



1 INTRODUCTION

1.1 PROBLEM DEFINITION-AND*-OBJECTIVE OF THE RESEARCH

The problem studied is how redundancy with respect to sensor failures
can be obtained in a flight control system without introducing changes
in the stability level of the augmented aircraft or changes in its
level of flying qualities. The main objective of this work is to
explore the use of observers in flight control systems. Specifically,
the study was directed to investigate the use of observers in
redundant flight control system design with respect to sensor
failures. The research was seeking to design observers that don't
affect the flying qualities and stability of the augmented aircraft.
Although a flight control system designed specifically to meet the
Gibson dropback criterion! and phase-rate criterion? was used, the
research can also be applied to a flight control system designed to
meet other criteria. Since the main objective of this work is not an

1,2 criteria were

evaluation of the criteria themselves, the Gibson
used as an example because they correlate very closely with features
found in other advanced dynamic handling criteria. Also referring to
a recent study performed by Blagg3 they have been considered as

acceptable criteria for guidance in flight control system design.

It is also an objective of this research to use methods that are not
only applicable to SISO systems but also to MIMO systems. So,
alfhough a SISO system has been studied in this work, the methods used
in the flight control system design and observer design are also
applicable to a MIMO system. In this research the aircraft model used
is the Boeing 747 since at the time of the work this was the only
aircraft for which a reasonable aerodynamic data bank was available.
It also must be taken into account that this fact does not invalidate
the findings of this research program when applied to a more advanced

civil aircraft.



1.2 POSSIBLE PROBLEMS-AND SOLUTIONS

In general in the design of a redundant flight control system the
designer uses two, three or even four sensors. For example, the same
for actuators, computers and other systems, in a parallel redundant
configuration. This fact causes many problems, like for example,
adding extra weight to the system, location problems with respect to
the sensors and redundancy management. Figure 1.1 is an example of
a duplex redundant configuration showing the system lanes. Figure
1.1. shows a system that uses three sensors, that is, an angle of
attack sensor ( o ), a pitch—-rate ( g ) sensor, and a pitch-attitude

sensor ( O ).

sensors 1
'computer
O sensor actuator
g sensor|————> n.1 _— n.1 _—
' to control
6 sensor
surfaces
LANE 1
sensors 2
computer
o sensor actuator
g Sensor |——————————> n.2 _— n.2 _—
to control
sensor
surfaces
LANE 2
figure 1.1 - example of parallel lanes

To maintain the highest possible system integrity these parallel lanes
should ideally be physically and electrically isolated from one

another in every respect, which is another problem to deal with in the



design. It is desirable to obtain total lane independence‘because in
this way fault propagation across the lanes is avoided. This research
is focussed only on - the - redundancy aspect of the sensors, not
actuators or computers. In military applications the sensors must be
distributed in the airframe to reduce the risk of physical damage and
as mentioned this is an extra problem. It must also be pointed out
that the use of two different computing algorithms for the observers
was used in the design, a fact that also contributes to the redundancy
if the computer aspect is considered. In addition, redundant sensors
need to sense the same signal and their outputs should idealy be
identical. It is therefore usualy necessary that they be placed
together in close physical proximity thus increasing the possibility

for a common mode physical fault.

1.3 INTENDED APPROACH

The approach to the problem in this work is to use observers in order
to obtain redundancy with respect to sensors. So the necessity to use
two, three or four sensors will be eliminated. The design is carried
out by using observers that maintain the flying qualities of the
augmented aircraft. Here, observers are investigated for the purpose
of estimating state variables in cases where the appropriate sensor
has failed. The observer uses inputs from the "healthy" sensors and
control surface demands and also means fewer sensors in the flight
control system. Figure 1.2 is an example of the intended approach

with respect to figure 1.1.



computer,

“I'sensor.based .’ =
sensor control law

lobserver . based

O sensor .... Jcontrol. law that

uses O input '
actuator |—m———

to control

L 4

q sensor
observer based

control law that
uses g input surfaces

6 sensor

observer based
control law that

uses O input

figure 1.2 - example of intended design approach

As can be seen in fiqure 1.2, redundancy with respect to sensor
failures is introduced analytically in the flight control system

computer.

The work will be directed to design a flight control system that
satisfies the Gibson criteria.’? MIL-F-8785C%, and also to obtain
redundancy with respect to sensor failures. The observers must not
destroy the good flying qualities and stability level obtained for the
augmented aircraft. The observers must also be able to work not only
with the stability agmentation system but with other systems like, for
example, an autopilot. Different élgorithms to implement the
observers are also investigated in order that redundancy in this
aspect can also be introduced. The approach will also focus on the
failure aspects, that is, how the designed system responds to a
failure condition. The work is not concerned with faulty element
identification, 1isolation and replacement. Also, redundancy
management is not considered, since it is not the objective of this
work. As the control law would be implemented in a digital computer
it is wvery difficult to recognise all potential failure modes and so

only the sensor failure modes are analyzed.



1.4 AN OVERVIEW OF THE PERFORMED WORK

In order to obtain good: flying qualities and stability a
pitch-rate command attitude-hold system was designed by two methods,
the pole-placement method and an optimal control method. Modern ideas
concerning the flying and handling qualities of high performance
aircraft have shown that a controller with this structure can give an
aircraft excellent handling qualities The design was tailored to
satisfy the requirements of MIL-F-8785C%, the requirements of the
Gibson dropback criterion?, and also the requirements of the Gibson
phase-rate criterion®. With the design completed, to implement the
control law it is necessary to have the required complement of motion
sensors available. If for some reason the aircraft loses one ,or
more of the necessary sensors, the flying and handling qualities, and
also the level of stability may be seriously degraded. 1In order to
obtain a degree of redundancy observer-based control laws have been
designed to operate on a sihgle output variable in order to achieve
the same level of stability and flying qualities as obtained with the
full sensor—based control law design. To perform this design task the
method proposed by Rynaski5 has been followed, and the theory of
robust observers as developed by J.C.Doyle and G.Stein® has been
applied. The observer-based control law designed in this way is able
to maintain the same phase and gain margins as the sensor-based
control law, and it preserves the original robustness of the system in
the event of a sensor failure. The principal beneffit of the
Doyle-~Stein observer design is that it does not introduce phase lags
that degrade flying qualities as most observers in general do.
Another adavantage of the Doyle-Stein observer 1is that it is not
necessary, in some cases, to measure the control surface deflections.
With this design, it is possible to introduce analytical redundancy

into the flight control system.

This work has also evaluated two methods of design for the control
law, the pole placement method and an optimal control method, in order
to assess which 1is most flexible with respect to subsequent
modification whilst still satisfying the stability requirements and

the handling criteria. The observer control law was designed using



two methods and the advantages and disadvantages of each are compared
and discussed. The problems “that occur in the design of ‘observers
with a pitch—-rate sensor or a pitch-attitude sensor are studied and
the results reported. Finally, the aircraft was evaluated with a
sensor—-based control law and three observer-based control laws, and
the best order of control law reconfiguration in the event of sensor
failures is suggested. The method used to design the observer-based
control law can be called eclefic confrol, as suggested by Powell”
because it uses the best features of classical control and of modern
control. The work also considers éome aspects of control law

implementation, such as numbers of gain parameters to be scheduled.

In the execution of this work the following computer software packages
have been used, CODAS® ; HATLABS, and ACSL'®. The aircraft example
used to evaluate the control law designs was the B-747 and the
aerodynamic data used was obtained from Heffleyli. The ACSL computer
simulation used in this work is fully described in the report by Oliva
and Cook!?. In the development of this work each control law design
starts with the reduced order short period longitudinal model of the
aircraft. Subsequent developments make use of the complete aircraft
model and actuators. Finally the observer and the autopilot are

included in the model for total system evaluations.



2  CRITERIA AND DESIGN TECHNIQUES USED

2.1 BACKGROUND MATERIAL AND LITERATURE SURVEY
2.1.1 BACKGROUND MATERIAL"

The foundations of this research are based on the work of Rynaski®
concerning the use of observers to obtain redundancy in the flight
control system. It should be noted that the work of Rynaski was
basically founded on the observer theory developed by Doyle—Stein6
which has developed a robust observer. With respect to flying
qualities the work refers to the Gibson dropback criterion! and the
Gibson phase-rate criterion?. Concerning stability requirements the
principal reference used was MIL-F-8785C*. The control law design was
based, on the wuse of pole-placement methods, described by
Friedland®3,powell”? ,Chen14,Patton15,Shapiro16 and many other
references and also was based on Optimal control methods found in
Friedland'3,Anderson and Moore17, Lewis—Stevens®,and Lewis!®. The
observer design method was based on Chen“,Friedlandw,Doyle—Stein6

,and Powell-Franklin-Naeini’

2.1.2 LITERATURE SURVEY

Some useful references related to the subjects treated in this work
will be given although they have not necessarily been used directly in
this work. With respect to a similar design,
Monahemi——Barlow—O'Leary20 describes a wvery useful procedure, that is,
it uses reduced-order observers to obtain precise loop transfer
recovery. Now, - with respect to observers
Phillips—Wilson-Graf-Starks®! show the observer as a noise filter,
4. sobel-Banda®? and Andry-—Chung—Shapiro23 both

discuss the design of modal observers, also mentioned by Chen14, and

also discussed in Chen?

both applied to flight control system design. Another interesting

24

application is given by Panossian with respect to servoactuator

states and parameter estimation. An application to systems with



uncertainties is given by Walcott—zZak?®. Examples of : observers
applied to disturbance estimation are given by Bossi—Bryéon26 and
Levin—Kreindler27.'fThe‘pEoblem”of'errors'ih realization‘are studied
by Stefani?®. ‘The case when the input is not available is studied by
wang—Davidson—Dorato29 and Yang—uilde3o. Comparison of algorithms are

31 i%%.  The problem of observer design for time

given in Tsui and Tsu
varying linear systems is studied in Carroll-Shafai®® and
Nguyen—Leea4.

With respect to control law synthesis, in particular with optimal

35 and

control methods the works of Blight-Gangsaas-Richardson
Gangsaas-—Bruce-Blight—Ly36 are very illustrative. Again, with respect
to pole-placement the work of Sobel-Yu3? is also very useful.
Classical references with respect to flying qualities include, for
example McRuer—GrahamaB, Ashkenas®?, Phillipsqo, and Harper-Cooper41.
With respect to the application of criteria the works of Stengel42 and
Mooij-—Gool43 are important. Examples of flight control systems design
can also be obtained from Govindaraj-Rynaski44, which compares two
design methods based on optimal control theory, Cunningham—Pope45,
which discusses modern control analysis and synthesis techniques and
in particular Stevens—Lewis-Al Sunni46,uhich develops an approach to
design control laws for shaping the closed loop step response that
uses linear quadratic output feedback techniques. Robustness is
considered in  Franklin-Ackermann?®?, Horowitz—Golubev;Kopelman48,
Ashkenazi—Bryson49, Schaechterso,Yanushevsky51,Okada-Kihara—Ikedasz,
and Burrows—Patton!®. In particular the Qork of Chalk®3 is related to
the flight control system structure used in this research. Also,
alternative methods, such as the low order approach is studied in the
works of Mitchell-Hoh54,Bischoffss, and Shafer®®. with respect to the
selection of weighting matrices for use in optimal control studies the

57 can be aplied to more complex problems.

work of Harvey-Stein
Finally ,with respect to stability and control the work of Roskam®® is

very interesting and relevant.



2.2  CONTROL ANTICIPATION PARAMETER ( CAP:)
2.2.1  INTRODUCTION -

The CAP is implicit in the Flying Qualities Requirements MIL-F.8785C*
and defines the upper and lower frequency limit requirements on the
short-period pitching oscillation. The CAP is much more specific than
damping ratio or frequency in the description of what it is that a
pilot is particularly aware of in the short period motion parameters

implicit in the handling characteristics of an aircraft.

2.2.2 DEFINITION

When a pilot applies a pitch command to the aircraft there is a finite
time lapse before the steady state condition is reached and during the
finite time lapse the transient short period response dynamics are
seen. To have good handling the pilot needs some earlier indication
of the likely steady state response. Speaking more generally, it is
possible to say that the initial transient response and the final
steady state response must not be too sensitive to or too insensitive

to the commanded flight path change. So CAP is defined as

- transient peak pitch acceleration
caP = 2.1

steady state normal acceleration

In terms of the usual aircraft response parameters CAP is defined in
the flying qualities requirements documents as the ratio of the
initial pitch acceleration to the final steady normal load factor in
response to controls. Using the reduced order pitch-rate transfer

function

q(s) _ kq(1+sTez)
( 2.2 )

n(s) A(s)



m
n

Uhere s kq=T . 2 . . T . ( 2.3 )
62 wsp

The pitch-acceleration response to a unit step input of elevator angle

Py

is,
. kq ( 1+s'l'92 )

q(s) = ——— ( 2.4 )
A(s) \

Applying the initial value theorem

- 2
q(0) = kq T92 wsp = mn ( 2.5 )

The normal load factor is derived from normal acceleration referred to

the C.G. of the aircraft as follows,

and it is possible to show that

m_ z V_ n(s)
n_(s) = - n v e «( 2.7)
z 2 Als)
g wsp

Applying the final value theorem, assuming a unit step input

m z V
nw e

nz(m) = - 5 ( 2.8 )
g wsp
Hence,
é(o) ! wzp To2
CAP = —— = £ = ( 2.9)
nz(m) Ve

10



since, z , e L
: —_— (2.10 )
W2
sp .

cap = ——SP ( 2.11 )

n

z

o

2.2.3  INTERPRETATION

CAP can be interpreted in terms of the classical description of static
and manoeuvre stability margins. In manoeuvering flight the lift of

an aircraft is given by,

p Vz Sau
L = ( 2.12 )
2
2
L 0.5 pV S aa
and nz= —_— = ( 2.13 )
mg m g

So it can be written

n 0.5 p V2 S a
= . ( 2.13.a )

o m g

Allowing perturbations to be small, in limit it is possible to write

that Vv =« Ve and from the reduced order longitudinal model is

possible to use,

Z M Vv N
2 W q e W
msp = —_— - ( 2.14 )
mI I
y - y

11



with Z, H and M dimensional stability .derivatives ' given
approximately by, -

1
Z =-— pV_ Sa ( 2.15 )
W e
2
M =- v scla, v 1r
q ;— P Ve 10T L ( 2.16 )
c
M =1 V Scak
. > P Ve n ( 2.17 )
where, k_ is the longitudinal static stability margin.
Then it is possible to write:
a V.1 k
W =ac@spv s? | 2T T . n ( 2.18 )
P m I 0.5psSI
Y Y

Subtituting equation (2.13.a) and (2.18) into equation (2.11) it is

possible to write :

mgec c pSm
cCAP = k - a ( 2.19 )
I n 2m
b 4
Defining the longitunidal relative density factor as
m
py = —— ( 2.20 )
1 pSc
it is possible to write
mgec m
CAP = — 'kn - d ( 2.21)
Iy 2 Hy

12



where

m
H=k——q. ( 2.22 )
2 Hy

is the longitudinal manoeuvre margin controls fixed.

2.2.4  REQUIREMENTS ON CAP

In MIL-F-8785C? a requirement for acceptable wvalues of CAP is not
quoted explicitly but it is implicit in the limiting requirements for
short period mode frequency. The limits on short period frequency are
quoted as a function of nZ{a for each of the flight phase categories.
Since the wvalues of CAP are given in MIL-F-8785C% these may be read
off and used as a constraint in the flight control system design. For
level 1 flying qualities the limiting values of CAP may be summarised

as follows,

CAT A 0.28 < CAP < 3.6
CAT B 0.085 < CAP < 3.6
CAT C 0.16 < CAP < 3.6

2.3 GIBSON CRITERIA

2.3.1  INTRODUCTION

Although the mission of a civil aircraft differs from that of an
advanced fighter, there are tasks, or flight phases, where the
handling qualities requirements may be equivalent and where the
military criteria can be applied to the civil case. With this is mind
this work has used the Gibson criteria. The criterion comes from the

necessity to know what kind of approach must be taken when designing a

13



stability augmentation system in order that the resulting -augmented
- aircraft presents good flying and handling qualities. The basis for
the criterion comes from a very extensive ‘analytical studyof .the
longitudinal response characteristics of many aircraft whose flying
and handling qualities were known. Gibson was able to identify the
parameters which are 1important in determining the handling
characteristics to which pilots are most sensitive. With the
determination of limits on the system parameters it is then possible
to design flight control systems with an improved probability of
providing acceptable flying and handling qualities. Some of the
features found within the Gibson criterion correlate very closely with

features found in other advanced dynamic handling criteria.

2.3.2 INITIAL CONSIDERATIONS

In common with several other criteria the Gibson criterion is
primarily concerned with the longitudinal tracking response of the
aircraft since this is an aspect of handling qualities associated with
some of the more critical piloting tasks. Traditional measures of
flying and handling qualities are based on the assumption that the
short term response behaviour of the aircraft is basically second
order and so mainly governed by the short period dynamics. 1In such
aircraft the provision of correct short period mode damping and
frequency characteristics effectively guarantees acceptable normal
acceleration n, »pitching acceleration.q and pitch rate g responses
which are, in general sufficient to ensure good handling qualities.
As a result it follows that the pitch attitude @ and flight path angle
y responses are also well behaved due to the second order behaviour of
the aircraft. Consequently little direct attention has been paid to
the role of 6 and y in the determination of handling qualities, but it
is known that both pitch attitude 6 and flight path angle y are very
important responses with respect to the perception of handling
qualities by the pilot. With the increasing complexity of the
aircraft and its flight control system the dynamic behaviour is today
more and more less second order like and, even if its basic short

period mode stability characteristics may be correctly designed it is

14



quite possible for its pitch attitude and flight path angle behaviour

to be unsatisfactory. The main reasons for this are :

- Flight control system dynamics may introduce additional
modes with frequencies close to the short period mode.

—. It is easy to inadvertently modify aftitude response
characteristics since in the design of the stability
augmentation system to meet the traditional requirements no

emphasis is placed on attitude response directly.

From the aircraft model it is possible to establish some simple, but
important, response parameters as might apply to the pitch tracking

task, these are illustrated on figure (2.1). j o

t

iﬁ*cPBacw

; OVELSHooT

Ty

figure 2.1 - Typical pitch tracking response characteristics'
and useful parameters to the criterion.
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With respect to figure (2.1) the input to the aircraft is a unit step
of elevator angle which is held for a few seconds and then returned to
zero, which corresponds to the trim datum wvalue. The pitch rate and
pitch attitude responses that follow are shown and the parameters
related with handling qualities important to the pilot are identified

as follows,

I

— pitch rate overshoot ratio
ss

— pitch attitude dropback or overshoot

If, as usual, B > & ( in figure 2.1 ), the pitch attitude drops back
to a final wvalue which is less than the value at the time when the
pitch demand was removed. If, & ) B ( in figure 2.1 ), then the
reverse behaviour is seen and this is referred to as overshoot. In
general dropback is most common in typical aircraft pitch attitude
responses. It is possible to see from figure (2.1) that the value of
pitch attitude dropback, or overshoot, is given by the intercept of
the projection of the response plot on to the 9 axis at t = 0, or it
is obtained by the displacement of the linear part of the response
plot from the line defined by the equation 6 = t Qs S shown on

figure 2.1.

2.3.3 THE DROPBACK CRITERION

The dropback criterion, Gibson® , was originaly defined in terms of
limiting values on pitch rate overshoot ratio and on the ratio of
attitude dropback ( overshoot ) to steady state pitch rate, (DB/qss)
the requirements on these parameters are shown on figure (2.2). A

recent study performed by Blagg3 has concluded that the criterion
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could be used as a handling qualities criterion for transport
aircraft, if the upper limit of (DB/q ) = 0.3 sec in figure (2.2) is
. .8 8. - .

increased to allow lower values of, T necesséry fof quick flight path

i 2
response. However, this modification has not been wvalidated or
tested.
I 4 T .
q CONTINUOUS BOBBLING
ss
3.
2 + ABRUPT BOBBLE Ql
SLUGGISH , TENDENCY " D.b -
< 0
, |sATISFACTORY //,/
: %
! l —¥-4
oS ' 0 T ' Py DB
-0.2 0.2 0.4 9.5 0.6 (sec)
qss ‘ ss
figure 2.2 - Gibson dropback criterion evaluation chart

It is necessary to say that:

— If the pitch rate overshoot ratio (9m/9%:<) < 1 then dropback
is not possible and the lower part of the satisfactory region
cannot be attained.

~  Subsequently Gibson redefined the criterion such that =zero
dropback only is acceptable. The satisfactory region then
collapses to the ( 9n/%s) axis and in the event that this
cannot be obtained then it is better to lie on the side of
attitude dropback rather than overshoot.

~ The acceptable value of pitch rate overshoot lies in the range

1.0 < ( '/ %s ) < 3.0.

2.3.4 THE PHASE-RATE CRITERION

Even when the flying and handling qualities of a high order aircraft
are acceptable it is possible that the closed loop gain and phase

characteristics may be such that the addition of the pilot in the loop
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leads to the propagation of pilot induced oscillation ( PIO ) at
certain conditions. The phase-rate criterion may be applied at the
design point after the feedback loop has been developed, in order to
reduce the likelihood of PIO ocurrence, that is, after the basic
stability characteristics satisfy completely the  MIL-F-8785C
requirements. The probability of PIO ocurrence is determined by the
degree of gain and phase compensation instinctively introduced by the
pilot when controlling the aircraft. The required compensation, in
general, 1is determined by the closed loop gain and phase
characteristics of the aircraft at frequencies close to the resonant
frequency of the human pilot. Gibson® studied the problem of PIO
occurrence in satisfactory aircraft and identified the desirable gain
and phase characteristics for the closed loop high order aircraft if
PI0O is to be avoided. The Gibson phase-rate criterion has an
advantage with respect to other PIO criteria, in that a pilot model is
not necessary. The criterion is basically concerned with the closed
loop attitude frequency response in the region of -180° phase and is
evaluated from a plot of the closed loop attitude frequency response

on the Nichols chart as shown in figure (2.3).

6 “gainT
(dB)
60
70° 0o 90° 0°
-2 -18 -
¢ ¢
L 2 1 1 1
0
ec
phase
(deg )
———> cross over point

figure 2.3 =~ Closed loop attitude frequency response on

Nichols..chart as required by Gibson criterion
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Referring to fiqure (2.3), the point of interest is the cross over
point, where the phase first passes through -180° ,the frequency
corresponding with this point and the rate of change of phase with
frequency at cross over. Again with reference to figure (2.3) the

phase-rate is simply defined as :

b = O
phase-rate = P.R. = — ( 2.23 )
Wp =@

and, ideally, Gibson has established that,

P.R. < 100° / Hz ( 2.24 )
is desirable in order to avoid PIO with a reasonable safe margin.

The criterion can be simply summarised on figure (2.4).

phase-rate ( P_R.)
( deg/ Hz )
400 A P
SEVERE PIO =
o
X 1
300 {
SEVE PIO\
RE TRENDS OF HIGH ORDER
\ ”//i;;7 PHASE RATE
200 - 3 A :
\
\\ MODERATE
N\ pr10
\
N
100 +
N -~
NO ’( : -~ _
P10 ~ OPTIMUM
T~ — LOV ORDER
o T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
o )
180 phase lag frequecy ( Hz )
figure 2.4 -~ Chart for evaluation of the Gibson
) phase rate criterion.
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In general, it is required that the cross—over point should occur at a
frequency of 1 Hz and that the phase-rate should be less than 100° per
Hz. If an aircraft does not meet the criterion, then a suitable gain
and phase compensation can be introduced into the command path with
the help of a suitable pre filter resulting in a flight control system

structure shown on figure (2.5).

PRE . + AUTOSTAB AIRCRAFT q
S —() >| CONTROL |—— —>
qqlp T LAV n DYNAMICS

~

figure 2.5 - Flight control system with pre-filter

When command path compensation is required it is also necessary to
include some high frequency gain compensation in order to maintain the
slope of the closed loop attitude frequency response plot to a

reasonable value at cross over.

2.4 THE POLE-PLACEMENT TECHNIQUE

2.4.1  INTRODUCTION

In the control law design the pole-placement technique will be used as
the first method. There are so many references in the literature
about pole-placement that is impossible to refer to all here.
However, it is possible to refer to some useful design techniques as
presented in PattonwﬁS D'Azzosg. Shapirois, and Friedland!® for
example. Obviously the pole-placement technique is ‘a state-space

method. In a controllable system, with all the state wvariables
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accessible for measurement and feedback, it is possible to place the
closed loop poles anywhere in the complex s—plane. This means that in
principle it is possible to completely specify the closed loop dynamic
performance of the system, as for example MIL-F-8785¢c" requirements (
cAP ), and Gibson' dropback criterion. So 1in principle it is
possible to satisfy any criteria, but in pratice it is also_necessary
to ensure that large control signals are not required. If so ,signal
limiting as a result of saturation on the actuator might be possible,
that is, the actuator will not be able to deliver large control
signals. So it 1is necessary to not only focus on satisfactory
handling criterion and stability criterion but also on feasible
feedback gains. The first step in the pole-placement design approach
is to decide the desired closed-loop pole locations. When selecting
pole locations, it 1is necessary to keep in mind that the control
effort required is related to how far the open loop poles are moved by
feedback. Furthermore, open-loop zeros attract poles, so considerable
control effort is required to move a pole away from a nearby zero.

Therefore a pole-placement philosophy that aims to fix only the
undesirable aspects of the open-loop response will typically allow
smaller control actuators than one that arbitrarily picks all the
poles in some location without regard to the original open-loop poles.
In aircraft flying qualities specifications, such as MWIL-F-8785C%,
closed-loop pole locations are implied. It is also possible to use
the technique of a prototype design, such as the ITAE or Bessel
responses, for higher order systems. However it is essential to
recognise that these techniques deal with pole selection without

explicit regard for their effect on control effort.

2.4.2 FLIGHT CONTROL SYSTEM DESIGN

To use the pole-placement technique on problems in which there are
reference inputs and/or disturbances, it is frequently desirable to
represent these inputs and disturbances by additional state variables.
The particular dynamic process to be controlled may be described by

the following state equation.
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x = Ax+Bu+Fx,; Lo 2.28)
where X4 is a disturbance vector, which may or may not be subject to
direct measurement and u is the control input to the aircraft. 1In
addition it is also desirable that the state x track a reference state

X, - Figure (2.6) is the state-space representation of a system with

disturbances and reference input.

disturbance

model - — Bd ——T
4 disturbances
L 4 :
IS > - > c >
d
X
v e
F
B 3
+ .
“ B ‘ Y
—|B —()——|/J > Ce ~(J >
+ + output
reference T Y
model system T
A - . + error
f Q] & [
+
> | A-A |1
% r
r
Y
C
N r N
figure 2.6 - State-space representation of a system with

disturbance and reference input.

To formulate the problem in terms of state wvariables, it is often

expedient to assume that X4 and X satisfy known differential

equations :

Xd = Ad xd ( 2.26 )

= X
X. A x. ( 2.27 )
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These supplementary states are surely not subject to control by the
designer, so that these are unforced differential equations. The

system’comprisingﬂg,;xdtiganq xkkiS‘necessarily uncontrollable. In

general the objective is concerned with the error defined by :
e ="X - X ( 2.28 )

So the differential equation for the error using (2.25) and (2.27)
will be :

é = ; - ;r = A(e+xr) + F Xq 4+ Bu - err ( 2.29 )

; =Ae+ (A- Rr)xr + F Xq * B u ( 2.30 )

or, ; =f e+ E x0 + B u ( 2.31 )

where, E = ( A - Ar i F) ( 2.32 )

and, X0 = xr' ( 2.33)
xd,

The wvector X represents the exogenous inputs to the system. To the
differential equations of the error is adjoined the equations for the
reference and disturbance states to produce a system of order 2k+1

having the metastate wvector,

e
b . 4 =
( 2.34 )
%0
and satisfying the metastate equation
Xx=Ax+Bu ( 2.35 )
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where, A = ¢ 2380
B
B = |7 , ( 2.37 )
0
A {0
ri
5 ( 2.38 )
and A = i
0 0 Z'ﬂd

The design method described here is used in this research program.
First it is necessary to refer to figure (2.7) concerning the control

system structure.

X disturbances

d

feedforward

+ - u - X
> > >| ¥ = Ax + Bu > >
X —| error
r
reference Y
state
figure 2.7 - Schematic of feedback system for an aircraft with

reference state and disturbance input.

This method applies to a more general objective, that is, to control
the system error not only for initial disturbances, but also for
persistent disturbances, and also to track reference inputs, as

required by the Gibson dropback criterion for example.
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The error is defined by : e = X - X ( 2.39 )

where x is the system state vector-

X, is the reference input wvector

and also X, is assumed to satisfy a differential equation

X. = Ar X. ( 2.40 )

A disturbance X4 is also included and so the error is given by:
e=Ae+ (A - Ar)xr+ F Xq * B u ( 2.41 )
e=Ae+Bu+E x0 v ( 2.42 )

As in terms of control theory the metasystem is not controllable it is
convenient to work directly with the error differential equation

(2.42) and so the exogenous vector x,. is treated as an input just like

0
u. A linear control law is assumed, which takes the general form,

u =-6Ge- 60 Xo =~ Ge - Gr X. = Gd Xq ( 2.43)
From figure (2.7) it is possible to see the presence of two signal
paths in addition to feedback path. There is a feedforward path with
a gain Gr and a path through the gain Gd, and the objective is to

minimise the effect of the disturbances x,. For the present, the

d
objective is limited to the design of the gain matrices G and GO' The
closed loop dynamics are described by,
e =Ae+E xo ~ B(G e + Go xo) ( 2.44 )

which is the differential equation of a linear system excited by Xg*
If possible, it is desirable to choose the gains G and G0 to keep the
system error zero, however more reasonable performance objectives are

the following:
(a) the closed loop system should be asymptotically stable.

(b) A linear combination of the error state wvariables 1is to be

zero in the steady state.
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In order for the closed loop system to be asymptoticaly stable the
closed loop dynamics matrix,

Ac =A-BG ( 2.45 )

must have its characteristic roots in the left half s—plane. If the
system is controllable, this can be accomplished by a suitable choice
of the gain matrix. The steady state condition is characterized by a

constant error state vector, i.e., in the steady state

e=20 ( 2.46 )

and from (2.44), this means that
(A - B G)e = (B Go - E)x0 ( 2.47 )

If the closed loop system is asymptoticaly stable, Ac = A-BG has no
characteristic roots at the origin, and so its inverse exists. So the

steady state error is given by:
-1
e = (A - BG) (B GO—E)x0 ( 2.48 )

It is not reasonable to expect that e be zero, instead it is required

that
y=Ce=0 ( 2.49 )

where C is a singular matrix of suitable dimension.

Then it is possible to write:
-1
C (A-BG) (BGO—E)x0 =0 ( 2.50 )

and it must hold for any x, ,that it is possible if and only if the

0
coefficient matrix multiplying X vanishes:

c(A -BG)‘l(BGO—E) =0 ¢ 2.51)
or
-1 1

c(a-B6) 'Ba, = C(A-BA) E ¢ 2.52 )
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Now the dimension of C becomes significant.

If the dimension of y is j, then € is a (J x k) matrix, (ﬂ—BG)-l is a
(k x k) matrix, and B is a (k x m) matrix, where m is the number of
control wvariables. The product of the three matrices multiplying Go
is thus a ( j x k) matrix. If j > k, then (2.52) is overdetermined,
there are too many conditions to be satisfied by Go and, except for

special values of E, no solution to (2.52) for G, exists. On the other

0
hand if j ¢ k, then (2.52) is underdetermined, Go is not uniquely
specified by (2.52). This poses no problem; it only means that Go can

be choosen to satisfy not only (2.49), but also to satisfy other
conditions. Analytically the simplest case is when the number of
inputs m is equal to the dimension of y. 1In this case, when the
matrix multiplying GD is not singular, the desired gain matrix is

given by

6, = [ c(a-86) B ] c(a-Ba) T E ( 2.53 )

The big matrix

8¥ = [ca-8e) 8 ] ¢ (aBE) " ( 2.54 )

that multiplies E has the property that

.

G0 =B E ( 2.56 )

It can be shown that C(A—BG)ﬁlB possesses an inverse, see
Friedland?3.
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2.5 - THE LINEAR QUADRATIC OPTIMAL CONTROL TECHNIQUE =

2.5.1 INTRODUCTION

There are -several good reasons to use .optimal control for the design
of flight control systems. - The first is that in a MIMO system, the
pole placement technique -does not completely specify the controller or
compensator parameters, that is the gains. Another good reason is
that the designer may not really know the most satisfactory closed
loop pole locations. 1In fact, the designer who has acquired extensive
experience with a particular type- of problem generally has an
intuitive "feel" about the proper closed loop pole locations. However
when faced with a new problem or a lack of time to acquire the
necessary insight, the designer will benefit from a design method that
can provide an initial design and at the same time acquire "feel"
about the problem. Another good reason is that the optimal control
theory can be applied to processes which are not controllable in terms
of control theory. Optimal control theory was developed to
specifically address the issue of achieving a balance between good
system response and control effort. It is important to note that
Optimal control theory does not provide direct specification of the
transient response in the way that other methods do. 1In fact Optimal
control theory selects poles that result in some defined balance
between system errors and ‘control effort. The designer can easily
examine the relationship between shifts in that balance ( by changing
the weighting matrices in the performance index ) and system root

locations, time response, and feedback gains.

