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Abstract

It is argued that traditional models of urban development are characterised by an
aggregate mechanistic description of statistical units. Furthermore, important aspects of
transportation are not included in these models, but urban development can be regarded
as a combined process of land use change, transportation system and lifestyles. New
- developments in evolutionary theory provide a new paradigm for a microsimulation
approach on the level of individuals, which accounts for diversity, learning and change
in the population of the modelled system.

In this thesis a framework for agent-based simulations will be presented for which this
new evolutionary theory provides the theoretical background. The essence of the
approach builds on the mutual interdependencies between all system elements, in this
case inhabitants and their environment. This principle is extended to change in the
interactions of the system over time, leading to an adaptive system that mutually
specifies all its elements over time.

On this framework an adaptive agent-based model for the use in urban simulations is
built. The agents are equipped with a set of intrinsic needs, the satisfaction of which is
expressed through a set of corresponding budgets. The budget state is fed into a Fuzzy
Logic rule base for decision making. As opposed to many existing approaches to
microsimulation, the agents are designed to change their behavioural rules during run
time according to experience. Different adaptation strategies are tested and compete
with each other.

The results of the model vindicate the conceptual framework. The essence of the
underlying theory - mutual specification based on satisficing as opposed to
optimisation - leads to a cognitive approach to the simulation of socio-natural systems.
Microsimulation based on adaptive agents can help integrate many aspects of urban
models, which are conventionally treated by separate models and can help clarify the
implications of change for the inhabitants of an urban system.
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AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

1 Introduction

This short introduction into the topic of this thesis - and the underlying motivations to
carry out the research in the first place - will take the reader through a brief outline of
shortcomings of existing work. These will be treated in more depth in Chapter 2. The
next section then defines the scope of the project. Here the aims and objectives derived
from the original motivation will be described in some detail. An itinerary through the
rest of this thesis concludes this introduction.

1.1 The Motivation for this Project

The motivation for this research was borne out of the conviction that many of the
existing models of urban land use and transportation leave out crucial areas, which can
influence the outcome of a modelling exercise considerably. For a start both issues -
transportation planning and urban planning - are dealt with by different disciplines both
in the academic world and in practice. Transportation planning would consider the built
environment and the inhabitants of a city as a given constraint and would work out
solutions based on this proposition. Only recently more research into the reasons for
traffic and how to influence the volume of traffic has started. On the other side urban
planning is usually concerned only with the built environment and the number of
inhabitants as well their needs for infrastructure. In the case of transportation however,
the solution is left to transportation planning. Models, which explore possible futures
built by either of the two disciplines, suffer from the same division of the subjects, and
are restricted to either of the views. In reality traffic has to be regarded as a consequence |
of both the built environment and the distribution of land uses. In reverse, available
transportation determines to a good part where new developments are built. For
instance, greenbelt developments would not exist if the motorcar were not widely
available, because these areas are not accessible with other means of transport. This
mutual dependency reaches even further, as people’s lifestyles play a great role in this
development. Here the mobility, which has been made available by the motorcar, has
changed people’s perceptions about what commuting distances are acceptable, and
where residential areas should be located. The resulting dependency on the motorcar as
the only mode of transport adequate to the resulting city structure is widely regretted,
but it appears to be inevitable if people’s lifestyles lead to the ideal of living in
residential areas in suburban locations.

These interactions have been omitted in most models, which are in use to date.
Furthermore, many of the current models use approaches based on a mechanistic
worldview using optimisation or equilibrium approaches. Recent developments in other
areas of science have produced modelling approaches which can deal not only with
quantitative, but also qualitative long term change of systems, but which have not been
‘widely applied to the fields of urban and transportation planning.

Even empirical models in transportation planning - which at least feature accurate
starting conditions - are admitted by their builders to be able to cope only with
working / shopping trips (E. Kutter, personal communication). This was sufficient when
the main concern of planners was about getting people to and from work. Recently the
growing sector of leisure traffic has gained in importance enormously and its volume is
about to surpass the one of traffic to and from work. The effects of leisure traffic on
urban settlements cannot be underestimated as leisure facilities are built in locations
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which are not accessible by public transport, and the resulting (road) traffic has a severe
impact on the quality of life in formerly quiet areas. The feedback of this development
into human behaviour is considerable. On the one hand side it has become acceptable to
drive to Greenfield sites, which diminishes the quality of life for people living in these
areas. In return local people who like quiet residential areas will consider moving even
further outside the city, because the motorcar is available to them, making trips over
large distances possible.

The most important shortcoming of transportation as well as urban models is however
that these models deal with spatial zones (in urban models) or traffic flows. In reality
zones are populated by people and it is people who decide where to go and how to do
this. People are following rules, which cannot be described with the approaches used by
most models. Furthermore, people change their behaviour over time, because they adapt
to changing circumstances, and people’s behaviour has a huge impact on their
environment. Hagerstrand (1970) was the first to mention that regional science ignored
the fact that the subject is dealing with people and not with spatial aggregates, but
during the past 28 years very little has happened to change this in transportation and

urban modelling. '

In this light the idea to integrate an urban model with a transportation model and to base
this on the behaviour of an artificial population was born. The rationale is clear:
Because urban development and transportation are defining each other mutually and all
this depends on the behaviour of people, an integrated approach can account for these
interdependencies. This integrated approach can as well reduce the need for models
dealing with partial aspects of what can be considered to be one problem. A model of
people’s behaviour in an everyday situation can provide traffic flows as well as
migration movements and changing land uses, if run over a longer periods of time. This
means that such a model has to incorporate adaptation of the inhabitants of the model
city, as these change their behaviours and life styles over time.

1.2 The Scope of this Project

The vision outlined above leads to a very complex model, for which the theoretical
justification has to be found, and which has to be implemented and validated as well.
For this purpose, existing knowledge from a multitude of scientific disciplines has to be
integrated in a theoretical framework and put together in a single model. To achieve all
this, e.g. to arrive at a complete urban model, much more has to be done than can be
dealt with in a single project.

The scope of this project had therefore to be restricted to a contribution to an integrated
model of urban systems. The area chosen was to develop and implement an adaptive
agent-based model representing an artificial population in an urban model. This
particular area had been chosen, because the environment (the city) has already been
treated extensively by modellers, so that working models of this part are already in
existence. The new part was to develop a model of human acting, which is then to be
embedded into a model of the environment.

A number of benchmark objectives were derived for this above aim of the project. As
the use of individual actors in an urban model is a novel approach to the problem,
methodological as well as practical aspects had to be considered. This led to' the
following four objectives:
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e To develop a methodology for modelling urban systems accounting
explicitly for the interactions between inhabitants and their environment
as well as the change occurring in these interactions (learning and
qualitative system change). ’

e To test this methodology using a computer model in order to assess its
validity.

e To assess in which area the use of this methodology is adequate and
appropriate. '

e And to gain more insights on the qualitative nature of the modelled
system.

Quantitative aspects of the resulting disaggregated model as well as a real-world case
study were not considered, as the focus of the project was shifted to the methodological
end of the modelling exercise. In any case the quantitative validity of the model could
only be tested in the case of a complete implementation, which was considered
unachievable within the framework of this project.

It will be shown that most urban models do not account for individual decision making,
and prefer top-down approaches based on analogues with physical phenomena, whilst
other models use statistical descriptions of past behaviour, which is extrapolated into the
future without allowing for change in lifestyles. A gap can be identified for there are no
dynamic models of urban systems built on individual decision making in existence.
However, there exist examples of simulations of artificial social systems, and the
methods for transferring these to the urban domain are in existence. The concept of
individual needs is introduced as a driving force for behaviour. The coexistence of
several needs results in a multicriteria approach. Special consideration is given to the
aspects of change in behaviour. ‘

The computer model built displays a variety of possible modes of behaviour for
individual agents, which can be interpreted as different lifestyles. These lifestyles are in
existence for only limited time periods as the individuals inflict change on their shared
environment, which in return requires others to adapt to this change. Although the
model presented works only on a small scale, the developed methodology is considered
very useful for the implementation of simulations of social systems, as it can be used to
explore the implications of change on individual lifestyles.

1.3 Itinerary

In the following a brief overview of this thesis is given. In Chapter 2 a more in-depth
critique of the conventional methods used in urban and transportation modelling will be
presented to complement the motivation for the project given in Section 1.1 above. It
will be shown how these conventional methodologies lead to the results observed. From
this critique a catalogue of requirements on an integrated model of urban change and
spatial interaction is derived.

The gap identified in existing work is the basis for the investigation plan proposed in
Chapter 3. From here more evidence on the implementation methods for a model of
individual behaviour is presented in Chapter 4, which will show that a model fulfilling
the defined requirements is feasible.
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This evidence leads to a conceptual framework, which is presented in Chapter 5. As this
theoretical framework has to be tested in practice (practice here meaning a computer
model) a computer model had to be built. The implementation of this computer model is
shown in Chapter 6. Chapter 7 then summarises the results generated by the model
during the experimentation period. These results and conclusions on the validity of the
conceptual framework are then discussed in the last chapter. Finally, the implications of
this project for possible future work are outlined.

Figure 1 shows the itinerary taken in this thesis as well as the progress of work in this
project.
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2 A Taxonomy of Existing Work in Urban Modelling

The field of urban and transportation modelling contains a multitude of approaches to
the simulation of the development of settlements and their internal structure. As these
models have been developed for a number of purposes and by different disciplines, it is
considered necessary to propose a classification scheme. This can clarify the main
directions of these approaches. A classification makes it also easier to identify gaps in
the existing work, and to formulate the novel approach taken in this project.

The classification takes place in two steps. At first, the basic classification scheme is
outlined. In a second step, the taxonomy is applied to a representative sample of existing
work. These approaches are further differentiated by the methods used to build the
model. The methods are then explained and analysed using the example models chosen.

2.1 Definitions

In order to set up a taxonomy of urban models, the categories of classification have to
be defined. The classification contains four basic categories, which will be explained in
detail below. They are concerning the basic aim of the model, e.g. whether the model is
attempting to explain a given phenomenon with a theory, or whether the model is built
in order to describe phenomena and possibly extrapolate their tendency into the future.
Secondly, the level of description determines the resolution of the results of a model.
The third category is classifying how time is treated in a model. This is resulting in
either a static or a dynamic model. Finally, social systems such as cities do not only
contain the physical environment, such as houses, roads and other infrastructure, but
they are populated by people, whose actions have a major impact on the way the system
is developing.

2.1.1 Area of Interest

In the field reviewed there exist two broad areas of models. The first category is
concerned with urban development, usually in the form of land uses, whilst the second
area of interest rests with traffic patterns and the forecast of future traffic volumes.
Urban models can be divided into four sub-categories: Economic models, models of
settlement structures, models of population dynamics and land use models. Economic
models have their roots in location theory, and the main objective of these models is to
determine the optimal place for a company in order to minimise transport costs and to
serve markets best. Although there exists a vast body of literature in this area, only
some classic theories and models will be referred to in this place, as most of these
models do not aim at the simulation of urban systems, but are better placed in the realms
of micro-economics.

Models of settlement structures are quite similar to those of land use, the main
difference between the two areas being that the former focus on the topological aspects
of urban systems, whilst the latter are concerned with the future development of land
uses. Finally, population dynamics models deal with the development of the population
.a settlement as well as the dynamics of migration processes.

The other broad area concerned with urban systems are transportation models. These
can as well be divided into four main aspects. The classic area of transportation models
is dealing with the projection of future demand for transportation, resulting in
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origin/destination volume models. The second area builds on the origin/destination
models and aims at assigning the traffic volume to a transportation network. In this
context, modal-split models become important, as this class of models tries to determine
which mode of transport will be used to make a trip. The last aim of transportation
models concerns the flow of road traffic. Traffic flow models aim at calculatmg the
capacity and the congestion level of road networks.

A number of approaches in the past combined some of the subjects of these above
models, thereby creating hybrid models. Most of these take into account only a few of
the above areas, which is due to the aggregation level of these models. On the other
hand, for a model of land use and population dynamics taking into account the
implications of the existing transportation network it would probably make little sense
to describe the exact patterns of traffic flow in the modelled city. Here the aim of the
model would be to give a broad overview of possible developments without being
concerned about the precise quality of the traffic flow where approximate measures of
congestion would give a precise enough information on the system state.

2.1.2 Explanatory and Descriptive Models

Models can be built for two very different purposes. One class of models is aiming at
explaining observed phenomena. For this purpose a theory is formulated according to
which the model is built. If the model’s results match reality on either a qualitative or
quantitative level, the theory can be assumed to be justified. In this sense the model
helps to clarify properties of the system under consideration. Furthermore, this kind of
model can potentially help to explain the reasons why the system is behaving in the
observed way. This class of model can be regarded as a tool to learn about the modelled
system.

This objective is quite different from a descriptive model. A descriptive model is aiming
at reproducing the observed behaviour a system as closely as possible. This class of
model has often been used to extrapolate past behaviour into the future in order to make
forecasts about system states. The methods used are in line with the different objectives
of these two classes of models. While ‘descriptive models usually use methods relying
on statistics, which can give a reliable description of past behaviour, explanatory models
can be purely conceptual (e.g. not using simulation methods at all) or rely on theoretical
assumptions captured in differential equations, for instance.

However, a theory-based model, which according to the definition proposed here would
be classified as explanatory, can in certain circumstances reduce to being simply
descriptive. This is the case for theories, which are used as analogues for phenomena
- encountered in different domains. One example for this will be encountered in Chapter
2.3.2. The so-called gravity model is built on an analogue between the gravitational
force in physics and the distribution of travel distances and trip frequencies. While the
law of gravitation can explain planetary motion, for instance, and deliver a reasonable
explanation for this phenomenon, the gravity model cannot deliver a reason why people
choose to behave in traffic in the observed way. The gravity model can therefore only
deliver a description of phenomena and not an explanation, although it is based on a
theory.
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2.1.3 Aggregation Level

The aggregation level chosen in a model determines how detailed the phenomena
created by the model are. Low aggregation levels lead to models that can deal with
individuals or social groups when dealing with a population or with individual plots in a
real estate market. High aggregation levels simplify the description of the system. This
can be very important if the system is big or complex, so that significant gains in the
speed of a computer model can be made. The other danger with low aggregation levels
lies in the reproduction of unimportant detail, which can obscure other important
processes, thereby contradicting the model’s aim of providing information about the
system. ’

Highly aggregated models in land use are usually working on the level of city quarters,
whereas high aggregation levels in transport models mean that the traffic volume is
computed on the level of flows without referring to individual participants. Low
aggregation levels mean that the model is based on socio-economic groups in the
population, who are described using statistical methods. In land use models, however,
low aggregation levels lead to smaller spatial units of description, without necessarily
referring to the population.

2.1.4 Static and Dynamic Models

There are two basic approaches to the treatment of time in modelling, leading to very
different models. The static approach applies the model’s mechanisms to a start state
and computes the end state on this basis without explicitly referring to the process
between these points. Constraints do not change during the model’s operation. It is
possible to run static models for consecutive time periods, but in this case all constraints
which were valid for the start state will have to be extrapolated to match the new start
conditions of the model. This requires either the modeller to do this “by hand”, or sub
models have to be built to do this. Dynamic models on the other hand are built on
descriptions or theories on the processes taking place in the modelled system. This
approach can be run for infinite time periods without requiring adjustment of
constraints, because these have to be treated as part of the model as they are part of the
processes taking place.

In a computer model the continuous flow of time has to be divided into discrete time
steps, which - if chosen small enough - approach the continuous description given by,
for instance, a differential equation at the cost of increased computational effort. For
most applications of dynamic models a rather coarse time step might be good enough as
many processes in urban systems take place on time scales of months or years.
However, it has to be determined for each application what step width is taken, as the
representation of time can have grave consequences for the model’s results. Too wide a
step width might cause the model to skip turning points in development, while a very
narrow step size increases computational effort. In general it can be said that small
increments are to be preferred over large ones, but the trade-off with the required
computer power has to be considered at all times.
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2.1.5 Representation of Individual Decision Making

Another issue in the representation of social systems (and cities have to be regarded as
such) concerns how its inhabitants are incorporated into models. Most urban models
account for the behaviour of inhabitants in the form of constraints as their aggregation
level is set at a high level. The precondition for an explicit account of individual
decision making is however a low aggregation level. The lowest aggregation levels to
be found are socio-economic groups and very rarely individuals, which are a statistical
description of lifestyles based on age, status and income levels. This means that
individual action is considered at a level of behavioural observation, and no reference is
made to the underlying motivations for this observed behaviour.

There are some approaches to individual decision making in existence, though. Most of
these try to explain behaviour in respect to economic measures or the specific utility of
behavioural alternatives. Only very recently approaches to decision making based on
research in cognitive science have been made. These approaches are very promising in
respect to the representation of individual decision making, but lack other aspects of a
holistic approach to the representation of an urban system.

As most urban models describe the development of urban systems from the top down by
defining interactions between land uses and resulting migratory and traffic flows, the
impact of cumulative individual behaviour and its changes cannot be accounted for. On
the other hand an approach to the simulation of individual behaviour from the bottom up
can account for changes on higher levels of observation, thereby reversing the
traditional modelling hierarchy. Instead of assessing the implications of urban change
on individual behaviour, the implications of changes in individual behaviour on the
urban system are modelled. This can give further insight into the actual processes of
urban change and possibly influence the way future aggregate models are built.

2.2 The Basic Classification Scheme

The above definition of classification categories forms the basis for a taxonomy of
existing work in urban modelling. Figure 2 shows the entire scheme. It has to be noted
that only 24 out of 128 possible classifications have been identified. In the case of urban
economic models only the traditional approaches have been incorporated, and there
exists further work, which is considered outside the scope of this project. Earlier
approaches are almost invariantly static with the dynamic approaches appearing later
on. The majority of models works on a high aggregation level as well.

Whereas there exist numerous hybrid approaches, for instance combining models of
land use with population dynamics or traffic volume with land use, there are only two
categories in this classification which indicate that individual decision making has been
accounted for in a model. This is extraordinary, as it would appear logical at first sight
to base a model of a social system on a model of its inhabitants’ actions. However, it
has to be taken into account that this leads to a very large model as a city can have up to
several million inhabitants. This was not feasible in the past when available computer
power was very much limited. In addition to this such a model would generate huge
amounts of data that would be extremely difficult to analyse.

From a systemic point of view is appears desirable to integrate as many areas as
possible into a model of urban development, but this will results in a very large model
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accounting for all possible influences. This aim will almost certainly result in a
compromise on model generality, precision and realism as outlined by Levins (1966) for
the field of modelling population biology. Traditional approaches to urban modelling
have either focused on the precision of results, when the aim of the modelling exercise
was geared towards forecasting future development, or they have tried to be as realistic *
as possible when describing the behavioural patterns of socio-economic groups.
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Figure 2: A Taxonomy of Urban Models

The gap identified in the field of representation of individual decision making can be
filled with a model which would be geared towards generality, as the multitude of facets
of individual motivations and resulting behaviour will clearly be difficult to capture
with precision. Realism as well would have to be sacrificed to a good part in order to

10
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account for an explanation of the most basic trends of motivation, but this kind of model
might be able to highlight some general trends in individual decision making. For a
start, such a model could incorporate the development of land uses and the traffic
volumes between these. The model should aim at explaining the processes taking place
on a dynamic level. The place of such a model in the proposed classification scheme is *
indicated in bold in Figure 2.

Urban Models
Population
Dynamics
Settlements and and Land
E ! S, Population Dy if F lation Dy i Use Land Use
Type Y Y Y y | Expl y | Expl y | E: y y vy | Explanatory | Descriptive | Explanatory
Static / Dynamic Static Dynamic Static Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Static Static Dynamic
Aggregation Level High High High High Low High Low Low Low High High High
Representation of|
individual .
Decision Making No No . No No No | No No Yes No No No No
Burgess,
1927; Hoyt,
on Thunen, Christaller, 1939; Harris /
iConceptual Model 1826 Parr, 1981 1933 Ullman, 1945
Gravitation Mode! Lowry, 1964 |Batty, 1976
IEntmpy :
Maximisation Wilson, 1970
Equilibrium :
Methods - Lowry, 1964 |Batty, 1976
[Time Use/ Time Chapin and
Budgets Logan, 1970
Fonesler.
[System Dynamics 1969
White and
Engelen,
1993;
Couclelis, Portugali and Engelen,
1985; Batty Benenson, White and
[Cellular Automata and Xie, 1994 1995 Uljee, 1995
: Dendrinos
Differential and Mullally,
[Equations . ]1981; 1985
Haag et al., Weidlich and
Master Equation 1992 Haag, 1988
Batty and
Longley,
1986;
{Longley,
Batty and
Fothering-
Fractals ham, 1992
" |Avien and : Beaumont,
J Sanglier, : Clarke and
Setf-Organisation 1981 : Allen, 1997b Wilson, 1981
Portugali and
Sanders et Benenson,
Agent-based al,, 1994 1998

Table 1: Classification of Urban Models (Examples)
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Hybrid Models Transportation Models
Land Use,
Trafflc Traffic
Volume, Volume,
Network Network
Load, Modal Load, Modal
8plit and Split and Network
Land Use and Trafflc Volume Traffic Flow Traffic Volume Traffic Flow Load Modal Split Traffic Flow
Type Explanatory | Descriptive -| Explanatory | Descriptive | Descriptive | Descriptive | Descriptive § Descriptive § Explanatory | Descriptive | Explanaory | Explanatory | Explanatory
Static / Dynamic Static Static Dynamic Dynamic Stalic Static Static Static Static Static Dynamic Dynamic Dynamic
Aggregation Level High Low High High Low Low Hgh Low High High Low Low High
'Representation of
Individual Dedision
Making No No No No No Yes No No No No No Neo No
. Hagerstrand,
[Conceptual Model Pred, 1973 1970
IRPUD
Entropy (Wogener,
[Maximisation 1983; 1985) filson, 1970
[TOPAZ
(Brotchis
[Optimisation (Linear §1969, Sharpe
[Prograrmming) 1983)
ardrop,
|Echenique et IRPUD 1952; Smith,
4., 1974; JWegener, 1979; Fisk,
[Equitibrium Methods [Batten, 1963 1983; 1985) Recker and 1980
E McNally,
1986;
IRPUD KGtarmura, Sinha,
[(Wegener, 1984; Pas, Khanna and
[Discrete Choice 1983; 1985) 1988 Arora, 1983
[Statistical/ (Clark, Dix and
[Probabilistic | Goodwin, [Kutter, 1973;
[Methods 1982 1984
[Time Use/ Time
[Budgets Chapin, 1968
Cognitive Garing et al., |
Approaches 1993; 1998
Rasmussen
jand Nagel,
Calluiar Automata 1994
Cordey-Hayes Katn, Deneu-
and bourg and de Lighthill and
Differential [Varaprasad, Paima, 1981; Whithem,
Equations 1982 1985 1955

Table 2: Classification of Hybrid and Transportation Models (Examples)

2.3 An Extension of the Classification Scheme to Incorporate Methods

The above classification of models in urban and transportation planning can only give a
broad overview on the concepts used in the past. For a more thorough assessment of
existing work it appears to be necessary to review the concepts and methods used in
these approaches as well. For this purpose the classification scheme is reformulated in a
matrix which shows the types of models in the columns and the methods used in rows
(Table 1 and Table 2). Examples for applications are indicated in the matrix itself. The
methods will be explained below using the existing work for clarification.

2.3.1 Conceptual Models

One method of model building is to design a conceptual model of the observed system.
A conceptual model is not a method, which can be directly used in a computer model,
but a way of explaining phenomena of the natural world based on a theory. Conceptual
models can therefore be classified as explanatory models. The first conceptual model in
the context of urban development is von Thiinen’s (1826) model of land use around
settlements. This model was of purely economic nature. Von Thiinen related the
transportation costs of agricultural products and their market price. He showed that
there exist concentric zones around a settlement which are predestined for growing
certain crops if a maximum profit respectively minimal transportation costs are to be
achieved. ‘ :
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Figure 3: The Models of Burgess (A), Hoyt (B) and Harris/Ullman (C) (after Garner, 1967,
p- 339)

The aim of a great number of urban models has since been to explain and possibly to
forecast future land use. The best-known conceptual models in this area are
Burgess’ (1927) model of concentric expanding zones, which was later modified by
Hoyt (1939) and Harris and Ullman (1945) (Figure 3). These models explain the growth
of cities on a static basis without referring to processes of individual decision making,
but refer to zones of different land uses.

The most prominent conceptual model of settlement structures is Christaller’s (1933)
theory of central places. This model postulated a hierarchy of settlements in a given
region. On each level of centrality there exist a number of places complementing each
other in respect to the level of services and goods offered in these places. Naturally,
there exist only few places where rare services and goods are offered. Goods required
on a daily basis like food are offered in nearly all places on the other hand. The level of
services and goods available in a location determines the centrality of a place. This
model is of static nature and can therefore not explain how these hierarchies come into
existence. Parr (1981) provided a dynamical perspective on central place theory by
introducing three patterns of temporal change into the basic theory. These are the
formation of a new level, the modification in the extent of a level and the disappearance
of a level of centrality. Although this theory does not describe the process of change in
the central place system, which means that it is not a dynamic model in the strict sense,
it can explain change in systems on a pre-change / post change basis, and it should
therefore be classified as dynamic.

The last conceptual model to be mentioned in this place is Pred’s (1973) city-system
development based on the diffusion of information. Although not referring to the
actions of individuals - information is treated as a flow between zones and not a result
of communication - it can be regarded as one of the first theories, which relate the
development of settlements to incomplete information of the actors in the system.
Growth is seen as depending on the knowledge on innovations leading to new
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possibilities for economic activity. As discoveries are made in a specific place, the
information about this has to get to other places before this new activity can be made
available. Innovation in a given sector of the economy causes increased demand in other
sectors as well, as the sectors of an economy are interdependent. This leads to multiple
growth inducing feedback loops. A sub-model for transportation is developed on similar
principles as well. Innovation in transport usually means a faster, more efficient service.
This leads to a “space-time convergence”, which simply means that more places than
before are accessible. This leads to a concentration process of business in order to take
advantage of economies of scale, which in return leads to more interaction between
places. More interaction means that the relative advantage of the new transportation
system is decreasing as congestion sets in. This creates demand for new transportation
systems, as the new state has in the end brought no long-term improvement over the
previous one. This model is very closely related to Time-Budget approaches, which will
be discussed in Chapter 2.3.7.

2.3.2 The Gravity Model

One of the earliest computational approaches to modelling the interaction between two
places is the so-called gravity model. This approach takes its name from the analogy
with the physical law of gravitation. Here the urban structure is assumed to be static,
and the distribution of employment, services (rarely taken into account in these early
models) and residential areas and their distances is used to make forecasts on the traffic
between those points. The primary concern was to give predictions of weekday traffic
flows to work.

BP)
Iij =G db

Where Iij = the interaction between areas i and j
Pi’Pj = the size of areasiand j
dij = the distance between areas i and j

b = a power or exponent applied to the distance between the areas

G = an empirically determined constant
Equation 1: Basic Equation of the Gravity Model (after Lee, 1973, p. 58)

The assumptions is that the traffic volume is reciprocal to the distance of two origin /
destination pairs, whilst the number of employment / residential use (analogue to the
mass of two bodies in physws) is determining the overall traffic volume. Alternatlvely,
it is also possible to define “attractivities” as a measure of accessibility, economic
activity or “personal” preference of areas instead of using the number of jobs or
dwellings. The advantage of using attractivities over quantities is that it makes it easier
to calibrate a model to survey data, which takes into account the perception of the
population. This leads to an equation very similar to the physical law of gravity, hence
the name of this approach.

14
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The gravity model is static, and works on a high aggregation level without referring to
the actual reasons for people to go from a place to another. Although the approach can
be regarded as being explanatory on its own, gravity-type models are usually calibrated
to observed levels of traffic. In this case the explanation of traffic is reduced to a
description of past patterns, which might lose its validity if the activity (attractivity)
levels are changed.

Another problem with the gravity model is that the physical law of gravitation is built
on symmetric field forces, which is the case in physics, but extremely rare in urban
systems. On this philosophical level it is questionable whether the use of the analogy
can be justified. However, gravity models are widespread in urban modelling, because
of their simple formulation. Example applications can be found in Lowry’s urban model
(see 2.3.5) or as sub-models of dynamic models, such as Batty’s (1976) approach to
land use modelling. As dynamic computer models rely on discrete time steps, it is
possible to use static methods such as the gravity model in each time step in order to
generate a pseudo-dynamic series of data points, which approaches the description by a
dynamic function.

2.3.3 Entropy Maximisation

Wilson (1972) showed that a general form of the gravity model can be derived from
applying Shannon and Weaver’s (1949) information theory to the spatial distribution of
traffic flows. This approach estimates the most probable matrix of trips between a set of
given places by maximising the entropy of the distribution of trips. The model is in its
original form restricted to estimating trips to work starting from a known number of
jobs, number of workers living in defined zones, transportation costs and total
expenditure for this segment of the transportation market. The final equations read as
follows:

T, = 4,B,0,D exp(-fc;)

with :
4, = !
ZBij exp(—fc;)
J
B, = 1
! Z 4,0, exp(-pfc;;)
Where
T;: = number of individual s living in i and working in j (to be estimated)

O,: = total number of workers living in i (given)
D;: = total number of jobs in j (given)

c;: = cost of travelling from ito j (given)

Equation 2: Equations of the Entropy Maximising Model (after Wilson, 1970, p. 5)
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These equations return the most probable distribution of trips to work between all places
i and j satisfying the following constraints:

ZT,; =0,
ZT;,- =D,

Jj
S5t =C
i

‘With:
C: =total expenditure on travel to work (given)

Equation 3: Constraints of the Entropy Maximising Model (after Wilson, 1970, p.4)

While this formulation uses economic cost for the estimation of the trip matrix, it is also
possible to use the trip time or a combination of factors instead, because the requirement
to know the total expenditure on transport does not appear in the final equation
satisfying the given constraints. The entropy model proves mathematically that the
gravity approach derived from observation in fact is the most probable distribution of
trips, when Shannon and Weaver’s theory is applied to transportation.

The generality of this formulation has meant that this approach was featured in many
urban models, such as Wegener, 1983; 1985. Other uses of the maximum entropy
approach include modal-split models (Wilson 1972) and models of residential location
(Wilson, Rees and Leigh, 1977). Although it gives credibility to the approach it still
does not overcome the basic limitations of the gravity model, namely the static nature of
the formulation and its high aggregation level. Reif (1973) already suggested either to
introduce behavioural parameters into the entropy approach, or to disaggregate the
model by using data from socio-economic groups as people’s behaviour is only
incorporated in an averaging way.

2.3.4 Optimising Models

Optimising models in urban planning have a different objective to most other
approaches in the field. This class of model uses an optimisation algorithm such as
Linear Programming (LP) in order to derive the most efficient configuration of a
settlement as opposed to the aim of explaining or describing the development of an
urban system. Only one approach will be outlined here. Sharpe (1983) proposes an
optimising model based on three criteria using the TOPAZ (Technique for Optimum
Placement of Activities in Zones) algorithm developed by Brotchie (1969):

1. Minimise the total combined energy use (or cost) of transport.
2. Minimise the total combined energy use of land use development.
3. Minimise the total combined cost of demolition of existing activity.

This model is designed to provide guidance for planners in respect to the development
of future zoning plans for a given community. This overall objective, however, appears
to be hard to reach with a global model. Sharpe points out: “The use of such an
objective ignores any diversity that may occur in the trip distribution due to individuals
pursuing their own separate objectives rather than complying with the objective to
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minimise total community cost.” (Sharpe, 1983, p. 52). Energy efficiency is desirable
for a community, but it cannot be determined with a macro scale model whether the
required behaviour of the population can be attained in the context of current (or even
future) lifestyles. Furthermore, the approach reaches a static solution for a given
increase in population or economic activity. In reality, this solution would only be valid
for exactly this state of which it is not known if it will be reached. Even if the projected
state were attained, it would require all economic activity such as land use development
to comply with an imperative planning law.

2.3.5 Equilibrium Methods

Many early urban models use the assumption that any developments in the modelled
system reach equilibrium at some point in time. Equilibrium approaches are the most
prominent feature of transportation network load models, and they underlie all iterative
solutions. In land use modelling there are static as well as dynamic approaches which
use the equilibrium assumption. Both will be treated by example.

The first - and still one of the most prominent - approach to modelling land use
mathematically, e.g. using a computer model, was developed by Lowry (1964) for the
Pittsburgh region. His model started the so-called “quantitative revolution”, which
provided researchers with the ability not only to assess urban growth qualitatively with
conceptual models (2.3.1), but also to estimate the quantitative impact of change.

Lowry’s model starts with the current number of employment in the in the so-called
“base sector” and its spatial distribution. The base sector comprises the industries
producing for the local area plus those exporting services and goods from the area. Then
the existing employment is used to calculate the land needed for residential use. In the
next step, the model calculates the number of resulting employment in the tertiary
(service) sector, which is needed to supply the population employed in the base sector.
This employment is then spatially allocated, thereby taking up land. In an iteration loop,
the now increased population is again reallocated to the residential zones, feeding back
into an increased demand for services and goods.

In Lowry’s approach a gravity model (see 2.3.2) is determining the exact localities for
residential and commercial / industrial use based on the accessibility (either in terms of
geographical or time distance) of each place. Accessibility is in return a predetermined
constraint of the transportation network, which is as well assumed as static over time.
Mathematically, the model is iterating towards a static solution from a system of linear
equations. Because there is only one input parameter (the employment in the base
sector), it cannot produce any dynamics over time and the solution will always be at
equilibrium of the equation system.
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Figure 4: Flow-chart of the Lowry-model (after Lee, 1973, p. 98)

This model is working on the aggregate level of zones, and its set-up can only reflect
the average preferences of the population in their allocation to residential areas. The use
of a gravity model means as well that the choice parameter for the allocation of
population or land uses is economic (transport cost) or based on (time) distance to areas
where employment can be found.

A dynamic formulation of an aggregate land use model incorporating also aspects of
transportation based on equilibrium can be found in Batty (1976, p. 313 ff.). In this
model the algorithm used in the Lowry model is extended to allow for relocation of
residents and businesses in each time period. Supply and demand for residential land
use is separated and the residential allocation module then assigns the demand to the
supplied floorspace. However, the total floorspace available in the model is treated as an
exogenous variable, so that this crucial parameter has to be fed from outside the actual
model, which makes the dynamic approach weaker than it could be. In addition to this
time lags are introduced for changes to have effects on the attractivities of certain
locations. The model incorporates as well the resulting traffic between zones. For this
the entropy approach is chosen which calculates a. trip distribution matrix. This
distribution is then assigned to the transportation network on the basis of the shortest

" routes between zones.
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Figure 5: Flowchart of Batty’s (1976, p 311) Dynamic Urban Model

The algorithm is designed to converge towards an equilibrium solution over time. This
conforms to economic theory as it is assumed that supply and demand in a market reach
an equilibrium over time. The application of the equilibrium approach for dynamic
urban models is known as “Harris’ principle” (Batty, 1976, p. 297), who argues that “...
for well constructed urban models a set of equilibrium solutions will be available for
most inputs of policies and environmental conditions.” (Harris, 1970 after Batty, 1976,
p. 297) “This principle suggests that although disequilibrium may be the usual condition
of a dynamic model, such a model should always be tending to equilibrium and, in the
absence of further stimuli, should reach this state.” (Batty, 1976, p. 297)

Although this approach is technically dynamic, the assumption that all urban systems
converge to equilibrium conditions biases the dynamic behaviour of the model towards
an equilibrium state, so that is cannot be tested with the model whether this is really the
case. Later approaches built on complex systems theory (see 2.3.15) explicitly renounce
this view and use differential equations for the description, which can, but not
necessarily will, lead to equilibrium states.

Equilibrium methods have been used in network load models as well. Wardrop (1952)
developed the first algorithm. Fisk (1979) describes this method as follows:

(The user equilibrium principle) ... “governs path choice behaviour,
assigning each tripmaker to the least cost path between his origin and
destination in such a way that his path cost cannot be reduced by switching
to another path. For uncongested networks this problem reduces to an all-
or-nothing minimum path assignment; for the congested case, link travel
times are functions of the assigned link flows and the equilibrium state is
determined as the solution of the following system of nonlinear equations:
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A :isthe set of directed network links
u;, :istheo—d travel cost between o—d pairi
:is the number of vehicles on path k between o —d pair i
g, :istheinput flow between o—d pair i
S,(f,) :isthetravel cost on a link a assumed to be a continuous increasing
Sunction of the link flow f,
N :is the number of o—d pairs
K, :is the number of paths between o —d pair i

|1 if alink lies on path k between o —d pair i
o otherwise

ak,i

I, :isthe set of integers from1to N.
Equation 4: Network Equilibrium Condition Equations (after Fisk, 1979, p. 305)

These equations are known as the network equilibrium conditions.” (Fisk,
1979, p. 305)

This approach is, although in many variations and improvements (see for instance
Smith, 1979; Fisk, 1980), still the most dominant network assignment model in
transportation planning. The basic assumption of equilibrium means that all drivers /
participants know exactly how long every path between two points A and B will take, so
that everybody will choose the shortest path in terms of time or cost given the total
network load, which will result in overall equilibrium. In reality in a congested network
all links would be utilised up to capacity (or above that, leading to congestion), but it is
questionable whether all traffic participants would choose their user optimal path, as
they might not be aware of better alternatives to the route used. Even if better routes are
made known to drivers, it is not sure that these routes will be adopted. Especially in the
case of faster routes requiring longer detours compared to the shortest link, it has been
observed that these have been rejected by drivers despite their advantage over shorter
routes. In aggregation, the result might come near the solution iterated by the
equilibrium approach, but this does not reflect the cognitive processes of the traffic
participants. '
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2.3.6 Discrete Choice Theory and Utility Theory

Discrete choice theory and utility theory have been closely intertwined in their use. This
technique is used to determine aggregate distributions of choice between given
alternatives. The theory is built on the concept of utility. Utility denotes the usefulness
of an action in terms of a possible gain from choosing this action or alternative. As it is
not straightforward what people actually like about doing things, there are several ways
of formulating utilities. These can be derived from the actual process of doing
something (like enjoying to go out with friends) or from regarding activities as useful
for their outcome (like going to work in order to earn money, which has some use for
buying things) (Garling, Axhausen and Brydsten, 1996).

In the simplest version all individuals are assumed to try to obtain the maximum utility
from the activities chosen. This choice process is therefore optimising and obeys the
principle of rational choice. It requires in this case that all individuals know about all
aspects of all available alternatives, and that they have the same preferences, so that a
general utility function can be formulated. In order to take into account irrational
behaviour and incomplete knowledge as it is very frequently observed, the utility
functions are transformed into probabilistic formulations, which allow for certain
observed distributions of choice. The utility function can in this case be defined using
regression or factor analysis or other statistical tools applied to empirical data.

The best-known probabilistic formulation of a discrete choice model is the so-called
multinomial logit model. Here the ratio of utilities between alternatives determines the
probability of choice. It requires, however, that the systematic utilities are linear in their
parameters.

y €X (bxin)
P, =
> exp(bx,,)
jeC,
with
b : a vector of unknown coefficients

X;3 X, - vectors of known, independent varables describing alternatives i and j

.
in?

Equation 5: Multinomial Logit Model (after Lerman, 1983, p. 201)

Utility theory has a very central place in classic models of individual behaviour. In an
urban context, these models are found in the area of activity scheduling models (see for
instance Hirsh, Prashkea and Ben-Akiva, 1986; Kitamura, 1984; 1988; Mahmassani,
1988; Pas, 1988; Recker and McNally, 1986a; b) and in mode choice models (for
instance Sinha, Khanna and Arora, 1983). Utility-based discrete choice models can
easily be calibrated to describe observed behaviour, but this kind of model cannot
explain why the alternatives are chosen in the way described by the model, as it is not
clear whether the modelled people have the same definition of utility as the modeller.
Formulating a utility function means as well that it contains the average utilities of the
entire population. Another danger of calibration lies in matching the model for exactly
one case, the sample data. In that case the model cannot be used for any other
application, because there exist spatial differences, like the layout of a different city,
where there exist different lifestyles, as well as in time, because the preferences of the
population might change. All this makes the formulation of an elaborate probabilistic
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model for just one case questionable. The problem of overcalibration is matched with
the opposite effect of undercalibration, which means that if the model is calibrated to
too big a sample it might just not say anything at all, because the regional variations are
wiped out by averaging. The average behaviour of a large sample leads to low precision
in the model’s results and makes its use questionable again. Furthermore, it also
questionable whether the formulation of a single, usually additive, utility function can
actually account for the richness of motivations leading to the observed behaviour of
people.

2.3.7 Time Budgets and other Methods based on Time Use

Time Budgets and their use by people have been mentioned in the literature as early as
1939 (Sorokin and Berger, 1939, after Kutter, 1973.). The central ideas of Time
Geography have been developed from this concept to the point that time is a major
constraining factor in human behaviour. Studies by Chapin (1968a, b) linked the use of
time by people to the satisfaction of personal needs (for the concept of human needs see
Chapter 4.3). Time was then linked to the use of space in an urban context (Chapin and
Logan, 1970). The conclusions of this work are quite far-reaching. In the context of
transportation, the relationship between available time and available modes of transport
determines the maximum spatial range (and thereby the possible activities) of an
individual.

In the course of other studies on time use (Szalai, 1971) it has become clear that time
use is focused around primary (mandatory) activities such as work. Secondary activities
(such as socialising with other people) on the other hand are dependant on available
transport which enables people to reach more places where these non-mandatory
activities are offered. Of course, the availability of transport is very much connected
with the standard of living and the traditional roles of family members. Obviously,
individuals who have access to efficient transport do not spend more time on mandatory
activities. People rather tend to either use their extended range for the given set of
activities by, say, working in a more distant place, or use the time now available to carry
out more non-mandatory (leisure) activities. The idea to save time through providing
better transport, which traditionally underlied transportation planning, has been put in
question by these studies on time use.

Some figures from the National Travel Survey (1975/76 and 1985/86) illustrate this
point. The National Travel Survey. for 1985/86 (p. 20) states: “Speeds for short car
journeys changed little since 1972/73. For long journeys, there were substantial
increases in speed.” On the other hand, the distance travelled on average as well as the
number of journeys increased considerably over the last 30 years (see Table 3). The
higher speed obtained during longer journeys gives those a relative advantage over
shorter ones. This has led to a situation where people travel more often and further than
before. In addition to this the average time required for each journey has increased as
well, so that people now spend more time in traffic than ever. These facts have to be put
into a broader perspective, because people do not have more time available per day.
Here changes in society like shorter weekly working hours, higher disposable income
and increased car ownership have enabled people to be more mobile, and the faster
transportation system has even reinforced this tendency, instead of the intended effect of
saving time in traffic!
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Year "~ Journeys per Average length of | Average Median speed Average
person per week | = journey (miles) speed (mph) duration of
(mph) journey (min)
1965 11.2 - 6.3 n/a 114 n/a
1975/76 12.4 6.9 13.5 n/a 21
1985/86 13.2 7.5 16 12.2 25

Table 3: Key Figures of Mobility (after National Travel Surveys 1975/76 and 1985/86)

Higerstrand (1970) put the results of time-geographic research into a systematic form.
He created a “socio-economic web model”. In this model (see Figure 6) the paths of
individuals are mapped in time-space. As it is necessary to communicate with other
people, the time-space paths have to be bundled forming a “tube”, whereby the distance
between the bundled paths denominates the range of speech and vision as means of
communication. This can be extended to include other means of communications, such
as the telephone etc. It is very clear to see that fast transport increases the range of
people enormously, and that the availability of such transport is socio-economically
determined. '
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Figure 6: Hiigerstrand’s Concept of “Daily Prisms” (after Hiigerstrand, 1970, p. 13)
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The maximum range of individuals is given by the size of the “daily prism” which is
created when a person uses all the time available just to travel at maximum speed
starting from home and returning at half-time. In practice, the maximum prism is rarely
used. In this case it is still possible to determine what the individuals can do during the
remainder of the day. The “coupling constraints” given by the location of homes and
businesses in time-space restrict what activities can be carried out and where, depending
on what means of transport are available to the individual.

The conclusion of these studies should be clear: People’s behaviour is much more
governed by available time than anything else. In this sense, the 24 hours of the day
provide the ultimate constraint for human activity. Therefore a model of human activity
patterns should be based on the limit which is imposed by the fact that there are only 24
hours per day. This leads to another implication: People are always doing something at
all times, and it has to be recognised that sleeping (or recreation) is an activity in its own
right as are working or socialising out of home. The problem how people choose their
activity patterns is dealt with in the next section.

2.3.8 Behavioural Approaches

The classic methods of transport models, such as the gravity model, do not account for
individual behaviour, as traffic is regarded as a flow the size of which depends on the
distance between two points and the specific attractivity of these. Behavioural
approaches to transport modelling are built to incorporate a more diverse view of a
population’s behaviour into a model’s database. More or less all behavioural models use
disaggregated statistical data from surveys, from which determinants of behaviour are
extracted. Kitamura (1988) lists the following areas of interest in behavioural
modelling:

“e Activity participation and scheduling in time and space.
e Spacio-temporal, interpersonal, and other constraints.
- Interaction in travel decisions.
- Trip chaining behaviour.
e Multi-day travel behaviour.
e Interaction between individuals.
e Household structure and roles.
e Adaptation, other dynamic aspects.
e Policy applications.
e Activity models.” (Kitamura, 1988, p. 12)

The main theoretical credo of behavioural research has been that a household’s lifecycle
determines its member’s activity profiles (Clarke, Dix and Goodwin, 1982). The
household is regarded as a metaphor for constraining factors on individual behaviour.
On the other hand the lifecycle stage of a household induces specific needs for activities
(Jones et al., 1983). In a dynamic perspective, change in behaviour is mainly attributed
to the age cohort effect as members of a household progress from one lifecycle stage to
another. It is proposed to conduct longitudinal studies for data acquisition on the
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dynamics of change in travel behaviour. In a later paper Goodwin, Kitamura and Meurs
(1990) criticise the traditional four-stage approach to traffic forecasting (trip generation,
trip distribution, mode choice and network assignment) as inadequate as it is lacking
important dynamic aspects, especially for its lack of incorporation of change in land use
patterns. This is regarded as a crucial element in the generation of transportation
demand. For realistic simulations the incorporation of individual response rates to
change is regarded as a method to improve the dynamic behaviour of such models. The
dynamics themselves, however, are still regarded to tend to equilibrium.

These models are offering the possibility to take into account a set of different
behaviours within a population, but it is still the observed, aggregate behaviour of the.
past (even if it is based on a variety of different behaviours with some dynamics), which
is governing these models. The main achievement, however, of this kind of model is the
incorporation of a relationship between the socio-economic status of people and their
spatial behaviour (for instance in Kutter, 1973; 1984). The combination of social
characteristics with the constraints developed by Time Geography (see 2.3.7)
determines the probabilistic activity profile of a socio-economic group over the average
weekday.

Another innovation is the incorporation of the so-called “journey-concept” into -the
model. The journey-concept’s main innovation was to take into account that trips have
usually more than one purpose, a trip to work can be used as well as an opportunity to
go shopping on the way back. As opposed to earlier models, which regarded trips as
only serving one single purpose, it was now possible to incorporate multiple activities
into a single trip. This is for obvious reasons leading to a more accurate projection of
the demand for transportation.

In the context of the proposed classification scheme for urban models, all these
approaches have still to be classed as static, even if there have been references to
dynamic methods. They are descriptive, too, as they rely almost exclusively on
statistical methods, which can only capture the processes at the time of data acquisition.
The aggregation level is low, but the use of behavioural groups does not allow for the
representation of individual decision making.

2.3.9 Cognitive Approaches

The process of activity scheduling is of particular interest for a model of urban
development based on individual acting. Activity scheduling models were first
introduced to model the chaining of trips motivated by everyday activities. Because the
timeframe for activities is given as the day, decisions on what activities to carry out
have to be made. Whilst earlier approaches almost inevitably used utility theory (see
Chapter 2.3.6), a more cognitive model is presented by Gérling et al. (1993, 1998).

For the first time the satisficing principle introduced by Simon (1981, see 4.1) is
explicitly used in an activity scheduling model. This means that all decisions about what
activity to take up are subject to available knowledge about opportunities. This
knowledge is stored in a cognitive map. If opportunities are encountered on a regular
basis they can be stored in the cognitive map, whilst rarely used opportunities are more
and more difficult to retrieve over time.
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Figure 7: Flow-chart of Girling et al.’s (19-98, p. 667) Activity Scheduling Model
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There are two different schedules in the model, a long-term calendar and a short-term
calendar hold information about what activities have to or can be carried out at which
times of the day. The information available from the cognitive map and the long-term
calendar are determining the contents of the short-term calendar, which covers one day.
Routine (frequently repeated) actions from the short-term calendar on the other hand
will influence the contents of the long-term calendar.

As this model can be regarded as a sub-model of a larger scale transportation model,
which are usually not dynamic models, but only project a forecast to one specific point
in time, a fixed rule set is used in the scheduler arranging the daily timetable. This is
sufficient, provided that the rule set is accurate enough to describe the processes of
scheduling. On the other hand, there is only one rule set defined in the presented model
of one individual. If this were applied to more than one household, the effects of
diversity would not be accounted for. Consistent with the limited dynamic scope of this
model is that it relies on an objective outside world, which cannot be influenced by the
actions of the individual. These fixed boundary conditions do not allow for individual
perception, as the impact of experience will be the same for all individuals.

Experience is one central point of this model, however it leads to a learning process
which can be regarded more as an optimising rather than an exploratory process, -
because knowledge can only be acquired according to the fixed rules which govern the

scheduling of activities in the first place. The model can account for the formation of

routines, which are one important part of daily life leading to a more or less fixed -
timetable for standard processes without excluding deliberate action.
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2.3.10 System Dynamics

The best-known system dynamics model for urban system is probably the one by
Forrester (1969). The advantage of system dynamics over the iterating static model is
that a dynamic solution is formulated, e.g. the model calculates the entire system state
for a series of discrete time steps. The use of extensive feedback loops resulted in what
should be considered to be one of the first complex systems models. However, all
events were calculated on the basis of average behaviour for a population of average,
uniform type.

Forrester’s model has been criticised by a number of authors. Cordey-Hayes (1974)
summarises his critique as follows:

“1. Forrester’s results do not follow from counter-intuitive systems
behaviour, but follow directly from the particular structure of his model,
and from his evaluative measures. In essence, the model is considered to
be a novel way of expressing his subjective views.

2. Minor modifications to the migration equations give rise to markedly
different values for his evaluative measures, and at the present there is
scarcely sufficient understanding of urban processes to specify these
equations adequately.

3. Despite these major criticisms, the methodology is considered a
potentially useful approach to simulation modelling, particularly as a
contextual framework for more specific subsystem studies.” (Cordey-
Hayes, 1974, p. 174/5)

In fact the model is extensively using exponential growth functions, which is an
assumption by Forrester. In this non-linear framework minor modifications to the
functions used can result in completely different outcomes. In this sense, Forrester’s
approach is a tool, which can be used to test assumptions and theories on the nature of
systems, but it will not deliver a forecast of what will happen in the future. On the other
hand the assumed mechanisms can deliver results similar to the observed reality, so that
a “wrong” model of the system might deliver “correct” results. This case makes it very
difficult to validate a model, which does not use a descriptive approach, but tests the
assumptions of the modeller against reality.

2.3.11 Cellular Automata

Cellular automata are dividing a spatial area into discrete units, the so-called cells. For
each cell there are transition rules, which change the state of the cell into another state if
other, neighbouring, cells around it have taken a given configuration of states at each
time step. The state of a spatial cell in an urban model would be its land use. The
number of cell states taken into account for a transition of state is limited as the number
of neighbouring cells increases by the square of the distance to the cell in question. It is
therefore a model limited to local interaction. A current model using cellular automata is
the one by White and Engelen (1993; Engelen, White and Uljee, 1995). In this model
the actual dynamics of cellular automata for local interaction are combined with a
Lowry-type model (see 2.3.5) for longer-range interaction, because of the above
limitations of cellular automata.
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It has been pointed by Couclelis (1985) that this type of model has strong resemblance
in its results to complex systems models built on differential equations. However, there
is some criticism on how far the methodology is suited to represent urban systems.
Firstly, cellular automata are discrete time models. This results in perception and action
at the same instant in time as defined by the transition rule for each cell. If the cell is
meant to represent human action in at a point in physical space (for instance a developer
deciding whether to build additional housing), this does clearly not conform to reality
and will distort the time frame of the model. The second point of critique is related to
this and concerns the issue in how far a cell can represent spatial units, because the
interactions between cells are arbitrary and can be between any cells.

Batty and Xie (1994) propose a probabilistic framework for the simulation of urban
structures based on cellular automata. The deterministic transition functions for the cells
are reformulated in a probabilistic way, so that development in a cell’s neighbourhood
results in a probability for the cell to change state. In Batty and Xie’s example this state
indicates whether the cell is built up area or not. With this methodology it is possible to
generate structures analogue to a growing city, which is discriminating only between
built-up area and non-built-up area. A similar objective can be found in work using
fractal geometry, see 2.3.14. -

An extension to the classic cellular automata methodology called “cell space” has been
used by Portugali and Benenson (1995) to simulate the effects of migration into an
existing city. Like cellular automata, the cell space consists of a number of cells, which
can take up a number of states governed by transition rules. Each cell can have a
number of occupants, which determine its state. This model works on a very low
aggregation level as all occupants of cells are explicitly accounted for by their status and
“tendency”. Each cell is considered to represent a single house, and these can either be
privately owned or rented. As the potential to buy a house is a diverse function of the
status of the potential occupants, this is considered to influence the overall status of the
neighbourhood (through the inter-cell transition rules).

This dynamic approach builds explicitly on diversity of the system elements on a very
low aggregation level. The set-up leads to self-organisation (see 2.3.15) in the system
which makes the effects of individual action difficult to foresee, but this can be explored
by using planning games such as this model. Again, the interactions between the system
elements are an assumption of the modellers and not calibrated to a description of past
observations. However, in this example - the mass immigration of Jews from the former
Soviet Union into Israel - the situation had never before been observed in reality, so that
there was no data describing such events in existence. Planning games based on
heuristic assumptions can be used in these circumstances to explore possible futures,
and might at the same time provide answers of a higher quality than an application of
descriptive methods. :

In Portugali and Benenson’s model a spatial segregation of different inhabitant status
groups was observed in nearly all cases depending on the migration rates of the different

“groups. This coincides on a qualitative level very much with the observed reality,
although this model will not be able to make quantitative statements about the tendency
of the system, as the definition of the system interactions is only coarse.
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2.3.12 Master Equations

Master Equations have been developed in statistical physics in order to describe change
in stochastic systems. The formalism of the master equation incorporates, in
simplification, the probability distributions of all possible rates of change into the
equation. The result of a Master Equation is therefore a probability distribution of
events and processes (Allen, 1988). The shape of this distribution is of great importance
for system behaviour. If there is only one peak, it might be sufficient to reduce the
description to the point of highest probability or the average value, which results in a
differential equation (see 2.3.13). If there exists a multi-modal distribution of solutions,
however, the average will completely misleading, as its value will almost certainly be
located in an area of low probability and the solution of highest probability ignores
other possible, but less likely outcomes. These multi-modal solutions correspond to
different possible pathways in reality, out of which only one is followed at a time.