2.5.2 THE DESIGN PROCESS

Again, the model considered initially is the same as in the pole

placement technique, that is,

e = Ae+Bu+eE xo ' ( 2.57 )
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where Xq is the exogenous vector, and u the input to the aircraft.

As in the pole placement technique x,. satisfies a known differential

0
equation,

X =Ax+Bu ( 2.59 )
e
where X = ( 2.60 )
%
e 0 -
A E
A = ———— ( 2.61)
0 Ho
B
B = |oeon. ( 2.62 )
0
An appropriate performance integral is :
®
T T :
V= I (xQx+u Ru)dt ( 2.63 )
t
thus, the weighting matrix for the metastate is of the form,
Q 0
Q = H ( 2.64 )
0 :0
|

This is the clasical problem of optimal control ( LQR ), with the

matrix M as the solution of the matrix Riccati equation, the theory

29



and solution of this problem is well described in many books, for

example Anderson-Moore®”’

, and in particular as applied in this work in
Friedland'3. The problem can be solved without theoretical difficulty,
and with the partition of the performance matrix M for the metasystem

will give:

Ml Mz
M = MT ; " ( 2.65 )
2 {3

It is well known that the performance matrix M satisifes the algebraic
quadratic equation ( algebraic Riccati equation ).

- T

o=MAa+A H-HBRT

T —
B M+ Q ( 2.66 )

and that the optimum gain is given by

- -1 -
G= R BT M ( 2.67 )
The gain matrix G for the metasystem is given by,
Ml M2
= -1 o _Ti
6=R [Blo0] ( 2.68 )
T
M2 MS
- -1 T ¢ 1T
G = [R'B M {RTB M, 1 ( 2.69 )

and it is possible to notice that the submatrix MB is not needed to
solve the problem. Performing the matrix multiplications required by
the Riccati equation it 1is possible to obtain the differential

equations for the submatrices in (2.65).
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T -1.T

= M A+AM -MBR BHM +0Q ( 2.70 )

T -1 T A

= M E+M, A+ (A -MBR B )M, ( 2.71 )
T T T T, ~1.T

= MA + A M +ME+EM~—MBR B M, ( 2.72 )

Due to the special structure of A, B, and Q, the following facts about

the submatrices of M emerge:

(a)

(b)

The solution of Ml ,and hence the corresponding gain R-1 BT Ml R

is the same as it would have been with xo absent from the

problem,i.e.,\if the design were for the simple regulator
problem ( clasical optimal control problem ), so a steady state

solution for Ml can be obtained 1if the pair {(A,B) is

controllable.

from which the gain R—lBTM2 is

and in fact is a linear

The differential equation for Mz,

determined, does not depend on M3,

equation, which can be written as,

T
—Nz = HiE + MZRD + Ac MZ (2.73 )

where Ac = A_~ B R_]'BT Ml ( 2.74)

is the closed loop dynamic matrix of the regulator subsystem.

A steady state solution also can be found, and it must satisfy,
0= M, E+M A +A M : ( 2.75 )

and so the necessary gains to realize the control law are

obtained as:

31



u = —-R B M. x-R B H,x ( 2.76 )

{(c) The differential equation for MS is also linear. However M3 is

not used in the determination of the gain matrix.

2.5.3 CASE WITH CONSTANT REFERENCE INPUT

The most frequently tracked signal corresponds with the condition,

Ao = 0, so for this case the equations for M2 and MS become simply,
- M, = ME + AT M
and
: T T T o 1T
- M3 = Mz E+ E Mz - Mz BR B MZ ( 2.78 )

The correct relationship for MZ is given by the solution of (2.77)

‘with M_ = 0.
2 -1

— T -
MZ = - ﬂc Ml E ( 2.79 )

where ﬁl is the steady state solution of (2.70), i.e., the control
matrix for the regulator design. Thus the gain for the exogenous

variables is,

( 2.80 )

where B =-R B a 7] ( 2.81 )
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2.5.4 COMMENTS ABOUT THE SELECTION OF Q AND R

The question of concern to the control system designer 1is the

selection of the weighting matrices Q and R. To quote, Friedland!?

» In candor one must admit that minimization of a quadratic integral
is rarely the true design objective. The problem, however, is that
the true design objective often cannot be expressed in mathematical

terms. *

In the performance index two terms contribute to the integrated cost
of control: the quadratic form xTQ x which represents a penalty on the
deviation of the state x from the origin and the term uTR u which
represents the cost of control. It should be obvious that the choice
of the state weighting matrix Q depends on what the system designer is
trying to achieve. Again Friedland's words are appropriate to be

written :

» The relationship between the weighting matrices Q and R and the
dynamic behavior of the closed-loop system depend of course on the
matrices A and B and are quite complex. ”

» It is impratical to predict the effect on closed loop behavior of a

given pair of weighting matrices. ”

and finally, it is useful to again quote Friedland's words with
respect to the design process when working with optimal control. It
must also be pointed out that the same advice is giwven by Broganso,
and by many other references related to optimal control. So Friedland

says :

”» A suitable approach for the designer would be to solve for the gain
matrices G that result from a range of weighting matrices Q and R, and
calculate ( or simulate ) the corresponding closed-loop response. The
gain matrix G that produces the response closest to meeting the design
objectives is the ultimate selection. In a few hours time, dozen or
more combinations of Q and R can be determined, and a suitable

selection of G can be made. ”
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It is also useful at this time to repeat the gquidance given by
Brogansoabout the problem of selection of the weighting matrices Q and

R, that is very appropriate to this work :

”»  For small problems with only a few parameters it may be feasible to

parametrically examine the range of possibilities. For most problems

a more focussed approach is desirable. The expanded gquadratic will
2 2

contain terms of the form x Q +u R, .If x,  is a position wvariable
i ii i it i

with magnitude of thousands of feet, and if ui is an angle of say 0.01
radian, it is clear that ui will have no effect on V unless Rii » it
. The point 1is that scaling wunits and variable magnitudes are
important, as well as the subjective choice of the importance of

keeping u_, small compared to keeping x, £ small. *
i i

Finally Brogan60 says about Q and R :

» The relative magnitudes are all that matter *»

2.6 OBSERVER DESIGN TECHNIQUE

2.6.1  INTRODUCTION

In order to design the observer two methods have been used, here the
design methods are summarised and explained. Both methods are
suitable for full order observers or for reduced order observers,
however here the discussion relates to the reduced order observer
only, which is the one used in this research. The reason for using a
reduced order observer is because it requires fewer parameters to be
implemented in the flight control system, and so it is more suitable.
The reduced order observer has a much higher bandwidth from sensor to
control when compared with the full order observer. Therefore, if
sensor noise is a significant factor, the reduced order observer is

less attractive, since the potential savings in complexity may be more
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than offset by the increased sensitivity to noise. 1In this research,
as in the work of Rynaski5 the sensors are assumed to be essentially

noise—free in themselwves.

2.6.2 FIRST METHOD

The method here developed can be found in Friedland13, and Chen!? It
is assumed that the dynamic system is described by the following state

equation,
X = Ax+Bu ( 2.82 )

It is also assumed that it is possible to group the state variables
into two sets: those that can be directly measured xi, and those that

depend indirectly on the former xz. The state vector is partitioned

accordingly :

1
X = ( 2.83 )
*2
with :

x1 = A11x1 + Hl2x2 + Blu ( 2.84 )
xz = A21x1 + A22x2 + 82u ( 2.85 )
The output equation is given by : Yy = Clx1 ( 2.86 )

The standard observer for (2.84) and (2.85) is given by :
x1 = Allxl + A12x2 + Blu + Kl(y—clx1 ) ( 2.87 )
xz = A21x1 + A22x2 + Bzu + Kz(y—clx1 ) ( 2.88 )

But it is not necessary to implement the observer for X4 because Xq is
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already available as,

x, =x =c.t 9
So the observer for x2 will be:
; = f l.'l-1 + f ; + B_u
2 = fpgty ¥ 22%2 T Pp ( 2.90 )

which is a dynamic system of the same order as the number of state
variables xz that cannot be measured directly. The dynamic behaviour
of the reduced order observer is governed by the eigenvalues of A22
which is a submatrix of the open—-loop dynamic matrix &, a matrix over
which the engineer has no control. If the eigenvalues of A22 are
suitable, then (2.90) could be a satisfactory observer. Since there
is no assurance that the eigenvalues of A22 are suitable it is
necessary to devise a more general system to estimate xz. A suitable

general structure for the estimation of x_ is given by,

2
X, = Ly+z ( 2.91 )

with z the state of a (k-1)th order system, and L is the gain matrix

of the observer.
Z= Fz+Gy+Hu ( 2.92 )

The estimation error is defined by,

R 1 T ] €

e = X=X = ~ = ( 2.93 )
o T %y €2

but, e1 = xl - x1 =0 ( 2.94 )

So it is necessary only to consider e described by the differential

2’
equation,
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- -

e2 = x2 - xz = A21x1 + Azzxz + Bzu - Ly -2z ( 2.95 )

()
[l

A x, + A__x_ +B_u - L[Cl(ﬂ X +A, X +Biu)] +

2 2171 2272 2 1171 1272
~-Fz-Gy-Hu ( 2.96 )
but it is known that X, = L y+ z , equation (2.91), and then
z =X, - Ly= X, = &5 = Ly= X, —€, = LClx1 ( 2.97 )
and
e, = F e, + (A21 - Lclﬂ11 - Gcl + FLCl) X, *+
(A,, = LC,A;, —F)x, + (B, ~ LC,B ~ H)u ( 2.98 )

In order for the error to be independent of Xqs X and u, the matrices

2
and u must wvanish, that is, the following

multiplying x p 4

1* T2
equations must apply,

F=a,,~LCA, ( 2.99)
H = B2 - LC1B1 { 2.100 f
Ec1 = A, — LC,A ., +FLC, ( 2.101 )
Then (2.98) becomes ;2 =F e, ( 2.98.a )

and hence, for asymptotic stability, the eigenvalues of F must lie in
the left half s-plane.

Having selected the matrix L to place the reduced order observer
poles, the matrix H is determined from (2.100) and the matrix G is
determined from (2.101), that is,

= 1
G = (321 - Lclﬂu)c1 + FL ( 2.102 )
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and so:

Figure (2.8) represents a block diagram of these equations.

- X
y\ LN C 1 1 AN
> > 1 >
A 4
G Y
R 2 L
+ + xz
u + z +
——| H > \h) [ a @) >
&+
< 4
F €
figure 2.8 - Reduced order observer for observation y = Cix1
with C‘1 nonsingular.

The observer is defined by :

z= F x2 + (A21 - L01A11)y + Hu ( 2.104 )
X,= Ly+2z _ ( 2.105 )
; = (:_1 = X

1= G Y=x ( 2.106 )
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2.6.3 SECOND METHOD

4as an alternative

The method here described can be found in Chen'
method when the previous one described is not applicable.
Now consider again the dynamic system given by,
; = A X+ Bu ( 2.107 )
y = Cx ( 2.108 )
where A is a matrix (nxn), B (nxp) and C (qxn)

Suppose again that the observer is given by

z= Fz+Gy+Hu ( 2.109 )

a (n—q) dimensional dynamic equation, with F, G and H constant
matrices to be designed and with dimensions:

F (n-q)x(n—-q), G (n-q)xq and H (n-q)xp

In this method the following algorithm is given by chen'?, and it will

be applied in this research,

(1) Choose a real constant matrix F so that all of its eigenvalues
have negative real parts and are distinct from those of A.

(2) Choose a matrix G so that {F,G} is controllable.

(3) Solve the unique T in : TA - FT = GC , a Lyapunov equation
with T a (n—-q) x n matrix.

(4) If the square matrix of order n

P = ( 2.111 )

is singular, go back to step (1) and/or step (2) and repeat the
process. If P is non nonsingular, compute H = TB. Then the
equation (2.109) is an estimate of Tx and so the original state

can be estimated by,
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e (0 2.118 )

2.7 THE DOYLE-STEIN OBSERVER

One of the main questions that must be considered when designing an

observer is the robustness of the closed loop dynamic process.

The observer described in this section was developed by Doyle—Stein6

and is also discussed by Friedland!®. Considering first figure (2.9),
u, i, m ,
s N ,| B s ¢ R R
4 \1‘) g Ve rs 4 7
X
u
‘& )
H (s
o( )
figure 2.9 - schematic of a general feedback control system
Where : Xx=AX+Bu ( 2.114 )
u= uo -G x = u0 —u ( 2.115 )
-1
and ¢(s) = (sI-A) ( 2.116 )
The transfer function from the input U to the state x is ,
x(s) = ¢ B u(s) ( 2.117 )

Using (2.115) and (2.117),
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x(s) = (I+¢BG) "¢ B u, ¢ 2.118 )

So the transfer function from u_. to the state x, using full state

0
feedback, is
Hy(s) = (I + ¢ B G) "¢ B ( 2.119 )
Hy(s) = [I+(sI-A) 'B G] (sI-A) ' B ( 2.120 )

Now suppose that an observer will be used with the control law as in

figure (2.10)

u —
0o + u X
~O—)| © ) ¢ >
ul\ !
3 B >
7 c
@ y
+ + ¥
N ‘
—| | <—O——] ¥ [—0O
x -‘4\
A 4 ~
y
> c
OBSERVER
figure 2.10 -~ schematic of a general control system with control
law and observer.
The observer is simply given by,
X=AX+Bu+Ky-KCx ( 2.121 )

4

which can be found in Chen® , described as an asymptotic state

estimator, the output of the system is y = C x ( 2.122 )
and K is the observer gain matrix.

Again, the transfer function from u, to x is required, but now the

0
input will be :

u(s) = uy — @ x(s) ( 2.123 )
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For an arbitrary gain matrix G, the transfer function from u, to x in
figure (2.10) will not be the same as that of figure (2.9) unless the
transfer function from u to x in figure (2.10) is the same as that
from u to x in figure (2.9). The transfer function from 4 to x in
figure (2.9) is given by (2.117). From figure (2.10) it is possible

to obtain,

x(s) = (¢ +KC)"'[ B u(s) + K C ¢ B u(s) ] ( 2.124 )

The transfer function from u(s) to x(s) given by (2.122) is
not generally the same as that given by {2.117) as shown by
Doyle-Steins‘ However, they are equal when the Doyle-Stein condition

is satisfied
K(I+CoK) ' =8B (C¢B) " ( 2.125 )
and with the help of the Schur matrix inequality
&+ KC) M = ¢~ ¢ K(T+C 6 K)IC o ( 2.126 )

it can be shown that (2.124) becomes,

§(s) =[¢p - ¢ K(I+C ¢ K)_ic ¢1Bu(s) +

[ — ¢ K(I+C ¢ K) 'C ¢IK C ¢ Bu(s) ¢ 2.127 )

Using the Doyle-Stein condition (2.125), the matrix multiplying u(s)
becomes zero and the matrix multiplying u(s) becomes B.

Then

Q(s) =¢ B E(s)

which is the same as (2.117).
What is noted is that the Doyle-Stein condition depends only on the
open-loop characteristics of the observer; it is independent of the

control gain G. When the Doyle-Stein condition holds, the transfer

function from the reference input Uy to the state x is given by
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(2.118), independent of the observer. Therefore the dynamics of the

observer do not influence this transfer function.

Another property of a Doyle-Stein observer, i.e. , an observer
satisfying the Doyle-Stein condition, is obtained by computing the

transfer function from the observable output y to the state estimate

-~

x. Referring to figure (2.10) it is possible to see that:

x = (¢ +KC) 'Ky - (¢ '+KC) 'BG % ( 2.128 )

but, by the Doyle-Stein condition,
(¢ M+ k)Y BB=0 ( 2.129 )

This means that the transfer function from y to the estimated state x
does not entail feedback of the control signal u. The path from u

to z may be omitted. So if K ( the observer gain ) can be selected to
satisfy the Doyle-Stein condition (2.125), the closed-loop system of
figure (2.10) can be replaced by that shown in figure (2.11).

=
c)
X

Vv
+
w
L
<
v

[ u Y

)

x

<

Fa)
/

v

figure 2.11 - schematic of control system with Doyle-Stein
observer.

43



Since there is no feedback from the control u to the observer through

the control distribution matrix B, the observer transfer function,
-1 -1, - -1
Ho(s) =({(¢ +KC) K= (sI - A + KC) K ( 2.130 )

is the same as it would be for the unforced system x = A x , with

output equation y = C x .

The Doyle-Stein condition has another interesting interpretation, that

is, the left hand side of (2.125) can be written as ,
K(I+C ¢ K) ! = K[I+C(sI-A) K] ! = (sI-a)(sI-A+KC) K (2.131)
and the Doyle-Stein condition can be written as,
(sI-A)H,(s) = BIC(sI-A) 'B] * ( 2.132 )
thus the transfer function of a Doyle-Stein observer is,
Hy(s) = (sI-A) 'BLC(SI-A)B] ( 2.133 )

And the closed-loop system of figure (2.11) can be depicted as shown
in figure (2.12).
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figure 2.12 ~ Alternate representation of closed-loop system
with Doyle-Stein observer.

Referring to figure (2.12) it may be seen that the transfer function

from U to x is simply,

H(s) = ¢ B (I+6 ¢ B) ! ( 2.134 )

which is the same as the transfer function of the closed loop system

when full state feedback is used. From figure (2.9) the following may

be obtained,

X=¢Bu | ( 2.135 )
E=u0—G¢Bu ( 2.136 )
u= (I+G ¢ B)ﬂuo ( 2.137 )
X = ¢ B(I+G ¢ B)—iuo ( 2.138 )

The transfer function in the presence of the closed loop process, with

a Doyle-Stein observer in place, is the same as it would be for

full-state feedback.
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In order for a Doyle-Stein observer to exist it is necessary that the
open—-loop system be square, i.e., that there are exactly as many

outputs as inputs. Otherwise the open loop matrix

C ¢ B = C(sI-A) B

would not be a square matrix and its inverse, needed in the
calculation of Ho(s) in (2.133) would not be defined. However, the
Doyle-Stein condition has been generalized to nonsquare systems by

Madiwale and Williams®!.

Note that the transfer function of the Doyle-Stein observer Ho(s) is :

adj[C adj(sI-A) B ]
Ho(s) = adj(sI-A) B ( 2.139 )
| C adj(sI-A) B |

The denominator of Ho(s) is thus the determinant of the numerator of
the transfer matrix of the open 1loop aircraft, that is, the
transmission zeros of the aircraft. Consequently, if the open-loop
aircraft has one or more transmission zeros in the right half of the
s—plane ( that is, nonminimum phase zeros ) then a stable Doyle-Stein
observer does not exist.

If it is not possible to realize an observer having all the properties
of a Doyle-Stein observer, it may be possible to design an observer

that has some of its properties. For example,

— Makes the closed-loop transfer function from u, to x the same as

0
it is for full state feedback.
— Has its poles at the transmission zeros of the open loop aircraft.

— Does not require feedback of the control signal and thus has a

constant transfer function independent of the control gain.

An observer having some, if not all, of these properties might be

called a robust observer.
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3. CONTROL LAW DESIGN TO SATISFY THE GIBSON DROPBACK CRITERION

AND THE MIL-F-8785C FLYING QUALITIES REQUIREMENTS

3.1 INTRODUCTION

In order to design a control law, such that with this control law the
aircraft satisfies both MIL-F-8785C* { CAP ) and the Gibson dropback
criterion!, two methods have been used, pole-placement and an optimal
design method. The guidelines to the pole-placement method used are
those described above in chapter 2, section 2.4.2, also as described

in the notes of Cook®? and in particular the method developed in

Friedland!3.

The method used for the Optimal control law design was also described
in chapter 2, sections 2.5.2 and 2.5.3, and also in references such as

Friedland13,Anderson—noorei7, Lewis19

and others. The approach
developed by Friedland has been followed in this work since his
approach is an engineering approach. The subject aircraft used in the
design studies was a small perturbation model of the Boeing B-747
since some aerodynamic data was available. The aircraft mathematical
model used in the design studies 1is completely described in
0liva—Cook 2, and data for five flight conditions is given in appendix
A. The design was carried out for all 18 flight conditions but only
five are presented in this work, that is, one case for each altitude,
1000 ft, 10000 ft, 20000 ft, 30000 ft and 40000 ft, in order to be
representative of the flight envelope of the aircraft. The flight
conditions analyzed cover the aircraft envelope from sea level to
40000 ft altitude and from Mach 0.30 to Mach 0.90. The aircraft was
assumed to be in a cruise configuration at all flight conditions and
obviously the control law designs are not wvalid for other
configurations. The data contained in Heffley11 for the Boeing B-747
is almost all relative to the cruise configuration with few
aerodynamic data for landing or take off configurations. The B-747
is considered a class III aircraft according to MIL-F-8785C
classification, and for the cruise configuration the flight phase is
considered cat.B. So the requirements of MIL-F-8785C for the

longitudinal short period mode characteristics are the following :
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for level 1 0.086 < CAP < 3.6
for level 2 0.038 < CAP < 10.0

for level 1 0.30 =< ¢ 2.0
e : sp
for level 2 0.20 < ¢ 2.0
. sp
for level 3 T 0.15
sp

For the phugoid mode the requirements are as follows:

for level 1 C > 0.040

ph
for level 2 (o 0.0
ph
for level 3 T2 > 55 seconds

where Tz is the time to double amplitude if the mode is unstable.

Table (3.1) lists the basic aircraft longitudinal characteristics and
table (3.2) lists the longitudinal open loop poles of the basic

aircraft.

TABLE 3.1 — DYNAMIC CHARACTERISTICS OF THE BASIC AIRCRAFT

Fct | o C

T CAP h mach
sp sp mph ¢ 82

ph

-2
rad/s rad/s s s ft

1.619 |0.63 |0.058{ 0.083| 1.00{ 0.13] 1000| 0.60
1.338 |0.51 |0.070 0;040 1.58| 0.13] 20000f 0.70
0.992 (0.41 |0.052| 0.062] 2.85| 0.12] 40000 0.80
13 [1.070 |0.53 |0_115| 0 050| 1_.79| 0_15| 10000 0.40
17 |1.100 |0.44 |0.071]| 0.051] 2_.33} 0.13} 30000| 0.70

Obviously the B-747 already satisfies MIL-F-8785C without the addition
of a control law, however it does not satisfy the Gibson dropback

criterion.
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TABLE 3.2 — OPEN LOOP POLES OF THE BASIC AIRCRAFT
FCi: short—period phugoid h |Hach
) (ft)
-1.02 £ 1 1.25 ~0.0049 + i 0.0580 1000/0.60
-0.68 £ i 1.15 -0.0028 + i 0.0700 20000]0.70
-0.40 + i 0.90 -0.0032 + i 0.0516 40000|0.80
13 -0.66 + 1 0.91 —-0.0061 + i 0.1158 10000|0.40
17 -0.49 + i 0.98 -0.0036 + i 0.0709 30000{0.70

3.2 CONTROL LAW STRUCTURE

The design is carried out for a rate command-attitude hold control law
including a proportional plus integral controller acting on pitch rate
and angle of attack, both fed back to elevator. Hodern aircraft with
this structure of controller have shown good handling qualities. The
proportional feedback enables the rate command characteristics to be
designed as required and the integral feedback drives the error signal
to zero, and so good longer term "holding" characteristics are
obtained. As the integral of pitch-rate is pitch-attitude the

attitude hold characteristic is implicit in this kind of controller.
The design begins with the short period reduced order model of the
aircraft,

A X + B : 3.1
RO RO RO RO n ( )

where xI = [Lw g1l and n is the elevator displacement.

RO

ARo is the state matrix of the short period reduced order model.
BRO is the control matrix of the short period reduced order model.
A and B__ are al iven in appendix A.
RO o re so given in app
It is necessary to include an extra state in order to allow for

the pitch rate error defined by:
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£ = q-—qdp | (3.2)

and
g = f (q - q )dt (3.3)
q dp

where ¢ is the integral of the error.
q
So, with the addition of this extra state the state equation (3.1) is

now given by:

X B
RO RO i RO RO 0
. = H + + .
5 i Up (3.4)
E ............. : ....... E ................
9 0 1:0 q 0 -1
Oor, (3.4) can be written as :
Xx=AX+B E 3
n+ qdp (3.5)
T
wherenow : x =[w g g 1] (3.6)
q
A 0 B 0
RO i 0 RO 0
A = H (3.7) » B= (3.8) » E= (3.9)
0 1 0 0 -1
Now the control law will be of the form:
=—-6 x + 6
n o qdp ( 3.10)

which is exactly the form developed in chapter 2, for both design
methods, pole-placement and optimal control. Obviously G is the
feedback gain wector and Go is the feedforward gain. The aircraft
with this control law is shown on figure (3.1), and the feedback gain
vector will be of the form:

G=[ K K K 1 (3.11)
wqeq
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figure 3.1 - control law structure adopted in the design.

Substituting (3.10) into (3.5) the closed loop equation of the system

is obtained as :
x = (A -—-BG) x+ (BG + E) g (3.12)
0 dp

where qd is the pilot input to be tracked, or in other words, as in
P

chapter 2, it is the exogenous variable.

3.3 THE POLE-PLACEMENT METHOD

The first design is carried out by pole-placement as‘described in
chapter 2. The problem is to find the feedback gains and the

feedforward gain such that the augmented aircraft satisfies:
—~ MIL-F-8785C, or more specifically CAP requirements.

( It is known that the aircraft already satisfies the CAP )

— Gibson dropback criterion.

51



— The augmented aircraft should behave in a second order like
way, that is, the additional dynamics introduced by the
controller should not be visible to the pilot in the aircraft
response to controls.

— The integral term in the control law should have a time

constant comparable with the short period natural frequency.

As already known from equation (3.10), G will completely specify the
. closed loop poles and hence the stability of the closed loop system.
It is necessary to choose three poles, as the characteristic equation
of the closed loop system is of third order. So with equation (2.9 )
for CAP and equation (3.14) for dropback, which is derived in appendix
B, it is possible to build a system with two equations for two

unknowns, that is @ and. T .
s

§p P
So the equations:
grT mz T, 0 2C
CAP = 62 5p (313 and DB =_02°P P (3.14)
Vv
e msp
are the basis for the short period mode pole allocation.
In equation (3.14) by choosing DB = 0 an equation relating o and T
sp sp

" is obtained. Now with equation (3.13) it is possible to assess if the
choice of ¢ satisfies the CAP requirement. If so, with the choosen
value of agifit is possible to obtain gsp from equation (3.14). 1In
this way two closed loop poles are specified which satisfy the CAP
requirement and the dropback criterion. This procedure to find o

and Csp is, in fact, a simple iterative procedure. Now, it ;2
necessary to choose the third pole of the characteristic equation of
the closed loop system. To choose this third pole it is necessary to
take into account that in order to maintain second order like dynamics
of the augmented aircraft it is important not to introduce significant
changes to the overall gain and phase at frequencies close to the
short period natural frequency. As seen from table (3.1) the short
period natural frequency is around 1 rad/sec ( except for flight
conditions 3 and 6 ), and so this third pole is chosen as s = -1. A

better design can be achieved if the pole is chosen based on the short
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period natural frequency at each flight condition. However, for
simplicity, it is reasonable to consider this third pole constant over
the flight envelope. So, in this way, the three closed loop poles
have been selected and the closed loop equation to be satisfied is
simply:

( 52 +2C 0w s+ m2 Y(s+1)=0 (3.15)
sp s sp

p

and with the aid of HMATLAB the feedback gain wvector can easily be
obtained.
The feedforward gain GO is simply obtained from (2.53), or :

6, - rc(a-86) 181 tc (n-Ba) e (3.16)

where C is given by : C=[010]

since y=C x and so ¥y = q.

A, B, E and G are already defined in (3.7), (3.8), (3.9) and (3.11)
respectively.

In table (3.2-A) the control law gains obtained with this design are
sumarized and in table (3.3) the corresponding short period

characteristics are listed.

TABLE 3.2~-A — CONTROL LAW GAINS
FCy Kw Kq K8 G0 h Hach
tt”  sec sec ra: sec £t
0.0012 -0.588 -1.219 -1.219 1000| 0.60
0.0012 -0.889 -1.183 -1.183 |20000| 0.70
0.0011 -1.875 -1.697 -1.697 |40000| 0.80
13 0.0026 -1.094 -1.270 -1.270 |10000| 0.40
17 0.0013 -1.248 -1.252 | -1.252 |30000| 0.70

53



TABLE 3.3 — SHORT PERIOD CHARACTERISTICS OF THE
CLOSED LOOP SYSTEM

FCy 'POLES © c cap | h |Hach
sp sp

-2
rad/s [ ft

-1.08 £ i 1.11 | -1 1.55 | 0.70 | 0.117 | 1000 {0.60

-1.02 + 1 0.63 | -1 | 1.20 | 0.85 | 0.101 |[20000 |0.70

-1.61 + i 0.45 | -1 0.86 | 1.21 | 0.086 |40000 |0.80

13 | -0.58 + i 0.59 | -1 0.83 | 0.70 | 0.092 [10000 |0.40

17 | -0.86 + 1 0.26 | -1 0.90 | 0.6 | 0.087 (30000 |0.70

From

the results it was noticed that in order to satisfy the dropback

criterion the CAP at high altitudes ( 30000 ft and 40000 ft ) becomes

marginal. This can be explained since in order to satisfy the

dropback criterion (3.14) it is necessary to decrease the short period

natural frequency. In fact this is not a good design philosopy, since

reducing the short period natural frequency also reduces the aircraft

bandwidth.
In figure (3.2) plots of the augmented aircraft are shown with respect

to the dropback criterion boundaries.

q <N
— 3
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FC 11,16,17
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\\\ .
X
\ X FC 6,7
x x X ///// X
: — i \\\ i —
0.0 0.1 0.2 .
FC & FC 12,13, 14 0.3
0S/q DB/q
8 8
figure 3.2 - Dropback criterion plot of the pole-placement design.
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3.4 THE OPTIMAL CONTROL LAW METHOD

An alternative design is now performed using optimal control methods
as described in chapter 2. The control law structure is the same as
before, but the approach is now completely different. It must be

B,and then Parker®?

mentioned that a first approach following Athans®
failed to give designs that satisfied the Gibson dropback criterion
since both approaches only gave the feedback gains. Obviously, both
designs gave zero steady state error at all flight conditions. A
better design approach subsequently adopted for this work, is the
approach sugested by Friedland!® which is also described in chapter 2.
It is necessary to emphasize again here, that it is not a necessary
prerequisite to choose the closed loop poles. The approach now is to

work with the performance index:

©
vV = j ( xTQ X + nT Rn)de (3.17)

t

as described in chapter 2 ( alternative performance indices can be

found in Lewis—Stevens18). The state vector is given by (3.6) and n

is the elevator displacement. The matrix Q is the state weighting
matrix and the matrix R is the control weighting matrix. In the choice
of these two matrices, note that in this case R is a scalar, the

d13 0 are followed; alsco

guidelines given by Friedlan and Brogan6
already described in chapter two. In this problem it is possible to
achieve good wvalues for Q and R by means of a parametric study as
sugested by Friedland®3. Obviously Q@ is a (3x3) matrix and since the
design is mainly concerned with the maintenance of zero steady state

error only the state " g " will be weighted in the performance index.
q

In view of this a suitable choice for the state weighting matrix is,

(3.18)

=]

|
o O ©
o ©O O
= O ©O

The states w and q are not weighted because it is not as important

that they go to zero as it is for ¢ . So with this choice of Q a
q
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parametric study can be performed varying the parameter R, as also
advised by Powell-Franklin-Naeimi’ . For each pair ( Q,R ) the closed
loop poles, feedback gains,,CAR,wmsﬁgagdﬁcspycan_be,pbtained and
evaluated against the specification requirements. This is the first
step of the design method, and is easily performed with MATLAB Having
defined A, B, Q, and R MATLAB gives G and the algebraic Riccati
matrix ﬁ1 ( as mentioned in chapter 2 ) that is required in the

calculation of GO.

It is obvious that GO is obtained from equation (2.80) where M1 is the
algebraic Riccati matrix obtained when the above regulator problem is
solved. It is clear that this is an iterative procedure that can be

sumarized as follows;

(1) Solve the regulator problem with A, B, @ and R, this will
give the feedback gain vector G, and the algebraic Riccati
matrix ﬁl .

(ii) Look at the closed loop poles obtained. It is not desirable
that the closed loop poles be located too far from the open
loop poles. Look also at the feedback gain obtained, it is
not desirable to obtain high gains say, for example maximum
magnitudes of 4. Finally check that CAP is satisfied using
equation (3.13).

(iii) oObtain Go’ with the help of equation (2.80)

(iv) With 6 and Go obtained verify that the augmented aircraft
satisfies the dropback criterion. Check that the gains are
not too high and that CAP is satisfied, if not go back to

step (i) and change the parameter R.