On the other hand, if there is noise present in the system, e.g. there are fluctuations in
the value of parameters and variables, it is possible that the system changes from one
mode of behaviour into a different one given by the peaks in the probability distribution
of the Master Equation’s solutions. The fluctuations “test” the system for instabilities
and if the fluctuation is large enough the system can be pushed from one mode of
behaviour into a different one. Noise in the system is extremely important to explore
these possible pathways by simulation in self-organising models (2.3.15). This issue
becomes very important, because Master Equations are usually difficult to solve
analytically, but easier to simulate in a computer.

The Master Equation approach accounts for varying rates of events and their
probabilities to occur, but the variables treated by this formalism are identical (or at
least normally distributed around an average in their attributes) by default (Allen, 1998).
If the subjects treated by a Master Equation are individuals, there is no possibility to
incorporate diversity in a population into the model, although the distribution of the
behaviours of average individuals can be described.

This approach has been applied to urban systems in the field of population dynamics.
The description of population dynamics with a dynamic, but aggregate model is an
obvious choice for this methodology if a compact model is sought. The formulation of a
generic migration model by Weidlich and Haag (1988) uses the system of coupled
differential equations - derived from the average of the underlying Master Equation -
describing the average values of migration flows. All settlements have defined
attractivities depending on their size (representing economic activity and therefore
employment opportunities) and on the past migration flows between them, which in a
feedback loop represents the cultural links established by migration. As the model takes
an aggregate view, it does not incorporate individual motivations to migrate.

Haag et al. (1992) apply the generic form of this model to the French system of cities
over 50000 inhabitants. The main result of this application is the discovery of a strict
hierarchy in the rank-size distribution of these cities, which follows a Pareto

distribution. The degree of this hierarchy increases steadily over time, meaning that few. .

large cities will continue to grow stronger than many smaller cities which might in fact
suffer a decline in population. This approach is probably the most adequate of treating
stochastic dynamic systems in the mathematical sense, but the implementation proves to
be difficult. This is the reason why many master equation approaches use only the
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solution for the average values, instead of the distribution of solutions (if existant)
resulting from the probability distribution of the noise term in the equations. However,
this formalism has been originally developed for the description of statistical
phenomena in physics, and it therefore appears to be difficult to incorporate cognitive
factors occurring in social systems into the aggregate master equation approach.

2.3.13 Differential Equations

Differential equations describe the average rate of change in a system mathematically
and can therefore be regarded as a special case of the Master Equation mentioned
above. As opposed to difference equations, which return the change in a system over a
discrete time interval, they give a continuous description for all points in time.
Therefore this method is predestined for setting up dynamic models. Varaprasad and -
Cordey-Hayes (1982) present a simple exploration model based on differential
equations. The aim of this model was to model possible implications of migration on the
transport system in the London region. The description distinguishes between three
spatial zones: the inner city, the outer metropolitan area and the rest of the south-east of
England.

Ten differential equations are defined to project the traffic volume by mode, the
population levels in each of the three zones and the commuting flows between these.
The equations are derived from logistic growth theory, thereby limiting the maximum
capacity of transportation system and residential areas and defining their basic
tendencies. In order to test different scenarios, a number of variables were treated as
exogenous to the model, such as transport costs, job supply, wage levels, fertility and
mortality rates. This enabled the model on the one hand side to be calibrated to the
observed values of the past and on the other hand to test a number of possible future
developments. However, the extrapolation of such important parameters is not without
risk for the quality of results obtained. From a systemic point of view, these variables
should be regarded as endogenous to the system, because they depend at least partly on
the development of the other elements of the system. Therefore great care has to be
exercised when treating this part of the system as external to the model, as there might
occur radical changes in these parameters other than those pro_|ected in the
extrapolation.

This approach provides a dynamic alternative to earlier static models like the Lowry
model. However, it might not always be possible to find descriptions of a system’s
behaviour, which can be expressed by' differential equations. This applies especially for
discrete events, threshold problems etc., where the system behaviour is discontinuous.
Here a rule-based description might be superior to a set of differential equations. A
system of differential equation can usually be solved analytically if the starting
conditions and a number of constraints are known, leading to a continuous description
of the system at each point in time. In a computer model this is usually not the case. As
it is easier to determine the differential equations themselves and to start the model from
some known conditions, instead of solving the set of equations, the issue of time steps
in the actual algorithm become extremely important. If the time step is chosen too large
the model can jump over crucial time periods in which the system undergoes critical
change. This will make the model unable to detect such change, but this is one of the
reasons why the model was built in the first place.
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2.3.14 Fractals

Fractals are geometric objects that have infinite perimeter length, but finite area. These
forms have been discovered in research into complex systems and non-linear dynamics
(Gleick, 1987). While Euclidean geometric objects have an integer dimension — 1 for
lines, 2 for areas, 3 for cubic objects, fractals feature a dimensional value of between 1
and 2. These objects have to be calculated with a recursive formula, which starts from
an Euclidean form such as a triangle and in each step modifies the perimeter shape until
its length approaches infinity. Fractals can be grown in this way, and this is the point
where fractal geometry was applied as an analogue to the shape of settlements.

Longley, Batty and Fotheringham (1992) describe the use of fractal geometry as a tool
for the analysis of geographical boundaries. It has been observed that the outer
boundary of settlements gets extremely fuzzy as the settlement grows. This has been
regarded as an indication that there might be similar processes occurring as in the
growth of fractal forms. The fractal dimension can give an indication of how compact a
settlement is and can allow for densities to be analysed.

As in the case of models describing the development of the built-up area with cellular
automata, there exist a number of models aiming at reproducing the growth of
settlements using fractal geometry (Batty and Longley, 1986; 1994). This approach does
however rely exclusively on a method developed in physics for physical phenomena. As
the observation units are plots of land, it is intended to reflect the results of human
action indirectly. These plots are irrespective of their actual floorspace to area ratio
considered either built-up or not, which puts plots of all uses and densities into one
category. The dynamics of these models are based on a mechanism, which does not rely
on any kind of representation of human decision making at all. The question remains
whether the observed phenomena of fractal growth and urban structures are pure
coincidence or whether there exist mechanisms in decision making which lead to
boundaries being shaped like fractals.

2.3.15 Self-Organisation

In order to enable computer models to account for qualitative change of systems, the
principle of self-organisation, which has been discovered in physics and chemistry, can
“be used. Models built on the principle of self-organisation avoid the limitations imposed
by the use of average, statistical behaviour by explicitly relying on diversity and
fluctuations in a system. Urban models based on this principle have been around for
some time, and a representative selection of these will be discussed below. Before
reviewing these models, it is necessary to find a definition for this important
phenomenon. A definition for this phenomenon is given by Heuser-KeBler et al. (1994).
It is derived from a heuristic, not a formal basis, but it probably is the most
comprehensive definition of self-organisation currently available.

“(In this pre-theory stage)...self-organisation is defined as the spontaneous
emergence, higher order development and differentiation of complex
ordered structures which take place by means of feedback between the
system elements in non-linear dynamic systems, when the systems are in a
state of over-critical distance from static equilibrium through import of

unspecific energy, matter or information” (Heuser-Kefler et al., 1994, p.
40)
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The central point of this definition is the emergence of ordered structures within a
system, which change the way the system is working from the behavioural mode
observed before the self-organisation event. The precondition to self-organisation is the
import of energy, matter or information into the system, which keeps it far away from
the static equilibrium. :

The self-organisation event means that the system “locks” itself into certain modes of
behaviour. The system now follows a new pathway, which is called an “attractor”.
Attractors can have three forms: point” (steady state), cyclic (oscillation), or strange
(deterministic chaos). A point attractor describes a state of static equilibrium. The-
system parameters do not change over time once the attractor is reached. Cyclic
attractors on the other hand make the system go through periodic oscillations in the
parameter values. Behaviour following a cyclic attractor repeats itself exactly on a fixed
period in time. The last category, strange attractors, leads to the so-called deterministic
chaos. Although the system can be described by deterministic equations, it is not
possible to forecast exactly the state of the system parameters. System behaviour can be
similar to previous times, and the system state at some point might be the same as
before, but it cannot be determined whether the next state will be the same as at the last
time this state was reached.

The variable space of a system usually contains more than one attractor. It is therefore
possible that the system can change from one attractor (or mode of behaviour) to under
the presence of noise. Different parts of the same system might as well obey different
attractors at the same time. Self-organisation can take place already in systems governed
by deterministic equations, if these are non-linear and — above all — there is noise
present in the system. On the other hand the presence of noise makes the deterministic
description a probabilistic one.

Although the models described below take an aggregate view by not accounting for
individuals, useful experiences regarding the modelling of the built or natural
environment have been made through their use. In particular the models of Allen (1982;
1997a; b; Allen and Sanglier, 1981; Allen, Engelen and Sanglier, 1983) have to be
mentioned in this context. These models were the first to allow for qualitative change
within the spatial configuration of a region, and therefore overcome the limitations to
the single static configuration of Christaller’s (1933) conceptual model mentioned in
Section 2.3.1.

Starting from the fact that economic activity at one point can only support a given
number of inhabitants, the idea of a carrying capacity is introduced. The carrying
capacity limits the maximum number of inhabitants, which can be supported by the
economy to a maximum. value. This leads to a logistic growth curve for possible
populations if this type of economic activity is present. The idea is enhanced by
introducing several levels of economic activity, which are not present in the beginning,
but can come into existence in a place if there is sufficient demand.

The price for a given type of good decreases with growing demand. This mechanism
aims at incorporating the effects of economies of scale. The distances between places of
demand and supply impose transportation costs on the consumer. The economy can now
react to demand and increase or decrease production, which leads to changes in
employment and population resulting in changes in demand for goods in these places.
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In early versions of these models, new economic functions are introduced at random at
certain locations, which is intended to reflect the appearance of innovations leading to
an increased carrying capacity. The number of functions present in one location, the
price for goods and their distance from the consumers determine how attractive a given
location is for the consumer. It has to be pointed out that the parameters determining the
reaction of the economy in adapting supply to demand and the elasticity of demand are
diverse, so that different solutions can be reached as the models are run more often.

Further diversity is introduced in later models focusing on intra-urban evolution. Here
several types of industry (exporting, services, and two types of production for the local
market) and therefore different job requirements are given. The industries can locate
themselves according to the broad principle above, but in this case there are also effects
of crowding present, which limit the amount of economic activity in all locations.

More important in our context is that the model allows for two types of inhabitants:
blue-collar and white collar workers respectively. This reflects the disaggregation of the
economy in the model as the different types of production have different requirements
on their workforce. The population has to make choices about where to live and where
to spend money. This is realised using relative attractivities of locations, which account
for the distance from residence to workplace, crowding and the presence of members of
the same group in a given location. The groups have differing preferences captured by
individual parameters for all aspects of the location problem.
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Figure 8: Structure of a Self-Organising Urban Model (after Allen, 1997b, p. 193)
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This kind of model can be used to generate scenarios. For instance, one later version
was used to try to explain the city structure of Brussels. The results obtained are
qualitatively consistent with the observed reality with regard to the distribution of
population and economy. On the other hand it is possible to intervene in the system
during run-time in order to test different possible realities. This leads to a multitude of
configurations of the city structure, none of which has been observed in reality. On the
other hand, the capability of the model to generate the qualitative structure of reality
from a set of basic assumptions on the nature of the processes taking place shows that
the model is valid. The interventions in the system only change parameters without
changing the structure of the model, so that it must be assumed that the alternative
solutions are realistic outcomes, which might happen in reality as well, if the
preconditions for this development are met.

This approach to modelling urban and regional systems shows that a diverse population
in the model can lead to many more qualitative insights into the nature and possible
development of an urban system than a conventional aggregate or descriptive
(statistical) approach can deliver. Although the decision processes of the population are
represented only indirectly through specific attractivities, a much larger variety of
processes can be accounted for than traditional models are able to display. An even
further disaggregated model will be able not only to account for the implications of
behaviour on the city structure, but also for the effects of the city structure on the
individual’s lifestyle.

Other approaches using self-organisation as their main paradigm can be found for
instance in Beaumont, Clarke and Wilson (1981) who describe a model of a similar
structure to the one shown in Figure 8. Dendrinos and Mullally (1981) propose an
aggregate model of city size built on the principles of non-linear dynamics. The focus of
this model is shifted towards the exploration of different time scales of change in an
urban system. They conclude that fast change occurs almost exclusive in conjunction
with radical structural change (bifurcation of pathways) which shifts the system from
one attractor to a different one.

A model of urban evolution based on the Lotka-Volterra predator-prey dynamics is the
core of an ecological model (Dendrinos and Mullally, 1985). The competition for
population and space are regarded as the driving forces of development in an urban
system. A two-variable model is outlined for both the inter-urban and 1ntra-urban case.
The inter-urban model has the form

dx
I —=a(y- y)x - fe’
dy
~ = y(x—x)y
' with

: relative population size

x
y :real (deflated) per capita income
; : average income level

x :the city's relative carrying capacity

Equation 6: Dendrinos and Mullally’s (1985, p. 50) Urban Evolution Model
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This appears to be an extremely simple model, but Dendrinos and Mullally show that
the required parameters for can be found for a sample of American cities over long time
periods. This model gives a description of city growth, but it cannot generate the crucial
parameters of average income and carrying capacity, which would help to explain why
the development of the cities took place. In this sense this approach has the same
explanatory power as other models built on analogues, for instance the static gravity
model.

Kahn, Deneubourg and de Palma (1981) present a transportation mode choice model
based on similar principles. As opposed to traditional statistical or discrete choice
models, this model is of explanatory nature and makes simple assumptions on people’s
behaviour and the economic necessities of public transport operations, which are then to
be tested using the model. Two modes (car and bus) are regarded as competing with
each other. Each of these is characterised by a set of attributes, in the case of the car its
speed and for public transport the level of service, the fare level and the information on
the service. The precise equations read as follows:

dx _ DA, s
d A +4,

dy DA,

@ A+d 7
where

X :car users

y : bus ridership

D :demand for transport (assumed constant)
A, : attractivity for car

A, : attractivity for bus

Equation 7: Ecological Modal-Split Mddél (Kahn, Deneubourg and de Palma, 1981, p.
1164)

A third equation describes the changes to the bus system:

where
v: fare charged

K: maintenace cost

Equation 8: Change in Bus Service Level (Kahn, Deneubourg and de Palma, 1981, p.
1164) _

The specific attractivities are calculated as follows:
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4, =va.x
where
v, : automobile speed

o, : measures the strength of imitation term o, x

L
4=20+ay)

where
@ : publicity
«, : measures the strength of imitation term a,y

Equation 9: Attractivities of Modes (Kahn, Deneubourg and de Palma, 1981, p. 1164/5)

As this approach is a system of non-linear differential equations, noise was introduced
into the system to make the system move from one attractor to another. In this way
critical values for the system can be found, and configurations be explored which are
not obvious from the outset. In a later paper (Kahn, de Palma and Deneubourg, 1985)
use a similar approach to outline the use of such an exploration model in order to
simulate the effects of fluctuations of demand on public transport operations under
market conditions. '

The basic difference between the approaches by Kahn, Deneubourg and de Palma and
those of Dendrinos and Mullally is that the former is used to describe the evolution of a
system of cities, whilst the latter does not make an attempt to reproduce reality,
although they use practically the same formulation. This model examines the level to
which the underlying assumptions of the model are qualitatively consistent with
processes observed in reality.

2.3.16 Agent-based Approaches

A recent technique for the representation of individual entities in a computer program is
the use of so-called agents. Agents are discrete entities, which have a set of given
properties and associated processes. This technique has been applied to urban models,
two of which will be mentioned here. Sanders et al. (1997) present an agent-based
approach for the simulation of the dynamics of a system of cities. Each settlement is
considered an agent and has a set of rules, which determine the transitions from one
state to another according to the global conditions. Each settlement can potentially
acquire a set of functions, for which a certain level of wealth or population must be
present. Information on demand and supply of goods can be passed between agents, so
that trade and other interactions between them can evolve.

As in their other simulations on urban systems (see 2.3.12), a hierarchy of places comes
into existence, although initially conditions are approximately symmetric. Fluctuations
are found to have great influence on local configurations, but the global hierarchical
patterns are qualitatively the same for all simulations. It is claimed that this approach is
much more flexible than the alternative use of differential equations, which have to be
defined to encompass the entire system, while local rules for agents can be defined as
required.
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An extension to the cellular automata model of Portugali and Benenson (1995) is
introducing free agents into a cell space (Portugali and Benenson, 1998). The agents
explicitly represent inhabitants as opposed to the previous model, which accounted for
the population indirectly as a property of houses, which could hold a number of
occupants. The agents have a “cultural identity”, and an attitude towards other
identities. The modelling approach is based on the theory of cognitive dissonance
(Portugali, Benenson and Omer, 1997 after Festinger, 1957) between the individual’s
intentions and actions. If there exists a difference between the individual’s idea of the
world and its actual perceived state a ‘“cognitive dissonance” is generated. This
cognitive dissonance leads to either change in the individual’s behaviour or to a revision
of the individual’s belief system in order to eliminate the cognitive dissonance. Here the
_cognitive dissonance of agents, which cannot change their behaviour by moving to
another place leads to the adoption a new cultural identity. The cognitive dissonance can
therefore be regarded as the driving force of the model. This is interesting insofar as the
driving force of the model does only indirectly refer to any explicitly stated needs or
motivations of the individual.

It is clear that the properties of the agent-based approach makes this methodology very
useful for micro-scale-approaches, although we have seen that also aggregate
descriptions can be made with them. The use of locally active rules can produce
behaviour that otherwise in an aggregate global approach might have been overlooked.
Furthermore, it is possible to account for individual decision making in a model without
assuming global patterns beforehand. Agents have also quite extensively been used for
the simulation of social behaviour, and these approaches will be presented in Chapter
4.1.

2.3.17 Economic Theory in Urban Models

Most urban models use economic parameters in order to account for aggregate patterns
of decision making. The gravity model, as an example, uses cost parameters for
determining how many people would travel how far. This “cost” can also be interpreted
as travel time, but in a number of models also a mixture of both concepts can be found.
The model of Dendrinos and Mullally (see 2.3.15) assumes the relative income level as
the single choice parameter for migration. A predominance of economic considerations
can be found in many discrete choice models as well. All these approaches suppose that
people are acting in a rational way in order to maximise their material well-being. This
might be true for companies, whose overall aim it is to maximise profit, but it appears to
be questionable in how far this is true for individuals. However, economic parameters
are very easy to measure and to compute, which makes these predestined to be used in
computer models.

A model outlined by Echenique et al. (1974) attributes the micro scale of behaviour
exclusively to economic issues. This model combines the Lowry-type mechanism of
employment generation described in Section 2.3.5 with a purely economic mechanism
of residential choice based on the income to cost ratio for a household only. The
model’s transport module determines the mode choice on the basis of the mode’s costs,
and trip frequencies are calculated using the disposable income of a household. While it
is clear that the economy works with these parameters, which in return have many
consequences for the individual’s decision space, it is far from certain whether it is
possible to apply these principles on their own to individual behaviour. It is, however,
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possible to calibrate a model to economic parameters (as it has been dome by Echenique
et al.), but in that case it is questionable whether the change of economic parameters in
reality would produce the same results as in the model. It is almost certain that the
economic parameters have to be regarded as an analogue to the decision structure in
reality. The model loses the explanatory value, which had been put into the approach
and can only give a description of the system at some point in time.

Cognitive approaches on the other hand (see 2.3.9) account explicitly for the decision
processes of the individual, which will almost certainly have economic aspects. The
difference is that the explanation for observed processes is derived from the cognition of
the individual and not from a theory which has been developed for a different range of
phenomena.

2.4 Critique

The brief assessment of the methods and concepts used in urban modelling confirms the
gap identified in the classification of existing models. The reasons for the existence of
the gap in explanatory dynamic models which are able to represent individual decision
making are manifold. At one end the first models assumed that equilibrium conditions
would prevail in a mature system, so that any dynamic approach would in the end
deliver the same result as a static one. Furthermore, the interest in macroscopic
phenomena led to the construction of models on the macro-scale, which would not be
able to incorporate individual decision making. As there was little computer power
available at the time, there was also a necessity for computer models to be as compact
as possible, which lead from this side to macro-scale models. The extrapolation of
statistical behaviour — which gives a description of past behavioural patterns — cannot
explain why these patterns exist. '

From this point it is deemed desirable to build a model which might be able to explain
phenomena instead of just describing them. This would be the place of a model placed
in the gap in the taxonomy. By reversing the traditional approach of extrapolating
existing patterns of behaviour, a theory-based model of individual behaviour could
potentially deliver the results of the top-down methodology without assuming the
existence of these phenomena beforehand.

The first step towards such an approach is the view that the development of urban
structure is determined by the behaviour of the people who inhabit that particular city. It
is people who live in residential areas, who go shopping and use recreational and
cultural facilities like parks, theatres and cinemas. At the same time those very same
people work in industry and for the facilities mentioned before. The inhabitants are at
some times part of larger aggregates called companies (in the case of work) or are
members of societies and clubs (in the case of leisure activities). In this view we cannot
really distinguish between institutions and inhabitants, because it is those inhabitants
who form the institutions. :

It is these people who have to get from one place to another in order to get to work, to
go shopping or to socialise. People’s needs and desires are the reason for traffic between
places in the city. The idea to integrate all these areas in one single model leads to a
multi-purpose model of people’s everyday life. Such a model can account for urban
development, economic activity as well as traffic patterns at the same time, because all
those areas are results of human activity.
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Moreover, it might be possible to model the implications of environmental change on
individual behaviour and the population’s lifestyles, which have not yet been treated
with a model. The dynamics of behaviour will lead to a model of changing (i.e.
learning) individuals, which have feedback effects on macroscopic (i.e. group)
behaviour as well as on the environment.

Of course it is not an easy task to formalise human behaviour in a computer model; it is
a task on which psychology has worked since it has come into existence. On the other
hand it appears to be possible to model people’s motivations and behaviour with a more
cognitive approach which can replace the principles of utility theory and social physics,
which we have already criticised in this chapter. The model would naturally have to
make abstractions and would only be able to deal with a limited number of phenomena,
but this is a restriction we find in the traditional models as well.

Such a model of everyday life would have to be a dynamic model relying on a set of
intrinsic driving forces. The existence of these driving forces would have to be the
central assumption of the model, but the results of that model will clarify the validity of
the approach. The dynamic model will rely on statistics only to define the initial
conditions as the driving force will replace the regression formulas, which are used in
models based on statistics. The dynamic approach eliminates the restriction to
distributions of behaviours observed in the past and can generate new behaviours as
possible scenarios of the future. This approach leads automatically to a qualitative
treatment of the system. The calibration of such a model is not considered, because of
the loss of explanatory power observed in the approaches using social physics, which
reduced the theoretical basis of the approach to a mere description of observed patterns.

Before examining more evidence on the feasibility of a bottom-up approach to urban
modelling, consideration is given to the inherent limitations of computer modelling.

2.5 Chances and Limitations of Computer Models

The value of computer modelling is undisputed, if this technique is used in a way,
which accounts for its inherent limitations. Much has been said about the belief in the
results of the infallible computer, which means that the programs, which have produced
these results, have to be looked at in a very careful way. A computer program will
always reproduce the assumptions underlying the conceptual model used, and therefore
never come up with something conceptually new, although the results of these
computations might shed light on the way the real system might be working.

A computer will probably never deliver a forecast of the future, as has been shown by
Wolpert (1997) in his incompleteness theorem for forecasting the future. No matter how
powerful the available computer, it will not give a forecast the future in a quantitative
way. The value of simulation as a method of qualitative scenario building on the other
hand is undisputed, it has even led to an attempt to formalise the method of simulation
in a formal theory (Rasmussen and Barret, 1995). Simulation is generating more and
more new scientific knowledge on problems, which cannot be investigated, because
real-life experiments are not possible, too expensive or too dangerous to be carried out
in the real world. ‘

At this point it is necessary to clarify some basic properties of computer models. Firstly,
a computer model is always working in a closed universe. The program, which produces
the experimental data, is defined from the outset, and it cannot be changed during the
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duration of a simulation. The assumptions used to write the program will be reflected by
the results. This means that the often-claimed emergence of new features in models of
complex systems is not emergence in the sense that something ‘“new” has been added to
the model’s universe. The observed phenomenon is a result of the rules, which govern
the model (Hiett, 1997). The system however can find on its own modes of behaviour,
which have not been observed before, therefore adding to the experimenter’s
information on the system.

In the case of complex systems we encounter one more limitation which this time is

imposed by our own ability to analyse and to conceptualise real-world systems. Can we

correctly map reality into a computer model, which - if we feed it with incorrect data -
will rather confuse than inform us? The reverse is true as well. A “correct” model might

challenge our ability to analyse the model’s output. This “complexity barrier” has to be

considered at all times when modelling complex systems. The trade-off between correct

data output and useful information on the investigated system leads inevitably to

abstractions of which we do not know whether they wipe out detail crucial to the aim of

the modelling exercise.

Why, the reader might ask, is it then still worth exploring the future (or the present) with
inherently incorrect models? The answer is simple. The technique of scenario building
can provide invaluable information on how the system might behave if constraints are
changed or certain fluctuations coincide at some point in time. It is possible to find new
attractors for the system which otherwise might not be discovered before they happen
and take us by surprise. One example for this will be described in Chapter 4.5.1. It is
Allen and McGlade’s (1987) model of the fisheries off the coast of Nova Scotia in
Canada, where the model could provide the researchers with answers which were not
obvious from the outset of the investigation.
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3 Investigation Plan

The classification of models and the critique given in the previous chapter gives an-
overview of how a new urban model should be set up. For an implementation it was
necessary to review more methodological evidence on which such a model was to be
based. The gap identified in the classification scheme calls for an explanatory, dynamic
model incorporating individual decision making. The bottom-up approach necessary for
the incorporation of decision making would allow for a multitude of possible subject
areas, as individual decision making plays a role in all subject areas reviewed. For this, -
information on four aspects of decision making had to be gathered:

e Driving forces of behaviour

e Individual cognition

e Dynamic change of cognition and decision making
e Implementation methods

The major approaches and methods to these areas are presented in Chapter 4. In a next
step, critique and evidence had to be combined in a conceptual framework to form the
theoretical background for a computer model. Because the resulting framework was
designed to encompass the entire urban system, not all of the framework’s elements
could be implemented within the size of the project. Therefore the scope of the model
and the extent of the simulation exercise had to be limited. This meant for the model
that:

e The environment was to be implemented in the simplest way possible.
The project focused on the aspects of individual behaviour in the system.

e Some assumptions had to be made on the nature of the dynamics in the
system, so that not all interactions were subject to change over time.

e The agents representing individuals were interacting only indirectly via
the environment with each other. The formation of networks was not
supported.

e Time scales were considered only on one level, so that the agents were
using all rules at all times.

The emphasis on the methodological aspects and the restriction to individual behaviour
meant that the main purpose of the model was to explore the basic properties of
adaptive agents. This gave a first impression of the usability of the framework and
would serve as a qualitative validation of the modelling framework. The model was
designed to handle a number of autonomous agents. The agents were to rely on one or
more Fuzzy Logic rule bases to incorporate a cognitive model. The agents were to be
motivated by a set of intrinsic, invariant needs measured by a set of budgets.
Furthermore, the rule bases had to be adaptive, e.g. the initial rules (as combinations of
input parameters, operators, and output parameters) had to be changed during run time
of the program. Changing rule parameters during run time is not a problem, but
covering an entire parameter space with all thinkable rule combinations would usually
be a problem, if defined in terms of mathematical equations. The model would have to
be able to represent a spatial structure as well as a first step towards a full representation
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of an urban system. The spat1a1 elements are supposed to obey their own dynamlcs as
well as to react to patterns of usage by their inhabitants.

The model was testing whether evolutionary properties such as a diverse pattern of rule
sets for agents in different environments would emerge from within the model.
Assuming that stable patterns would be due to self-organising processes, one might
expect radical change in the way the agents’ rule sets are defined from time to time. But
would the system develop rule sets, which - in a changing environment - would lead to
long-term successful behaviour of the agents?

As a side line, a definition of successful behaviour had to be found as well, because it
was not clear from the beginning what attributes of an agent were to be included in the
“measurement” of success in an evolutionary context. The model was neither optimising
nor of purely economic nature, which would have made it easy to find measures of
success, but it was simply designed to display patterns of everyday behaviour driven by
intrinsic goals of the actors. The direction of the system’s development was not clear
from the outset, and nor was the method how to define a comparative measure between
the agents. ’

The next point was to involve the comparison of different strategies for rule adaptation
and their performance. Would the model favour adaptivity (and if so - what kind of
adapting strategy?) over static rules starting from a conventional rule based system with
random, static rules? Would the agents “learn to learn”, and if so, what would they
learn?

Finally, the methods used to build the model - and the model itself - had to be compared
to existing urban and transportation models and their methodologies. The points of
critique of traditional urban and transportation models were compared to the results of
the methodology developed and the model’s results in order to assess whether it can
improve on these.
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4 Models of Human Behaviour

The main point of critique to existing urban models is that these do not give any
representation of individual decision making. Therefore these models cannot explain
any aspects of how individuals influence their environment, and how changes in the
environment lead to shifts in behaviour and attitudes in the population. However, other
fields of research have developed methods, which can be used to simulate individual
behaviour. The four areas of interest have been identified in the previous chapter as

¢ Driving forces of behaviour

e Individual cognition |

e Dynamic change of cognition and decision making
e Implementation methods

Here some key concepts will be reviewed, from which the conceptual framework for a
computer model of individual acting will be derived in the following chapter.

‘ 41 Herbert Simon’s Theory of Organisational Behaviour

Herbert Simon’s theory of organisational behaviour has already been mentioned in
Chapter 2.3.9. In order to elaborate the underlying concepts of the theory, a broader
discussion is given here below. Although the theory has been developed in the 1950s
and 60s, it has only recently been applied to models of human behaviour.

Simon concluded that organisations, being composed of individuals, have most of their
behaviour determined by their members. Even if the members of an organisation want
to achieve an optimum efficiency, they are constrained by the fact that humans are
incapable of correctly perceiving and analysing the situation they are in. Reality proves
to be too complex for an accurate analysis. Simon coined the term “bounded rationality”
for this phenomenon.

Having acknowledged the fact that reality cannot be analysed in a straightforward way,
what are the conclusions to be drawn for decision making? If our picture of a given
situation is inevitably incomplete, how do people decide what to do? Here it was
suggested by Simon that humans tend to choose solutions which are not necessarily the
best (which might even be acknowledged by the decision maker) on an absolute scale,
but “the next to best known” (Simon, 1981) alternative is chosen. This has been called
“satisficing” behaviour, for it describes a choice, which is not optimal, but can be
trusted “to do the job”. The outcome of such a choice might be even better than that of a
supposedly superior alternative, which has not been fully understood in all its
complexity. Simon’s finding coincide with what Forrester (1969) stated about the
performance of social systems.

“Complex social systems tend toward a condition of poor performance.
Their counterintuitive nature causes detrimental design changes. Also, the
opposite direction of short-term and long-term responses leads to policies
that produce a less satisfactory system. For example, a particular change in
policy may improve matters for a year or two while setting the stage for
changes that lower performance and desirability further in the future. But
the natural interpretation is that good resulted from the change and when
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matters become worse the original effects are redoubled. The intensified
action produces another short-term improvement and still deeper long-term
difficulty. Again the complex system is cunning in its ability to mislead.”
(Forrester, 1969, p. 112)

The urge to choose supposedly superior, but badly understood alternatives over well
known, but seemingly inferior solutions appears to be very prominent in public sector
decision making, whilst economic enterprises seem to function more according to
Simon. Urban and transportation planning might serve as one example for this
“bounded rationality”. The promotion of the motor car during the 1950s and 60s in
Europe was regarded as a positive development by the planning authorities, as it would
increase the standard of living of the population by saving time over the use of public
transport. What was very badly understood were the repercussions of such a mobile
population on the urban structure. For instance, the very idea of Greenfield sites for
shopping centres or industry did not get any consideration, because it was unimaginable
to the decision makers (although the same process had already taken place in the USA
before that). Time Budget studies (see 2.3.7) have additionally shown that people in
industrialised countries spend even more time in traffic than before, or that at least the
time use for transport is near constant. The intention of the improvements in the
transportation system has been contradicted by the population’s changed behaviour.

Simon’s theory proves to be very interesting for a model of human behaviour, as it
appears to capture two very important aspects of individual decision making: Satisficing
behaviour and bounded rationality in perception. Interestingly enough, these two
principles have recently been introduced into cognitive science as well as evolutionary
theory (4.4.4) as we will see further on.

4.2  Agent-Based Simulations of Human Behaviour

The methodology of so-called autonomous agents has already been mentioned in
Chapter 2.3.16. The main aspects of this methodology will be summarised again, as this
technique is considered a key concept for modelling individual decision making and its
effects on systems as a whole. Agents are equipped with a set of given properties and
characteristics. Agents have their own rule set determining how to react to a given
situation. Using agents in a simulation means building a system from the bottom up
because agents use local rules to produce the whole system’s behaviour. Agent-based
models are therefore extremely useful tools to explore phenomena of self-organisation.

Agents share a common environment, which is changed by their actions. The state of

the environment determines in return the response of the agents. As opposed to the more

conventional micro-simulation models, which use statistically estimated probabilistic

equations, agent-based models usually use very simple rules for each agent. The fact

that these rules are applied locally can make a big difference for the overall behaviour

- of the system, because the use of the local environment introduces fluctuations into the
system, the main cause for self-organisation in a non-linear system. '

Agents are a particularly useful methodology for modelling social systems. From a
conceptual point of view agents already bear a certain resemblance to real people, only
that the average agent is for obvious reasons much simpler than an average person.
There exist a number of recent agent-based approaches to the simulation of social
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systems, of which only a few can be introduced here. Agents have been used to simulate
fisheries systems (Bousquet et al., 1994, LeFur, 1995 and in press), interaction within
societies (Doran et al., 1994; Doran and Palmer, 1995), or markets (Kirman, 1994).

One especially interesting model is Epstein and Axtell’s (1996) “Sugarscape” model.
They define a set of oversimple agents which require a substance (here called “sugar”)
in order to survive. “Sugar” grows at a certain rate in the space the agents inhabit. If the
agents fail to find “sugar” they either die or have the choice to migrate to some other
point in the “sugarscape”. If they choose to migrate they can rely on a limited field of
vision, which means that they have only very limited information on the nature of their
surroundings. : '

As dying agents are removed from the model population and surviving agents produce
offspring at a rate depending on how much sugar they can accumulate, a population
ecology is generated. Diversity within the population is introduced in the form of
different metabolic rates. The growth rate of the “sugar” is varied spatially and
temporally to simulate “seasons” which results in the migration of agents. Other
simulated phenomena include the formation of “tribes” and social networks, emergence
of trade when a second commodity apart from “sugar” is introduced, or the highly
realistic distribution of wealth within the population of agents.

This makes the “sugarscape” one of the most advanced simulations of an artificial
society to date. The model does not only cover daily life, but features also ageing
agents, reproduction, trading and other social behaviour. However, the rules governing
the behaviour of the agents are the same for all agents and do not change over time.
Therefore the agents are therefore not learning, and they might not adapt to very
challenging new situations. The agents have as well only one “need”: They have to feed
on the “sugar” they find, otherwise they die. This makes the representation very simple,
but Epstein and Axtell intentionally kept the model at this abstract level in order to
focus on the behaviour, which can be generated already from this very simple model.

A similar agent-based model can be found in Doran et al. (1994). This model focuses on
how power structures might be generated in a hypothetical society. The set-up of the
agents is more sophisticated according to the aim of the model. The agents are
composed of several sub-models to represent the agent’s perception of the social and
physical environment it is in. Most interestingly the agent’s mental models do not
represent the actual environment, but the individual’s view of the world. Local rules
make the agent then act according to its perceived environment. This is one of the first
models, which explicitly incorporates what has been described by Simon (see 4.1
above) as a “bounded rationality”. The cognitive and behavioural rules governing the
agent are however the same for all agents, and these rules do not change over the time
of a simulation.

Nevertheless, the above model illustrates that social relations and social behaviour such
as the emergence of social groups, and altruistic as well as egotistic behaviour have to
be regarded as emerging from within a society. We can conclude that, at least in theory,
there is no need to predefine social hierarchies, once a sensible cognitive model for the
agents is used.

Models of adaptive agents have also been built. One example for this is an approach to
the simulation of kinship structures within a hypothetical society (Parisi, Cecconi and
Cerini, 1995) using artificial Neural Nets (see 4.7.1) as agents. These Neural Nets are
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“trained” during the model run and therefore change their input / output relations. In
doing so the connection weights between input parameters are changed, resulting in a
different inference process (and output) for the same input configuration. This can be
regarded as equivalent to changing the agent’s rule set.

However, many agent-based approaches have been criticised for being immanently
tautological, e.g. the model is reproducing only the assumptions on which it is based
and does not show “real” emergent properties and behaviours. This point is very closely
related to the critique that social simulations very often use pre-established social
architectures as well as “hypercognitive” agents (Conte and Castelfranchi, 1994). A
“hypercognitive” is an agent omniscient and fully aware of his environment. Social
action is conceived of only in terms of communication with other agents. Social
scientists have also been criticising models of social systems for lack of concepts central
to social theory, such as “meaning”, “action” or “structure”. In this sense, the
explanatory power of such models is reduced to the display of behavioural patterns,
which could be generated by just about any mechanism. Still, such models can be used
in a metaphorical sense for the explanation of real-life phenomena.

Viewing social relations as emergent properties finally leads to a radically bottom-up
approach using “intelligent” (e.g. adaptive, learning) agents with endogenous goals
placed in a common world in which social relations would evolve rather than be
predefined. This framework reflects recent advances in cognitive (such as Varela,
Thompson and Rosch, 1991; see 4.6) and social science (such as Giddens’ (1986)
theory of structuation or Luhmann, 1987). Regarding the agent as well as his
environment as co-evolving and mutually dependent parts of the same system serves
this purpose much better than the classical “cognitivist” top-down approach treating
cognition as representation of an absolute and independent environment.

There appears to be a wide scope for improvement of the existing agent-based models,
especially in the field of social simulation. Most approaches use a single driving force
for the agents, e.g. the agents have only one motivation to act in a certain way. As we
will see in Section 4.3.3, the review of the concept of human needs reveals that instead,
life (even if it is simulated in a computer) should be regarded as a careful balance of
several needs, demands and objectives. We are therefore left with a multicriteria
problem resulting in trade-offs and compromises between several, often conflicting,
goals. A second area where agent-based models could be improved concerns the usually
time invariant rule sets governing the behaviour of the agents. If agents are designed to
represent people, it appears plausible that the agents should change their rules over time
- that is to learn. The great problem with an implementation of learning in a computer
model is that it remains unclear how learning works in reality, let alone how to model
learning. However, much might be learned about the process of learning and adaptation
by experimentation with such agents in a computer model. :

43 The Concépt of Human Needs

As utility theory and the concept of optimisation as well as statistical observation do not
deliver any valid concepts on long term human behaviour, we have to turn elsewhere to
find a point on which to anchor a model of human behaviour. The idea that all humans
possess a set of finite intrinsic needs can be very helpful for this. There exist approaches
to this concept which are partly rooted in humanistic psychology, partly in economic
development theory. We will have a look on both of them.
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Howéver, any need system has to deliver a set of properties which are invariant over
time, otherwise it is not possible to build a dynamic computer model on it. If it is
possible to find invariant parameters, which govern human behaviour, the problem of
modelling the latter is very much simplified. As outlined in Chapter 2.5, invariant
elements are the cornerstone of any computational model. They are needed to provide
the basic structure of the algorithm, which has to remain as it, is over time. We have to
point out again that the universe of a model is always a closed one. Changes to the
model universe can only be expressed in terms of the variables, which have been
defined before the model is run. '

4.3.1 Maslow’s Position

Maslow (1954) proposed a classic approach to the concept of human needs. He
postulated that all humans have a given set of intrinsic needs. These needs form a
hierarchy so that in order to fulfil needs of higher order it would be necessary to satisfy
lower order needs before. The most basic needs are obviously the ones concerned with
the physical requirements of staying alive, like eating, drinking and sleeping. Once
~ these requirements imposed by nature are met, a need for safety and security would
arise. This would lead to communities, who care for their members. A next step would
involve a need for love and belongingness, followed by a need to be recognised and
esteemed by others. After this, humans would aim for self-actualisation, meaning that
they would try to fulfil their potentials and interests in creative, humanistic or other
pursuits. On the top of the hierarchy he put aesthetic needs, leading to the development
of arts or the creation of a pleasing environment. The hierarchy shows then as follows:

a) Physiological needs,

b) A need for safety,

c) A need for love and belongingness,

d) An esteem need,

e) A need for self-actualisation, and finally
f) Aesthetic needs.

The hierarchy was thought to be a conceptual model and represented a novel approach
to the problem of what motivates people at the time. It is, however, in the first place a -
philosophical concept, a concept that does not appear to be very practical to implement.
Maslow’s idea of a hierarchy of needs has been criticised on a number of occasions. His
approach is regarded as utilitarian, and it is based on a materialist ideal. The way the
needs are formulated matches probably the traditional western ideal of a “fulfilled life”,
but we have seen that in other cultures, or in circumstances of crisis people find ways of
fulfilment without necessarily having all of Maslow’s needs satisfied. In reverse, it has
been argued by Landauer (1972) that the satisfaction of these needs would not
necessarily produce a happy person, as countless examples of rich people, with all the
potential for the satisfaction of the above needs, show.
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Physiological

Figure 9: Maslow’s Hierarchy of Needs

Although there are not any known examples of actually using Maslow’s hierarchy of
needs in a computer model, the theory is used, for instance, in nursing. In the urban
context, an attempt to translate the hierarchy of needs into urban functions has been
made by Walmsley (1988; after Faulkner, 1978). This approach - attributes the
satisfaction of Maslow’s needs to certain social institutions (see Table 4). However, this
does not relate the hierarchy of needs to people’s observed behaviour or their
motivations to behave in a certain way. -
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Need category

Description

Attributes of the urban environment
associated with the satisfaction of needs
(examples)

1. Physiological

Provision of food, shelter and
health care -

Retailing/wholesaling system distributing
food, clothing and health supplies

Health care clinics and hospitals
Essential services (water, sewerage, power)

Dwellings

2. Safety-security

Protection from physical harm
and intruders.

Privacy and absence of

Fire and police services
Road safety

Absence of noxious environmental elements
(pollutants)

overcrowding
Residential areas that ensure privacy
Protection of property
3. Affection - Harmonious relationships with | Facilities for community organisations
belonging other members of the (meeting places)
community Physical layout of neighbourhood such that
cooperative and harmonious inter-family
Identification with and relationships are fostered
acceptance of groups within the Physical identity of the neighbourhood
community
4. Esteem Status and recognition by others | Opportunities of home ownership

in the community

Prestige of neighbourhood

5. Self actualisation

Role relationship vis 4 vis others
Realisation of one’s potential

Creativity/self expression

Built environment that facilitates creativity
and self-expression

Employment opportunities and community
organisations that enable the use and
development of skills

6. Cognitive/
Aesthetic

Provision of educational
experience, intellectual
stimulation and experiences

Aesthetically appealing events
and phenomena

Educational and culturai facilities
Recreational facilities

Aesthetically appealing built and natural
environment

Table 4: A Typology of Urban Needs (Walmsley, 1988, p. 60/1, after Faulkner, 1978)

Taking all the criticisms into account, the idea of a set of intrinsic human needs as a
motivation remains a very intriguing one. In the next section the feasibility of using
Maslow’s hierarchy in a computer model of human behaviour is explored.
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4.3.2 A Spreadsheet Model

A first attempt to base a model on the concept of intrinsic human needs has been made
using a simple spreadsheet model. The main purpose of this spreadsheet model was to
explore the dynamics of a set of system driving forces, represented in this case by
Maslow’s (1954) hierarchy of human needs (see 4.3.1 above).

Although Maslow never claimed that the needs identified by him form a fixed
hierarchy, this set of needs cannot be seen as a fixed structure at all, but rather has to be
regarded as a dynamical system. A simple interdependency analysis (Table 5) shows
that the needs actually interact with each other. Therefore a strict hierarchy of needs
cannot be regarded as the driving force for modelling the behaviour of individuals.

U depends on physio- safety love and esteem self- aesthetic
satisfaction of: logical bEIOIIgiIlg- actuali-
ness sation
physiological
safety X
love and X
belongingness
esteem X X X X
self-
actualisation
aesthetic X

Table 5: Interdependencies within Maslow’s Hierarchy of Human Needs

The above table tries to capture obvious interdependencies between Maslow’s needs.
For instance, a feeling of love and belongingness, high up in Maslow’s hierarchy, can
be found without having any of the other needs satisfied. The same could be said for
esteem. The satisfaction of these needs is therefore independent of the satisfaction of
other needs, which contradicts the idea of a hierarchy.

On the other hand, we can see that satisfying one need can have positive repercussions
on the way other needs are perceived. As an example, the feeling of safety can be
greatly enhanced if one is an esteemed member of a community, or has found a sense of
belongingness with a partner. The idea of a hierarchical structure appears to be more
valid in case of self-actualisation, which can be assumed to depend greatly on a sense of
esteem. But in reversing the argumentation, it can be said, that if a feeling of esteem
satisfies (at least partly) the need for self-actualisation. Therefore it cannot be regarded
as an independent item in a hierarchy of needs.
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The model below attempts to take into account the limitations of the idea of a hierarchy
of needs, and instead proposes a more systemic view of the question of intrinsic needs.
The second question we have to ask is whether it is possible to attribute specific
activities to the satisfaction of needs.

4.3.2.1 Model Set-up

This spreadsheet model has been set up in a very simple way using deterministic system
dynamics. It captures the interdependencies of a system of intrinsic needs and proposes
a way to link need satisfaction with the choice of activities. A flow-chart of the model is
shown in Figure 10.

The model aims to represent one “robot” individual in a static environment. Each time
step in the model is representing one day. It is assumed that the satisfaction of needs can
be measured using a set of budgets, one for every need. These budgets are filled by the
payoffs of the activities chosen. There applies a constant decay rate to each budget. The
results of the activities carried out during this day form the basis for next day’s
evaluation of budgets which in return leads to the allocation of time to activities. As the
time is restricted to 24 hours per day, the evaluation of budgets leads to “importance
points” for each activity. These are then transformed into “relative importances” which
are equal to the fraction of the daytime allocated for the activity.

Figure 10: Flow-chart of the Spreadsheet Model

In order to account for the interdependencies between the needs as shown above, the
hierarchy of needs was reformulated in a systemic way as shown in Figure 11. The
transformation of the hierarchy into an interdependent system of needs proved to be a
key issue for the formulation of the conceptual framework in the next chapter. The
qualitative arrows in Figure 11 indicate general influences of budget states on each
other. For instance, an improvement in the physiological budget will have a negative
effect on the perception of the satisfaction of the needs for safety, love and
belongingness, self-actualisation and the aesthetic needs. This interaction attempts to
incorporate that once the material necessities of existence are satisfied, people will
focus on other, non-essential aspects of their lives. On the other hand the feeling of love
and belongingness will positively influence the perception of the satisfaction of the
needs for esteem, self-actualisation and safety. These influences are incorporated into
the model by deduction or addition of a percentage of the last payoff for an activity to
the other budgets. It has to be noted that this procedure attempts to account for the
perception of a single individual, which would be different for each individual in an
application with more than one “robot”.
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physiological —-> safety

7
\

belongingness

esteem

self- = o
actualisation —=Jp aesthetic

Figure 11: Driving System of Needs in the Spreadsheet Model

A set of given activities (see Table 6) provides means to satisfy the needs. The model is
operationalised by connecting the duration of activities with the gross payoffs of the
activities. The web of interdependencies then modifies the gross payoffs into net
payoffs, which are in return credited to the respective budgets.

need directly satisfied by activity credited to budget

physiological services and goods, acquiring services and | physiological
recreation goods, recreation

safety - - safety

love and belongingness

interpersonal contacts '

socialising

love and belongingness

esteem

goods, money

acquiring services and
goods, work

esteem, money
(auxiliary budget)

self-actualisation

education, recreation

education, recreation

self-actualisation

aesthetic

education

education

aesthetic

Table 6: Relations between Budgets and Activities

There are some points to be mentioned about Table 6. First of all, some activities serve
to satisfy more than one budget. In this case the result of the activity is split and then
credited to the respective budgets. The other point is that there is no activity allocated to
directly satisfy the safety need. This budget can only be influenced indirectly through
the interdependencies within the system of needs. The cross-influences between activity
results as shown in Figure 11 apply of course to the results of all other activities as well.

There are only two constraints applied to the model. One is that it is impossible to
acquire services and goods if there is no money (the only result of work) available,
another that there is a minimum time required to be spent on recreation, reserving time
required for sleeping and eating. There is also a decay rate applying to the physiological
budget. All activities have to add up to 24 hours per iteration (day). The complete set of
equations is defined as follows:
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Gross results of activities of previous time period are credited to the budgets:
grossres(phys,t —1) = specpayoff (serv) - time(serv,t =1)+ 0.5 - specpayoﬁr (rec)-time(rec,t —1)
grossres(safe,t —1) =0
grossres(esteem,t —1) = money(t — 1) + 0.5 - specpayoff (serv) - time(serv,t —1)
grossres(aest,t —1) = 0.5 - specpayoff (edu) - time(edu,t — 1)
grossres(s/a,t —1) = 0.5- specpayoff (edu) - time(edu,t - 1) + 0.5 - specpayoff (rec) - time(rec,t —1)
grossres(ib,t —1) = specpayoff (soc) - time(soc,t —1)
with
grossres = gross result of previous activities for budget
phys = satisfaction of physiological need
safe .= satisfaction of safety need
esteem = satisfaction of esteem need
aest = satisfaction of aesthetic need
s/ a = satisfaction of self — actualisation need
Ib := satisfaction of need for love and belongingness
specpayoff = specific payoff of actvity
serv :=>acquiring services and goods
rec = recreation
edu = education
soc = socialiasing
time = time spent on activity

money = state money budget

Equation 10: Calculation of Gross Activity Payoffs

Net results for budgets (after interdependencies of needs):

netres(phys,t —1) = grossres(phys,t - 1)
netres(safe,t —1) = grossres(safe,t —1) — fact(phys)- grossres(phys,t —1) + fact(Ib)- grossres(lb,t —1)
netres(esteem,t ~1) = grossres(esteem,t —1) + fact(Ib)- grossres(lb,t —1) + fact(aest) - grossres(aest,t —1)
+ fact(s/ a)- grossres(s/a,t —1)— fact(safe)- grossres(safe,t —1)
netres(aest t —1) = grossres(aest,t —1) — fact(phys) - grossres(phys,t —1)
~ fact(s/a)- grossres(s/a,t —1) — fact(safe) - grossres(safe,t —1)
netres(s/a,t —1) = grossres(s/ a,t —1) — fact(phys)- grossres(phys,t —1) + fact(lb) - grossres(Ib,t —1)
— fact(safe) - grossres(safe,t —1)
netres(lb,t —1) = grossres(lb,t — 1) — fact(phys) - grossres(phys,t —1)

with

netres = net result of previous activities for budgets
fact = budget — specific factor

Equation 11: Calculation of Net Activity Payoffs
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The state of the budgets is calculated as follows: .
budget(phys,t) = budget(phys,t —1) + netres(phys,t —1) — decay(phys) — 0.5 - decay(s / a)

budget(safe,t) = budget(safe,t —1) + netres(safe,t —1)

budget(esteem,t) = budget (esteem,t — 1) + netres(phys,t —1)
budget(aest,t) = budget(aest,t —1) + netres(aest,t —1)
budget(s/ a,t) = budget(s/a,t —1)+ netres(s / a,t —1)-0.5-decay(s / a)

budget(Ib,t) = budget(lb,t —1) + netres(lb,t —1)
with
budget := budget state
decay = decay rate of budget
Equation 12: Calculation of Budget States

The state of the budgets determines an importance of the respective activities:

import(serv,t) =1.0001 ¢4, triéger(serv, t)
import(work,t) =1.0001(0 Gudset(phys.ysbudget(esteemO) |, oo op(work, t)
import(rec,t) =1.0001"¢#C’%) . yrioger(rec,t)
import(edu,t) =1.0001"“#C"%) . yrigoer(edu,t)
import(soc,t) =1.0001"®#®D . yrigger(soc,t)
whereby '

-1
trigger(serv,t) =900/ z grossres(phys,i)

i=t-9

t-1
trigger(work,t) =900/ z grossres(phys,i)

i=t-9

1-1 o
trigger(rec,t) =900/ Z grossres(s/ a,i)

i=t-9

t-1 '
trigger(edu,t) =900/ Z grossres(s/ a,i)

i=t-9

t-1
trigger(soc,t) =900/ Z grossres(lb, i)

i=t-9

Equation 13: Calculation of Activity Importances
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The time for the activities is then allocated as follows:

import(serv,t)

time(serv,t) =
( ) Zimport( Jst)
I

-24; ifmoney(t—1)20
=0; ifmoney(t-1)=0
import(work,t) 24

time(work,t) =
Z import(j,t)
j

import(rec,t)

time(rec,t) =
( ) Zimport( 7,t)
i

-24;  ifmoney(t —1)20

_ import(rec,t) + import(serv,t)
Z import(j,t)
J

-24;  ifmoney(t—1)<0

import(soc,t) 2

time(soc,t) =
( ) Zimport(j,t)
7 .

and

money(t) = money(t — 1) — time(serv,t) - specpayoff (serv) + time(work,t) - specpayoff (work)
Equation 14: Time Allocation for Activities

4.3.2.2 Findings

It appears to be possible to reproduce typical activity patterns of a working person with
this model. However, this model is limited in the extent to which it can reproduce “real”
behaviour. For instance, it does only work if the specific payoffs for each activity are set
in a rather narrow range, which is still realistic, but virtually just an average. Individuals
exposed to more extreme situations fail to “survive” by producing very strange
behaviour, although it might be easy for people to cope with this type of situation. Here
it is important to note that the rule set for the model individuals is in every case different
to one we would find in reality. The failure to cope with “easy” situations is to be
blamed on the model and its admittedly mechanistic principles. But, as Forrester (1969,
p. 113) noted, “the first step in modelling is to generate a model that creates the
problem”. This is done here in a first iteration towards reality by creating rather realistic
activity patterns not by imposing constraints, but from using intrinsic motivation.
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Figure 12: Example Budget Graph for the Spreadsheet Model
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Figure 13: Corresponding Time Allocation for the same Configuration

In a large number of tested parameter configurations the time allocation for some
activities proved to be periodically oscillating as shown in Figure 13. The apparent
similarity to weekly patterns is probably of no significance, but due to the set-up of the
system. However, the “behavioural patterns™ are repeated on a period of six days! The
other aspect of the results is that it was not possible to satisfy all budgets at any point
with the very simple rules used. At least one budget (as shown in Figure 12) will be
neglected in the set-up used.

Furthermore, the model is a non-spatial representation of how the satisfaction of needs
could lead to patterns of daily activities. as we know them. Location, spatial and
temporal availability of activities through a differentiated land uses and travel time do
not have any influence on the decision process. This model is also only simulating
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behaviour for one individual which does not interact with any other group or person,
and it does not have any ability to adapt its behaviour to a changed environment. The
individual acts only upon the immediate present status, and is not able to rely neither on
past information (as it has no memory) nor can it anticipate future events.

4.3.2.3 Discussion

The findings from the spreadsheet model reinforce the idea that if there is a set of given
intrinsic human needs it will be of systemic rather than purely hierarchical in nature.
The principle of a feedback control system applying to the way the model individuals
choose to satisfy their (predefined) needs appears to work in principle for a simple
model.

However, it seems to be necessary to refine the basic assumptions in order to include
more individuals as well as a spatial structure in such a model. Issues of competition
between individuals - possibly leading to adaptability in their behaviour - cannot be
dealt with in such a simple model.

The results are encouraging in the sense that the idea of needs as a driving force leads to
results which resemble the time use of an average working person. It appears to be
possible to approach the question of individual behaviour from a deductive point,
therefore creating an explanatory model. This stands in sharp contrast to the traditional
approach of extrapolating statistics used in conventional models of individual
behaviour.

4.3.3 Max-Neef’s Standpoint

Max-Neef (1991) has developed an approach to the problem of human needs in the
context of (economic) development. This has a more systemic nature than Maslow’s
ideas. Max-Neef identifies nine fundamental needs (see Table 7) out of which only one,
the need for subsistence or basic survival, can be regarded as having a higher value than
the rest. This results in a situation, which is dominated by trade-offs and conflicts
between the needs. In this sense, the results of the above reflections on Maslow’s
hierarchy of needs are very much reinforced.

The systemic nature of the needs becomes even clearer when the attributes, which
satisfy the needs, appear for more than one need. “Solidarity”, for instance appears in
the category “Being” in Table 7 for not less than three needs: Protection, Affection and
Participation. Read the table like this: If you are (category “Being”) physically healthy,
then your need for subsistence is likely to be (partly) satisfied. If you have (category
“Having”) food and shelter, then this is likely to help you as well in respect to
subsistence.
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Needs
:ﬁfsz;jﬁ?aglm Being Having Doing Interacting
categories =
Needs
according to
axiological
categories |
. Physical health, Food, shelter, work Feed, procreate, rest, | Living environment,
Subsistence | ;) health, work social setting
equilibrium, sense of
humour, adaptability
. Care, adaptability, Insurance system, Cooperate, prevent, Living space, social
Protection autonomy, equi- savings, social secu- plan, take care of environment, dwelling
> > 3 ¢ t]
librium, solidarity rity, health systems, cure, help
rights, family, work
. Self-esteem, solidarity, | Friendships, family, Make love, caress, Privacy, intimacy,
Affection respect, tolerance, partnerships, express emotions, home, space of
generosity, receptive- | relationships with share, take care of, togetherness
ness, passion, deter- nature cultivate, appreciate
mination, sensuality,
sense of humour
Critical conscience, Literature, teachers, Investigate, study, Settings of formative
Under- receptiveness, method, educational experiment, educate, | interaction, schools,
standing curiosity, astonish- policies, analyse, meditate universities,
ment, discipline, communication academies, groups,
intuition, rationality policies communities, family
.. Adaptability, re- Rights, responsi- Become affiliated, Settings of partici-
Par.tlu- ceptiveness, solidarity, | bilities, duties, cooperate, propose, | pative interaction,
pation willingness, privileges, work share, dissent, obey, | parties, associations,
determination, ; interact, agree on, ex- | churches, commu-
dedication, respect, press, opinions nities, hoods, family
passion, sense of
humour )
Curiosity, recep- Games, spectacles, Daydream, brood, Privacy, intimacy,
Idleness tiveness, imagination, | clubs, parties, peace of | dream, recall old spaces of closeness
£ bl £ 3 el b
recklessness, sense of | mind times, give way to free time
humour, tranquillity, fantasies, remember, - | surroundings, land-
sensuality relax, have fun, play | scapes
. Passion, determi- Abilities, skills, Work, invent, build, Productive and
Creation nation, intuition, method, work design, compose, feedback settings,
imagination, boldness, interpret workshops, cultural
rationality, autonomy, groups, audiences,
inventiveness spaces for expression,
temporal freedom
. Sense of belonging, Symbols, language, Commit oneself, Social rhythms,
Identity consistency religion, habits integrate oneself, everyday settings
> £ 3 3
differentiation, self- customs, reference confront, decide on, settings which one
esteem, assertiveness | groups, sexuality, get to know oneself, belongs to, maturation
values, norms, histo- | recognise oneself, stages
rical memory, work actualise oneself, grow
Autoriomy, self- Equal rights Dissent, choose, be Temporal/spatial
Freedom esteem, determination, different from, run plasticity

passion, assertiveness,
open-mindedness,
boldness, rebel-
liousness, tolerance

risks, develop
awareness, commit
oneself, disobey

Table 7: Need system (Max-Neef, 1991, p. 32/3)
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The needs he identifies are considered to be universal and invariant. In this sense, all
humans regardless of culture or economic situation are seen to posses all nine needs.
Not all needs have always been in existence, some have only recently (on the time scale
of biological evolution) emerged, and Max-Neef claims that as the historic development
continues, more needs are likely to come into existence. The invariance of the needs can
therefore apply only on shorter time scales, which are more likely in the range of several
hundreds of years than those time scales on which biological evolution takes place. Still,
a time scale of hundreds of years is much larger than those on which even the most
optimistic simulations, forecasts or development schemes are based.

The next element of this need system is called a “satisfier”.

(Satisfiers) “ ... are related ... to everything which, by virtue of representing
forms of Being, Having, Doing and Interacting, contributes to the
actualisation of human needs.” (Max-Neef, 1991, p.24)

According to the varying nature of these satisfiers they might affect some needs
positively whilst at the same time having adverse effects on other needs. Max-Neef
refers to these two classes as “synergic” and “inhibiting” satisfiers (see Table 8§ and
Table 9). This means that there is a constant trade-off between the satisfaction of all the
needs, because Max-Neef argues that non-satisfaction of any one of the needs leads to
pathologies in those individuals as well as in their society. Other satisfiers might lead to
synergies by having a positive effect on more than one need.
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Satisfier Need Needs, the Satisfaction of Which
It Stimulates

Breast feeding Subsistence Protection, Affection, Identity

Self-managed production Subsistence Understanding, Participation,
Creation, Identity, Freedom

Popular education Understanding Protection, Participation, Creation,
Identity, Freedom

Democratic Community Participation Protection, Affection, Leisure,

Organisations Creation, Identity, Freedom

Barefoot medicine Protection Subsistence, Understanding,
Participation

Barefoot banking Protection Subsistence, Participation,
Creation, Freedom

Democratic trade unions Protection Understanding, Participation,

: Identity

Direct democracy Participation Protection, Understanding, Identity,
Freedom

Educational games Leisure Understanding, Creation

Self-managed house-building Subsistence Understanding, Participation

programs

Preventive medicine Protection Understanding, Participation,
Subsistence

Meditation Understanding Leisure, Creation, Identity

Cultural television Leisure Understanding

Table 8: Synergetic Satisfiers (Examples after Max-Neef, 1991, p. 36)
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Need

Satisfier Needs, the Satisfaction of Which
Is Inhibited

Paternalism Protection Understanding, Participation,
Freedom, Identity

Overprotective family Protection Affection, Understanding,
Participation, Idleness, Identity,
Freedom

Taylorist-type of production Subsistence Understanding, Participation,
Creation, Identity, Freedom

Authoritarian classroom Understanding Participation, Creation, Identity,
Freedom

Messianism (Millenialism) Identity Protection, Understanding,

‘ Participation, Freedom

Unlimited permissiveness Freedom Protection, Affection, Identity,
Participation

Obsessive economic Freedom Subsistence, Protection, Affection,

competitiveness Participation, Idleness

Commercial television Leisure Understanding, Creation, Identity

Table 9: Inhibiting Satisfiers (Examples after Max-Neef, 1991, p. 35)

Economic goods have a special place in this argumentation. Max-Neef criticises the
common belief that economic goods are a human need. ' ‘

“Satisfiers are not the available economic goods” (Max-Neef, 1991, p. 24)

and further

“While a satisfier is in an ultimate sense the way in which a need is
expressed, goods are in a strict sense the means by which individuals will
empower the satisfiers to meet their needs. When, however, the form of
production and consumption of goods makes goods an end in themselves,
then the alleged satisfaction of a need impairs its capacity to create
potential. This in turn, leads to an alienated society engaged in a senseless
productivity race. Life, then, is placed at the service of artefacts, rather than
artefacts in the service of life. The question of the quality of life is
.overshadowed by our obsession to increase productivity.” (Max-Neef,

1991, p.25, his emphasis)

Although the needs defined by Max-Neef overlap considerably with the ones of

Maslow, he is much more specific on how needs can be satisfied. Considering the above
remarks on economic goods, the typology of satisfiers suggests that needs are much
more likely to be met through the social setting than through material things. This

makes a “measurement” of need satisfaction with the help of budgets not as
straightforward as in the previous spreadsheet model, although there is a coupling of
need satisfaction with activities through the “Doing” category of Table 7.
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Furthermore, the specific formulation of needs in search of a sensible theory of
economic development has to be contrasted with our problem of a model of everyday
life for an urban environment. Still, this very systemic approach to the problem of
human needs can provide us with a framework on which a simulation can be built.
Needs are invariant over considerable time, and they are universal, which is the
cornerstone for a computational model relying on a closed universe (see 2.5). The needs
can be satisfied though activities, but the systemic nature of the theory leaves us with a
multicriteria problem, as the needs co-exist with each other. This will require an
individual to make trade-offs between needs, because it will not always be possible to
satisfy all needs to the same extent.

4.4  Implications of Evolutionary Theory

The search for adequate philosophical concepts on which dynamic models can be based
has recently focused on evolutionary theory. Evolutionary theory deals with the long-
term development of biological entities, and it appears reasonable to borrow concepts
and analogies from a very generic theory of how these extremely complex systems
develop over time. The application of evolutionary theory to processes, which are not
primarily biological (in the sense of biological evolution), is from a strictly scientific
point of view debatable (for a discussion on how far evolutionary analogies might be
taken see Jeffrey, 1996). However, as a philosophical concept, evolutionary theory
provides a good basis on which a model of cultural change might work, as long as the
concept is not applied in the same way as the “social physics” approaches examined in
Chapter 2.3.

Recent modelling has drawn on evolutionary analogies for the analysis of complex
systems. On the other hand, the latest developments in biological evolutionary theory
have been applying complex systems theory to the realm of biology. Still, the real
mechanisms behind biological evolution are still to a large extent unaccounted for.
Evidence suggests that the processes of evolution might actually be a combination of
processes traditionally covered by different theories instead of one grand unified theory.
Yet the theories about evolution can serve as new paradigm in the analysis of complex
systems, like - in this case - human culture.

Evolutionary theory has developed four basic approaches to biological evolution to date.
First of all, the most common theory of variation and selection based on Darwin, the
even older theory of incorporation of useful features into the genome introduced by
Lamarck, the assumption of an undirected “drift” of random mutations, and finally
complex systems theory. In this section, all these theories will be assessed in terms of
usefulness for a model of individual behaviour. This means that they cannot be
discussed in all their facets as this would divert too far from the subject of this thesis.
The emphasis is therefore kept on the principle mechanisms underlying the theories and
their explanatory capacity for long-term system change.

4.4.1 Natural Selection and Gradual Change

The classic theory of evolution as proposed by Darwin (1872) relies on the selection of
attributes, which make species more fit to survive in the competition for resources
between them. Changes are regarded to occur at random in the genetic make-up of a
given animal or plant. Thereby changes can occur in any direction, thereby either
increasing or decreasing the viability of the organism. If this change happens to increase
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the “fitness” of the species, it will be propagated, because it gives the modified
individuals an advantage over the original ones. If certain examples of one species have
an advantage over others, this will ultimately lead to lower mortality and more
offspring, thereby changing the population ratio between the new and the old species.

Darwin regarded the process of change as gradual and quasi-continuous. This
assumption was reinforced by the addition of Mendel’s genetic theory to Darwin’s
original theory. The idea that genes were responsible for specific traits of an organism,
and therefore random change to certain genes would lead to random, but gradual,
changes in the “fitness” of an individual. As this “genetic beanbag” (Wesson, 1991,
p. 9) covers all properties of an organism with a great number of traits, the gradualist
aspect of random change and selection seemed to be verified.

This basic essence of Darwinist theory involved a connotation of optimisation, as it
claims that the species in existence must obviously have the optimum fitness, which is
currently available by means of evolution. The whole process of selection was assumed
to have been optimising species over the last couple of billion years. One of the main
points of critique to this view is that if evolution were optimising then how do we
account for all those species which are obviously maladapted, but which are in fact
extremely successful in terms of number of population numbers, just taking the human
race as one example. For their survival in a natural environment, humans feature a
number of physical handicaps, such as rotting teeth, missing body hair for insulation
from the cold etc. (For a more in depth discussion of this issue see Wesson, 1991,
pp. 95 ff.) Still, the human race is one of the most successful species ever to exist.

Moreover, the theory does not say anything about how changes come into existence,
which is an aspect not covered by other theories as well. There is as well no influence of
experience or learning on the makeup of a species (as Lamarck suggested see 4.4.2).
One more problem with Darwin’s theory is that it cannot explain why there are huge
gaps in the fossil record, because - even taking into account that fossilisation is a very
rare event - a gradualist evolution would generate many more transitional species in
between those which are actually recorded.

4.4.2 Lamarckian Theory

Darwinian theory limits itself to claiming that changes in the genome of a species are
due to random mutation, which are subject to the selective pressure of competition.
Lamarck, on the other hand, had claimed before Darwin that environmental influences
change the individuals of a species as well. This theory has some particular merit in a
cultural context (in the sense that learned features can be inherited) as well as that there
is some evidence from biology that suggests that Lamarck’s theory cannot be entirely
dismissed.

It has been suggested that especially in mammals and birds there is a high capacity for
the incorporation of learned or imitated behaviour into hereditary traits (Wesson, 1991,
p. 225). Here it is thought that a high brain capacity increases the probability that such
genetic change occurs. In any case the change caused through positive adaptation has to
be supplemented by a complimentary selection process as well, so that this theory
would have to be used in conjunction with Darwin’s theory of mutation and selection.

Lamarck’s theory has particular appeal to the loss of unused organs in species. This
phenomenon contradicts Darwinism, because the loss of an (even unused) organ reduces
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the fitness of that particular species, as it then has fewer capabilities than before. The
species is thus more vulnerable to influences, which could have been dealt with the
formerly unused organ.

However, the main point of critique of Lamarck’s theory remains that it is very much
unclear how exactly an individual’s behaviour as a response to environmental
influences can change the hereditary features of an individual of a species.

Recently, a number of biologists proposed theories that regard culture as an integral part

of evolution (New Scientist, 1997). Here culture and behaviour are seen as co-evolving

and mutually depending on each other. The idea is very close to the essence of

Lamarck’s theory, but the great difference is that behaviour and physical make-up of a
species (or part of a species) are separate as opposed to the original idea that behaviour

influences directly the physical make-up. These theories are much more related to the

theory of “natural drift”, which is reviewed in Chapter 4.4.4.

4.4.3 Self-Organisation as a Driver for Evolution

One main limitation of the above theories of evolution is that they cannot explain the
gaps in the fossil record, which is the main evidence we have about evolution. Even
given the fact that fossilisation is a very rare event, the gaps cannot be attributed to
solely lack of fossilisation of the right individuals of some species. Furthermore, it
appears that only certain features of living creatures are to be found in combination
(Wesson, 1991). These features do not change over very long time spans. Species do not
appear to change as much as one would expect from either of the above theories, except
for the incorporation of behavioural features into what appears to be the genetic set-up
of species.

All this leads to the conclusion that evolution might in fact obey at least some of the
principles established by complex systems theory. The preconditions for self-
organisation are met: Biological systems are open systems, which take in energy
(sunlight or food), from outside to export entropy, therefore they are dissipative
structures in the thermodynamical sense. These structures have the property to self-
organise themselves into patterns of temporal stability (living being). In order to self-
organisation to occur, these structures have to import energy from outside. Once these
patterns fail to sustain themselves, because fluctuations of the system as a whole have
disturbed their trajectory enough, they may organise into some other, but probably most
different pattern, without (or only with a very short) transition period.

This matches exactly the kind of patterns, which are delivered by the fossil record,
which shows that dominating species (like the dinosaurs) became extinct very rapidly,
and were replaced by others (mammals and birds), which have a different set-up.
Leaving apart the issue of mass extinction by external factors, the transition from large
reptiles to mammals and birds is not documented in the fossil record. According to
Darwinian theory this should have been the case, because there should have existed
many transitional species between the earlier dinosaurs and later mammals and birds.
Self-organising evolution on the other hand can account for this gap, as animals might
either exist as reptiles or as mammals and birds without allowing for transitional
species. A cross between these phyla (in a transitional species) may not be technically
possible.
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4.4.4 Evolutionary Drift

The term “drift” has been applied to two very much different approaches to evolution.
There is firstly the concept of neutral drift, which basically removes the premise of
optimisation from Neo-Darwinist theory, thereby assuming that random mutation is
undirected and does not necessarily improve the “fitness” of a species (Kimura, 1985).
This view removes adaptation as a key concept from the theory, so that new species are
supposed not to be necessarily better adapted to their environment than old ones.

The other concept is called “natural drift” and has been coined by Varela, Thompson
and Rosch (1991). They summarise the theory as follows:

“I. The unit of evolution (at any level) is a network capable of a rich .
repertoire of self-organising configurations.

2. Under structural coupling with a medium, these configurations
generate selection, an ongoing process of satisficing that triggers (but
does not specify) change in the form of viable trajectories.

3. The specific (nonunique) trajectory or mode of change of the unit of
selection is the interwoven (nonoptimal) result of multiple levels of
subnetworks of selected self-organised repertoires.

4. The opposition between-inner and outer causal factors is replaced by a
coimplicative relation, since organism and medium mutually specify
each other.

We intend this set of articulated mechanisms to replace the adaptionist
outline ... and to give content to our announced alternative view. The view
of evolution depends on the conjoint applicability of three conditions:

la. The richness of the self-organising capacities in biological networks

2a. A mode of structural coupling permitting the satisficing of viable
trajectories :

3a. The modularity of subnetworks of independent processes that interact
with each other by tinkering * (Varela, Thompson and Rosch, 1991,
pp. 196/7)

This theory includes some elements, which have already been presented in different
contexts before. The first is the term “satisficing” which we have encountered in the
context of Simon’s theory of organisational behaviour. It is used here to clarify that
there is no drive to optimality in an evolutionary system. On the other hand it is possible
to reach optimality in an evolutionary system, if the interdependent selective pressures
are strong enough. This is a rather improbable case, because all elements of the system
have to progress towards optimality at the same pace, given the diverse nature of a
natural system.

The concept of self-organisation is taken a step further than before. Had it only been
applied to evolving structures in a given (static) environment before, it is now used to
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determine the relationships between the organism and the environment as well. The
interactions between organism and environment change over time due to the effects of
past interaction and adaptation, which influences properties and behaviour of both.
Organism and environment are mutually dependent on each other and they specify by
their behaviour and requirements how the relations between them are defined. The main
difference to the concept of self-organising evolution (4.4.3) has to be seen in the fact
that the former applies the mechanism of evolution to the organism only, whilst this
theory explicitly includes both organism and environment into the dynamics of the
system. This means that a given ecosystem will only evolve in the very specific
conditions encountered in space and time, whilst the same organisms would probably
take a very different path in a different environment.

4.4.5 Summary

In conclusion it appears to be difficult to come up with a conclusive theory of evolution.
The working principles of evolution needed for this thesis are very much unaccounted
for, as there is still no commonly accepted comprehensive theory of evolution in
existence. However, all existing theories on evolution make a useful contribution,
because they all attempt to explain at least some observed phenomena.

Darwinian theory covers the important aspects of mutation and selection, but it cannot
account for other phenomena such as hereditary positive adaptation, for which
Lamarck’s theory provides an explanation, although the precise mechanisms remain
very much obscure. Here the Darwinian theory has the great advantage on relying
almost exclusively on population ecology, which is a simple and understandable
principle. On the other hand there are still many gaps in the Darwinian framework, like
the incompleteness of the fossil record, for which a self-organising genome would
provide an explanation.

The most advanced theory of evolution to date is Varela, Thompson and Rosch’s
approach. Their attempt to integrate the existing theories as much as possible in a non-
optimising framework should be regarded as the state-of-the-art for the moment.
Although the theory is unspecific in terms of how precisely evolution might work, it
still can account for more observed phenomena than any other theory. The introduction
of a systems view expressing the mutual interdependencies of all elements of an
ecosystem leads to a holistic theory focusing on the generation of viable conditions
from within an ecosystem. Viability is regarded as an emergent feature of the ecosystem
leading the theory away from distinction of organism and environment. As viability is
generated by the ecosystem the theory also removes much of the reference to absolute
and universal viability conditions stressed particularly in the Neo-Darwinist theory.
“Natural drift” relies on only the loosest definition of reference points (such as a given
and mostly static environment) and attributes the local conditions and local reference
points (such as the observed interactions in a food chain at a given point in time) to the
self-organisation within an ecosystem.

Biological evolution is reviewed here only for the purpose of gaining insights into the
working principles of an adaptive system. It is necessary to look further in order to build
a framework for a model of everyday life. Although the theory of natural drift is very
compelling, we will encounter a reformulation of this theory in the context of human
cognition. Because the cognitive context is much nearer to the research issue in this
thesis than biological evolution, the cognitive formulation of this theory will be used.
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However, when evolutionary principles are mentioned in a more generic context of
modelling, the theory of “natural drift” is referred to.

4.5 Applications of Evolutionary Theory

Although some methods in computer science and engineering borrowing from
evolutionary theory have been in existence since the early 1970s (for instance
Rechenberg, 1973), they have only very recently been applied to computer models.
Probabilistic and deterministic methods like system dynamics were preferred for the
description of the behaviour of systems. These have recently been superseded by self-
organising models, which introduced non-linear non-equilibrium dynamics.
Evolutionary models, however, require at least one further step away from the
traditional mathematically deterministic methods on which computer science is built.
This class of models calls for structural change of all system elements and the relations
between these during run-time.

4.5.1 Evolutionary Models

Evolutionary models serve basically two purposes: On the hand side there are models
which aim to explain mechanisms of evolution itself, and on the other hand there are
models which use concepts of evolutionary theory as analogies to explain phenomena in
domains other than biological evolution. OQur primary concern in the given context
should be with the latter ones, but the former category can be used in clarifying some
basic properties of evolutionary systems. This can facilitate the design of a framework
for a model of everyday life.

An early application of evolutionary principles to a model of human acting is the
fisheries model of Allen and McGlade (1987). The model was built to explain the
dynamics of the fisheries off the coast of Nova Scotia, Canada. Because the traditional
equilibrium approach to the viability of fishing operations had not been successful and
relied on a static system, Allen and McGlade resorted to a complex systems approach.
The introduction of fluctuations on the reproduction of the fish stocks proved to come
near the observed dynamics of the system. Still, this was not an evolutionary model, but
a more traditional, Lotka-Volterra (predator - prey) model. The reformulation of this
basic model into a spatial one introduced not only the principal economic mechanisms
of supply and demand, varying elasticity of demand and advances in technology, but
also a distribution of different behaviours on the side of the fishermen. The extreme
positions of fishing behaviour have been called “stochasts” who explore the area more
or less at random, and “cartesians” who do not take any risks and fish only where they
know that there is fish to be found.

Unsuccessful fishermen go “bankrupt” and are removed from the system, whilst
successful ones make enough money to buy more boats and expand their strategy. This
is the application of the Darwinist idea of population ecology insofar as fishermen with
superior “fitness” will finally dominate the system. However, it is not as simple as this.
The basic configuration of this extension of the original model was modified to allow
for change in the initial behaviour of the fishermen. Was it the “stochasts” who
dominated the initial system, because they had the possibility to explore new, possibly
more profitable strategies, the “cartesians” took over from the “stochasts” once they
were allowed to copy information on good catches from the “stochasts”. On the other
hand the total removal of either “stochasts” or “cartesians” resulted in an overall lower
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performance of the system in terms of total catches, and the highest performance was
recorded using a mix between “cartesian” and “stochast” strategy.

This behaviour suggests that any complex evolutionary system actually relies on the
presence of both exploration and exploitation. Exploration is needed to find new viable
modes of behaviour, whilst exploitation makes the best use of these newly found
behaviours. A correspondence with the Gaussian distribution curve is obvious. In many
natural systems the bulk of behaviours is found close to the average, but a small
minority of behaviours is very far from the average exploring new aspects of the
decision space.

An earlier model by Allen and Ebeling (1983) dealt on a more theoretical level with
these kinds of phenomena. The model was set up to explore the mechanisms. of
evolution in a hypothetical ecosystem. Allen and Ebeling used a stochastic master
equation description for the processes involved. The ecosystem was designed to
resemble a predator-prey system.

The aim of the model was to show that a mutation - no matter whether increasing or
decreasing fitness for a given species - could invade the system, and therefore influence
the further evolution of the system. The focus was therefore shifted towards the
stochastic behaviour of new mutants, which were generated by randomly changing the
existing members of the species.

As opposed to the deterministic case in which a new mutant would have to have at least
the same fitness as the existing individuals, it turned out that even a much lower fitness
was enough to guarantee the survival of mutants for at least some generations. In the
long term, however, it was found that the fitness of mutants would have to be at least
10% higher than that of the existing individuals to ensure that the new strain of
characteristics is preserved in the long term.

“Quasi-neutral, and even quite negative mutations can survive for a long
time in a locality, long enough anyway for new evolutionary paths to be
explored, while frequently even quite advantageous mutations may be lost in
the “noise” surrounding their birth.” (Allen and Ebeling, 1983, p.125)

The above conclusions make it clear that from the point of view of a stochastic analysis
the ideas put forward by Varela et al. (1991; see 4.4.4 above) are very much reinforced.
It showed as well that inhomogeneous spatial distributions are of the utmost importance
in preserving and introducing new mutant species. In the case of a homogeneous
distribution of characteristics and for very long time spans the solutions should resemble
more and more the Neo-Darwinist ideas about evolution. This case is rather theoretical
and reminds us of the assumptions made in early systems models. The analogy is
obvious: Very important determinants of a system are wiped out by a much too
aggregated description, and therefore simplistic conclusions arise from the use of the
conceptually inaccurate model. It is not possible to claim that the above models are
more accurate in a quantitative sense, but they have a much greater explanatory power
than the aggregate description, because the system is described more accurately on the
qualitative level.

Especially the use of random noise probably leads to results, which will never be
quantitatively accurate, but the working mechanisms of the system are highlighted,
helping to understand the system qualitatively. In the very complex setting of
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evolutionary mechanisms it appears to be more important to analyse a system by
modelling it qualitative than to try to make quantitative predictions on the system’s
future behaviour.

4.5.2 Genetic Algorithms

The most widespread method based on evolutionary theory in computer science is the
so-called genetic algorithm. A genetic algorithm is basically an optimisation method for
very large search spaces, where conventional search mechanisms would probably not
find the better solutions because of confinement to a narrow parameter and variable
range. The concept builds on Darwin’s theory of random mutation and selection.

A set of alternative solutions is defined and tested against whatever constitutes the
“fitness” of the solution. The worst performing solution is thén removed from the set
and replaced with one, which is derived from other solutions by randomly changing
some parameters or variables. Alternatively, combining parameters of existing solutions
might also generate a new solution.

The first method refers to the accidental mutation of the genome in biology whilst the
second one aims to mimic recombination of genetic material, both processes observed
in nature. Then the process of testing and change is repeated until a satisfactory solution
is generated. Usually, after some time (which can be quite long, because the genetic
algorithm is basically a random search) the quality of the solutions approaches some
optimal value asymptotically. In this case it remains unclear whether this really is the
optimum solution, because the algorithm might not find even better configurations.

However, Genetic Algorithms have proved to be efficient tools for solving complex
optimisation tasks, for instance in engineering. We have to note here that the Neo-
Darwinist notion of optimality is used in this technique, which does not account for
many phenomena in biological as well as cultural evolution. If the definition of
evolution as mutually interdependent change between environment and organism
(Maturana and Varela, 1984; Varela, Thompson and Rosch, 1991) is applied, the
genetic algorithm is not even an evolutionary technique, because evolution in this
definition co-evolves system elements and does not optimise them. The genetic
algorithm tests the system elements against a static environment (the “fitness”
requirement) which has no influence on how the solution is generated.

4.5.3 Classifier Systems

Holland et al. (1986) put forward a concept for learning systems in Artificial
Intelligence based on induction. This allows for any rule-based system to generate new
rules or to modify old ones, which have been found inadequate for the task they have
been designed for. The approach is using experience as the main force in rule
modification, and thereby differs clearly from deductive methods (used in conventional
Expert Systems) which formulate a theory, and then try to verify it empirically. The
inductive method does not presuppose any theory, but forms the theory (the rules) from
experiencing the environment.

“The inductive mechanisms must accomplish three difficult, interrelated
tasks. They must (1) evaluate the system’s rules as instruments for goal
attainment, improving them where possible and favouring the better ones in
application; (2) generate plausibly useful new rule sets that are capable of
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extracting and exploiting regularities in experience and (3) provide
associations between and clusterings among rules in order to create larger
knowledge structures leading to efficient modelling of the environment. In
carrying out these tasks, inductive mechanisms rely upon feedback
concerning predictions about the environment.” (Holland et al., 1986, p. 68)

Holland et al. distinguish between two different kinds of rule sets in their systems:
synchronic rules for state classification and diachronic rules for state prediction based
on the classifications of the former rules. The inductive mechanism has to compare a
prediction made with the existing rules to the actual experience or payoff of that
prediction. If these rules fail, rule revision is triggered. The goal-directedness of the
inductive process is stressed throughout:

“Induction is not simply something the cognitive system does to occupy its
idle moments, nor does it have the character of undirected inference making
or random combination of ideas. Rather, induction is a problem-directed
activity, executed in response to specific system objectives such as seeking
plausible explanations for an unexpected outcome.” (Holland et al., 1986,

p. 68)

This means that the rule system used is designed to perform a given task from the
outset. In our application it is not clear what tasks are to be performed, and the purpose .
is to model individual behaviour in the context of everyday life. What is not clear is the
nature of how changes in individual behaviour come along, it can just be suggested that
there is a connection between experience of the individual and changes in the
environment. Therefore it is not known whether induction is the “correct” way of
learning in individuals. However, as the process of induction is modelled on real-life
learning from experience, it remains a very interesting approach to our problem,
although a less specific way of creating learning individuals is thought to be more
appropriate for a first implementation of such a system.

The so-called “classifier system” was built on this induction-based framework.
Classifier systems are basically a rule modification method “(operating) with highly
general learning mechanisms applied to a simple representational scheme” (Holland et
al., 1986, p. 102). The reason for the name “classifier system” becomes clearer when
looking at the properties of these systems:

“1) Parallelism. Large numbers of rules, called classifiers, can be active
simultaneously. Problems of “scheduling” are avoided because the only
action of an active classifier is to post a message to a message list - more
active classifiers simply mean more messages. (The rules are called
classifiers because they can be used to classify messages into general sets,
but they are much more powerful than this name would indicate, providing
both processing and recording.) The system uses the rules as building
blocks, activating many rules concurrently to summarise and act upon a
situation.

2) Message passing. Classifiers, as is usual with production systems, consist
of a condition part and an action part, but the conditions are all defined in
terms of the set or class of messages that satisfy them. That is, a classifier
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system becomes active when each of its conditions (there may be more than
one in the condition part) is satisfied by the presence of an appropriate kind
of message on the message list. The action part of the classifier system then
specifies a message to be posted to a message list on the next time-step. A
classifier system can be viewed as a kind of office, with various individuals
(the classifiers) processing selected memos (the messages) from a pool (the
message list). To keep the definition of individual classifiers simple (which
Sacilitates the generation of new classifiers, as we will see), all messages
and conditions are standardised as binary strings of fixed length. All
communication from and to the outside (output and input) is via messages,
so that any given classifier system can be connected easily to an
environment or to other classifier systems. Interactions with an environment
are handled via input interfaces (often a set of property detectors) that
generate messages, and output interfaces (message-controlled effectors)
that react to messages.

3) Lack of interpreters. Because the interaction of classifiers is solely via
messages and does not depend upon the ordering of the classifiers in some
store, and because the satisfaction of conditions is determined by a simple
matching operation, there is no need for high level interpretation as part of
the computational mechanism. Messages incorporating tags, along with
conditions requiring the presence of those tags, can be used to couple
classifiers force predetermined execution sequences, and so on. In
consequence ... classifier systems are highly modular and graceful: it is
possible, usually, to add new candidate classifiers to a classifier system
without causing global disruptions, and there are local syntactic operators
that generate such candidates.” (Holland et al., 1986, p. 103/4)

The parallel working of rules is a very interesting feature of classifier systems and it
bears a strong similarity to Fuzzy Logic, which will be reviewed in Section 4.7.2. The
rules are set using three-valued logic: 0 (no), 1 (yes) and # (ignore). The definition
space for the rules covers all possible input parameters, so that any classifier can in
theory refer to any combination of input parameters. The execution sequence of a
simple classifier system reads as follows:

“I) Place all messages from the input interface on the current message list.

2) Compare all messages on the current message list to all conditions of
all classifiers and record all matches.

3) For each set of matches satisfying the condition part of some classifier,
post the message specified by its action part to a new message list.

4) Replace the current message list with the new message list.

5) Process the message list through the output interface to produce the
system's current output.

6) Return to step 1.” (Holland et al., 1986, p. 105)
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The way the input messages are compiled in order to activate a classifier means that all
features which are detected by any rule are considered in the next step. The rules can
therefore specialise in the detection of certain features, and combination of features can
be considered as well without defining a new rule as it would be necessary in a
conventional rule based system. This makes the classifier system extremely flexible and
resilient against fluctuations in the system’s input.

There are two alternative ways of changing a classifier system suggested by Holland et
al.. On the one hand side there is the so-called “bucket-brigade algorithm”, a method to
assign weights to successful classifiers and their couplings. Classifiers are given
weights, which initially are the same for all. Then a fraction of the classifier’s weight
(which can be randomly varied around an average in order to explore new
combinations) is sent with the message to the next classifier in sequence, which adds the
tag to its own weight after sending its own tag (again a fraction of its weight) to the next
classifier. Finally, the payoff of the activated sequence is credited to the first classifier.

This algorithm is similar to Hebb’s learning algorithm (Hebb, 1949) which is used in
artificial Neural Networks (see 4.7.1), only that the weights are assigned to explicit rules
as opposed to neural nodes. In contrast to a Neural Network, there is no need for
beforehand training of a classifier system, and the modification process continues
throughout the use of the system.

The other suggested way of modifying a classifier system is the use of a genetic
algorithm (see 4.5.2). Here the genetic algorithm is used only after a number of time
steps, so that the performance of classifiers can be monitored over a longer time span.
By using the genetic algorithm the system is transformed into a dynamic rule based
system, which can form one part of a truly evolutionary model, if the principle is
applied to both the environment and the individual.

4.6 New Developments in Cognitive Science

. The discovery of emergent properties in the neural systems which make up the human
nervous system, and which are therefore the basis for our cognition, has lead to the
paradigm of cognition as an emergent property of the body. The cognitive experience is
triggered by environmental (sensory) influences on the nervous system. There are of
course basic properties of the nervous system, but these are not immanent in cognition
itself, as the latter is caused by interaction of the parts of the nervous system, and cannot
be regarded as existing per se.

One example for a theory based on this paradigm is Minsky’s (1986) idea that the mind
is composed of a set of different “agents” each sensing or actuating different things.
These agents are very closely connected with each other, so that certain configurations
of states of the agents can give rise to perceptions or actions very much different to the
actual designation of the agent itself. In this sense, the human mind cannot be regarded
as a single entity, but rather as a society of mind. The concept of “agents” is similar to
what we find in the so-called agent-based models (see 4.2), but is here used to denote
functional entities as opposed to models of physical entities in the agent-based models.

This has important implications for a model of human acting. If the mind can be
regarded as a “society” composed of different agents, each responsible for different
actions or decisions on a large number of different time scales, it becomes clear that the
often contradicting perceptions and aims in certain moments can give rise to a totally
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different, but in itself consistent type of behaviour (due to self-organisation), which
might have a contraproductive effect on some of the goals of the individual.

The theory does also imply that when dealing with individuals in a model, there should
exist some agents within one individual to deal with different perceptions and aims.
These agents have to be highly interconnected to provide the possibility for self-
organisation within these agents.

Varela, Thompson, and Rosch (1991) have carried the self-organising paradigm on step
further. As in their theory of evolution (4.4.4) they regard cognition as a self-organising
feature which relies on the mutual interaction between individual and environment. The
cognitive system is regarded as being composed of agents analogue to Minsky’s theory.
Instead of regarding the agents as ready-made, static entities which self-organise due to
their interaction, the parts of the cognitive system are also able to influence each other
as well as being the subject of the interaction with the environment.

The term “enaction” is used to summarise the central concept of the theory. The
individual and its nervous system cannot be regarded as separate from the environment,
because the organism is very closely interacting with and changing the environment,
which in return is changing cognition. The perception of the environment depends on
how it is “enacted” by the individual. This means in reverse that the individual is
actually creating its own world by perceiving it (Not only for the idea that perception
determines action, but also for how the image of the world is created by the individual).
As the individual and environment mutually specify each other, the never-ending
process of the becoming of cognition for the specific individual becomes extremely
important. The current situation and its perception are based on the historic pathway
leading up to that specific point in space and time. Therefore history is determining an
important part of the system. The second conclusion of this theory means in fact that
there are no objective reference points in people’s perception and actions. Action
modifies perception, and perception mediates action.

A computational model of human acting thus has to have a rule base (in whatever form
this might be put into practice) which allows for modifications from within the model.
In this way the rules at every point ¢ in time represent the accumulated knowledge of the
individual, no matter how simple the rules are formulated. It does also imply that there
has to be a rule base for the individual’s environment to represent the changlng
processes around the individual. :

4.7  Application of Cognitive Concepts in Computer Science

Computer science has built on the new theories in cognitive science creating new
methods building on analogies to nature. The two concepts described and compared
here are Artificial Neural Nets and Fuzzy Logic. Artificial Neural Nets are modelled on
the way human brain cells are thought to be functioning. This methodology gave rise to
the so-called “low-level” Artificial Intelligence (AI), because these computational
structures are self-organising from their parts into working entities, which do not use a
pre-defined explicit model of the problem, they are used on.

Fuzzy Logic on the other hand cannot be regarded as a cognitive concept per se. It is
rather an extension of conventional logic, which has lead to a methodology, which in
can be used to map cognition into computational structures.
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4.7.1 Neural Networks

“Low level” Al consists above all of the method of using Artificial Neural Nets. These
are a computer programme structure working similarly to actual neurons in mammalian
neural systems. The working principle behind artificial Neural Nets is based on the
paradigm of self-organisation, which leads to emerging properties in the computer
programme.

To make a Neural Net work, it has to be trained with sample data from the field of
application containing input and output values of a number of problems. The training
procedure aims at minimising the error between the training data and the actual outputs
of the Neural Net by varying weights between so-called nodes in the programme (Beale
and Jackson, 1990). Once a Neural Net is trained it is usually capable of dealing with
similar problems than the ones contained by the training data. It is also capable of
abstracting from the training data to deal with problems never encountered before.

Neural Nets are in this way able to represent expert knowledge in a certain field (Nauck,
Klawonn and Kruse, 1994), but the method used is totally different to knowledge
representation by classical Expert Systems, because the knowledge is conveyed by the
training data. The crucial point in using artificial Neural Nets is therefore the choice of
the training data.

Another negative point about Neural Nets is that they are working as a black box, and
do not have great explanatory power, because they are only manipulating abstract
weights of connections in the programme structure. It is also difficult to readjust the
behaviour of Neural Nets at runtime as the structure of the problem (like in our case)
might change fundamentally during a simulation. Neural Nets are usually descriptive
items, although they do not use an explicit model. They are thus model-free estimators
(Kosko, 1991).

4.7.2 Fuzzy Systems

Fuzzy Systems are based on the theory of Fuzzy Sets developed by Zadeh (1965).
Fuzzy Set theory is extending conventional bivalent logic by allowing elements to be
only partly member of a given set. This can be used to describe incompletely defined
problems and avoids problems of setting the right threshold in classification problems.

Fuzzy Systems are a combination of Fuzzy Sets connected by an inferencing
mechanism. These have been very successfully applied to a wide range of problems,
especially in the engineering sector. :

Fuzzy Systems consist of a rule base very similar to the ones used in classic Expert
Systems. The big difference between the two approaches is that conventional Expert
Systems are using bivalent logic, while Fuzzy Systems rely upon multivalent logic. This
means in practice that in a conventional Expert System only some rules apply at a time,
while in a Fuzzy System all rules are always applied to the degree to which the input fits
the set triggering a certain rule (Kosko, 1994). So most rules would be applied to a
degree of zero.

The output of all rules in the system is then weighed by the degree to which the rules
apply. An analogue to this can be found in a table of experts working out a consensus on
an issue, each rule representing an expert.
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Fuzzy Systems are very handy to operationalise problems which can be formulated
vaguely in spoken language (Like: If the temperature is rather high, turn down the
heating a bit.), but which are difficult to capture in a set of mathematical formulas. By
using linguistic rules even highly non-linear or discontinuous systems can be described
fairly accurately without excessively using mathematical formulations defined only in a
very narrow range, and which might even be too exact for the problem in question.

Although Fuzzy Systems are a very easy-to-use method to flexibly operationalise
- complex models, a conventional Fuzzy System is not able to change its rules over time.
Here we have to refer to another (again time-invariant) Fuzzy System or a different
method like Genetic Algorithms described in the Chapter 4.5.2 to modify the initial rule
base and inferencing mechanism.

For this reason the main application of Fuzzy Systems are control systems. This is
important in our context, as the experience with the control system in the spreadsheet
model (4.3.2) has shown that this set-up is at least to some extent applicable to the
multicriteria problem of human needs (Section 4.3.3). Fuzzy Systems offer the
opportunity to measure the fulfilment of needs in a way, which is very easy to analyse
in the model. Other aspects of the idea of a system of needs can be captured as well, like
potential self-reinforcement of some needs in a positive feedback loop. Fuzzy Logic
enables us to set up a more elaborate control system in a very straightforward way
which as well map the cognitive concepts discussed above into the model and still
remains easy to interpret. ' '

In a model a suitable rule set has to be found that connects needs (which have to be
measured by some indicator) with possible activities of people. As people have very
diverse definitions of perceptions arising from their individual experiences, these might
be best captured by using Fuzzy Logic using the least common denominator to name
parameters, but leaving the actual parameter range to the individuals and their
perception.

4.8 Summary

The research reviewed in this chapter is to be used to build a framework for our model
of individual behaviour in order to build an urban model taking into account the
processes taking part on the micro level. But before we embark on this venture in the
next chapter, a summary of the evidence will be presented to give an outline what can
be expected from the conceptual framework.

The methodology of using autonomous agents (2.3.16 and 4.2) in computer models
provides us with a way of implementation for a model of everyday life. Agents
resemble individuals as well as other entities such as companies, government agencies,
and even the natural environment can be viewed as a collection of agents. These agents
interact with each other on a local scale, which leads to diversity and a heterogeneous
system. These features can be regarded as one of the keys to modelling a complex
system (see 2.3.15 and 4.5), and it facilitates building a model if the methodology
matches the type of system to be modelled from the outset, thereby leading to a
structurally less complex model.

However, agent based approaches do usually rely on rule sets defined in sharp logic. As
these are conventional rule-based systems, they are very easy to implement in a
computer model as most programming languages are built on this concept. On the other
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hand there are immanent deficiencies like the need to define thresholds for the rules to
fire, which are by definition arbitrary and in most cases not applicable in reality. This is
where Fuzzy Logic (4.7.2) proves to be an extremely useful tool. As we cannot know
the exact “rule set” of any individual we have to make approximations at least in the
beginning. Fuzzy Logic provides us with a method of defining qualitative rule sets,
without depriving us of a straightforward interpretation like Neural Nets (4.7.1) do it
with their “black box” set-up.

As a side effect, the usually non-linear relationships within the agents and with their
environment cause self-organisation on the macro (societal) and micro (individual) level
of the system. This phenomenon has already been exploited very successfully in urban
models as we have seen in Section 2.3.15.

The exercise on human needs in Chapter 4.3 has shown that the assumption of needs
can be used as the driving force of a model of individual behaviour. The conclusions
from the spreadsheet model of Chapter 4.3.2 reinforce Max-Neef’s theoretical approach
to the problem of needs on the experimental level. The definition of needs leads to a
multicriteria control system as the core of our agent’s motivations. This links again very
nicely into the potential use of Fuzzy Logic in the model to be built (see Chapter 4.7.2).

On the environment’s side of the model, Time Geography (2.3.7) has formalised many
of the constraints which apply to the individual’s behaviour. Many of the possible
modes of behaviour are determined by the time available, and time limits the spatial
availability of activities. Therefore it appears sensible to take into account the Time-
Budget approach as well.

We have learnt that human behaviour is not as straightforward as it was seen by the
builders of earlier models. One key to a better model is the application of Simon’s
theory of “satisficing” behaviour (see Section 4.1). People are acting within a bounded
rationality, which means that agents modelled on people can no be longer omniscient,
and they will make mistakes in perceiving what is going on around them. As opposed to
the traditional optimising mantra, a model can rely on much less performance in search
processes. A “good enough” solution is all we have to look for.

The control system approach based on satisficing behaviour and a qualitative Fuzzy
Logic rule base modelled on a system of needs can produce the momentary behaviours
of a population of agents. As behaviour and with it the underlying rules change over
time it is necessary to consider a theoretical framework for the dynamics of such
change. Simon’s work links neatly into the theory of “enaction” formulated by Varela,
Thompson and Rosch (1991; 4.6). The absence of reference points in cognition (and
therefore behaviour) can be modelled with Fuzzy Logic as well. The position of Fuzzy
sets on a budget axis has then to be based on the experience of the individual to
determine the individual’s characterisation of states.

In the more generic context of change in the environment we can turn to evolutionary
theory. Because the theory of “enaction” can basically be regarded as the application of
the theory of “natural drift” (4.4.4) in the cognitive context, conflicts of theory are not
expected. The evolutionary principle will as well provide some insights in how
individuals and environment specify each other by mutual interaction.
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The key points can be summarised as follows:
o Individuals are to be modelled using agents.

o The agenté are to be equipped with a set of intrinsic needs. The needs have a
systemic structure which leads to a multicriteria problem

o The perception of the agents is based on a Fuzzy Logic rule base, which is
modified according to the experience of the agents.

e The agents and the environment specify each other thréu'gh interaction. Agents
and environment change according to the principle of “natural drift”.

In the next chapter these points are extended into a conceptual framework which will
provide us with the foundation for a computer model. The evidence presented above
will be formulated in a more rigid fashion in order to build a model operating on exactly
the principles presented here.

77



MODELS OF HUMAN BEHAVIOUR

78




AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

5 Conceptual Framework

The review of evidence has shown clearly that a dynamic model of individual behaviour
in the context of daily life is feasible. In this view we can now set out to formalise the
evidence in a conceptual framework. The framework has to incorporate the aspects of a
model of individual behaviour as well as a methodology on how to implement
adaptivity based on evolutionary mechanisms.

The conceptual framework will explain how the elements of the theory add up to a
comprehensive method resulting in the modelling approach followed and described in
Chapter 6. However, as this framework is intended to provide a generic approach to the
simulation of adaptive behaviour, not all the features outlined below will be found in the
model as well, which has to be regarded as a first step in the validation process of the
conceptual framework. ‘

51 A World of Agents — the Bottom-Up Approach

The conclusions from the evidence gathered suggest that an agent-based model appears
to be the adequate method for a model of individual behaviour. Especially Varela,
Thompson and Rosch’s (1991) theory on cognition (4.6) and evolution (4.4.4) as a
network of interacting entities suggests that the agent-based approach (see 2.3.16 and
4.2) is the most promising methodology for a model of a social system.

However, as it has been pointed out, not only the inhabitants, but also institutions and
the natural environment can be regarded as (computational) agents. The extent to which
the approach should be followed depends on the nature of the model and the aims
pursued by it. In these areas it might be useful to reduce computational effort by relying
on conventional systems dynamics for some parts of the model, which are not in the
focus of the question to be investigated. As long as the distinction which approach is
followed in which place is made clear at all times, the methodologies can be employed
simultaneously. However, different results might be obtained depending on the
methodology.

input state behavioural output
(results of classification rules (action)
actions) (rules)
— - e ——
— () —F>»
—_— —
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budget
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Figure 14: Example Agent

Figure 14 shows a proto-agent. The agent consists basically of a set of input parameters,
which are then classified according to a set of rules. The state classification is the basis
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for a decision on outputs or actions determined by a set of behavioural rules (indicated
by the arrows connecting parameter sets). It has to be noted that this agent is based on a
cognitive approach, which relies on a subjectively perceived budget state for decision
making. An agent representing a natural system would usually not feature this cognitive
approach as this can be regarded as exclusive to social systems. The key features of the
agent-based approach as used in the model described in Chapter 6 and its implications
will be outlined below.

The probably most significant property of an agent based model is the fact that the
system is described not by using any aggregate dynamics like the ones we would use in,
for instance, a master equation approach. The agent-based approach builds the dynamics
of the system by letting the agents interact with each other on a local level. This
resembles the real world more closely than any traditional probabilistic dynamics. The
probabilistic approach does not distinguish between the precise interactions, which have
been taking place, so that the perturbations, which are introduced into the system, are
applied with certainty not to other elements in a cause - effect relationship. The bottom-
up approach on the other hand makes exactly this difference, so that deviations from
average behaviour find their propagation in exactly the place where they have been
caused. This might at first sight appear to be a mere philosophical distinction, but in fact
the complex systems approach demands that “noise” that is generated by the system
should be taken into account at exactly the place it is generated, because these
fluctuations might produce major system changes.

In general, however, it has to be assessed whether the bottom-up approach is really
needed for a model. For many investigations it is not important to reproduce lower level
dynamics (like in the models of Allen et al. in Chapter 2.3.15), if the time scale of the
simulation does not exceed the validity of a more aggregate view of the system in
question. This might facilitate the implementation of the model. In addition to this, an
aggregate model means usually a simpler model as well. The simpler the model is, the
more accessible it will be to analysis and this means as well - if implemented on a
computer - fewer resources are needed to run it.

5.2 The Evolutionary Principle

The agent-based approach outlined above will on its own only add up to a dynamic
model using time-invariant local rules and diverse behaviour. This can lead to extremely
interesting behaviour in the model, but as the rules underlying the behaviour of the
agents do not change over time, the response to a given state will always be the same.
Behaviour on the other hand has to be regarded as a dynamic feature, which changes
over time according to experience (which might lead to a shift of preferences) or
learning.
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Figure 15: Agent with Rule Modification Mechanism

- Therefore it is necessary to introduce a dynamic mechanism into the model, which
changes the working principles of the model during run time. This leads us back to the
concept of an evolutionary model (see 4.5.1). In Figure 15 such rule modification
features in an agent as defined above are indicated by the double-lined arrows.
Connecting new input and output parameters can now change the perceptual and
behavioural rules. The number of rules (each rule is signified by a single-line arrow) is
not necessarily constant, and some input parameters might lose their importance
completely if no rules originate from this input.

5.2.1 Assumptions

In following the evolutionary approach, it is necessary to pay attention to the basic
assumptions underlying any model. Allen (1997a) points out that models based on
system dynamics use two assumptions:

o Events occur at their average rate
e Allindividuals of a given type are identical and of average type (Allen, 1997a)

Models using the principle of self-organisation have to discard at least the first
assumption, because fluctuations are needed to push a system from one attractor to
another. This is done by using the methodology of so-called master equations or simply
(sufficient in most cases) by adding noise to a set of differential equations describing the
system.

An evolutionary model has to go one step further and discard the second assumption as
well, as the essence of evolution is exactly the change of individuals of a given type into
something else. This might be best done by either including random or other variation in
parameter values of individuals, or - going one step further in differentiation - to allow
for a different set of properties for each individual. The approach inevitably leads to a
“bottom-up” model, in which the macroscopic dynamics of the model are governed by
the dynamics of the lower scale levels.

Still, this is not enough for a truly evolutionary model following Varela, Thompson and
Rosch’s theory. Most existing so-called evolutionary models have basically two
different ways of changing the system interactions. Either they use a deterministic
algorithm like, for instance, Hebb’s (1949) learning rule, or they rely on random change
of rules or parts of rules. However, all system elements are subjected to exactly the
same mechanisms of rule change. The outcome of a technique using random influences
might differ, but the technique itself applies to all elements. This amounts to a third
assumption in the sense of Allen (1997a):
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o Changes to the system elements are identical or at least of average type

This violates the theoretical framework of Varela, Thompson and Rosch (1991). In
Section 4.4.4 it has been pointed out that

“The opposition between inner and outer causal factors is replaced by a
coimplicative relation, since organism and medium mutually specify each
other.” (Varela, Thompson and Rosch, 1991, p. 196)

This means that not only the system elements are diverse because of their past
interactions with a medium (the environment), but the mutual specification of organism
and medium is to be extended to the point where the mechanisms of change are
concerned. In this argumentation the organism has to discover by itself whether, and if
so, how to change (learn). This differentiated perspective on system change means that
we have to regard change (or in our case, learning) as an emergent feature of an
evolutionary system. An evolutionary model has therefore to allow for such processes.

One danger with this argumentation in a computer model relying on a closed universe
according to Chapter 2.5 is that it leads ultimately to ever recursing levels of modifying
mechanisms, because behind the behavioural rules and the learning rules (which we
have covered by now) appear the rules to change the learning rules, and so forth. It is
not known whether generic rules can be found at any level (maybe the level of physics),
or whether the mechanism or changing the modification mechanisms becomes
insignificant at some point. Still, these points have to be kept in mind in the process of
implementation of an evolutionary model. :

5.2.2 Driving Forces

Within the evolutionary principle of our conceptual framework, the aspect of driving
forces for the agents has a very special place. It has been outlined that the assumption of
driving forces for individual behaviour stands opposing the use of statistical measures of
observed behaviours. While the extrapolation of statistical measures can be validly used
to compile a set of current behaviours, it appears to be difficult to base a (in a modelling
sense) meaningful evolution of behaviours on a collection of extrapolated deterministic
functions. ‘

It appears to have a much greater explanatory value for the model builder to test the
validity of a set of assumed driving forces against the observed reality. The model can
thus be used to learn about the modelled system as the central assumptions of the model
are either falsified or confirmed. Therefore this conceptual framework relies explicitly
on the definition of driving forces, which are here assumed to consist of a set of intrinsic
needs as defined by Max-Neef (see Chapter 4.3.3). The systemic nature of this system
of needs, which are interdependent, leads to a multicriteria control system. All needs
will have to be satisfied in order to sustain the individual. The degree of satisfaction of
these needs is regarded as a determining factor for the agent’s behaviour.

The idea that evolving systems (like our urban system) are subject to a process of
satisficing (see 4.4.4) fits very nicely with the theory of a system of human needs. A
multicriteria system cannot be optimised in a straightforward way, any measure on how
to optimise the system as a whole depends very much on how the requirements on the
elements are defined. The classic approach to optimisation, the definition of an additive
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utility function bears in this context the danger of averaging out crucial shortcomings in
some budgets with over-performance in others.

If there is optimisation taking place, the performance measure for what to be optimised
has to be evolved, probably by the system itself. On the other hand, the minimum
requirement to the system - here the satisfaction of all needs - can be easily established.
Whilst the assumption of optimisation requires us to make even more assumptions on
the nature of the system, the assumption of satisficing can already be supported by the
theory presented in the previous chapter.