This is basically the approach given by Friedland13, which is an
engineering approach. It 1is also given by Brogan60 and
Powell-Franklin-Naeimi’ . Experience has shown that this design

procedure is very easily performed and compares favourably with the
pole placement design procedure. In fact one can obtain the control
law gains very quickly with the optimal control method compared with
pole—placement design method. In addition, it is clear that no attempt
is made to choose the poles of the closed loop equation since, first,

it is not necessary in the design procedure, and second, the choice of
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one parameter ( R ) is more easily made than the choice of three poles
in the s-plane. It must also be mentioned here that the pole placement
method obtains the feedforward gain for perfect zero steady state
error, since its calculation is based on pole-zero cancellation. The
optimal control method obtains a feedforward gain that does not give a
perfect steady state zero error, but for engineering considerations
close enough. In fact as the control weight R goes to zero the steady

state error also goes to zero.

In table (3.4) the control law gains obtained by optimal control are
listed together with the selected control weight R, and this table can
be compared with table (3.2) which refers to the pole—plécement
method. In table (3.5) the short period characteristics obtained with
the optimal method are summarized, and can be compared with those of

table (3.3) obtained by pole placement.

TABLE 3.4 — CONTROL LAW GAINS

FCy K K K G R h Hach
W q € 4]
-1 q
ft sec sec rad sec ft
0.0002 -0.1348 -0.3162| -1.290 10 1000{0.60
0.0003 ~0.21857 -0.4470| -1.280 S 20000|0.70
0.0005 -0.5433 -0.8160| -1.720 1.5 |40000;0.80
13 0.0006 -0.2800 -0.4470| -1.910 5 10000{0.40
17 0.0004 -~0.2570 -0.4470| -1.540 5 30000§0.70

TABLE 3.5 — SHORT PERIOD CHARACTERISTICS OF THE
CLOSED LOOP SYSTEH

FCy POLES ()] C CAP h Hach
. sp sp

rad/s s ft
-1.03 + i 1.27 |-0.23| 1.64 0.63 0.130} 10000.60
1.20 |-0.27] 1.42 0.53 0.140(20000|0.70
-0.61 + 1.03 |-0.24] 1.19 0.51 0.170140000(0.80
13 | -0.60 + i 0.93 |-0.19| 1.11 0.54 0.170{10000(0.40
17 | -0.56 + i 1.03 |-0.21] 1.18 0.48 0.150130000(0.70

e

-0.75 +

Jeto

e
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In figure (3.3) a plot of the augmented aircraft with the optimal

control law design with respect to the dropback criterion is shown.
A preliminary comparison of both designs shows that:

— The optimal control law design satisfies the CAP requirement
better than the pole—placement design. This can be seen since the
poles have moved less with respect to the open loop aircraft in
the optimal design than in the pole-placement design.

— In both designs the most difficult flight condition corresponds
with 40000 ft, a fact indicating that the design must be carried
out for several flight conditions in order to obtain an idea of
how it works Thus the analysis of a few flight cases only can
sometimes leads to wrong conclusions.

— The optimal design always gives an augmented aircraft with an
oscillatory short period mode. This 1is good since the second
order like characteristics are maintained.

—~  The feedforward gain of the optimal design is always greater than
that of the pole-placement design, a fact that leads to a lower
frequency integrator pole, but alsoc to a higher control effort
with respect to the reference input.

— This preliminary design results in lower feedback gains in the
optimal control law design, a fact that gives lower control effort

with respect to the regulator characteristics.
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figure 3.3 - Dropback criterion plot of the optimal control design

The results of both design exercises show that the optimal control law
design obtains an augmented aircraft that better satisfies not only
the dropback criterion but also the CAP ( MIL-F-8785C ) requirement.
To attempt to choose the closed loop pole locations was not as
successTul as the attempt to choose the control weight R. In the pole
placement method the procedure for allocating the short period closed
loop poles has lead to the reduction of w in order to satisfy the
dropback criterion, which is not good przitice, as mentioned. To
summarize, it is possible to conclude that the optimal control method
offers a better design procedure for meeting both the closed loop pole
location requirements as well as handling qualities criteria

requirements.
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3.5 THE INFLUENCE OF AN ACTUATOR ON CONTROL LAW PERFORMANCE

3.5.1 INTRODUCTION

It is instructive to assess the performance of both control law
designs when an actuator is included in the system. First, the study
was performed with the reduced short period model of the aircraft. Two
actuator models have been used, both described by a second order
mathematical model. Obviously, a more searching study could assess
actuators with alternative characteristics such as a third order model
or a non-linear model. The mathematical models of the actuators are

described by the following state equations.

Actuator no.l1 is given by :

n 0 0 n 0
. = + Ne (3.19)
v -450 -30 Y 450
n
Actuator no.2 is given by :
n 0 0 n 0
. = + Ne (3.20)
v -100 -14 Y 100
n L)
Th del is simply: = A X
e model 1 imply xA A % + BA nc (3.21)
with : xT = [ v 1] (3.22)
: A n n .

where Ne is the input to the actuator and vn is the control rate

effort.

Actuator no.1 has a natural frequency of 21.2 rad/sec and a damping
ratio of 0.70. Actuator no.2 has a natural frequency of 10 rad/sec
and a damping ratio of 0.70. Figure (3.4) shows the aircraft with
control law and actuator. The reason for the choice of actuators with

these characteristics was due to the fact that the short period
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natural frequency is around 1 rad/sec and so it allows to explore
- their influence on the system performance with respect to stability

and flying qualities.

—| &, 5
A
q
+ FT|
Mk K ACTUATOR AIRCRA
M s € DYNAMICS| W
q -€ d DYNAMICS| 1]
dp -~ q c
) Q-
q
ya K ' 4
€ w
pa K ya
< q <

"~

figure 3.4 - control law structure with actuator in the loop.

As before the control law is given by:

=-G X + G
e qup (3.23)

where G=[ K K K8 ] and GO is simply a single gain.
. W
1 q
The aircraft may be described by the state equation,

X = Ax+[BZ31 ] x +Eq (3.24)
A dp

where A is given by (3.7) and is a (3x3) matrix, B is giwven by (3.8)
and is a (3xl1l) vector and E is given by (3.9) and is also a (3x1)
vector.

z31T =[ 000 ] (3.25)
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and x is given by (3.6), or xT = [wgqg gq].

Substituting (3.23) into (3.21) and considering equation (3.24) the

closed loop model is given by :

A [B 231]1]] x E
+ q (3.26)

dp
-B G A X
A A A A B G

X =
X
With this model it is possible to obtain the trasnfer function of q in
response to qd . The effect of the actuator on the closed loop
p

performance of the aircraft with both control law designs is assessed

with particular reference to pitch rate response.

3.5.2 THE RESULTS OF ASSESSMENT

An evaluation was performed with both control laws and both actuators
and a summary of the results is listed in tables (3.6), (3.7), (3.8)
and (3.9). A review of the assessment leads to the following

conclusions.

(i) The inclusion of an actuator in the loop, in general gives ' an
increase in the pitch-rate overshoot of the response in both
designs. However, this effect with the pole placement control
law design is less than with the optimal design. ( tables (3.6)
and (3.7) ).

(ii) With both actuators the same value for the dropback parameter is
obtained.

(1ii) The pole-placement control law design has little advantage over
the optimal control law design with respect to actuator effects
when measured in terms of the dropback criterion. The reasons
are clearly seen on tables (3.6) and (3.7).

{iv) The inclusion of the actuator in the loop with the pole
placement control law design prevented the aircraft meeting the
CAP requirement at pratically all flight conditions. on the
other hand, the aircraft with optimal control law design and

actuator satisfies CAP level 1 for all flight conditions. This
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can be seen in tables (3.8) and (3.9).

frequency with the pole placement control law design

The short period natural
is
decreased with respect to the basic aircraft without actuator,

the dropback performance is improved but CAP deteriorates.

(v) The speed of aircraft response ( t ) is about the same as seen
m
from tables (3.6) and (3.7).
TABLE 3.6 ~ INFLUEMNCE OF THE ACTUATOR WITH RESPECT TO
DROPBACK CRITERION IN THE POLE-PLACEMENT DESIGN
FC I DB t
P —_— m
qSS qSS
(sec) (sec)
no act| act 1| act 2{no act|{ act 1| act 2|no act|] act 1} act 2
1.251 {1.302 (1.344 (0.09 0.13 0.13 1.4 1.4 1.4
1.220 |1.250 |1.268 |0.15 0.20 0.20 1.6 1.6 1.6
1.110 |1.090 {1.090 {0.02 -0.05 |-0.06 | 2.1 2.1 2.1
13 |1.238 |1.250 |1.270 |0.11 0.12 0.12 2.6 2.6 2.6
17 11.162 |1.170 (1.180 |0.07 0.10 0.11 2.1 2.2 2.1
TABLE 3.7 — INFLUENCE OF THE ACTUATOR WITH RESPECT TO
DROPBACK CRITERION IN THE OPTIMAL CONTROL DESIGN
FC T DB t
# _— m
: ss qss
(sec) (sec)
no act| act 1} act 2f{no act|] act 1} act 2]no act| act 1} act 2
1.320 |1.320 {1.340 (0.05 -0.06 {-0.06 1.2 1.3 1.3
1.470 11.470 11.510 |(0.01 -0.06 |-0.07 1.3 1.3 1.4
1.490 |1.520 |1.560 |0.02 0.03 0.02 1.5 1.5 1.6
13 |1.440 1.450 1.470 |0.09 0.10 0.09 1.7 1.8 1.8
17 |1.590 |]1.620 |1.650 |0.03 0.15 0.14 1.5 1.6 1.6
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TABLE 3.8

—

INFLUENCE OF THE ACTUATOR WITH
RESPECT TO SHORT PERIOD CHARACTERISTICS ON
POLE PLACEMENT CONTROL LAW DESIGN

FC © C CAP h HMach
P sp sp
(rad/sec) s-2 £t
no act |act 2 |no act}] act 2}{no act Jact 2
1.55 1.46 0.70 0.72 {0.117 0.103]| 1000} 0.60
1.20 0.94 0.85 0.83 |0.101 0.062|20000} 0.70
0.85 0.60 1.21 1.03 |0.086 0.043140000] 0.80
13 {0.838 0.78 0.70 0.70 10.092 0.082110000] 0.40
17 10.90 0.71 0.96 0.88 |0.087 0.054|30000| 0.70
TABLE 3.9 ~— INFLUENCE OF THE ACTUATOR WITH
RESPECT TO SHORT PERIOD CHARACTERISTICS ON
OPTIFMAL CONTROL LAW DESIGN
FC © o CAP h |Hach
4 sp sp
rad/sec s—z ft
no act]| act 2|no act| act 2|no act] act 2
1.64 1.67 0.63 0.62 0.13 0.134| 1000]| 0.60
1.42 1.46 0.53 0.51 0.14 0.149|20000| 0.70
1.19 1.25 0.51 0.50 0.17 0.185(40000} 0.80
13 j1.11 1.11 0.54 0.54 0.17 0.165|10000| 0.40
17 |1.18 1.19 0.48 0.48 0.15 0.153{30000] 0.70
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when an actuator is included in the loop.

(3.9) CAP is maintained for all flight conditions whereas, whith the

fis can be seen from table

In summary it is possible to conclude that the optimal control law

design is more robust with respect to stability requirements ( CAP )

pole placement design CAP is not maintained as seen in table (3.8).

With respect to the dropback criterion both designs have about the




same behaviour as seen in tables (3.6) and (3.7). Therefore, in order
that an actuator may be included in the model it is necessary to
redesign the optimal control law for flight conditions 3 and 6 in
order to meet the dropback criterion and to redesign the pole

placement control law for all flight conditions in order to meet CAP.

3.6 ASSESSMENT OF THE CONTROL LAWS WITH THE FULL AIRCRAFT MODEL

3.6.1  INTRODUCTION

Now, it is also necessary to investigate the performance of both
control law designs when the phugoid is introduced into the model.

The state vector is now given by :

xT=[quesq] (3.27)

The control law structure is given by figure (3.5).

-1 G >
0
;N
u
+ . —_—
1 X AIRCRAFT 0
- —_—
—(_/— >|K > >
qd . s € - DYNAMICS q >
P -1 —€ —€ g —_
q q W
A
K
A w - A 4
K -
q <
figure 3.5 - control law structure with phugoid model included
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The mathematical model is simply:

Xx = Ax+Bn+E qdp ‘ (3.28)

and the aircraft longitudinal model is given in appendix A as :

= A X + B 3.29
LM LM LM LMn ( )
with ; xzm = [uwqo]l (3.30)

ALM is the full longitudinal state matrix given in appendik A, and
BLM is the longitudinal control matrix given in appendix A.

Thus,

0
i|o B
A= A i (3.31) and B = | LM (3.32)
LM |0
ilo
| To 01 01{101] KN
T
E°" = [ooo0o0 -11] (3.33)
xI = [uwqoe 1=[x_ie 1 (3.33.a)
q LM q
again the control law is, n=-6 x + Goqd (3.34)
p

but now the gain wvector is given by ;

6=[ 0K K 0K 1] (3.35)
w q €
q
and Go is the same as before.
The closed loop equation is of the same form as equation (3.12), that

'Y

is ,

x = (A-BG)x + (BG + E)q (3.36)
0 dp

Based on the solution of equation (3.36) an analysis was performed as

for the introduction of the actuator and the findings are as follows :

(i) The inclusion of the phugoid model caused the aircraft with
optimal control law design to fail to meet the dropback

criterion at any flight condition. The aircraft with pole
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placement control law design still satisfies the dropback
criterion for some flight conditions.

(ii) Again the aircraft with optimal' control law design still
satisfies CAP level 1 at all flight conditions but the aircraft
with pole placement control law design does not satisfy CAP
level 1 at 30000 ft and 40000 ft.

(iii) At 30000 ft , mach 0.50, the aircraft with pole placement
control law design has a phugoid that even fails to meet level 3
of MIL-F-8785C requirements.

(iv) The aircraft with optimal control law design has a stable
phugoid satisfying level 1 of MIL-F-8785C at all flight
conditions.

{v) The optimal control law design fails completely to maintain the
relation fq/qdp) ~ 1, at almost all flight conditions. 1In
contrast, the aircraft with pole placement control law design
maintains the relation in the range (0.90 < q[qdps 1.10) at all
flight conditions.

3.6.2 SUMMARY OF AIRCRAFT CHARACTERISTICS WITH BOTH
CONTROL LAW DESIGNS

In tables (3.12) and (3.13) the short period characteristics obtained
with both control law designs are summarized for comparison. In table
(3.14) the steady state pitch rate gain is listed for both control law

designs.

In figures (3.6), (3.7) and (3.8) step response time histories for
both designs with the full aircraft model are given for comparison.
In figures (3.9) and (3.10) a comparative short term step response
time histories for both control law designs are shown with the reduced

order aircraft model and with the full order aircraft model.
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TABLE 3.12 — SHORT PERIOD CHARACTERISTICS OBTAINED
WITH THE POLE PLACEHMENT CONTROL LAW DESIGN

REDUCED ORDER MODEL FULL ORDER MODEL
FC # (] T CAP © C CAP h ttach
ep §p sp sp
-2 -2
rad/s s rad/s s ft

1.6 | 0.70 | 0.117] 1.52 | 0.69 (0.113 | 1000 |0.60

1.20 | 0.85 | 0.101| 1.1i2 | 0.85 |0.089 |20000 |0.70

0.85 | 1.21 | 0.086] 1.29 | 1.02 |0.205 [40000 |0.80
13 0.83 | 0.70 { 0.092| 0.83 | 0.71 |0.097 |10000 (0.40
17 0.90 | 0.96 | 0.087| 0.81 | 0.93 j0.068 |30000 (0.70

TABLE 3.13 — SHORT PERIOD CHARACTERISTICS OBTAINED
WITH THE OPTIMAL CONTROL LAW DESIGN

REDUCED ORDER MODEL FhLL ORDER MODEL

FC #| © (o CAP © T CAP h Mach
sp sp -2 sp sp -2
rad/s s rad/s -] ft

1.64 | 0.63 | 0.130| 1.664| 0.62 {0.135 | 1000 }0.60

1.42 | 0.53 | 0.140] 1.445] 0.52 |0.149 [20000 (0.70

9 1.19 | 0.51 | 0.170§ 1.199| 0.51 |0.177 {40000 [0.80

13 1.11 | 0.54 | 0.170] 1.116] 0.54 {0.175 |10000 |0.40

17 1.18 | 0.48 | 0.150| 1.176| 0.48 |0.144 |30000 |0.70

TABLE 3.14 - STEADY STATE RESPONSE OBTAINED WITH
BOTH CONTROL LAW DESIGNS AND THE COHPLETE MODEL
[ q/ Up ]Ss
FC # | POLE PLACEMENT | OPTIMAL CONTROL h Mach
DESIGN DESIGN £t
1.06 0.61 1000 | 0.60
1.02 0.58 20000 | 0.70
1.10 0.87 40000 | 0.80
13 0.81 0.35 - |10000 | 0.0
17 ~ 1.05 0.52 30000 | 0.70
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figure 3.9 - effect of the phugoid mode on the aircraft response
with pole-placement control law design at 1000 ft mach 0.30
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3.7 THE PERFORMANCE OF BOTH CONTROL LAW DESIGNS WITH THE
COMPLETE MODEL OF THE AIRCRAFT AND THE ACTUATOR

Now an evaluation of both control law designs whith the full aircraft
model including the actuator is performed. The bactuator to be
considered is actuator N> 2 from section 3.5, since its natural
frequency is closer to the short period natural frequency than the
natural frequency of actuator N2 1, and also for simplicity. The

control law structure is shown in figure 3.11.

— G >
0
u
—; AIRCRAFT
q —-€ ACTUATOR e
+ 1 q. |K e
> )|z > € —_—
s q DYNAMICS q
- n DYNAMICS |—>T
dp W
: .._9__
A4 A 4
N . K
€ wj—
¢ K <
q
figure 3.11 - control law structure with phugoid model and actuator
model included.
Obviously the state wvector is now :
T
x = [uwuwqgq?b eq n vn ] (3.37)

The state equation describing the mathematical model is given by:

Xx = Ax+B n, + E qdp (3.38)

Considering
ALM as the state matrix of the aircraft longitudinal model given in

appendix A, BLM as the control matrix of the aircraft longitudinal
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model as given in appendix A. Then the matrix A in (3.38) can be

written
_ 0 Lo -
0 HE )
A B__i
LM 0i LM{ O
0 i 0
A= o .
001020 [} (3.39)
000 O0:0 A
| 0 0 0 0i0 A ]

HA is the actuator state matrix defined in section 3.5, equation

{(3.20). The matrix B is given by,

BT = [00000O0 BA 1 (3.40)

where BA is the actuator control matrix defined in section 3.5,
equation (3.20), and

El = [0000-100 ] (3.41)

Again the control law is,

= -G x+G6
n, qup (3.42)

but now, G=[ 0K K 0K 0] (3.43)
w g Eq

and Go is the same as before. The closed loop model is given by the

state equation,

x = (A-BG)x + (BG_ +E)q (3.44)
0 dp

As already mentioned the evaluation was performed only with actuator
no.2. Table (3.15) shows a comparison of the dynamic characteristics
of the aircraft when it is considered only with the reduced order
aircraft model without actuator, as in section (3.3), and with full
order aircraft model including actuator, all for the pole-placement
control law design. 1In table (3.16) the same results are listed for

the optimal control law design.
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TABLE 3.15 — SHORT PERIOD CHARACTERISTICS OBTAINED
WITH THE POLE PLACEHMENT CONTROL LAW DESIGN

REDUCED ORDER MODEL FULL ORDER MODEL
NO ACTUATOR WITH ACTUATOR No 2
FC # © T CAP © T CAP h HMach
sp sp -2 sp sp _2
rad/s s rad/s s ft

0.87 | 0.70 | 0.125} 0.82 | 0.72 }0.120 | 1000] 0.30
0.84 | 0.85 | 0.092] 0.72 | 0.85 |0.071 |20000{ 0.50
0.76 | 1.17 | 0.085| 1.42 | 1.19 |0.297 |40000| 0.70|V
12 0.68 | 0.70 | 0.088] 0.66 | 0.72 |0.103 }{10000( 0.30
16 0.70 | 0.90 | 0.084] 0.63 | 0.86 |0.067 [30000f 0.50

TABLE 3.16 — SHORT PERIOD CHARACTERISTICS OBTAINED
WITH THE OPTIHAL CONTROL LAW DESIGN

REDUCED ORDER MODEL FULL ORDER MODEL

NO ACTUATOR WITH ACTUATOR No 2
FC #| © o CAP © [ CAP h Hach
sp sp -2 sp sp -2
rad/s s rad/s s ft

1.02 | 0.59 | 0.172| 1.04 | 0.57 10.193 | 1000{ 0.30
1.11 | 0.49 | 0.162| 1.13 | 0.48 |0.175 {20000| 0.50
1.05 | 0.48 | 0.164| 1.07 | 0.48 |0.175 [40000] 0.70
12 0.86 | 0.56 | 0.158] 0.88 | 0.54 10.184 |10000| 0.30
16 0.91 | 0.47 | 0.142| 0.91 | 0.46 |0.141 {30000| 0.50

From these tables it is clear that there is a degradation in CAP with
the pole-placement control law design, and again the optimal control
law design is more robust with respect to maintenance of CAP. fAis
stated in section 3.1 CAP requirement for level 1 is,
0.085 < CAP < 3.60

The results obtained with both designs with respect to the dropback
criterion shows that the optimal design has lost the zero steady state
error characteristic ( ¢ ) = o for almost all flight conditions,
figures (3.12), (3.13) ang €;.14) illustrate very well this aspect. In

contrast, the pole—placement design has maintained this relation, that
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is, 0.80 < ( qfqdp)ss £ 1.27 for all flight conditions. In view of
this it is clear that, with respect to steady state characteristics,
the pole placement design is much more robust than the optimal design.
With respect to dropback characteristics both designs no longer meet
the criterion. Table (3.17) shows the performance of the

pole-placement design with respect to the dropback criterion.

TABLE 3.17 - PERFORMANCE OF THE POLE PLACEMENT
DESIGN WITH RESPECT TO DROPBACK CRITERION
REDUCED ORDER MODEL FULL ORDER MODEL
t'm I DB t'm 9. DB h HMach
FC # q q
q 88 q ss
ss ss
sec sec sec sec ft
2.5 1.24 0.12 2.3 1.34 |-0.27 1000} 0.30
2.4 1.19 0.10 2.4 1.25 |-0.07 {20000| 0.50
2.5 1.12 0.05 2.2 1.09 |-0.22 {40000| 0.70
12 3.1 1.23 0.11 2.9 1.35 |-0.52 [10000] 0.30
16 2.9 1.17 0.07 2.6 1.22 |-0.17 |30000} 0.50

Table (3.18) shows the steady state pitch rate response obtained with
both control law designs applied to the complete model and actuator,
and it is clear how the optimal control law design has deteriorated in

this respect.

TABLE 3.18 - STEADY STATE RESPONSE OBTAINED WITH
BOTH CONTROL LAW DESIGNS AND THE COMPLETE MODEL
PLUS ACTUATOR [ q/ U, ]

88
FC #| POLE PLACEMENT | OPTIMAL CONTROL h Hach
DESIGN DESIGN £t
0.87 0.27 1000| 0.30
0.80 0.34 20000| 0.50
1.04 0.55 40000 0.70
12 0.81 - 0.25 10000 0.30
16 1.09 -0.78 30000| 0.50
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As a general conclusion, both control law designs require adjustments
to satisfy the dropback criterion, however, the pole placement design
also requires adjustments to meet CAP level 1. The reasons for the
findings can be attributed to the fact that in this preliminary design
the pole placement control law has moved the poles from the original
open loop position much more than the optimal contrel law design,
which is obvious from the relative feedback gain magnitudes of both
designs. The method for obtaining the feedforward gain in each control
law design is different. The pole-placement design is more robust
with respect to zero steady state error characteristic so, as already
shown the feedforward gain of the pole-placement design is based on
exact pole-zero cancellation whereas, the feedforward gain in the
optimal design is based on the performance index, as explained in
chapter 2.

The gains used in flight conditions 1, 5, 8, 12 and 16 are listed in
table 3.18-A for the pole placement control law design and also for
the optimal control law design. The aircraft data for the same flight

conditions are contained in appendix A.

TABLE 3.18-A —  CONTROL LAW GAINS
FCy Kw Kq K6 GO R
_ q

ft sec sec rad sec
0.0037 | -1.4267 | -1.711 | -1.711 -
POLE 0.0020 | -1.3270 | -1.346 | -1.346 -
PLACEHENT 0.0013 | -2.065 -1.743 | -1.743 -
CONTROL 12 0.0040 | -1.828 -1.684 | -1.684 -
LAW 16 0.0021 | -1.832 -1.544 | -1.544 -
0.0005 | -0.2131 | -0.3162| -2.183 10
OPTIMAL 0.0005 | -0.2723 | -0.4472| -1.813 5
CONTROL 0.0006 | -0.5297 | -0.7071| -1.828 2
LAW 12 0.0008 | —0.3782 | -0.4472| -2.309 5
16 0.0006 | —0.3492 | —-0.4472| -1.906 5
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figure 3.12 - pitch-rate time response of both designs with the
complete model of the aircraft and actuator at 20000 ft, mach 0.50
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figure 3.13 - pitch~rate time response of both designs with the

complete model of the aircraft and actuator at 10000 ft, mach 0.30
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figure 3.14 - pitch-rate time response of both designs with the
complete model of the aircraft and actuator at 30000 ft, mach 0.50
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3.8 CLOSED LOOP POLE LOCATIONS COKPARISON FOR EACH FLIGHT CONDITION

3.8.1 INTRODUCTION

It is interesting to compare the pole locations for each of the flight

conditions studied in order to evaluate the variations.

3.8.2 POLE PLACEHENT CONTROL LAW DESIGN

In table (3.19) the closed loop pole locations for the reduced order
short period model are listed, that is, the aircraft obtained in
section (3.3), as showed in table (3.3). In table (3.20) the closed
loop poles are shown for the case of the reduced order short period
model with actuator, that is, the aircraft obtained in section (3.5),
as showed in table (3.8). In table (3.21) the closed loop poles of
full order aircraft model are listed, that is, the aircraft obtained
in section (3.6), as showed in table (3.12). Finally, in table (3.22)
the closed loop poles of the full order aircraft model plus actuator
are listed, that is, the aircraft obtained in section (3.7), as showed
in table (3.15). fhe actuator referred to is actuator number 2, as

above.

TABLE 3.19 — SHORT PERIOD CHARACTERISTICS
REDUCED ORDER MODEL AND CONTROL LAW

FCy POLES © ¢ h | Hach
&p sp

rad/s ft
-1.08 £ 1 1.11 | -1 1.55 0.70 1000{ 0.60
-1.02 + i 0.63 | -1 1.20 0.85 |20000] 0.70
-1.61 + i 0.45 -1 0.85 1.21 |40000} 0.80
13 -0.58 + 1 0.59 | -1 0.83 0.70 [10000| 0.40
17 ~0.86 + i 0.25 | -1 0.90 0.96 |30000} 0.70
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TABLE 3.20 — SHORT PERIOD CHARACTERISTICS
REDUCED ORDER HODEL — C.LAW and ACTUATOR N-2
FCy POLES msp Csp h Hach
rad/s ft
-1.06 + i 1.01 |-1.36| 1.46 | 0.72 | 1000 | 0.60
-0.79 + i 0.52 |-2.20} 0.94 | 0.83 20000 | 0.70
-0.78 , -0.47 |-3.10{ 0.60 1.03 |40000 0.80
13 | -0.54 + i 0.56 {-1.35| 0.78 | 0.70 10000 | 0.40
17 | -0.62 + i 0.33 |-2.26| 0.71 | 0.88 }30000 | 0.70
TABLE 3.21 — SHORT PERIOD CHARACTERISTICS
FULL AIRCRAFT MODEL — CONTROL LAW and NO ACTUATOR
FCu POLES LI h  |Mach
rad/s ft
-1.06 + i 1.08 |-1.04 [-0.016 0| 1.52 | 0.69 | 1000 |0.60
-0.95 + i 0.59 |-1.12 [{-0.016 0| 1.12 0.85 {20000 |0.70
9| -1.85 , - 1.07 |-0.42 |-0.015 0 1.29 1.02 ]40000 |0.80
13 | -0.59 + i 0.58 |-0.94 |-0.038 0 0.83 0.71 {10000 |0.40
17 | -0.75 £ i 0.29 |-1.20 |-0.014 0 ) 0.81 | 0.93 |30000 [0.70
TABLE 3.22 — SHORT PERIOD CHARACTERISTICS
FULL AIRCRAFT MODEL — C.LAW and ACTUATOR N=
FCy POLES msp Csp h Hach
rad/s ft
-1.06 + i 1.00 |-1.35 |-0.016 0| 1.46 | 0.72 | 1000 |0.60
~-0.78 + 1 0.51 |-2.21 {-0.016 0] 0.94 0.84 120000 [0.70
-0.78 , - 0.45 |-3.14 |-0.015 0 1.57 1.25 [40000 [0.80
13 | -0.55 + i 0.5 |-1.30 {~0.038 0 0.77 0.71 {10000 [0.40
17 | -0.62 + i 0.33 |-2.25 |-0.014 0 0.70 0.88 |30000 |0.70
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The following observations resulting from the comparisons may be

noted.

(i) table (3.19) with table (3.20)
The influence of the actuator is significant, the closed loop
poles have moved considerably with respect to the closed loop.
poles obtained in table (3.19).

(ii) table (3.19) with table (3.21)
The influence of the phugoid is minimal, the closed loop poles
have moved little with respect to the closed loop poles obtained
in table (3.19)

(iii) table (3.19) with table (3.22)
Table (3.22) is basically the same as table (3.20), and so the
phugoid dynamics do not influence the short period dynamics as

much as the actuator does.

3.8.3 OPTIMAL CONTROL CONTROL LAW DESIGN

In table (3.23) the closed loop pole locations for the reduced order
short period model are listed, that is, éhe aircraft obtained in
section (3.4), as showed in table (3.5). 1In table (3.24) the closed
loop poles are shown for the case of the reduced order short period
model uith‘actuator, that is, the aircraft obtained in section (3.5),
as showed in table (3.9). In table (3.25) the closed loop poles of
full order aircraft model are listed, that is, the aircraft obtained
in section (3.6), as showed in table (3.13). Finally, in table (3.26)
the closed loop poles of the full order aircraft model plus actuator
are listed, that is, the aircraft obtained in section (3.7), as showed
in table (3.16). The actuator referred to is actuator number 2, as

above.
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TABLE 3.23 — SHORT PERIOD CHARACTERISTICS
REDUCED ORDER HMODEL and CONTROL LAW

FCy POLES wsp gsp h HMach
rad/s ft
-1.03 + i 1.27 |-0.23| 1.64 0.63 1000 0.60
-0.75 £ i 1.20 |-0.27] 1.42 0.53 |20000 0.70
-0.61 + i 1.03 |-0.24) 1.19 0.51 (40000 0.80
13 | -0.60 + i 0.93 |-0.18{ 1.11 0.54 (10000 0.40
17 { -0.56 + i 1.03 |-0.21] 1.18 0.48 30000 0.70
TABLE 3.24 — SHORT PERIOD CHARACTERISTICS
REDUCED ORDER MODEL — C.LAW — ACTUATOR N= 2
FCy POLES wsp Csp h _Mach
rad/s ft
3| -1.03 + i 1.31 |-0.23| 1.67 0.62 1000| 0.60
-0.75 + 1 1.25 |-0.27]| 1.46 0.51 |20000| 0.70
9 -0.62 + i 1.08 |-0.25] 1.25 0.50 |40000]| 0.80
13 | -0.60 + i 0.93 |-0.20| 1.11 0.54 |10000] 0.40
17 -0.56 + 1 1.04 |-0.21] 1.19 0.48 |30000| 0.70
TABLE 3.25 — SHORT PERIOD CHARACTERISTICS
FULL ORDER AIRCRAFT HODEL - C. LAW and NO ACTUATOR
FCy POLES msp Csp
rad/s
-1.04 + i 1.29 |-0.20 ,~0.032 0 1.66 0.62
—0.75 + i 1.23 |-0.23 ,—0.032 0 1.45 0.52
-0.60 + i 1.03 |-0.23 ,-0.021 0 1.20 0.51
13 | -0.60 + 1 0.94 (-0.10 % i0.075 0 1.12 0.54
17 -0.56 + 1 1.03 |-0.18 ,-0.033 0 1.17 0.48
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TABLE 3.26 — SHORT PERIOD CHARACTERISTICS
FULL ORDER AIRCRAFT MODEL — C.LAW and ACTUATOR N2 2

FCy POLES wsp csp
rad/s
-1.03 + i 1.31 |-0.21 ,-0.032 0 1.67 0.62
-0.75 £ i 1.25 |-0.25 ,-0.032 0 1.46 0.51
-0.62 + 1 1.08 |-0.24 ,-0.020 0 1.24 0.49
13 -0.60 + i 0.95 |-0.105 +i0.075 0 1.12 0.81
17 | -0.56 + i 1.05 |-0.18 ,-0.033 0 1.19 0.47

The following observations resulting from the comparisons may be

noted;

(i) table (3.23) with table (3.24)
The actuator here practically does not affect the pole locations
as it does in the case of pole placement control law design.
This is probably due to the fact that the integrator pole in the
pole placement design is much closer to the actuator dynamics
than it is in the optimal control law design.

(ii) table (3.23) with table (3.25)
Again the phugoid dynamics have practically no effect on the
pole locations.

(iii) table (3.23) with table (3.26)
Here again table (3.26) is basically the same as table (3.24).

It is noticed that the choice of s = -1 in the pole placement control
law design, giving the integrator a time constant close to the short
period natural frequency, is not a very good choice or perhaps the
| choice of ms and csp based on equations (3.13) and (3.14) is not so
good as the choice of the weighting parameter in the performance index
in the optimal control law design. Table (3.20) clearly shows that

the inclusion of the actuator influences the pole placement design
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much more than it influences the optimal control law design, shown in
table (3.24). It appears that optimal design methods can offer a
better control law design than methods that directly place closed loop
poles on the s—plane. fAgain, looking at table (3.19) compared to
table (3.20) it is evident that flight conditions 3 and 13 are
influenced as much as flight conditions 6, 9 and 17, once again this
emphasizes that the analysis of just one, or a small number of,
flight cases can sometimes lead to wrong conclusions. It must be
mentioned that the actuator poles have not been listed in these tables

for reasons of simplicity.
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4 CONTROL LAW DEVELOPMENT TO SATISFY GIBSON DROPBACK

AND PHASE-RATE CRITERIA
4.1 INTRODUCTION

As shown in chapter 3, both control law designs fail to meet the
dropback criterion when the phugoid dynamics and actuator are included
in the model. So it is necessary to carry out some adjustments to the
optimal control law design in order to meet the dropback criterion and
to the pole-placement control law design to meet not only the dropback
criterion but also CAP. The process adopted in the redesign is

described in this chapter.

4.2 THE ADJUSTMENT OF BOTH DESIGNS IN ORDER TO SATISFY THE
DROPBACK CRITERION AND CAP REQUIREMENT

4.2.1 THE POLE-PLACEMENT CONTROL LAW DESIGN

As seen in chapter 3, to redesign the pole—placement control law it is

necessary to recover the steady state characteristic ¢ q/qd ) ~ 1,
P ss

and an acceptable dropback. In order to recover good steady state

characteristics it is necessary to adjust the gains K and Ke » while
W

q
looking simultaneously at the CAP requirement. To perform this

adjustment an analytical approach was followed, and for this approach
the actuator dynamics were not included, just the short period mode
and phugoid mode together.

The control law is:

n = —Gx + Gqup (4.1)

and for the reduced order model without actuator,

xT =[wgq sq ] (4.2)

and G=[K K K 1 (4.3)
w q €
Now if the phugoid model is included in the dynamics, the state vector

becomes,

xT=[uuq6] (4.4)
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and the basic control law is,

=-K w-Kq-X o @eg o :
n LW qq e Efqg:'. 0,§lf‘,cvl.,dp‘ Lo ' : ; (4.5)
however ¢ = q - ¢q (4.6)
q dp
so, e =4qfs~-q /[s (4.7)
q dp
but 6=q/fs (4.8)
and then, e =6-q. /s (4.9)
q dp

substituting (4.9) into (4.5) it is possible to write the control law

in the form:

=Kw-Kq-=K 6+K Y3, +6 ,
n v qq e 6 e dp o qdp (4.10)
q q S
K
8q
d . = ~-G — + G .
and so n X + s o qdp (4.11)

now with xT

Luwg©] (4.12)

[ o Kw kq Ke ] (4.13)

q
So the analytical approach to adjust K and Ke was obtained with the
w

and

q
state vector (4.12) and the control law (4.11). From the mathematical
model for the closed loop system it is possible to obtain the transfer
function of g to q, which is of the form:
P

N3 s>+ stz+ le + N0

= 2 3 2 (4.14)
dp As + As™+As™+As+ A

4 3 2 1 0

q
q

Applying the final value theorem to (4.14), it is possible to obtain a

relationship :
N0 4
] - e,
88 A

as NO and Ao are functions of the aircraft aerodynamics, K and K8 s
w

q

{4.15) can be written as: K = function (K ’KE ), and so it is
S8 w

q
possible to obtain an approximation for KE as a function of K and K
: w

q
where K is simply the desired steady state constant to be achieved.
8§86

&8
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If K is choosen around 1, lets say in the range 0.98 to 1.02, then

ss
it is possible to adjust K and K€ whilst monitoring the wvalue of
w .

CAP. It must be: mentioned: that: it 1is: not possible to -choose K
: 886

exactly 1 due to numerical problem in the calculation of K . In

q
this way new gains K and K6 were obtained for all flight conditions.
w

q
It is useful now to remember from chapter 3 that the zero steady state

characteristic of the pole placement control law design was well
behaved even when the actuator was included, and so the method is a

good approximation for finding new feedback gains K and KE
w

The method can be summarized as:
(i) choose a constant K ( 0.98 to 1.02 )
88

(ii) with the old K ( from the reduced order model ) obtain a new Ke
\

q
{(iii) with the new gains K ,KE and old K find the CAP with the
w q -

complete model and actuator. If CAP is satisfyied, then it is
all right ( as is the case of flight conditions 9 and 17 ). If

not go back to (ii) with a small change in K .
w

This procedure will recover good CAP aﬁ; good steady state
characteristics, it remains now to recover good dropback. The
dropback characteristics will be recovered by the feedforward gain GO.
The technique for obtaining a new Go is simple and widely used in the
aeronautical industry, by simulating the aircraft response and
adjusting the gain Go based on the original wvalue obtained with the
reduced order model.
With the new feedback gains and the original feedforward gain
obtain the dropback parameter, if it satisfies the criterion then
no adjustment is necessary, if the criterion is not satisfied
then change the GO just a 1little, beginning with 5% change.
Obtain the aircraft response, and so on until the criterion is
satisfied. The convergence is fast, with few iterations. Around
five iterations are required to obtain a new wvalue of the
feedforward gain. »
With this procedure the new gains obtained are listed in table (4.1).
and in table (4.2) the new short period characteristics are compared

to the original short period characteristics.
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TABLE 4.1 — NEW GAINS COMPARED WITH THE OLD
GAINS FOR THE POLE-PLACEMENT CONTROL LAW
Fc #] 3 6 9 13 17
K ol1d |0.0012]|0_0012]|0_0011|0_ 0026|0_ 0013
w
et~ Ys |new |0.0009|0_ 0018|0_ 0011{0_ 0030|0_ 0013
Kq old |-0.588|-0.889|-1.875|-1_094|-1_ 249
s new |-0.588|-0.889|-1_875|-1_094|-1_ 249
Ke lora |-1.219|-1.183|-1_697|-1 270|-1 252
q
rad” | v |-1.600|-2.857|-2.200|-3.755|-3.429
G lo1a |-1.219|-1.183]|-1.697|-1.270|-1.252
. new |-1.389|-0.592|-2.036|-1.600|-1.410
TABLE 4.2 — NEW SHORT PERIOD CHARACTERISITCS
COMPARED WITH THE OLD SHORT PERIOD CHARACTERISTICS
Fc #| 3 6 9 13 17
© old | 1.85 | 1.20 | 0.85 | 0.83 | 0.90
sp
rad/s new 2.03 2.19 1.91 1.88 2.42
C o1d | 0.70 | 0.85 | 1.21 | 0.70 | 0.96
sp
new | 0.57 | 0.50 | 0.99 | 0.35 | 0.45
cAP lo1a | 0.117| 0.101| 0.086| 0.092| 0.087
e 2 lnew | 0.098| 0.1856| 0.235| 0.264| 0.252

In table (4.3) the new and old dropback charactristics are compared,

and some comments are in order now:

Jte

te

Jte

It is seen from table 4.1 that Kw has changed very little but K6

has changed more, this is due to the fact that KG has the main

influence in the steady state error.

q

The feedforward gain has in general increased with respect to the

old values, in fact this is not so good,

higher control effort.
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e
e

The damping ratio has decreased in all flight conditions, but
still satisfies level 1 of MIL-F-8785C.

It is interesting to note that the short period natural
frequency has increased in all flight conditions, a fact that
contradicts the approach followed in the pole placement control
law design followed in chapter 3.

The aircraft response is now faster than it was before, that is,

£ is now lower.
m

TABLE 4.3 — NEW DROPBACK CHARACTERISTICS COMPARED
WITH THE OLD DROPBACK CHARACTERISTICS
Fc #| 3 6 9 13 17
T old | 1.25 | 1.22 | 1.11 | 1.24 | 1.16
Ies new | 1.44 | 1.48 | 1.21 | 1.51 | 1.46
DB (sec)|o1a | 0.09 | 0.15 | 0.02 | 0.11 | 0.07
s new | 0.05 | 0.16 | 0.24 | 0.12 | 0.08
Y o1a | 2.4 | 1.6 | 2.1 | 2.6 | 2.1
(sec) | |12 | 2.8 |1.2 [1.a |11
9ss old | 1 1 1 1 1
(rad/s) | ., | 0.99 | 1 1 0.98 | 1

4.2.2 THE OPTIMAL CONTROL LAW DESIGN

It was necessary to make changes to the optimal control law
desiagn in order to recover good dropback characteristics, the
gains were adjusted as follows. In the initial design process a
constant state weighting matrix Q was used and the control
weighting matrix was wvaried. Here the procedure is reversed,
that is, a constant control weighting matrix R is used, in this
case R is taken to be equal to 1, and the state weighting matrix
Q is wvaried. Only the element Q(3,3) is varied as in the

preliminary design. The procedure can be summarized as:
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i With the reduced order short period model, that is with the same
model used in chapter 3 to design the control law, obtain a set
of new feedback gains wvarying only the element Q(3,3). The
design attempts to ensure that the closed loop poles don't move
too far from the open loop poles and that the gain magnitudes are
not too high ( say no more than 4 ). By wvarying Q(3,3) from
0.01 to 20 a set of feedback gains and feedforward gains were
obtained, in the same way as described in chapter 3, for each

flight condition.

Pte
e

Evaluate the steady state error response of the full aircraft
model with actuator and the new gains obtained in (i). Choose
the set of gains that offer the best steady sate error response

recovery.

fto
Jte
|

Obtain the dropback characteristics with the new set of feedback
gains and feedforward gain obtained in (ii). If acceptable do
not change the feedforward gain. If not acceptable try a new
feedforward gain based on the wvalue obtained in (ii) and changing
it by 5%, 10% and so on until the dropback criterion is

satisfied.

~. must be mentioned here that in this case it is possible to obtain
analytically full state feedback gains with the full model, that is,
with the state vector:

xT=[queeqnvn] (4.15.a)
However, since the design was not intended to have feedbacks of u, n
and vn, this approach was not adopted. In contrast with
pole—placement method, it is not possible to obtain analyticaly the
gains with the full model since the system is not controllable in
terms of control theory. After the redesign the new gains obtained
are listed in table (4.4) compared with the old gains. Table (4.5)
shows the new and old short period characterisitcs and table (4.6)

shows the new and old dropback characterisitcs.
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TABLE 4.4 — NEW GAINS COMPARED

WITH THE OLD

GAINS FOR THE OPTIMAL CONTROL LAW DESIGN
Fc #| 3 6 9 13 17
K |oia |0.0002{0.0003|0.0005|0.0006|0.000a
w
et"ls |new |0.0008|0.0007]0.0009]|0.0014]0.0008
Ky lo1a |~0.135|-0.216|-0.543]|-0.280(-0 257
s new |-0.898|-1.016|-1.343|-1_356|-1_228
Ke lora |~0.316|-0.447]|-0 816|-0_447|-0_aa7
q
rad” | . |-2.236]|-2.236|-2.236|-2.236|-2.236
G lo1qa |-1.200|-1.280|-1_ 720]|-1_ 910]|-1 540
e Inew |-1.927|-1.973|-2.188|-3_ 230|-2_ 282
TABLE 4.5 — NEW SHORT PERIOD CHARACTERISITCS
COMPARED WITH THE OLD SHORT PERIOD CHARACTERISTICS
FC # 3 6 S 13 17
Ol | 1.6 | 1.42 | 1.19 | 1.11 | 1.18
radss |new | 2.59 | 2.56 | 1.95 | 1.7a | 2.13
¢ |ora | 0.63 | 0.53 | 0.51 | 0.54 | 0.48
sp
new | 0.61 | 0.59 | 0.59 | 0.60 | 0.59
cap lora | 0.13 | 0.1a | 0.127 | 0.127 | 0.15
s 2 |new | 0.127] 0.182] 0.240| 0.245| 0.222

TABLE 4.6 — NEW DROPBACK CHARACTERISTICS COMPARED
WITH THE OLD DROPBACK CHARACTERISTICS

Fc #| 3 6 9 13 17
Iy, o1a | 1.32 | 1.47 | 1.49 | 1.48 | 1.59
9e new | 1.56 | 1.60 | 1.47 | 1.7a | 1.60
DB iec)|ora | 0.05 | 0.01 | 0.02 | 0.09 | 0.03
Yoo new | 0.07 | 0.12 | 0.03 | 0.01 | 0.15
tm o1a | 1.20 | 1.30 | 1.50 | 1.70 | 1.50
tsec) 1 .| o0.90 | 0.90 | 1.10 | 1.10 | 1.00
Tes o1 | 1 1 1 1 1
(rad/s) | ., | o0.99 |1 0.99 | 0.94 | o0.98
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4.2.3 CONCLUSIONS AND OBSERVATIONS

The results . obtained:with: :the: revised  'pole:'placement control. law

design and - optimal -control::law - design led +to the following

observations:

Y

1

2o
Jte

e
130
120

ngain the optimal control law design requires higher feedforward
gains than the pole placement control law design. This is not a
good feature with respect to control effort.

Although the feedback gain Ke has increased with respect to the

q
original value in the optimal control law design, it is constant

over the flight envelope, which 1is wvery good in terms of
implementation, since it is not required to be scheduled.

Again the optimal control law design satisfyies CAP requirement
much better than the pole—placement control law design. In the
process of gain adjustment some difficulty was experienced in
trying to keep CAP in level 1 with the pole placement control
law design for some flight conditions.

Again the pole placement control law design gives better steady
state characteristics than the optimal control law design. This
was already known since the method of calculation of the
feedforward gain used in the pole placement method is based on
pole—zero cancellation ( chapter 2 ).

The aircraft with optimal control law design continues to
present a greater pitch-rate overshoot compared with the
aircraft with pole placement control law design.

The short period damping is pratically unchanged in the optimal
control law design. Since it was already satisfying the CAP
requirement the redesign of the optimal control law was
basically concerned with the dropback criterion.

The optimal control law design still gives the better phugoid
performance with respect to MIL-F-8785C.

The pole placement control law design gives a greater phase and
gain margin than the optimal control law design. In optimal
control design methods one can expect to obtain better phase and
gain margin characteristics than with other methods, however,
this is true only when full state feedback is used, which is not

the case here.
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The optimal control law design results in higher bandwidth and
resonant peak - than- ‘the pole placement control law design.
However, both designs give:a performance which falls outside the
desired bandwidth range as specified in D'Sousa®®

As seen, the feedforward gain Go in both designs was finely
adjusted by trial and error about the nominal feedforward gain
value obtained in the redesign. Adjustment by simulation is
very straightforward, in fact no more than four or five

iterations were necessary in order to obtain the final GO.

Table (4.7) shows the gain margin,GM, and phase margin PM obtained for

the augmented aircraft with both designs and also the resonant peak

M , and bandwidth o .
P b -

TABLE 4.7 -~ DYNAMIC CHARACTERISTICS OF THE AUGMENTED
AIRCRAFT WITH BOTH DESIGNS

FC # | 3 6 9 13 i7

6, 4p |PPCL| 128 | 13.6 | 12.5 | 15.3 | 12.4
oct | 8.4 | 9.4 | 12.5 | 11.6 | 10.5

PM (deg) |PPCL R 82 : : 62 . 110 64 70
ocL | 62 60 80 74 70
0, pecL| 4.9 | 3.7 | 47| 33| a6
(rad/s)| | 67| 6.8 | 4.9 | 5.3 ]| 5.8
M, leeci| a.a| a6 | 18| 68| 4.9
(aB) loor | 5.3| s.8| a.8| 6.2 5.7

In figure (4.1) the time response of both designs are compared. In

figure (4.2) the frequency response of both designs are compared on

the Nichols chart and in- figure (4.3) the frequency response of both

designs are compared on the bode plot. All these figures refer to

flight condition 6.
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figure 4.2 - Nichols plot of pitch-rate frequency response
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desigps at 20000 ft, mach 0.70
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4.3 FURTHER DEVELOPMENT:OF ' THE CONTROL -LAWS-TO -MEET
THE PHASE~RATE CRITERION:«

4.3.1 INTRODUCTION.: -

The Gibson phase-rate criterion was developed specially to deal with
the problem of pilot induced oscillations ( PIO ), which occurs mainly
in approach and flare. -However, here the study is carried out for the
cruise configuration only, since the reference used, Heffleyli, does
not contains aerodynamic data for the landing configuration. other

useful references concerned with the PIO problem are Hess—Kalteis®®

and Powers®’ In particular Hess—Kalteis®®

offers an interesting
. method for dealing with the PIO problem based on the use of optimal

control methods.

4.3.2 EVALUATION OF BOTH CONTROL LAWS RELATIVE
TO THE PHASE-RATE CRITERION

To evaluate both control law designs with respect to the phase-rate
criterion the aircraft model considered is that described in chapter
3, section 3.7, the state vector as given by equation (3.37) is,
xT=[ques nv 1] (4.16)
' m )
and describes the full aircraft model plus actuator. From this point
on actuator no.2 is used in this work. The aircraft model is giwven by
the following state equation (3.38),
x =Ax+Bn+E
n cldp (4.17)

So the control law structure is that given in Figure (3.11). The

closed loop model is,

x = (A - BG)x + (BG_ + E)q (4.18)
0 dp

with A given by equation (3.39), B given by equation (3.40), E given
by equation (3.41) and the gain vector G is given in table(4.1) for
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the pole placement control law, and in table (4.4) for the optimal
control law. Plotting the closed loop attitude frequency response on
Nichols chart it is possibleto:obtain the necessary data to evaluate
the control law designs with respect to the phase-rate criterion.

Referring to fiqure (4.4),

6
—_— AP = 50
ml qdp I
. gain ® = -180° + AD
frequency at which 1
the phase is <I>1 ( dB) (I>2 = -180°c - Ad
wz P.R. = phase rate
frequency at which @2 - @1
th is @ P.R. =& ———— (4.19
e phase is 2 P P ( )
2- 1
o 0]
~-270° 2 1 -900° Qo
-180¢°
© 0
PR . —_—
. q
frequency at . dp
o ] 6—> phase
-180 phase AP | AP
. (deg)
A
¢LD
freq of 1 Hz phase lead necessary
to put the point at
which the frequency is
1 Hz at ~180° phase
—_—
A
¢LD
figure 4.4 - Necessary parameters for evaluation of the
phase rate criterion obtained from the closed loop attitude
frequency response on the Nichols chart.

which describes the parameters needed in order to evaluate the
criterion, these parameters were obtained for both control laws and

the findings are listed in table (4.8).

Figure (4.5) shows the performance of both control law désigns with
respect to the phase rate criterion. From this figure it is obvious
that the optimal control law is always located in the region of
moderate PIO whereas, the pole placement control law design shows
greater variations since it is located in this region and also in the
region of severe PIO. To bring both designs into the optimum region
it is necessary to introduce of a lead filter into the command path of

the control laws,as described in chapter 2, section 2.3.4.
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TABLE 4.8 — PHASE—RATE PARAMETERS FOR BOTH DESIGNS -
FC # POLE-PLACEMENT DESIGN OPTIMAL DESIGN
P.R. A@LD wpg ” P.R. A@LD wPR
(deg/Hz)| (deg) (Hz) (deg/Hz)| (deg) (Hz)
-147 49.7 0.52 ~160 46 0.60
-317 77.8 0.38 -163 48 0.60
 -129 6.4 | 0.60 | -149 52 0.50
13 —344 66.8 0.36 -136 50 0.50
17 -243 63.8 | 0.45 -156 50 0.55
400 !
phase g ¥ pole-placement
rate i + optimal control
.13
deg i :
Hz & \ S
\Y
300 \
" SEVERE \ TRENDS OF HIGH ORDER
\ PHASE RATE
PIO *17 \
\
\
200 X ; N
\ 3+ ! \
\ i % 45 HODERATE
Nagd e SR
Nt ox ; AN
13 9 ! R
100 D reeez:
\\ r —_—
NO:PIO OPTINMUH
. \\ .
~
: -~
E \ — .
i —
0 T T T T T T T T
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 .6

o
180 phase lag frequency ( Hz )
figure 4.5 ~ phase rate criterion plot of both
control law designs
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With the extra dynamics of the lead filter in the system it can be

represented as in Figure 4.6 below.

H G
0
+
PRE * 1 K + ACTUATOR ATRCRAFT
— s(O— H e = )— > >
q FILTER s q DYNAMICS DYNAMICS q
dp q. -~ - 47 |
d -€ c
-£ q w
q
N
- K
CJ € w €
- Y
N
L K L
< q <

figure 4.6 - flight control system with lead pre filter in the

command path

Referring to figure (4.6) the error is now given by,
€ =9g—4q (4.20)
q d

With the introduction of the lead filter in the command path the good
dropback characteristics obtained in chapter 3 are degraded for both
control law designs, and so it is necessary to adjust the gains of
both control law designs. Certainly it can be predicted that the gain
adjustment will be more difficult for the pole placement control law
design than for the optimal control law design since the performance
of the pole placement control law design falls almost entirely in the
region of severe PIO. With reference to table (4.8) it is noticed that
the maximum phase rate of the optimal control law is about -136
deg/Hz, and the minimum is about -165 deg/Hz. For the pole placement
control law the maximum phase rate is about -124 deg/Hz and the

minimun about -317 deg/Hz. Thus it is clear that the optimal control
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law design comes closer to meeting the criterion than the
pole-placement control law design. As seen in chapter 2, section
2.3.4, a desirable. phase rate. 1is less than '100. degfHz.' Also, a
comparison of the phase lead A@LD necessary to bring the design into
agreement with the criterion, that is to put the frequency of 1 Hz in
the closed loop attitude frequency response on the Nichols chart at

-180° phase, for both designs shows that,

(i) For the optimal c.l.design 45.1° < A@LD <51.7°

{ii) For the pole p.c.l. design 44.9° < A@LD <77.8°

And it is clear that the values of phase adjustment required by the
pole placement control law design for some flight conditions can not
be obtained with phase lead only but, require some redesign of the

control law gains as well.

4.3.3 THE POLE-PLACEMENT CONTROL LAW DESIGN

To design the lead filter the method of Kuo®® has been followed. The

transfer function of the phase lead filter can be written as;

E 1 + aTs

2 _
E = T+ s ay 1l (4.21)

phase lead
E filter E

figure 4.7 - phase lead filter

Shown on the bode plot, the phase lead controller has two corner
frequencies, one at w = 1/(aT) and the other at w = 1/T . A relation

of w and & with a and T 1is obtained in Kuo68 ass;
m m
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1
(3 = (4.22) and sin ¢ = ——3—:—1— (4 235
m 7a T TR T m a+1 )

In figure 4.8 the bode plot of the phase lead controller is shown.

282 20 dB/decad
= ecade
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aT " T
90°|— } - ! .
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R e
-90° , : : ==
L w 1
al’ " T
figue 4.8 - bode plot of the phase lead controller

As ¢ 1is the maximum phase lead obtained at the frequency o . In this
casemm is 1 Hz for all flight cases and the required ¢ v;ries with
flightf‘case. Since the average phase lead required mby the pole
placement control law design is around 57°, before attempting to
design the lead filter it was decided to redesign the control law
gains for the flight conditions located in the region of severe PIO.
The redesign procedure was carried out for flight conditions at 10000
ft, 20000 ft and 30000 ft only, that is flight conditions 6, 13 and
17. The redesign was performed based on the gains obtained in the
preliminary design with the reduced order model, chapter 3, section
3.3, and by choosing to adjust Kw only. Sovflight condition 3 énd 9
have no changes in the feedback gains, they are the same as obtained
in section 4.2.1. To obtain the new feedback gain K for flight cases
6, 13 and 17 the starting point was the gains obtai:ed in section 3.3

» K K and K_ .
w q Cq

2
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The redesign was made by adjusting K in order to obtain a phase rate
W

lower than 200 deg/Hz, and an acceptable CAP. This choice was based

mainly on the option to keep the changes as simple as possible. The

new feedback gains obtained by this procedure are listed in table 4.9.

TABLE 4.9 — NEW GAINS COMPARED WITH THE OLD
GAINS FOR THE POLE-PLACEMENT CONTROL LAW

FC # 3 6 9 13 17

Ko [°19 [0.0009]0.0018[0.0011]0.00300.0013

£t s |new |0.0009|0.0010]0.0011]0.0026/0.0010

Kq old |-0.588|-0.889(-1.875|-1.094|-1.249

s new |—0.588|-0.889|-1.875|-1.094/|-1.249

Ke lo1a |-1.600]|-2.857(-2.200]|-3.755 -3.429
q

rad” | ew |-1.600]|-1.183|-2.200(-1.270]|-1.252
6 |ola |-1.389|-0.592|-2.036|-1.600|-1.410

s nev |—0.834|-1.065|-1.629]|-1.461|-1.439

The steps in the procedure can be summarized;

(1)

(i1)

for flight cases 6, 13 and 17 go back to the feedback gains
obtained in table (3.3). For flight conditions 3 and 9 the

feedback gains K , K and K8 are maintained at the same wvalues
W q

q
obtained in table (4.1).

Maintain Ké and K at the values of table (3.3), for flight
q
q
conditions 6, 13 and 17.

(iii)For flight conditions 6, 13 and 17 the following procedure was

(iv)

(v)

adopted;

Adjust K in order to obtain a CAP that satisfies Level 1, a
reasonabze phase-rate ( less than 200° deg/Hz ), a reasonable
A@LD and a good (q/qdp)ssm 1. This adjustment was performeﬁ by
simulating the system and looking for these parameters
iteractively. As convergence is not difficult to obtain.

The new feedback gains are then determined.

Design the lead filter based on the results obtained in (iii) for
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A®LD and P.R.

(vi) With the lead filter, actuator, full aircraft model, Teedback
gains obtained in (iv), and the feedforward gain obtained in
table(4.1), obtain the dropback characteristics. If the dropback
criterion is satisfied then it is not necessary to change GO. If
the criterion is not satisfied then adjust G0 by simulation using
the value in table (4.1) as the starting point. After a few

iterations the new GO is obtained and the redesign 1is then

completed.

It should be noted that in steps (i), (ii), (iii) and (iv) no filter
is included in the process, and in the steps (v) and (vi) then the
lead filter is considered in the process. With this redesign of
feedback gains, the pole placement control law is now located entirely
in the region of moderate PIO. Table (4.10) shows the aircraft
characteristics for the control law with redesigned gains but

excluding the effects of the lead filter.

TABLE 4.10 — NEW AIRCRAFT CHARACTERISTICS
WITH THE NEW FEEDBACK GAINS

.

FC # CAP [q ] P.R. AD

dp LD
-2 §$S

s deg/Hz deg
0.089 0.99% ~147 48.7
0.109 0.95 -122 46.6
0.235 1.07 -129 46.4
13 0.109 0.80 -120 53.0
17 0.157 0.93 -122 48.3

A comparison with table (4.8) shows the improvements obtained.
Now that the performance at all flight conditions is improved with

respect to the requirements of the phase rate criterion, that is, they

now require less than 50° of phase lead and they have less than
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150°/Hz of phase rate, it is possible to design the phase lead filter.
The filter was designed choosing the phase lead as 49.5° at 1 Hz, for
all flight conditions. The resulting lead filter is:

(1 + 0.431 s )
PLF = - (4.24)
(1 + 0.059 s )

{ s +2.32)
7.3 (4.25)
(s + 17 )

or, PLF

The 7.3 represents the necessary gain compensation in order to keep
the slope of the closed loop attitude frequency response plot at a
reasonable wvalue at cross over, that is, lower than 100°/Hz . With
this lead filter and the redesigned feedback gains, the control law
satisfies CAP and the phase rate criterion. However, it must also
satisfy the dropback criterion obtained with the redesign of the
feedforward gain GO as already described before. Table (4.11) shows
the phase rate criterion and dropback criterion parameters for the

-
aircraft wltﬁkpne reagesigned control law.

d \

TABLE 4.11 - FINAL DROPBACK AND PHASE RATE OBTAINED

FC # 3 6 9 13 17
DB

" 0.05 | 0.06| 0.18| 0.09 | 0.01
(rad)
P.R. -76.5 |-90.4|-100 |-76.1 |-91.2
(deg/Hz)

It was noticed that, for some flight conditions the dropback is wvery
sensitive to changes in the feedforward gain, as can be seen from the
example of table (4.12). Thus the robustness of this design is poor
with respect to dropback criterion when the feedforward gain is
varied. If the design were performed for just one flight condition
this problem would not be visible, which also shows that in order to

get some "feel" for the design several flight cases must be analyzed.
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TABLE 4.12 — VARIATIONS IN DB WITH CHANGES IN THE
FEEDFORWARD .GAIN AT 20000 FT MACH 0.80

GO (s ) DB ( rad )
-1.135 -0.008
-1.156 ~-0.041
-1.245 0.170

4.3.4 THE OPTIMAL CONTROL LAW DESIGN

To adjust the optimal control law to satisfy the phase rate criterion
it was not necessary to redesign the feedback gains as in the case of
the pole placement control law. Since all the flight cases are
located in the region of moderate PIO, and the phase rate obtained is
less than 200°/Hz a nhase lead filter can be designed directly.
Considering the average phase lead required for all flight cases as
48.5° the resulting filter is:
{s + 2.38)

PLF = 6.96 ( 4.26)
(s + 16.58)

With the introduction of this Tfilter in the command path the phase
rate criterion and CAP are satisfied, but, the dropback criterion is
not satisfied. So it is necessary to redesign the feedforward gain
only in order to restore good dropback characteristics. The redesign
is based on the feedforward gain obtained in chapter 3, section 3.4,
as the starting point for iterative adjustment. A new feedforward
gain was obtained by simulating the aircraft response with full model,
actuator, lead filter and control law with original feedback gains.
Then with small changes to the initial value of Go it is easy to find
a new value that satisfies the dropback criterion. Here the
convergence is wvery fast, and the sensitivity of dropback to
variations in GO is not a problem as with the pole placement control
law design. So with this procedure the redesign is completed and the
resulting feedforward gain, dropback and phase rate are listed in

table (4.13)
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TABLE 4.13 — FINAL FEEDFORWARD GAINS, DROPBACK AND
PHASE-RATE OBTAINED
FC # | ‘ca (s ) DB ( rad ) P.R. (deg/Hz)
old new old nevw

-1.927 -1.156 0.07 0.08 -91
~1.973 -1.184 0.12 0.08 -92
-2.188 -1.641 0.03 0.06 -83

13 -3.230 -2.584 0.01 0.12 -81

17 -2.282 | -1.255 0.15 0.02 -84

4.3.5 CONCLUSIONS AND OBSERVATIONS

The final design characteristics of the aircraft with pole placement
control law design are summarized in table (4.14) and the
corresponding results for the aircraft with the optimal control law
design are included in table (4.15). Now the following observations

may be made,

(i) The optimal control law design has a greater pitch rate
overshoot than the pole placement control law design as well as
giving a faster response.

(ii) The optimal control law design results in a greater bandwidth
than the pole placement control law design.

(iii) The pole placement control law design always has a greater
phase and gain margin.

(iv) The inclusion of the phase lead filter has increased the
bandwidth, phase margin and gain margin in both control law
designs compared with the aircraft without lead filter.

(v) The magnitude of the feedforward gains has decreased in both
designs, which is a good feature, since it represents lower
control effort.