5.2.3 Self-organisation

As it has been shown in Chapter 2.3.15, self-organisation is one of the most important
features of a non-linear dynamic model. Self-organisation can take place already in
systems governed by deterministic equations, which makes this phenomenon not special
to evolutionary systems, but evolutionary systems rely on self-organisation to take them
through their trajectory in parameter space and time.

Self-organisation supplies an evolutionary system with temporal stability in the mutual
interactions between the parts of the system. As opposed to a dynamical system
described by one fixed set of equations leading to one self-organisation event,
evolutionary systems also change the equations by which they can be described. This
usually leads to a series of self-organisation events, which determine the temporarily
stable configurations, and behaviours of the system. Ebeling (1989) in fact defined
evolution as a series of self-organisation events.

The concept of self-organisation is to be taken one step further than before. Has it been
applied in the past to structural configurations and modes of behaviour of systems, the
concept can be extended to the definition of dynamic relations as well. This means that
traditionally, there was one set of equations for a system, which could lead to different
modes of behaviour by means of self-organisation. In an adaptive system this very set of
equations is changing as well. Self-organisation will lead to stable combinations of
variables in new equations or rules. This issue will be elaborated in the next section.

5.2.4 Emergent dynamics

The question of the central assumptions underlying our model leads inevitably to the
question of how the dynamics of an evolutionary model are defined. It was mentioned
in Section 5.2.1 that the removal of average change in the agent set-up is required for
evolution to take place. This means that the dynamics of the model have to be regarded
as emergent properties of that model. However, as outlined in Section 2.5, it appears to
be very difficult to account for truly emerging features in a computer model. Here the
closed universe of a computer program allows only for new combinations of already
defined parameters into new rules, not for the introduction of previously unknown
parameters. In this sense, the combination of base parameters into a new one is not an
entirely new parameter, but an aggregation of two previously existing ones. Therefore
nothing really new can emerge from the model except for maybe a new perception.

Still the chance of recombining parameters in new rule sets, adding to existing ones or
replacing old ones, is the nearest we can get to emergent dynamics in the model. If now
the definition space of the model is large enough and agents rely only on a fraction of
the definition space, the agents can still make discoveries and change their environment.
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The process of discovery consists mainly in the building of new connections between
system parameters representing features of the natural world.

The creation of new networks of agents and the aggregation of agents leads to new
higher order entities which might be endowed with new properties and rules sets. These
rule sets can still only take into account the basic parameters which are defined for the
model, but the dynamics of these new meta-agents are emergent in the sense that they
have not been there before. In Figure 16 a network of agents is shown. The aggregate of
these three agents can be regarded as a “meta-agent”, but this meta-agent would have
interactions with the outside, unless the whole of the system consists only of the three
agents shown. As an example, some rule modification mechanisms (indicated by the
double lines) are shown in the figure. As it has been said before, these influences have
to be regarded as patterns of only temporary stability, and the connections between
input and output are subject to change over time.
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Figure 16: A Network of Agents

The method of how to let the system discover such configurations is very much a
problem. On some level this certainly leads to the use of evenly distributed random
numbers, as this can be regarded as the least biased method of generating something
new. On the other hand it is again an assumption we want to avoid, because this
mechanism is the same for all agents in the model, therefore reducing possible causal
diversity. The same problem is encountered from the aspect of computational effort:
The more assumptions are made on the nature of the system, the less computational
effort is necessary, because more things are defined from the outset. The search space of
the system is reduced, and the computation is accelerated. When it is desirable in the
context of the modelling exercise to explore possible system configurations, the number
of assumptions has to be kept as small as possible in order to explore as much as
possible of the search space, which in return leads to the use of randomness on high
scale levels and subsequent high computational effort.
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5.3 Emergent Scales

In conventional dynamic models the right choice of scales is extremely important in
respect to what precision of results can be obtained with the model. The scales
determine how deep one zooms into the details of the subject matter, and subsequently
too little detail might lead to avoidable oversimplification resulting in “simple” system
dynamics instead of self-organisation. On the other hand too much detail results in high
computational effort, but the kind of model chosen might not bring about more
information on the modelled system. Too much information might even distract us from
the issues we wanted to investigate.

In an evolutionary agent-based model, however, things are a bit different. The lowest
level of resolution is determined by the definition of the agents. The agents are the
elementary particles of the model. Agents cannot split, but they can form aggregates and
they can be removed from a system as well as new agents can be introduced into a
system. With this the highest resolution scale is given by the definition of the agents.
Although not all aspects of the agent’s behaviour might be required to illustrate and
explain the problem, these processes are still taking place in the model.

The constraint to the lowest available scale level is reflected as well in evolutionary
dynamics. Here the change in the interactions within the system over time (like in
learning individuals) can lead to new aggregations of agents which might find new
attractors for the system. In the case of a cyclic attractor a new time scale for the
processes obeying this attractor is then emerging. This time scale is then not predefined,
but a result of the bottom-up modelling approach. In that sense the bottom-up approach
is superior to any other methodology, because it might explain how processes on
different scale levels come into existence.

On the other hand when dealing with systems which are known not to change scale
levels it might not make much sense to build the whole system from the bottom
upwards. In this case the model will take a much simpler form using well-defined
dynamics on given scale levels. However, if the system is not well understood and the
aim of model-building is to learn more about the system as such (as in this case), it
appears to be worthwhile to build the system from the bottom up, unless the effort to do
so becomes prohibitive. '

In this chapter the question how far scale levels have to be predefined and how far they
can be regarded as being intrinsic to the model has to be discussed. The parameters,
which are most significantly the subject of scaling, are time, space and agent clusterings
(social groups in this example).

5.3.1 Time

Time plays a most important role in a dynamic system. Although time can be regarded
as a continuum, in a computer model we have to divide the continuous flow of time into
discrete units of time steps. This leads to the use of differential (for quasi-continuous
time flows) or difference equations (in the case of discrete time steps), which tell us the
rate of change of the system parameters. This is not a problem in principle, if we assume
that nothing except for the defined processes happens between point t and t+1.
However, we cannot be sure of this, because our differential equation assumes that it is
valid for all times between t and t+1 in reality.
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The processes taking part on the various time scales can be very different. In human
systems we can observe scales which coincide with the natural rhythm of our lives, such
as years and the cycle of the seasons, months and weeks which are more culturally
defined, and finally days and their parts, measured in hours. An attempt to illustrate all
the different time scales and the processes of change affecting an individual’s daily life
has been made in Figure 17. The general impression is that processes taking place on
larger time scales can have a more severe impact than short-term change. The slow
processes such as educational degrees, change of living place or retirement occur only
very rarely, but might affect an individual’s life more severely than a change in the
weekly routine.

Short-term decisions such as whether to go out tonight or to stay in usually have only
very little impact on the continuity of someone’s life (unless you get hit by a car on the
way out). The cognitive map containing the individual’s image of the environment
represents the perceptual part of an agent, and changes in the cognitive map might result
in radical alterations of everyday routines. One element constraining the individual’s
actions and which in reverse is only indirectly influenced are the society’s time rules.
These represent the conventions a society has set up to organise everyday life. Examples
might be public holidays, work and school hours as well as opening times for leisure
facilities.
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Figure 17: Processes Taking Place on Different Time Scales

All these different time scales are not exclusive to individuals. On an urban level for
example, “fast” and “slow” processes have been identified by Weidlich (1997). These
short- and long-term processes might as well have contradicting aims or means and
weights to the individuals concerned with them. It is therefore quite important to take
into account as many time scales as possible. As outlined before, an evolutionary model
is regarded to generate these different time scales from within, and therefore the
definition of time scales will be intrinsic to the definition of the model itself.
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The issue of adaptation is as well linked to the question of time scales. Adaptability will
generally take place on a larger time scale than the primary processes as it is a response
to the outcomes of many actions which have taken place already; but is it to be assumed
to take place on a larger time scale from the outset? The answer to this question should
be no, because we do not know whether this is really the case. The evolutionary model
should be designed in a way, which allows the model to settle into a specific mode of
adaptation depending on its trajectory and state.

5.3.2 Individuals and Groups

As the aim of this project was to build a model of individual acting as a first step
towards an integrated urban model, it might seem unimportant to be concerned about
the dynamics of groups. Groups obey principles different to those of individuals, but’
this is effectively just the same scale problem like the one observed on the level of time.
Each individual is a member of several groups (a family, at work, in clubs or in a group
of friends) and the aggregation of individuals in a group gives again rise to a different
type of dynamics depending on the local and temporal conditions encountered. On the
other hand people are influenced by their peer groups so that group behaviour is in
return influencing individual acting.

These different scales are in fact increasing the complexity of the problem enormously
if a conventional model is used. The evolutionary approach however, which explicitly
builds on the aggregation of agents into meta-agents, can deal very elegantly with this
scaling problem as well. In this sense, the formation of groups comes as a standard
feature with the approach.

Like in the case of time scales, it is not obvious that the different dynamics of groups
and individuals are not properties, which would come along with a sensible model of
individual acting anyway. The “correct” set-up of a model of individual acting would
actually give rise to the formation of groups and group behaviour, so that, as in the case
of time scales, it might not be necessary to assume a different set of dynamics for
groups. This project, however, is focusing on individual behaviour. For the reasons
given above, no direct interaction between agents has been included in the actual model,
although it is a very interesting extension of this very framework.

5.3.3 Spatial Aggregation Levels

Finally, we observe different dynamics on various spatial scales in the environment of
the individuals. These might be in an urban context a neighbourhood, a part of a city,
the city itself and a system of cities, all of which are governed by their own set of rules.

This framework will stay with a level of fairly small-scale environments, such as
villages, or city neighbourhoods. Given the fact that processes on a higher level of scale
might severely influence the behaviour of the system, it is still necessary to take into
account all these processes. A simple solution to this problem is the definition of static
constraints, which might be changed manually from time to time. However, this does
not mean that there will be no emergent properties of the model’s population, but it is a
restriction to the evolutionary forces within the model.
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5.4 'Ways of Implementation

The basic framework for an evolutionary agent-based model of a social system is now
in place. Before building a model, which can test the framework against reality, it is
necessary to clarify some issues related to the practicalities of implementation. A truly
evolutionary model is according to our theory all-dynamic and has practically no static
parameters. In the course of a simulation anything might have an influence on
everything else, or not, depending on the course of the model run.

In a first step towards such a model it is, however, useful to restrict the free interaction
of a certain extent to make the analysis of the results easier. The full evolutionary
mechanism is traded off with the chance to understand more about the precise
interactions taking place in the model. Therefore it has to be determined how much of
- the environment and the agents should be defined as invariant at the beginning of a
simulation, and what assumptions on system constraints are useful for the application in
question.

5.4.1 A Question of Life and Death

Whilst trying to find working rules on which to base their behaviour, it is to be expected
that a large proportion of the agents will - at least in the beginning and depending on the
initial conditions - fail to find good rule sets. The question how to treat these failed
agents has to be discussed before setting out to implement any model.

The question to be dealt with in this project is mainly concerned with the creation of
adaptive agents, which are to be used in a larger scale model of an urban environment.
The agents have to prove their adaptability in a co-evolving environment. The adaptive
capabilities of the agents have to be regarded as basically cultural and not biological
properties, although much of this conceptual framework is building on analogies to
biological evolutionary theory. It can therefore be argued that this kind of model does
not have to be concerned with population ecology, and that for this reason population
ecology related issues can be neglected.

There are two basic ways of dealing with unsuccessful agents: Agents can be removed
from the population, or they can be reset and reintroduced into the existing population.
The first alternative represents the biological, population ecology based approach. When
opting for this strategy, the question of how new agents with new strategies come into
existence has to be addressed as well. This inevitably leads into issues of population
dynamics, which, as we have outlined before, are not the main concern of this
modelling exercise, although a model of population dynamics will finally make up part
of an agent-based urban model.

For the reason mentioned above, the simpler “reset at failure” strategy will be adopted.
The number of agents in the system will remain the same over time, all of them
searching for rule sets, which would satisfy their intrinsic needs. The analogy is clearly
that the society grants unsuccessful agents “dept relief” in the sense of a welfare state.
This does of course not correspond to a working economy, but as a first step it should be
sufficient to evolve rules sets with a fixed number of agents.
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5.4.2 Possibility Spaces

In the context of implementation the question of how the system should be constrained
is certainly an important issue. In real life we encounter many constraining factors in
our daily lives. For instance, shops are not open at all times and most people are
required to be at work between certain hours. Work takes place only on certain days,
other days are reserved for leisure or other personal use. All these time rules are
however not there by default, and many other arrangements appear to be possible. These
time rules are the result of a cultural evolution.

In most models this kind of constraints would be assumed to be static and invariant over
the time of the simulation. In an evolutionary model on the other hand we have got the
chance not to do so, but to evolve the system constraints together with the system. This
gives us the advantage to explore many more possible configurations, which might be as
valid as the ones we already know, and to draw conclusions on how the system
constraints are induced by the system and its history. The down side to this approach
comes with the limited reproduction of the observed system, so that it might be possible
that the observed system configuration appears only in a fraction of all model runs.

All agents (inhabitants, organisations, the natural environment) in an evolutionary
model create most of their possibility space by mutual interaction. The system
constraints are usually the result of such interaction: The system gets:locked into a
certain mode of behaviour by self-organisation. In most applications we will not
implement the full evolutionary approach for practical reasons, because it takes
considerable effort to allow the system to evolve from a random “soup”. This approach
would aim at recreating the cultural evolution of the past four million years in order to
arrive at the present state. The time it takes to let the system self-organise itself is not
always available, and many processes taking place on large time scales might just be
assumed to be invariant over the duration of a model run. The important thing here is to
keep in mind that this is not really so. If it is possible to test the assumption of static
constraints against the evolving mechanism, it should always be done, as the change of
self-induced constraints will have important repercussions on the future behaviour of
the system. The change in constraints might result in a major new self-organisation
event pushing the system away from the current attractor and into a new trajectory,
which can open up whole new, previously unknown, pathways.
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5.5 Summary

In this chapter we have seen how the evidence from the previous chapters is
transformed into a conceptual framework for the simulation of adaptive individual
behaviour. This framework provides a methodology, which can overcome many of the
limitation of earlier models.

The basic elements of the framework comprise:
i) The Agent-Based Approach

o The bottom-up construction of a social systems model based on
computational entities called “agents” is the prerequisite for

ii) The Evolutionary Principle

e In an evolutionary system the system elements specify each other mutually
through repeated events of self-organisation. Self-organisation provides the
system with periods of temporal stability. This applies to the state of the
system elements as well as to the dynamics of the system.

e The mutual specification the dynamics of the system give rise to new,
emergent interactions in the model leading to ‘

e Emergent scale levels.

Because the evidence on which this framework is built has been drawn from research
into cognition and evolution, the concepts are regarded to be generic to social systems.
The theme of everyday life in an urban setting in this project can serve as just one
example to the manifold areas of application. In the next chapters the next step in the
process of investigation will describe how this framework is validated using a computer
model based on the essential points made here.
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6 An Adaptive Agent-Based Simulation Model

The conceptual framework developed in the previous chapters is now to be
implemented in the form of a computer model in order to test the conceptual framework
as well as to possibly discover new, emergent features of such a system.

The example chosen is an urban environment. The agents in the model are trying to live
a “daily life”, e.g. they have the choice to carry out a certain set of activities which
resemble real-life activities like recreation, work, socialising or shopping. The agents
will have to maintain a careful balance between these activities in order to satisfy their
intrinsic needs. For this purpose they will have to develop a set of behavioural rules
which govern the decision making process of the agents. These rules - as they are also
the basis for the evaluation of need satisfaction - can be interpreted as an individual
value system, too. The model is therefore mapping the necessary cultural evolution of a’
set of agents in order to develop a working cooperative artificial society working to the
benefits of all agents.

6.1 General Features and Specification

The model is implemented using an agent-based approach as outlined in Chapter 5.1.
Agents are autonomous entities equipped with a defined set of properties, which are
modelled on certain traits of humans or other individual entities. The agents share a
common environment with possibly more, different types of agents, such as economic
enterprises or regulatory units which obey their own dynamics. However, in this
context, the term “agents” will be used to denominate only those computational agents,
which inhabit the environment and try to find a life-style, which sustains their intrinsic
needs.

The dominating constraint for all agents is the fact that a day pattern is imposed upon
them. This means that there are 24 model hours per model day, and in each of these
model hours the agents can pick exactly one activity out of a set of available activities.
As the activities cover all possible opportunities what the agents can do, it is not
possible for them to do “nothing”. Doing “nothing” is regarded as an activity in its own
right.

Predefined time scales can have profound effects on the performance of a model. Here,
the only time scales imposed are the model day, which consists of 24 model hours as the
smallest unit of time. All phenomena which might occur on cycles larger than one day
are due to the interactions within the model itself.

One important feature of all computer models is the question how to treat events, which
in nature would occur simultaneously. As conventional computers allow only for serial
(one-at-a-time) processing it is necessary to create a kind of pseudo-synchronicity in the
model to prevent some agents being disadvantaged by the processing order. This is
realised by giving all agents a new random order at the beginning of each model day to
make sure that at least the disadvantage is evenly spread among the agents.

All agents are treated as individuals and therefore can take on unique configurations of
their basic properties, which, of course, have to be predefined to be treated with a
conventional computer program (see 2.5). In this sense the agents create diversity not
only of behaviours (which can already be achieved using a single, uniform
configuration (see 7.4)), but of cultural attributes like value systems and individual
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behavioural rules. Therefore the diversity within the system is created by the system
itself and is not imposed from the outside by the modeller.

As the objective of the model is to generate cultural evolution within a small artificial
society, agents are not removed upon being unsuccessful, but being reset when a
threshold is reached. This reset procedure keeps the total number of agents in the system
constant over time. In practice, this means that all unsuccessful agents get another try in
order to find a successful rule set, once they have failed to do so (see 6.3.5).

6.2 Model Components

The model consists of basically two components: agents and their environment. The
environment can be regarded as one (or more) agent(s) as well in the sense of the
methodology (5.1). Each of the components has specific tasks and properties and acts
independently, although the actions of any agent affect the possibility space of all other
agents. '

Agents are therefore influencing each other only indirectly via induced changes in the
common environment. There is no direct communication between the agents in the
model, although there exists a possibility to spread successful rule sets between the
agents via a blackboard system (see 6.3.5). This feature holds the rules sets of
successful agents which write to the blackboard, and can be accessed by unsuccessful
agents in order to copy a good rule set.

The environment has a more responsive role in the model. It has two basic properties,
its capacity for certain activities and a price for these activities. Both price and capacity
can adapt - if desired - according to the average demand for the activities in question
(see 6.4). Both environment and agents are described in detail in the following sections
below.

6.3 Agents

The heart of the model are the agents which inhabit it. The agents’ set-up follows the
conceptual framework as closely as possible, although limitations had to be made as the
conceptual framework leads to extreme complexity in a model’s behaviour (but
probably not that much for the structure), which makes the analysis of such a model’s
results very difficult. ‘

The agents are acting in a capacity constraint environment, which leads to competition
for scarce resources, and carrying out an activity does not necessarily lead to a payoff.
But cooperation between the agents is also necessary to a certain extent, because a
division of labour is assumed in the environment, so agents are required to carry out
certain activities in order to enable others to do different things.

The model is working on only a short-term day-to-day basis, e.g. the agents have no
ability to plan ahead or to account for rare events, such as moving house etc.. The
agents are acting as single individuals and their ability to communicate with other
agents is severely restricted, so that ideas like households and/or families are not catered
for in the model. As opposed to the approach taken by Girling et al. (1998), (see also
2.3.9) the agents are short-termists and do not possess anything specifically designed to
create routines or schedules, but they do possess a cognitive map of their environment.
On the other hand the experience from the spreadsheet model (4.3.2) shows that
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routines can emerge from a model in the form of cyclic pattems of behaviour without
assuming beforehand that such processes exist.

Apart from this the agents feature a set of short-term budgets and activities representing
their intrinsic needs. The time rules of the artificial society are incorporated not as a
result of the agent’s acting but as an external constraint by limiting the payoffs of all
possible activities to certain times of the day.

6.3.1 Budgets and Needs

The driving force for the agents is a set of needs (see Chapter 4.3). These needs are
expressed through and measured by a set of associated budgets. As these budgets
account for “physiological” processes, they are subject to a quasi-linear decay rate,
which means that a constant number of units are subtracted from each budget at the
beginning of each model day.

The model is programmed in a way that allows the budgets to be named as required
with the area of usage. Here, as the agents are acting in an urban setting, the budgets are
called

1. Recreation [Unit: time]

2. Money [dimensionless units], no decay rate
3. Goods [units]

4. Socialising [time]

The recreation budget accounts for a need to sleep and relax. Spending time on the
activity recreation can fill this budget. The money budget on the other hand cannot be
interpreted as measuring a need for having money, as such a need cannot be deducted
from the theoretical framework or any of the literature on human needs (Maslow, 1954,
Max-Neef, 1991). It is simply an economic convention and needed to acquire goods and
services.

Goods are consumed by the agents at a uniform rate, and have to be purchased with
money. Social contacts at last feed the fourth budget, socialising. Here again the agents
have to spend time on socialising in order to increase this budget state. As opposed to
recreation, there is a price to this activity so that the agents have to spend money as well
in order to get any payoff from this activity.

6.3.2 The Fuzzy Logic Rule Bases

The agents are using two Fuzzy Logic rule bases for decision making. The first rule
baie“ls active on a daily basis and the second one on the hourly evaluation of alternative

activities and ylaces Fuzzy Logic was chosefi, because it allows the classification of
Nmmicrigznesaenssoes e

system states on a very simple basis. Once a set of descriptors for the parameters to be

classified is defined, Fuzzy Sets can be allocated to measure to what degree the

descriptors apply to the current state.

In this case the descriptors for the state of the agent can be easily established. Each
agent has its set of budgets (see above) which is filled by the payoffs of the agent’s
activities and which is subject to a static decay rate. These budgets are meant to
represent the agent’s set of intrinsic needs. Therefore the state of these budgets can be
taken as a measure of the agent’s well-being. The classification has to take place on an
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individual basis as each agent has a different concept of what a measured budget state
means to the individual. .

As opposed to Aristotelian logic, Fuzzy Logic (see 4.7.2) allows for more than the two
states of “true” and “false”. It rather measures the degree to which a Fuzzy Set
(describing a concept, or a classification) applies to the encountered state. In the case of

the discussed model, this means that each agent applies an individual rating of whether

a budget state is “High” or “Low”. This classification determines the action to be taken
using rules like “If my money budget is LOW, then work is IMPORTANT to me.”. To
make this rule operational, it is necessary to define what “LOW” and “IMPORTANT”
mean. _ v

. The Fuzzy Sets are shaped as logistic curves (Figure 18) defined by the point where
their value equals 0.5 and their slope determining how fast the extreme values of 0 and
1 are reached. These two parameters can be set individually for each agent, so that it
might be the case that a given budget state can mean 75% “low” and 30% “high” to one
agent whilst another one classifies this state as 45% “low” and 65% “high”. The degrees
to which the classifications apply are proportional to weights, which are given to the
associated consequences according to the rules. In practice, all rules fire at all times, but
most of them would only apply to the degree of zero.
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Figure 18: The Fuzzy Sets Characterising the Budgets are Shaped as Logistic Curves

This can be interpreted as the rules finding a “consensus” over what to do, because the
result will always be a weighted average of what the rules would effect when being
applied fully. To keep the model as simple as possible, only the most basic
characterisation with two Fuzzy Sets per parameter (representing the states HIGH and
LOW as in Figure 18) was used. These input sets characterise a situation encountered
by the agent. In order to draw a conclusion for action from this situation, an inference
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mechanism has to be defined, too, which leads to the definition of a rule. For this it is
necessary to define output sets as well. In the simplest form (which has been adopted
here) these are shaped as triangles centred over an output value. This output value is the
result of a rule if it applies to a degree of 1. Each rule connects via the inference
mechanism one or more input sets with an output set. The truth value of the state
classification captured by the input sets is mapped onto the output sets. Because
classifications rarely apply to the degree of 1, the output sets are cut off at the respective
fraction of their height. For instance if an input set applies to a degree of 65%, the
corresponding output set is cut off at 65% of its height and reducing the triangle to a
trapezoid of this height. This reduces the area of the output set. In the next step of the
algorithm all the resulting centre of gravity of all output sets is calculated, which is the
final result of the inference process. All rules applied to the inference influence the final
result to the degree they apply.

>

Truth value 4

Centre of gravity
/\ /\ ....... -~of output sets

Truth values of
input sets

V >
i Y Output parameter

'.""Resulting output value

Figure 19: Output Sets of a Fuzzy Logic Rule Base

The most important feature of the rule bases is that it is possible to connect any input
parameter with any output parameter using AND and OR operators during run time. Up
to four rules per output parameter can be defined to account for one AND combination
of input parameters (and its opposite) as well as an alternative (OR) inference to be
made.

The input parameters of the first rule base are the budgets of an agent. The output
parameters are importance factors for each activity, determining how important each
activity is for the agent. As this rule base determines the behaviour of the agents to a
good part, and this will be the rule base in which the adaptation features (see 6.3.5) are
implemented, it will be referred to as “behavioural rule base”. The second rule base is
used at every hourly time step, and it will not be changed at any point during a
simulation. Its function is described in Section 6.3.3 below.

6.3.3 Decision Process

The agents are going through a two-stage decision process in order to choose what
activities to pick. At the beginning of each model day an evaluation of the agents’
budgets takes place. According to the rules in the behavioural rule base each agent
evaluates its budgets at the beginning of each model day. This results in an importance
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value on a scale between 0 and 100 for each activity. These values are then converted
into relative importances and multiplied with 24 (the number of hours per model day) to
give the time the agent wants to spend on each activity on that day.

A second stage in the process takes place at the beginning of each hour of the model
day. As the agent has a plan for the day, it now tries to find the most advantageous
activity and place. Here a second rule base determines a utility value for each known
alternative (up to four for each activity), taking into account

e  The possible payoff for the activity at that point in time

e  The distance from the-current position to the place in question
o  The time still to be spent on this activity

o  The previous success in taking this alternative

The alternative with the highest utility value is subsequently chosen. The second step
favours agents to go to the nearest place with the highest payoff, if they have been
successful at this place in the past, and they still want to spend much time on the activity
in question. The term “utility” denotes the personal perceived usefulness of a given
alternative to the agent. This disaggregation leads to individualised multicriteria utility
functions. For this reason it must not be confused with the term utility as used in
Chapter 2.3.6.

Although the model allows for non-uniform rules and rule parameters at this stage, it is
kept the same for all agents over time in order to focus on changes in the behavioural
rule base determining the overall importance of the activities. This is the subject of
Section 6.3.5. ‘

6.3.4 Cognitive Map

The theoretical framework demands that the agents have only incomplete knowledge of
their environment. This is realised through definition of a cognitive map for the agents.
In terms of cognitive science this describes an individual perception of the environment
by the agents. This perception determines the features the individual knows about as
well as qualitative attributes of the known environment.

The cognitive maps of the agents allow them to have knowledge of up to four places for
each activity, e.g. all in all up to 16 places. The cognitive map is combined with a count
showing how successful the agent has been in the past trying to carry out the activity in
question in that place. The count is limited to the range between -100 and +100 and is
increased by one each time the agent is rewarded for the activity. On the other hand the
count is decreased by one if the agent has not been able to obtain any payoff during the
last period it was there. '

The cognitive map is static over the simulation time in as far as the places are
concerned, of course the rating of the places changes over time. The cognitive map
determines the individual preferences of the agents based on their experience, albeit in a
very much simplified way.
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6.3.5 Learning Features

The model allows for several different ways of adaptation of the agents’ behavioural
rule base. One mechanism is based on correlation between budgets and their gradients,
the other two are using random numbers to generate new rules. The agents can choose
both the algorithmic and the random approach alternatively. '

In the standard configuration, the behavioural rule base is not changed at any time,
thereby presenting a standard agent and rule based model. All knowledge about the
agents and their behaviour has to be assumed a priori as no learning takes place during
the run. The agents’ budgets are reset to a predefined value (usually 0) when the agent
fails to balance all four budgets above the defined reset threshold (-500 units for
example). Upon reset, the agent continues with the same rules as before, just the budget
states have been adjusted. :

The easiest way to search for better rules if the initial settings do not render the agent
capable of keeping all budgets above the reset threshold is to generate new rules at
random. In this setting, all rules connecting the budgets with the importance of the
corresponding activities are replaced by random new rules once one of the budgets falls
below a fixed fraction of the reset threshold. If the new rules are successful, e.g. the
budgets are all above the mutation threshold after a certain time, the rule set is kept,
otherwise the rule set is replaced by a new one.

This method is sampling the entire search space, which means that the probability of
finding good rule sets is very small. As there are four input parameters with two fuzzy
sets feeding into four rules for four activities, the total number of possible permutations
is ‘

2sels-m1es'activities _ 28‘4-4

=3.4028-10%*

Assuming that viable rule sets constitute only a fraction of this enormous space, simple
random mutation appears not to be entirely effective.

A second way of generating new rules is to draw a random number only for those rules,
which affect the budgets currently below the mutation threshold. This assumes that
changing the way one budget is treated does not affect the other budgets. This does
probably not hold, given the fact that the same characterisation of budgets can produce
different behaviour in different circumstances. This method does however have the
~advantage that the search space is much smaller than before (fourth root of before), so
that it might be more probable to find a viable rule set.

As opposed to the random generation of rules described before the model features an
algorithmic mechanism as well. It is based on the correlation between two budgets and
their tendency and works as a Fuzzy Logic rule base. As the budget states are the input
parameters for the rule base to be changed, the algorithm includes or excludes
parameters. from the process of finding the importance of activities.

If a budget is classified as “LOW?” by the behavioural rule base, it triggers the following
procedure: The algorithm determines whether the budget itself and all other budgets had
an upward or downward tendency during the last number of time steps. If the budget in
evaluation had a downward tendency then the algorithm looks for other budgets with

97



AN ADAPTIVE AGENT-BASED SIMULATION MODEL

the opposite tendency assuming that there is a correlation between the budgets. All
budgets with that tendency will be included in the rule set for the evaluated
budget/activity, whilst all budgets with the same tendency as the evaluated one are to be
excluded from the rule set. As the rule base allows for the formation of AND as well as
OR combinations of rules, there is a pre-set probability (usually 0.5) to forrn either
combination.

Whilst all discussed methods of acquiring a new rule set to this point relied on
innovation, a second way of reaching the same objective relies on exploitation of
knowledge in existence (if one likes to call the rule sets a form of knowledge). To allow
for this, agents have a pre-set probability of copying a successful rule set from a so-
called blackboard. The blackboard is a collection of rule sets, which have been written
there by agents, which have reached the age of 500 time steps, or above.

Agents which copy rule sets do so at random, as well as the successful agents write to a
random slot on the blackboard. This can result in having much less different rule sets
than possible on the blackboard as one agent might write at successive points in time to
different slots, which have not been overwritten by other agents.

In a first step all strategies were to be tested on their own, so that this version of the
model allowed for only one strategy to be adopted by the agents. The copying feature
could be selected in addition to this. As the next objective of the project was to test
whether “learning” (or adaptation) was an emergent feature of the system, the second
version of the model enabled the agents to chose between the non-adaptive mode and
any of the adaptation strategies at reset. Two options on how the switch from one
strategy two another takes place are provided for: The experimenter can choose between
an even random draw between the strategies or choose to exclude the previous mode
from the draw. A probability determines how likely a change of strategy is. As the point
of resets can be regarded as the time of “death” respectively “birth” of an agent, the
biological analogy of this probability is the idea that reproducuon is imperfect, and that
errors occur in the transmission of 1nformat10n

6.3.6 Example Calculation

This section aims at demonstrating how the model algorithm works in practice. As one
model day involves a multitude of loops over the different agents, activities, known
alternatives, and hours, only the simplest version using one agent over a limited time
will be demonstrated. As the principles of the algorithm will become clear in the course
of the calculation, only two activities — “sleep” and “work’ will be used. More activities
will only have an effect on the total time allocated for the activities, as more budgets
will have to be considered. In Figure 20 the extent of the example calculation is
indicated in the flow-chart of the complete model.
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Figure 20: Flow-chart of the Computer Model
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6.3.6.1 Definitions

At the beginning of each model day the agents check their budgets and decide how
much time of the following day they want to spend on each available activity. In this
example, only two budgets and activities were used. The budgets were called "tired"
and "money", which can filled by performing "sleep" or "work" respectively. There is a
decay rate of 8 units per day to each budget, e.g. at the end of each model day 8 units
are deducted from the budgets.

Suppose the 9 places of the model world are all equal and allow for a reward of 1
unit/hour for sleep in hours 0 to 6 and 19 to 23. The rewards for work are 1 unit/hour
from hour 7 through 18. During hour 0 to 6 and 19 to 23 there is no reward for
performing "work" and no reward for "sleep" during hour 7 to 18. This means that
ideally the agent can add 12 units to each budget while 8 units are decaying each day.

The distance between all places is 10 units on a square grid, giving the coordinates
(0,0); (0,10); (0,20); (10,0); (10,10); (10,20); (20,0); (20,10); (20,20). The home place of
the agent is (0,0). The definition of a home place means that after each model day the
agent will return to this place.

- The agents knows the places (0,0) and (0,10) for "sleep" and (0,20), (10,10), (10,20),
and (20,0) for "work".

For the evaluation of the budgets the foliowing rules are defined:

o If "tired" (budget) is low then "sleep" has an importance of 100. (This definition is
the opposite of reality, it actually refers to the amount of time the agent has spent
sleeping during the past.) (RULE 1)

o If"tired" is high then "sleep" has an importance of 0. (RULE 2)

e If"money" is Jow then "work" has an importance of 100. (RULE 3)

e If"money" is high then "work" has an importance of 0. (RULE 4)

The fuzzy sets low and high have to be defined separately for both budgets:

1
1+ exp(sigma - (x — centre)

Low: t(low) =

t is the degree to which "low" applies to the current budget's state, sigma is the slope of
the fuzzy set, the greater sigma, the more t resembles a step function. The centre
position gives is the point where t=0.5.

1

1+ exp(—(sigma - (x — centre))

High: t(high) =

The only difference between the two definitions is that t(low) has an extreme value of 1
for x = -infinity, reaching 0 for x = +infinity, while t(high) starts with 0 and reaches 1
for the same x-values.

The parameters have been set to

"tired": sigmagjoy, = 1
sigmatp;gp = 1

100




AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

centregjoy =0
centregpjgp = 10
"money": sigmatjy = 1
sigmatpgp =1
centretjoy =0
centre.th,-gh =60

It is also necessary to define the rules for the choice of activity and place at each hour.
These rules have been set to

» If the "reward" (for performing this activity at this time of day in this place) is high
AND the "distance" (to that opportunity) is low AND the "remaining time" (for that
activity) is 4igh then this opportunity has a utility of 100. (RULE 5)

o Ifthe "reward" is low AND the "distance" is high AND the "remaining time" is low
then this opportunity has a utility of 0. (RULE 6)

The functions used to determine the degrees to which the classifications low and high

apply to the current situation are the same as for the budget evaluation, only the function
parameters are different.

"reward": sigmay/py, = 15
sigmatpgp =15
centretléw =0.5
centretygp = 0.5

"distance":  sigmagjyy, =1.7
sigmatp;gp = 1.7
centregjoy = 3
centregpjgh = 3

"remaining time":  sigmagj,y, = 0.4

sigmatp;gp = 0.4 |
centretjoy =1
centretyjgh =4

The defuzzyfication sets are all identical, except for their central position, given by the
"then" condition in the rules. The base width is set to 30 units for all sets.

It is also necessary to define the initial COIldlthIlS for the budgets. It shall be assumed
that both budgets are set to 0.
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6.3.6.2 Budget Evaluation

Having all necessary parameters set, the model day can begin with the agent evaluating
its budgets.

Activity "sleep"

t(low) = ! '
RULE 1: 1+exp(1-(0-0)
=0.5
. 1
t(high) =
RULE 2: 1+exp(-1-(0-10)
‘ =4.54-107°

Now t(low) is mapped on the output set centred on 100 , while t(high) is mapped on the
output set centred on 0. Then the centre of gravity of both output sets is calculated.

height of setgq: 0.5

0.5-base length-0.5=0.5-30-0.5

area of set1p: 75

height of setq: 4.54-10°
area of set(): 4.54:10° - 30 - 0.5=6.81-10"
Centre of gravity of both areas: |

centre(setin) - area(setio) + centre(seto) - area(seto) 750+ 0
area(setin) + area(seto) 7.5+6.81-107*
=99.99

The centre of gravity equals the importance of "sleep"

Activity "work"

_ 1
1+exp(l-(0-0)

=0.5

(low)

RULE 3: g

t(high) = L
RULE 4: 1+exp(-1-(0-60)

=8.76-107"
height of set1gp: 0.5

0.5-base length-0.5=0.5-30-0.5

~ area of set1o: ~s

height of set(: 8.76:10%
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area of set(: 8.76:10% - 30 - 0.5=1.31-10%
Centre of gravity of both areas:

centre(seto) - area(setio) + centre(seto) - area(seto) 750+0
area(seto) + area(seto) 7.5+1.31-107%

=100

Now the relative importances for both activities have to be determined:

rel.importance(sleep) = importance(sleep)

importance(sleep) + importance(work)
99.99

~'99.99+100
= 0.499

importance(work)

rel. importance(work) =
: importance(sleep) + importance(work)

100

= 99.99+100
= 0.500

In the next step the time of the day is allocated to the activities according to their
relative importance: '
time(sleep) = 24hrs.- rel. importance(sleep)

= 0.499 - 24hrs.

=11.976hrs.

time(work) = 24hrs.- rel. importance(work)
=0.500-24hrs.
=12.024hrs.

These values are the basis for the next decision step determining which activity and
place are to be picked in each hour.

103



AN ADAPTIVE AGENT-BASED SIMULATION MODEL

6.3.6.3 Decision on Activity and Place

This procedure evaluates all known alternatives for activities taking into account the
possible reward for the activity, the distance to the place, and the remaining time for
that activity. ‘ ‘ |
Hour 0
o Activity "sleep" known places: (0,0) (=current position); (0,10)

reward in all places in hour 0: 1 unit/hour

Rule 5: place (0,0) .

t(reward high) = 1
1+exp(~-15-(1-0.5)
=0.99
t(distance low) = !
1+exp(1.7-(0-3)
=0.99
1
t(remaining time high) =
(remaining time high) = 4 0 4 (11.976—4)
=0.96

These parameters are connected with the AND operator, which means that only the
smallest t (being 0.96) is considered in the further calculation.

Rule 6: place (0,0)

1
1+exp(15-(1-0.5)
=5.52-107

1
1+exp(-1.7-(0-3)
=6.05-107°

1
1+exp(0.4-(11.976-1)

=0.01
Again, we only consider the minimum, which is 5.52 E-04.

t(reward low) =

t(distance high) =

t(remaining time low) =

Rule 5 produces a value of 100, while Rule 6 produces 0.
Centre of gravity (utility of alternative):
U= 100-0.96-30-0.5+0-5.52-10*-30-0.5

0.96-30-0.5+5.52-10™-30-0.5
=99.94
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Now the next alternative is evaluated.
Rule 5: place (0,10)

t(reward high) = 1
1+exp(-15-(1-0.5)
=0.99
t(distance low) = 1
1+exp(1.7- (10,— 3)
=6.79-107°
1 .
t(remaining time high) =
( & gh) 1+exp(-0.4-(11.976 —4)
=0.96
minimum: 6.79 E-06
Rule 6: place (0,10)
t(reward low) = 1
1+exp(15-(1-0.5)
=5.52-107
t(distance high) = 1
1+exp(-1.7-(10-3)
=0.99
. . . 1
t(remaining time low) =
1+exp(0.4-(11.976-1)
=0.01

minimum: 5.52 E-04

Utility:
U= 100-6.79-10°-30-0.5+0-5.52-10™ -30-0.5
6.79-107°-30-0.5+5.52:10™-30-0.5

=1.21
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e Activity "work" known places: (0,20), (10,10), (10,20), (20,0)

reward for "work" in hour 0: 0 units/hour
Rule 5: place (0,20)
1
1+exp(-15-(0-0.5)

=5.52-107"
1

1+exp(1.7-(20-3)
=2.81-107"

t(reward high) =

t(distance low) =

{

t(remaining time high) =
( g &) 1+exp(-0.4-(12.024-4)

=0.96

minimum: 2.81 E-13

Rule 6: place (0,20)

1 ;
1+exp(15-(0-0.5)
=0.99

t(reward low) =

1
1+exp(-1.7-(20-3)
=1.0

t(distance high) =

1
1+exp(0.4-(12.024 1)
=0.01

t(remaining time low) =

minimum: 0.01

Utility:

~100-2.81-10™"°-30-0.5+0-0.01-30-0.5
2.81-10™.30-0.5+0.01-30-0.5
=2.81-10"°
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Rule 5: place (10,10) _
1

t(reward high) =
1+exp(~15-(0-0.5)
=5.52-10"*
t(distance low) = 1
1+exp(1.7-(14.14-3)
=5.96-10""
t(remaining time high) = 1 .
1+exp(-0.4-(12.024 - 4)
=0.96
minimum: 5.96 E-09
Rule 6: place (10,10)
t(reward low) = 1
1+exp(15-(0-0.5)
=0.99
#(distance high) = !
& 1+exp(-1.7-(14.14-3)
=0.99
t(remaining time low) =
1+exp(0.4-(12.024 -1)
=0.01

minimum: 0.0l»

Utility:

~100-5.96-107°-30-0.5+0-0.01-30-0.5
5.96-10°.30-0.5+0.01-30-0.5
=5.95.107°
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Rule 5: place (10,20)

1
1+exp(-15-(0-0.5)
=5.52-10"*

1
1+exp(1.7-(22.36 -3)
=5.18.10" =

1
1+exp(-0.4-(12.024 - 4)
=0.96

t(reward high) =

t(distance low) =

t(remaining time high) =

minimum: 5.08 E-15

Rule 6: place (10,20)
1
1+exp(15-(0-0.5)
=0.99

t(reward low) =

1
1+exp(-1.7-(22.36-3)
=0.99

t(distance high) =

1
1+exp(0.4-(12.024 1)
=0.01

t(remaining time low) =

minimum; 0.01

Utility:
_100-5.08-107° -30-0.5+0-0.01-30-0.5

5.08-10"°.30.0.5+0.01:30-0.5
=5.08-10™"

 The last alternative ("work" at (20,0)) will produce the same utility as "work at (0,20) as
all parameters are the same. This means that the utilities of all alternatives are

99.94, ("sleep" at (0,0))

1.21, ("sleep" at (0,10))

2.81 E-09, ("work" at (10,10))
5.95 E-05, ("work" at (0,20))
5.08 E-11, ("work" at (10,20))
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2.81 E-09, ("work" at (20,0))

Out of these utilities the maximum is chosen. The agent will "sleep" in its home place
(0,0), and its "tiredness budget" will be credited with one unit of sleep. In the next hour
the evaluation procedure is repeated, with the remaining time for "sleep" reduced by one
hour, which decreases the utility of that activity. Note that the budgets are only
evaluated once every model day, while the decision where to go and what to do takes
place on an hourly basis, so that immediate success in performing activities shows only
at the beginning of each day, and has no influence on the short term behaviour.

6.4 Environment

The environment consists spatially of nine points representing a grid of three by three
cells. This can be varied between one cell (non-spatial problem) to up to ten by ten
points on an orthogonal grid. Except for its position on the grid each cell / point has the
following attributes: ’ -

e A capacity for four activities
e A price for four activities
e A specific time dependant payoff for four activities

The model can be run with variable or fixed prices and/or capacities, whilst the specific
payoff is fixed over the time of a simulation run.

6.;1.1 Prices

The price of an activity determines how many money units per model hour are
subtracted from the money budget of an agent carrying out the activity in question.
Prices are effective for the activities shopping and socialising as it would make little
sense to “charge” for work. Recreation is free as well, but here it could be justified to
introduce a price as this activity is supposed to cover housing, too. However, as a
measure of demand for the activities, prices are calculated and logged for all activities.

The price can either be static or adaptable in a simulation run. The adaptable setting
determines the previous day’s demand for the activity in the place in question averaged
over all 24 hours of the model day. A logistic curve (Figure 21) is then used to calculate
the new price. The logistic curve has the advantage of limiting the minimum and
maximum values of the price function to a defined range. The third parameter of the
logistic curve, its slope, determines how quickly the price is changed. A further
parameter sets the point where the curve reaches 50% of its maximum value.
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Price as Function of Average Demand
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Figure 21: Price for an Activity as a Function of Previous Demand

Although the adaptation function is non-linear, it is deterministic and the same in all
places. The agents are able to change the environment by choosing where to carry out
activities, but the nature of the environment’s response is not likely to lead to effects of
self-organisation in the spatial structure.

6.4.2 Capacities

Capacities are introduced to limit the number of agents carrying out an activity in the
same place at the same time. This means that agents have to compete for limited
resources, and might have to look for different places in order to satisfy their needs.

Like the prices, the capacities can either be static or adaptable during a model run.
Capacities adapt according to average demand for the activities in the last 300 model
days. Like in the case of the prices a logistic curve is used to calculate the new capacity
value. A maximum capacity limits the density in each place.

The exception is the capacity for work, which is calculated as the sum of the square
roots of the capacity for shopping and socialising multiplied with a correction factor.
This reflects that work is regarded as an activity, which is derived from the demand for
shopping and socialising. The use of the square root of the capacities is an attempt to
incorporate “economies of scale” into the adaptation process. '
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Capacities as Functions of Average Demand
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Figure 22: Capacity for Recreation, Shopping and Socialising as a Function of Previous
Demand
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Figure 23: Capacity for Work as a Function of the Capacities for Shopping and Socialising

6.4.3 Payoffs for Activities

Carrying out an activity leads to. a payoff for the agents as long as the capacity for the
activity is not exceeded. As a second constraint, a payoff for shopping and socialising is
awarded only if at least a second agent is present to work. Although in reality one agent
would not be able to serve other agents for both shopping and socialising at the same
time, it is the minimum constraint assumed.

All payoffs are time-dependent in as far as only certain hours of the model day qualify
to carry out activities successfully. These time periods are fixed over the duration of a
model run and are aimed to reflect effects like day and night for recreation, shop and
entertainment venue opening hours, and as a result of these, work time.
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The payoffs themselves are linear in the case of working and shopping if agents choose
to perform these activities successively for more than on hour. The values for the
payoffs are pre-set for shopping, but in the case of work, a turnover for that place is
calculated adding up the total amount of money spent the previous day by the agents. A
fraction of this amount is reallocated as wages for the next day.

In the case of the other two activities, a different approach was taken. The payoffs here
are not only time dependent, but the time already spent on these activities has an
influence on the total payoff, thereby taking into account that physiological processes
like recreation or sleep have different effects depending on how long the activity has
been carried out without interruption. This non-linear relation for recreation and
socialising is captured by a curtailed bell-shaped curve (Figure 24)

Payoff over Time
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Figure 24: Payoffs for Recreation and Socialising as a Function of Successive Choice of the
same Activity

The payoff functions somewhat simplify the conceptual framework insofar as that the
time rules of the artificial society should be a result of the interactions of the agents with
the environment, as much as they are enabling and limiting factor at the same time for
the agents, thereby determining their success. This option was not followed, because the
emphasis of the model was to be on the adaptation processes within the agents. A
feedback into the environment (as desirable as it is from the methodological side) would
make the already quite complex processes within the model even more difficult to track,
so that the analysis of the model behaviour would probably hindered by the complexity
of the model. S

6.5 Implementation

As a PC platform was readily available the model is programmed in Microsoft Visual
Basic™ version 3.0. This is an easy to use programming environment, which facilitates
especially graphics output and data storage in database format. For this reason all results
are written in Microsoft Access™ version 1.0 format. The database format is
advantageous for easy processing of the results, but has its downside on processing
speed and storage space used.
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However, the programming language is not ideal for this kind of model, and for this
reason the maximum number of agents in the model is limited to 64. The number of
agents can be varied in multiples of four due to the restrictions imposed by the
programming environment. This is a rather small number of agents, so scaling effects of
large populations cannot be observed in this implementation, but it is possible to run a
large variety of different configurations. Using the same initial conditions it is possible
to compare different model set-ups, effects of random number generation and
subsequent pathways taken by the model.
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7 Results

In this section the results obtained from the model described in Chapter 6 will be
outlined. The focus of the investigation is on the evolutionary properties of the model. Is
it possible to generate agents, which are adaptive according to the conceptual
framework (Chapter 5), and at the same time lead to credible behaviour based on their
intrinsic needs? This would qualify the modelling approach for the use in a larger model
of urban development as outlined in Section 2.4.

The nature of the model leads to a huge parameter space in which the model can
position itself. This makes the interpretation of results difficult, as the amount result
data is demanding on the ability to analyse it. Furthermore, the nature of the data
generated is usually not normally distributed which restricts the applicability of standard
quantitative statistical analysis to non-parametric tests. Therefore the data analysis will
as far as possible be restricted to a qualitative evaluation in order to test the validity of
the modelling approach at least on a qualitative level. ’

7.1 Run Configuration

As the central question of the investigation is whether it is possible to design adaptive
agents which are on their own capable of finding sensible behavioural rules according to
which they can conduct an everyday life, all spatial aspects have been eliminated at an
early stage of the investigation. This means that a number of features that the model is
capable of are not used. The environment is reduced to only one cell / point, which
practically disables the spatial features of the built-in cognitive map. Still, the agents
make use of the cognitive map feature in order to log their past success in carrying out
activities, only that there is only one alternative for each activity.

For reasons of practicality the number of agents has been set to 20 for most runs which
still results in runs of 18 hours duration for a run of 5000 model days. In order to test
the effects of larger numbers of agents, the maximum number of 64 agents has been
tested in runs of 3000 model days, but no significant differences have been detected. For
larger numbers of agents (or longer runs) the resulting data files would become too large
for the computer platform used and the possibility to obtain multiple runs would have
been severely restricted.

Although the model set-up allows for the settings of rule parameters to be changed
together with the behavioural rules, it was not deemed practical to mutate both rules and
rule parameters (which can be interpreted as sensitivities to input parameters). In the
case of changing both parameters and rules it is not obvious which of the two has finally
led to an agent becoming successful or staying unsuccessful. Besides this, the search
space for the agents, which have to find sixteen good rules in order to become
successful, would be enlarged by two parameters per input and output. As one rule
consists of eight inputs (four budgets @ two Fuzzy Sets high and low) and one output
set, this amounts to an additional 128 parameters to be defined. This is clearly
impracticable in a first step which tests only how sensible rules can be generated from
within the model. For this reason, all Fuzzy Sets on the input side have been set to
standard logistic curves.
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7.2 Definition of Performance Measures

Before we move on to describe the data generated with the model, it is necessary to
define performance measures, which reflect the aims of the modelling exercise. The
conceptual framework demands that the results are to be interpreted in an evolutionary
(in the definition of Varela, Thompson and Rosch, 1991) context. This puts some
doubts on the usability of traditional materialistic interpretations of performance
measures, such as the accumulation of material wealth. However, it has been said that
the budgets measure the satisfaction of the agent’s needs, but the definition of cultural
evolution as an “ongoing process of satisficing” (Varela, Thompson and Rosch, 1991)
implies that once a minimum budget state is reached, a state of success is obtained,
which does not need to be improved further. Furthermore, the rise of one budget can in
fact come at a cost for issues of longevity and therefore the sustainability of that
particular lifestyle.

For the same reasons also aggregate measures such as the sum of all budgets of an agent
are not considered. The simple sum of budgets would mean that the performance
measure amounts to basically the same additive utility function, which has already been
criticised in Chapter 2.3.6. This formulation can cover deficiencies in some budgets
with over-performance in others, so that the very idea underlying the multicriteria
approach would be contradicted by the data analysis.

In the case of the performance of the system as a whole, additive performance indicators
cannot be used in a meaningful way either. Any additive measures such as the sum of
the sums of all agent’s budgets will - as in the individual case - obscure deficiencies
which are thought to be crucial, because the aim of the agents is to satisfy all of their
needs, not to accumulate as much wealth as possible. In the perspective of the artificial
community, all agents should be successful in the sense of the concept of satisficing.

It can be concluded that as the budget states do not provide us directly with a system
performance measure, the budget states can amount to an indirect performance measure.
Because unsuccessful agents are not removed from the system, but reset if one of the
budgets reaches a defined threshold (-500 units), the time between resets can serve as
probably the best performance measure which can be found in this case. In practice this
amounts to the agents’ age, but as the agents are reset and not removed and
reintroduced, the time between resets is not equal to the agents’ age, which will be the
same as the length of the simulation run. The distribution of the time between resets for
the whole of the population as well as the average can give indication how well
individual agents and the entire the system are doing.

Longevity gives us a measure of how well the agents are adapted to their environment.
In the case of an evolutionary system, this environment would be created to some extent
by the agents themselves. In the case of a static environment longevity is a measure how
fit the agents are in the Neo-Darwinist sense, and this amounts in our case to testing
whether the agents are doing what could be expected from them in the context of a daily
life in an urban environment. If the agents fail to succeed in the static environment,
which is defined in a way that resembles a real city, it must be suspected that the model
underlying their behaviour is not valid, whilst the conceptual framework would be
validated if the agents behave successfully. However, it cannot be expected that all
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agents are successful from the outset, because they have to accumulate the necessary
knowledge, which enables them to survive.

7.3 Nature of Data Obtained

Having defined the performance measures against which the generated data will be
matched, some basic properties of the data to be analysed have to be clarified. When
speaking of successful agents according to the performance measures defined above, we
will refer to agents which keep all of their budgets above the reset threshold for the
whole duration of a simulation run of 5000 (3000) time steps (days), or at least for a
great part of the run. An example for such an agent is given in Figure 25.
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Figure 25: Budget Graph of a Successful Agent

In the case of an unsuccessful agent, we observe frequent resets due to the inadequate
behavioural rule set. The budget graph for such an agent is shown in Figure 26. Finally
it is possible that an initially unsuccessful agent discovers a rule set leading to
successful behaviour due to one of the modification mechanisms described in Section
6.3.5. This is shown in Figure 27.
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Figure 26: Budget Graph of an Unsuccessful Agent
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Figure 27: Unsuccessful Agent Finding a Good Rule Set During Run

As the performance of a given run is measured by the ability of agents to adapt to the
environment measured by the time between resets, the relationship between the number
of resets in a given run with the average time between resets of the population has to be
discussed. In the ideal case, no agent is reset, in which case the average age is duration
of the run. In the worst case all agents are reset at every time step, and results in a run
with 20 agents over 5000 time steps in 100000 resets. The relationship between the
number of resets and the average age of the population is given as

number of agents -run length

av.time between resets =
number of resets

Here we see that in the best case (no resets) the average using the above formula would
give us infinity instead of the length of the run. This can be overcome counting the end
of the run as a “reset” as well. This is deemed acceptable, because we are dealing with a
finite run length, and in doing so we revert from counting the actual number of resets
into the number of tries to find a sensible rule set for the agents. The relationship
between the average time between resets and the number of tries for 20 agents in a run
of 5000 time steps is shown in Figure 28. It has to be noted that the relationship is non-
linear, which results in a very rapid decline in the average age once only a small number
of agents are unsuccessful. To give an example, in the hypothetical case that 19 out of
20 agents are not reset, but one agent is reset on average every twenty time steps, the
resulting average time between resets decreases from 5000 for all 20 agents to 400! The
significance of the average time between resets is further reduced when it is considered
that an average of 400 time steps could as well mean that all agents are on average reset
every 400 time steps. In the strict sense this would mean that none of the agents
manages to find a really successful rule set. It could as well mean that 95% of the agents
are acting successfully, so that the decisive measure is the number of agents, which are
not reset over the duration of a run.
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Figure 28: Relation between Number of Resets and Average Time between Resets for 20
Agents and Runs of 5000 Time Steps

In order to gain a first impression of the tendency of the average reset time the time
between resets has been logged in intervals of 500 time steps (Figure 29). Even as the
average age is not a significant description of the actual processes taking place during
the run (see above), this measure can provide information on whether previously
successful agents have been reset at some point, thereby lowering the average.
Unfortunately, it has been observed that while only a few agents make the jump to good
rules, short-lived ones tend to find “worse” rule sets over time, which lead to even
shorter times, so that the average stays approximately the same.

Time Series of Average Time between Resets
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Figure 29: Example Average Time between Resets over 500 Time Steps

Because of the non-linear relation between the number of agent resets and the average
time between resets it is of particular interest to get information on the distribution of
reset times. This can compliment the figures given by the average reset time. The
distributions have been logged in categories of 50 time steps, with only one category
covering all events over 450 time steps. The experiments have shown that the resulting
distribution is highly skewed towards low values, so that the frequency of unsuccessful
behaviours is much more often observed than successful behaviours (Figure 30).
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Figure 30: Example Distribution of Reset Times

In order to account for the value (in the sense of the performance measures) of longevity
a weighted distribution of reset times has been measured alongside with the simple
frequency distribution. Here the frequencies are weighted with their actual values. This
reflects much more clearly the effect of successful behaviour. As the total of the
weighted values always equals the number of agents multiplied with the duration of the
model run (100000 agent-time steps in the case of 20 agents and 5000 time steps,
respectively 192000 in the case of 64 agents and 3000 time steps), we would observe in

a learning system a shift from the lower categories towards the higher ones, especially
into the highest one. '
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Figure 31: Example Weighted Distribution of Reset Times

Finally it is useful in the case of learning systems to observe what strategy the agents
take up and how successful they are using these strategies. The distribution of learning
strategies (Figure 31) gives a first impression of the ecology of learning strategies,
which will be used in the case of the evolutionary system.
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Figure 32: Example Distribution of Learning Strategies (Strategy 0: Non-adaptive; 1:
Random Mutation of all Rules; 2: Random Mutation of Rules for Low Budgets; 3:
Correlation)

It has been shown above that the data generated does unfortunately not possess any of
the qualities needed to conduct a quantitative analysis. For a quantitative analysis the
data would has to be normally distributed in order to carry out the standard statistical
tests. Furthermore, the sample size (which had been chosen for computational reasons)
is not large enough to for any features to be detected with statistical significance. On the
other hand we are dealing here with a complex system, which have traditionally not
been open to the standard measures of statistical analysis, so that we cannot expect that
these methods are applicable in our case. A method, which in theory is still open to
compare different runs, is the use of non-parametric tests. These tests are used to
compare differences in the shape of distributions, but as it has been outlined the sample
size is limited, and more detailed distribution curves would lead to many empty
categories in the distribution histogram so that the validity of such a test would be
questionable anyway. On top of this, we are interested in the dynamics of the processes
taking place during model runs, so that any distribution documenting the end state as a
summary ofwhat has happened is ofno great interest.

7.4 Reference Case

As a first step into the validation of the model a reference case was defined. The crucial
feature of our model is that it is adaptive in the sense that it can generate new rule sets
by connecting parameters in a new way. Conventional rule-based systems on the other
hand apply the rules, which have been defined from the outset. In addition to this, the
model has the possibility of assigning different adaptation strategies to the agents,
which takes the idea of adaptation one step further than earlier adaptive models using
genetic algorithms or neural nets. The latter techniques modify the rules in the system
with the same algorithm, whilst in our case we have the choice between three different
ones. The most interesting case, however, is to test whether a non-adaptive population
of agents would take up adaptive techniques and use adaptation to their advantage by
being longer-lived than the non-adaptive ones.

The reference case is used to establish the characteristics of a conventional rule based
system set up like our model. This means that no rules change during run time and
unsuccessful agents are reset to the same rule set as before. The agents are not allowed
to take up adaptation, therefore having perfect reproduction.
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For the reference case two configurations have been investigated: random rules and
“sensible” rules. The random rules are the same as for all other runs involving random
initial conditions, whilst the “sensible” rules were defined using common sense
assumptions on how a set of usable rules could look like. The “sensible” rules are
described in Section 7.4.1 below.

7.4.1 Pre-defined “Sensible” Rules

This configuration is emulating a rule-based system using heuristic behavioural rules.
As outlined above, the rules remain the same for the entire duration of the run. The rules
used have one budget as the input parameter and involve neither AND nor OR
operators. They are defined as:

(1)  Ifthe recreation budget is low then recreation is 100 points important
2) If the recreation budget is high then recreation is 0 points important
?3) If the money budget is low then work is 100 points important

(4)  Ifthe money budget is high then work is O points important

%) If the goods budget is low then shopping is 100 points important

(6)  Ifthe goods budget is high then shopping is 0 points important

(7)  Ifthe socialising budget is low then socialising is 100 points important
(8)  Ifthe socialising budget is high then socialising is 0 points important

The definition of the rules is equivalent to an independent multicriteria control system.
The state of the budgets relative to each other is reflected in the time allocation rule (see
6.3.3) which calculates the relative values of all importances to each other, and then
accordingly allocates fractions of the 24 hours of the model day to the respective
activities.

If the capacities are set to sufficient sizes it should be expected that all agents are able to
act successfully, as the rules are defined in a way that in theory allows for balancing the
budgets above the reset threshold. However, the main result of the runs in this
configuration is that this is against all expectation not the case. Only a fraction of about
40% of agents (25 out of 64) are not reset during these runs.
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Figure 33: Weighted Distribution of Times between Resets for Reference Case -
Predefined Rules '
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Figure 34: Distribution of Times between Resets for Reference Case — Predefined Rules

However, this observation becomes clearer when the exact procedures taking place are
considered. All agents start from symmetric (identical) initial conditions, so that in the
first time step all agents have the same preferences and plan to do the same things. Here
the symmetry of the configuration is broken when the capacity constraints come into
play. As the order in which the agents act is determined randomly, only the first agents
up to the defined capacity will receive a payoff from the activity. The rest of the agents
will receive nothing, and the symmetry in the budget states is broken. This will lead to
different decisions by the agents from day 2.

The other effect leading to unsuccessful behaviour in a homogeneous population is

- generated by the constraint demanding in the case of shopping and socialising that at
least one other agent has to be present working in order to make other agents receive a
payoff from that particular activity. It is obvious that a homogeneous rule set for the
entire population increases the probability that all (or at least many) agents decide to
pick the same activity at the same time, which does not lead to the cooperative pattern
needed in this case. However, this is probably a more latent than acute danger, because
the proportion of successful agents shows that cooperative patterns come into existence
at least to some degree.

For the dynamic environment it can be said that the capacities appear to find an
equilibrium point in the course of the run. This equilibrium is far lower than expected,
as capacities for recreation rarely pass 16 (in a population of 64) whilst socialising is not
exceeding 5. Even for the 25 successful agents this appears to be a very low value, and
it has to be taken into account that also the remaining 39 unsuccessful agents generate
demand. It has been taken into consideration that in this case the response curve for
capacity adaptation might be too restrictive, thereby limiting the maximum number of
successful agents by imposing a very low carrying capacity. On the other hand very
similar behaviour has been observed in other runs with even more generous capacity
constraints (in the extreme case with a static environment with capacities set at the
number of agents).
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Figure 35: Capacities for Activities for the Reference Run with 64 Agents

The most interesting case of this run configuration is how some previously unsuccessful
agents become successful over time. This cannot be due to finding a better rule, because
the rules do not change over time. Still, this phenomenon has been observed, and it
seems to actually reconfirm the conceptual framework. The discovery of viable niches
in the system is here due to the mutual 1nterdependency of agents and environment. If
due to high prices and insufficient capacity an agent is reset, it is relaunched after -
clearing its debts. It might now be a matter of chance for the agent to be drawn early in
the allocation process to be able to accumulate a safe budget state, which can be used in-
times of bad luck. On the other hand all other agents change the landscape constantly
during the run, so that the capacities might have increased slightly, in which case it is
simpler for a previously unsuccessful agent to act successfully. This interdependency
works of course in the opposite direction as well, so that previously successful agents
might - for instance through a period of bad luck - be reset. If at the same time the
overall behavioural patterns in the population change slightly, there is a risk of reduced
capacity, which slims the chances of finding a viable niche in the system.

7.4.2 Random Initial Conditions

In order to be able to estimate the effect of rule mutation of the system, the random
initial conditions used throughout all later simulation runs are tested on the static system
as well. With this data it was then possible to establish the differences between the
model configurations. As it might be expected from the size of the search space in
which rules can be defined, the performance of this configuration was rather low.
However it turned out that these precise initial conditions lead to one agent (out of 20)
behaving successfully, which is a surpnsmg fact already. For the rest of the population,
the distribution of times between resets is spread very similarly to the ones obtained
from the early stages of adaptive systems.
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Figure 36: Distribution of Reset Times for the Reference Case — Random Initial
Conditions

There are a number of agents, which are reset every 100-150 time steps, which is due to
the initial conditions. As opposed to the adaptive runs, these events persist over the
entire duration of the run, whereas in the in the adaptive version, unsuccessful agents
tend to reset times around 25 time steps after some time. This can be taken as an
indication that the rules leading to reset times above this value are already a very rare
configuration.
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Figure 37: Distribution of Reset Times for the Reference Case — Random Initial
Conditions

The average reset time remains more or less constant over the duration of the run, which
would have been expected from rules that remain the same over time. The standard
deviation of the times between resets is much smaller than that of adaptive runs, which
means that the reset times are more evenly distributed than in the adaptive case. Still,
this distribution is very much skewed towards low reset times. In the weighted case,
only 17% of all reset times (equivalent to only 0.4% of all events) are found in the
highest category, whilst the lowest category contains approximately 45% (equivalent to
86% of all events) of all weighted events.
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Time Series of Average Time between Resets
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Figure 38: Average Time between Resets for Reference Case — Random Initial Conditions

In summary it can be said that this configuration only confirms what is to be expected
from a static rule-based system. The rules have to be defined in a way that requires
knowledge on the nature of the system from the very beginning, otherwise the rule base
is not capable of governing the agents successfully. It has now to be determined whether
an adaptive rule base can perform better. This means that the system has to be able to
find working rules on its own.

7.5 Effect of Rule Mutation

Having established the static reference case, the three different rule mutation methods
described in Section 6.3.5 were now tested on their own, before in the evolutionary set-
up they were put into competition with each other and the static case. The aim of this
part of the modelling exercise was to compare the different methods and to establish
their efficiency. In comparison with the reference case there had to be an increase of the
number of successful agents over time when started from the same initial conditions.
This is not obvious from the definition of the mutation techniques, as it is possible that a
mutation technique actually decreases the viability of the system by replacing bad with
worse rules which lead to even shorter life times.

The basic indicator for the performance has to the number of successful agents (in the
~ best case) respectively the average time between resets (with the objections made in
Section 7.2). If a technique results in an increase of the average time between resets, it
can be assumed that at least in the set-up tested, the use of this adaptation technique
results in a system performing superior to the reference case.

As the principle of optimisation has been rejected in the conceptual framework, the
adaptation techniques had to be unbiased in respect to directed search as well. For this
reason a random technique which (as already outlined in Section 6.3.5) is easy to
implement as well and a correlation technique have been used. Although the correlation
technique comes very near to directed optimising search, it has been used as a
comparative measure. :

The main results of this exercise are that all methods appear to work to some extent.
During the runs more and more agents find good rules. However, it cannot be
determined at this point whether there are crucial differences between the techniques.
From the conceptual point view this is not a significant shortcoming, because the aim of
using different adaptation techniques is to introduce a diversity of methods into the
system and not to optimise its performance.
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The techniques were tested in runs of intervals of 3000 time steps using 64 agents. The
main points are summarised below. -

7.5.1 Random Mutation of all Rules

The random change of all rules results in a substantial increase in the average lifetime *
compared to the reference case with random initial conditions. This is actually
“surprising, not so much in respect to the fact that the random change of rules works, but
for the fact that the search space is extremely large, and that it would appear to take
some considerable effort to find a complete set of working rules. After the first 3000
time steps the sum of reset times in the highest category (>450 time steps, see
Figure 39) is about 3.5 times the sum of the reference case (Figure 33). This can be
taken as evidence that the change in the rules of the agents improves the viability of at
least a limited number of agents. The average of the category is 913 time steps as
opposed to only 575 time steps in the reference case.
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Figure 39: Distribution of Reset Times for Random Mutation after 3000 Time Steps
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Figure 40: Weighted Distribution of Reset Times for Random Mutation after 3000 Time
Steps
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Figure 41: Average Time between Resets for Random Mutation over Intervals of 500 Time
Steps after 3000 Time Steps
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Figure 42: Average Time between Resets for Random Mutation over Intervals of 500 Time
Steps after 9000 Time Steps

The tendency of the average lifetime of the agents (Figure 42) is not clear, similar to
what has been observed in other run configurations. A rise in the first half of the run is
followed by a fall later on. This becomes more clear in the continuation of the run
(Figures 43 and 44). It can be observed that the middle categories of the sum of reset
times become less and less present over time, whilst the extreme categories (0-49 and
>450) are constant respectively rising. It can be concluded that the average time
between reset stays more or less constant whilst the population becomes split between
very bad and very good performers. The ratio of events between the extreme categories
is skewed extremely towards the lower end, so that rare events of improvement are not
reflected by an increase in the average.
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Figure 43: Weighted Distribution of Reset Times for Random Mutation after 9000 Time
Steps

The last stage of this run (after 9000 time steps) even has a lower average time between
resets than the first stage, but the best category’s mean has risen from 913 (with 26
occurrences) to 1504 time steps based on 29 occurrences. The successful agents have
become even more successful in a stagnating population.
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Figure 44: Distribution of Reset Times for Random Mutation after 9000 Time Steps

This is still a far cry from the results obtained with the reference configuration using the
predefined “sensible” rules. Here we can observe that after the third stage in this
configuration, the best category’s mean is 2184 time steps based on 37 events. Although
this is lower than the first leg’s 2524 (with 37 events as well), it is still significantly
better than the results obtained with the adaptive version.

7.5.2 Correlation between Budget State and Tendency

The benefits of the first version of the correlation technique are not as obvious as those
of the random rule mutation method. The first stage of this run does not show any
apparent improvements over the reference case. In. the highest category of the
distribution of reset times even fewer occurrences are registered than in the reference
case (Figure 36). However, during the second part of the run this is partly reversed.
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After two stages, the weighted number of events in the highest category has surpassed
the reference case by 35%, but as this number is based on 13 occurrences the mean is
only 661 times steps as opposed to 575 in the reference case (Figure 45 and Figure 46).
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Figure 45: Distribution of Reset Times for the Correlation Technique

5!
Standard 98318 33272 11860 6545 6731 10127 6314 beg{) 1263 8593
eviation

55.53763
Hean

32.203%6

Nunber of
Occurrences

5362

£ tisd i J 2 x %
0- 50 - 100-  150- 200- 250- 300- 350- 400- > 450
43 93 149 199 249 299 349 399 443

Figure 46: Weighted Reset Times for the Correlation Technique

The manipulation algorithm has subsequently been improved, and this modified version
is used in all later runs, where it appears that the performance of this technique is equal
to the two random techniques used in these simulations.

7.6 The Evolutionary System - “‘Learning to Learn”

The results obtained from the previous runs indicate that an adaptive rule based system
can eventually reproduce at least some behavioural features of the observed human
behaviour. In a next step diversity in the adaptation mechanisms was introduced. This
puts the learning strategies in competition with each other. The performance of the non-
adaptive configuration was tested as well by initially assigning this strategy to some or
all agents in the system. The basic idea was that unsuccessful agents would have a
possibility to change to a different strategy upon reset, so that the success of the
different strategies could be compared on the basis of how many agents ended up with
which strategy. '
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For this configuration one more strategy was added to the repertoire of the agents. It
was now also possible just to get a new random rule set for the badly performing
budgets. This results in four different strategies: a) not changing Riles at all, b) to get a
completely new random rule set, c) to get random new niles for failing budgets and d)
to change rules on the basis ofbudget state and tendencies.

The spread of methods would give an indication of how suited the adaptation strategies
would be in order to enable the agents to find adequate rule sets. The ultimate goal of
this part of the simulation was to establish whether adaptation - or “learning” - would
come into existence and take over from non-adapting behaviour. The term “learning”
has to be regarded in a rather loose sense at this point, because the adaptation of agents
only has only a very loose similarity with real-life learning of humans.

All runs start from an all non-adapting population. The chance for an agent to switch
strategies is limited by introducing a relatively small probability of 1-2% of changing
strategy. Adaptation strategies can in this way “diffuse” into the population. This aims
at imitating “imperfect reproduction” at the reset point as agents which are reset keep
their last rule set (and in the runs in described Chapter 7.5 also their strategy). The rule
sets can only be changed though the use of the adaptation strategy. The aim of limiting
the chance of switching strategy was to avoid that adaptation strategies are discarded at
a too early point, when the strategy might take more time to find an acceptable result.

Two alternative approaches to switching have been used: The first approach uses an
even probability for each strategy to be assigned, whilst the second would not reassign
the strategy used before with an even probability for the other strategies to be assigned.
The first set-up will on average at every one in four events assign the previously used
strategy whereas the latter one will take at least two and on average three switching
events to arrive at the same strategy again. This limits the possibility of diffusion back
into a previously discarded strategy to a 1:300 chance on average (using a 1:100 chance
to switch strategies on reset) to maintain an inefficient strategy.
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Figure 47: Distribution of Adaptation Strategies starting from an All-non-learning
Population with 100% Diffusion of Adaptation Strategies (Data Series from Bottom to
Top: Strategy 0: Non-adaptive; 1: Random Mutation of all Rules; 2: Random Mutation of
Rules for Low Budgets; 3: Correlation)

In all runs it can be observed that the adaptive strategies take over from the non-
adapting one. The speed at which agents adopt the adaptive strategies depends very
much on the “diffusion rate”, but the trend is common to all configurations. Figure 47
shows as an example the distribution of strategies over time of a configuration which
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has a 100% “diffusion rate” and Figure an equivalent configuration operating on a 1%
rate. Although the fluctuations between the strategies vary considerably with the
probability to switch strategy, the general trend is the same.
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Figure 48: Distribution of Adaptation Strategies starting from an All-non-learning
Population with 1% Diffusion of Adaptation Strategies (Strategy 0: Non-adaptive; 1:

Random Mutation of all Rules; 2: Random Mutation of Rules for Low Budgets; 3:
Correlation)
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Figure 49: The Distribution for the same Run after 50000 Time Steps
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Figure 50: The Distribution after 95000 Time Steps
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Agent 5
2 2 1 3 3 3 3 3 3 3
35 5 22 14 79 50 91 3571 |4084 442
Agent 6
0 2 1 1 1 2 2 2 2 2
Agent 7 5000] [5000 5000 5000 5000 5000 5000 5000 |5000 5000
0 0 0 0 0 0 0 0 0 0
265 229 255 191 3200 2182 227 1269 1177 2588
Agent 8
0 0 0 0 1 1 1 1 1 1
326 356 258 442 119 126 25 27 56 110
Agent 9
0 0 0 0 0 0 0 0 1 1
1166 590 723 1073 1459 439 576 455 201 163
Agent 10
0 0 0 0 0 0 0 0 0 0
Agent 11 8 11 6 4 6 13 12 10 11 7
0 3 3 2 3 3 3 3 3 2
Agent 12 14 9 11 21 19 15 17 18 17 14
1 2 3 3 2 1 2 2 3 0
Agent 13 26 8 37 2 10 14 13 26 17 21
2 1 1 3 3 3 3 3 3 3
Agent 14 11 13 38 13 15 16 15 25 8 9
2 1 1 3 3 3 3 2 2 0
Agent 15 5 6 26 10 20 9 15 14 5 7
0 3 3 1 3 3 2 2 0 3
Agenf16 57 42 24 15 6 1804 16 1 25 71
0 0 3 0 0 1 2 2 2 1
8 83 1272 5000 5000 5000]  [5000 5000] [5000 5000
Agent 17
0 0 3 3 3 3 3 3 3 3
2 12 22 18 1
Agent 18 0 15 1 8 6 14 9
3 3 0 1 1 2 1 3 3 3
2091 2303 148 374 818 65 22 1137 [2728 5000
Agent 19
0 0 0 0 0 0 0 3 3 13
10 10 1 41" 12 11 10 5 45 12
Agent 20 2 1 3 2 2 3 2 1 0 0

Table 10: Time since Last Reset of Agents over Previous 5000 Time Steps
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after... | giel BIT| E|E| BlE| ElE| ElF| E|F| BlE| &%
Time El|2 Ei2 L BE B E] El2 E|2 F |2 F|2 F|2
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Steps g|5| 8|8| 8(g| 2|8| 8lg| E|§| 8l8| g5 g3
w !l < < ~ g N~ L oo | < o | & |
7 Ki 12 13 3 10 76 ¥ ]
Agent 1
3 3 1 1 3 3 3 3
Agent 2 22 10 13 [ 16 13 18 17 17
3 2 3 3 1 1 1 1 3
Agent 3 34 64 31 24 40 41 23 v10 16
. 3 3 3 0 3 0 1 1 3
172 o9 402 192 195 55 38 361 328
Agent 4 .
1 1 1 1 1 1 1 1 1
5000 o000 5000 5000 5000 5000 5000 5000 5000
Agent 5
: 3 3 3 3 3 3 3 3 3
352 278 195 108 230 73 13 10 28
Agent 6 |
2 2 2 2 2 2 1 3 2
5000 5000§ . 15000 5000 50007 .- | 5000 5000 5000 5000
Agent 7
0 0 0 0 0 0 0 0 0
1338 2/9 2339 208 583 1505 4514 3230 180
Agent 8 .
. 1 1 1 1 1 1 1 1 1
4 20 1
Agent 9 243 . 4 o 3 16 19 20 11 12
1 2 3 1 1 3 3 (U 2
1798 1998 1369 191 1091 939 1162 1738 82
Agent 10
0 0 0 0 0 0 0 0 0
1
Agent 11 10 1 9 1 2 13 14 16
2 1 ol 0 1 0 2 3 3
252 168 29 2855 5000 5000 5000 5000 5000
Agent 12
1 1 1 3 3 3 3 3 3
Agent 13 13 10 10 3 4 1 47 28 3
1 1 1 1 0 3 1 11 2
Agent 14 8 35 [¢] K] 56 13 32 24 25
3 3 3 1 1 1 1 2 2
15 15 1 7 24 20
Agent 15 12 ;3 0 |
3 1 1 1 1 1 3 2 3
9 30 21 5000 5000 5000 5000 5000 5000
Agent 16 -
1 2 2 2 2 2 2 2 2
5000 137 2963 5000 5000 5000 5000 5000 5000
Agent 17
3 3 3 3 3 3 3 3 3
17 14 9 28 19 5 1 2 5]
Agent 18 0
: 1 2 1 0 2 2 1 2 1
5000 5000 5000 5000 5000 5000 5000 5000 5000
Agent 19
3 3 3 3 3 3 3 3 3
5 12 [¢] 22 3 2 8 17 10
Agent 20
gen 2 3 1 1 3 1 3 1 2

Table 11: Time since Last Reset of Agents over Previous 5000 Time Steps (continued from

Table 10)

It might now be claimed that the adoption of adapting strategies is due to the random
fluctuations imposed by the stochastic set-up, but as the runs are extended to longer
durations the trend continues towards a near extinction of the non-adaptive strategy. The
reason why this strategy does not become completely extinct is that in every case there
are agents with good enough rule sets from the outset, so that these agents naturally
maintain rule set as well as strategy. Table 10 and Table 11 summarise the development
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of average time between resets respectively number of resets over time for an example
run. In these tables, the time since the last reset is given for all agents after intervals of
5000 time steps. The corresponding adaptation strategy is indicated as well.

The presence of the non-adapting strategy depends above all on the initial conditions. If
agents start with satisfactory rules they will not adopt adaptation, because they do not
have to find better rules. This is the case for agent 7 in Table 10 and Table 11, which is
not reset for the entire duration of the run. On the other hand it is clear that unsuccessful
agents will at some point adopt an adaptive strategy, like agent 5, which starts like all
agents with the non-adaptive strategy 0, then switches to strategy 3 (correlation), which
leads to a successful rule set after 20000 time steps. It is possible that an agent finds a
successful rule set with an adaptive strategy, but with “bad luck” is subsequently reset
to the non-adaptive strategy which preserves the rule set with which the agent can now
satisfy its needs. On the other hand in the case of agent 17, it can be observed that this
agent finds a good rule set after 15000 time steps, but fails after 55000 time steps. This
agent keeps its strategy throughout the run, and soon (after 65000 time steps) finds
another successful rule set.

Actual Time for Strategies
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Figure 51: Actual Average Lifetimes by Strategies in Run shown in Table 10 and Table 11
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10000

X d —o— Strategy 0
B SREES P =Y L& =

---- gt & s I |...m..Strategy 1

e N s At
100 ,:-‘_ p’.“:‘...i - /',L-.§_*,¢ S ST -* - . _Sliategy 2
i.&_‘.“‘-"( - o - =% — Strategy 3

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000 90000 95000

Figure 52: Average Lifetimes by Strategy weighted by Number of Agents in Strategy for
Run in Table 10 and Table 11
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Number of Agents in Strategy
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Figure 53: Average Number of Agents per Strategy for Run in Table 10 and Table 11

Although there is only a 1:100 chance that this will happen, adaptation spreads
amazingly quickly. Taking into account that there are only around 2500 resets per 5000
time step run, this means that there are only 25 chances to switch strategy for the whole
of the population with a 1:100 switching rate. If it is taken into account that successful
agents do not change anything (neither rules nor strategy), the chances are still very slim
for an agent to change its strategy. Typically about 50% of all agents have switched
from non-adaptive to adaptive strategies after the first 5000 time steps when starting
from an all non-adaptive population.

The question whether there are significant differences in the effectiveness of the
adaptation strategies cannot be answered straightaway with the available data. The
performance measure chosen - the average time between resets - is biased because of
the non-linear relationship between number of resets and average age (see Section 7.3).
As the absolute number of successful agents will - at least in the beginning of a run and
especially in the case of a small overall population - be small, the remaining number of
unsuccessful agents will depend on the size of the sub-population in question and not on
the performance of the strategy. This means that small sub-populations will be favoured,
if they contain long-lived individuals. On the other hand the prevalence of a strategy can
give some indication on how successful it is in the Darwinian sense. Figures 51, 52, and
53 illustrate this dilemma for one example run, showing the average time between resets
for each strategy, the number of agents per strategy and the average time between resets
weighted by the number of agents in the strategy over time. Although about 50% of the
agents adopt the correlation strategy 3 (Figure 50 and Figure 53), the average time
between resets for this strategy is even lower than that of the non-adaptive strategy 0
(Figure 51). This is due to the small population size of strategy 0. Only if the average .
time between resets is weighted by the population size (Figure 52), the largest
population achieves the highest value. In reality, the seemingly large success of the
static strategy is due only to the initial conditions, which provided for one successful
agent in this strategy.
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7.7 The Effect of Knowledge Propagation

The most significant improvement in agent success is achieved not by generating sets of
new rules, but by spreading existing, working rule sets within the population. Even the
longest runs without knowledge propagation have yielded only a success rate of 6 out
20 within 95000 time steps. The introduction of a method to transmit knowledge (which
is encrypted in the rules) improved this ratio in the best case to 19 out of 20 agents
being successful within 5000 time steps.

In comparison with the run in Chapter 7.6 the most significant difference between the
two example runs is the higher mean time between resets for the copying set-up
(Figure 56). This occurs already after 25000 time steps while the average for the non-
copying set-up is taken after 95000 time steps. However, the average time between
resets in the highest category is only half of what was observed for the non-copying set-
up (1091 time steps when copying as opposed to 2211). On the other hand there are
much fewer occurrences in the lowest category for the copying set-up (184 as opposed
to 2254). In this case the propagation of rules within the population leads to few agents
being successful for the entire duration of the run. The majority of agents is not reset for
longer periods, but these agents not successful in the sense of the definition, although
they are performing much better than the majority of agents in the non-copying set-up.
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Figure 54: Weighted Distribution of Reset Times for Non-copying Set-up after 95000 Time
Steps
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Figure 55: Distribution of Reset Times for Non-copying Set-up after 95000 Time Steps

It can be concluded that knowledge propagation on its own cannot be regarded as the -
universal solution to creating a successful adaptive system. The method for propagating
knowledge used in this example application has its specific limitations. The blackboard
of common knowledge will assign a new rule set to an unsuccessful agent when it
would otherwise generate a new rule set according to its strategy, but the agent might
use a different adaptation strategy to the one with which this rule set was generated.
This recombination of strategies with rule sets can have positive as well as negative
effects. In the case of a rule set generated with the correlation strategy, this might lead
to discarding parts of the rule set which might be crucial if the agent applies one of the
random techniques to it. In this case the value of copying an entire new rule set is
greatly reduced, because the effect is no different to carrying on with the random
strategy.

We have seen already in the reference case (Chapter 7.4) that the success of rule sets is
circumstantial. Even rules, which normally work, might not work in the particular
situation an agent is in. The effect of this is similar to an unfortunate matching of rule
set and adaptation strategy, and will not improve the agent’s performance. The same
effect can be observed when the blackboard is too small, or by accident just contains
one or only very few rule sets. ' :
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Figure 56: Distribution of Reset Times for Copying Agents after 25000 Time Steps
(Example Run)
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Figure 57: Weighted Distribution of Reset Times for Copying Agents after 25000 Time
Steps (Example Run)

Consideration has to be given to the ratio between exploration and exploitation.
Exploration means here that it is necessary for the system as a whole to discover new
rule sets, at least at the beginning of a model run. Once a number of working rule sets is
discovered, they can be exploited by the majority of the population. This reminds us of
the discussion of “cartesian” and “stochast” behaviour in Allen and McGlade’s (1987)
fisheries model (see 4.5.1), where exactly the same problem occurred. Successful
behaviours have to be discovered before they can be exploited. It seems trivial to make
this point, but it is not obvious in a computer model that these behaviours will only
improve the system as a whole when they are combined.

The best results in our case have been obtained with 80-85% of all resets copying from
the blackboard. As this is a fixed ratio over the duration of a run, there is no possibility
in the current set-up to let the system learn which ratio is advantageous at which point in
time. The introduction of copying has also implications on the distribution of adaptation
strategies. In Figure 58 the distribution of adaptation strategies for the run shown in
Figure 56 and Figure 57 is shown. When compared to the distribution of the non-
copying set-up (Figure 50) it becomes clear that the proportion of adapting agents is
much smaller than in this configuration. This is due to the fact that the agents can only
change their strategy when they are reset. As there is a high proportion of agents
copying relatively successful rule sets before they are reset, there is no. possibility for
them to switch strategy. This leaves the system with many agents relying on the copied
rule set and only a few adaptive explorers. Ideally, in the course of a model run the
proportion of copying agents would increase over time when starting from random
initial conditions, but a certain percentage of exploring agents would have to be retained
in order to keep the system flexible to future change.
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Figure 58: Distribution of Adaptation Strategies after 25000 Time Steps (Strategy 0: Non-
adaptive; 1: Random Mutation of all Rules; 2: Random Mutation of Rules for Low
Budgets; 3: Correlation)

Like the ratio of exploration to exploitation, it is a matter of definition what a “long
lasting rule set” is. This is in our case defined as enabling at least one agent not to be
reset for at least 500 time steps. In a truly evolutionary system on the other hand this
measure would have to be evolved by the system itself. Because the blackboard is
representing a knowledge pool common to the entire population, it is a matter of “public
perception” to define what a long lasting / successful rule set is.

7.8 Summary

The results obtained from our agent-based model can give us some insight into the
nature of complex adaptive systems. As the model in the form used can only deal with a
fraction of'the ideas outlined in the conceptual framework it is not truly evolutionary in
the sense of the conceptual framework. However, the model has produced some very
interesting results, which will be summarised below and discussed for their implications
in the next chapter.

The first point to be made is not an obvious one: Even good rules do not guarantee
success for an agent, although the environmental constraints were very much relaxed.
The rules were defined in a way that common sense would make one think that the
nature of the rules would enable an agent to satisfy its needs sufficiently. This point
links into the problem of having only one set of homogeneous rules for the entire
population in this configuration. The model set-up demands that some cooperative
behaviour is needed. Even with the homogeneous rules cooperative behaviour develops
to some extent, but could a diverse population make better use of the resources available
to them? From this perspective diversity appears to be desirable for a system, because it
can make cooperation (apart from the competition, which always exists) happen more
easily.

Even in this very simple model there exists a mutual interdependency between
environment and agents. The agent’s actions transform the environment, which is the
constraining factor for the success of the agents. These effects are significant.
Unsuccessful agents are forced to find new resources, thereby developing new rule sets
which in return indirectly affect all other agents through their influence on the
environment. Also the concept of ecological niches can be found in the model, only that
the niches exist here only in the sense that temporal / spatial use of facilities is possible
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only during certain times. In the case of a synchronised population and limited capacity
niches open up for activities when most others agents do something else.

The system is extremely complex for its size. Success or failure of an agent depend to a
great degree on what the other agents do, and this is not predictable, because it is
determined a) by the experience of the other agents and their current rules as well as b)
the random arrival order in a place at a time and c) the place’s capacity. The prices as
well have considerable influence on the individual. Prices are in the end determined by
the collective (through demand) and have more influence on “poor” agents than on
“rich” ones. This means that not only the environment, rules and experience determine
the success of an agent, but its own budget states as well!

In the adaptive case it has been shown that already a small system has an enormous
search space in which to find good rules. It is obvious that these rules are rare, and the
duration of random searches by the agents shows that this is the case. However, these
configurations appear not to be as rare as one would expect from the size of the search
space, which allows for ~3.4-10% permutations for an agent’s rule set. Agents are able
to find a limited number of successful rule sets very quickly using only the most basic
random search techniques.

Comparing adaptation with the case of static rules, the results show that even simple
adaptive mechanisms are performing better than a system starting from random static
rules in creating long living agents. However, it is not clear whether the adaptive system
performs better (in terms of achievable lifetime) than a conventional rule based system
with good (or optimal) rules. This question links into the broader topic of whether
natural systems optimise on their own. As far as Varela, Thompson and Rosch (1991)
and the conceptual framework are concerned, optimisation is the extreme case of
evolution, which only applies if the selective pressures are high enough. Natural
systems would otherwise underperform. In this view it appears to be questionable that a
natural evolutionary system would actually evolve in a way that is superior to a
conventional rule based system which uses optimised rules. The difficulty here is just
that these rules are very hard to find and that they are able to adapt to the change they
inflict upon the environment. ‘

As the adaptation techniques are only very basic, the problem of their effectiveness in
the used set-up comes into focus. Agents have only very limited time to try new rules
before they are replaced with a new set if there is no immediate improvement in the
budget states. It is to be asked how many rules, which might work, are discarded before
they can become effective. Other ways of improving the agents’ performance include
the fine-tuning of rules by changing parameters, which were not used in the example
application, because this would further enlarge the search space. It has to be kept in
mind that some rules might work only within a certain parameter range, which might
not apply when the rule is generated. Ideally, the agents should find the adaptation
technique on their own, thereby adding one more adaptation layer to the model. In the
“example only four predefined techniques have been used, but if one takes the conceptual
framework seriously, the way of adaptation of the agents should be a result of their
evolution.

However, the main result of the modelling exercise is that learning (or adaptation in
general) can be regarded as an emergent property of an evolutionary system, provided
that there is a chance for learning to come into existence. Adaptation gave some agents
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an advantage over the initial population with static rule sets. Even if adaptation proved
not to give a permanent improvement, it would happen at least temporarily, but then
possibly remain restricted to a small number of individuals, which achieve satisfactory
results with this technique.

In our case the long model runs would have provided a chance for diffusion back to
non-adaptation (which happens for some individuals, see 7.6). Generally it can be
concluded that adaptation in the tested case gives an advantage over non-adaptation.
The reason for this is that when starting from random initial conditions there has to be a
good rule set in the first place for non-adaptation to work as shown in the comparison
between the reference case and the single adaptation techniques.

There is a chance that an adaptation strategy develops a good rule set, which is then
used successfully with non-adaptation (or another adaptation technique) so that it
becomes also important to match adaptation techniques and specific rule sets. On the
other hand it is possible that certain rule set only works in conjunction with a specific
adaptation technique. All these factors make success seem impossible to reach, but in all
runs a considerable number of agents finds these very narrow sustainable paths on their
own without any interference from outside!

In the case of competing adaptation strategies even the most basic of performance
measures are extremely difficult to apply to the results because of bias of age towards
small populations. This bias can even outweigh weighting with the size of the
population, but the population size alone is only an indicator, not a measure for the
effectiveness of a strategy. This leads to the question whether there exist any
meaningful quantitative measures for complex adaptive systems at all. On the other
hand a qualitative lifecycle analysis which refers explicitly to the context of what
happened appears to be an appropriate tool for tracing processes in such a complex
system, but this does not allow for any aggregate description of a system.

Finally, knowledge propagation (or copying) proved to be a complementary techmque
to spread successful behaviours in the population. The number of successful agents can
in this way be raised to about 95% of the population with the techniques used. In this
context the issue of behavioural niches mentioned above becomes extremely important.
As the process of copying homogenises the behavioural rules (and with it the
behavioural patterns) of the population, rules which might work for some agents, and
who subsequently write these rules to the common knowledge base, can fail when used
in a different context. Furthermore, knowledge propagation slows down the spread of
adaptation and therefore can possibly reduce the resilience of the system as a whole,
although the improvements are considerable in the short term. Again, the issue of how

far rules sets can be matched with different adaptation strategies as well as different
- environments than those in which the rules were developed is essential for the
understanding of the behaviour of a complex adaptive system.
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8 Discussion

In this section we will evaluate the results of the modelling exercise against the
objectives with which the research was started, and an interpretation of the results will
be given. The results of the modelling- exercise have to be compared to some of the
models outlined in Chapter 2 as well. The main differences in the possible
interpretations of the results and the implications thereof will be clarified, before
focusing on the contribution to knowledge this project has made.

The implications of this project lead to some very interesting questions, which are
briefly outlined in the last section. This is intended to give an outlook to further research
investigating the methodology used in this approach and possible applications of
evolutionary models.

8.1 Evaluation and Interpretation of Results

~ The results reinforce the initial idea that a completely disaggregated model of a city
based on the individual inhabitant is feasible. Much more information can be extracted
from the disaggregate model regarding the implications of change on the population
than by using higher level models. The evolutionary principle (as outlined in
Chapter 5.2) - although implemented only in a rudimentary fashion - starts off a series
of self-organising processes by letting diversity diffuse into the population. This
symmetry breaking of the of the initial conditions is only partially due to the use of
random number generation techniques, but also to the rule base set-up used in the
model. The low level motivation for the agents - their needs - can lead to a multitude of
different co-operative as well as competitive behaviours even with a single rule set, as
we have seen in Chapter 7.4.1.

The introduction of the possibility to take up adaptive behaviour vindicates the
conceptual framework even further. The agents eventually “learn to learn” by picking a
learning strategy which is not necessarily “the best”. The fact that sub-optimality is
sufficient to create a successful system, but that even in an initially sub-optimal system
the competitive pressure might eventually lead to a temporarily optimal system is the
essence of Varela, Thompson and Rosch’s (1991) framework to evolutionary systems.
An indication for the sub-optimality of the systems is that even though adaptation gives
these agents an advantage over non-adapting ones when starting from random initial
conditions, there are still some agents in the system, which can get along by not
adapting dynamically. The general case of an evolutionary system has therefore to be
regarded as being satisficing only. This appears to be an important point for future
approaches to modelling dynamic systems, because the traditional dynamic techniques
usually apply optimisation algorithms, which invariably arrive at stable equilibria
without being able to explore other possible, but suboptimal pathways.

The model has of course to provide the possibility for learning to come into existence in
the first place, but as this taken into account in its design, adaptation will almost
inevitably happen. The different evolutionary strategies originating from this point lead
to clusters of rules, which cause different modes of behaviours for certain groups of the
population. This is equivalent to the emergence of cultures in the population, all of
which are oriented towards the ultimate goal of subsistence (as the satisfaction of needs
can be translated). However, the emergence of cultures is not something, which can be
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regarded as happening always and at any point in time and space. It is the
interconnectedness of any individual decision with most other issues in the system,
which makes the evolution of cultures specific to the spatial and temporal setting, which -
in return is at least partly a product of the actions of the agents in the past. Figure 59
illustrates how a seemingly simple decision on how to travel has in fact to be regarded
as being really an interpretation of the individual on the “meaning of life”. But not only
the individual’s perception influences the decision, the conventions of society and the
historic development of society and the environment play a major part in this decision
as well. Although this might be the most consequential conclusion to be drawn from the
model’s results, it is to be determined to what extent this is to be incorporated into a
model, as introducing complexity hinders the analysis of the results, as we have seen in
the previous chapter.
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Figure 59: Web of Interactions on Everyday Decisions (after Allen 97b, p. 235)

The central point of the discussion turns out to be the issue of viability, in the first place
individual viability, but because of the nature of the system, viability has to be regarded
much more as a collective than an individual property. This leads to the issue of
collective as opposed to individual utility of an action or a lifestyle. In this model the
system was not complete. Resources were in theory unlimited and the only adverse
effects of agent actions on their ability to survive were fluctuations in demand for
activities. This is very much different from a real ecosystem (if one wants to use this
term for a city) where resources are limited, and the system as a whole can degrade to
the extent of not supporting its population any more.

Sustainability in the model relates to the way. the individual behavioural rules are
formed. As the agents do not have a long-term horizon, and the rules do not change any
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more once a satisficing solution is found, the initial individual viability might lead to
adverse effects in the long term. Indication for this wasteful use of resources can be
found when looking at the budget states of some successful agents. A big proportion of
these agents builds up large surpluses in their goods budget, whilst another group just
amasses money. The analogy to real world consumer culture is tempting... This issue is
even more serious when one takes into account that the most efficient spread of
successful behaviours occurs through copying and not by exploration.
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Figure 60: Agent Specialising in Accumulating Goods
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Figure 62: Agent Balancing three of the four Budgets

The spread of individually successful behaviours within the population takes place
through imitation of good rule sets. Whilst in the case of individual exploration of the
possibility space in the best case only 55% of agents end up with good rule sets after
95000 model days, imitation can lead to 95% of agents having successful rule sets after
only 5000 model days. Still, imitation only does not lead to a viable population on its
own, as the case of a population with predefined rules shows. The homogeneous rules
can be seen as the limiting case of imitation, in which only one rule set is allowed. We
have seen that this does not lead to success for the entire population. The conclusion
from this is that what is needed for collective survival are “stochasts” (explorers) and
“cartesians” (imitators) in the right ratio. As the best results of this mix of strategies
have been obtained with a 80-90% proportion of imitation to exploration; “stochasts”,
many of which are initially unsuccessful, are only an insurance for the collective to a
changing future and not of immediate value to the collective. The majority of the
population is by far more successful when using the - at least in the short term - most
effective way of communicating vital knowledge: copying.

The search for rules resembles the formation of cognition for an individual, because the
rules are formed according to (at least some of) the experience of the agent. In the
beginning there is no prioritisation of the needs which are expressed through the budget
~ states. In the process of rule formation an individual hierarchy of needs can emerge
through the construction of rules which discriminate some budget states for some
activities. (If this budget is low/high and that budget is low/high and that budget is
low/high then...) However, it is not obvious from the agent’s behaviour whether in the
end it is rules or needs which more evident to observe. This cognitive issue is especially
evident when the rules have not been found through exploration and failure (leading to
some kind of a cognitive picture of the world), but by copying somebody else. In this
case it is to be asked whether the rules have anything to do with the defined (objective)
needs. The agent’s situation might lead to a very much different kind of rule set if
experience instead of copying was used. The copied rules set might still work for the
individual, but it definitely does not relate to the situation and the previous experience
of the individual.
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The question of emergence of new needs as seen by Max-Neef (see Section 4.3.3) might
be addressed from a different perspective. If an agent copies a rule set which has been
formed under different circumstances than those of the individual in question, the
intrinsic hierarchy of the underlying needs might not fit directly the circumstances of
the agent which copies. This can lead to deficiencies in some of the budgets, but there
might be means available to cater for these deficiencies which were not needed before.
This can mean that these new means are actually needed only in order to satisfy the
budgets using an inadequate rule set. A new “need” for an individual has come into
-existence. In this case the new need is less an emergent property of the agents than a
result of their behaviour. The defined needs of subsistence are still in existence, but in
this case other means (or in Max-Neef’s words: satisfiers) are required to satisfy the
original needs. Although this is not a new need in the original sense, because there are
no new budgets, this can amount to relying on more or other satisfiers in order to
guarantee viability.

The methods of adaptation used in this example can be grouped into two categories:
Mechanisms internal to the agents like rule mutation resemble evolutionary processes
more than methods external to the agents - like copying - resemble learning. We have
argued above that the methods of knowledge import from outside are much more
efficient than the evolutionary process behind the formation of cognition. Furthermore,
it has been shown that knowledge import does not necessarily lead to full satisfaction of
all needs, but it is quicker and more effective at least in the short term. The question of
purposefulness behind learning (and teaching as well) therefore leads to the
interpretation that learning (knowledge import from outside) can ensure the immediate
survival much better than exploration. However, it does not appear to be possible to
relate knowledge import directly to the specific situation of the individual in question,
as the knowledge itself has been generated in circumstances different to the ones of the
importing individual. Knowledge about oneself cannot be taught, but only discovered in
a probably very painful process of exploration.

The model’s results reconfirm what has been known through empirical research in
planning and the social sciences. The interaction between social and physical systems
leads to a mutual interdependency between both systems; and change in one sub-system
will affect the other sub-system as well. The methodology presented here can for the
first time show this interaction and the implications thereof in a computer model, at
least to some extent. An urban model can with this methodology make statements about
lifestyles of the inhabitants and the consequences for the modelled urban system. Also it
is easier to explain how the inhabitants® behaviour leads to change in the system and
vice versa. In the past, statements on the implications of change in an urban system had
been restricted to aggregate, mostly economic, parameters. The bottom-up, adaptive,
agent-based approach, on the other hand, allows for the exploration of possible lifestyles
for sub-populations through 51mulatlon ona theoretical level, a method that has not been
available before in this form. -
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8.2 Evaluation of the Model

In spite of the multitude of extremely interesting results gained from running the model,
it has become clear that the entirely disaggregated approach has its limits. In the current
set-up the model can only represent 64 agents which on the computer platform used
leads to run times of around 60 hours for a duration of 5000 time steps, thereby
generating a data file of around 190 Mbytes. This means that a model of the size of even
a little village is simply not feasible with the program used. Apart from this rather
practical objection, the sheer mass of data generated makes any system containing more
than about 20 agents extremely hard to analyse, as we have seen that the usual statistical
aggregation measures are not applicable to this approach. Much of the logged data has
not even been used for this thesis, as it was the primary aim to test the theoretical
framework in its implications against reality. This leads on to the question of how far a
model should go into detail, as one basic property of a model is that it is simplifying
reality. In the case of an agent-based model aiming at the simulation of human
behaviour there is the danger that the model becomes as complex as reality, which leads
to a model that does not clarify anything because of its complexity, or even equals
reality, in which case it would not be a model any more.

The disaggregated approach has its place in simulation, but it has to be determined to
what extent it is to be used. For instance, cellular automata are much simpler in their
implementation, and save considerably on computer power, when used in a land use
model. However, cellular automata in this set-up cannot make any statements about the
inhabitants, and usually cannot change their rule base during run time (although this is
possible). On the other hand, a combination of models of different aggregation levels
results on a philosophical level in a duality for the agents as they are represented several
times in several functions, for example as an inhabitant, as part of a company, and as a
traffic participant. These would be different entities in a hybrid model, but in reality it is
the same person, who carries out different activities. A hybrid model might be more
efficient in terms of computing time required, but it does for the reason above as well
rely on very exact synchronising between the sub-models, which can otherwise lead to
unrealistic fluctuations. As fluctuations are one of the most important elements of self-
organising models, lack of synchronisation can cause the model take unrealistic
pathways and therefore be misleading in its results.

On the other hand the disaggregated approach using adaptive agents can help here in

-~ spite of its demand for computer time. Agents can form “meta-agents” on a higher level
of aggregation, which can help eliminate the requirement for synchronisation of sub-
models. A “meta-agent” could, for instance, be a company, which is formed by several
inhabitants. These inhabitants will have to perform some tasks within the “meta-agent”,
or in a simpler form, just be required to be in a certain place at a certain time in order to
enable the “meta-agent” to perform its tasks. This extension of the methodology used in
this project appears to be tempting, but is up to another project to actually implement
such a system in an appropriate programming language on a suitable platform.

When comparing the existing model to some of the approaches discussed in Chapter 2,
it might at first sight appear to be crude and oversimplifying. However, it can clarify
some central points about adaptive systems, which these models cannot. Potentially
even more than the results presented can be extracted from the model. Here for instance
the question whether viable rules have a certain taxonomy and what the crucial
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moments for success or failure for the agents are by using lifeline analysis can be the
contents of a follow-up project. On the other hand the model has many things in
common with earlier approaches.

Allen and McGlade’s (1987) fisheries model leads to the same implications on
“cartesians” and “stochasts” from a completely different direction. The common
problem is in both models that the viability of a community has to be ensured, and the
solution to this is in both cases the mix of exploration and exploitation of resources and
strategies. The question of the “correct” mix of strategies will probably be the subject of
further research, especially since the issue of sustainable development has entered the
discussion.

Gérling et al.’s (1998) approach to activity scheduling bears as well strong resemblance
to the direction taken in this project. Satisficing according to Simon (1981) is one
central element in the theory, and the activity scheduling process seems to be the way
forward. In our example this has been neglected for the benefit of simplicity of model
(agents making a plan for the day and deciding on the spot), but the process has to be
embedded in a dynamic framework of cartesians and stochasts as well as the co-
evolution of agents and environment for long term models

Adaptation has been seen as the key to the creation of complexity by Holland (1995).
His methodology of classifier systems as an adaptation strategy is certainly a very
effective way of implementing a cognitive approach to learning which is as well very
much consistent with Varela, Thompson and Rosch’s approach which underlies this
project. Classifier systems are much more effective than the methods used in the model
we are discussing, but the question of how much even classifier systems resemble the
real world is still an issue. Classifier systems are in fact optimising to some extent, and
they provide a way of learning from experience. As opposed to the model used in this
project, they do not provide for copying from others, in fact the word “imitation” does
not even appear in the index of Holland et al. (1986). Imitation has to be regarded as a
very important factor in real-world adaptive complex systems according to the results of
this project and other modelling exercises such as Allen and McGlade (1987). However,
there is no objection why classifier systems could not be used in the context of adaptive
systems as well if the cut-off criteria for adaptation are set to satisficing solutions. The
lack of imitation has to be compensated for in the set-up of future models, because of
the effects of un-ﬁtting rule sets discussed above. Still, the use of adaptation strategies
based on cognitive science respectively psychology would mean a step forward towards
a more realistic model of human learning.

Self-organising zonal models for urban development (such as in Chapter 2.3.15) present
a very pragmatic approach to the area of interest discussed in this project. Their
relatively simple structure leads to easy-to-analyse results, which can be further refined
by using separate sub models. These models use aggregate parameters to express the
distribution of behaviours of a collective at some point in time. These parameters do not
change over time and they do not have the multicriteria structure of the individual’s
needs in this project. The zonal models are deemed more appropriate for questions
dealing with shorter time scales, as they do not provide a learning population, but on the
other hand allow for self-organisation to take place. On top of this, they are much more
compact and easier to set up and handle, whereas the completely disaggregate approach
will always have a problem in calibrating the model to some initial condition. If it is
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possible to integrate and compress the essence of individual behaviour and learning into
parameters (which then will be valid only for a limited time), the zonal approach has its
appeal for models which explore the possibility space of an urban system.

One step even further to practicality are the current models in transportation micro
simulation. On the other hand these are built on statistical parameters which, as we have
outlined, do not change over time and reflect behavioural patterns of the past. If the time
horizon of the model is only short and the interactions within the modelled system are
known, there is nothing to say against statistical models, because they might in many
cases be easier to build and faster running. On top of this these descriptive models are
_ easier to interpret than explanatory models. If the aim of the modelling exercise is to
forecast (actually: extrapolate) quantitative changes to a given system which is regarded
as not changing over time, statistical modelling is the most appropriate way of
approaching the problem. The evolutionary approach will be more appropriate if the
aim of building the model is to learn about a badly understood system.

Learning about the nature of the system was the motivation of this project as well, as the
road taken will probably never deliver a quantitative forecast of the system parameters,
but it can help us understand more about the interactions in the system and possible
pathways the system can take. The exploration of this possibility space is important,
because we still do not know very much about the implications of urban change,
especially in all those areas where social issues and life styles of the inhabitants and
their influence on the city structure are concerned. So when taking up
Higerstrand’s (1970) question “What about people in regional science?” again, it is to
be said that we have come closer to the long-awaited answer: Here they are!

8.3 The Classification of Urban Models Revisited

Finally the taxonomy of urban models and the critique given in Chapter 2 have to be
reassessed in the light of the results obtained. . In the course of this project it had at first
to be clarified what an evolutionary model is and what the characteristics of an
evolutionary model are. The methodology accounts for features, which have not been
dealt with in the modelling community so far. Especially the key element - the mutual
specification of system elements - is not found in models of adaptive complex systems
so far. Although the computer model does not allow for all features of the conceptual
framework to be implemented, the results are promising as outlined above. Tables 12 -
16 give a summary of the main points of critique of the concepts examined and matches
these with the approach taken in this project.

It has been said that conceptual models are not a simulation method, but are a useful
tool for conceptualising the processes taking place in a system. With the approach
taken, it is possible to extend the area of use of a conceptual approach — here the
modelling framework, which accounts for the nature of processes in an urban system —
to an exploratory dynamic tool, which can generate scenarios on a qualitative level.

Some of the methodologies outlined in Chapter 2.3 already extend the range of
phenomena, which can be treated with a model. For instance the implementation of non-
linear dynamics into a model automatically discards the assumptions underlying an
equilibrium approach as a self-organising system is by definition not at static
equilibrium. The dominating methods of implementation for this kind of system are
differential or master equations. These are however difficult to define and usually lead
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to a macro-view of the system with noise replacing fluctuations generated on the micro-
scale. This can be overcome by following a micro-scale approach based on agents. Most
agent-based models on the other hand are non-adaptive, which can be overcome with
the methods outlined in the modelling framework.

Approach followed

Concept / Description / Assessment
Method Critique in Project
Conceptual Model Not a simulation method | Simulation Model to More possibilities for
. Can be used as a tool to unc.iers't'c{nd the dyngrmcs exploration of pqsmble
of individual behaviour | pathways than with a
understand system in the urban context purely conceptual model
behaviour. The objective
of these models is to
learn about the system
and not to forecast future
behaviour
Gravity Model Does not match the General preference of The descriptions given
structure of real agents for nearer by gravity-type models
settlements in terms of opportunities. Potential can be explained through
required symmetry and modification of the use of micro scale
therefore violates the preferences during run- behavioural models
underlying assumptions | time of model
Static
Descriptive only when
calibrated
No representation of
individual decision
making
Entropy General form of gravity | No need for derivation of | Regional variations of
Maximisation model aggregate measures due | behaviour are an integral

Application of Shannon-
Weaver entropy to urban
systems. Results
effectively in static
probability distribution
of weighting factors for
gravity model

No representation of
individual decision
making

to disaggregate model
set-up

Explicit representation of
individual decision -
making

part of the approach
followed. The aim to
explain phenomena
qualitatively does not
require calibration to
observed past behaviour.