(vi) In the pole placement design the feedback gain K€ has also

q
decreased, which also represents lower control effort.
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(vii) The dropback characteristic has been improved in both designs.
(viii) The pole placement design is not so robust as the optimal
design with respect to the  dropback characteristic. when the
feedforward gain is changed.
TABLE 4.14 — FINAL RESULTS WITH THE POLE-PLACEMENT DESIGN
:c q, t | g, DB R Mp Gy Py | P-R-
rad cec | Tad | rad | rad dB dB |deg | deg
sec ‘sec sec Hz
1.34| 0.80| 0.99| 0.05| 7.60 |3.92| 14.2 |103 |-76.5
1.32| 0.60] 0.99| 0.06| 9.30 |2.65| 12.4 | S0 |-90.4
9 | 1.34| 0.60| 1.00| 0.18| S.40 |2.40| 11.9 | 78 |-100
13 1.31} 1.70) 0.92{ 0.09]| 5.50 |3.50| 15.6 [133 |-76.1
17 | 1.30) 0.60( 0.88] 0.01| 9.50 |2.40| 12.3 | 85 [-91.2
TABLE 4.15 — FINAL RESULTS WITH THE OPTIMAL DESIGN
:C a t | 9, DB | @ Mp Gy Py | P-R-
rad sec rad rad rad dB dB deg deg
sec sec sec Hz
3 | 1.56| 0.60| 0.99| 0.08[10.0 |5.30| 10.9 | 64 |-s0.9
1.61| 0.60| 0.99| 0.09{10.0 5.75| 10.3 63 |-81.6
9 | 1.49| 0.70| 0.98| 0.06]| 9.0 |5.00| 12.3 | 82 |-82.8
13 | 1.68| 0.60| 0.94| 0.12|10.3 |[6.42| 10.9 | 68 |-81.3
17 1.41| o0.70| 0.99]| o0.02! 8.5 |a.40| 13.0 91 |-83.5

In addition the optimal control law

design is more

adjustment than the pole placement control law design.

tolerant to

Ais mentioned

in Powell?, the fact that the optimal design procedure is based on the

choice of just one parameter, the weight matrix, simplifies the design

very much.

Whereas,the pole placement design is based on the direct

choice of closed loop poles, i.e.,more than one parameter. In figure

(4.9) the time response of both designs are compared, in figure (4.10)

the frequency response of both designs are compared on the Nichols

chart and in figure (4.11) on the bode plot, all for flight condition

6. Finally figure (4.12) shows the performance of the final pole

placement design with respect to the dropback criterion and figure

4.13 shows the performance of the final optimal control law design

with respect to the dropback criterion.
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5. FLIGHT CONTROL SYSTEM DESIGN USING THE DOYLE STEIN OBSERVER

5.1  INTRODUCTION .

Having designed a satisfactory control law the design will now be
extended to incorporate a Doyle-Stein observer. The inclusion of an
observer 1is wuseful because it will allow the introduction of
redundancy in the designed flight control system with respect to
sensor failures. The Doyle—-Stein observer is described in chapter 2,
section 2.7, and also in the Doyle——Stein6 classical paper. In the
design a reduced order observer is used and the two methods of design
described in chapter 2 will be used. Other references that also
present comparable methods for observer design are Mironss,Nelson70
and D'Azzo°?.It is useful to remember that the Doyle—-Stein observer

has the following important properties:

(i) It Makes the closed loop transfer function from the reference
input to the output the same as it is for full state feedback.

(ii) It has its poles at the transmission zeros of the open-loop
system.

(iii) It does not require feedback of the control signal and thus
has a constant transfer function, independent of the control

gain.
Three observers will be designed, as follows:
(i) Observer when the sensed output of the aircraft is w
(ii) Observer when the sensed output of the aircraft is q
(iii) Observer when the sensed output of the aircraft is @
The observer (i) is designed by the first method described in chapter

2, section 2.6.2, and the observers (ii) and (iii) are designed by the

second method described in chapter 2, section 2.6.3.
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5.2 THE DOYLE-STEIN OBSERVER WHEN THE OUTPUT IS w

When the output of the aircraft is w, normal wvelocity, .the first

design method is used.. The aircraft state equation is given by,

X=AX+Bn (5.1)

and it can be partitioned as,

x1 All A12 xi Bi
. = + n (5.2)
X A A X B
2 21 22 2 2
with x1= W (5.3)
and x> = [ ugqo] (5.4)
obviously y = (:1 X, =W (5.5)
and Cl=1 s or I the identity matrix (5.5.a)
As described in chapter 2, the observer is of the form,
z=Fz+Gy+H n (5.6)
x2= Ly+z (5.7)
and figure 5.1 represents the aircraft plus the observer.

v
==

yl
<

2]

<

OBSERVER

figure 5.1 - aircraft and observer block diagram for the first

method of observer design.
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the state_):2 is,the:estimate_of.x2 and the matrices F, G, and H are

obtained as in f2.99), (2.100) and (2.102) féspéctively and - take the

form:
F = A22 - L'C1ﬂ12 (5.8)
G = (A, -LCA ) c;i +FL (5.9)
H= B -LCB (5.10)

L is called the gain matrix of the observer. It is clear in this
method that to obtain the condition of zero feedback from the control
input signal to the observer it is necessary that H = 0. It is
interesting to note that this is not always possible, and when it is
not possible then it is necessary to use the second design method. So

for H = 0 it is necesary that;

B -LCB =0 -
2 104 (5.11)

Solving equation (5.11) the gain matrix L of the observer can be
found. With L determined it is possible, in equation (5.8), to obtain
F and then in equation (5.9) to obtain G. With this procedure the
poles of the observer are automatically located at the transmission
zeros of the open loop system, this is shown in Friedland!3. 1In this
case the zeros fall exactly on the transmission zeros of the open loop
transfer function w/n . In this way the Doyle-Stein observer is
designed, and its properties are maintained. In appendix D the
matrices L, F and G obtained are listed for the flight cases studied,

for example these matrices for flight case 3 are,

-0.011 1
11

L = . = 1 5.12
0.056 21 ( )
n n

R N A
It is noted that l31 = 0 for all flight cases and l21 is pratically

constant with flight case.
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0.0482 g
= -2.1774{ _ | g
6= e T ? (5.13)
0.0564 g
It is noted that 531 = l21 for all flight cases.
_ - - -
-0.0093 -0.0550 -32.2 f T L
11 12 13
F 0.0082 -39.62 0.0217 f f f
= o= 21 22 23 (5.14)
0 1 0 f f f
i | | 31 32 33 |

It is noted that for all flight cases f31= o, f32= 1, f33= 0 and f13
is constant. Such features are wvery good in terms of implementation.
So this observer design requires that the following gains are

scheduled with flight condition,

1 .4 ., ,f L,f ,f ,f andf
11 21 11 11 12 21 22 23

that is 8 parameters.
5.3 THE DOYLE STEIN OBSERVER WHEN THE OUTPUT IS q
5.3.1  INTRODUCTION

When the output is pitch rate g, the same method can be applied to
design the observer. However, in this case, the design will have a
problem because one of the transmission zeros of the transfer function
q/n is zero, and so one of the observer poles will be located at zero.
Then the closed loop aircraft will therefore have two poles at zero
since the aircraft already has a pole at zero. With two poles at zero
the aircraft will not be BIBO stable and so it is impossible to
implement this observer design. The solution is to use a second
method to design the observer, as described in chapter 2, section

2.6.3.
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5.3.2 THE DESIGN

The procedure for design is as follows.

again given by,

z

Fz+6 y+ Hn

the estimated vector is now given by,

; =My+ Nz

2

Again the aircraft state equation is,

and again it can

A A b
1| _ 11 12
X A A X
2 21 .22
with, x1 = q
T
x =[uwo
” L 1
AT ~on
and x2 =[uwo

be partitioned as

+

0

Bn
q

00 ]

The observer dynamics are

(5.15)

(5.16)

(5.17)
(5.17.a)

(5.17.b)

{(5.18)

(5.19)

(5.20)

(5.20.a)

Figure 5.2 shows a block diagram representation of the aircraft plus

observer in this case.

111



A4+ "
A 4 x
+ ’ 2
—O—
> F >
N4
Y S
OBSERVER
figure 5.2 - aircraft and observer block diagram for the second

method of observer design.

As already explained in chapter 2, it is necessary first to choose the
observer poles, that is, the eigenvalues of the F matrix. However,
since the design is for. a Doyle-Stein observer, the observer poles
must be located at the transmission zeros of the open loop system.
Then F is choosen as a diagonal matrix with the transmission zeros of
the open loop tranfer function q/n in the main diagonal. One of the
transmission zeros of q/n is zero and, as explained before, it is not
possible to use this transmission zero, but it is possible to use a
negative number as close as possible to zero to replace this
particular transmission zero. The Tfirst choice for all flight cases
was —0.01, and the results have shown that this wvalue works quite
well. This choice can be made based on the performance of the system,
so it is iterative. That is , once a value is choosen the performance
of the aircraft with observer is assessed, if satisfactory this pole
is obviously a good choice if not, then try other pole. The

convergence is very fast with the available software in these days.
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Now, it is also necessary to choose G, and the method says to choose G
with the condition that thempair.(F,E) be:controllable. For-

simplicity G was choosen initially as
T
6G=[111] (5.21)

This choice was maintained for all flight cases, and the
controlability of the pair (F,G) for each flight case was checked in

order to proceed with the design.

The next step is to find H, obtained as a solution of,
H=TB8B (5.22)

where T is given by solving the Lyapunov equation,

FT+T (-A)=-GC (5.23)

and the estiméted state vector will be:

~ |¢c vyl Ly
XK = feommee|  eememee = P°7 fee- (5.24)
T z z
°T S0 0 .
where, X =[x { x 1] (5.25)
1t 2
c |
P= | » (5.25.a)
T’ .
and, xz can be expressed as equation (5.10)
X, = My+HNZ ; (5.26)

So the matrices M and N are simply submatrices of P! and the design

is completed. By way of eaxmple these matrices are listed here for
-
1

light condition 3, the remaining flight conditions are contained in

appendix E,

0
11
H = a = | h .26.
21 (5.26.a)
-0.016 h
' . 31
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35.4 m
11
M = "12.6 = m .26.b
I B TR R (5.26.b)
-0.0189 m
31
[ 4482 -102  -4349 n n n
11 12 13
N=| -658 704 634 = .26.
n21 n22 n23 (5 c)
-1.4 0.03 2.3 :
L "31 "32 "a3
[ -~0.0175 0 0 £ £ £
11 12 13
F = 0 -0.9859 0 = f f f (5.26.4d)
21 22 23 :
0 ) -0.01 £ £ £
L : 31 32 33

In this case it is necessary to schedule the following parameters:

f f m m n n
11 ° 227 11’ 21 117 12

n n n n n h
13° 21 ° 22” 237 31’ 31

That is, 12 parameters, this is a disadvantage with respect to the

previous design in terms of implementation.

The parameters m31’ n32 and LI are basically constant for all flight
cases. It is also noticed that the element h31 in the matrix H is not
exactly zero and, as expected, this is due to the fact that an
approximation to the exact transmission zero was used in the design.
For this flight case, and all other flight cases, this element is very
small, and as will be seen later its influence on performance can: be

regarded as negligible.

5.4 THE DOYLE-STEIN OBSERVER WHEN THE OUTPUT IS 6

Here the design method is the same as in the previous section. So

again, the aircraft state equation is;

XxX=AxXx+Bn (5.27)
the observer is given by; z =F z + G y +Hn (5.28)
the estimated state is ; Xx=My+ Nz (5.29)

2
The design procedure is the same as in the previous section. However,
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here the problem is not that one of the transmission zeros of 0/n is
zero but, one of the transmission  zeros of 'g/n is at infinity, thus
the design is based on the choice. of an. approximate pole as close as
possible to infinity.- The -choice must be made based on the
performance obtained, so one must choose a value for this third pole (
6/n has two real transmission zeros ). Design the observer, check
that all elements of H are close to zero, compare the frequency
response of the aircraft with control law and the observer with the
frequency response of the aircraft and control law, if so, then the
choice is acceptable. If not, then another choice must be made and
the problem repeated. This iterative procedure is in fact fast, for
this design three choices were evaluated, s = -50 ; s = - 16 , and s =
— 4 , and the analysis showed that s = -4 has an acceptable
performance. That is, the aircraft with control law and observer
including this pole and the other two poles in the real transmission
zeros of @6/n, has a performance that matches the aircraft with only
the control law and no observer. Also the matrix H has its elements

close to zero.

The results obtained for flight condition 3 for example are listed
here. Appendix F contains the observer matrices for the other flight

cases studied.

_0.0001
H = |-0.0008 ' (5.29.a)

| 0.1433

43.6 -33.2 2.6 :
N = -677 4.9 247 (5.29.b)

0.52 -0.002.:-14

[ =7.37]
M= 737 (5.29.c)
| s ]
[-0.9859 -0 0
F = 0 -0.0175 o} (56.29.d)
0 : 0 Co-4
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For this case the elements; f , f , h ., m , m
e 1122 31 11 21

ERICT o BETSPUVE ¢ ERSTEPUT ¢ WUSNUEY « BRI ¢ IIEIEI R
B & Gt M-S R T S S

must be scheduled with flight condition. It is noted that in this
design the element h31 is not so clese to zero as in the previous
cases. The performance of the design shows that this does not destroy
the Doyle-Stein condition. So .the Doyle-Stein observer has - some
degree of robustness with respect to variations in the elements of the
matrix H, that 1is wvariations in H within reasonable limits do not
destroy the match between the frequency response of the sensor based
control law and the observer based control law or, as the literature

of today says, the loop tranfer recovery ( Stevens—Lewis 18 ).

5.5 A COMPARISON OF THE PERFORMANCE OF THE OBSERVER BASED
CONTROL LAW WITH THE PERFORMANCE OF THE SENSOR BASED CONTROL LAW

5.5.1  INTRODUCTION

Having designed the alternative observers for a range of flight
conditions these were evaluated with the previously designed
pole-placement or optimal control law designs. Since wvarious

combinations were evaluated the following identification is used;

CL_SB sensor based control law, with the pole placement or with
the optimal design. The baseline control law  for
comparative purposes.

CL_OB w observer based control law, that is the control 1law with
observer when the output of the aircraft is w, again with
the optimal design or with the pole-placement design.

CL_OB q observer based control law. that is the control law with
observer when the output of the aircraft is q, again with
the optimal design or with the pole-placement design.

CL_OB_©® observer based control law, that is the control law with
observer when the output of the aircraft is @, again with

the optimal design or with the pole-placement design.
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The study was performed by simulating each complete control law system
with an. ACSL. program, and by comparing the results. - An .analytical
study was also performed:in:order torcompare:the frequency response of:
each system as well as the time response. The same reference input
was applied in each: case and the results, comprising the time
histories appropriate to a height of 20000 ft at mach 0.70 only are

shown, also shown is the frequency response comparison.

5.5.2 SENSOR BASED CONTROL LAW

The control law designs considered here are those obtained in chapter
4, that is, a control law that satisfyies CAP, dropback criterion and
phase-rate criterion. Considering figure 4.6 which defines the basic

control law, that is, the sensor based control law.

e= q-4q (5.30)
q d

and Ne = —Kwu —qu —er Eq + Goqd- (5.31)
q .

where Ne is the input to the actuator.

now q_ is the output of the lead filter introduced in chapter 4 ,and

shown in figure 4.6, and qdp is the reference input, that now is also

the input to the lead filter.

It is possible to write ; 6 =q (5.32)
and so , 6 = —g— (5.33)
q
=9 - _d ,
From (5.30) e - (5.34)
L q
Defining ed = —= . (5.35)
than ¢ =6 - ed (5.386)

substituting into (5.31)

n

K w-Kq-K 6+K + G (5.
o oK a K O+K O+ 69 (5.37)

q q

= - K K K K G
n L oK, X, Keq 1 x +“€q9d +6.4q, (5.38)
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the state wvector is X! = [uwg6] - ' (5.39)

The system can be represented by figure (5.3).: .o

H G
0
“PRE L ATRCRAFT o
— N R | ACTUATOR| |
q. |FILTER MR N DYNAMICS DYNAMICS
dp a, o b n 4
°. v
- - K
> C:), < v
N -/\
ya K va
< q <
K
€ <
q
figure 5.3 - alternative representation of control law design
obtained from figure 4.6

The lead filter considered was obtained in chapter 4, section 4.3.3
for the pole placement control law design and section 4.3.4 for the
optimal control law design. In state space model form the lead filter

can be written as:

X = a X + b : 5.40
LF LF LF LF'qdp ( )

= C x +d 5.41
qd LF LF LF'qdp ¢ )

For the pole-placement control law design the filter parameters are:

a =-16.95 , b =1, ¢ =-106.8, d =17.3
LF LF LF LF
and for the optimal control law design,
a = -16.66 , b =1, ¢ = -100.0 , d = 7.0
LF LF LF LF
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the mathematical model of the actuator can be given as ;

(5.42)

with XZ =[nv ] (5.43)

and the actuator considered is actuator no.2 used in chapter 3. The

aircraft dynamics can be written as ;

x =Ax+ [ B Z41 ] xA , (5.44)

with z81"=[ 0 0 0 0] (5.45)
The matrix A, and matrix B are given in appendix A for the flight
cases studied , and the state vector of the aircraft is ,

xT = [uwgo]l (5.46)

The control law is given by,
= -G K
LS X+ 89 T e 84 (5.47)
q
with 6=[0 K K x ] (5.48)
w g E'q‘

and ed_is defined in (5.35). With these equations the closed loop

model can be obtained as follows,

X A [B za1] Z41 za1 X 0
: (5.49)

X -B G A B Gc - B K X BGd

A b A A A O LF A € A ]l A O LF

. . 5 q 5 + qd
X 714 zZ12 a o X b P

LF o LF LF LF

| d | o LES Lo L Td | LF |

with Zi4a=[ 0000 ], Z12=[ 0 0 ]

That is, the control law will be considered as if implemented with
three sensors, for w, for q and for 9, as in fiqure 5.3. The
reference command input used in the ACSL simulations is shown in
figure (5.4). It is commonly used to represent a pilot input to the

aircraft since it is more representative of reality than a step.
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q
dpl
(deg/sec)
S
0 0.2 10.0 time (sec)
figure 5.4 - pilot input used in the ACSL simulations.

In fiqure (5.5) the time histories obtained with the optimal control
law at 20000 ft, mach 0.70 with CL_SB are shown. The study has shown
that the dropback criterion was satisfied as already reported 1in
chapter 4. 1In figure 5.6 the frequency response of the closed loop
system is reported and is used for comparison with the observer based

control laws.
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nagnitude of q/qd?ln DB

1
1
S S TN AR S S N DU SO S R

':;gl s :

189

preq (rad/sec)

phase of q/qdrln dey

-688 | — —

-788

-168 |- -
208 |- - '5
~308 |- - -...__
—q08f~ — o

~588 - — — .

18-

‘fﬂ?{l( rad/sec)

figure 5.6 - pitch-rate frequency response of the aircraft with

optimal control law design CL_SB at 20000 ft mach 0.70
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5.5.3 OBSERVER BASED CONTROL LAW CL_OB w

The same simulation exercise was performed with the aircraft and
observer based control law CL_OB w, that is, with an angle of attack

sensor only.' Figure 5.7 shows the structure considered:

G
> 0
+ AIRCRAFT
PRE W
—— FILTER - — H Ke |3 (ACTUATORL | o naMIcs|—
a, 1 s 0 ’ a n DYNAMICS .
p q, d c n
A 4
rd k/ ~ A
g\ , v
N OBSERVER i
w
K ya q ya 1
T R DYNAMICS |
K e
£ <
q
K ya
w <
figure 5.7 structure of the observer-based control law CL_OB_w

The lead filter is again given by,

-

X a x +b g . (5.50)
LF LF LF LF 'dp

= ¢ X + d (5.51)
qd LF LF Lqup

Again the actuator is actuator no.2 with the mathematical model,

X
A

]

A x +Bn (5.52)
A A Alc

. T
th = .
wi xA [ n vn ] (5.53)

123



Mow the aircraft is given by,

= A B. 0O
Xl Aoltlxq + 12)(2 +[ S e ].;xA e it 1 (5'54)
X =A x +A x + [B Z31] x (5.55)
2 211 22 2 2 A
with 231" = [ 00 0 ] (5.55.a)
with x1= w (5.56)
and x; = [u q 6] ' (5.56.a)
The observer dynamics are described by,
z=Fz+@G x, +Hn (5.57)
; =L x +z (5.58)
2 1 S
with x: =[uqo6] (5.59)
F, G, H and L are obtained as explained in section (5.2) and are
listed in appendix D for the flight cases analyzed. The control law
is given by ;
= -G X —G.xX.+ 06 + K .
i 11 22 04 [ 6d v (5.60)
q
with G =K (5.61)
1 w
and G =[ 0K K ‘
2 L a Ve ] ’ (5.62)
q
The closed loop model is then,
X=Ax+Bu (5.63)
: T
with x" =[x x x =z % .
1 [x x, x Q X% . ] (5.64)
and u=q (5.65)
dp
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{ A . a. . [B 01 713 o 0
A oo [BonZ31]:.233.. 231, Z31
-B (G +G L) Z23 A -BG BK BGeEe
A= A1 2 A A2 A e:q A O LF (5.66)
G Z33 [H 2Z31] F Z31 231
0 Z13 Z12 713 0 c
LF
0 Z13 0 Z13 0 a |
- LF
BT =[0 z31 BGd 231 d_ b 1 (5.67)
A O LF LF LF
where ; Z31T=[ 000 ] (5.67.a)
000
Z23 = 000 (5.67.b)
0
0 0 O
Z33 = (5.67.c)
Zi13 =[ 0 0 0] ' (5.67.d)

In Figure (5.8) the time histories obtained with the optimal control
law design are shown and a comparison with the results of figure 5.5
shows a very good agreement between both. The match between CL_SB and
CL_OB w is not exactly perfect because CL_OB w was designed with a
MATLAB model incorporating the matrix A and B of the aircraft but, in
the ACSL model the A and B matrix of the aircraft were a little
different from those used in the aircraft MATLAB model. The
differences in the elements of both matrices are around 12 % and arise
due to the fact that the ACSL model takes the wvalues of the elements
from an aerodynamic data base and so uses interpolation functions to
obtain the wvalues whereas, the values used in the MATLAB model were
taken directly from Heffleyll. This fact has shown that CL_OB w is
not so robust to aircraft parameter variations when compared with
CL_SB. This means that if the aircraft parameters wvary then the time

histories obtained with the aircraft augmented with CL_OB_w will not
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be exactly the same as the time histories obtained with the aircraft
augmented with CL_SB. Figure- 5.9 shows the bode plot frequency
response of the pitch rate transfer function. of the aircraft with
CL_O0B_w, and a comparison with figure 5.6 shows a very good agreement,
and so it shows that the Doyle-Stein observer works perfectly. This
was expected since CL_0OB_w was designed with an observer with poles

exactly at the transmission zeros of the open loop tranfer function

win.
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5.5.4 OBSERVER BASED CONTROL LAW CL_0B_q

Figure 5.10 shows the aircraft augmented with the observer based

control law CL_OB_q .

G
> o}
AIRCRAFT

PRE q

—>1 FILTER > > | ACTUATOR] DYNAMICS |—>

a, Sl s 61 DYNAMICS| ’

P a, d £}
A 4
52 )
) \_} ~
- u
~ — q
OBSERVER
K w q A 4
w 3 ——
R DYNAMICS
K ya
€ €
q

K ya

q <
figure 5.10 structure of the observer-based control law CL_OB_q

In this case the observer dynamics are written as ,

M e
Il

Fz+@G x, +Hn (5.68)

X=Mx+ Nz (5.69)
2 1

F, G, H , M and N are obtained in section (5.3) and are listed in

appendix E for the analyzed flight cases. Here x,= q (5.70)
and x:= [uvwol (5.71)

The control law is ,

=-GxXx —-Gx +G + K .
nc 11 22 oqd eqed (5.72)
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with 6 =K (5.73)
1 q

and G2 = [0 Kw K8 1 (5.74)

q
the aircraft model, actuator model and lead filter are the same as

described in section 5.5.3. The closed loop model is,

X= AX+Bu (5.75)
. T
th = ~
wi X [ x1 xz xA z ed xLF ] (5.76)
u = .
qdp (5.76.a)
A A [B 0] Z13 0 0
11 12 1
A A [B_ Z31] Z33 Z31 Z31
21 22 2
A= | -B (G +6M) Z23 A -BGN BK_ BGCc
AT 1 2 A A2 A eq A O LF (5.77)
G Z33 [H z31] F Z31 Z31
0 Z13 Z12 Z13 0 c
LF
0 Z13 Z12 Z13 0
L LF -
BT =[0 231 BGd 231 d_ b _ 1] (5.78)
A O LF LF LF
with Ziz = [0 0] (5.78.a)
and Z31, Z1i3, 233 , Z23 have been defined previously. Similar

simulations were performed with CL_ OB q and the resulting time
histories are shown on Figure 5.11, these plots show a wvery good
agreement between CL_SB and CL_OB_q which also shows that CL_OB_q has
more robustness with respect to aircraft parameters variations than
CL_OB w when compared with CL_SB in terms of aircraft response.
Figure 5.12 shows the pitch rate frequency response bode plot obtained
with CL_OB_q, and a comparison with figure 5.6 also shows a very good
match between both. In this case the observer was designed with a
pole close to zero to approximate the zero transmission zero of q/n
and the results show that both frequency responses are wvery close so
maintaining the same frequency response characteristics of the sensor

based control law as required.
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figure 5.12 - pitch-rate frequency response of the aircraft with
optimal control law design CL_OB_q at 20000 ft mach 0.70
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5.5.5

In this case figure 5.13

THE OBSERVER BASED CONTROL LAW CL_OB_0O

represents the augmented aircraft with

observer based control law CL _0B_6O .

¥

+{ AIRCRAFT
PRE 6
——{ FILTER > > —JK:De—-ACTUATOR DYNAMICS |—>
a, qd’ 7 al Mp DYNAMICS é 7
P d c
~N
u
A e
OBSERVER .
X q 6 Y
q < ———
. DYNAMICS
w
K ya
w ~
K
€ ¢
q

figure 5.13 - structure of the observer-based control law CL_OB_e

The mathematical model is similar to that described in section 5.5.4

the differences now are,

X = 0
1
T
and x2 =[ uwgq]
~p A~
xz—[qu]
and 6 =K
£
q
G =[O0 Kw K€q ]
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Performing the simulations as before the results are. shown-:in figure
5§.14, and again the agreement with CL_SB is also very good, possible
better than CL_OB_q. In figure $.15 the pitch rate frequency response
bode plot of the aircraft augmented with CL_0B_@ is presented, and if
compared with those of the CL_SB in figufe 5.6 a very. good agreement
is seen. Again the Doyle-Stein condition is maintained showing good
robustness of this design with respect to observer pole selection,
that is, when the observer poles are not exactly at the transmission

zeros of the open loop transfer function 6/n in this case.
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5.5.6 COMPARISON OF - THE RESULTS

The figures presented above show the results obtained and can be used
to form a comparative idea of the performance of each design with
respect to the sensor based control law as well as with respect to the
Doyle~Stein observer condition. However, to quantify the results the

four control law designs are compared in the following tables.
5.56.6.1 THE DROPBACK CHARACTERISTICS
From the simulations performed the attitude dropback parameter was

obtained for each control law implementation, and summarized in table
(5.1) ,

TABLE 5.1 — DROPBACK CHARACTERISTICS
DROPBACK ATTITUDE ( DB ) ( in deg )

OPTIMAL C.LAW DESIGN POLE-PLACEMENT C.LAW DESIGN
FC| CL_SB|CL_0B w|CL_OB_q{CL_OB_@|cL_SB|cL_OB w|cL_OB_q|CL_0OB_6
3| 0.5 | -4.0 | 0.40 0.32 |0.37 -4.1 | 0.13 0.00
6 | 0.43 | -6.1 0.26 0.13 |1.18 -5.6 | 0.59 0.40
9| 0.70 | -4.3 | 0.37 0.13 |1.65 -3.6 | 0.59 0.84
13| 0.80 1.9 | 0.52 0.59 |1.70 2.6 | 0.62 0.62
17| 0.13 | -4.3 —0.13_ -0.33 |[1.00 -3.4 | 0.37 0.00

It is obvious that CL_OB w has the worst performance as already
noticed from the time histories. It is known that the aircraft
parameters used in the ACSL model are little different from those used
in the MATLAB model, as mentioned the differences are around 12 % .
So, looking at table 5.1 it is seen that the baseline control law with
the optimal design offers a better robustness, with respect to
aircraft parameter variations, than the baseline control law with the
pole—placement design, relative to the attitude dropback paramameter.
In both designs ( pole-placement and optimal) the CL_OB w has a poor
robustness with respect to aircraft parameter variations considering

the dropback attitude parameter. This can be attributed to the fact
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that the complex  pair of poles of the observer in CL_OB_w are very.
close to the origin in the s-—plane, consequently the poles have some
influence on the dynamics of the closed loop system. 1In the other
observers there is no one pole so close to the origin as in this case.
-Here perhaps the observer design method as used in CL_OB_q and CL_OB_©O
would give a better performance by using an approximation for the
transmission zeros of w/n very close to the origin. It is also noted
that CL_0B_q or CL_O0B_@ both have a very good performance and so both
are tolerant to variations in the aircraft parameters with respect to

the dropback criterion.

5.5.6.2 CONTROL RATE EFFORT np

The control rate effort required by each control law is compared in

tables 5.2 and 5.3, below,

TABLE 5.2 - CONTROL RATE EFFORT @
FOR THE OPTIMAL CONTROL LAW DESIGN

FC CL_SB CL_OB_vw CL_OB_q CL_OB_O

(dég/sec) (deg/sec) (deg/sec) (deg/sec)

min| Mmax| Tmin| Tmax| Tmin| Tmax| Mmin| Tmax
3| 72 | 28 | -72 | 27 | -72 | 27 | -72 | 28
6| -72 30 | -72 | 32 | -72 | 32 | -72 | 32
9| -96 | 43 | -95 | 43 -85 | 42 -95 | 43
13| -144| 65 -145| 64 -145| 64 -145] 65
17| -78 | 30 | -78 | 29 | -78 [ 32 | -78 | 30

From both tables it is clear that the pole placement control law
design demands less control rate effort than the optimal control law
design, and that was already expected from the analysis of chapter 3

and 4. It is also observed that for either control law, baseline or
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observer-based, the control rate effort is much the same irrespective

of the choice of CL_SB, CL_OB w, CL_0B_q or CL_0B_@ control laws.

TABLE 5.3 — - CONTROL RATE EFFORT n
FOR THE POLE PLACEMENT C.LAW DESIGN

FC CL_SB CL_OB_w CL_OB_q cL_OB_6

(deg/sec) | (deg/sec) (deg/sec) (deg/sec)

nnmin‘knmax nmin nmax r]mirx nmax nmin max
'3[ -56 | 16 | -56 | 16 | -55 | 16 | -56 | 16
6| —62 | 27 | -61 | 27 | 64 | 27 | 64 | 27
9| -95 | 48 | -95 | 48 | -95 [ 43 -95 | 51
13| -84 [ 32 | -83 | 32 | —83 | 32 | -83 | 32
17| 83 | 40 | -80 | a0 | -80 | 42 | -81 | a1

5.5.6.3 CONTROL EFFORT 5

The minimum control effort required for each control law design is

summarized in table 5.4 below,

TABLE 5.4 — CONTROL EFFORT in degrees

FC # 3. 6 g | 13 17

p.p.c.L.| -10.0| -11.4 |-17.8 | -16.1 | -15.0
CL_SB |- , ‘

“0.C.L.

, -13.6| -13.9 |-18.0 | —27.2 | -14.5
P.P.C.L.
CL_OB_w -| -10.0| -11.4 |-17.8 | -16.0 | -15.0

0.C.L. | _43.6| -13.9 |-18.0 | —27.0 | -14.4
cL_op_q| TF-C Y| —10.0| ~11.4 |-17.8 | -15.8 | -15.0
0.C.L. | _43.6| -13.9 [-18.0 | —27.0 | -14.5
cL_os o| F-P-C-L-| _10.0| ~11.7 |-17.8 | -16.1 | -15.0
0O.C.L.

-13.6| -14.4 |-18.0 | -27.2 | -14.4
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Again, the pole placement .control law design requires less control
effort than the optimal control law design, and again the control
effort is much the same for both control law designs irrespective of

the choice of CL_SB, CL_OB w, CL_OB_q or CL_0OB_@ control laws.

5.6  INTERIM CONCLUSIONS AND OBSERVATIONS

From the study performed it was observed that the control laws
CLOBw, CLOB q and CL_OB 6 can offer the same level of flying
qualities and stability in the event that a full complement of sensors
is not available. That is, they are ablé to maintain the same CAP as
obtained with CL_SB, the same performance with respect to dropback
criterion ( except CL_OB w ) and the same performance with respect to
the phase-rate criterion. It was obvious from the analysis that
CL OB q and CL_0B_6 give a better performance than CL_OB_w, but only
with respect to the dropback criterion. So in the event of a sensor
failure it is best to first switch to CL_OB_q or CL_OB_@, and only in
the event of a second failure to switch to CL_OB w. Although it has
not been reported, the maximum pitch rate q handling parameter is
about the same with each control law as is th;‘steady state pitch~rate

q . It has also been verified that other response parameters, such
assi1ormal load factor, altitude and angle of attack in all the
observer-based control laws evaluated maintain a similar response to
CL_SB. In conclusion, control law CL_OB_w needs some improvement in
order to be able to maintain the same dropback performance as CL_SB.
An improvement could be tried by designing the observer by the second
method, that is, by using an approximation to the transmission zeros

that are very close to the origin in the s—plane.