Table 12: Comparison of Traditional Methods with the Approach taken
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Concept / Description / Approach followed Assessment
Method Critique in Project '
Optimisation Central assumption that | Individual satisficing Traditional optimising
Methods there exists an optimal model had a different
configuration for a city aim to this approach.
which minimises the use Search for an optimal
of certain resources. This configuration for a city
configuration is time as opposed to the
invariant exploration of social
Methods calculate the dynamics
static equilibrium, which
is not observed in reality.
Optimises technical
parameters and not the
“quality of life”
Equilibrium Methods | Pre-complex systems No assumption about Equilibria occur between

approach to projection of
system states

Complex systems do not
necessarily tend to
equilibrium

No representation of
individual decision
making

possible equilibria in the
system. Disaggregate
approach cannot make
assumptions on macro
behaviour of system

periods of structural
system change.
Assuming equilibrium
conditions beforehand
removes the chance to
simulate structural
change.

Discrete Choice

Descriptive measure of
average preferences
derived from past
behaviour

Static

Relies on Utility function
(see below)

Evolving preferences for

individuals by rule
adaptation

Dynamic

Cognitive approach
allows for the evolution
of lifestyles and local
cultures as opposed to
static preferences in
discrete choice models.

Utility Theory

Defined a utility function

‘| in order to describe

people’s potential gains
from certain alternatives

Usually linear and

additive functions based

on technical parameters
Single choice criterion

Static

System of individual’s
needs leading to
multicriteria evaluation
of given alternatives

Dynamic

Individualised perception
of needs

Multiple criteria can be
regarded as being more
realistic than single
function

Table 13: Comparison of Traditional Methods with the Approach taken (continued)
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Concept/ Description / Approach followed Assessment
Method Critique in Project:
Statistical / Description of observed | Explanatory approach Explanation for observed
Probabilistic behaviour of the past. aiming to generate the behaviour cannot be
Methods Parameter extrapolation | descriptive parameters gained from descriptions

Assumption of time

captured in statistics
from interaction in the

of the past.

invariance of parameters Extrapolation of past
system L
. behaviour into the future
Limited explanatory . .
is methodologically
value .
questionable
No representation of
individual decision
making
Time Use / Time Systematic description of | Time availability as Model extends the
Budgets possible action space of | constraining factor on principles of time budget

individuals

Has been restricted to
incorporate only
technical parameters
such as accessibility

No representation of

behaviour

Incorporation of personal
preferences

approaches from
descriptive technical
parameters to a dynamic
framework which can be
used in simulation of
spatial behaviour and
individual time use

individual preferences
Cognitive Incorporation of Explicit definition of Incorporation of
Approaches approaches from perception in agents. cognitive concepts into
cognitive science into « . computer models leads to
Learning” based on s .
models of human . qualitatively superior
. . experience and
behaviour, which . , results than purely
.. perception of agent’s . .
account explicitly for state economic approaches in
features such as explaining the behaviour
incomplete knowledge, Limited knowledge for | of social systems
error making etc. agents by cognitive map
' | with qualitative attributes
of environment
System Dynamics Aggregate dynamic Potential for non- Aggregate deterministic

representation of systems

Use of averaged
parameters results in
long term equilibrium
Time and space invariant
rules

No representation of
individual decision
making

equilibrium dynamics
resulting in self-
organisation

Adaptive behaviour on
the micro scale

descriptions are limited
in their ability to
reproduce the behaviour
of complex systems

Table 14: Comparison of Traditional Methods with the Approach taken (continued)
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Concept / Description / Approach followed Assessment
Method Critique in Project
Cellular Automata Transition of a “cell’s” Physical space Cellular automata are
state according to the represented on a grid. No | very efficient in their use
state of neighbouring global rules on state of computing resources.
cells change, but demand .
. In land-use modelling
. driven local change of e
Dynamic . . applications the
capacities and prices. .
representation of
Rules for all cells are hvsical space
identical and time and puysical 5p iy
tate invariant contaming transition
s rules by CA should be
Representation of carefully assessed
physical space
philosophically
questionable
No representation of
individual decision
making
Differential Dynamic method to Linguistic rules Systems built on
Equations describe the average representing Fuzzy Logic | differential equations can

system state

Can be difficult to
operationalise as
mathematical
descriptions for a system
might be difficult to find
(for instance for
discontinuous systems)

No representation of
individual decision
making

sets and operations

change their mode of
behaviour quite radically,
but it is not possible to
structurally change the
equations describing the
system during run-time
of a model. This limits
the potential for the
description of adaptation
and learning. ‘

Master Equation

Mathematically most
appropriate method to
incorporate fluctuations
into a dynamic system.

Probabilistic method

No representation of
individual decision
making

Rule-based system.
Fluctuations through
random order of agents,
but deterministic
operation.

Rule-based systems
appear to be easier to
implement than
mathematical
descriptions of systems

Table 15: Comparison of Traditional Methods with the Approach taken (continued)
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Concept / Description / Approach followed Assessment
Method Critique in Project
Fractals Extension of Euclidean Development of city Fractal growth obeys
geometry applied to the | based on individual purely geometric macro
growth of built-up areas | agents obeying basic rules. There appears to
. €CONOMIC processes be insufficient
No representation of
. . correspondence between
economic, demographic
.. these rules and the space
and similar processes .
use of social systems to
No representation of apply this method to
individual decision urban growth.
making
Self-Organisation Main paradigm of No explicit Structural change occurs
complex systems theory. | incorporation. Local by means of self-
Results in temporarily rules might lead to self- | organisation. This
stable configuration of organising effects phenomenon can be
dynamic systems observed throughout the
Can account for multiple !wmg vsforld gls well as
potential pathways u}llp h).' S1CS an del
described by one single chemistry). MO c's
; should provide for self-
set of equations or rules N
organisation to occur.
Evolutionary Models | Application of Consistent with main Most advanced
evolutionary theory to ideas of evolutionary methodology for
non-biological dynamic | models: diversity, change | modelling complex
systems of attributes of agents dynamic systems to data.
. . over time, emergence of | Combination with agents
Extension of non-linear -
. lifestyles (see below) leads to
dynamic methods to .
. . . appropriate repre-
incorporate diversity and - .
sentation of dynamic
emergence of new a1 .
opulations social systems in
P ) computer models
Agents Disaggregate method of | Based on application of | Extremely useful

using local rules for
individual computational
entities

Potential for introduction
of diversity and
adaptation into a
computer model

this methodology
including adaptation

bottom-up methodology
for complex systems

| simulation, although

demanding on computer
power

Table 16: Comparison of Traditional Methods with the Approach taken (continued)

Other approaches do not bear a significant resemblance to the system. Above all the
method of using fractal growth to simulate macroscopic dynamics of urban growth
appear to have the same shortcomings of social physics approaches, such as the entropy
maximising framework and the gravity model. These models apply analogues to
physical laws to urban systems, while attempting to represent social phenomena. It has
to be discussed in how far descriptions of the inanimate world can be applied to the
animate world without explicit incorporation of cognitive and social theory.
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For cellular automata the argument is in how far physical space can be represented by a
cell that has the properties of an automaton. The transition rules of cellular automata are
fixed in cell space, but in reality they correspond to a collection of entities like
companies and infrastructure facilities, which can move from one place to another. Here
it seems more appropriate to use agents in physical space instead and to attribute the
transition rules to the agents. On the other hand the methods outlined in Chapter 2.3
have been found extremely useful to build the modelling framework on. The cognitive
methods used in activity scheduling models feature a set-up very similar to the agent
set-up in the model used here. Time Budget approaches have been around for a long
time, but most of these treated the constraints imposed by transport and time availability
as a description of technical feasibility: The dynamic aspects of change in time use
patterns due to cultural change have not been incorporated in detail into these
approaches. The road taken in this project results in the incorporation of change to
behavioural patterns into the model itself.

Traditional behavioural approaches based on statistics cannot account for change in
behavioural patterns either. The same is true for discrete choice models. Once the
principles of behaviour are established from statistics, these cannot change during a
simulation without contradicting the descriptive principle on which these approaches are
. built. In the case of utility models, the usually one-dimensional utility function is the
same for the time of a simulation, while in this approach the prioritisation of a set of
needs through change in an agent’s perception is observed. The “utility function” is
generated during run time of a simulation and remains changeable throughout.

However, the use of an evolutionary model is subject to some limitations. The
evolutionary approach in its present form cannot be used in quantitative forecasting (as
far as quantitative forecasting is possible in the first place, see Chapter 2.5), but allows
only for explorations of qualitative change in a system. It is a tool to learn about the
nature of the modelled system. It appears from the spread of adaptive strategies in the
model that learning is an emergent property of a complex system. This means that for
future models, adaptation strategies have not necessarily to be predefined but can be
generated from within a model. Such a model has only to provide for the possibility that
adaptation strategies can be formed, which can lead to either non-adaptive or adaptive
systems.

The methodology developed can explore change on the micro-level of urban (and
possibly other socio-natural) systems. As opposed to most traditional approaches to
urban change which deal with change on a level of land use in spatial zones, it is now
possible to explore the implications of this change on people’s lifestyles and needs. The
reverse (implications of changes in life styles on the urban structure) can be investigated
with an evolutionary model as well, because the relationship between these two system
elements is one of mutual dependency. -

One of the most important results of this project, is however the issue of “cartesian” and
“stochast” behaviour as discussed in Section 8.2, as this is a reconfirmation of results
gained by earlier work. The implications of this for future models of adaptive behaviour
cannot be underestimated. In the light of sustainable communities that recently are
discussed ever more often, “cartesians” and “stochasts” are regarded to have a central
place in understanding the dynamics of change, sustainability and viability. This result
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appeared as an unintended by-product of the project, but can provide a starting point for
further research into sustainability.

Regarding the developed methodology itself, it is to be said in summary that although
many of the points of critique of earlier methods can be eliminated, it appears to be
useful at its present stage to complement larger scale models (based on zones in the
urban case) rather than a standalone solution due to the computational requirements it
imposes. The point of replacing models based on larger aggregates might be reached in
the future, when more powerful computers will be available, but the intrinsic problem of
model size to system size will remain and with it the difficulties of result analysis.

8.4 Outlook

In summary this project has not only come up with some valuable results, but also has
given indication where future research on adaptive complex systems models might be
heading. First of all, the conceptual framework has to be implemented to its full extent
in a model relying exclusively on agents for all system elements. This will allow for
adaptation (and evolution) on all sides, so that for a first time true co-evolution will be
found in a computer model. On a small scale the use of “meta-agents” appears to be
tempting, so that agents of one type can cluster in a higher level of different agent in
order to perform different tasks than their primary aims. In this way the formation and
behaviour of organisations, such as companies, co-operatives, or pressure groups can be
integrated very elegantly into a single model. The computational requirements for this
task should however not be underestimated.

The next step would be to test the methodology (with an appropriate model, of course)
against a real-world problem, so that the applicability, which in this project has only
been demonstrated on a very abstract level, can be assessed more comprehensively than
it was possible in this project. This might answer the question of how realistic the
integration of urban and transportation models is in reality (in terms of building a
decision support tool), which was one of the motivations for this project. If proven
successful such a model could provide a multitude of answers from a single model, for
which in the past a number of different models were necessary. Examples for these
might include:

e Traffic patterns in space and over time of day.

e Economic development and turnover / profits by sectors and areas.
e Lifestyle patterns for the population.

e Social disparities in the population.

o Stress factors for the population.

e Land values.

o Infrastructure requirements for the community.

Many more technical aspects of the model itself regarding for instance the relation of
rules and what rules lead to successful behaviour in which contexts remain to be
explored as well. Is there a taxonomy of successful rule sets and if so, how can such rule
sets be classified? In this context the question of how rules relate to behaviour might be
investigated further than in this place, too.
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Finally, the pressing issue of sustainability can be addressed with the methodology
outlined here. But not only the long term physical survival, but also how human needs
might be satisfied more by the planned and built environment of a city can be the
subject of a modelling exercise based on this project. However, the methodology is
considered to provide a generic modelling framework for all kinds of socio-natural
systems, and the urban context used in this place serves as just one example.
Simulations of competing companies, organisations or farming communities and their
environment (whether this is a market, society as a whole or the natural environment)
appear to be equally feasible within this framework.
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Appendix: Listing of the Computer Program Used

Barchart.frm

Sub Command1_Click ()
Unload barchart

End Sub

Sub Command2_Click ()
PrintForm

End Sub

Sub Form_Load ()

label2.Caption = hscrolll.Value
Label4.Caption = hscroll2.Value
LoadActivity

CalcDem

End Sub

Sub HScrolll_Change ()

label2.Caption = hscrolll.Value
CalcDem

End Sub

Sub HScroll2_Change ()

Label4.Caption = hscroll2.Value
CalcDem
End Sub

Budgraph.frm

Sub Command1_Click ()
Unload BudGraph

End Sub

Sub Command2_Click ()
PrintForm

End Sub

Sub Command3_Click ()

RelWealth

DrawRelWealth .
BudGraph.Caption = "Relative Welfare of Agent"
End Sub

Sub Command4_Click ()

FindMinMax

DrawBudgets

BudGraph.Caption = "Budget Graph of Agent"

167



APPENDIX: LISTING OF THE COMPUTER PROGRAM USED

End Sub

Sub Command5_Click ()
FindCapPriMinMax
DrawCap

BudGraph.Caption = "Capacities of Cell"
End Sub

Sub Commandé_Click ()

FindCapPriMinMax

DrawPri

BudGraph.Caption = "Prices in Cell"
End Sub

Sub Command?7_Click ()

RelWealth

FindWealthMinMax

DrawWealth

BudGraph.Caption = "Total Wealth of System"
End Sub

Sub Form_Load ()
Dim i As Integer

Fori=0To 3
Linel(i).BorderColor = QBColor(2 * i)
Next i

labell.Caption = Hscrolll.Value
label2.Caption = HScroll2.Value
label5.Caption = "Cell " & HScroll3.Value

LoadBudgets
LoadCapPri
FindMinMax
DrawBudgets
End Sub

Sub HScrolll_Change ()

labell.Caption = Hscrolll.Value
label2.Caption = HScroll2.Value

FindMinMax
DrawBudgets

End Sub

Sub HScroll2_Change ()

labell.Caption = Hscrolll.Value
label2.Caption = HScroll2.Value

FindMinMax
DrawBudgets
End Sub

Sub HScroll3_Change ()
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label5.Caption = "Cell " & HScroll3.Value

FindCapPriMinMax
DrawCap
End Sub

Cachange.frm

Sub Command1_Click ()
CaChange.Hide
End Sub

Capaform.frm

Sub Command1_Click ()

capaform.Hide
End Sub

Sub Textl_Change (Index As Integer)
text1(1).text = Int(Sqr(text1(2).text)) + Int(Sqr(text1(3).text))

End Sub
Dataent.frm

Sub Commandl1_Click ()
DATA1.Recordset.Update
End Sub

Sub Command2_Click ()
Unload NameAct

End Sub

Sub Command3_Click ()
tableadd

End Sub

Decay.frm

Sub Command1_Click ()

dec.Hide
End Sub

Defuzzy.frm

Sub Command1_Click ()

Unload defuzenter
End Sub

Sub Command2_Click ()

If label2.Visible = True Then

cmdefstore
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Elself label3.Visible = True Then
defuzstore

End If

End Sub

Sub Command3_Click ()

label2.Visible = True
label3.Visible = False

cmdefretrieve
End Sub
Sub Command4_Click ()

label3.Visible = True
label2.Visible = False

defuzretrieve

End Sub

Sub Textl_Change ()
Dim i As Integer

Fori=0To3
io_edit.Text2(i) = defcen(i)
Next i
End Sub
Delform.frm

Dim msg As String

Sub Command1_Click ()

Kill "C:\blah.mdb"
delform.Hide
End Sub

Sub Command2_Click ()
delform Hide
End Sub

Sub Form_Load ()

msg = "This Command deletes all previous Simulation Data unless You have already saved it saved to a
different File !"

labell.Caption = msg

End Sub

Displayr.frm

Option Explicit

Sub Command1_Click ()

Unload DisplayRes
End Sub

Sub Form_Load ()

170




AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

Dim i As Integer
Dim j As Integer

gridl.Row =0
grid1.Col =0
grid1.ColWidth(0) = 800

Fori=1To3
gridl. Row =1i
grid].Text=10 * i
grid1.RowHeight(i) = 1000
Next i

gridl.Row =0

Forj=1To3
grid1.Col =j
grid1.ColWidth(j) = 1000
gridl.Text=10 * j

Next j

End Sub

Sub HScrolll_Change ()

text3.Text = Hscroll1.Value
displayactivity
End Sub

Sub Optionl_Click ()

Dim db As database
Dim t As table

Set db = OpenDatabase("C:\blah.mdb", True)

Set t = db.OpenTable("typedescriptor")
t.MoveFirst
datal.RecordSource = t("name") & text4.Text
datal.Refresh e

t.Close

db.Close

End Sub

Sub Option2_Click ()

Dim db As database
Dimt As table

Set db = OpenDatabase("C:\blah.mdb", True)
Set t = db.OpenTable("typedescriptor")
t.MoveFirst
t.MoveNext
datal.RecordSource = t("name") & text4.Text
datal.Refresh
t.Close
db.Close
End Sub

Sub Option3_Click ()

Dim db As database
Dimt As table
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Set db = OpenDatabase("C:\blah.mdb", True)
Set t = db.OpenTable("typedescriptor")
t.MoveFirst
t.MoveNext
t.MoveNext
datal RecordSource = t("name") & text4.Text
datal Refresh
t.Close
db.Close
End Sub

Sub Optiond_Click ()

Dim db As database
Dimt As table

Set db = OpenDatabase("C:\blah.mdb", True)
Set t = db.OpenTable("typedescriptor")
t.MoveFirst
t.MoveNext
datal.RecordSource = t("name") & text4.Text
datal.Refresh
t.Close
db.Close
End Sub

Sub p_res_Click ()

PrintForm
End Sub

Distribu.frm

Sub Command1_Click ()
Unload distribu

End Sub

Sub Command2_Click ()
PrintForm

End Sub

Sub Command3_Click ()
ReadWeighRes

End Sub

Sub Command4_Click ()

ReadResults
CalcStd
DrawDistribu
End Sub

Sub Form_Load ()

ReadResults
CalcStd
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DrawDistribu
End Sub

Fuzzyent.frm

Sub Command1_Click ()
Unload fuzzyenter

End Sub

Sub Command2_Click ()

If labell.Visible = True Then
cmfuzstore

Elself label2.Visible Then
fuzzstore

End If

End Sub

Sub Command3_Click ()

labell.Visible = True
label2.Visible = False

CMfuzretrieve
End Sub

Sub Command4_Click ()

label2.Visible = True
labell.Visible = False

fuzzretrieve
End Sub

Inform.frm

Inputf.frm

Sub actcho_Click ()

DisplayRes.Show
End Sub

Sub actpay_Click ()

payoff.Show
End Sub

Sub AgBud_Click ()

Budgraph.Show
End Sub

Sub budname_Click ()

NameAct.Show
End Sub

Sub capaset_Click ()
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capaform.Show

End Sub

Sub capdis_Click ()
barchart.Show

End Sub

Sub ChanCa_Click ()
CaChange.Show

End Sub

Sub ChaPr_Click ()

PrChange.Show
End Sub

Sub Clear_Res_Click ()

Dim db As database
Dim t1 As table

Set db = OpenDatabase("C:\results.mdb", True)
Set t1 = db.OpenTable("Age")
t1.MoveFirst

Do Until t1.EOF

tl.Delete
t1.MoveNext
Loop
t1.Close
Fori=1To 19

Set t1 = db.OpenTable("A" & 1)
t1.MoveFirst

Do Until t1.EOF

tl.Delete
tl.MoveNext
Loop
t1.Close
Next i
db.Close
End Sub

Sub clearDB_Click ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim t3 As table
Dim i As Integer
Dim j As Integer
Dim k As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t2 = db.OpenTable("typedescriptor")
t2.MoveFirst '
TotalCount = t2("number")
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t2.Close

Forj=1To 4
Fori=0 To TotalCount - 1
Set t1 = db.OpenTable(j & i)
t1.MoveFirst
tl.MoveNext

Do Until t1.EOF

tl.Delete
t1.MoveNext
Loop '
t1.Close
Next i
Next j
Fork=0To 8
Set t3 = db.OpenTable("world" & k)
t3.MoveFirst o
t3.MoveNext
Do Until t3.EOF
t3.Delete
t3.MoveNext
Loop
t3.Close
Next k
db.Close
End Sub

Sub CogRan_Click ()

- RanCoglnit

End Sub

Sub Command3D1_Click ()
runform.Show

End Sub

Sub Command3D2_Click ()
barchart.Show

End Sub

Sub Command3D3_Click ()
Budgraph.Show

End Sub

Sub Command3D4_Click ()
DisplayRes.Show

End Sub

Sub Command3D5_Click ()
blah

End Sub

Sub Command3D6_Click () -
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delform.Show
End Sub

Sub Command3D7_Click ()

payoff.Show
End Sub

Sub CreDB_Click ()

blah
End Sub

Sub dSrec_Click ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim t3 As table
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t2 = db.OpenTable("typedescriptor")
t2.MoveFirst
TotalCount = t2("number")
t2.Close

Forj=1To 4
Fori=0 To TotalCount - 1
Set t1 = db.OpenTable(j & 1)
t1.MoveFirst
For1=0 To 4999
tl.Delete
tl.MoveNext
Next1
t1.Close
Next i
Next j

Fork=0To 8
Set t3 = db.OpenTable("world" & k) . -
t3.MoveFirst
For 1=0 To 4999
t3.Delete
t3.MoveNext
Next 1
t3.Close
Nextk
db.Close
End Sub

Sub deca_Click ()

dec.Show
End Sub
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Sub defuz_Click ()

defuzenter.Show
End Sub

Sub DeleteSim_Click ()

delform.Show
End Sub

Sub DTS_Click ()

DrawTSeries
End Sub

Sub fuzzy_Click ()

fuzzyenter.Show
End Sub

Sub grd_Click ()

LogAge
End Sub

Sub ioset_Click ()

io_edit.Show
End Sub

Sub Ismnu_Click ()

get Is
End Sub

Sub price_Click ()

pricefor.Show
End Sub

Sub quit_Click ()

End
End Sub

Sub randinit_Click ()

RandomlInit
End Sub

Sub ranpar_Click ()

ranparfor.Show
End Sub

Sub resag_Click ()

ResetForm.Show
End Sub

Sub rtbar_Click ()

177



APPENDIX: LISTING OF THE COMPUTER PROGRAM USED

GetAge
GetTSeries
End Sub

Sub save_Click ()

Dim DestFile, msg ' Declare variables.
On Error GoTo ErrtHandler

CMDialog1 Filter = "Databases (*.mdb)|*.mdb"
CMDialogl.Action =2

DestFile = CMDialog1.Filename »
FileCopy "C:\blah.mdb", DestFile ' Copy file to destination.
Exit Sub .

ErrHandler: :
If Err = 55 Then ' File already open.
MsgBox "Cannot copy an open file. Close it and try again."
Else
MsgBox "You must specify a complete destination file name."
End If -
Resume Next

End Sub

Sub showdist_Click ()

distribu.Show
End Sub

Sub spr_Click ()

If spr.checked = True Then ~
spr.checked = False

Elself spr.checked = False Then
spr.checked = True

End If

End Sub

Sub start_Click ()

runform.Show
End Sub

Sub transstart_Click ()

Dim dbl As database
Dim db2 As database
Dim t1 As table

Dim t2 As table

Dim i As Integer
Dim j As Integer
Dim k As Integer

Dim al, a2, a3, a4, a$, a6, a7, a8, a9, al0

Dimall, al2, al3, al4, al5, al6, al7, al8, al9, a20
Dim a2l, a22, a23, a24, a25, a26, a27, a28, a29, a30
Dim a31, a32, a33, a34, a35, a36, a37, a38, a39, a40
Dim a41, ad42, a43, ad4, a45, a46, a47, a48, a49, a50
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Dim aS1, a52, a53, a54, a55, a56, a57, a58, a59, a60
Dim a61, a62, a63, a65, a66, a67 a7l, a73, a75, a77
Dim a79, a81, a82, a83, a84, a85, a86, a87, a88, a89
Dim a90, a91, a92, a93, a9%4, a95

Dim bl, b2, b3, b4, b5, b6, b7, b8, b9, b10

Dim bl1, bl12, b13,b14, b15, bl6, b17, b18, b19, b20
Dim b21, b22, b23, b24, b25, b26, b27, b28, 29, b30
Dim b31, b32, b33, b34, b35, b36, b37, b38§, b39, b40
Dim b41, b42, b43, bd4, b45, b46, b47, b48, b49, b50
Dim b51, b52, b53, b54, b55, b56, b57, b58, b59, b60
Dim b61, b62, b63, b64, b65, b66, b67, b68, 69, b70
Dim b71, b72, b73, b74, b75, b76, b77, b78, b79, b0
Dim b81, b82, b83, b84, b85, b86, b87, b88, b89, b0
Dim b91, b92, b93, b94, b95, b96, b97, 98, b99, b100
Dim b101, 102, b103, b104

Set dbl = OpenDatabase("c:\blah.mdb")
 Set tl = dbl.OpenTable("typedescriptor")
t1.MoveFirst '
TotalCount = t1("number")
t1.Close

Set db2 = OpenDatabase("c:\nextstep.mdb")
Forj=1To 4
Fori=0 To TotalCount - 1
Set t1 = dbl.0OpenTable(j & i)
tl1.MoveLast

al =t1("st_io_code0")
a2 =t1("st_io_codel")
a3 =1t1("st_io_code2")
a4 =t1("st_io_code3")
a5 =t1("st_io_code4")
a6 =t1("st_io_code5")
a7 =tl1("st_io_code6")
a8 =t1("st_io_code7")

a9 =t1("st_fuz_centre_pos0")

all =t1("st_fuz_centre_pos2")
al3 =t1("st_fuz_centre_pos4")
al5 =tl("st_fuz_centre_pos6")

al7 =tl1("st_fuz_sigma0Q")
al9 =t1("st_fuz_sigma2")
a2l =t1("st_fuz_sigma4d")
a23 =t1("st_fuz_sigma6")

a25 =t1("st_defuz_centre0")
a26 = t1("st_defuz_centrel")
a27 =t1("st_defuz_centre2")
a28 =t1("st_defuz_centre3")

a29 = t1("st_defuz_sigma0")
a30 =t1("st_defuz_sigmal")
a3l =t1("st_defuz_sigma2")
a32 =t1("st_defuz_sigma3")

a33 =t1("st_budgetstate0")
a34 = t1("st_budgetstatel")
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a35 =t1("st_budgetstate2")
a36 = t1("'st_budgetstate3")

a37 = t1("st_acttimeQ")
a38 =t1("st_acttimel")
a39 =t1("st_acttime2")
a40 = t1("st_acttime3")

a41 = t1("st_success00")
a42 = t1("st_success01")
a43 = t1("st_success02")
ad44 =t1("st_success03")
a45 = t1("st_success10")
246 = t1("st_success11")
a47 =t1("st_success12")
248 =t1("st_success13")
a49 = t1("st_success20")
a50 = t1("st_success21")
aS1 =t1("st_success22")
a52 =t1("st_success23")
a53 =t1("st_success30")
a54 =t1("st_success31")
a55 =t1("st_success32")
56 =t1("st_success33")

a57 =t1("CMIOCode0")
a58 =t1("CMIOCodel")

a65 = t1("CM_fuz_centre_pos0")
a67 = t1("CM_fuz_centre_pos2")
a69 = t1("CM_fuz_centre_pos4")
a71 = t1("CM_fuz_centre_pos6")

a73 =t1("CM_fuz_sigma0")
a75 =t1("CM_fuz_sigma2")
a77 = t1("CM_fuz_sigma4")
a79 =t1("CM_fuz_sigma6")

a81 =t1("CM_defuz_centre0")
a82 = t1("CM_defuz_centrel")
a83 =t1("CM_defuz_centre2")
a84 =t1("CM_defuz_centre3")

a85 = t1("CM_defuz_sigma0")
a86 = t1("CM_defuz_sigmal")
a87 = t1("CM_defuz_sigma2")
a88 = t1("CM_defuz_sigma3")
a89 = t1("CM_know0")

290 = t1("CM_know1")

a91 = t1("CM_know2")

a92 = t1("CM_know3")

a93 = t1("XHome")

a%4 = t1("YHome")

al0 =t1("learn_io_code0")

al2 =t1("learn_io_codel")

al4 = t1("learn_fuz_centre_pos2")
al6 = t1("learn_fuz_centre_pos4")
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al8 =tl1("learn_fuz_centre_pos6")
a20 =tl("learn_fuz_centre_pos8")
a22 =t1("learn_fuz_centre_pos10")

a24 =t1("learn_fuz_sigma2")
a59 =tl1("learn_fuz_sigma4")
a60 = t1("learn_fuz _sigma6")
a61 = t1("learn_fuz_sigma8")
a62 =t1("learn_fuz_sigmalQ")

a63 = t1("LearnStrategy")
a95 =t1("Activities")
t1.Close

Set t2 = db2.0penTable(j & i)
t2.MoveFirst
t2.Edit

t2("st_io_code0") = al
t2("st_io_codel")=a2
t2("st_io_code2") =a3
t2("st_io_code3") = a4
t2("st_io_coded4") = a5
t2("'st_io_code5") = a6
t2("st_io_code6") = a7
t2("st_io_code7") =a8

t2("st_fuz_centre_pos0") =a9

t2("st_fuz_centre_pos2") =all
t2("st_fuz_centre_pos4") =al3
t2("st_fuz_centre pos6") =al5

t2("st_fuz_sigmaO") =al7
t2("st_fuz_sigma2")=al9
t2("st_fuz_sigmad") = a2l
t2("st_fuz sigma6") =a23

t2("'st_defuz_centreQ") = a25
t2("st_defuz_centrel") = a26
t2("st_defuz_centre2") = a27
t2("st_defuz_centre3") =a28

t2("st_defuz_sigma0") = a29
t2("st_defuz_sigmal"™)=a30
Vo 12("st_defuz_sigma2") =a31
t2("st_defuz_sigma3")=a32

t2("st_budgetstate0") = a33
t2("st_budgetstatel™) = a34
t2("st_budgetstate2") = a35
t2("st_budgetstate3") =a36

t2("'st_acttimeQ") = a37
t2("st_acttime1") = a38
t2("'st_acttime2") = a39
t2("st_acttime3") = a40

t2("'st_success00") = a41
t2("st_success01") = a42
t2("st_success02") = a43
t2("st_success03") = a44
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t2("st_success10") = a45
t2("'st_success11") = a46
t2(""st_success12") = a47
t2("st_success13") = a48
t2("st_success20") = a49
t2("st_success21") =aS0
t2("st_success22") =a51
t2("st_success23") = a52
t2("st_success30") =a53
t2("st_success31") = a54
t2("st_success32") = a55
t2("st_success33") = a56

t2("CMIOCode0") = a57
2("CMIOCode1") = 258

t2("CM_fuz_centre_pos0") = a65
t2("CM_fuz_centre_pos2") = a67
t2("CM_fuz_centre_pos4") =a69
t2("CM_fuz centre_pos6")=a7l

t2("CM_fuz_sigmal") =a73
t2("CM_fuz_sigma2") =a75
t2("CM_fuz_sigma4") = a77
2("CM_fuz_sigma6") =a79

t2("CM_defuz_centre0") = a8l
t2("CM_defuz_centrel") =a82
t2("CM_defuz_centre2") = a83
t2("CM_defuz_centre3") =a84

t2("CM_defuz_sigma0") = a85
t2("CM_defuz_sigmal") =a86
t2("CM_defuz_sigma2") = a87
t2("CM_defuz_sigma3") = a88

t2("CM_know0") = a89
t2("CM_know1") =290
t2("CM_know2") = a91
t2("CM_know3") =a92

£2("XHome") = 293
£2("YHome") = a94

t2("learn_io_code0") =210
t2("learn_io_codel”) =al2

t2("learn_fuz_centre_pos2") =al4
t2("learn_fuz_centre_pos4") =al6
t2("learn_fuz_centre_pos6") = al8
t2("learn_fuz_centre_pos8") =a20
t2("learn_fuz_centre_pos10") = a22

t2("learn_fuz_sigma2") =a24
t2("learn_fuz_sigmad") =a59
t2("learn_fuz_sigma6") = a60
t2("learn_fuz_sigma8") = a61
t2("learn_fuz_sigmalQ") =a62

t2("LearnStrategy") = a63
t2("Activities") = a95
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t2.Update
t2.Close
Nexti

Fork=0To8

Set t1 = db1.OpenTable("world" & k)

t1.MoveLast

bl =t1("cap_0")
b2 =tl1("cap_1")
b3 =t1("cap_2")
b4 =t1("cap_3")

b5 = t1("price_0")
b6 = t1("price_1")
b7 = t1("price_2")
b8 =t1("price_3")

b9 = t1("payoffd_0")
b10 =t1("payoffo_1")
b1l =t1("payoffo_2")
b12 =t1("payoff0_3")
b13 = t1("payoff0_4")
bl14 =t1("payoff0_5")
b15 =t1("payoff0_6")
b16 =t1("payoffo_7")
b17 =t1("payoff0_8")
b18 =t1("payoff0_9")
b19 = t1("payoff0_10")
b20 = t1("payoffo_11")
b21 = t1("payoff0_12")
b22 = t1("payoffo_13")
b23 = t1("payoffo_14")
b24 = t1("payoff0_15")
b25 =t1("payoff0_16")
b26 = t1("payoffo_17")
b27 =t1("payoff0_18")
b28 = t1("payoff0_19")
b29 = t1("payoff0_20")
b30 = t1("payoff0_21")
b31 =t1("payoff0_22")
b32 = t1("payoff0_23")

b33 = t1("payoffl_0")
b34 =t1("payoffl_1")
b35 =t1("payoffl_2")
b36 = t1("payoffl_3")
b37 = t1("payoffl_4")
b38 = t1("payoffl_5")
b39 = t1("payoffl_6")
b40 = t1("payoffl_7")
b41 =t1("payoffl_8")
b42 = t1("payoffl_9")
b43 = t1("payoffl_10")
b44 = t1("payoffl_11")
b45 =t1("payoffl_12")
b46 = t1("payoffl_13")
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b47 =t1("payoffl_14")
b48 = t1("payoffl_15")
b49 =t1("payoffl_16")
b50 = t1("payoffl_17")
b51 =t1("payoffl_18")
b52 = t1("payoffl_19")
b53 = ti("payoffl_20")
b54 = t1("payoffl_21")
b55 =t1("payoffl_22")
b56 = t1("payoffl_23")

b57 = t1("payoff2_0")
b58 =t1("payoff2_1")
b59 = t1("payoff2_2")
b60 = t1("payoff2_3")
b61 =t1("payoff2_4")
b62 = t1("payoff2_5")
b63 =t1("payoff2_6")
b64 = t1("payoff2_7")
b65 = t1("payoff2_8")
b66 = t1("payoff2_9")
b67 = t1("payoff2_10")
b68 = t1("payoff2_11")
b69 = t1("payoff2_12")
b70 = t1("payoff2_13")
b71 =t1("payoff2_14")
b72 = t1("payoff2_15")
b73 =t1("payoff2_16")
b74 = t1("payoff2_17")
b75 =t1("payoff2_18")
b76 = t1("payoff2_19")
b77 = t1("payoff2_20")
b78 = t1("payoff2_21")
b79 =t1("payoff2_22")
b80 = t1("payoff2: 23")

b81 =t1("payoff3_0")
b82 =t1("payoff3_1")
b83 = t1("payoff3_2")
b84 = t1("payoff3_3")
b85 =t1("payoff3_4")
b86 = t1("payoff3_5")
b87 = t1("payoff3_6")
b88 = t1("payoff3_7")
b89 = t1(""payoff3_8")
b90 = t1("payoff3_9")
b91 = t1("payoff3_10")
b92 = t1("payoff3_11")
b93 = t1("payoff3_12")
b94 = t1("payoff3_13")
b95 =t1("payoff3_14")
b96 = t1("payoff3_15")
b97 = t1("payoff3_16")
b98 = t1("payoff3_17")
b99 = t1("payoff3_18")
b100 = t1("payoff3_19")
b101 = t1("payoff3_20")
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b102 = t1("payoff3_21")
b103 =t1("payoff3 22")
b104 = t1("payoff3 23")

t1.Close

Set t2 = db2.0OpenTable("world" & k)
t2.MoveFirst
t2.Edit

t2("cap_0")=bl
t2("cap_1")=b2
t2("cap_2") =b3
t2("cap_3") =b4

t2("price_0") =b5
t2("price_1") =b6
t2("price_2") =b7
t2("price_3") =b8

t2("payoff0_0") =b9
t2("payoff0_1") =b10
t2("payoff0_2") =bll
t2("payoff0_3")=b12
t2("payoff0_4")=b13
t2("payoff0_5")=b14
t2("payoff0_6") =b15
t2("payoff0_7")=b16
t2("payoff0_8") =b17
t2("payoff0_9") =b18
t2("payoff0_10")=b19
t2("payoff0_11") =b20
t2("payoff0_12") =b21
t2("payoff0_13") =b22
t2("payoff0_14") =123
t2("payoff0_15") =b24
t2("payoff0_16") =b25
t2("payoff0_17") =b26
t2("payoff0_18") =b27
t2("payoff0_19") =b28
t2("payoff0_20") =b29
t2("payoff0_21") =b30
t2("payoff0_22") =b31
t2("payoff0_23") =b32

t2("payoffl_0") =b33
t2("payoffl_1")=b34
t2("payoffl_2") =b35
t2("payoffl_3") =b36
t2("payoffl_4")=b37
t2("payoffl_5") =b38
t2("payoffl_6") =b39
t2("payoffl_7") =140
t2("payoffl_8") =b41
t2("payoffl_9") =b42
t2("payoffl_10") =b43
t2("payoffl_11") =b44
t2("payoffl_12") =b45
t2("payoffl_13") =b46
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t2("payoffl_14") =b47
t2("payoffl_15") =b48
t2("payoffl_16") =b49
t2("payoffl_17") =b50
t2("payoffl_18") =b51
t2("payoffl_19") =b52
t2("payoffl_20") =b53
t2("payoffl_21")=b54
t2("payoffl_22") =b55
t2("payoffl_23") =b56

t2("payoff2_0") =b57
t2("payoff2_1") =b58
t2("payoff2_2") =b59
t2("payoff2_3") =b60
t2("payoff2_4") = b61
t2("payoff2_5") =b62
t2("payoff2_6") =b63
t2("payoff2_7") = b64
t2("payoff2_8") =b65
t2("payoff2_9") =b66
t2("payoff2_10") =b67
t2("payoff2_11") =b68
t2("payoff2_12") =b69
t2("payoff2_13") =b70
t2("payoff2_14") =b71
t2("payoff2_15") =172
t2("payoff2_16") =b73
t2("payoff2_17") =b74
t2("payoff2_18") =b75
t2("payoff2_19") =1b76
t2("payoff2_20") =b77
t2("payoff2_21") =b78
t2("payoff2_22") =1b79
t2("payoff2_23") =b80

t2("payoff3_0") =b81
t2("payoff3_1") = b82
t2("payoff3_2") =b83
t2("payoff3 3")=b84
t2("payoff3_4") =b85
t2("payoff3_5") =b86
t2("payoff3_6") =b87
t2("payoff3_7") =b88
t2("payoff3_8") =b89
t2("payoff3_9") =190
t2("payoff3_10") =b91
t2("payoff3_11") =b92
t2("payoff3_12")=b93
t2("payoff3_13") =194
t2("payoff3_14") =b95
t2("payoff3_15") =b96
t2("payoff3_16") =b97
t2("payoff3_17") =b98
t2("payoff3_18") =b99
t2("payoff3_19") =b100
t2("payoff3_20") =b101
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t2("payoff3_21") =b102
t2("payoff3_22") =b103
t2("payoff3_23")=b104

t2.Update
12.Close
Next k
dbl.Close
db2.Close
End Sub

Meangrap.frm

Sub Command1_Click ()

Unload MeanGraph
End Sub

Sub Command2_Click ()

PrintForm
End Sub

On_off.frm
Option Explicit

Sub Combol_Click ()

If Combol.Text = outputl Then
testl = ipt0
test2 = iptl

ElseIf Combol.Text = output2 Then
test] =ipt2
test2 = ipt3

Elself Combol.Text = output3 Then
testl =ipt4
test2 = ipt5

Elself Combol.Text = output4 Then
testl = ipt6
test2 = ipt7

End If

bittest

End Sub

Sub Commandl_Click ()
Unload io_edit

End Sub

Sub Command2_Click ()

defuzenter.Show
fuzzyenter.Show
End Sub

Sub Command3_Click ()

Save
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End Sub

Sub Option1_DbIClick (Index As Integer)

If io_edit.Combol.Text = outputl Then
ipt0 = (ipt0 Or 2 ~ Index)

Elself io_edit.Combol.Text = output2 Then
iptl = (iptl Or 2 ~ Index)

Elself io_edit.Combol.Text = output3 Then
ipt2 = (ipt2 Or 2 * Index)

ElseIf io_edit.Combol.Text = output4 Then
ipt3 = (ipt3 Or 2 ~ Index)

End If '

End Sub

Sub Option2_DbIClick (Index As Integer)

If option2(Index).Value = True And Combol.Text = outputl Then
ipt0 = (ipt0 Xor 2 * Index)

End If

If option2(Index).Value = True And Combo1.Text = output2 Then
iptl = (iptl Xor 2 ~ Index)

End If

If option2(Index).Value = True And Combol.Text = output3 Then
ipt2 = (ipt2 Xor 2 * Index)

End If.

If option2(Index).Value = True And Combol.Text = output4 Then
ipt3 = (ipt3 Xor 2 ~ Index)

End If

End Sub

Sub Option3_DbIClick (Index As Integer)

Ifio_edit.Combol.Text = outputl Then
ipt4 = (ipt4 Or 2 ” Index)

Elself io_edit.Combol.Text = output2 Then
ipt5 = (ipt5 Or 2 ~ Index)

Elselfio_edit.Combol.Text = output3 Then
ipt6 = (ipt6 Or 2 ~ Index)

Elself io_edit.Combol.Text = output4 Then
ipt7 = (ipt7 Or 2 ~ Index)

End If

End Sub

Sub Optiond_DbIClick (Index As Integer)

If option2(Index).Value = True And Combol.Text = outputl Then
ipt4 = (ipt4 Xor 2 ” Index)

End If

If option2(Index).Value = True And Combol.Text = output2 Then
ipt5S = (ipt5 Xor 2 ~ Index)

End If

If option2(Index).Value = True And Combol.Text = output3 Then
ipt6 = (ipt6 Xor 2 ~ Index)

End If

If option2(Index).Value = True And Combol .Text = output4 Then
ipt7 = (ipt7 Xor 2 ~ Index)

End If
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End Sub

Sub Text3_Change ()
retrieve
End Sub

Payoff.frm

Sub Command1_Click ()

Unload payoff
End Sub

Sub Command2_Click ()

datal.Recordset.Update
End Sub

Sub Form_Load ()

datal.RecordSource = "world0"
End Sub

Sub HScrolll_Change ()

datal.RecordSource = "world" & hscrolll.Value
End Sub

Prchange.frm

Sub Command1_Click ()

PrChange.Hide
End Sub

pricefor.frm

Sub Command1_Click ()

pricefor.Hide
End Sub

Ranparfor.frm

Sub Command1_Click ()

ranparfor.Hide
End Sub

Reset.frm

Sub Command1_Click ()
Hide
End Sub

Runform.frm
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Sub Command1_Click ()
MainLoop

End Sub

Sub Command3_Click ()

RunForm.Hide
End Sub

Admin.bas
Option Explicit

Type Actor
tablenumber As Variant
ShortTermIOCode(7) As Long
ShortTermBudgets(3) As Single

ShortTermDefuzCentre(3) As Integer

ShortTermDefuzSigma(3) As Integer
ShortTermFuzCentre(7) As Single
ShortTermFuzSigma(7) As Single
ShortTermImportance(3) As Single
ShortTermActivities(3) As Single
PreviousActivity(1) As Integer
DailyActivities As String
CurrentActivity(3) As Integer

RemTime(3) As Single

XPos As Integer

Ypos As Integer
FinalDecisionVector(4, 3) As Single
CurrentCell As Integer

XHome As Integer

YHome As Integer

CMknow(3, 3, 2) As Integer

CmlOCode(7) As Long
CMDefuzCentre(3) As Integer
CMDefuzSigma(3) As Integer
CMFuzCentre(7) As Single
CMFuzSigma(7) As Single
Utility(3, 3) As Single
CentreMatrix(299, 3) As Single

MutationTag As Integer
LearnIOCode(7) As Long
LearnSigma(2 To 11) As Single
LearnCentre(2 To 11) As Single
Age As Integer
LearnS As Integer

End Type

Global Const NumOfActors = 16
Dim Agentl() As Actor
Dim Agent2() As Actor
Dim Agent3() As Actor
Dim Agent4() As Actor
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'documentation string for the day

'gives current activity and arrival number and
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count for alternatives
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'matrix containing the last ten values for the centre
of the st_fuzzy sets to calculate moving average
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Global duration As Integer
Global TotalCount As Integer
Global RobotNum As Integer
Global Actinum As Integer
Global ItNum As Integer
Global importance(3) As Single
Global Factor(3) As Single
Global WriteNum As Integer
Global LearnAlt(3) As Single
Global TTC As Integer
Global MuteAlt As Integer
Global CopyProb As Single
Global AndOrProb As Single
Global Capfac As Single
Global CMASize As Integer
Global MutRate As Integer
Global LThres As Single
Global RepFil As Single

Global db As database

Dim number As Integer
Global RandArray() As Single
Global Resetvalue As Single

Sub ForwardValues (Robot() As Actor)
'this is supposed to decode IO Values and to write all stuff to
‘the fuzzy rule base fuzzrule.bas

Dim k As Integer
Dim 1 As Integer
Dim testl As Double
Dim test2 As Double

testl =0
test2=0
If Actinum = 0 Then
testl = Robot(RobotNum).ShortTermIOCode(0)
test2 = Robot(RobotNum).ShortTermIOCode(1)
ElseIf Actinum = 1 Then
test] = Robot(RobotNum).ShortTermIOCode(2)
test2 = Robot(RobotNum).ShortTermIOCode(3)
Elself Actinum = 2 Then
testl = Robot(RobotNum).ShortTermIOCode(4)
test2 = Robot(RobotNum).ShortTermIOCode(5)
Elself Actinum = 3 Then
testl = Robot(RobotNum).ShortTermIOCode(6)
test2 = Robot(RobotNum).ShortTermIOCode(7)
End If .

Fork=0To 15
If (test] And 2 ~k) =2 ~k Then
ioarray(Actinum, k) =1
Else ioarray(Actinum, k) =0
End If
Next k

For1=0To 15
If (test2 And 2 A1) =2 ~1 Then
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ioarray(Actinum, 1 + 16) = 1
Else ioarray(Actinum, 1 + 16) =0
End If
Next 1
End Sub

Sub LoadValues ()
'loads initial Conditions from Blah.MDB

Dim t1 As table
Dim t2 As table
Dim t3 As table
Dim t4 As table

Dimi As Integer
Dim j As Integer

Dim k As Integer

Dim 1 As Integer

Dim m As Integer

Dim n As Integer

Dim o As Integer

Dim p As Integer

Dim q As Integer

Dimr As Integer

Dim s As Integer

Dim u As Integer

Dim v As Integer

Dim cnt As Integer
Dim cnt2 As Integer
Dim Nextent As Integer
Dim interim As Integer
Dim cellnumber As Integer

Set t1 = db.OpenTable("typedescriptor")
tl.MoveFirst
TotalCount = t1("number")
Fori=0 To TotalCount - 1
Agentl(i).tablenumber = i
Agent2(i).tablenumber = i
Agent3(i).tablenumber = i
Agentd(i).tablenumber = i

Next i
t1.Close
For RobotNum = 0 To TotalCount - 1 "loop over number of robots of type
Set t2 = db.OpenTable("1" & Agentl(RobotNum).tablenumber)
t2.MoveFirst
Fork=0To7
Agentl(RobotNum).ShortTermIOCode(k) = t2("st_io_code" & k)
Agentl(RobotNum).CmIOCode(k) = t2("CMIOCode" & k Mod 2)
Agentl(RobotNum).LearnlOCode(k) = t2("learn_io_code" & k Mod 2)
Nextk
For1=0To 3

Agentl(RobotNum).ShortTermFuzCentre(2 * 1) = t2("st_fuz_centre_pos" & 2 * I)
Agentl(RobotNum).ShortTermFuzCentre(2 * 1 + 1) =t2("'st_fuz_centre_pos" & 2 * 1)
Agent1(RobotNum).ShortTermFuzSigma(2 * 1) = t2("st_fuz_sigma" & 2 * 1)
Agent1(RobotNum).ShortTermFuzSigma(2 * 1+ 1) = t2("st_fuz_sigma" & 2 * 1)
Agentl(RobotNum).CMFuzCentre(2 * 1) = t2("CM_fuz_centre_pos" & 2 * 1)
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Agentl(RobotNum).CMFuzCentre(2 * 1+ 1) = t2("CM_fuz_centre_pos" & 2 * I)
Agent1(RobotNum).CMFuzSigma(2 * 1) = t2("CM_fuz_sigma" & 2 * 1)
Agent](RobotNum).CMFuzSigma(2 *1+ 1) = t2("CM_fuz_sigma" & 2 * 1)

Agentl(RobotNum).ShortTermBudgets(l) = t2("'st_budgetstate" & 1)
Agentl(RobotNum).ShortTermDefuzCentre(l) = t2("st_defuz_centre" & 1)
Agentl(RobotNum).ShortTermDefuzSigma(l) = t2("st_defuz_sigma" & )
Agentl(RobotNum).CMDefuzCentre(l) = t2("CM_defuz_centre" & )
Agentl(RobotNum).CMDefuzSigma(l) = t2("CM_defuz_sigma" & 1)
Next 1
Forv=1To 5
Agentl(RobotNum).LearnCentre(2 * v) = t2("learn_fuz_centre_pos" & 2 * v)
Agentl(RobotNum).LearnCentre(2 * v + 1) = t2("learn_fuz_centre_pos" & 2 * v)
Agentl(RobotNum).LearnSigma(2 * v) = t2("learn_fuz_sigma" & 2 * v)
Agentl(RobotNum).LearnSigma(2 * v + 1) = t2("learn_fuz_sigma" & 2 * v)
Next v
Forj=0To 3
Foro=0To3
Forq=0To 1
Agentl(RobotNum).CMknow(j, o, q) = gridfactor *
Mid(t22("CM_know" & j), (2 ¥*0) +q+ 1, 1)
Next q
Agent]l(RobotNum).CMknow(j, o, 2) = t2("st_success" & j & 0)
Next o
Nextj

Agentl(RobotNum).XPos = t2("XHome")
Agent](RobotNum).Ypos = t2("YHome")
Agentl(RobotNum).XHome = t2("XHome")
Agentl(RobotNum).YHome = t2("YHome")
Agentl(RobotNum).Age =0

Select Case startform.spr.Checked
Case True
Agentl(RobotNum).LearnS = t2("LearnStrategy")
Case Else ’
Agent]l(RobotNum).LearnS = 0 'Int(4 * Rnd)
End Select
t2.Close

Set t2 = db.OpenTable("2" & Agent2(RobotNum).tablenumber)

t2.MoveFirst

Fork=0To7
Agent2(RobotNum).ShortTermIOCode(k) = t2("st_io_code" & k)
Agent2(RobotNum).CmIOCode(k) = t2("CMIOCode" & k Mod 2)
Agent2(RobotNum).LearnlOCode(k) = t2("learn_io_code" & k Mod 2)

Nextk

For1=0To3
Agent2(RobotNum).ShortTermFuzCentre(2 * 1) =t2("st_fuz_centre_pos" & 2 * 1)
Agent2(RobotNum).ShortTermFuzCentre(2 * 1+ 1) = t2("st_fuz_centre pos" & 2 * 1)
Agent2(RobotNum).ShortTermFuzSigma(2 * 1) = t2("st_fuz_sigma" & 2 * 1)
Agent2(RobotNum).ShortTermFuzSigma(2 * 1+ 1) =t2("st_fuz_sigma" & 2 * 1)
Agent2(RobotNum).CMFuzCentre(2 * 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent2(RobotNum).CMFuzCentre(2 * 1 + 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent2(RobotNum).CMFuzSigma(2 * 1) = 2("CM_fuz_sigma" & 2 * 1)
Agent2(RobotNum).CMFuzSigma(2 * 1 + 1) =12("CM_fuz_sigma" & 2 * 1)

Agent2(RobotNum).ShortTermBudgets(l) = t2("'st_budgetstate” & 1)
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Agent2(RobotNum).ShortTermDefuzCentre(l) = t2("st_defuz_centre" & 1)
Agent2(RobotNum).ShortTermDefuzSigma(l) = t2("'st_defuz_sigma" & 1)
Agent2(RobotNum).CMDefuzCentre(l) = t2("CM_defuz_centre" & 1)
Agent2(RobotNum).CMDefuzSigma(l) = t2("CM_defuz_sigma" & 1)
Next1 .
Forv=1To 5
Agent2(RobotNum).LearnCentre(2 * v) =t2("learn_fuz_centre_pos" & 2 * v)
Agent2(RobotNum).LearnCentre(2 * v + 1) = t2("learn_fuz_centre_pos" & 2 * v)
Agent2(RobotNum).LearnSigma(2 * v) = t2("learn_fuz_sigma" & 2 * v)
Agent2(RobotNum).LearnSigma(2 * v + 1) = t2("learn_fuz_sigma" & 2 * v)
Nextv
Forj=0To3
Foro=0To3
Forq=0Tol
Agent2(RobotNum).CMknow(j, o, q) = gridfactor *
Mid(t22("CM_know" & j), (2 *0) +q+1,1)
Nextq
Agent2(RobotNum).CMknow(j, 0, 2) =0
Nexto :
Next j

Agent2(RobotNum).XPos = t2("XHome")
Agent2(RobotNum).Ypos = t2("YHome")
Agent2(RobotNum).XHome = t2("XHome")
Agent2(RobotNum).YHome = t2("YHome")
Agent2(RobotNum).Age =0

Select Case startform.spr.Checked
Case True
Agent2(RobotNum).LearnS = t2("LearnStrategy")
Case Else '
Agent2(RobotNum).LearnS = 0 'Int(4 * Rnd)
End Select
t2.Close

Set t2 = db.OpenTable("3" & Agent3(RobotNum).tablenumber)

t2.MoveFirst

Fork=0To 7
Agent3(RobotNum).ShortTermIOCode(k) = t2("st_io_code" & k)
Agent3(RobotNum).CmIOCode(k) = t2("CMIOCode" & k Mod 2)
Agent3(RobotNum).LearnIOCode(k) = t2("learn_io_code" & k Mod 2)

Next k

For1=0To3
Agent3(RobotNum).ShortTermFuzCentre(2 * 1) = t2("st_fuz_centre_pos" & 2 * 1)
Agent3(RobotNum).ShortTermFuzCentre(2 * 1 + 1) = t2("st_fuz_centre_pos" & 2 * 1)
Agent3(RobotNum).ShortTermFuzSigma(2 * 1) = t2("st_fuz_sigma" & 2 * 1)
Agent3(RobotNum).ShortTermFuzSigma(2 * 1 + 1) = t2("st_fuz_sigma" & 2 * 1)
Agent3(RobotNum).CMFuzCentre(2 * 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent3(RobotNum).CMFuzCentre(2 * 1 + 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent3(RobotNum).CMFuzSigma(2 * 1) = t2("CM_fuz_sigma" & 2 * 1)
Agent3(RobotNum).CMFuzSigma(2 * 1 + 1) = t2("CM_fuz_sigma" & 2 * 1)

Agent3(RobotNum).ShortTermBudgets(l) = t2("st_budgetstate" & 1)

Agent3(RobotNum).ShortTermDefuzCentre(l) = t2("st_defuz_centre" & 1)

Agent3(RobotNum).ShortTermDefuzSigma(l) = t2("st_defuz_sigma" & 1)

Agent3(RobotNum).CMDefuzCentre(l) = t2("CM_defuz_centre" & I)

Agent3(RobotNum).CMDefuzSigma(l) = t2("CM_defuz_sigma" & 1)
Next1
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Forv=1To5
Agent3(RobotNum).LearnCentre(2 * v) = t2("learn_fuz_centre_pos" & 2 * v)
Agent3(RobotNum).LearnCentre(2 * v + 1) = t2("learn_fuz_centre_pos" & 2 * v)
Agent3(RobotNum).LearnSigma(2 * v) =t2("learn_fuz_sigma" & 2 * v)
Agent3(RobotNum).LeamnSigma(2 * v + 1) = t2("learn_fuz_sigma" & 2 * v)
Next v
Forj=0To3
Foro=0To3
Forq=0To 1
Agent3(RobotNum).CMknow(j, o, q) = gridfactor *
Mid(t22("CM_know" & j), 2 *0)+q+ 1, 1)
Next q
Agent3(RobotNum).CMknow(j, 0, 2) =0
Next o
Next j

Agent3(RobotNum).XPos = t2("XHome")
Agent3(RobotNum).Ypos = t2("YHome")
Agent3(RobotNum).XHome = t2("XHome")
Agent3(RobotNum).YHome = t2("YHome")
Agent3(RobotNum).Age =0

Select Case startform.spr.Checked
Case True
Agent3(RobotNum).LearnS = t2("LeamStrategy™)
Case Else
Agent3(RobotNum).LearnS = 0 'Int(4 * Rnd)
End Select
t2.Close

Set t2 = db.OpenTable("4" & Agent4(RobotNum).tablenumber)

t2.MoveFirst

Fork=0To7
Agent4(RobotNum).ShortTermIOCode(k) = t2("st_io_code" & k)
Agent4(RobotNum).CmIOCode(k) = t2("CMIOCode" & k Mod 2)
Agent4(RobotNum).LearnIOCode(k) = t2("learn_io_code" & k Mod 2)

Nextk

For1=0To3
Agent4(RobotNum).ShortTermFuzCentre(2 * 1) = t2("st_fuz_centre_pos" & 2 * 1)
Agentd(RobotNum).ShortTermFuzCentre(2 * 1+ 1) = t2("st_fuz_centre_pos" & 2 * 1)
Agent4(RobotNum).ShortTermFuzSigma(2 * 1) = t2("st_fuz_sigma" & 2 * 1)
Agent4(RobotNum).ShortTermFuzSigma(2 * 1+ 1) = t2("st_fuz_sigma" & 2 * 1)

- Agent4(RobotNum).CMFuzCentre(2 * 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent4(RobotNum).CMFuzCentre(2 * 1 + 1) = t2("CM_fuz_centre_pos" & 2 * 1)
Agent4(RobotNum).CMFuzSigma(2 * 1) = t2("CM_fuz_sigma" &2 * I)
Agent4(RobotNum).CMFuzSigma(2 * 1+ 1) = t2("CM_fuz_sigma" & 2 * 1)

Agent4(RobotNum).ShortTermBudgets(I) = t2("st_budgetstate” & 1)
Agent4(RobotNum).ShortTermDefuzCentre(l) = t2("st_defuz_centre" & 1)
Agent4(RobotNum).ShortTermDefuzSigma(l) = t2("st_defuz_sigma" & 1)
Agent4(RobotNum).CMDefuzCentre(l) = t2("CM_defuz_centre" & 1)
Agent4(RobotNum).CMDefuzSigma(l) = t2("CM_defuz_sigma" & 1)

Next1

Forv=1To$5
Agent4(RobotNum).LearnCentre(2 * v) = t2("learn_fuz_centre_pos" & 2 * v)
Agent4(RobotNum).LearnCentre(2 * v + 1) = t2("learn_fuz_centre_pos" & 2 * v)
Agent4(RobotNum).LearnSigma(2 * v) = t2("learn_fuz_sigma" & 2 * v)
Agent4(RobotNum).LearnSigma(2 * v + 1) = t2("learn_fuz_sigma" & 2 * v)
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Next v
Forj=0To3
Foro=0To3
Forq=0To 1
Agentd(RobotNum).CMknow(j, o, q) = gridfactor *
Mid(12("CM_know" & j),(2*0)+q+1,1)
Nextq
Agent4(RobotNum).CMknow(j, o, 2) =0
Next o
Next j

Agent4(RobotNum).XPos = t2("XHome")
Agent4(RobotNum).Ypos = t2("YHome")
Agent4(RobotNum).XHome = t2("XHome")
Agent4(RobotNum).YHome = t2("YHome")
Agent4(RobotNum).Age =0

Select Case startform.spr.Checked

Case True
Agent4(RobotNum).LearnS = t2("LearnStrategy")
Case Else
Agent4(RobotNum).LearnS = 0 'Int(4 * Rnd)
End Select
t2.Close
Forr=0To 299
Fors=0To 3
Agent1(RobotNum).CentreMatrix(r, s) = (Agent1(RobotNum).
ShortTermFuzCentre(2 * s) + Agentl(RobotNum).ShortTermFuzCentre(2 * s + 1))
/2
Agent2(RobotNum).CentreMatrix(r, s) = (Agent2(RobotNum).
ShortTermFuzCentre(2 * s) + Agent2(RobotNum).ShortTermFuzCentre(2 * s + 1))
/2
Agent3(RobotNum).CentreMatrix(r, s) = (Agent3(RobotNum).
ShortTermFuzCentre(2 * s) + Agent3(RobotNum).ShortTermFuzCentre(2 * s + 1))
/2
Agent4(RobotNum).CentreMatrix(r, s) = (Agent4(RobotNum).
ShortTermFuzCentre(2 * s) + Agent4(RobotNum).ShortTermFuzCentre(2 * s + 1))
/2
Next s
Nextr
Next RobotNum

Capfac = CaChange.Text3.Text
CMASize = Ranparfor.Text4. Text
MutRate = Ranparfor.Text3.Text
RepFil = Ranparfor.Text6.Text

Set t3 = db.OpenTable("world")

n=0

t3.MoveFirst

Do Until t3.EOF
ThisWorld. XPos(n) = t3("x_pos")
ThisWorld.Ypos(n) = t3("y_pos")
n=n+1
t3.MoveNext

Loop

t3.MoveLast
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cellnumber = t3("count")
ThisWorld.tablenumber = t3("count")
t3.Close

For u=0 To cellnumber - 1 ‘
Set t4 = db.OpenTable("world" & u)
t4.MoveFirst
Form=3 To 0 Step -1
Select Case m
Case 3
ThisWorld.Capacity(m, u) = t4("cap_" & m)
ThisWorld.MaxCapacity(m, u) = capaform.Text1(m).Text
Case 2 :
ThisWorld.Capacity(m, u) = t4("cap_" & m)
ThisWorld. MaxCapacity(m, u) = capaform.Text1(m).Text
Case 1 .
ThisWorld.Capacity(m, u) = Int(Capfac * Sqr(ThisWorld.Capacity(2, u))) +
Int(Capfac * Sqr(ThisWorld.Capacity(3, u)))
ThisWorld.MaxCapacity(m, u) = Int(Capfac * Sqr(ThisWorld.MaxCapacity(2, u)))
+ Int(Capfac * Sqr(ThisWorld. MaxCapacity(3, u)))
Case 0
ThisWorld.Capacity(m, u) = t4("cap_" & m)
ThisWorld.MaxCapacity(m, u) = capaform.Text1(m).Text
End Select
ThisWorld.Price(m, u) = t4("price_" & m)
ThisWorld.MaxPrice(m, u) = pricefor.Text2(m).Text
BasePrice(m, u) = pricefor.Text1(m).Text
Next m
Form=0To 23 .
ThisWorld.Act(0, m, u) = t4("payoff0_" & m)
ThisWorld.Act(1, m, u) = t4("payoff!_" & m)
ThisWorld.Act(2, m, u) = t4("payoff2_" & m)
ThisWorld.Act(3, m, u) = t4("payoff3_" & m)
Nextm
t4.Close
Nextu _
Forcnt=0To 3 'preset long term average demand for change of capacity
For cnt2 =0 To CellNos - 1
For Nextent = 0 To 299
LtAvDemand(cnt, cnt2, Nextent) = ((-Log((ThisWorld.MaxPrice(cnt, cnt2) *
BasePrice(cnt, cnt2)) / (ThisWorld.Price(cnt, cnt2)) - 1) / CaChange.Text2.Text) +
CaChange.Text1.Text)
Next Nextent
Next cnt2
Next cnt
For cnt=0 To CMASize - 1
Forcnt2=0To 7
ThisWorld.CommonRules(cnt, cnt2) = Int(Rnd * 65536)
Next cnt2
Next cnt
Resetvalue = ResetForm.Textl. Text
AndOrProb = Ranparfor.Text1.Text
CopyProb = Ranparfor.Text2.Text
LThres = Ranparfor.Text5.Text
End Sub
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Sub MainLoop ()
'this defines the number of iterations

Dim msg As String
Dim k As Integer
Dim 1 As Integer
Dim n As Integer

duration = runform.Text1.Text

Set db = OpenDatabase("C:\blah.mdb", True)
ReDim Agent1(NumOfActors) As Actor
ReDim Agent2(NumOfActors) As Actor
ReDim Agent3(NumOfActors) As Actor
ReDim Agent4(NumOfActors) As Actor

Select Case runform.Check1(6).Value
Case 1

Randomize
End Select

LoadValues
inform.Show
WriteNum =0

ReDim Preserve Agentl(TotalCount - 1) As Actor .
ReDim Preserve Agent2(TotalCount - 1) As Actor
ReDim Preserve Agent3(TotalCount - 1) As Actor
ReDim Preserve Agentd(TotalCount - 1) As Actor

For ItNum = 0 To duration - 1

inform.Labell.Caption = "Currently working, Iteration " & (ItNum + 1)

inform.Labell.Refresh .
For RobotNum = 0 To TotalCount - 1 ' loop over all robots
ResetAgent Agentl()
Select Case Agentl(RobotNum).LearnS
CaseIs <0
Select Case ItNum Mod MutRate = 0
Case True
' Select Case Agent1(RobotNum).LearnS
Case 2
RndChngAgent Agentl()
End Select
Select Case Agentl(RobotNum).LeanS
Case 3 ’
RndChngAgentl Agentl()
End Select
Select Case Agent]l(RobotNum).LearnS
Case 1
For Actinum=0To 3 'loop over budgets

DecodeLearnRules Agent1()
For MuteAlt=0 To 3

'loop over other budgets
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Select Case MuteAlt

Case Is < Actinum
GetLearnValues Agentl()
LeamnFuzzify
LearnDefuzzify
Mutate Agentl()

Case Else '

End Select
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Next MuteAlt
Next Actinum
End Select
End Select
End Select
For Actinum =0 To 3' loop over activities to load Rule Code
ForwardValues Agent1()
Next Actinum
For Actinum =0 To 3
GetValues Agentl()
Fuzzify
Defuzzify

Agentl(RobotNum).ShortTermImportance(Actinum) = importance(Actinum)

Next Actinum
Activity Agentl()

ResetAgent Agent2()
Select Case Agent2(RobotNum).LearnS
CaseIs<> 0
Select Case ItNum Mod MutRate = 0
Case True
Select Case Agent2(RobotNum).LearnS
Case 2
RndChngAgent Agent2()
End Select :
Select Case Agent2(RobotNum).LearnS
Case 3
RndChngAgentl Agent2()
End Select
Select Case Agent2(RobotNum).LearnS
Case 1
For Actinum =0 To 3 "loop over budgets
DecodeLearnRules Agent2()
For MuteAlt=0 To 3 'loop over other budgets
Select Case MuteAlt
Case Is < Actinum
GetLearnValues Agent2()

LearnFuzzify
LearnDefuzzify
Mutate Agent2()
Case Else
End Select
Next MuteAlt
Next Actinum
End Select
End Select
End Select )
For Actinum =0 To 3 'loop over activities
ForwardValues Agent2()
Next Actinum
For Actinum =0 To 3
GetValues Agent2()
Fuzzify
Defuzzify

Agent2(RobotNum).ShortTermImportance(Actinum) = importance(Actinum)
Next Actinum
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Activity Agent2()

ResetAgent Agent3()
Select Case Agent3(RobotNum).LearnS
CaseIs<>0
Select Case ItNum Mod MutRate = 0
Case True
Select Case Agent3(RobotNum).LearnS
Case 2 :
RndChngAgent Agent3()
End Select
Select Case Agent3(RobotNum).LearnS
Case 3 ‘
RndChngAgentl Agent3()
End Select
Select Case Agent3(RobotNum).LearnS
Case 1
For Actinum=0 To 3 "loop over budgets
DecodeLearnRules Agent3()
For MuteAlt=0To 3 "loop over other budgets
Select Case MuteAlt
Case Is < Actinum
GetLearnValues Agent3()
LearmnFuzzify
LearnDefuzzify
~ ~Mutate Agent3()
Case Else
End Select
Next MuteAlt
Next Actinum
End Select
End Select
End Select
For Actinum =0 To 3 'loop over activities
ForwardValues Agent3()
Next Actinum
For Actinum =0 To 3
GetValues Agent3()
Fuzzify
Defuzzify »
- Agent3(RobotNum).ShortTermImportance(Actinum) = importance(Actinum)
Next Actinum
Activity Agent3()

ResetAgent Agentd()
Select Case Agent4(RobotNum).LearnS
CaseIs<>0
Select Case ItNum Mod MutRate =0
Case True
Select Case Agentd(RobotNum).LearnS
Case 3
RndChngAgentl Agent4()
End Select
Select Case Agent4(RobotNum).LearnS
Case 2
RndChngAgent Agent4()
End Select
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Select Case Agent4(RobotNum) LearnS
Case 1
For Actinum =0 To 3 'loop over budgets
DecodeLearnRules Agent4()
For MuteAlt=0 To 3 "loop over other budgets
Select Case MuteAlt
Case Is < Actinum
GetLeamValues Agent4()
LearnFuzzify
LearnDefuzzify
Mutate Agent4()
Case Else
End Select
Next MuteAlt
Next Actinum
End Select
End Select
End Select
For Actinum =0 To 3 "loop over activities
ForwardValues Agent4() '
Next Actinum
For Actinum =0 To 3
GetValues Agent4()
Fuzzify
Defuzzify
Agent4(RobotNum). ShortTermImportance(Actmum) importance(Actinum)
Next Actinum
Activity Agent4()
Next RobotNum

For TimeOfDay = 0 To 23 "loop over the hours of the day
Fork=0To3
For 1=0 To CellNos - 1
CellCapacityCount(k, 1, 0) = ThisWorld. Capamty(k )]
CellCapacityCount(k, 1, 1) =0
Next1
Nextk o
For RobotCount = 0 To TotalCount-1 "loop over robots

DecodeRules Agentl()

FeedValues Agent1()

ResetFDV Agentl()

For ActCount =0 To 3 'loop over activitites
CalcParameters Agentl1()

Next ActCount

DecodeRules Agent2()

FeedValues Agent2()

ResetFDV Agent2()

For ActCount =0 To 3 'loop over activitites
CalcParameters Agent2()

Next ActCount

DecodeRules Agent3()

FeedValues Agent3()

ResetFDV Agent3()

For ActCount =0 To 3 'loop over activitites
CalcParameters Agent3()
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Next ActCount

DecodeRules Agentd()
FeedValues Agent4()
ResetFDV Agent4()
For ActCount =0 To 3 'loop over activitites
CalcParameters Agent4()
Next ActCount
Next RobotCount

SortRandArray
For TTC =0 To (4 * TotalCount) - 1
Select Case Int(RandArray(1, TTC) / TotalCount) = 0
Case True
SelAct Agentl()
End Select
Select Case Int(RandArray(1, TTC) / TotalCount) = 1
Case True
SelAct Agent2()
End Select
Select Case Int(RandArray(1, TTC) / TotalCount) =2
Case True
SelAct Agent3()
End Select
Select Case Int(RandArray(1, TTC) / TotalCount) = 3
Case True
SelAct Agent4()
End Select
Next TTC

For RobotCount = 0 To TotalCount - 1 'loop over agents
GetSomething Agent1()
GetSomething Agent2()
GetSomething Agent3()
GetSomething Agentd()

Next RobotCount

GetTurnover

Next TimeOfDay

For RobotCount = 0 To TotalCount - 1
Select Case runform.Check1(0).Value
Case 1
MoveAvg Agentl()
MoveAvg Agent2()
MoveAvg Agent3()
MoveAvg Agent4()
End Select
Agentl(RobotCount).Age = Agentl(RobotCount).Age + 1
Agent2(RobotCount).Age = Agent2(RobotCount).Age + 1
Agent3(RobotCount).Age = Agent3(RobotCount).Age + 1
Agentd(RobotCount).Age = Agentd(RobotCount).Age + 1
Next RobotCount

For RobotNum = 0 To TotalCount - 1
WriteValues

Next RobotNum

For number = 0 To ThisWorld.tablenumber - 1
WriteWorld
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Next number
GetDemand
Select Case runform.Check1(3).Value
Case 1
ChangePrice
End Select
Select Case runform.Check1(4).Value
"Case 1
ChangeCap
End Select
WriteNum = WriteNum + 1
-If WriteNum > 299 Then
WriteNum = WriteNum - 300
End If
Next ItNum
db.Close
inform. Hide
msg = "FINISHED !"
MsgBox msg, 64, "Simulation Finished"
End Sub

Sub RanCoglnit ()

Dim db As database

Dim t1 As table

Dim t2 As table

Dim TypeNum As Integer
Dim i As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
t1.MoveFirst
TotalCount = t1("number")
t1.Close
For RobotNum = 0 To TotalCount - 1 'loop over number of robots of type
For TypeNum =1 To 4 .
Set t2 = db.OpenTable(TypeNum & RobotNum)
t2.MoveFirst
t2.Edit
Fori=0To3 ,
t2("CM_know" & i) =Int(3 * Rnd) & Int(3 * Rnd) & Int(3 * Rnd) &
Int(3 * Rnd) & Int(3 * Rnd) & Int(3 * Rnd) & Int(3 * Rnd)
& Int(3 * Rnd)
Next i
t2.Update
t2.Close
Next TypeNum
Next RobotNum
db.Close
End Sub

Sub RandomlInit ()

Dim db As database

Dim t1 As table

Dim t2 As table

Dim TypeNum As Integer
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Dim i As Integer
Dim k As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
tl.MoveFirst
TotalCount = t1("number")
t1.Close
For RobotNum = 0 To TotalCount - 1 "loop over number of robots of type
For TypeNum =1 To 4
Set t2 = db.OpenTable(TypeNum & RobotNum)
t2.MoveFirst
2.Edit
Fork=0To7
t2("st_io_code" & k) = Int(Rnd * 32768)
Nextk ,
t2.Update
t2.Close
Next TypeNum
Next RobotNum
db.Close .
End Sub

Sub SortRandArray ()

~ DimiAsInteger
Dim IR As Integer
Dim j As Integer
Dim 1 As Integer
Dim k As Integer
Dim RRA As Single

ReDim RandArray(1, 4 * TotalCount - 1)
For k=0 To (4 * TotalCount) - 1
RandArray(0, k) = Rnd
RandArray(1, k) =k
Nextk
1 =Int((4 * TotalCount - 1)/ 2) + 1
IR =4 * TotalCount - 1 ‘
Do
If1>1 Then
=1-1
RRA = RandArray(0, )
Else :
RRA =RandArray(0, IR)
RandArray(0, IR) = RandArray(0, 1)
IR=IR-1
IfIR =1 Then
RandArray(0, 1) =RRA
Exit Sub
End If
End If
i=1
j=1+1
While j <= IR
Ifj <IR Then
If RandArray(0, j) < RandArray(0, j + 1) Then
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j=j+1
End If
If RRA <RandArray(0, j) Then
RandArray(0, i) = RandArray(0, j)
i=]
j=iti
Else
ji=IR+1
End If
Wend
RandArray(0, i) = RRA
Loop
End Sub

Sub WriteValues ()
' supposed to write the results to database

Dim tl As table
Dim i As Integer

Set t1 = db.OpenTable("1" & Agentl(RobotNum).tablenumber)
tl.AddNew
If ((duration - 1 > ItNum) And (Agentl(RobotNum).MutationTag <> 1)) Then
t1("st_budgetstate0") = Agentl(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate1") = Agent1(RobotNum).ShortTermBudgets(1)
t1("'st_budgetstate2") = Agentl(RobotNum).ShortTermBudgets(2)
t1("'st_budgetstate3") = Agent1(RobotNum).ShortTermBudgets(3)

t1("LearnStrategy") = Agent1(RobotNum).LearnS
t1("Activities") = Agent](RobotNum).DailyActivities
Else

t1("st_io_code0") = Agentl(RobotNum).ShortTermIOCode(0)
t1("st_io_codel") = Agentl(RobotNum).ShortTermIOCode(1)
t1("st_io_code2") = Agentl(RobotNum).ShortTermIOCode(2)
t1("st_io_code3") = Agentl(RobotNum).ShortTermIOCode(3)
t1("st_io_code4") = Agentl(RobotNum).ShortTermIOCode(4)
t1("st_io_code5") = Agentl(RobotNum).ShortTermIOCode(5)
t1("st_io_code6") = Agentl(RobotNum).ShortTermIOCode(6)
t1("st_io_code7") = Agent1(RobotNum).ShortTermIOCode(7)

t1("st_fuz_centre_pos0") = Agentl(RobotNum).ShortTermFuzCentre(0)
t1("st_fuz_centre_pos2") = Agentl(RobotNum).ShortTermFuzCentre(2)
t1("st_fuz_centre_pos4") = Agentl(RobotNum).ShortTermFuzCentre(4)
t1("st_fuz_centre_pos6") = Agentl(RobotNum).ShortTermFuzCentre(6)

t1("st_fuz_sigma0") = Agentl(RobotNum).ShortTermFuzSigma(0)
t1(""st_fuz_sigma2") = Agentl(RobotNum).ShortTermFuzSigma(2)
t1("st_fuz_sigma4d") = Agentl(RobotNum).ShortTermFuzSigma(4)
t1("st_fuz_sigma6") = Agentl(RobotNum).ShortTermFuzSigma(6)

t1("st_defuz_centre0") = Agent1(RobotNum).ShortTermDefuzCentre(0)
t1("st_defuz_centrel") = Agentl(RobotNum).ShortTermDefuzCentre(1)
t1("st_defuz_centre2") = Agentl(RobotNum).ShortTermDefuzCentre(2)
t1("st_defuz_centre3") = Agentl(RobotNum).ShortTermDefuzCentre(3)

t1("st_defuz_sigma0") = Agent1(RobotNum).ShortTermDefuzSigma(0)
t1("st_defuz_sigmal") = Agentl(RobotNum).ShortTermDefuzSigma(1)
t1("st_defuz_sigma2") = Agentl(RobotNum).ShortTermDefuzSigma(2)
t1("'st_defuz_sigma3") = Agentl(RobotNum).ShortTermDefuzSigma(3)
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t1("st_budgetstate0") = Agentl(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate]l") = Agentl(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agentl(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agentl(RobotNum).ShortTermBudgets(3)

t1("st_acttime0") = Agentl(RobotNum).ShortTermActivities(0)
t1("st_acttimel") = Agentl(RobotNum).ShortTermActivities(1)
t1("st_acttime2") = Agent1(RobotNum).ShortTermActivities(2)
t1("st_acttime3") = Agent1(RobotNum).ShortTermActivities(3)

t1(""st_success00") = Agentl(RobotNum).CMknow(0, 0, 2)
t1("st_success01") = Agentl(RobotNum).CMknow(0, 1, 2)
t1("st_success02") = Agentl(RobotNum).CMknow(0, 2, 2)
t1("st_success03") = Agent1(RobotNum).CMknow(0, 3, 2)
t1("st_success10") = Agent1(RobotNum).CMknow(1, 0, 2)
t1("st_success11") = Agentl(RobotNum).CMknow(1, 1, 2)
t1("st_success12") = Agentl(RobotNum).CMknow(1, 2, 2)
t1("st_success13") = Agent1(RobotNum).CMknow(1, 3, 2)
t1("st_success20") = Agentl(RobotNum).CMknow(2, 0, 2)
t1("st_success21") = Agentl(RobotNum).CMknow(2, 1, 2)
t1("st_success22") = Agentl(RobotNum).CMknow(2, 2, 2)
t1("st_success23") = Agentl(RobotNum).CMknow(2, 3, 2)
t1("st_success30") = Agentl(RobotNum).CMknow(3, 0, 2)
t1("st_success31") = Agentl(RobotNum).CMknow(3, 1, 2)
t1("st_success32") = Agentl(RobotNum).CMknow(3, 2, 2)
t1("st_success33") = Agentl(RobotNum).CMknow(3, 3,2) - — .- ——

t1("CMIOCode0") = Agentl(RobotNum).CmIOCode(0)
t1("CMIOCodel") = Agent1(RobotNum).CmIOCode(1)

t1("CM_fuz_centre_pos0") = Agentl(RobotNum).CMFuzCentre(0)
t1("CM_fuz_centre_pos2") = Agentl(RobotNum).CMFuzCentre(2)
t1("CM_fuz_centre pos4") = Agentl(RobotNum).CMFuzCentre(4)
t1("CM_fuz_centre_pos6") = Agentl(RobotNum).CMFuzCentre(6)

t1("CM_fuz_sigma0") = Agentl(RobotNum).CMFuzSigma(0)
t1("CM_fuz_sigma2") = Agent](RobotNum).CMFuzSigma(2)
t1("CM_fuz_sigmad") = Agent]l(RobotNum).CMFuzSigma(4)
t1("CM_fuz_sigma6") = Agentl(RobotNum).CMFuzSigma(6)

t1("CM_defuz_centre0") = Agentl(RobotNum).CMDefuzCentre(0)
t1("CM_defuz_centrel") = Agentl(RobotNum).CMDefuzCentre(1)
t1("CM_defuz_centre2") = Agentl(RobotNum).CMDefuzCentre(2)
t1("CM_defuz_centre3") = Agent1(RobotNum).CMDefuzCentre(3)

t1("CM_defuz_sigma0") = Agentl(RobotNum).CMDefuzSigma(0)
t1("CM_defuz_sigmal") = Agentl(RobotNum).CMDefuzSigma(1)
t1("CM_defuz_sigma2") = Agentl(RobotNum).CMDefuzSigma(2)
t1("CM_defuz_sigma3") = Agentl(RobotNum).CMDefuzSigma(3)

t1("CM_know0") = Left(Agent](RobotNum).CMknow(0, 0, 0), 1) &
Left(Agent1(RobotNum).CMknow(0, 0, 1), 1) & Left(Agent1(RobotNum).CMknow(0, 1,
0), 1) & Left(Agent1(RobotNum).CMknow(0, 1, 1), 1) & Left(Agentl(RobotNum).
CMknow(0, 2, 0), 1) & Left(Agentl(RobotNum).CMknow(0, 2, 1), 1) &
Left{Agent1(RobotNum).CMknow(0, 3, 0), 1) & Left(Agentl(RobotNum).CMknow(0, 3,
1), 1)

t1("CM_know1") = Left(Agent1(RobotNum).CMknow(1, 0, 0), 1) &
Left(Agent1(RobotNum).CMknow(1, 0, 1), 1) & Left(Agent1(RobotNum).CMknow(1, 1,
0), 1) & Left(Agent1(RobotNum).CMknow(1, 1, 1), 1) & Left(Agent1(RobotNum).
CMknow(1,2,0), 1) & Left(Agent1(RobotNum).CMknow(1, 2, 1), 1) &
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Left(Agent1(RobotNum).CMknow(1, 3, 0), 1) & Left(Agentl(RobotNum).CMknow(l, 3,
1), 1)

t1("CM_know2") = Left(Agent1(RobotNum).CMknow(2, 0, 0), 1) &
Left(Agent1(RobotNum).CMknow(2, 0, 1), 1) & Left(Agentl(RobotNum).CMknow(2, 1,
0), 1) & Left(Agentl(RobotNum).CMknow(2, 1, 1), 1) & Left(Agent1(RobotNum).
CMknow(2, 2, 0), 1) & Left(Agentl(RobotNum).CMknow(2, 2, 1), 1) &
Left(Agent](RobotNum).CMknow(2, 3, 0), 1) & Left(Agent1(RobotNum).CMknow(2, 3,
D, 1)

t1("CM_know3") = Left(Agent] (RobotNum).CMknow(3, 0, 0), 1) &
Left(Agent](RobotNum).CMknow(3, 0, 1), 1) & Left(Agentl(RobotNum).CMknow(3, 1,
0), 1) & Left(Agentl(RobotNum).CMknow(3, 1, 1), 1) & Left(Agent1(RobotNum).
CMknow(3, 2, 0), 1) & Left(Agentl(RobotNum).CMknow(3, 2, 1), 1) &
Left(Agentl(RobotNum).CMknow(3, 3, 0), 1) & Left(Agentl(RobotNum).CMknow(3, 3,
1, 1)

t1("XHome") = Agent1(RobotNum).XHome
t1("YHome") = Agentl(RobotNum).YHome

t1("learn_io_code0") = Agent1(RobotNum).LearnIOCode(0)
t1("learn_io_codel") = Agent1(RobotNum).LearmnIOCode(1)
t1("LearnStrategy") = Agent](RobotNum).LearnS
t1("learn_fuz_centre_pos2") = Agentl(RobotNum).LearnSigma(2)
t1("learn_fuz_centre_pos4") = Agentl(RobotNum).LearnSigma(4)

- t1("leamn_fuz_centre_pos6") = Agentl(RobotNum).LearnSigma(6)
tl("learn_fuz centre_pos8") = Agentl(RobotNum).LearnSigma(8)
t1("learn_fuz_centre_pos10") = Agentl(RobotNum).LearnSigma(10)

tl("learn_fuz sigma2") = Agentl(RobotNum).LearnSigma(2)
t1("learn_fuz_sigma4") = Agentl(RobotNum).LearnSigma(4)
t1("learn_fuz sigma6") = Agentl(RobotNum).LearnSigma(6)
t1("learn_fuz_sigma8") = Agentl(RobotNum).LearnSigma(8)
t1("learn_fuz_sigmal0") = Agentl(RobotNum).LearnSigma(10)

t1("Activities") = Agent1(RobotNum).DailyActivities
End If
t1.Update
t1.Close

Set t1 = db.OpenTable("2" & Agent2(RobotNum).tablenumber)
t1.AddNew
If ((duration - 1 > ItNum) And (Agent2(RobotNum).MutationTag <> 1)) Then
t1("st_budgetstate0") = Agent2(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate1") = Agent2(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent2(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agent2(RobotNum).ShortTermBudgets(3)

t1("LearnStrategy") = Agent2(RobotNum).LearnS
t1("Activities") = Agent2(RobotNum).DailyActivities
Else

~ t1("st_io_code0") = Agent2(RobotNum).ShortTermIOCode(0)
t1("st_io_codel") = Agent2(RobotNum).ShortTermIOCode(1)
t1("st_io_code2") = Agent2(RobotNum).ShortTermIOCode(2)
t1("st_io_code3") = Agent2(RobotNum).ShortTermIOCode(3)
t1("st_io_coded") = Agent2(RobotNum).ShortTermIOCode(4)
t1("st_io_code5") = Agent2(RobotNum).ShortTermIOCode(5)
t1("st_io_code6") = Agent2(RobotNum).ShortTermIOCode(6)
t1("st_io_code7") = Agent2(RobotNum).ShortTermIOCode(7)

t1("st_fuz_centre_pos0") = Agent2(RobotNum).ShortTermFuzCentre(0)
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t1("st_fuz_centre_pos2") = Agent2(RobotNum).ShortTermFuzCentre(2)
t1("st_fuz_centre_pos4") = Agent2(RobotNum).ShortTermFuzCentre(4)
t1("st_fuz_centre_pos6") = Agent2(RobotNum).ShortTermFuzCentre(6)

t1("st_fuz sigma0") = Agent2(RobotNum).ShortTermFuzSigma(0)
t1("st_fuz_sigma2") = Agent2(RobotNum).ShortTermFuzSigma(2)
t1("st_fuz_sigmad") = Agent2(RobotNum).ShortTermFuzSigma(4)
t1("st_fuz_sigma6") = Agent2(RobotNum).ShortTermFuzSigma(6)

t1("st_defuz_centre0") = Agent2(RobotNum).ShortTermDefuzCentre(0)
t1("st_defuz_centrel") = Agent2(RobotNum).ShortTermDefuzCentre(1)
t1("st_defuz_centre2") = Agent2(RobotNum).ShortTermDefuzCentre(2)
t1("st_defuz_centre3") = Agent2(RobotNum).ShortTermDefuzCentre(3)

t1("st_defuz_sigma0") = Agent2(RobotNum).ShortTermDefuzSigma(0)
t1("st_defuz_sigmal") = Agent2(RobotNum).ShortTermDefuzSigma(1)
t1("st_defuz_sigma2") = Agent2(RobotNum).ShortTermDefuzSigma(2)
t1("st_defuz_sigma3") = Agent2(RobotNum).ShortTermDefuzSigma(3)

t1("st_budgetstate0") = Agent2(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate1") = Agent2(RobotNumy).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent2(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agent2(RobotNum).ShortTermBudgets(3)

t1("st_acttime0") = Agent2(RobotNum).ShortTermActivities(0)
t1("st_acttimel") = Agent2(RobotNum).ShortTermActivities(1)
t1("st_acttime2") = Agent2(RobotNum).ShortTermActivities(2)

~t1("st_acttime3") = Agent2(RobotNum).ShortTermActivities(3)

t1("st_success00") = Agent2(RobotNum).CMknow(0, 0, 2)
t1("st_success01") = Agent2(RobotNum).CMknow(0, 1, 2)
t1("st_success02") = Agent2(RobotNum).CMknow(0, 2, 2)
t1("st_success03") = Agent2(RobotNum).CMknow(0, 3, 2)
t1("'st_success10") = Agent2(RobotNum).CMknow(1, 0, 2)
t1("'st_success11") = Agent2(RobotNum).CMknow(1, 1, 2)
t1("st_success12") = Agent2(RobotNum).CMknow(1, 2, 2)
t1("st_success13") = Agent2(RobotNum).CMknow(1, 3, 2)
t1("st_success20") = Agent2(RobotNum).CMknow(2, 0, 2)
t1("st_success21") = Agent2(RobotNum).CMknow(2, 1, 2)
t1("st_success22") = Agent2(RobotNum).CMknow(2, 2, 2)
t1("st_success23") = Agent2(RobotNum).CMknow(2, 3, 2)
t1("st_success30") = Agent2(RobotNum).CMknow(3, 0, 2)
t1("st_success31") = Agent2(RobotNum).CMknow(3, 1, 2)
t1("st_success32") = Agent2(RobotNum).CMknow(3, 2, 2)
t1("st_success33") = Agent2(RobotNum).CMknow(3, 3, 2)

t1("CMIOCode0") = Agent2(RobotNum).CmIOCode(0)
t1("CMIOCode1") = Agent2(RobotNum).CmIOCode(1) .

t1("CM_fuz_centre_pos0") = Agent2(RobotNum).CMFuzCentre(0)
t1("CM_fuz_centre_pos2") = Agent2(RobotNum).CMFuzCentre(2)
t1("CM_fuz_centre_pos4") = Agent2(RobotNum).CMFuzCentre(4)
t1("CM_fuz_centre_pos6") = Agent2(RobotNum).CMFuzCentre(6)

t1("CM_fuz_sigma0") = Agent2(RobotNum).CMFuzSigma(0)
t1("CM_fuz_sigma2") = Agent2(RobotNum).CMFuzSigma(2)
t1("CM_fuz_sigma4") = Agent2(RobotNum).CMFuzSigma(4)
t1("CM_fuz_sigma6") = Agent2(RobotNum).CMFuzSigma(6)

t1("CM_defuz_centre0") = Agent2(RobotNum).CMDefuzCentre(0)
t1("CM_defuz_centrel") = Agent2(RobotNum).CMDefuzCentre(1)
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t1("CM_defuz_centre2") = Agent2(RobotNum).CMDefuzCentre(2)
t1("CM_defuz_centre3") = Agent2(RobotNum).CMDefuzCentre(3)

t1("CM_defuz_sigma0") = Agent2(RobotNum).CMDefuzSigma(0)
t1("CM_defuz_sigmal") = Agent2(RobotNum).CMDefuzSigma(1)
t1("CM_defuz_sigma2") = Agent2(RobotNum).CMDefuzSigma(2)
t1("CM_defuz_sigma3") = Agent2(RobotNum).CMDefuzSigma(3)

t1("CM_know0") = Left(Agent2(RobotNum).CMknow(0, 0, 0), 1) &
Left(Agent2(RobotNum).CMknow(0, 0, 1), 1) & Left(Agent2(RobotNum).CMknow(0, 1,
0), 1) & Left(Agent2(RobotNum).CMknow(0, 1, 1), 1) & Left(Agent2(RobotNum).
CMknow(0, 2, 0), 1) & Left(Agent2(RobotNum).CMknow(0, 2, 1), 1) &
Left(Agent2(RobotNum).CMknow(0, 3, 0), 1) & Left(Agent2(RobotNum).CMknow(0, 3,
1),1)

t1("CM_know1") = Left(Agent2(RobotNum).CMknow(1, 0, 0), 1) &
Left(Agent2(RobotNum).CMknow(1, 0, 1), 1) & Left(Agent2(RobotNum).CMknow(1, 1,
0), 1) & Left(Agent2(RobotNum).CMknow(1, 1, 1), 1) & Left(Agent2(RobotNum).
CMknow(1, 2, 0), 1) & Left(Agent2(RobotNum).CMknow(1, 2, 1), 1) &
Left(Agent2(RobotNum).CMknow(1, 3, 0), 1) & Left(Agent2(RobotNum).CMknow(1, 3,
1), 1) .

t1("CM_know2") = Left(Agent2(RobotNum).CMknow(2, 0, 0), 1) &
Left(Agent2(RobotNum).CMknow(2, 0, 1),-1) & Left(Agent2(RobotNum).CMknow(2, 1,
0), 1) & Left(Agent2(RobotNum).CMknow(2, 1, 1), 1) & Left(Agent2(RobotNum).
CMknow(2, 2, 0), 1) & Left(Agent2(RobotNum).CMknow(2, 2, 1), 1) &
Left(Agent2(RobotNum).CMknow(2, 3, 0), 1) & Left(Agent2(RobotNum).CMknow(2, 3,
1), 1)

t1("CM_know3") = Left(Agent2(RobotNum).CMknow(3, 0, 0), 1) &
Left(Agent2(RobotNum).CMknow(3, 0, 1), 1) & Left(Agent2(RobotNum).CMknow(3, 1,
0), 1) & Left(Agent2(RobotNum).CMknow(3, 1, 1), 1) & Left(Agent2(RobotNum).
CMknow(3, 2, 0), 1) & Left(Agent2(RobotNum).CMknow(3, 2, 1), 1) &
Left(Agent2(RobotNum).CMknow(3, 3, 0), 1) & Left(Agent2(RobotNum).CMknow(3, 3,
1), 1)

t1("XHome") = Agent2(RobotNum).XHome
t1("YHome") = Agent2(RobotNum).YHome

t1("learn_io_code0") = Agent2(RobotNum).LearnIOCode(0)
t1("learn_io_codel") = Agent2(RobotNum).LearnIOCode(1)
t1("LearnStrategy") = Agent2(RobotNum).LearnS

t1("learn_fuz_centre_pos2") = Agent2(RobotNum).LearnSigma(2)
t1("learn_fuz_centre_pos4") = Agent2(RobotNum).LearnSigma(4)
t1("learn_fuz_centre_pos6") = Agent2(RobotNum).LearnSigma(6)
t1("learn_fuz_centre_pos8") = Agent2(RobotNum).LearnSigma(8)
t1("learn_fuz_centre_pos10") = Agent2(RobotNum).LearnSigma(10)

t1("learn_fuz_sigma2") = Agent2(RobotNum).LearnSigma(2)
t1("learn_fuz_sigmad") = Agent2(RobotNum).LearnSigma(4)
t1("learn_fuz_sigma6") = Agent2(RobotNum).LearnSigma(6)
t1("learn_fuz_sigma8") = Agent2(RobotNum).LeamSigma(8)
t1("learn_fuz_sigmal0") = Agent2(RobotNum).LearnSigma(10)

t1("Activities") = Agent2(RobotNum).DailyActivities
End If
t1.Update
t1.Close

Set t1 = db.OpenTable("3" & Agent3(RobotNum).tablenumber)
t1.AddNew
If ((duration - 1 > ItNum) And (Agent3(RobotNum).MutationTag <> 1)) Then
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Else

t1("st_budgetstate0") = Agent3(RobotNum).ShortTermBudgets(0)
t1("st_budgetstatel") = Agent3(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent3(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agent3(RobotNum).ShortTermBudgets(3)

t1("LearnStrategy") = Agent3(RobotNum).LearnS
t1("Activities") = Agent3(RobotNum).DailyActivities

t1("st_io_code0") = Agent3(RobotNum).ShortTermIOCode(0)
t1("st_io_codel") = Agent3(RobotNum).ShortTermIOCode(1)
t1("st_io_code2") = Agent3(RobotNum).ShortTermIOCode(2)
t1("st_io_code3") = Agent3(RobotNum).ShortTermIOCode(3)
t1("st_io_code4") = Agent3(RobotNum).ShortTermIOCode(4)
t1("st_io_code5") = Agent3(RobotNum).ShortTermIOCode(5)
t1("st_io_code6") = Agent3(RobotNum).ShortTermIOCode(6)
t1("st_io_code7") = Agent3(RobotNum).ShortTermIOCode(7)

t1("st_fuz_centre_pos0") = Agent3(RobotNum).ShortTermFuzCentre(0)
t1("st_fuz_centre_pos2") = Agent3(RobotNum).ShortTermFuzCentre(2)
t1("st_fuz_centre_pos4") = Agent3(RobotNum).ShortTermFuzCentre(4)
t1("st_fuz_centre_pos6") = Agent3(RobotNum).ShortTermFuzCentre(6)

t1("st_fuz_sigma0") = Agent3(RobotNum).ShortTermFuzSigma(0)
t1("st_fuz_sigma2") = Agent3(RobotNum).ShortTermFuzSigma(2)
t1("st_fuz_sigma4") = Agent3(RobotNum).ShortTermFuzSigma(4)

- t1("st_fuz sigma6") = Agent3(RobotNum).ShortTermFuzSigma(6) =~~~ 7

t1("st_defuz_centre0") = Agent3(RobotNum).ShortTermDefuzCentre(0)
t1("st_defuz_centrel") = Agent3(RobotNum).ShortTermDefuzCentre(1)
t1("st_defuz_centre2") = Agent3(RobotNum).ShortTermDefuzCentre(2)
t1("st_defuz_centre3") = Agent3(RobotNum).ShortTermDefuzCentre(3)

t1("st_defuz_sigma0") = Agent3(RobotNum).ShortTermDefuzSigma(0)
t1("st_defuz_sigmal") = Agent3(RobotNum).ShortTermDefuzSigma(1)
t1("st_defuz_sigma2") = Agent3(RobotNum).ShortTermDefuzSigma(2)
t1("st_defuz_sigma3") = Agent3(RobotNum).ShortTermDefuzSigma(3)

t1("st_budgetstate0") = Agent3(RobotNum).ShortTermBudgets(0)
t1("st_budgetstatel") = Agent3(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent3(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agent3(RobotNum).ShortTermBudgets(3)

t1("st_acttime0") = Agent3(RobotNum).ShortTermA ctivities(0)
t1("st_acttime1") = Agent3(RobotNum).ShortTermActivities(1)
t1("st_acttime2") = Agent3(RobotNum).ShortTermActivities(2)
t1("st_acttime3") = Agent3(RobotNum).ShortTermActivities(3)

t1("st_success00") = Agent3(RobotNum).CMknow(0, 0, 2)
t1("st_success01") = Agent3(RobotNum).CMknow(0, 1, 2)
t1("st_success02") = Agent3(RobotNum).CMknow(0, 2, 2)
t1("st_success03") = Agent3(RobotNum).CMknow(0, 3, 2)
t1("st_success10") = Agent3(RobotNum).CMknow(1, 0, 2)
t1("st_success11") = Agent3(RobotNum).CMknow(1, 1, 2)
t1("st_success12") = Agent3(RobotNum).CMknow(1, 2, 2)
t1("st_success13") = Agent3(RobotNum).CMknow(1, 3, 2)
t1("st_success20") = Agent3(RobotNum).CMknow(2, 0, 2)
t1("st_success21") = Agent3(RobotNum).CMknow(2, 1, 2)
t1("st_success22") = Agent3(RobotNum).CMknow(2, 2, 2)
t1("st_success23") = Agent3(RobotNum).CMknow(2, 3, 2)
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t1("st_success30") = Agent3(RobotNum).CMknow(3, 0, 2)
t1("st_success31") = Agent3(RobotNum).CMknow(3, 1, 2)
t1("st_success32") = Agent3(RobotNum).CMknow(3, 2, 2)
t1("st_success33") = Agent3(RobotNum).CMknow(3, 3, 2)

t1("CMIOCode0") = Agent3(RobotNum).CmIOCode(0)
t1("CMIOCodel") = Agent3(RobotNum).CmIOCode(1)

t1("CM_fuz_centre_pos0") = Agent3(RobotNum).CMFuzCentre(0)
t1("CM_fuz_centre_pos2") = Agent3(RobotNum).CMFuzCentre(2)
t1("CM_fuz_centre_pos4") = Agent3(RobotNum).CMFuzCentre(4)
t1("CM_fuz_centre_pos6") = Agent3(RobotNum).CMFuzCentre(6)

t1("CM_fuz_sigma0") = Agent3(RobotNum).CMFuzSigma(0)
t1("CM_fuz_sigma2") = Agent3(RobotNum).CMFuzSigma(2)
t1("CM_fuz_sigmad") = Agent3(RobotNum).CMFuzSigma(4)
t1("CM_fuz_sigma6") = Agent3(RobotNum).CMFuzSigma(6)

t1("CM_defuz_centre0") = Agent3(RobotNum).CMDefuzCentre(0)
t1("CM_defuz_centrel") = Agent3(RobotNum).CMDefuzCentre(1)
t1("CM_defuz_centre2") = Agent3(RobotNum).CMDefuzCentre(2)
t1("CM_defuz_centre3") = Agent3(RobotNum).CMDefuzCentre(3)

t1("CM_defuz_sigma0") = Agent3(RobotNum).CMDefuzSigma(0)
t1("CM_defuz_sigmal™) = Agent3(RobotNum).CMDefuzSigma(1)
t1("CM_defuz_sigma2") = Agent3(RobotNum).CMDefuzSigma(2)
t1("CM_defuz_sigma3") = Agent3(RobotNum).CMDefuzSigma(3)

t1("CM_know0") = Left(Agent3(RobotNum).CMknow(0, 0, 0), 1) &
Left(Agent3(RobotNum).CMknow(0, 0, 1), 1) & Left(Agent3(RobotNum).CMknow(0, 1,
0), 1) & Left(Agent3(RobotNum).CMknow(0, 1, 1), 1) & Left(Agent3(RobotNum).

CMknow(0, 2, 0), 1) & Left(Agent3(RobotNum).CMknow(0, 2, 1), 1) &

Left(Agent3(RobotNum).CMknow(0, 3, 0), 1) & Left(Agent3(RobotNum).CMknow(0, 3,

b, 1)

t1("CM_know1") = Left(Agent3(RobotNum).CMknow(1, 0, 0), 1) &
Left(Agent3(RobotNum).CMknow(1, 0, 1), 1) & Left(Agent3(RobotNum).CMknow(1, 1,
0), 1) & Left(Agent3(RobotNum).CMknow(1, 1, 1), 1) & Left(Agent3(RobotNum).

CMknow(l, 2, 0), 1) & Left(Agent3(RobotNum).CMknow(1, 2, 1), 1) &

Left(Agent3(RobotNum).CMknow(1, 3, 0), 1) & Left(Agent3(RobotNum).CMknow(1, 3,

1, 1)

t1("CM_know2") = Left(Agent3(RobotNum).CMknow(2, 0, 0), 1) &
Left(Agent3(RobotNum).CMknow(2, 0, 1), 1) & Left(Agent3(RobotNum).CMknow(2, 1,
0), 1) & Left(Agent3(RobotNum).CMknow(2, 1, 1), 1) & Left(Agent3(RobotNum).

CMknow(2, 2, 0), 1) & Left(Agent3(RobotNum).CMknow(2, 2, 1), 1) &

Left(Agent3(RobotNum).CMknow(2, 3, 0), 1) & Left(Agent3(RobotNum).CMknow(2, 3,

D, 1)

t1("CM_know3") = Left(Agent3(RobotNum).CMknow(3, 0, 0), 1) &
Left(Agent3(RobotNum).CMknow(3, 0, 1), 1) & Left(Agent3(RobotNum).CMknow(3, 1,
0), 1) & Left(Agent3(RobotNum).CMknow(3, 1, 1), 1) & Left(Agent3(RobotNum).