With respect to the number of parameters to be scheduled, it has been
noticed that CL_OB_w requires only 8 parameters, CL_OB_q requires 12
and CL_OB_0O requires 10, so in this respect CL_0B _w has an advantage
over CL_OB_q and CL_OB_O, a fact that suggests that the second method
used to design the observer in general requires more parameters to be

scheduled with flight condition. Therefore it has been demosntrated
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that the incorporation of an observer operating on one output variable
only can confer some analytical redundancy to.the original control law
design, whilst -maintaining.the same . stability lewvel and . flying

qualities of the baseline .control law..
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6 THE FAILURE ANALYSIS OF THE CONTROL LAWS AND
ROBUSTNESS TO .GAIN VARIATIONS

6.1  INTRODUCTION

Having designed the control laws to meet the requirements, a failure
analysis was carried out to evaluate the effect of loosing feedback
paths. The control laws were also investigated to see how robust they
are with respect to gain variation. That is, if the control law gains
experience some- variation how does this variation affect the aircraft
response and the ability of the augmented aircraft to meet the
dropback criterion, MIL-F8785C and phase rate criterion. Finally, an
investigation was carried out to evaluate the effect of a failure in
some of the feedback paths followed by the system switching from one
control law to another. In particular, when the aircraft is working
with the baseline control law and a sensor failure occurs, then the
aircraft switches to an observer-based control law. In this final
study the threshold detection time, the time elapsed from the moment
that the failure happens until the moment when the aircraft switches
to the reversionary control law, was also varied and sensor signals
were varied to represent maximum, minimum, zero and passive failures

for steady flight, and manoeuvering flight.

6.2 CONDITIONS ANALYZED IN THE STUDY

In the analytical study only the sensor based control laws were

considered and the study was split into two cases :

(i) control law implemented with w and g sensors.

(ii) control law implemented with w, g and 6 sensors.
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In the first case two conditions were studied :

(i.i) complete loss of w feedback ..

(i.ii) complete loss of q feedback
In the second case the following conditions were studied :

(ii.i) complete loss of q feedback

(ii.ii) complete loss of @ feedback

In this case the condition of complete loss of w feedback was not
studied since it is the same as in the first case.

6.2.1 CONTROL LAW IMPLEMENTED WITH w AND g SENSORS

COMPLETE LOSS OF w FEEDBACK

In this case figure 6.1 is the baseline control system for the

analysis.
> G
8]
+
PRE + . AIRCRAFT
1 K + ACTUATOR
— )O—)— H € > —r > >
q FILTER s T q DYNAMICS DYNAMICS q
dp| . q ~ + n
d -£ c —p
-£ q w
) q
= v K va
< w <
- Y
L K ya
< q <
figure 6.1 - control law structure implemented with w and g sensors
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The mathematical model of the lead filter can be written as,

= a X + b
X LELF  CLFYp -1
= ¢ X + d
qd LF LF Lqup (6-2)
and as already known £ = q- qd (6.3)
q
The control law is,
=-K w K g-—-K - + G : :
Ne ww qq K8 eq qu (6.4)
q
With G6=[ 0K K 0 ], then (6.4.a)
v q
= -G x =K + G .
Ne e aq qu (6.4.b)

q

but when w feedback is lost the control law becomes,

= -K q-K - G
Ne qq c eq + 6.9 (6.5)
q
or,with Gr =[ 00K 0] then, (6.5.a)
q
= -G x —K + G
LS ¢ sqﬁq %4 (6.5.b)

The actuator model is represented by the state equation,

= B
xA AAxA + ATe | (6.6)
T
X = v : : .
A [ n n ] (6.7)

The aircraft mathematical model is represented by the state equation,

x=Ax+ [B Zal]xA (6.8)
where, za1T = Lo 0o 0o 0] (6.8.a)
and, with X' =[uwqéo]l (6.9)

The A and B matrices are given in appendix A, the lead filter was
developed in chapter four, the actuator is actuator no.2 of chapter 3,
and the gains were obtained in chapter 4. With this is mind the

closed loop model is simply,

X =A X+ Bu (6.10)
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with x =[ x x x e 1 , : . (6.10.a)

and, u = q : (6.10.b)
dp
A [B za1] Z4a1 Za1
-B G A B G c -B K
A = AT A A O LF A€
- q (6.10.¢)
[0 0 0 O] [0 01 a
LF
[0 0 1 01 {o ol -c 0
LF
T
B = Z41 B G d b —-d -
L W89 Pp LF 1 (6.10.d)

In figures 6.2 and 6.3 the time history comparison for -both control
law designs respectively are shown for flight condition 6. The
results show that the failed aircraft has aﬁ increase in the short
period natural frequency compared with the baseline aircraft, and the
failed aircraft has a decrease in the short period damping ratio
compared with the baseline aircraft. It has also been noted that the
failed aircraft no longer satisfies the dropback criterion, however
the deterioration is only small. Table 6.1 shows the short period

dynamic parameters compared.

145



TABLE 6.1 -~ SHORT PERIOD DYNAMIC CHARACTERISTICS
OF THE NON FAILED AIRCRAFT AND THE FAILED AIRCRAFT
WITH THE OPTIMAL CONTROL LAW DESIGN

FC # 3 6 ) 13 17
@
non 5P | 2,589 | 2.56 |1.95 |1.74 |2.13
rad/s
failed § )
P | 0.61 | 0.59 {0.59 |0.59 |0.59
®
sp
rad/s| 2.98 | 2.88 [2.19 [2.00 [2.41
failed
Csp
0.52 | 0.50 {0.51 [0.52 |0.51
2 .
]
1
.JI —————
| % e
; (rad/s) | i _____

SRR FY

| '

‘ ~r---7-ihﬂjmal c.lau -~ FC & 6L .t - e -

1 1) 1 1] H t ' ' !

1 1 1 ] 1 1 1 i
4----L-_-_J_-_-J _____ I I Lmmmdoo oA

1 ] ! I ] ] ¥ 4 ]

| i 1 ] 1 [ ' t [ 1
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figure 6.2 - pitch-rate time response of the aircraft with optimal
design at 20000 ft mach 0.70 with w feedback failed
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figure 6.3 - pitch-rate time response of the aircraft with pole
placement design at 20000 ft mach 0.70 with w feedback failed

The CAP is satisfied with both control law designs in the failed
condition, and so the stability level is not changed significantly.
The study also showed that g ,t and q . are very little changed with
respect to the non failed c;Ld;Lion- E;s a general conclusion it can
be said that both designs demonstrate good tolerance to this kind of
failure, in particular the optimal control law design, is better since
its Kw gain is lower than the corresponding Kw of the pole placement

design and so it is less susceptible to this failure.

6.2.2 CONTROL LAW IMPLEMENTED WITH w AND g SENSORS
COMPLETE LOSS OF q FEEDBACK

In this case figure 6.1 is the reference control system again. The
lead filter is the same as before, given by (6.1) and (6.2), the

control law is :

= -G x —K + G
Me €, €. T "o (6.11)
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with x" =[uwqo]
and, G=[ 0K K 0]
W oq
Now the failed control law is given by ;

G =[ 0K 00]
£ w

but, ¢
q

So when q feedback is lost and the

=9q- qd

and the control law can be written

=-G x—-K + G
N £ £ £q qu

q
The aircraft is again given by,

x =Ax+ [B Z41]xA

and the actuator by ,

X =Ax +Bn
A ‘A A A'c

with x: =[n v 1
The closed loop model is given by,
where x! = [ x x g % ]
A q LF
d u=
an qdp
Thus,
A [B z4a1] Zs1 Za1
-B G A -B K B G
A = Af A AE AO
= q
Z14 Z12 0 —C
Z14 Z12 0 a
and,
B = [2z41 BGd _-d b
AOL

F LF LF

The analysis of the

ns g = -
H a qd
i ]
X =8&%x+Bu
c
LF
LF
LF
1-

closed loop characteristic

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
(6.21.a)

(6.21.b)

(6.21.¢c)

(6.21.d)

equation when the

aircraft is subject to this kind of failure shows two poles at zero,

that is s = 0,

Thus the system is not BIBO stable.

Table 6.2 shows a

comparison between the closed loop poles location of the non failed

aircraft and the failed aircraft.
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TABLE 6.2 — CLOSED LOOP POLE LOCATIONS OF THE FAILED:
. AND_THE NON FAILED AIRCRAFT

FC # OPTIMAL CONTROL LAW
NON FAILED FAILED
: -1.5 + i 2.07 -0.75 <+ i 0.49
6 -0.576 -0.0026 + i 0.066
-0.018 0.0
0 0
-1.035 + i 1.39 -0.604 + i 0.44
13 -0.462 -0.0011 + i 0.1318
: -0.040 0
0 0
POLE PLACEMENT CONTROL LAVW
—1.35 + 1 0.50 —1.259
-0.819 -0.289
6 ~ -0.0175 -0.0043 + i 0.055
0 0
0
—0.55 + 1 0.54 —1.218
-1.30 _ - .-0.1515
-0.0378 0.053 + i 0.152
13
0 0
0

Note that at some flight conditions the pole placement control law
design has a pole located on the right half s-—plane, and that the
short period characteristics are very deteriorated. This was expected
since q feedback is a critical feedback. As the system is no longer
BIBO stable the aircraft response diverges very quickly. In
-conclusion, if q feedback is lost the aircraft will demonstrate
dangerous characteristics if the control law is implemented as in

figure 6.1.

6.2.3 CONTROL LAW IMPLEMENTED WITH w, q AND © SENSORS FOLLOWED BY
COMPLETE LOSS OF g FEEDBACK

Now figure 6.4 must be considered as the implementation of the control

law.
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s

figure 6.4 -

+
: | AIRCRAFT 6
ACTUATOR
> HE = ) >
q DYNAMICS DYNAMICS q
+ 4] n .
o
w
Nl W c K
7 kJ < w Y
) K
< q <
K va
€ ¢
q

and ?» O ” sensors

control law structure implemented with *» w », » q *,

The state wvector is again x! = [uwgoeol] (6
th 1 i . =K w-K q-K K G
e control law is now N v qq e eq + e ed + qu 6
q q )
with, = » where .
Od qd s (6
= -~ G
N = Gx-i-l(8 9d+0qd (6.
q
and, In the failed condition G = [0 K K Ks 1 (6.
w
4 q
= K w-K K G :
e ww € 6+ € ed M oqd (6.
q q
s = -G X + K G )
or e f + £ ed M 0 qd (e
q
where, G =[ 0K 0K 1 (6.
f w €
q -
The aircraft state equation is, x = A x + [B Z41] xA (6.
and the actuator state equation is, x =AXx + B n (6.
A AA Alc
with x! = [Ln v 1 (6.
A n
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The matrices A and B of the aircraft model are contained. in..appendix

A. Thus, the closed loop model is given by, .

P

B T S LI SE N TN T P i (6.33)

where xIT =[x x x 6 1] (6.33.a)
A 'LF d
u = qdp (6.33.b)
A -~ [B z41] Za1 Za1
—BAG - AA'”’ - BAGOCLF' BAKe
A= f q (6.33.c)
Zia. . 712 - a 0
Z14 zZ12 c 0
LA ey
BT = [ z41 BG d b d ] (6.33.d) -

AOLF LF LF
In figures 6.5 and 6.6 the pitch-rate time response. comparison for the
optimal control law design. is shown, for flight cases 3 and 6
respectively, for the failed and non failed aircraft. The failed
control law no longer satisfies the dropback criterion however, - the
aircraft remains stable -at all flight conditions. The results also
show that the short period damping is wvery much reduced whilst the
frequency is practically unaffected. The pitch—-rate response with the
failed control law takes longer to reach the steady state than is the
case with the non failed aircraft. In conclusion, a failure of g
feedback is not so critical when the control law is implemented as in
figure 6.4.. However, if the implementation shown in figure 6.1 is

used this kind of failure can be very dangerous.
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figure 6.6 - pitch-rate time response of the aircraft with pole
placement design at 20000 ft mach 0.70 with q feedback failed




6.2.4 CONTROL LAW IMPLEMENTED WITH w, q AND 6 SENSORS FOLLOWED BY
COMPLETE..LOSS OF.9 FEEDBACK.

The implementation considered here is also that of figure 6.4, but

since @ feedback is lost it is necessary to write,

G =[0K K 0] (6.34)
f w q

Otherwise the equations are exactly the same as in section 6.2.3,
except that it is necessary to use (6.34) instead of (6.29) in the
closed loop model. The analysis shows that in this case the steady
state response characteristic of ( q,fqd ) =~ 1 is no longer maintained.
Referring to the characterisitc equation of the closed loop system, it
is evident that the stability is maintained in all flight conditions
with the optimal control law design, but not with the pole placement
control law design. Table 6.3 shows a comparison of the poles for

the +two control law designs.

TABLE 6.3 — CLOSED LOOP POLES COMPARISON FOR THE
FAILED AND:-NON FAILED C.LAW AT FC # 9

OPTIMAL CONTROL LAW

NON FAILED FAILED

-1.15 + i 1.57 -2.88

-0.317 | -0.416

-0.0176 : - -0.0071 + i 0.0156
0 0

POLE PLACEMENT CONTROL LAW

NON FAILED FAILED
-1.89 + i 0.21 -4.67
-0.398 -0.23
-0.016 -0.0567
0 0.0285
: 0
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With respect to stability robustness, the optimal control law is more
robust than the pole placement control law with this kind of failure
because, in no . one. flight .condition the. optimal design .gives a
positive pole in the s—plane. However this kind of failure is not so
important as the others studied, since if @ feedback is lost it is
possible to obtain- @ by integrating q ( pitch-rate ), so it is
possible to say that in this respect, figure 6.4 is also a redundant

implementation of figure 6.1.
6.3 ROBUSTNESS TO GAIN VARIATIONS

Now it is useful obtain some idea of how robust or tolerant the
control laws are with respect to variations in the magnitude of the
designed gains. To perform this - evaluation the control law
implementation is that described in figure 6.1. The closed loop model
is given by (6.10) except that instead of using Gf (6.5.a), G is used

as in (6.4.a). The gains considered in the study are K , K , K6 and
w q :

q
Go_ Two conditions have been analyzed, the first is called +10% and
is obtained by multiplying the nominal gains by 1.10, the second one
is called -10%, and is obtained by multiplying the nominal gains by

0.90. So, as the nominal control law is given by

G =[K K K 1 (6.35)
nom W q €

G = G (6.35.a)
0 0 :
nom

the condition of 10% is obtained by writing,

I}

1.10 G .
+10% nom (6.36)

G
o]

1.10 Go (6.36.a)
+10% nom

and the condition of -10% is obtained by writing,

0.90 G (6.37)

-10% nom

G

]

0.90 G0 (6.37.a)

-10% nom:
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So all gains are varied simultaneously by the same percentage.
Obviously a more detailed study could be performed by varying one gain
at a time. The results of this study show that the pole placement
control law design is more sensitive to this kind of variation in the
gains than the optimal control law design when the short period
characteristics are considered. In fiqure 6.7, the pitch-rate
frequency response of the optimal control law design is shown with
nominal gains and with the variatiﬂns in the gains. It is clear that
an increase in the gains results in a small decrease in gain and phase
margin, that is, about 10° in phase margin and 2 dB in gain margin.
Figure 6.8 shows the corresponding pitch-rate time response of the
optimal control law design and figure 6.9 shows the pitch-rate time
response of the pcle placement control law design. It is clear that
small variations in the gains ( %+ 10% ) has little effect on control
law performance with either control law design. Table 6.4 gives some
indication of the wvariation in short period characteristics with

nominal gains and with the variations.

TABLE 6.4 — SHORT PERIOD CHARACTERISTICS WITH GAIN
VARIATIONS TO FLIGHT CONDITION 6

CONTROL ® C
LAV P P
(rad/sec)
-10% nominal +10% -10% nominal +10%
0.C.L. 2.42 2.56 2.71 0.56 0.59 0.61
p.p.c.L| 1.58 1.54 1.02 0.86 0.94 0.95
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figure 6.7 - pitch-rate frequency response of the aircraft with
optimal design at 1000 ft mach 0.60 with gain variations

2 1 1 1 1 L] 1 1 ] 1
1 t 1 i t 1 1 ] 1
IS SO T 23 S S S SN S WS S
(r' ' design' ' t 1 ] |
¥ 1 e — 1 1 ¥ I 1 1
t --é:ttfffll=;__ngz.J ..... SRS SIS SR SRS MU
Pl 1 ] 1 ! 1 ' 1 ]
(ad/s)) W N 4 bbb
F I i i Al th e S S S A
AN R R A R
A j 1 ' ' 1 '
1 ' 1 1 1 . T t 1 L}
L ___;_,Dp}imal’C.Lag - F? u~3.- Gain uar}atiops_-_
t ] L] ) 1 1 1 ] 1]
| ___i__Aircraft - actuator -~ lead | . '
T i ibdald Tl ke [t e It Rty ===
1 + 1 ' ] ) i ) 1
t t 1 t 1 1) i 1 1
cmeatbeccccdaccadaacaad L BRI, | S R ISR [P P I —"
¥ 1" ) ) ] ' 1 ] ]
] ) 1 ) 1 ] ] 1 '
H e H : H : X : ;
8 3] Time (se¢) 18
figure 6.8 - pitch-rate time response of the aircraft with optimal
p : P p

design at 1000 ft mach 0.60 with gain variations

1] i 1 1) 1 1
1 ) ] ' t 1
1 ] 1 1 t ¥
e - - - E T R T B R
i 1 1 1 1 ] f
1 ) ] ' 1 Ll X
SRR PSS PR S SUSN S SN S |
1] % 1 LI 1 t 1
design ) 1 ' '
1 ] 1 4 ] 1
1877 7T B
1 ' ' ' ' 1
1] 1 ] ' ' 1
4 ] ] : + I 1
] ] 1 1 1 1 1
) 1 1 1 + 1 1
--------- Smiedniialind il wibadindbtiiadh Shsldinisi e R
Pole Placement c.law - FC 43 ' !
) N ' 1 1 l_____‘ _____ | S
V T --‘."-.-l ----- T e T i 1
! Gain uarxatxgns e{fectg ! ! '
..... L--_-i,---4_---4_____;___-L--__L_.--4----{-----
i\ Aircraft - actuator - lead ; ' !
)
0 T N S S NS S S
8 Time (s 18

figure 6.9 pitch-rate time response of the aircraft with pole
placement design at 1000 ft mach 0.60 with gain variations.

156




The dropback criterion, phase rate criterion and CAP continue to be
satisfied with this magnitude of gain variation. A more searching
study could be performed by. inéreasing the magnitude: of . the gain
variation to find the tolerance limits of the control laws. That
could be a useful study to perform since the gains must be scheduled
and some errors might occur in the schedules. Thus the study could
guide the designer by defining the -acceptable - tolerance in gain
scheduling. The results also show that the closed loop poles with the
optimal control law design would seem to be marginally better with

respect to changes in the closed loop poles location.

6.4  INTERIM CONCLUSIONS
From the performed study some useful conclusions can be.drawn :

i The control law implementation shown in figure 6.4 is safer than
the implementation shown in figure 6.1. It is also more robust
to the effects of q feedback failure with respect to the
maintenance of stability , dropback criterion and phase rate

criterion.

e
Jmte

The control law is much more robust with respect to the effects
of failures in w feedback than in either gq or @ feedback with
respect to stability and flying qualities maintenance. This was
expected since the magnitude of Kw is smaller than the magnitude

of K and KE' . In particular, the optimal control law is more
q
- q

robust than the pole placement control law.

iii  The optimal control law is more robust with respect to Tfeedback
gain variations and also to feedback path failures than the pole
placement control law.

iv In conclusion the implementation of figure 6.4 is advisable with

the optimal design, since it is safer and more robust.
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6.5 THE SIMULATION STUDY
6.5.1  INTRODUCTION. . .. .

The computer simulation was used to study the dynamic failure
characteristics of both control laws that is, the sensor based and the

observer-based. The study considered the following failure modes;

(i) The signal of a sensor fails to zero, called a zero failure.

(ii) The signal of a sensor fails to its maximum positive or
maximum negative value, called a hardover failure.

{(iii) The signal of a sensor fails to its present wvalue, called a

passive failure.
Also two conditions have been considered as follows,

{(a) steady-state-flight
That is, there is no pilot input and the aircraft is considered
to be flying in trimmed steady flight. In this condition 10
seconds of flight was simulated and the failure occurs after 0.10
seconds.

(b) pilot manceuvering
That is, there is a pilot input, again 10 seconds of flight have

been simulated, and the failure occurs after 0.30 seconds.

The study was performed for one flight condition only, 20000 ft at
mach 0.70. The optimal control law design only was used. The study
also considered two values of failure detection threshold time , 0.10

seconds and 0.30 seconds.

6.5.2 THE FAILURE DYNAMICS

The failure dynamics were studied by first assuming the aircraft to be
fully controlled by the sensor based control law. After a short
predetermined time a fault situation was applied and after the

threshold detection delay the control law was reconfigured to an
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observer based alternative ( reversionary control law ). Figure 6.10

shows the sequence of events in the steady-state-flight situation.

time at which the failure occurs
N

“threshold

delay

time (TDH)
T T T ?
0 0.1 0.1+TDH time (sec)
f——— >
N > 3
. ‘aircraft " aircraft working with a
aircraft A .

. working with secondary control law
working L. i
. the initial ( reversionary c. law )

with the . . L.
L. c.law but without failure conditions
initial

with failure
c.law

. conditions
without
failure
figure 6.10 - sequence of events in the steady-state flight
failure conditions

In this study for reasons of simplicity the failure is assumed to be
instantaneous, that is, there are no dynamics associated with the
signal of the failed sensor as it changes to its failed value.

The study have considered primary failures, which means that the
control of the aircraft switches from the sensor based control law to
an observer-based control law, and also secondary failures, which
means that the control of the aircraft switches from an observer-based
control law to an alternative observer-based control law. Figure 6.11
illustrates the situation, for primary failures and figure 6.12 the

possible situations for secondary failures.
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jopsquegfﬁased;c.law
based on v output

sensor

failure observer-based c.law
based
based on g output
control
happens
law :

observer based c.law
based on 6 output

figure 6.11 - primary failure alternatives

observer-based c.law

observer-based failure based on q output
c.law based on
w output happens
observer-based c.law
" based on O output
) observer-based c.law
observer-based failure F_‘ based on w output
c.law based on
q output happens
observer-based c.law

based on O output

observer-based c.law

based on w output
observer-based

c.law based on
0 output

failure

happens

observer-based c.law -
based on q output

figure 6.12 - secondary failure alternatives

The pilot input used to simulate manoeuvering is shown in figure 6.13
together with the sequence of events representing the failure with
pilot input. This input was chosen in order to be more representative

of a typical flight situation.
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.time at which the.failure occurs
Ir .
iiﬁ}ééﬂé{&fv.“wmﬁ_m‘ .
delay
time (TDH)
T T T — ) ?
0 0.3 0.3+TDH time (sec)
5——1——*9 ,> . v
. aircraft aircraft working with a
aircraft .
. working with secondary control law
working . 3
. “the initial -( reversionary c. law )
with the . :
e . c.law but without failure conditions
initial . .
. with failure
c-lav ditions
con
without
failure-
qdp"\ 7
deg|-
sec
5
0 0.3 0.3 + TDH time (sec)
figure 6.13 - sequence of events in the manoeuvering flight
failure conditions

6.5.2.1 PRIMARY FAILURES ANALYZED

In order to identify the cases analyzed the following shorthand
identification is adopted from here on. There are six possible cases

of primary failures,
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(1)

CL_SB ——s CL_OB W

The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL_OB_w,
following a failure of the q sensor. This failure is identified
as SBOw_q, that is, mode failure from CL_SB to CL_OB w Tfollowing

failure of q sensor.

CLSB — 5 CL OB w

The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL_OB_w,
following a failure of the @ sensor. This failure is identified
as SBOw_@, that is, mode failure from CL_SB to CL_OB w following

failure of @ sensor.

(iii)CL_SB —— 5 CL_OB q

;
(iv)

(v)

Py

(vi)

The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL_0B_q,
following a failure of the @ sensor. This failure is identified
as SB0q_@, that is, mode failure from CL_SB to CL_0B_q following

failure of @ sensor.

CLSB — 5 CL OB q

The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL_0B_q,
following a failure of the w sensor. This failure is identified
as SBOq w, that is, mode failure from CL_SB to CL_0B q following

failure of w sensor.

CLSB — 5 CL_OBO

The aircraft is initially controlled by sensor based control law
( CL_SB ) and switches to observer-based control law CL_OB_g,
following a failure of the q sensor. This failure is identified
as SB0@_q, that is, mode failure from CL_SB to CL_OB_@ following

failure of q sensor.

CL.SB —— 5 CL_0B_@

The aircraft is initially controlled by sensor based control law
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- as SB06_w, 'that i

( CL_SB ) and switches to observer-based control 1law CL_OB_ g0,

following a failure of. the w sensor. This failure is identified

failure of w sensor.

ailure from CL_SB to CL_0B 6 following

For the hardover failures the following limiting values are assumed,

These wvalues are-

representative of a typical failure.

6 =50° 6 =-50°
max min
= 50° '
qmax /s qmin = —SOO}'S
« =30° « =-30
“max ) min

assumed for the purposes of this exercise, and are

In a real design situation the

engineer will have access to sensor data enabling him to perform a

more realistic analysis.

6.5.2.2 @ SECONDARY FAILURES ANALYZED

Six secondary failure cases are also analyzed and these cases are

identified by the following shorthand identification,

(1)

CLOBw-—— CL OB g

The aircraft is 1initially controlled by -the
control law ( CL_ OB w ) and switches to the
control law CL_OB_q, obviouslyb following an «

identified simply by, OwOq w

CLOBw ——— CL OB O

The aircraft 1is initially controlled by the
control law ( CL_ OB w ) and switches to the
control law CL. 0B_@, obviously following an «

identified simply by, 0w0O6_w

(iii)CL_O0B_q ———> CL_OB_w

The aircraft is initially controlled by the
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control law ( CL_ OB q ) and switches to the  observer—based
control law CL_OB_w, obviously following & q sensor failure

identified simply by, 0q0w_q.

(iv) cL_ OB q —— CL_0B_ O
The aircraft. is initially controlled by the observer-based
control law ( CL OB q ) and switches to the observer-based
‘control law CL_OB_@, obviously following a q sensor failure

identified simply by, 0q06_q.

(v) CL OB ———— CL_OB W
The aircraft is initially controlled by the observer—based
control law ( CL_OB 6 ) and switches to the observer-based
control law CL_OB w, obviously following a @6 sensor failure

identified simply by, 000w _6.

(vi) CL_OB.§ ———» CL_OB_q
The aircraft is initially controlled by the observer-based
control law ( CL_OB @ ) and switches to the observer-based
control law CL_OB_q, obviously following a @ sensor failure

identified simply by, 060g_6.
6.5.3 THE RESULTS AND CONCLUSIONS -

For each failure mode 12 cases were simulated and the total number of
simulations performed was 144. So it is impratical to show time
histories representative of all cases. Thus a-summary of the findings
only is reported. The analysis of the results has shown that the most
hazardous case is the 9 sensor failure mode, the q senéor failure is
less hazardous and the least hazardous is the w sensor failure. This

is due to the fact that the gain K8 has a greater magnitude than the

q
gains K or K . The simulations were performed without limits on n or
w q

-

n- The actual aircraft has the following hard elevator control

limits,
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However, in the context of the present day technology it is considered

reasonable to have a control rate limit greater than 37°js, and a

reasonable value is assumed to be 100°/s. In order to avoid dangerous

failure transients it is advisable to have amplitude limiters on the

feedback paths of @ and q to protect the aircraft in the event of a

hardover failure.

The simulations have shown that in the event of a

hardover failure the aircraft can experience a dangerously high load

factor and high angle of attack.

Sumarizing the results obtained, the

various failure modes can be grouped as described in table 6.5

TABLE 6.5 — FAILURE MODES

SENSOR FAILED
W q 6
PRIMARY SBOq_w SBOW_q SBOW_0O
FAILURES SBOG_w SB06_q SBOq;e
SECO&DARY Oquww 0qow._q 060w _6
FAILURES 006w 0q00_q 06096

Table 6.6 illustrates the maximum values of control effort and control

rate effort required in the case S$SB0q w,

table 6.7 illustrates the

case for SBOw_q and table 6.8 illustrates the case for SBOw_6.
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TABLE 6.6 — CASE SBOq.w — STEADY FLIGHT

MAXIMUM CONTROL EFFORT REQUIRED

sensor . . threshold
fa;lure, r'min nmax Vnmin nmax i?;iy( )
moce (deg) |(deg) | (deg/s)| (deg’s) ' see
TDH

o -7.2 3.2 ~-78 46

max 0.10
o -3.3 6.8 -44 76

min
a —15 ‘9.0 -78 100

max

: 0.30
o -9 15 -100 77
min

TABLE 6.7 — CASE SBOw_g — STEADY FLIGHT

MAXIMUM CONTROL EFFORT REQUIRED

sensor . . ~threshold
ia;lure nmin nmax nmin nmax_ i?;iy(s )
ode (deg) |(deg) | (deg/s)| (deg/s) ' e
TDH
q -13 9 -100 162
max
qmin -32 9 ~—290~ 162 0.10
zero =12 0 —66 38
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TABLE 6.8 — CASE SBOw_© — TDH-=0.10 sec -
~ MAXIMUM CONTROL EFFORT REQUIRED

sensor . - flight
fa‘(iilure nmin . T}max‘ nmin nméx- »‘ cond%:iond
moae (deg) |(deg) | (deg/s)| (degss) | C°NStOCre
0 | —22 a4 —277 500 steady
max state
) -46 22 -500 | 324 trimmed
min ) ’ flight
0 | —27 31 | -250 432
max i
(2] in —861 22 =583 324 manoeuvering
n flight
zero 14 0 -72 32

(A) PRIMARY FAILURES

‘A comparison of SBOg_w with SB0A w shows that they are practically
identical with respect to control effort, control rate effort, angle
of attack, load factor, pitch rate, pitch attitude, altitude and
forward speed transient responses. They differ only with respect to
dropback criterion performance, as previously seen in chapter 5 where
CL_0B_q and CL_OB_@ are compared with CL_SB, and observer performance.
Similarly comparison of SBOw_q with SB0O_q and SBOw_6 and SB0q O leads

to broadly similar conclusions.

(B) SECONDARY FAILURES
A comparison of OwO0q w with O0w09_w again shows identical results,

similarly when 0qOw_q is compared with 0q09_q and when 0Q0w_@ is
compared with 080q_G.
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(C) - PRIMARY AND SECONDARY FAILURES

A comparison of SBOgq_w, SB0G w, 0OwO0q_w and Ow0Q _w leads to the same
conclusion as when SBOq.w is compared with SBOG w as noted in (A)
above. So these four cases demonstrate similar aircraft response
during the failure transients, except  with respect to dropback
criterion performance, a feature which depends on the particular
control law, and observer performance, which also depends on the
particular observer design. The same conclusion can be drawn when
SBOw_q, SB06_g, 0qO0w_q and 0q0O_q are compared, and also when SBOw 6,
SB0q_0, 000w_@ and 0p0q_ O are compared. So, from a comparison of the
simulation results it was concluded that in order to continue - the
studies of failure conditions it is only necessary to take into
account the cases SBOq_w, SBOw _q and SBOw O. These three cases are
representative of the transient conditions following the failure of
each sensor, that 1is, these three cases are alone sufficient to

represent the aircraft subject to the failure conditions studied.
Referring to dropback characteristics, the following was observed,

(i) CL_OB_w has a tendency to give an excessive overshoot, dropback
attitude around -6.9°.

(ii) CL_OB_q and CL_OB_@ have a good response with respect to dropback
characteristics, giving a reasonable dropback attitude, 1.2°
for CL_OB_q and —1.7° for CL_OB_g.

It is important to note that the above performances are obtained
following failure conditions and so they are not the same as those
obtained without failure conditions. From these observations it is
concluded that in the event of a primary failure, the implementation
of CL_0B g or CL_OB_@ must have preference over the choice of CL_OB_w.

A comparison of the observer response shows:
(i) Relative to estimates of u ( forward speed ), better estimates of

u are obtained with CL_OB_q and CL_OB_@.

{(ii) Relative to estimates of w ( normal velocity ), control laws,
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CL_ OB _q and CL_OB_O give the same accuracy.
- (iii)Relative to estimates of q ( pitch rate ) , CL_ OB _6- is better
than CL_OB_w.
(iv) Relative to estimates of @ ( pitch attitude ), CL_OB_q is better
than CL_OB_w. |

Concerning the u estimates, it is also important to note that even in
the steady state flight cases, there is always an error in the u
estimate with any of the designed observers. This fact shows that
these observers are not appropriate for use with a control law that
requires the use of a u estimate in a feedback path. Comparing the
primary failure cases: $SBOq w, SB0q_@, SB0Q_q and SBOS w with those
of secondary failures: 0OwOq w, 000q_6, 0q06_q and Ow0g w, the u
estimates are better than those obtained following the secondary
cases. The estimates of w, q and 9 are without error following any of

the steady state failure cases.

The following performance characteristics were also observed during

the simulation studies ;

(i) Following a steady-state failure condition the demand for high
control effort and control rate effort increases with the
following order of sensor signal failures w, q and @.

(ii) In the case of a failure during a pilot input, when any of the
sensors fails to zero, there is no significant difference in
the control effort or control rate effort required.

(iii) The failure of the q sensor or the © sensor is followed by
saturation of control and control rate when the failure is of
the hardover type, irrespective of the initial state of the
aircraft.

(iv) The length of the threshold detection time delay has a much more
critical effect following the failures of q or 9 sensors.

(v) When a sensor is failed to zero the influence of the threshold
detection time delay is pratically insignificant.

(vi) A failure of the w sensor does not influence the altitude
response of the aircraft significantly compared with the other

sensor failures.
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(vii) The 6 sensor failure leads to the greatest deterioration of the
flying qualities of the aircraft, followed by the q. sensor

failure and the w sensor failure in order of deterioration.

Consequently it is concluded that it would be advisable to include
some safety device, such as a limiter, on the feedback paths of q and
6. The main problem identified was the saturation of control rate
effort, a feature also identified in McRuer—Johnston—Myers71. This
problem occurs with both designs, optimal and pole-placement and can
probably be minimized by designing the control law by optimal control
methods but with a modified performance index, as suggested by
Lewis-Stevens'®. In order to design the amplitude limiter for each
feedback path, it is only necessary to perform a study of the

following conditions:

(i) SB0q_w in hardover failure
(ii) SBOw_q in hardover failure
(iii) SBOw_@ in hardover failure

Finally, if the control laws are to be reconfigured following failures
then the switching logic should select the control laws in the order

presented in figure 6.14.

aircraft v switches q switches
working sensor to sensor to .
with fail _ CLOB_q =~ fail - CcLOB_O
CL_SB
. . g . 6 .
aircraft switches ) switches
working. sensor to sensor to
with fail cLoB_O fail CLOB_w
CL_SB
. e e q .
aircraft switches ) switches
working 'sensor to sensor to
with fail CLOB_q fail CLOB_w
CL_SB
figure 6.14 - suggested order of reconfiguration in the
event of sensor failures
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The order suggested -in figure 6.14 is capable of closely maintaining
the original flying qualities. of the designed sensor based control
law. Note that CL_ OB w is only implemented in the case of a double
failure, this is a result of -the analysis performed here as well as in
chapter 5 which shows that CL_OB_w offers the worst performance

compared to CL_OB_q and CL_0B_gQ.
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7 COMPARATIVE FLIGHT CONTROL SYSTEM PERFORMANCE ANALYSIS

7.1 THE REGULATOR CHARACTERISTICS

7.1.1  INTRODUCTION

The Gibson dropback criterion is concerned with the tracking
performance of the control law, that is, the ability of the aircraft
to track a reference input. It is also interesting to evaluate the
ability of the flight control system to restore the states if these
are perturbed. That aspect is commonly assessed in the aeronautical
industry by simulating an alpha release, that is, simulating the
aircraft response for an initial perturbation in angle of attack, for
the longitudinal case, and aibeta release, that is simulating the
aircraft response for an initial perturbation in sideslip. #As the
problem considered is the longitudinal case, an alpha release will be
used to assess the regulator performance of the designed control laws.
The alpha perturbation used was a release at t = 0 from an initial
condition of o = 5° , and so an equivalent initial perturbation in w
was introduced in the equations of motion, that is, the simulation is

performed with w(0) # 0.

7.1.2 THE SENSOR BASED CONTROL LAW CL_SB

The study was performed for both designs, the pole placement control
law design and the optimal control law design. The comparison of both
designs shows that the optimal control law design restores the
perturbed state w to zero faster than the pole placement control law
design. It was also noticed that the optimal control law design
presents a smoother response in pitch rate and in pitch attitude
compared with the pole placement control law design.. In figure 7.1
there is a time history comparison for both designs at flight

condition 6 for the same perturbation.
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In table 7.1 the control effort and control rate effort obtained for
each control law design is presented. It has been noticed that the
pole placement control law design requires more control rate effort
and also more control effort. This was expected since the magnitude
of the feedback gains of the pole placement control law design are
higher than the magnitude of the feedback gains of the optimal control

law design.

TABLE 7.1
CONTROL EFFORT AND CONTROL RATE EFFORT COMPARISON
POLE PLACEMENT OPTIMAL CONTROL
FC# . - )
nmin nmin nmin nmin
(deg) (deg/sec)| (deg) (deg/sec)
-3.2 -14.4 -3.3 -13.3
~-3.9 -17.8 -3.4 -13.4
-4.9 -21.3 -3.6 -13.3
13 -5.5 ~-26.8 -3.7 -15.6
17 -3.9 -17.8 -3.6 -14.2
7.1.3 THE OBSERVER BASED COMTROL LAW CL OB w

The same simulations were performed for control law CL_O0B w designed
by both methods, pole placement and optimal control, and the findings

are summarized as follows,

(i) 1In this case the pitch attitude response, 6 , takes more time to
return to zero compared with the case of CL_SB. This happens

with both designs, pole placement and optimal control.

(ii) The regulation of w is the same as obtained with CL_SB for both
designs, pole placement and optimal control.

(iii)The pitch rate, q, response is different with both designs, that
is, the transient response 1is different. However, in both

designs the pitch rate returns to zero.
the finding ( i ).

These transients explain
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(iv) The control effort and control rate effort obtained with CL_OB w

(v)

are lower than the corresponding efforts obtained with CL_SB.

With respect to the estimates of u, q and 9, it is quite clear
that these estimates are not wvery precise. This 1is the
explanation for the findings mentioned above. The estimates are
not very precise due to the observer, which in this case, has a
pair of complex poles located very close to the s-—plane origin (
that pair of complex poles corresponds with the transmission zero

of the open loop tranfer function w/n ).

In table 7.2 the control effort and control rate effort obtained with

each control law design are shown, and in figure 7.2 the time

histories obtained for flight condition 6 with the optimal control law

design are shown.

TABLE 7.2
CONTROL EFFORT AND CONTROL RATE EFFORT COMPARISON
POLE PLACEMENT OPTIMAL CONTROL
FC # . R
nmin nmin nmin nmin
(deg) (deg/sec)| (deg) (deg/sec)
-2.7 -12.8 -2.6 -10.8
-3.4 -15.5 -2.8 -10.5
-4.2 -18.9 -3.0 -12.0
13 -5.4 -25.4 -3.3 -13.3
17 -3.4 -15.0 - =2.9 -11.7

As noticed the regulation characteristics presented by CL_OB_w are
little different from those of the CL_SB. The disadvantage here is
that the pitch attitude, 6 , takes longer to return to zero than it

does with CL_SB. 0On the other hand, there is the advantage of lower

control effort and control rate effort.
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7.1.4 THE OBSERVER BASED CONTROL LAW CL_OB_q

The same alpha release simulation was performed with CL_0OB_q with both
designs, pole placement and optimal control. Here the time histories
obtained replicate the performance obtained with CL_SB. This fact can
be attributed to the fact that as can be seen on figure 7.3, the
estimates. of u, w and @ are very precise. In table 7.3 the control
effort and control rate effort obtained in this case are presented and
in figure 7.3 the time histories obtained with optimal control law

design at flight condition 6 are shown.

TABLE 7.3
CONTROL EFFORT AND CONTROL RATE EFFORT COMPARISON
POLE PLACEMENT OPTIMAL CONTROL
FC # . .
nmin nmin nmin nmin
(deg) (deg/sec)| (deg) (deg/sec)
-3.2 -14.4 -3.2 -13.3
-3.8 -17.2 -3.3 -13.3
-4.9 -21.3 -3.5 -13.8
13 -5.5 -26.1 -3.7 -15.5
17 -4.0 -17.8 -3.6 -13.8
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7.1.5 THE OBSERVER BASED CONTROL LAW CL_OB_ 0

The same alpha release simulation was performed with CL_OB_@ with both
designs, pole placement and optimal control, and again, as in the case
of CL_OB_q, the time histories are very similar to those obtained with
CL_SB.

are very precise.

Certainly this is due to the fact that the observer estimates
In table 7.4 the control effort and control rate
effort obtained with this control law are presented and in figure 7.4
the time histories obtained with the optimal control law design at

flight condition 6 are shown.

TABLE 7.4

CONTROL EFFORT AND CONTROL RATE EFFORT COMPARISON

POLE PLACEMENT OPTIMAL CONTROL
FC - .
nmin nmin nmin nmin
(deg) (deg/sec)| (deg) (deg/sec)
-3.1 | -14.4 -3.2 | -13.9
-3.8 -17.8 -3.3 -13.3
-4.9 -21.3 -3.5 -14.4
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7.1.6  INTERIM CONCLUSIONS

From the studies carried out it can be concluded that both control law
designs are quite good with respect to regulator performance. The
optimal control law design has a little better performance since it
restores the disturbed state ( w ) to its initial condition faster
than the pole placement control law design. Also, there is an
advantage with the optimal control law design with respect to control
effort and control rate effort. 1In conclusion, the only control law
that does not give an acceptable performance is CL_OB_w, due to the
responses of pitch rate ( q ) and pitch attitude ( 6 ) being a little
different from those of CL_SB. This can be corrected by designing the
observer of CL_OB w by the same method used to design the observer of
CL_ OB q and CL_OB_@ as stated before. So, in the event of a sensor
failure, the same order of reconfiguration suggested in chapter 6
showed be applied. It is also interesting to perform the same study
with an initial perturbation in pitch attitude, 6 , or in the forward
velocity u. That is, the same simulations firstly with 6(0) # 0 and
secondly with u(o) # 0 in order to assess the regulator performance

when such perturbations are included.

7.2 EVALUATION OF THE CONTROL LAWS WITH THE
FULL NON-LINEAR MODEL OF THE AIRCRAFT

7.2.1  INTRODUCTION

It is now interesting to review the performance of both control law
designs, pole placement and optimal control, working with a non-linear
aircraft model. The sensor based and the observer based control laws
are investigated in order to give an indication of the behaviour of
the augmented aircraft with each control law design. In this analysis
only flight conditions 3, 6 and 9 were used and the study was
performed by simulation only. During the simulation the gains of the

control laws and the gains of the observers were maintained fixed.
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The actuator used was actuator no.2 ,described in chapter 3, and the
lead pre-filter used was discussed in chapter 4, for both control law
designs. In figure 5.3 the control law structure used in the
simulations is shown for the case of CL_SB, with the exception that "
aircraft dynamics " , now imply the non-linear aircraft dynamics. The
pilot input considered is shown in figure 5.4., in order to allow

comparison with the results obtained with the linear aircraft model.

7.2.2 EQUATIONS OF THE NON-LINEAR AIRCRAFT MODEL

The non-linear model used in the simulations was a six degree of
freedom aircraft model, the equations were obtained from Roskam72,
Mclean'® and Heffleyil. This model includes aerodynamic coefficients
which vary during the simulation as functions of Mach number, altitude
and angle of attack. So at each integration step the aerodynamic

coefficients are updated. The equations comprising this model are the

following,
= - - i X

u r VT q NT g 51n(eT) + o/m +
X*u+Xw+Xq+X,. & (7.1)
u w q Se e

v = p NT -r UT +g cos(eT)51n(¢) + Yofm +
YVv+Yr+Yp+Yis +Y56 (7.2)
v r P Sa a rr

w = (q u. -pVv /(1 - Z.) + [g cos(8_)sin(¢)1/(1 - Z.) +

T w T W

Z/1-Z)+[Z2Fu+Zw+Zq+2Z_8 1/(1-2.) (7.3)
] w u w q Se w

p = (LB v)/ U1 + Lr r o+ Lpp + ksp q- k6q r o+

2 L)

L(Saﬁa + 6[_5:" (7.4)
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g = (T-Idpr/fI — I (P=r3)/I +0 u+t w~+
x z y xz y u w
M. w +M q+ M_ Se
w q e
r o= (NB v)/ U1 + Nr r o+ Np p - k3q r o+ k4p q +
Noad2 * Mg, 0r

¢ = p+ [qsin(¢) + r cos(¢)] tg(eT)

<
]

[q sin(¢) + r cos(d)]/ COS(GT)

h

q cos(¢) — r sin(¢)

The auxiliary equations also used are as follows,

T 0
W =W + w
T 0
-1
=t Ww/u
o g ( T/ T)
6 =0+ 0
T 0
uUu = 4 U2+ v2 4+ W2
1 T T T
- U
g = v/
= U
o w / T
xo = A151n(60)
Y = i si
o 009(90) 1n(¢0)
ZO = —Aicos(en) cos(¢n)
h =

UTsin(eT) —VTsin(¢) cos(eT) —NTcos(¢) cos(eT)
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Mach = U1 Y (7.22)

sound

The inertia constants used in these equations are:

k = 1/[1-I%27@11)] . (7.23)
lat X7 X 7
k = I JI (7.24)
1 Xz z
k = I /I (7.25)
2 X7 X
k = kk 1 I~-1I I (
3 1 lat [+ z y)/ X ] (7.26)
k = k k-({(I-1I I
4 lat[ 7 ( y x)/ z ) (7.27)
k = k k 1-({(I-1I I
5 2 lat[ ( y x)/ z) (7.28)
k = k k I -1 I
6 lat[ 7 + z y)/ X 1 (7.29
Kk = I2 J(I1I) (7.30)
7 Xz X z

The aerodynamic derivatives are all defined in Heffley11, and the
complete model is described on the report by 0Oliva and COOkiz, which
also contains a comparison of the linear model and the non-linear
model responses for the same input. The linear model 1is also
described briefly in appendix A. However, for completeness it is

repeated here. So the equations used in the linear model are simply

given by,
; = X*u+X w+X q-Wqg-gcos(B8 )6+ X e (7.31)
u w q 0 0 Se
W= [2* f(1-2.) Tu+ [ Z /(1-Z.) Jw+ [(Z+U)/(1-2.)] q +
u w W W q 0 W
- [g sin(e )/(1-Z2.)1 6+ [ Z_ /(1-Z.) ] &e (7.32)
0 w Se w

x

q = H u+ [M.2%/(1-Z.)Ju+Hw+ [M.Z /(1-Z.)] w +
u w u w w W W w

Mg+ [ M. (Z+U)/(1-Z.) ] q~- [M. gsin(6 )/(1-Z.)] 6 +
q w q 0 w w 0 W

M698e + [Mézée/(l—z&) 1 Se (7.33)

6 = q (7.34)

.
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Although only a comparison between the control law designs working
with the linear model and with the non-linear model with respect to
the dropback criterion have been performed, the non-linear model is
also useful for other analysis. For example, to evaluate performance
with an initial bank angle ( ¢0 ) or an initial sideslip angle ( Bo )
or, with a pilot manoeuver not only with elevator but also with rudder
or ailerons. The model is also usefull for evaluating the performance
of the observers working with the non-linear model, and for studying
the effects of gain scheduling. A study of a steady turn or other
steadyimanoeuver may also be performed with the help of this model in
order to assess the performance of the designed control laws under
these conditions. The main non-linear feature of the simulation is
the fact that the aerodynamic coefficients are not maintained fixed
during the simulation, that is, they vary with time, angle of attack,
altitude and Mach number. Another non-linear aspect of the model is
that small angle approximations, for example, sin @ =~ 6 have not been
used. The non-linear model also includes cross coupled inertial terms,
which are not very relevant in the case of a civil aircraft. The
simulations were performed for zero initial conditions, that is, u(0)
=0, w(0) =0 v(0) =0, p(0) =0, q(0) =0, r(0) =0, ¢(0) =0,
p(0) = 0 and 9(0) = 0.

7.2.3 THE SENSOR BASED CONTROL LAW CL_SB

The time histories obtained from the simulations performed with CL_SB
are showed in figure 7.5 for the pole placement control law design and
in figure 7.6 for the optimal control law design. The time histories
showed in fiqure 7.6 can be compared with those showed in fiqure 5.5
obtained with the aircraft linear model. From the simulations the
following may be noted with respect to the same study with the linear

model:
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(v)

The control effort is practically unchanged.

The same occurs for the control rate effort.

The peak pitch rate a, is also unchanged.

The steady state pitch rate Aeq obtained with the non-linear
model is lower than it was with the linear model, which means

that possibly, an adjustment of K€ is necessary in order to

q
guarantee that the control law continues to work well with the

non linear model and to recover the same steady state pitch
rate response. |

The general tendency of the control law working with the non
linear model is to give a lower pitch attitude dropback than
with the linear model, which is a consequence of (iv) abowve.
The peak angle of attack obtained with the non linear-model is
lower than it was with the linear model, about 3° lower.

The altitude and the load factor responses are unchanged.

It was therefore necessary to repeat the same study with gain

scheduling in order to assess if it is required to adjust KE or not,

q

since the simulations were performed with fixed gains.
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7.2.4 THE OBSERVER BASED CONTROL LAW CL_OB w

Figure 5.7 shows the control law implementation for this case, again,
the only change is that " aircraft dynamics " imply the non-linear
aircraft dynamics. The results obtained are compared with those
obtained with the linear model. 1In this case not only the performarnice
of the control law is evaluated but also the observer berformance. In
figure 7.7 the time histories obtained with the pole placement control
law design are shown and in figure 7.8 those obtained with the optimal
control law design are plotted. The time histories of figure 7.8 can
be compared with those showed in figure 5.8 obtained with the aircraft
linear model. The observations derived from the simulations are

summarized as:

(1) The control effort is unchanged with respect to the linear
model, as in the, CL_SB case previously.

(ii) The same occurs to the control rate effort.

(iii) The attitude dropback characteristics are much better with the
non-linear model due to the fact that the steady state pitch
rate is greater here, than it is with the linear model. '

(iv) The maximum pitch rate a9, is practically unchanged.

{(v) The normal load facior, angle of attack and altitude are also
practically unchanged.

(vi) The observer performance is better with respect to 6 estimate,
than it was in the linear case. However, at some flight
conditions the u estimate was deteriorated compared with the

linear model.
In conclusion here the performance is better than it was with the

linear model, but it is necessary to assess if this is true when the

system works with gain scheduling.
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7.2.5 THE OBSERVER BASED CONTROL LAW CL_OB g

The control law structure used is shown in figure 5.10, again "
aircraft dynamics ", implies the non-linear aircraft dynamics. In
figure 7.9 the time histories obtained with the optimal control law
design are shown. The results showed in figure 7.9 éan be compared
with those showed in figure 5.11 obtained with the aircraft linear
model. From the study performed with CL_ OB q the following

observations were noted:

~~
o
St

The control effort is unchanged compared with the linear model.

-~
Jode
[l

S

The same occurs to the control rate effort

(iii) With both control 1law designs, pole placement or optimal
control, the attitude dropback characteristic is worse than
that obtained with the linear aircraft model.

(iv) The steady state pitch rate is only changed at flight condition
=}

(v) The maximum pitch rate is practically unchanged

{(vi) The observer estimate now is worse than it was with the linear
model. v

(vii) The angle of attack obtained is about 2° lower than it was with
the linear model.

(viii) Here the altitude response and load factor have suffered a

small change compared with the linear model.
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7.2.6

THE OBSERVER BASED CONTROL LAW CL_OB @

The implementation used is showed on figure 5.13, again using the

non-linear aircraft dynamics. Figure 7.10 shows the time histories

obtained with the optimal control law design. The time histories

showed in figure 7.10 can be compared with those showed in figure 5.14

obtained with the aircraft linear model. From the results of this

study the following can be summarized,

Again the control effort is unchanged compared with the linear
model.

The same is observed for the control rate effort

The attitude-dropback characteristics are now worse than those
obtained with the linear aircraft model. However, here the
deterioration is not so bad as in the case of CL_OB_q.

The steady state pitch rate is lower than it was in the linear
case.

The maximum pitch rate ( a. ) is practically unchanged.

The normal load factor and the altitude is practically
unchanged.

The angle of attack obtained is in general 2° lower than that
obtained with the linear model.

The observer performance, with respect to u, w and q estimates,

is worse than that obtained with the linear model.
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7.3 INTERIM CONCLUSIONS

The results have shown that control law CL_0B_q would probably require
adjustment in order to obtain good regulation of the attitude
dropback characteristic, CL_O0B_@ will also require some adjustment,
and finally, CL OB w will practically not require adjustment.
However, this is only a preliminary result, since the simulations have
been performed with fixed gains, and during these simulation it was
noticed that the altitude varied by as much as 2000 Tt in 10 seconds
and the Mach number varied by about 0.12 in 10 seconds. So it would
be necessary to repeat the study with gain scheduling, for both the
control law gains and the observer gains, in order to aquire & more
realistic assessment of likely performance. Then a decision could be
made on wheter the adjustments are really necessary or not. In
general it was noticed that the transient characteristics -are
unchanged due to the fact that in the transient response the angle of
attack, HMach number and altitude are practically the same as in the
linear model, and so the control effort, control rate effort and
maximun pitch rate are not changed because they occur at the begining
of the aircraft response by the other way, the attitude dropback,
steady state pitch rate, steady state angle of attack and all steady
state parameters are changed due to its occurence at the final time of
the simulation. In general it has been noticed that the transient
characteristics are basicaly the same as obtained with the aircraft
linear model, and the steady state characteristics have changed a
little bit, this can be explained by the above mentioned facts about

Mach number variation as also altitude and angle of attack.
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8 ALTITUDE HOLD AUTOPILOT DESIGN

8.1  INTRODUCTION

One of the pilot's many tasks is to hold a specific altitude. A&s an
aid to keeping aircraft from colliding, those aircraft on an easterly
path are required to be on an odd multiple of 1000 ft, while those on
& westerly path are required to be on an even multiple of 1000 ft. It
is therefore of some concern to the pilot that the altitude be held to
within a few hundred feet. A well trained attentive pilot can easily
accomplish this task to within + 50 ft, and this kind of tolerance is
what the air traffic controllers expect pilots to maintain. Since
this task requires the pilot to be fairly diligent, sophisticated
aircraft often have an altitude hold autopilot to perform the task.
This system is fundamentally different from the stability augmentation
system designed in the previous chapters of this work in that its role
is to replace the pilot for certain periods of time, while the
previous stability augmentation system role is to help the pilot fly.
Dynamic specifications, therefore, need not be such that pilots 1like
the aircraft's "feel" ; instead, the design should provide the kind of
ride that pilots and passengers like. So the damping ratio should be
in the vicinity of 0.50, but, for a smooth ride, the natural frequency
should be lower than the short period natural frequency. In this
chapter the autopilot will be designed by an optimal control method,
that is, designed specifically by the LQR method to work with the
augmented aircraft, incorporating the inner loop control laws designed

in the previous chapters.

8.2 THE DESIGN METHOD

In order to design the autopilot it is necessary to include the height

equation in the model, which is written as,

h = —u+UDe (8.1)
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In this case the system must track a reference altitude, designated

h e " By the same procedure as used in the design of the inner loop,
re

it is possible to define an altitude error,

e = h-h (8.2)
h ref

Considering now the aircraft represented by the state equation,
X = AX+Bn (8.3)

where x is simply x! = [uwgoel] (B.4)
and the A and B matrices are given in appendix A. So equation 8.1 can

be written as,

h = [0 -1 0 U0 ] x (8.5)

As the design is for the augmented aircraft, the feedback gains of
either stability augmentation control law, optimal or pole placement,

are written as,

G = [0 K K K ] (8.6)
w q Eq
Considering the inner loop control law implemented as in figure 6.4

the augmented aircraft is represented by the state equation,
x = (A-BG) x+ B
( ) Mp (8.7)
Where Np is the control input to the elevator required by the

autopilot. With this in mind the complete system can be represented

as follows,

X =A x +B +Eh
AP AP AP ap Tap ref (8.8)
T

where, X = x h 1 = uw h .
AP L £, ] L q 86 € ] (8.9)
BT = [ B 00 ] (8.10)
AP )
El = [00000 -1 ] (8.11)
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and,

(A-BG) 0 0

A =|[0-1 0 U 0o 0

AP L 07 (8.12)
[0 0 0 0] 1 0

Thus, this model includes the height equation and the error equation.
Using the LQR theory described in chapter two, as given, for example,
in Friedland!® and the other references concerned with optimal
control, a performance index similar to that used in chapter 3 will be

taken,

©
T T
Vv = % X + R d¢ .
AP f ( AP Q AP nAP nAP) (8-13)
0

In this case Q is & matrix (6 x 6) and R is a scalar. The same design
philosophy, as applied in chapter 3 for the inner loop optimzl cantrol
law design will be used here, that is, only the state gh will be
weighted in the state weight matrix Q of (8.13). Then Q will be taken
as a diagonal matrix with zeros in the diagonal, except the element
q66 which is designated q66 = p «nd R will be taken as unity , that
is, R = 1. Again, as in the previous design, the parameter p was
found by a parametric search until & reasonable control demand and

altitude response was obtained. The autopilot control law is,

n, =—6

X (8.15)
AP AP AP

where GAP is given by the solution of the LQR problem. With the help

of MATLAB, given AAP, BA Q and R ,the feedback gain matrix is easily

>

found,

G = G G G G.G G
AP L « 8 8y 8 8 €, 1 (8.16)

As a reasonable control demand is desired the design should not give

high feedback gains since high gains would require higher control

demand and higher control rate demand.
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As a guideline, for a step input in h . the altitude should reach the
re

required href in 20 to 30 seconds. A parametric study was perTormad
by varying p in the state weight matrix until a reasonable h response
was obtained as well as & reasonable control effort. This study was
performed by the method given in Friedlandig, that is, by the choosing
p, obtaining the feedback gains, obtaining the times rssponse of h to a
unit step in href » and checking to see if the control effort and
control rate effort are acceptable or not. With few calculations the
control law is easily obtained. The design can be compared with the
design déscribed by Powell? for the same’aircraft, which is also an
optimal control design. The difference that Powell's design uses
proportional feedback only, that is, there is no integral feedback of
the error as used in this design. In figure 8.1 the augmented

aircraft considered in the design is shown, and in figure 8.2 the

autopilot with the augmented aircraft is shown.

AUGMENTED
AIRCRAFT K ¢
q
DYNAMICS
q
- —_— s
BASIC
N ; 6
- 5| AIRCRAFT
- N DYNAMICS W
—
A
K |[—e—1
W
K
6 ———
9
figure 8.1 - augmented aircraft dynamics used in the autopilot
design
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G
h
h
-—-—+-
AUGMENTED u
+ —
W
> ( ) > AIRCRAFT >
h - S q__-
ref ~-€ q
h DYNAMICS N
0
G ~
0
G
9
A—1 G
u
figure 8.2 - representan of the augmented aircraft from figure
8.1 and auilot control law.

It is important to appreciate that the augmented aircraft was not
assessed with respect to the dropback criterion or CAP when the
autopilot was engaged. It is clear that the autopilot design requires
changed feedback gains on w, g and §. However, as MIL-F-8785C and the
Gibson dropback criterion are applicable to the piloted flight phases
only a comparison of the gain values is not relevant in this case. In
other words, when the autopilot is engaged there is no pilot input,
since the autopilot replaces the pilot. It is c¢lear fhat the
autopilot was designed to work with the augmented aircraft as if the
augmented aircraft was a new aircraft. When the pilot is manoeuvering
the aircraft the autopilot is not engaged. Another comment about the
design is necessary, that is, as stated by Friedland one can think
that the objective is to minimize 8.13, however this is not the true

objective. Equation 8.13 is used as a tool to design the autopilot
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control law.

BRgifEe

In this way the paremetric study performed with both

determined a suitable p as

p

= 1 X 10-8

and this was the p choosen in this design.

that other wvalues were also found that gave acceptable responses.

However,

higher feedback gains were required,

so in order to have

lower feedback gains the above value for p was used.

8.3

8.3.1

The autopilot design performed as described gave the gains presented

in table 8.1 for the inner loop designed by pole placement and in

AUTOPILOT ANALYSIS

THE AUTOPILOT GAINS

loop control laws and for flight cases 3, 6, 9, 13 and 17 has

It is necessary to say

table 8.2 for the inner loop designed b3y uptimal control.

TABLE 8.1 — autopilot gains for the pole
placement inner loop design
FC G G G G G G
u W q 0 h €
: h
(s/ft)| (s/ft) sec rad ft-1 ft—13-1
-0.0004} 0.0008| -0.1554| ~-0.8035{ -0.0009| -0.0001
-0.0005| 0.0010| -0.1924| -1.1973| -0.0008] -0.0001
S -0.0008| 0.0021| ~0.2441} -2.2985| ~0.0011] -0.0001
13 -0.0012| 0.0012| ~-0.2672| -1.0220| -0.0010| —-0.0001
17 -0.0007| 0.0015| -0.Z2450f -1.6260| -0.0009| -0.0001
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TABLE 8.2 - autopilot gains for the optimal
control law inner loop design
FC G G G G G G

u \% q 0 h £

h
-1 -1 -1

(s/ft)]| (s/ft) sec rad ft ft s
3 -0.0006{ 0.0009| —-0.1356| ~1.0124| -0.0010} ~-0.0001
-0.0008| 0.0014| -0.1510{ -1.3830| —-0.0010| -0.000%
S -0.0008| 0.0023| -0.2441| -2.3253| -0.0011| -0.0001
13 -0.0020| 0.0018} -0.2154] -1.3089| —-0.0013} -0.0001
17 -0.0011| 0.0018| -0.1978| —-1.7929| -0.0011! -0.0001

interesting to note that the design performed by Powell7,which
6 and h,

It is

is based only on proportional feedback acting in u, w, q,

and Ge

values obtained here.

gave gains G of much larger magnitude than the corresponding
q

Obviously an autopilot with only five feedback
variables has the advantage that it only requires five feedback gains,

whereas six gains are required in the present design. However, it can

be seen in both tables, 8.1 and 8.2, that the feedback gain Gs is

h

constant for all flight cases, and so it is not necessary to be

scheduled. From both tables it would éppeaf to bepossible to use a

constant G , G and Gh and so only G and G, are required to be
u q

0
The time responses of both

w
scheduled as function of flight condition.
designs are also compared, and it is seen that they are very similar,
the response obtained by Powell is shown in figure 8.3. Perhaps it is

useful again to quote Friedland's word about the design method:

» A suitable approach for the designer would be to solve for the gain
matrices G that result from a range of weighting matrices Q and R, and
calculate ( or simulate ) the corresponding closed-loop response. The
gain matrix G that produces the response closest to meeting the design

objectives is the ultimate selection. ”

So this was the way in which this autopilot design was performed, the
method is the same as that used in chapter 3 to design the optimal

control law for the inner loop. At this point it is also interesting
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te nots that the approach adopted would also permit the design of a
feedforward loop working on the Iinput href if desired. So an
interesting exercise would be to design the autopilot in thrse
different ways, that is the structure adopted in Powell, the structure

adopted here and finally a structure that also includes a feedforward

loop.
»
100
90
80
70
<
- 60
k']
-~
2 50 :
<
40 b —
Step-response of altitude-
hold autopilot.
30 / T ]
20 //
A
0 >
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time, 3
figre 8.3 - time response of the autopilot designed in Powell
for the B-747 at 20000 ft mach 0.80

8.3.2 THE EFFECT OF THE ACTUATOR

This autopilot design was performed without the inclusion of the
actuator dynamics. In order to investigate if the actuator has some
influence on the performance, the actuator model was included. Thus,

the state equation for the actuator may be written as before,

X = AX + B .17

A A A Anc (8.17)

with xI'= [ n v 1 (8.18)
A n
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Thus the autopilot feedback gain vector becomes,

G = G G 6 G, 0 0 G G
AP [ u w q © h Eh ] (8.19)
and the autopilot control law may be written as
= =G
n, AP [u w g 6 n vn h €, ] (8.20)
The closed loop model is then given by,
x = Ax+ £h (8.21)
ref
with, W o= [u w q 6 n vn h £, 1 (8.22)
with,
A [ B za1 ] Z41 Za1
-B GAP A -B G -B G
A A A h A Eh
A = (8.23)
[o-10 Uo] Z12 0 0
214 Z12 1 0
£ = [0 0 0 0 0 0 0 -1 ] (8.24)
and GAP given by,
GAP = [ G (K+G) (K+6) (K _+6,) 1] (8.24.a)
u w w q q € 6

q

with this model is possible to see that the actuator influence is

completely neglible on the autopilot performance.
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8.3.3 THE FREQUENCY RESPONSE AND TIME RESPONSE

In figure 8.4 and 8.5 the autopilot frequency responses are shown Tor
both inner loop control laws respectively, that is, pole placement and
optimal control, for flight condition 6. 1In figure 8.6 the autopilot
time response for a step input in href is shown and can be compared
with figure 8.3 which shows the same response fTor the design performed
by Powell’ for practically the same flight case. From the results it
can be seen that, in general, the pole placement inner loop design has
a marginally greater bandwidth than the optimal inner loop control law
design. The optimal inner loop control law design in general has a
greater gain margin than The pole placement design. The results have
also shown that, in general, the pole placement inner loop control law
design has a fTaster response than the optimal inner loop control law
design. In figure 8.7 the control effort for both designs is compared
for the same step input in href, and in figure 8.8 the control rate
effort for both designs is compared for the same input, all for flight
case 6. It can be seen that the pole placement control inner loop
control lew design requires more control effort than the optimal inner
loop control law design. However, as shown the control effort in both
cases is very low. In figure 8.9 the time histories obtained by
simulating the autopilot with optimal inner loop control law design
are shown for a step input in href’ for the same flight case, clearly
the responses are very smocil:, and the load factor wvaries by about =+

0.1 g, which means a very comfortable condition in terms of ride

quality.
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8.4 INTERIM CONCLUSIONS

From the design study it can be concluded that the autopilot responds
quite well in terms of passenger ride quality, as determined from the
figures and analysis. However, it was necessary to simulate the
autopilot working with the non-linear aircraft model in order to
obtain a better evaluation of the performance. It was also necessary
to assess the regulator performance of the autopilot, as already done
with the inner loop control laws, to ensure that following a

disturbance, the h response does not exceed + 50 ft. A good feature
of the design is the lower gains obtained, and as a consequence the
lower control effort and control rate effort required. A study with

0

considered useful in order %o wverify if such simplification is

only G, and G scheduled, the other gains remaining fixed was
q

 acceptable. Also, it was necessary to establish the limiting value
of h c that can be applied without compromising the performance.
re
8.5 THE AUTOPILOT WORKING WITH THE INNER
LOOP OBSERVER BASED CONTROL LAWS

8.5.1  INTRODUCTION

It is clear that in the event of a sensor failure the sensor based
control law would no longer be available and so an observer based
control law would be working in the aircraft. It is necessary to
verify if the autopilot can function correctly with an observer based
control law, so in the ewvent of a sensor failure not only does the

inner loop have a degree of redundancy but also the autopilot.

8.5.2 THE MATHEMATICAL MODEL

Here the description of the mathematical model used to study the
autopilot working with the observer based control laws, CL_OB_w,

CL_OB_q and CL_OB_@ are described as follows,
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To represent the aircraft working with the observer based control laws

the following equations are useful,

ST L T P
;2 = Ay A%
where ,
in the case of CL_0B w :

in the case of CL_0B_qg

X}

in the case of CL_0B_0

‘e

The actuator is given by,

X4 = Ap¥a

X
]

The height equation is,

+ [Bl 0] Xn
+ [82 0] Xa
X, =W
T _
X, = fu g 6]
;=4

+ B

T _
x2 =[u w 0]
xl = @0

T _
;3 =Lu w q]
Anc

a=Ln Vn ]

h = 0 -1 0 U = GW
[ o i I 2 ®

where 3

in the case of CL_0OB w :

GlW

GW

]

[o 0O UOI
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in the case of CL_0B _q : GN1 =
G =

2
in the case of CL_0B 6 : Gwl =
GW =

2

The autopilot height error equation is given by,

where ;

in the case of CL_OB_w

*”
bl
I

"
X
[}

in the case of CL_O0B_q

in the case of CL_0B_O

*"”
X
]

x
]

The gains of the inner loop control law are given by,

[o0-1 U]
u
0
[0-1 0]
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qa 61
+ Nz
w 61
+ Mz
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(8.

(8.

(8.
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(8.
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and so,

in the case of CL_0B w 61 = K
w
G, = 0 K K
o= [0 K K 1]
q
in the case of CL_0OB_q 61 = K
q
G, = 0 K K
2[w€]
q
in the case of CL_0B_#@ G1 = K8
q
G =
5 [0 K Kq ]
The gains of the autopilot are,
G = G G G G G G
AP [queheh]
and so,
in the case of CL_0B w G = G
T AP w
1
G = G G G
AP L u q O ]
2
in the case of CL_0B_q G = G
- AP q
1
G = G
ap_ = LG 6 & I
2
in the case of CL_0OB @ GHP = GG
1
G = G G
sz L u W Gq 1

with these definitions the full control law can be expressed as,
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i case CL_O0B_w

Mg = ~B4 % = (G* GAPZ

where, Gﬁ

[
Jote

case CL_OB_q and CL_0B_6

Ne = --GA xl - (62+ GHPZ) Nz - th - GE Eh

where, GA

Thus the closed loop model for CL_O0B w,

represented by,

X = Ax+ B u
with,
o= [ x1 x2 xA h
& = }{ o 731 Z21 0
# = h

ref

in the case of CL_O0B w ,

A1 Pyp [By O]
A, A, I[B, z31]
L -B,6, 723 Ap
6W, 6W, 712
0 713 z12
| G 0 [H Z31]

= (G1 + Ggpl) + (62 + G

= (G1 + Gapl) + (G2 + G

z-Gh-6G_ ¢
h €

AP
2

AP
2

rd
b ]
-1 731 1]

0 0
Z31 Z31
B8, ~BG_
0 0
1 0
Z31 731
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JH

h

Z13

Z31
-BE(GZ+G

Z£13

Z13

ap )
2

(B.64)

(8.65)

(8.66)

(8.67)

CL_ OB g and CL_0B_O can be

(8.68)

(8.69)

(8.70)

(8.71)

(8.72).



in the case of CL_0OB q and CL_0B @ .

A, A, [B, 0] 0 0 713
Ay A, [B, 7311 731 Z31 Z31
~B,G6, 223 Ay ~Bp6, B,G_  ~B,(G,+6,, )N
g = h 2 (8.73)
GW,  GW, 712 0 0 Z13
0 713 712 1 0 713
] 0 [H Z31] Z31 Z31 F

8.5.3 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB w

A comparison between the responses obtained with the baseline system
control law CL_SB with autopilot and CL_OB w with autopilot show
excellent agreement. In fiqure 8.10 and 8.11 the frequency response
obtained for flight case 6 is shown, and can be compared with figure
8.4 and 8.5 respectively showing a wvery good match between designs.
In figure 8.12 the altitude time response for a reference step input
is shown with CL_0OB w and can be compared with fiqure 8.6, again
showing a wvery good match between both designs. The fact that the
responses match exactly confirms the special properties of the
Doyle-Stein observer and allow the same redundancy provided for the
inner loop control laws to be extended to the autopilot. Here a
comment is in order; as seen before, the Doyle-Stein dbserver designed
for the inner loop control laws does not offer a very precise estimate
of u, forward velocity. However, this does not have a significant
influence due to the fact that the autopilot gains that depend on u
are very small. 1In figure 8.13 the ACSL simulation pérformed with
CL_0OB w and autopilot is shown for flight case 6, for the aircraft
with optimal inner loop control law. A comparison with figure 8.7

confirms the perfect match between both sets of responses.
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15
figure 8.12- altitude time response of the aircraft for unit step
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18
input at 20000 ft mach 0.70 with inner control law CL_OB_w
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8.5.4 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB_q

In figures &.14 and 8.15 the altitude frequency response obtained with
the autopilot working with the CL_O0B g inner loop control law is
shown, and can be compared with figures 8.4 and 8.5 respectively.
Again a very good agreement between both is apparent. In figure 8.16
the altitude time response for a step of hrer is shown and can be
compared with figure 8.6, showing a very good match between both. The
ACSL simulations obtained for flight case 6, with inner loop control
law CL_OB_q designed by optimal control are in figure 8.17, and can be
compared with figure 8.7, with a very good similarity between both.
In conclusion it is clear that the autopilot worke satisfactorily with
CL_0B_gq. It can be seen that the u estimates are better here than

with CL_0B w, as already expected from the inner loop analysis.
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8.5.5 THE RESULTS OBTAINED WITH CONTROL LAW CL_OB_©

Here again a comparison of the results with the baseline control law
has shown a very good agreement. 1In figure 8.18 and 8.19 the zltitude
frequency response obtained with the autopilot working with the
CL_0B_@ inner loop control law is shown which can be compared with
figures 8.4 and 8.5 respectively. Again a very good agreement between
both is evident. In figure 8.20 the altitude time response for a step
of href is shown and can be compared with figure 8.6, again showing a
very good match between both. The ACSL simulations obtained for
flight case 6, with inner loop control léw CL_OB_@ designed by optimal
control are in figure 8.21, and can be compared with figure 8.7,
indicating a perfect match between both. In conclusion it is

clear that the autopilot works with CL_O0B_6 quite satisfactorily.
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input at 20000 ft mach 0.7 with inner loop control law CL
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9.1

(iv)

(v)

(vi)

9. CONCLUSIONS AND OBSERVATIONS.

CONCLUSIONS

The optimal control law design is much easier to adjust than
the pole—placement control law design. This was also the case
when the actuator model, the phugoid model, or even when the
lead pre filter was added to the system. In &all these cases
the optimal design was very friendly and easy to accept new

changes.

The magnitude of the feedforward gain obtained by the optimal
control design method is greater than the magnitude of the
feedforward gain of the pole-placement design method. A
greater feedforward gain causes greater control rate effort and
control effort. This was due to the methods by which each gain

was obtained.

The optimal control law design is always more robust than the
pole-placement control law design with respect to stability
requirements. The reason for this is that in the design process
the optimal control method does not introduce so many changes
as the pole placement method. That is, it achieves a better
balance with respect to closed ioop pole locations ,control

effort and in meeting the design criteria.

The pole-placement control law design is more robust than the

optimal control law design with respect to the Gibson attitude

V dropback criterion when additional dynamics are included in the

loop.

The pole-placement control law design always has a greater

phase and gain margin than the optimal control law design.
The method used to design the observer of control laws CL_0B_q
and CL_OB_@, leads to an observer with a better performance

than the observer of control law CL_O0B_w.
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(vii)

(ix)

{(x)

(x1)

With respect to aircraft parameter wvariations, the optimal
control law design is more robust than the pole-placement
control law design. When both control laws were designed, the
aircraft MATLAB model was used however, when both control laws
were simulated the ACSL aircraft model was used, and in this
case the optimal designs maintained better performance compared

witii the pole placement designs.

The control 1laws CL_0OB q and CL_OB 6 have better overall
performance than control law CL_OB w. This can be attributed
to the method used in the observer designed for each control
law. The complex poles of the observer used in CL_0B w are
very close to the origin of the s—plane, so the observer has
much more influence on the system dynamics than the observers

used in CL_OB_gq and CL_OB_6.

The baseline control law CL_SB implemented with sensors for
angle of atiack «, pitch-rate q, and pitch-attitude g 1is
more robust, and is also safer than control law CL_SB
implemented with sensors of angle of attack «. and

pitch-rate q only.

The optimal control law design is more robust with respect io

feedback gain variations and feedback path failures.

The order of control law reconfiguration in the event of a
sensor failure should be, CL_OB g, CL_OB_6 and finally CL_0B w.
This is the order that guarantees the best maintenance of

flying qualities and stability characteristics.

Gain scheduling is easier to implement with the optimal control
law design than it is with the pole-placement control law

design. Obviously, the fact that KE is constant for all flight

q
cases in the optimal design simplifies the requirement.
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(®xiii) The control law implemented with w, gq and 6 sensors and

(xiv)

9.2

(iv)

designed by the optimal control method is the best option since
it is the one that offers the best performance and safety, and

it accepts changes very easily.

It appears that the optimal control method is advisable to
design this kind of flight control system, since the approach
followed in the design by the pole placement method has not
worked so well as expected. The idea of closed loop pole
allocation presented in chapter 3 does not offer the same
transparency as the optimal control design method offers. In
addition, when designing the control law, not just one set of
the pair of weighting matrices ( Q@ and R ) are able to meet the
criteria, but various sets of { Q, R ) and so it is a more

flexible method.

SUGGESTIONS FOR FURTHER WORK

It is necessary to design control law CL OB w by the same
method as used Tor CL OB q and CL OB 6 in order that a

meaningful comparison of the control laws may be made.

It is essential to study the behaviour of the control laws with
the non-linear model of the aircraft and with fully scheduled

gains in the control law and the observer.

It is interesting to study the allocation of poles of the
observer in control laws CL_O0B_gq and CL_OB_@, that is the
approximation -0.01 in CL_0B_q and -4 in CL_0B_@.

It is necessary to study the effects of control rate saturation
and control displacement saturation, this can be done by
simulation as described in Lewis-Stevens'®, and the use of
limiters in the feedback paths, or as a better option try a new
design, based on a performance index that weights the control
rate , control displacement and also gain magnitude, as

presented in Lewis-Stevens 8.

226



{v) It may be interesting to design an cbserver based contrel law
with a full order Doyle-Stein observer instead of the reduced

order Torm used in this study.

9.3 CLOSING COMMENTS

In conclusion the designed control laws have been assessed with
respect to wvarious criteria. However, a better study should be
performed evaluating the performance of the control laws with the
gains of the control laws and observers, schedulled with flight
condition together with the non-linear aircraft model. After this a
final evaluation can be conducted by the implementation of the control
laws in a simulator and assessing the augmented aircraft with a pilot
in the loop. The optimal control method only introduces the necessary
changes in order that the augmented aircraft meets the criteria.
Alternatively, the pole placement method introduced unecessary
changes, this was particularly visible when both methods were assessed
with respect to the Gibson phase rate criterion. Unless the designer
has a very strong " feel " of where to locate the closed loop poles,
it is preferable to design the flight control system by the optimal
control method. This is specially so with respect to the integrator
pole in the control law system. A final comment is in order about the
Doyle-Stein observer. If the system has right half plane zeros the
procedure may still work, as described in Maciejowski74, particularly
if the zeros lie beyond the operating bandwidth of the system as
finally designed. This comment is relevant because in the case of the
aircraft lateral-directional model there may be right half plane zeros
and, as mentioned by Maciejowski, the procedure may also be applied in

such cases.
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APPENDIX A

ATRCRAFT MATHEMATICAL MODEL

AND FLIGHT CONDITIONS USED IN THE WORK

The flight conditions used in this work are identified in table A-1.
It can be seen that in general only flight cases 3, 6, 9, 13 and 17
have been used throughout the wole work, with occasional mention of

cases 1, 5, 8, 12 and 16 in chapter 3.

TABLE A-1 IDENTIFICATION OF THE FLIGHT CASES
FC # Altitude Hach FC # | Altitude | Mach
( ft ) number ( ft ) number
1 1000 0.30 10 40000 0.85
2 1000 0.50 11 40000 0.90
3 1000 0.60 12 10000 0.30
4 1000 0.70 13 10000 0.40
5 20000 0.50 14 10000 0.50
6 20000 0.70 15 10000 0.70
7 20000 0.80 16 30000 0.50
8 40000 0.70 17 30000 0.70
9 40000 0.80 18 30000 0.380

The aircraft model was obtained directly from He'ﬁ’ley‘l‘l and for the

longitudinal model is given by the state space equation,

= A X + B n (a.1)
LM LM LM LM
- T
with, XLM = [u w g 6] (a.2)

236



LM
831 32 33 f3y
1 %42 %33 %4
BT = [b b b b ]
M- 11 21 P31 Pa1 4

The reduced order short period model is represented by,

= A X'+ B-n
RO RO RO RO
with,
T _
Xoo = [w q]
80 83
HRO =
832 933
T _
Bro = [ P2y ba; .

with the coefficients aij and bij given by :

x -g sin-0

a,, = X . a,= — °

11 -u : : 24 1 - 7.

W
a = X * *
12 v M +M Z
u wu

213 = X3~ Y | 931

237

(a.3)

(a.

(a

(a.
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a = -—g cos g,

14
* Mw + zw Mw
Zu a. . =
32
821 T T 1-2&
1 - Z.
w
7 Mq + Mw (Zq + Uo)
W s =
a, = ——— 33 1 - 7.
1 - Z. v
w
(Z_+ U)) _ .
. ~ q 0 . Mw g sin 60
23 1 - Z. 34 1i-Z.
w | w
= 0 byy= O
342 = 0 X _ Zn
s = 1 2 1-2Z.
43 v
. - o mn+(mw.zn)
44 b31 =
i - Z.
w
bgg = O

The zerodynamic stability derivatives used are referred to body-axes,
and the definition of each derivative is contained in Heffley11 and in
0liva—Cook'?. The A and B matrices of the aircraft for flight
conditions 3, 6, 9, 13 and 17, are also listed in this appendix in
table A-2 and A-3, for the MATLAB aircraft model and for the ACSL
aircraft model. 1In table A-4 the parameter Tez is listed for the
flight cases presented in this work. In table A-5 the trim angle of
attack and steady state velocity are listed for flight cases 3, 6, S,
13 and 17. 1In table A-6 the coefficients of the state matrix and the
coefficients of the control matrix are listed for flight cases 1, 5,
8, 12 and 16, as used in the HWATLAB aircraft model.
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— COEFFICIENTS OF

THE STATE

TABLE A-2 MATRIX

Fc e ‘«;;.‘..'-:.v‘é PR SN 4211:\',.~...6. o v e e /9 T8 e Sl 1 ,-Miéu»- £ PRANTS 17

MATLAB | —0.00820 ~-0.00480 -0.00410 -0.00570 -0.00350
%11

ACSL- -0.00729 -0.00424 -0.00364 -0.00504 —0.00313
| maTLaB | 0.06270 0.05960 0.05160 0.10750  0.04800
412 '

ACSL 0.05557 0.05282 0.04570 0.09520 0.04250

MATLAR | ~7.68850 —-21.5287 —-60.510 ~—64.8000 ~-55.2200
213

ACSL —7.68850 —21.5287 -60.516 —64.8059 —55.2260

MATLAB | -32.1900 -32.1258 -32.100 -31.8300 ~-32.0900
%14 :

ACSL —32.1979 -32.1858 -32.100 —-31.8339 —32.0980

MATLAB | —0.14620 -0.12430 -0.0881 ~-0.12660 -0.11400
41

ACSL —0.12900 -0.10988 -0.0778 —0.11182 -0.10137

MATLAB | —1.03600 -0.66600 -0.3703 -0.58960 —0.48000
40
: ACSL —0.91510 -0.58940 —0.3278 —0.52093 —0.42570

MATLAB | - 684.96  732.769 768.50  431.290 696.700
453 ' ,

ACSL 682.37  731.315 767.82  430.062 695.787

MATLAR | —0.38310 -0.9717 ~-2.5450 ~-4.96300 -2.584
8o4

ACSL- ~0.38173 -0.9697 -2.5428 -4.94921 -2.581

MATLAB | —0.00010 0.00010 0.0 0.0004  0.000100
931 ,

ACSL —0.00005 0.00007 . —0.00003 0.0004  0.000064

MATLAB | —0.00230 -0.00180 -0.00110 -0.00190 —-0.00140
432

ACSL —-0.00227 -0.00177 -0.00104 —0.00183 ~0.00137

MATLAB | —1.00950 -0.70700 -0.44340 -0.55220 -0.50600
433

ACSL -0.98457 —0.68980 -0.43267 -0.53870 -0.45430

MATLAB | 0.00010 0.00020 0.00030 0.00080 0.00030
934

ACSL 0.00008 0.00016 0.00028 0.00077 0.00032
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TABLE A-3

. COEFFICIENTS. OF -THE

CONTROL - MATRIX:

FC

9 13 17
MATLAB | 0.39370 0.97830 1.63890 2.52000 1.91800
b1 .
AcsL - | 0.34880. 0.86670 1.45190 2.23260 1.69958
MATLAB | —35.3270 -33.5437 -20.9800 -16.9800 -24.4000
bsy o _
ACSL -31.1799 -29.6590 -18.5760 -15.0039 -21.5880
MATLAB | —-1.99140 -1.91730 =-1.21000 -0.97300 -1.41900
by ,
ACSL -1.94418 -1.87160 -1.18123 -0.94980 ~1.38570
TABLE A-4 T, PARAMETER
FC T FC T
# 62 # 62
3 1.00 1 1.72
6 1.58 5 2.13
9 2.85 8 3.09
13 1.79 12 2.16
17 2.33 16 2.65
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_TABLE A-5 TRIM ANGLE OF ATTACK
AND STEADY STATE VELOCITY. |
PN e N 0

(ft/sec) “IF : (deg)

. 667.6 | 0.66

' 725.8 1.70

- 771.5. 4.50

13 430.1 8.70

17| -696.3 4.60
TABLE A-6

COEFFICIENTS OF THE STATE MATRIX AND

CONTROL MATRIX

. -

FC 5 8 12 16
a;; '—-0.00930 -0.00180 0.00030 0.00230 0.01190
a, 0.14730 0.09040 0.03920 0.12710 -0.01040
a4 --54.5650 -61.3750 -86.9237 -83.0980 -85.4900
aa -31.7600 -31.9700 -31.9300 -31.1170 - -31.7200
a5, —0.15330 -0.08320 -0.09350 -0.14610 -0.11300
a,, —0.61770 -0.49810 -0.34150 -0.48920 ~-0.39700
a,q 334.69 518.540 668.719 314.250 480.450
254 -5.43800 -3.8800 —4.1796 -8.47840 -5.600
ag, 0.00050  0.0003 0.0001 0.00050  0.0002
ag, -0.00200 -0.00170 -0.00100 -0.00150 ~-0.00120
agq —0.56760 40.49400 -0.35380 ~-0.42210 -0.34900
2z, 0.00120 0.00050 0.00040 0.00120 0.00060
b,y 2.13146 2.27670 2.22680 2.58900 2.43200
b,y —13,296 | -19.4415 -17.286 -9.971 -14.118
bay -0.7582 -1.105 -1.0229 -0.591 -0.842
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APPENDIX B

DERIVATION OF GIBSON ATTITUDE DROPBACK EQUATION

In this appendix the Gibson attitude dropback equaticn used in chapter
3, equation (3.14), obtained from Cook®?is explained. In order to
obtain an equation for attitude dropback, DB, in terms of the aircraft
state description the following analysis is useful. The Laplace

transform of the aircraft state equations may be written as,

s x(s) = A x(s) + b n(s) (b.1)

q(s) = ¢’ x(s) (b.2)

Where the output matrix ¢’ defines the single output variable q(s).
Eliminating x(s) from these equations enables pitch rate output to be

defined in terms of the elevator angle input.

1

q(s) = ¢’ (sI -A) * b n(s) (b.3)

The steady state wvalue of pitch rate response g to a unit step input
8S

is given by writing n(s) = 1f/s and applying the final wvalue theorem

to equation (b.3), Thus

q(t) = lim (s q(s) ) = lim [¢’(sI-A)"'b] (h.4)
t=> ® s =2 0 s 20

- =ms-1
Qe = q(t) c’A” b : . (b.5)

t 2 ©

Dropback may be defined from the typical steady state pitch attitude

response, shown on figure ( b.1 ), to a unit elevator angle input.
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figure b.1 - Typical:pitchiattitude and flight path angle responses
) ' to @ unit step elevator angle input

Given the state equations:

;(t)

Ax(t) + bn(t) (b.6)

q(t) ¢’ x(t) (b.7)

the pitch rate response is given by,
ACt-t ) v |
q(t) = c’e x(to)”+ C’I'f¢(t—r)bn(t)dr (b.8)
t
- 0"»‘.—

Making the appropriate substitution for the transition matrix ¢(t—t0)
Alt-t ) oAt
q(t) = c’e x(t ) + c’I e bn(z)dr (b.9)
. to ..
Now, A, ¢’ and b are constant, for a unit step input, n(t) =1 , and
taking t = 0, equation (b.S) may be written as,
At - ~§ A(t-T)
q(t) = c’e x(0) + c’f e bdt (b.10)

t
0
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q(t}) = c’e x(0) + ¢c” e — e b (b.11)
0

At
c’e x(0) + c’A'i[ et 1 1b (b.12)

q(t)

Assuming zero initial conditions such that x(0) = 0, then,

q(t) =c’A et — 11 b =c’al eft b - c’a (b.13)

Substituting for c¢’A”'b from equation (b.5)

_ sa-1 At
q{t) = c’a” e b + qss (b.14)

Integrating equation (b.14) gives pitch attitude response to a unit

step elevator input, thus,

t t
o(t) = [q(dr = [[e’a™ e*T b+ g 1 ar (b.15)
0 0 V
o(t) = ¢ AT "~ IIb + q_t (b.16)

The steady state pitch attitude response may be obtained by letting
t o and noting that,

. e = 0 (b.17)
1> ®

Provided that A describes an assymptotically stable matrix. Thus,

b + q t (b.18)
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The pitch attitude response described by equation (b.18) is shown on

figure (b.2), and it is clear that dropback is defined by,

-2
DB = -¢* A b (b.19)

W P

c

figure b.2 - steady state pitch attitude response

Now using the aircraft model based on the reduced order pitch rate

response transfer function,

q(s) K{(1+T
9

62 s)

0 s+ )
sp Sp

2 (b.20)
n(s) (s™ + 12(:s

p
and using the methods for system realisation the state space
description of the aircraft may be defined in controllable companion

form with state, input and output matrices as follows,

A = (b.21)

- -2 o
sp CSP sp
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b = (b.22)

¢ = [K KT 1 (b.23)

Using (b.21), (b.22) and (b.23) into (b.19) it is obtained ;

_ = T - (b.24)

Which is equation (3.14) used in the design of the pole placement

control law design.
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APPENDIX C

RESPONSE TRANSFER FUNCTIONS OF THE BASIC AIRCRAFT

In this appendix the poles and the transmission zeros of the following

response transfer functions of the basic aircraft are listed;

w/n . aq/n and 6/n

which were obtained from the complete model :

X = AX+Bn
with, x! = Lu w g 6 1

as described in appendix A.

FC # 3 - 1000 ft — MACH 0.60

POLES -1.02 + i 1.25 , —0.0049 + i 0.0580

T.Z. of w/n | -0.0046 + i0.0814 , —-39.62

T.Z. of q/fn | -0.9859 , —0.0175 0.0
T.Z. of 6/n | -0.9859 , —0.0175 . ®
FC #6 - 20000 ft — MACH 0.70

POLES -0.68 + i 1.15 , —0.0028 + i 0.0700

T.Z. of w/n | -0.0035 +i 0.0735 , —-42.59

T.Z. of qfn | —0.6226 , —0.0167 , 0.0
T.Z. of 6/n | -0.6226 ., —0.0167 , ®
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FC #9 -

~ 40000 ft — MACH 0.80

/| POLES™

T.Z. of w/n | —0.0038 + i10.0590 , —44.76

T.Z. of q/n | -0.3380 » —0.0173 , 0.0

T.Z. of 6/n | -0.3380 , =0.0173 -, ®

FC # 13 - iéboo ft - :MACH 0.40

POLES . -0.56 + i 0.91 , —0.0061 + i 0.1158

T.Z. of w/n | -0.0065 + i0.0978 , -25.27

T.Z. of q/n ‘;0.5308 _ , —0.0307 . 0.0

T.Z. of 6/ | -0.5308 , —0.0307 , ®

FC # 17 - 30000 £ — MACH 0.70

POLES 7 -0.49 + i 0.98 , —0.0036 + i 0.0709

T.Z. of w/n | -0.0044 + i0.0722 , —-41.00

T.Z. of q/n | =-0.4439 , —0.0155 o, 0.0
-0.4439 . ®

T.Z. of 8/n

-0.0155 »
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In this appendix the parameters for the Doyle-Stein observer when

output is normal velocity, y = w, are listed.

APPENDIX D

PARAMETERS - OF. THE. OBSERVER -WHEN: THE ..OUTPUT IS. -w

used in this case are,

N e

x)

2

As known, in this case H =0

necessary to list F,

flight conditions 3, 6, S,

13

2]

o)

13

& and
13
—0.0111 ]
0.0564 L6
0.0
—0.1484
0.0573 L17
0.0
0.0482 ]
’—2.1774 G
0.0564
-0.0218 ]
-1.4171 G,
0.0573
—-0.0099
F3 = 0.0082
0.0

=Fz+Gy+Hnp

=L y+ z

the

The observer equations

at all flight conditions, so it is only
L. Here, these matrices are given for
and 17.
[ -0.0292 -0.0781
= 0.0572 |_9 = 0.0577
0.0 0.0
[ -0.0786
= 0.0582
0.0
[ 0.0314 -0.0040
= | -2.3984 Eg = | -2.5619
0.0572 0.0577
T ~0.0152
= | -2.3597
| 0.0582
-0.055 =32.19
-39.62 0.0217
1.0 0.0
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.(;-0,0034;1-0,1575 -32.21
© 0.0072--45.59 - 0.0557 |
| -0.0110 -0.4769 —-32.29
Fg = | 0.0050 -44.76 0.1471
0.0 1.0 0.0
~-0.0245 —0.7923 -32.56
F,3=| ©0.0077 -25.26 0.2852
| 0.00 1.0 0.0
-0.0125 -0.4548 -32.29
F,;=| 0-0067 -41.02 0.1506
0.0 1.0 0.0
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APPENDIX E

PARAMETERS OF THE OBSERVER WHEN THE OUTPUT IS ¢

In this appendix the parameters for the Doyle-Stein observer when the
output is pitch rate, that is, y = q , are listed. The observer

equations used in this case are,

z=Fz+Gy+Hn

~

X 5= My+ Nz

In this case a constant G was used in the design at all flight
conditions, i.e. §T=[ 111 ], and so it is necessary to give F, H, H
and N only. Here, these matrices are listed for flight conditions 3,

6, 9, 13 and 17.

[ 0.0 ] T 0.0 i 0.0
H3 = 0.0001 H6 = 0.0 Hg = 0.0
-0.0163 -0.0088 -0.011
[ 0.0 i C 0.0
Hig = 0.0 H . = 0.0
-0.0069 -0.0055
[ 35.4 ] [ 22.6 ] ; 42.1
= ’ = 2 =
L 12.6 ms 12.9 Mg 6.68
-0.019 -0.01 -0.02
[ 9.2 i [ 22.6 ]
Mls = 14.7 M17 = 11.2
-0.01 | ~0.01
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r -
4482 - -102.6  -4349
Ny = | —658.5  704.5. - 633.
[ -1.a 0.03
5114 -123.5 —-4995
N, = | —1021 766 985
-1.6 0.02. 2.5
4983 -238 —4785
Ng = | 1255 847 1173
-1.5 0.06 2.5
17255 -110.6 -1672
Nig =| —926 467 388
-0.5 0.02 1.5
-6256 -132.8 -6165
N,; =| —1588 742 1540
-1.8 0.02 2.9

The F matrices here, as already known, are all diagonal, and so they

are the following,

-0.0175 0.0 0.0

F3 = 0.0 -0.9859 0.0
0.0 0.0 -0.01
-0.0167 0.0 0.0

F6 = 0.0 -0.6226 0.0
0.0 0.0 -0.01
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13

17

|—0.0173

0.0

-0.0307
0.0
0.0

-0.0155
0.0
0.0

- 0.0 e
-0.3386 0.0 | .o
0.0

0.0
-0.5308
0.0

0.0
-0.4439
0.0

-0.01

0.0
0.0
- =0.01

0.0
0.0
-0.01
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APPENDIX F
PARAMETERS OF THE OBSERVER WHEN THE OUTPUT IS 0

In this appendix the parameters for the Doyle-Stein observer when the
output is pitch attitude, y =0 , are listed. The observer equations
used in this case are,

z=Fz+Gy+Hn

X~ My+ Nz

In this case a constant G was used at all flight conditions, i.e. Gt

=[1 1 1], and so it is necessary to give F, H, M and N only.

Here, these matrices are given for flight conditions 3, 6, 2, 13 and

17.
T ~0.0001 T T 0.0001 ] -0.0001
Hy = ~0.0008 Ho = -0.0020 Hy = -0.001%9
0.1433 0.1312 0.0804
[ 0.0 i T 0.0001 ]
Hig = 0.0005 Hy, = 0.9005
0.0665 0.0947
[ —7.31 ] M 22,37 ] -64.8
”3 = | 737.62 MG = 791 Mgy = 831.5
2.95 , | 3.26 3.53
[ -73.35 ] [ —59.8 ]
M s = 491.2 M, o= 757.3
| 3.41 | 3.45 |
43.62 -33.2 2.58
N, = —676.9 4.88 246.7
0.522 -0.002 -13.9
44.6 -33.748 6.91
N, = —166.6 6.79 -255.4
' 0.25 -0.0038 ~14.6
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- . .
41.5. -34.8 19.6 4
= | —275.9 . -~ 9.07-i —260.9 |-
T70.081  -0.0022 -15.05
47.55  --35.1 38.1
N, = | -243.2 8.8 —-255.4
0.1383 -0.0079 -14.62
, 33.64 -33.5 20.38
Ny, = }—320.9 8.71 -257.38
0.1279 -0.0036 -14.98

The F matrices heré, as already known, are all diagonal, and so,

-0.9859 0.0 0.0
F, =| 0.0 -0.0175 0.0
0.0 0.0 -4.0
| J
-0.6226 0.0 0.0
Fe = | 0.0 -0.0167 0.0
0.0 0.0 -4.0
| -0.3386 0.0 0.0
Fg = | 0.0 -0.0173 0.0
0.0 0.0 -4.0
-0.5308 0.0 0.0
Fia=| 0.0  -0.0307 0.0
0.0 0.0 -4.0
-0.4433 0.0 0.0
F,=| 0.0 -0.0155 0.0
| 0.0 0.0 -4.0 ]
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