CMknow(3, 2, 0), 1) & Left(Agent3(RobotNum).CMknow(3, 2, 1), 1) &

Left(Agent3(RobotNum).CMknow(3, 3, 0), 1) & Left(Agent3(RobotNum).CMknow(3, 3,

1),1)

t1("XHome") = Agent3(RobotNum).XHome
t1("YHome") = Agent3(RobotNum).YHome

t1("learn_io_code0") = Agent3(RobotNum).LearnIOCode(0)
t1("learn_io_codel") = Agent3(RobotNum).LearnIOCode(1)
t1("LearnStrategy") = Agent3(RobotNum).LearnS
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End If

tl("learn_fuz_centre_pos2") = Agent3(RobotNum).LearnSigma(2)
t1("learn_fuz_centre_pos4") = Agent3(RobotNum).LearnSigma(4)
t1("learn_fuz centre_pos6") = Agent3(RobotNum).LearnSigma(6)
t1("learn_fuz_centre_pos8") = Agent3(RobotNum).LearnSigma(8)
t1("learn_fuz_centre_pos10") = Agent3(RobotNum).LearnSigma(10)

t1("learn_fuz sigma2") = Agent3(RobotNum).LearnSigma(2)
t1("learn_fuz_sigma4") = Agent3(RobotNum).LearnSigma(4)
t1("learn_fuz_sigma6") = Agent3(RobotNum).LeamSigma(6)
t1("learn_fuz_sigma8") = Agent3(RobotNum).LearnSigma(8)
t1("learn_fuz_sigmal0") = Agent3(RobotNum).LearnSigma(10)

t1("Activities") = Agent3(RobotNum).DailyActiviﬁes

t1.Update
t1.Close

Set t1 = db.OpenTable("4" & Agent4(RobotNum).tablehumber)
t1.AddNew ‘
If ((duration - 1 > ItNum) And (Agent4(RobotNum).MutationTag <> 1)) Then

Else

t1("st_budgetstate0") = Agent4(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate1") = Agentd(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent4(RobotNum).ShortTermBudgets(2)
t1("st_budgetstate3") = Agent4(RobotNum).ShortTermBudgets(3)

t1("LearnStrategy") = Agent4(RobotNum).LearnS

t1("Activities") = Agent4(RobotNum).DailyActivities

t1("st_io_code0") = Agent4(RobotNum).ShortTermIOCode(0)
t1("st_io_codel") = Agent4(RobotNum).ShortTermIOCode(1)
t1("st_io_code2") = Agentd(RobotNum).ShortTermIOCode(2)
t1("st_io_code3") = Agent4d(RobotNum).ShortTermIOCode(3)
t1("st_io_code4") = Agentd(RobotNum).ShortTermIOCode(4)
t1("st_io_code5") = Agent4(RobotNum).ShortTermIOCode(5)
t1("st_io_code6") = Agent4(RobotNum).ShortTermIOCode(6)
t1("st_io_code7") = Agent4(RobotNum).ShortTermIOCode(7)

t1("st_fuz_centre_pos0") = Agent4(RobotNum).ShortTermFuzCentre(0)
t1("st_fuz_centre_pos2") = Agent4(RobotNum).ShortTermFuzCentre(2)
t1("st_fuz_centre pos4") = Agentd(RobotNum).ShortTermFuzCentre(4)
t1("st_fuz_centre_pos6") = Agentd(RobotNum).ShortTermFuzCentre(6)

t1("st_fuz_sigma0") = Agent4(RobotNum).ShortTermFuzSigma(0)
t1("st_fuz_sigma2") = Agent4(RobotNum).ShortTermFuzSigma(2)
t1("st_fuz_sigmad") = Agent4(RobotNum).ShortTermFuzSigma(4)
t1("st_fuz_sigma6") = Agent4(RobotNum).ShortTermFuzSigma(6)

t1("st_defuz_centre0") = Agent4(RobotNum).ShortTermDefuzCentre(0)
t1("'st_defuz_centrel") = Agent4(RobotNum).ShortTermDefuzCentre(1)
t1("st_defuz_centre2") = Agent4(RobotNum).ShortTermDefuzCentre(2)
t1("st_defuz_centre3") = Agent4(RobotNum).ShortTermDefuzCentre(3)

t1("st_defuz_sigma0") = Agent4(RobotNum).ShortTermDefuzSigma(0)
t1("st_defuz_sigmal") = Agentd(RobotNum).ShortTermDefuzSigma(1)
t1("st_defuz_sigma2") = Agent4(RobotNum).ShortTermDefuzSigma(2)
t1("st_defuz_sigma3") = Agent4(RobotNum).ShortTermDefuzSigma(3)

t1("st_budgetstate0") = Agent4(RobotNum).ShortTermBudgets(0)
t1("st_budgetstate1") = Agent4(RobotNum).ShortTermBudgets(1)
t1("st_budgetstate2") = Agent4(RobotNum).ShortTermBudgets(2)
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t1("st_budgetstate3") = Agent4(RobotNum).ShortTermBudgets(3)

t1("st_acttime0") = Agentd(RobotNum).ShortTermActivities(0)
t1("st_acttimel") = Agent4(RobotNum).ShortTermActivities(1)
t1("st_acttime2") = Agent4(RobotNum).ShortTermActivities(2)
t1("'st_acttime3") = Agent4(RobotNum).ShortTermActivities(3)

t1("st_success00") = Agent4(RobotNum).CMknow(0, 0, 2)
t1("st_success01") = Agent4(RobotNum).CMknow(0, 1, 2)
t1("st_success02") = Agent4(RobotNum).CMknow(0, 2, 2)
t1("st_success03") = Agentd(RobotNum).CMknow(0, 3, 2)
t1("st_success10") = Agent4(RobotNum).CMknow(1, 0, 2)
t1("st_success11") = Agent4(RobotNum).CMknow(1, 1, 2)
t1("st_success12") = Agent4(RobotNum).CMknow(1, 2, 2)
t1("st_success13") = Agentd(RobotNum).CMknow(1, 3, 2)
t1("st_success20") = Agentd(RobotNum).CMknow(2, 0, 2)
t1("st_success21") = Agent4(RobotNum).CMknow(2, 1, 2)
t1("st_success22") = Agent4(RobotNum).CMknow(2, 2, 2)
t1("st_success23") = Agent4(RobotNum).CMknow(2, 3, 2)
t1("st_success30") = Agent4(RobotNum).CMknow(3, 0, 2)
t1("st_success31") = Agent4(RobotNum).CMknow(3, 1, 2)
t1("st_success32") = Agent4(RobotNum).CMknow(3, 2, 2)
t1("st_success33") = Agent4(RobotNum).CMknow(3, 3, 2)

t1("CMIOCode0") = Agent4(RobotNum).CmIOCode(0)
t1("CMIOCodel") = Agent4(RobotNum).CmIOCode(1)

t1("CM_fuz_centre_pos0") = Agent4(RobotNum).CMFuzCentre(0)
t1("CM_fuz_centre_pos2") = Agentd(RobotNum).CMFuzCentre(2)
t1("CM_fuz_centre_pos4") = Agent4(RobotNum).CMFuzCentre(4)
t1("CM_fuz_centre_pos6") = Agent4(RobotNum).CMFuzCentre(6)

t1("CM_fuz_sigma0") = Agentd4(RobotNum).CMFuzSigma(0)
t1("CM_fuz_sigma2") = Agent4(RobotNum).CMFuzSigma(2)
t1("CM_fuz_sigma4") = Agent4(RobotNum).CMFuzSigma(4)
t1("CM_fuz_sigma6") = Agent4(RobotNum).CMFuzSigma(6).

t1("CM_defuz_centre0") = Agent4(RobotNum).CMDefuzCentre(0)
t1("CM_defuz_centrel") = Agentd(RobotNum).CMDefuzCentre(1)
t1("CM_defuz_centre2") = Agentd(RobotNum).CMDefuzCentre(2)
t1("CM_defuz_centre3") = Agent4(RobotNum).CMDefuzCentre(3)

t1("CM_defuz_sigma0") = Agent4(RobotNum).CMDefuzSigma(0)
t1("CM_defuz_sigmal") = Agent4(RobotNum).CMDefuzSigma(1)
t1("CM_defuz_sigma2") = Agent4(RobotNum).CMDefuzSigma(2)
t1("CM_defuz_sigma3") = Agent4(RobotNum).CMDefuzSigma(3)

t1("CM_know(0") = Left(Agent4(RobotNum).CMknow(0, 0, 0), 1) &
Left(Agent4(RobotNum).CMknow(0, 0, 1), 1) & Left(Agent4(RobotNum).CMknow(0, 1,
0), 1) & Left(Agent4(RobotNum).CMknow(0, 1, 1), 1) & Left(Agent4(RobotNum).
CMknow(0, 2, 0), 1) & Left(Agent4(RobotNum).CMknow(0, 2, 1), 1) &
Left(Agent4(RobotNum).CMknow(0, 3, 0), 1) & Left(Agentd(RobotNum).CMknow(0, 3,
1), 1)

t1("CM_know1") = Left(Agentd(RobotNum).CMknow(1, 0, 0), 1) &
Left(Agent4(RobotNum).CMknow(1, 0, 1), 1) & Left(Agent4(RobotNum).CMknow(1, 1,
0), 1) & Left(Agent4(RobotNum).CMknow(1, 1, 1), 1) & Left(Agent4(RobotNum).
CMknow(1, 2, 0), 1) & Left(Agent4(RobotNum).CMknow(1, 2, 1), 1) &
Left(Agent4(RobotNum).CMknow(1, 3, 0), 1) & Left(Agent4(RobotNum).CMknow(1, 3,
1), 1
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t1("CM_know2") = Left(Agent4(RobotNum).CMknow(2, 0, 0), 1) &
Left(Agent4(RobotNum).CMknow(2, 0, 1), 1) & Left(Agent4(RobotNum).CMknow(2, 1,
0), 1) & Left(Agent4(RobotNum).CMknow(2, 1, 1), 1) & Left(Agent4(RobotNum).
CMknow(2, 2, 0), 1) & Left(Agent4(RobotNum).CMknow(2, 2, 1), 1) &
Left(Agent4(RobotNum).CMknow(2, 3, 0), 1) & Left(Agentd(RobotNum).CMknow(2, 3,
1), D

t1("CM_know3") = Left(Agentd(RobotNum).CMknow(3, 0, 0), 1) &
Left(Agentd4(RobotNum).CMknow(3, 0, 1), 1) & Left(Agent4(RobotNum).CMknow(3, 1,
0), 1) & Left(Agent4(RobotNum).CMknow(3, 1, 1), 1) & Left(Agent4(RobotNum).
CMknow(3, 2, 0), 1) & Left(Agent4(RobotNum).CMknow(3, 2, 1), 1) &
Left(Agent4(RobotNum).CMknow(3, 3,0), 1) & Left(Agent4(RobotNum).CMknow(3, 3,

t1("XHome") = Agent4(RobotNur‘n)A.XHome
t1("YHome") = Agent4(RobotNum).YHome

t1("learn_io_code0") = Agent4(RobotNum).LearnIOCode(0)
t1("learn_io_codel") = Agent4(RobotNum).LearnIOCode(1)
t1("LearnStrategy") = Agent4(RobotNum).LearnS

t1("learn_fuz_centre_pos2") = Agent4(RobotNum).LearnSigma(2)
t1("learn_fuz centre pos4") = Agentd(RobotNum).LearnSigma(4)
t1("learn_fuz_centre_pos6") = Agent4(RobotNum).LearnSigma(6)
t1("learn_fuz_centre_pos8") = Agent4(RobotNum).LearnSigma(8§)
t1("learn_fuz_centre_pos10") = Agent4(RobotNum).LearnSigma(10)

t1("learn_fuz_sigma2") = Agent4(RobotNum).LearnSigma(2)
t1("learn_fuz_sigma4") = Agent4(RobotNum).LeanSigma(4)
ti("leam_fuz_sigma6") = Agent4(RobotNum).LearnSigma(6)
t1("learn_fuz_sigma8") = Agent4(RobotNum).LearnSigma(8)
t1("learn_fuz_sigmal0”) = Agent4(RobotNum).LearnSigma(10)

t1("Activities") = Agent4(RobotNum).DailyActivities
End If
t1.Update
t1.Close
End Sub

Sub WriteWorld ()

Dim t1 As table
Dim i As Integer

Set t1 = db.OpenTable("world" & number)

t1.AddNew

Select Case ItNum

Case Is <> duration - 1
t1("cap_0") = ThisWorld.Capacity(0, number)
t1("cap_1") = ThisWorld.Capacity(1, number)
t1("cap_2") = ThisWorld.Capacity(2, number)
t1("cap_3") = ThisWorld.Capacity(3, number)

t1("price_0") = ThisWorld.Price(0, number)
t1("price_1") = ThisWorld.Price(1, number)
t1("price_2") = ThisWorld.Price(2, number)
t1("price_3") = ThisWorld.Price(3, number)
Fori=0To23
t1("payoffl_" & i) = ThisWorld.Act(1, i, number)
Next i
Case Else
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t1("cap_0") = ThisWorld.Capacity(0, number)

t1("cap_1") = ThisWorld.Capacity(1, number)

t1("cap_2") = ThisWorld.Capacity(2, number)
t1("cap_3") = ThisWorld.Capacity(3, number)

t1("price_0") = ThisWorld.Price(0, number)
t1("price_1") = ThisWorld.Price(1, number)
t1("price_2") = ThisWorld.Price(2, number)
t1("price_3") = ThisWorld.Price(3, number)
Fori=0To23

Next i
End Select
t1.Update
t1.Close
End Sub

Analysis.bas

Option Explicit

Dim IsArray()
Dim AgeArray()

t1("payoff0_" & i) = ThisWorld.Act(0, i, number)
t1("payoffl " & i) = ThisWorld.Act(1, i, number)
t1("payoff2_" & i) = ThisWorld.Act(2, i, number)
t1("payoff3_" & i) = ThisWorld.Act(3, i, number)

Dim Occurrence As Integer

Dim Mean As Single

Dim StdDev As Single
Dim Value(9) As Long

Const Scalefac = 50
Dim t As table

Dim TypeNum As Integer

Sub CalcStd ()

Dim i As Integer
Dim sum As Single

sum=20

For i =0 To Occurrence
sum = AgeArray(i, 0) + sum

Next i

Mean = sum / (Occurrence + 1)
distribu.Label5.Caption = Mean
For i =0 To Occurrence

AgeArray(i, 1) = (AgeArray(i, 0) - Mean) * 2

Next i
sum=20

For i=0 To Occurrence
sum = AgeArray(i, 1) + sum

Next i

StdDev = Sqr(sum / (Occurrence + 1))
distribu.Label3.Caption = StdDev
distribu.Label9.Caption = Occurrence + 1

End Sub

Sub Classify ()
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If t("All") < Scalefac Then
Value(0) = Value(0) + 1

Elself ((t("All") >= Scalefac) And (t("All") <2 * Scalefac)) Then
Value(1) = Value(1) + 1

Elself ((t("All") >= 2 * Scalefac) And (t{("All") <3 * Scalefac)) Then
Value(2) = Value(2) + 1

Elself ((t("All") >= 3 * Scalefac) And (t("All") <4 * Scalefac)) Then
Value(3) = Value(3) + 1

Elself ((t("All") >= 4 * Scalefac) And (t("All") < 5 * Scalefac)) Then
Value(4) = Value(4) + 1

ElseIf ((t("All") >= 5 * Scalefac) And (t("All") < 6 * Scalefac)) Then
Value(5) = Value(5) + 1

ElseIf ((t("All") >= 6 * Scalefac) And (t("All") <7 * Scalefac)) Then
Value(6) = Value(6) + 1

Elself (t("All") >= 7 * Scalefac) And (t("All") <8 * Scalefac)) Then
Value(7) = Value(7) + 1

ElseIf ((t("All") >= 8 * Scalefac) And (t("All") <9 * Scalefac)) Then
Value(8) = Value(8) + 1

ElseIf ((t("All") >= 9 * Scalefac)) Then
Value(9) = Value(9) + 1

End If

End Sub

Sub DrawDistribu ()
DimiAs Integer

distribu.Picture1.Cls

Fori=0To9
distribu.Picture1.Line (240 + (i * 840), 6600)-(500 + (i * 840), 6600 - Value(i) * 10),
QBColor(1), BF
distribu.Label1(i).Caption = Scalefac *i & " - " & Scalefac * (i+1)- 1
distribu.Label7(i).Caption = Value(i)

Next i

distribu.Label1(9).Caption =">" & Scalefac * 9

End Sub

Sub DrawTSeries ()

Dim db As database

Dim t As table

Dim i As Integer

Static TMean(19, 1) As Long
Dim count As Integer

Dim tname As String

Dim j As Integer

TMean(0, 0)=0
Set db = OpenDatabase("c:\results.mdb", True)
Fori=1To 19
Set t = db.OpenTable("A" & i)
count=1
j=1*250+250
tname = CStr(j)
t.MoveFirst
TMean(i, 0) = t(tname)
t.MoveNext
Do Until t. EOF
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TMean(i, 0) = TMean(i, 0) + t(tname)
t.MoveNext
count = count + 1

Loop
t.Close
TMean(i, 0) = TMean(i, 0) / count
Next i
db.Close

Meangraph.Graphl.Autolnc =1

Meangraph.Graphl.NumSets = 1

Meangraph.Graphl .NumPoints = 20

Meangraph.Graph1.LineStats = 8

Meangraph.Graphl.LabelEvery = 2

Meangraph.Graph1.GraphTitle = "Time Series of Average Time between Resets"
Meangraph.Graphl.GraphType = 6

Meangraph.Graphl.LegendText = "Av. Reset Time"

Meangraph.Show

Fori=0To 19
TMean(i, 1)=250*(i+1)
Meangraph.Graphl.ThisPoint =1+ 1
Meangraph.Graph1.LabelText = TMean(i, 1)

Next i

For i =0 To Meangraph.Graph1.NumPoints - 1
Meangraph.Graph1.ThisPoint =i + 1
Meangraph.Graphl.GraphData = TMean(i, 0)

Next i

End Sub

Sub get_Is ()

Dim db As database

Dim t As table

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim TypeNum As Integer
Dim AgentNum As Integer
Dim NumRecords As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t = db.OpenTable("Typedescriptor")
t.MoveFirst
AgentNum = t("number")
t.Close
NumRecords =0
Set t = db.OpenTable("10")
t.MoveFirst
Do Until t.EOF
t.MoveNext
NumRecords = NumRecords + 1
Loop
t.Close
NumRecords = NumRecords / 10
ReDim IsArray(NumRecords - 1, 3)
For TypeNum =1 To 4
Fori=0 To AgentNum - 1
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Set t = db.OpenTable(TypeNum & i)
t.MoveFirst
t.MoveNext
For j =0 To NumRecords - 1
Select Case t("LearnStrategy")
Case 0
IsArray(j, 0) = IsArray(j, 0) + 1
Case 1
IsArray(j, 1) = IsAmay(j, 1) + 1
Case 2
IsArray(j, 2) = IsArmray(j, 2) + 1
Case 3
IsArray(j, 3) = IsAmray(j, 3) + 1
End Select
Fork=0To9
t.MoveNext
Next k
Next j
t.Close
Next i
Next TypeNum

Meangraph.Graphl.AutoInc =1

Meangraph.Graphl.NumSets = 4

Meangraph.Graphl.NumPoints = NumRecords - 1
Meangraph.Graphl.LineStats = 0

Meangraph.Graphl.LabelEvery = 50 _
Meangraph.Graphl.GraphTitle = "Distribution of Learning Strategies"
Meangraph.Graphl.GraphType =8

For i = 1 To Meangraph.Graphl.NumPoints

Meangraph.Graphl.LabelText = (i * 10) - 10
Next i
Fori=0To3

Meangraph.Graphl.LegendText =i
Next i
For i =0 To Meangraph.Graphl . NumSets - 1

For j = 1 To Meangraph.Graphl NumPoints
Meangraph.Graph1.GraphData = IsArray(j, Meangraph.Graph1.ThisSet - 1)
Next j -
Next i
Meangraph.Show
Meangraph.Graphl.DrawMode = 2
End Sub

Sub GetAge ()

Dim dbl As database

Dim db2 As database

Dim t1 As table

Dim t2 As table

Dim AgeCount As Integer
Dim indicator As Integer
Dim store As Integer

Dim i As Integer

Dim TotNumber As Integer
Dim TypeNum As Integer
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Set dbl = OpenDatabase("C:\blah.mdb")
Set db2 = OpenDatabase("'C:\results.mdb")

Set t2 = db2.0OpenTable("Age")

Set t1 = dbl.OpenTable("Typedescriptor")

t1.MoveFirst

TotNumber = t1("number") - 1

t1.Close

For TypeNum =1 To 4

For RobotNum = 0 To TotNumber
AgeCount=0

Set t1 = db1.OpenTable(TypeNum & RobotNum)

tl.MoveFirst
tl.MoveNext
Do Until t1.EOF

Loop

Fori=0To3

If t1("st_budgetstate" & i) < -500 Then

indicator =1
End If
Nexti
If indicator = 1 Then
t2.AddNew

t2("Age_" & TypeNum & RobotNum) = AgeCount

t2("All") = AgeCount

t2("LearnStrat") = t1("LearnStrategy")

t2.Update

AgeCount =1

indicator =0
Else

AgeCount = AgeCount + 1

EndIf
store = t1("LearnStrategy")
tl.MoveNext

t2.AddNew

t2("Age_" & TypeNum & RobotNum) = AgeCount

t2("All") = AgeCount
t2("LearnStrat") = store
t2.Update

t1.Close

Next RobotNum

Next TypeNum
t2.Close
db2.Close
dbl.Close
End Sub

Sub GetTSeries ()

Dim db1 As database

Dim db2 As database

Dim t1 As table

Dim t2 As table

Dim t3 As table

Dim AgeCountl As Integer
Dim AgeCount2 As Integer
Dim indicator As Integer
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Dim RecCount As Integer
Dim i As Integer

Dim TotNumber As Integer
Dim TypeNum As Integer

Set db1 = OpenDatabase("C:\blah.mdb")
Set db2 = OpenDatabase("C:\results.mdb")
Set t1 = dbl.OpenTable("Typedescriptor")
t1.MoveFirst
TotNumber = t1("number") - 1
t1.Close
Set t2 = db2.0penTable("A1")
For TypeNum =1 To 4
For RobotNum = 0 To TotNumber
AgeCountl =1
AgeCount2 =1
Set t1 = db1.0OpenTable(TypeNum & RobotNum)
t1.MoveFirst
t1.MoveNext
RecCount=1
Do Until t1.EOF
Fori=0To3
If t1("st_budgetstate" & i) <-500 Then
indicator =1
End If
Next i
Select Case RecCount
Case 1
Set t2 = db2.0penTable("A1")
Case 250
Set t3 = db2.0OpenTable("A2")
AgeCount2 =0
Case 500
t2.AddNew
t2("500") = AgeCountl
t2.Update
t2.Close
AgeCountl =0
Set t2 = db2.0penTable("A3")
Case 750
t3.AddNew
t3("750") = AgeCount2
t3.Update
t3.Close
AgeCount2 =0
Set t3 = db2.0penTable("A4")
" Case 1000
t2.AddNew
t2(""1000") = AgeCount1
t2.Update
t2.Close
AgeCountl =0
Set t2 = db2.0OpenTable("AS")
‘Case 1250 '
t3.AddNew
t3("1250") = AgeCount2
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t3.Update

t3.Close

AgeCount2 =0

Set t3 = db2.0OpenTable("A6")
Case 1500

©2.AddNew

12("1500") = AgeCountl

t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A7")
Case 1750 :

t3.AddNew

t3("1750") = AgeCount2

t3.Update

t3.Close

AgeCount2 =0

Set t3 = db2.0OpenTable("A8")
Case 2000

t2.AddNew

t2("2000") = AgeCountl

t2.Update

AgeCountl =0

12.Close

Set t2 = db2.OpenTable("A9")
Case 2250

t3.AddNew

t3(""2250") = AgeCount2

t3.Update

t3.Close

AgeCount2 =0

Set t3 = db2.0OpenTable("A10")
Case 2500

t2.AddNew

t2("2500") = AgeCountl

t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A11")
Case 2750

t3.AddNew

t3("2750") = AgeCount2

t3.Update

13.Close

AgeCount2 =0

Set t3 = db2.0OpenTable("A12")
Case 3000

t2.AddNew

t2("3000") = AgeCount1

t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A13")
Case 3250

t3.AddNew

t3("3250™) = AgeCount2
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t3.Update

t3.Close

AgeCount2 =0

Set t3 = db2.0OpenTable("A14")

Case 3500

t2.AddNew

t2("3500") = AgeCountl
t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A15")

Case 3750

3.AddNew
t3("3750") = AgeCount2

- t3.Update

t3.Close
AgeCount2 =0
Set t3 = db2.0OpenTable("A16")

Case 4000

t2.AddNew

t2("4000") = AgeCountl
t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A17")

Case 4250

t3.AddNew

t3("4250") = AgeCount2
t3.Update

t3.Close

AgeCount2 =0

Set t3 = db2.0penTable("A18")

Case 4500

t2.AddNew

t2("4500") = AgeCountl
t2.Update

t2.Close

AgeCountl =0

Set t2 = db2.0OpenTable("A19")

Case 4750 -

t3.AddNew

t3("4750") = AgeCount2
t3.Update

t3.Close

AgeCount2 =0

Case 5000 -

t2.AddNew

t2("5000") = AgeCountl
t2.Update

t2.Close

~ AgeCountl =0
End Select -

If indicator = 1 Then

If RecCount < 500 Then
t2.AddNew
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t2("500") = AgeCountl
t2.Update
End If
If (RecCount > 250) And (RecCount < 750) Then
t3.AddNew
t3("750") = AgeCount2
t3.Update
EndIf
If (RecCount > 500) And (RecCount < 1000) Then
t2.AddNew o '
- 12(""1000") = AgeCountl
t2.Update
EndIf -
If (RecCount > 750) And (RecCount < 1250) Then
t3.AddNew
t3("1250") = AgeCount2
t3.Update
End If
If (RecCount > 1000) And (RecCount < 1500) Then
t2.AddNew
t2("1500") = AgeCountl
t2.Update
End If
If (RecCount > 1250) And (RecCount < 1750) Then
t3.AddNew
~ t3("1750") = AgeCount2
t3.Update
End If
If (RecCount > 1500) And (RecCount < 2000) Then
t2.AddNew
t2("2000") = AgeCountl
t2.Update
End If
If (RecCount > 1750) And (RecCount < 2250) Then
t3.AddNew
t3("2250") = AgeCount2
t3.Update
End If
If (RecCount > 2000) And (RecCount < 2500) Then
12.AddNew
- 12("2500") = AgeCountl
t2.Update
End If
If (RecCount > 2250) And (RecCount < 2750) Then
t3.AddNew
t3("2750") = AgeCount2
t3.Update
End If
If (RecCount > 2500) And (RecCount < 3000) Then
t2.AddNew
t2("3000") = AgeCountl
t2.Update
End If
If (RecCount > 2750) And (RecCount < 3250) Then
t3.AddNew
t3("3250") = AgeCount2
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Loop
t1.Close
Next RobotNum
Next TypeNum
db2.Close
db1.Close
End Sub

Sub LogAge ()
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t3.Update
End If
If (RecCount > 3000) And (RecCount < 3500) Then
12.AddNew
12("3500") = AgeCountl
t2.Update
End If

. If (RecCount > 3250) And (RecCount < 3750) Then

Else

End If

t3.AddNew
t3("3750") = AgeCount2
t3.Update
End If »
If (RecCount > 3500) And (RecCount < 4000) Then
" t2.AddNew
t2("4000") = AgeCountl
t2.Update ‘
End If
If (RecCount > 3750) And (RecCount < 4250) Then
t3.AddNew
t3("4250") = AgeCount2
t3.Update
End If-
If (RecCount > 4000) And (RecCount < 4500) Then
t2.AddNew
12("4500") = AgeCountl
t2.Update
End If
If (RecCount > 4250) And (RecCount < 4750) Then
t3.AddNew
t3("4750") = AgeCount2
t3.Update
End If
If (RecCount > 4500) And (RecCount < 5000) Then
t2.AddNew
t2("5000") = AgeCountl
t2.Update
End If
AgeCountl =0
AgeCount2 =0
indicator =0

AgeCountl = AgeCountl +1
AgeCount2 = AgeCount2 + 1

t1.MoveNext
RecCount = RecCount + 1
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Dim NewTd As New TableDef, NewTd1 As New TableDef, NewTd2 As New TableDef

Dim NewTd3 As New TableDef, NewTd4 As New TableDef, NewTd5 As New TableDef
Dim NewTd6 As New TableDef, NewTd7 As New TableDef, NewTd8 As New TableDef
Dim NewTd9 As New TableDef, NewTd10 As New TableDef, NewTd11 As New TableDef
Dim NewTd12 As New TableDef, NewTd13 As New TableDef, NewTd14 As New TableDef
Dim NewTd15 As New TableDef, NewTd16 As New TableDef, NewTd17 As New TableDef
Dim NewTd18 As New TableDef, NewTd19 As New TableDef

Dim f1 As New Field, f2 As New Field, f3 As New Field
Dim f4 As New Field, f5 As New Field, f6 As New Field
Dim f7 As New Field, f8 As New Field, f9 As New Field
Dim f10 As New Field, f11 As New Field, f12 As New Field
Dim f13 As New Field, f14 As New Field, f15 As New Field
Dim f16 As New Field, f17 As New Field, f18 As New Field
Dim f19 As New Field, f20 As New Field, 21 As New Field
Dim {22 As New Field, £23 As New Field, 24 As New Field
Dim 25 As New Field, £26 As New Field, 27 As New Field
Dim f28 As New Field, 29 As New Field, f30 As New Field
Dim f31 As New Field, £32 As New Field, £33 As New Field
Dim 34 As New Field, 35 As New Field, 36 As New Field
- Dim 37 As New Field, f38 As New Field, £39 As New Field
Dim f40 As New Field, f41 As New Field, f42 As New Field
Dim f43 As New Field, f44 As New Field, f45 As New Field
Dim f46 As New Field, f47 As New Field, f48 As New Field
Dim f49 As New Field, f50 As New Field, f51 As New Field
Dim £52 As New Field, f53 As New Field, f54 As New Field
Dim {55 As New Field, f56 As New Field, f57 As New Field
Dim 58 As New Field, 59 As New Field, f60 As New Field
Dim f61 As New Field, f62 As New Field, f63 As New Field
Dim 64 As New Field, f65 As New Field, f66 As New Field
Dim f67 As New Field, f68 As New Field, {69 As New Field
Dim f70 As New Field, f71 As New Field, f72 As New Field
Dim f73 As New Field, 74 As New Field, f75 As New Field
Dim f76 As New Field, 77 As New Field, f78 As New Field
Dim £79 As New Field, f80 As New Field, f81 As New Field
Dim f82 As New Field, f83 As New Field, f84 As New Field _ -
Dim f85 As New Field

Set db = CreateDatabase("C:\results.mdb", DB_LANG_GENERAL)
NewTd.Name ="Age"

fl1.Name ="Age 10"
f1.Type = DB_INTEGER
NewTd.Fields.Append f1

f2 Name ="Age 11"
f2.Type = DB_INTEGER
NewTd.Fields.Append f2

f3.Name ="Age 12"
3.Type = DB_INTEGER
NewTd.Fields.Append f3

f4 Name ="Age 13"
f4.Type = DB_INTEGER
NewTd.Fields.Append f4

f5.Name ="Age_14"
£5.Type = DB_INTEGER
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NewTd.Fields.Append 5

f6.Name ="Age 15"
f6.Type = DB_INTEGER
NewTd.Fields.Append f6

f7.Name ="Age_16"
f7.Type = DB_INTEGER
NewTd.Fields.Append {7

f8.Name ="Age 17"
8.Type =DB_INTEGER
NewTd.Fields.Append {8

f9.Name ="Age 18"
9.Type =DB_INTEGER
NewTd.Fields.Append 9

f10.Name ="Age 19"
£10.Type = DB_INTEGER
NewTd.Fields.Append f10

f11.Name ="Age 110"
f11.Type =DB_INTEGER
NewTd.Fields.Append f11

f12.Name = "Age 111"
f12.Type = DB_INTEGER
NewTd.Fields.Append f12

f13.Name = "Age_112"
f13.Type = DB_INTEGER
NewTd.Fields.Append f13

f14.Name = "Age 113"
f14.Type =DB_INTEGER
NewTd.Fields.Append f14

f15.Name ="Age 114"
f15.Type =DB_INTEGER
NewTd.Fields.Append f15

f16.Name ="Age_115"
f16.Type =DB_INTEGER
NewTd Fields.Append f16

f17.Name = "Age_20"
f17.Type =DB_INTEGER
NewTd.Fields.Append f17

f18.Name ="Age_21"
f18.Type =DB_INTEGER
NewTd.Fields.Append f18

f19.Name ="Age_22"
f19.Type =DB_INTEGER
NewTd.Fields.Append f19

f20.Name ="Age_23"
20.Type =DB_INTEGER
NewTd.Fields.Append 20

f21.Name ="Age 24"
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f21.Type = DB_INTEGER
NewTd.Fields.Append 21

f22 Name = "Age 25"
122.Type = DB_INTEGER
NewTd.Fields.Append 22

f23.Name = "Age 26"
f23.Type =DB_INTEGER
NewTd.Fields.Append 23

f24 Name = "Age 27"
124.Type = DB_INTEGER
NewTd.Fields.Append 24

f25.Name ="Age_28"
f25.Type = DB_INTEGER
NewTd.Fields.Append 25

f26.Name ="Age 29"
£26.Type = DB_INTEGER
NewTd.Fields.Append 26

f27 Name ="Age 210"
£27.Type = DB_INTEGER
NewTd.Fields.Append £27

f28 Name ="Age 211"
28.Type =DB_INTEGER
NewTd.Fields.Append 28

f29.Name ="Age 212"
29.Type =DB_INTEGER
NewTd.Fields.Append 29

f30.Name = "Age 213"
£30.Type =DB_INTEGER
NewTd.Fields.Append f30

f31.Name = "Age 214"
f31.Type = DB_INTEGER
NewTd.Fields.Append 31

f32.Name ="Age_215"
f32.Type = DB_INTEGER
NewTd.Fields.Append 32

f33.Name = "Age_30"
f33.Type = DB_INTEGER
NewTd.Fields.Append £33

f34.Name ="Age 31"
f34.Type =DB_INTEGER
NewTd.Fields.Append f34

f35.Name = "Age 32"
£35.Type = DB_INTEGER
NewTd.Fields.Append {35

f36.Name = "Age 33"
f36.Type =DB_INTEGER
NewTd.Fields.Append 36

f37.Name = "Age_34"
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f37.Type = DB_INTEGER
NewTd.Fields.Append f37

f38.Name = "Age 35"
f38.Type = DB_INTEGER
NewTd.Fields.Append 38

f39.Name = "Age_36"
£39.Type = DB_INTEGER
NewTd.Fields.Append 39

f40.Name = "Age_37"
f40.Type = DB_INTEGER
NewTd.Fields.Append f40

f41.Name ="Age_38"
f41.Type = DB_INTEGER
NewTd.Fields.Append f41

f42 Name = "Age_39"
f42.Type = DB_INTEGER
NewTd.Fields.Append f42

f43.Name = "Age 310"
f43.Type = DB_INTEGER
NewTd.Fields.Append f43-

f44. Name = "Age 311"
f44.Type = DB_INTEGER
NewTd.Fields.Append f44

f45 Name ="Age 312"
f45.Type =DB_INTEGER
NewTd.Fields.Append f45

f46.Name ="Age 313"
f46.Type = DB_INTEGER
NewTd.Fields.Append f46

f47 Name = "Age 314"
f47.Type = DB_INTEGER
NewTd.Fields.Append f47

f48 Name = "Age 315"
f48.Type =DB_INTEGER
NewTd.Fields.Append f48

f49 Name = "Age_40"
f49. Type = DB_INTEGER
NewTd.Fields.Append f49

f50.Name = "Age_41"
£50.Type =DB_INTEGER
NewTd.Fields.Append £50

f51.Name ="Age 42"
f51.Type = DB_INTEGER
NewTd.Fields.Append 51

f52.Name ="Age 43"
£52.Type =DB_INTEGER
NewTd.Fields.Append £52

f53.Name ="Age_44"
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£53.Type = DB_INTEGER
NewTd.Fields.Append 53

f54 Name = "Age_45"
£54.Type = DB_INTEGER
NewTd.Fields.Append 54

f55.Name = "Age 46"
55.Type = DB_INTEGER
NewTd.Fields.Append 55

f56.Name = "Age 47"
£56.Type = DB_INTEGER
NewTd.Fields.Append £56

f57 Name = "Age 48"
£57.Type = DB_INTEGER
NewTd.Fields.Append £57

f58 Name = "Age_49"
£58.Type = DB_INTEGER
NewTd.Fields.Append f58

f59.Name = "Age 410"
£59.Type = DB_INTEGER
NewTd.Fields.Append {59

f60.Name = "Age 411"
£60.Type = DB_INTEGER
NewTd.Fields.Append f60

f61.Name ="Age 412"
f61.Type = DB_INTEGER
NewTd.Fields.Append {61

f62 Name ="Age 413"
f62.Type = DB_INTEGER
NewTd.Fields.Append 62

f63 Name ="Age 414"
f63.Type = DB_INTEGER
NewTd.Fields.Append £63

f64.Name = "Age 415"
f64.Type = DB_INTEGER
NewTd.Fields.Append f64

f65.Name ="All"
f65.Type = DB_INTEGER
NewTd.Fields.Append f65

f77.Name = "LearnStrat"
f77.Type = DB_INTEGER
NewTd.Fields.Append {77

db.TableDefs.Append NewTd
NewTdl.Name ="A1"
f66.Name = "500"

f66.Type = DB_INTEGER
NewTd1.Fields.Append 66
db.TableDefs.Append NewTd1

NewTd2.Name = "A2"
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f67.Name = "750"

f67.Type = DB_INTEGER

NewTd2.Fields.Append f67
db.TableDefs.Append NewTd2

NewTd3.Name ="A3" "
f68.Name = "1000"

f68.Type = DB_INTEGER
NewTd3.Fields.Append {68
db.TableDefs.Append NewTd3

NewTd4.Name = "A4"
f69.Name = "1250"

f69.Type = DB_INTEGER
NewTd4.Fields.Append f69
db.TableDefs.Append NewTd4

NewTdS5.Name ="AS5"
f70.Name = "1500"

f70.Type = DB_INTEGER
NewTdS.Fields.Append £70
db.TableDefs.Append NewTd5

NewTd6.Name = "A6"
f71.Name = "1750"

f71.Type = DB_INTEGER
NewTd6.Fields.Append {71
db.TableDefs.Append NewTd6

NewTd7.Name = "A7"

f72 Name = "2000"

f72.Type = DB_INTEGER
NewTd7.Fields.Append {72
db.TableDefs.Append NewTd7

NewTd8.Name = "A8"

73 Name = "2250"

f73.Type = DB_INTEGER
NewTd8.Fields.Append f73
db.TableDefs.Append NewTd8

NewTd9.Name = "A9"

f74 Name ="2500"

f74.Type = DB_INTEGER
NewTd9.Fields.Append {74
db.TableDefs.Append NewTd9

NewTd10.Name ="A10"
f75.Name ="2750"

f75.Type = DB_INTEGER
NewTd10.Fields.Append {75
db.TableDefs.Append NewTd10-

NewTdl11.Name ="A11"

76 Name = "3000"

£76.Type = DB_INTEGER
NewTd11.Fields.Append 76
db.TableDefs.Append NewTd11

NewTd12.Name = "A12"
f78 Name ="3250"
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f78.Type = DB_INTEGER
NewTd12.Fields.Append £78
db.TableDefs.Append NewTd12

NewTd13.Name ="A13"
f79.Name = "3500"

f79.Type = DB_INTEGER
NewTd13.Fields.Append 79
db.TableDefs.Append NewTd13

NewTd14.Name = "A14"
£80.Name = "3750"

f80.Type = DB_INTEGER
NewTd14.Fields.Append f80
db.TableDefs.Append NewTd 14

NewTd15.Name = "A15"
f81.Name = "4000"

f81.Type = DB_INTEGER
NewTd15. Fields.Append {81
db.TableDefs.Append NewTd15

NewTd16.Name = "A16"
f82.Name = "4250"

82.Type = DB_INTEGER
NewTd16.Fields.Append 82
db.TableDefs.Append NewTd16

NewTd17.Name ="A17"
f83.Name = "4500"

f83.Type = DB_INTEGER
NewTd17.Fields.Append 83
db.TableDefs.Append NewTd17

NewTd18.Name ="A18"
f84.Name = "4750"

84.Type = DB_INTEGER
NewTd18.Fields.Append 84
db.TableDefs. Append NewTd18

NewTd19.Name ="A19"
£85.Name = "5000"

85.Type = DB_INTEGER
NewTd19.Fields.Append 85
db.TableDefs. Append NewTd19
db.Close

End Sub

Sub ReadResults ()

Dim i As Integer
Dim count As Integer

Set db = OpenDatabase("'C:\results.mdb", True)

Set t = db.OpenTable("Age")
Fori=0To9
Value(i)=0
Next i
t.MoveFirst
Occurrence =0
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Do Until t EOF
Occurrence = Occurrence + 1
t.MoveNext
Loop
ReDim AgeArray(Occurrence, 1)
count =0
t.MoveFirst
Do Until t. EOF
AgeArray(count, 0) = t("All")
Classify
t.MoveNext
count = count + 1
Loop
t.Close
db.Close
End Sub

Sub ReadWeighRes ()

Dim i As Integer
Dim count As Integer

Set db = OpenDatabase("'C:\results.mdb", True) -
Set t = db.OpenTable("Age")
Fori=0To9
Value(i) =0
Next i
t.MoveFirst
count=0
t.MoveFirst
Do Until t.EOF
WeighClass
t.MoveNext
count = count + 1
Loop
t.Close
db.Close
distribu.Picturel.Cls
Fori=0To9
distribu.Picturel.Line (240 + (i * 840), 6600)-(500 + (i * 840), 6600 - Value(i) / 20),
QBColor(7), BF
distribu.Label1(i).Caption = Scalefac * i & " - " & Scalefac * (i+ 1) - 1
distribu.Label7(i).Caption = Value(i) -
Next i
distribu.Label1(9).Caption = "> " & Scalefac * 9
End Sub

Sub WeighClass ()

If t("All") < Scalefac Then
Value(0) = Value(0) + t("Al")

ElseIf ((t("All") >= Scalefac) And (t("All") <2 * Scalefac)) Then
Value(1) = Value(1) + t("All")

ElseIf ((t("All") >= 2 * Scalefac) And (t("All") <3 * Scalefac)) Then
Value(2) = Value(2) + t("All")

ElseIf ((t("All") >= 3 * Scalefac) And (t("All") <4 * Scalefac)) Then
Value(3) = Value(3) + t("All")
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Elself ((t("All") >=4 * Scalefac) And (t("All") <5 * Scalefac)) Then
Value(4) = Value(4) + t("All")

ElseIf ((t("All") >= 5 * Scalefac) And (t("All") < 6 * Scalefac)) Then
Value(5) = Value(5) + t("All")

ElselIf ((t("All") >= 6 * Scalefac) And (t("All") <7 * Scalefac)) Then
Value(6) = Value(6) + t("All")

ElseIf ((t("All") >= 7 * Scalefac) And (t("All") < 8 * Scalefac)) Then
Value(7) = Value(7) + t("All")

Elself ((t("All") >= 8 * Scalefac) And (t("All") <9 * Scalefac)) Then
Value(8) = Value(8) + t("All")

Elself ((t("All") >= 9 * Scalefac)) Then
Value(9) = Value(9) + t("All")

End If
End Sub

Binary.bas
Option Explicit

Dimi As Integer

Dim j As Integer

Global outputl As String
Global output2 As String
Global output3 As String
Global output4 As String
Dim actornum As Integer
Dim actorname As String
Global ipt0 As Double
Global iptl As Double
Global ipt2 As Double
Global ipt3 As Double
Global ipt4 As Double
Global ipt5 As Double
Global ipt6 As Double
Global ipt7 As Double
Global testl As Double
Global test2 As Double
Global code0 As Double
Global codel As Double
Global code2 As Double
Global code3 As Double
Global code4 As Double
Global code5 As Double
Global code6 As Double
Global code7 As Double

Sub bittest ()

Fori=0To 15
If (testl And 2 i)

=2"1iThen

io_edit.Optionl(i).Value = True
Else io_edit.Option2(i).Value = True

End If
Next i
Forj=0To 15

If (test2 And 2 * j) =

2 ~j Then

io_edit.Option3(j).Value = True
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Else io_edit.Option4(j).Value = True
End If '
Next j
End Sub

Sub retrieve ()

Dimv db As database
Dim t1 As table
Dim t2 As table .

Set db = OpenDatabase("c:\blah.mdb")
Set t1 = db.OpenTable("typedescriptor")
tl.Index = "type_index"
t1.Seek "=", io_edit.Text3.Text
outputl = t1("st_act_namel") 'activity names for display in combo box
output2 = t1("st_act_name2")
output3 =t1("st_act_name3")
output4 = t1("st_act name4")
actornum = t1("number") 'number of actors
actorname = t1("name")'name of actor which is edited
t1.Close
Set t2 = db.OpenTable(actorname & 0)
t2.MoveFirst '
ipt0 = t2("'st_io_code0")
iptl =t2("st_io_codel")
ipt2 = t2("'st_io_code2")
ipt3 = t2("'st_io_code3")
ipt4 =t2("st_io_code4")
ipt5 = t2("st_io_code5")
ipt6 = t2("'st_io_code6")
ipt7 = t2("'st_io_code7")
t2.Close
db.Close

io_edit.Combol.Clear 'removes previous activities

io_edit.Combol.AddItem outputl ‘adds new activities to combo
io_edit.Combol.AddItem output2

io_edit.Combo1l.AddItem output3

io_edit.Combol.AddItem output4

End Sub

Sub Save ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
tl.Index = "type_index"
t1.Seek "=", io_edit.Text3.Text
actornum = t1("number") 'number of actors |
actorname = t1("name")'name of actor which is edited
t1.Close ‘ '
For i =0 To actornum - 1
Set t2 = db.OpenTable(actorname & i)
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t2.MoveFirst
t2.Edit
t2("st_io_code0") = ipt0
t2("st_io_codel") = iptl
t2("st_io_code2") = ipt2
t2("st_io_code3") = ipt3
t2(""st_io_code4") = ipt4
t2("st_io_code5") = ipt5
t2("st_io_code6") = ipt6
t2("st_io_code7") = ipt7
t2.Update
t2.Close

Next i

db.Close

End Sub

Cogmap.bas
Option Explicit

Global CMarray(4, 32)

Dim parameters(4)

Dim CMarea As Double

Dim CMweigharea As Double

Dim IOMatrix(4, 32) As Integer

Dim CMM(4, 9, 6) As Double

Dim Utility(5, 4) As Single 'Utility,Reward,Xpos, Ypos*Alternatives
Global ActCount As Integer

Dim Alt As Integer

Global Const gridfactor = 10

Sub CalcParameters (Robot() As Actor)

' This Routine calculates the input parameters for the cognitive Map

' parameters(0)=distance, parameters(1)=payoff of activity in question, parameters(2)=remaining time
for activity, parameters(3)=unused

Dim Alternative As Integer
Dim CellCount As Integer
Static position(3, 4) As Single
Static Distance(4)

Static reward(4)

For Alternative = 0 To 3' loop over alternatives in CMknow

' calculate distance to alternatives '
Distance(Alternative) = Sqr((Robot(RobotCount).CMknow(ActCount, Alternative, 0) -

Robot(RobotCount).XPos) * 2 + (Robot(RobotCount). CMknow(ActCount, Alternative, 1)

- Robot(RobotCount).Ypos) * 2)

' get time specific payoff of that activity in that grid cell
CellCount =10
Do Until ((Robot(RobotCount).CMknow(ActCount, Alternative, 0) =
ThisWorld.XPos(CellCount))) And ((Robot(RobotCount).CMknow(ActCount,
-Alternative, 1) = ThisWorld.Ypos(CellCount)))
CellCount = CellCount + 1

Loop ‘ .

Select Case ActCount ~ 'calculates value for shopping and socialising whilst taking the
reward for recreation and work .

Case 0 Or 1
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reward(Alternative) = ThisWorld.Act(ActCount, TimeofDay, CellCount)
Case Else
reward(Alternative) = ThisWorld.Act(ActCount, TimeofDay, CellCount) /
ThisWorld.Price(ActCount, CellCount)
End Select
position(0, Alternative) = ThisWorld.XPos(CellCount)
position(1, Alternative) = ThisWorld. Ypos(CellCount)
position(2, Alternative) = CellCount
Next Alternative
For Alt=0To 3 .
parameters(0) = reward(Alt)
parameters(1) = Distance(Alt)
parameters(2) = Robot(RobotCount).RemTime(ActCount)
parameters(3) = Robot(RobotCount).CMknow(ActCount, Alt, 2)

CMFuzzify

Utility(1, Alt) = reward(Alt)
Utility(2, Alt) = position(0, Alt)
Utility(3, Alt) = position(1, Alt)
Utility(4, Alt) = position(2, Alt)
Next Alt
"Now look for max utility within utility(4)
'finaldecisionVector(Actcount)=max(utility(4)

Select Case ((Utility(0, 0) >= Utility(0, 1)) And (Utility(0, 0) >= Utility(0, 2)) And (Utility(0, 0) >=
Utility(0, 3)))

Case True
Robot(RobotCount).FinalDecisionvector(0, ActCount) = Utility(0, 0)
Robot(RobotCount).FinalDecisionvector(1, ActCount) = Utility(1, 0)
Robot(RobotCount).FinalDecisionvector(2, ActCount) = Utility(2, 0)
Robot(RobotCount).FinalDecisionvector(3, ActCount) = Utility(3, 0)
Robot(RobotCount).FinalDecisionvector(4, ActCount) = Utility(4, 0)
Robot(RobotCount).CurrentActivity(2) = 0

End Select o

Select Case ((Utility(0, 1) > Utility(0, 0)) And (Utility(0, 1) >= Utility(0, 2)) And (Utility(0, 1) >=
Utility(0, 3)))

Case True '

Robot(RobotCount).FinalDecisionvector(0, ActCount) = Utility(0, 1)
Robot(RobotCount).FinalDecisionvector(1, ActCount) = Utility(1, 1)
Robot(RobotCount).FinalDecisionvector(2, ActCount) = Utility(2, 1)
Robot(RobotCount).FinalDecisionvector(3, ActCount) = Utility(3, 1)
Robot(RobotCount).FinalDecisionvector(4, ActCount) = Utility(4, 1)
Robot(RobotCount).CurrentActivity(2) = 1

End Select . ‘

Select Case ((Utility(0, 2) > Utility(0, 0)) And (Utility(0, 2) > Utility(0, 1)) And (Utility(0, 2) >=
Utility(0, 3)))

Case True :

Robot(RobotCount).FinalDecisionvector(0, ActCount) = Utility(0, 2)
Robot(RobotCount).FinalDecisionvector(1, ActCount) = Utility(1, 2)
Robot{RobotCount).FinalDecisionvector(2, ActCount) = Utility(2, 2)
Robot(RobotCount).FinalDecisionvector(3, ActCount) = Utility(3, 2)
Robot(RobotCount).FinalDecisionvector(4, ActCount) = Utility(4, 2)
Robot(RobotCount).CurrentActivity(2) =2

End Select

Select Case ((Utility(0, 3) > Utility(0, 0)) And (Utility(0, 3) > Utility(0, 1)) And (Utility(0, 3) >
Utility(0, 2)))

Case True
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Robot(RobotCount).FinalDecisionvector(0, ActCount) = Utility(0, 3)
Robot(RobotCount).FinalDecisionvector(1, ActCount) = Utility(1, 3)
Robot(RobotCount).FinalDecisionvector(2, ActCount) = Utility(2, 3)
Robot(RobotCount).FinalDecisionvector(3, ActCount) = Utility(3, 3)
Robot(RobotCount).FinalDecisionvector(4, ActCount) = Utility(4, 3)
Robot(RobotCount).CurrentActivity(2) = 3

End Select

End Sub

Sub CMdefuzzify ()
Dim 1 As Integer

Utility(0, Alt)=0
CMarea =0
CMweigharea = 0
For1=0To3 "loop over rules
CMM(1, 9,5)=0
CMM(}, 9,3)=0
CMM(}, 9, 5) =CMM(}, 9, 4) * CMM({, 9, 2)
CMM(], 9, 3) =CMM(}, 9, 1) * CMM(], 9, 4) * CMM(], 9, 2)
CMarea = CMarea + CMM(], 9, 5)
CMweigharea = CMweigharea + CMM(], 9, 3)
Next 1
If CMarea = 0 Then
Utility(0, Alt)=0
Else
Utility(0, Alt) = CMweigharea / CMarea
EndIf
End Sub

Sub CMFuzzify ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
‘this is supposed to fuzzify the Input value for each set

Fori=0To 3 'loop over number of rules
For1=0To3 ‘parameters(0)=distance, par(1)=payoff, par(2)=remaining time
Forj=(2*1)To(2*1+1)
Select Case j
Case 2 * 1
CMM(, j, 4) =1/ (1 + (Exp((CMM(, j, 2) * (parameters(l) - CMM(}, j,

1))
Case2*1+1
CMM(, j,4) =1/ (1 + (Exp(-(CMM(, j, 2) * (parameters(l) - CMM(j, j,
nM))
End Select
Next j

Next1
'this is supposed to find the minimum of all active sets

If CMM(, 0, 5) = 1 Then ‘checks whether first set is active or not
CMM(j, 9, 4) = CMM(j, 0, 4)

Else
CMM(, 9,4)=0
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End If
Fork=1To 8 ' loop over number of sets
If CMM(}, k, 5) = 1 And CMM(j, (k - 1), 6) =0 Then
CMM(, 9, 4) = CMM(, k, 4)
ElseIf CMM(j, k, 5) = 1 And CMM(j, (k - 1), 6) < 0 And CMM(j, k, 4) < CMM(}, 9, 4)
Then
CMM(j, 9, 4) =CMM(j, k, 4)
End If
CMM(j, k, 6) = CMM(], (k - 1), 6) + CMM(j, k, 5)
Nextk
Next i
CMdefuzzify
End Sub

Sub DecodeRules (Robot() As Actor)

Dim k As Integer
Dim1 As Integer
Dim testl As Double
Dim test2 As Double
"loop over all robots running
For ActCount=0 To 3 'loop over activities
testl1 =0
test2 =0
If ActCount = 0 Then ,
test] = Robot(RobotCount).CmIOCode(0)
test2 = Robot(RobotCount).CmIOCode(1)
Elself ActCount = 1 Then
testl = Robot(RobotCount).CmIOCode(2)
test2 = Robot(RobotCount).CmIOCode(3)
ElseIf ActCount =2 Then
test] = Robot(RobotCount).CmIOCode(4)
test2 = Robot(RobotCount).CmIOCode(5)
Elself ActCount =3 Then
testl = Robot(RobotCount).CmIOCode(6)
test2 = Robot(RobotCount).CmIOCode(7)
End If :
Fork=0To 15
If (testl And 2 ~k) =2~k Then
IOMatrix(ActCount, k) = 1
Else IOMatrix(ActCount, k) =0
End If
Nextk
For1=0To 15
If (test2 And 2 ~1) =2 ~1 Then
IOMatrix(ActCount, 1 + 16) =1
Else IOMatrix(ActCount, 1 + 16) =0
End If
Next 1
Next ActCount
End Sub

Sub FeedValues (Robot() As Actor) , :
'passes the input parameters on to fuzzy cognitive map
Dim i As Integer
Dim j As Integer

238



AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

Dim n As Integer

Fori=0To 3
Forj=0To7
CMM(, j,3)=1 'height of input sets
CMM(}, j, 2) = Robot(RobotCount).CMFuzSigma(j)  'sigma of input sets
CMM(j, j, 1) = Robot(RobotCount).CMFuzCentre(j)  'centre positon of input sets
CMM(0, j, 5) = IOMatrix(i, j)
CMM(1, j, 5) = IOMatrix(i, j + 8)
CMM(2, j, 5) = IOMatrix(i, j + 16)
CMM(3, j, 5) = IOMatrix(i, j + 24)
Next j »
CMM(}, 9, 2) = Robot(RobotCount).CMDefuzSigma(i) ‘comes from database and is stored
with robot's data
CMM(}, 9, 1) = Robot(RobotCount).CMDefuzCentre(i) 'see above
CMM(, 9,4)=0 '
Next i
CMM(0, 0, 6) = CMM(0, 0, 5) ‘copies On/Off values to next row
CMM(1, 0, 6) =CMM(1, 0, 5)
CMM(2, 0, 6) =CMM(2, 0, 5)
CMM(3, 0, 6) =CMM(3, 0, 5)
End Sub

Dataent.bas

Option Explicit

Dim TypeNum As Integer
Dim i As Integer

Dim Numcells As Integer
Dim Numactors As Integer

Global Const DB_BOOLEAN =1
Global Const DB_BYTE =2

Global Const DB_INTEGER = 3
Global Const DB_LONG =4

Global Const DB_CURRENCY =5
Global Const DB_SINGLE = 6

Global Const DB_DOUBLE =7
Global Const DB_DATE =8

Global Const DB_TEXT = 10

Global Const DB_LONGBINARY =11
Global Const DB_ MEMO = 12

Global Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

Sub tableadd ()

Dim db As database
Dimt As Table

Numactors = NameAct. Text2.Text
For TypeNum =1 To 4
For i =0 To Numactors - 1
Set db = OpenDatabase("c:\blah.mdb", True)

Dim NewTd As New TableDef
Dim f1 As New Field, 84 As New Field, {85 As New Field
Dim f2 As New Field, f86 As New Field, f87 As New Field
Dim f3 As New Field, f88 As New Field, f89 As New Field
Dim f4 As New Field, f90 As New Field, {91 As New Field
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Dim f5 As New Field, 92 As New Field, 93 As New Field
Dim f6 As New Field, 94 As New Field, f95 As New Field
Dim {7 As New Field, f8 As New Field, f10 As New Field
Dim f12 As New Field, f14 As New Field, f16 As New Field
Dim f18 As New Field, f19 As New Field, 20 As New Field
Dim 21 As New Field, 22 As New Field, £23 As New Field
Dim 24 As New Field, 25 As New Field, 26 As New Field
Dim 27 As New Field, 28 As New Field, 29 As New Field
Dim 30 As New Field, 31 As New Field, 32 As New Field
Dim 33 As New Field, 34 As New Field, 35 As New Field
Dim 36 As New Field, f37 As New Field, 38 As New Field
Dim f39 As New Field, f40 As New Field, f41 As New Field
Dim 42 As New Field, f43 As New Field, f44 As New Field
Dim f45 As New Field, f46 As New Field, f48 As New Field
Dim f49 As New Field, f50 As New Field, f51 As New Field
Dim 52 As New Field, f53 As New Field, f55 As New Field
Dim 56 As New Field, 57 As New Field, f58 As New Field
Dim 59 As New Field, f60 As New Field, f61 As New Field
Dim f62 As New Field, f63 As New Field, f64 As New Field
Dim f65 As New Field, f66 As New Field, f67 As New Field
Dim 69 As New Field, 70 As New Field, f83 As New Field
Dim f71 As New Field, 72 As New Field, f73 As New Field
Dim f74 As New Field, 75 As New Field, 76 As New Field
Dim f77 As New Field, 78 As New Field, 79 As New Field
Dim 80 As New Field, f81 As New Field, f82 As New Field

NewTd.Name = TypeNum & i
f33.Name = "st_io_codeQ"
f33.Type =7
NewTd.Fields.Append £33

f1.Name ="st_io_Codel"
fl.Type=7
NewTd.Fields.Append f1

f30.Name = "st_io_code2"
£30.Type =7
NewTd.Fields.Append 30

f31.Name = "st_io_code3"
31.Type=7
NewTd.Fields.Append 31

f32.Name = "st_io_code4"
32.Type =7
NewTd.Fields.Append 32

f34 Name = "st_io_code5"
f34.Type =7
NewTd.Fields.Append 34

£35.Name = "st_io_code6"

f35.Type =7
NewTd.Fields.Append 35

f36.Name = "st_io_code7"
36. Type =7
NewTd.Fields.Append f36-

' 2 Name = "st_fuz_centre_pos0"
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f2.Type =4
NewTd.Fields.Append 2

f4 Name = "st_fuz_centre_pos2"
f4.Type =4
NewTd.Fields.Append f4

f6.Name = "st_fuz_centre_pos4"
f6.Type=4
NewTd.Fields.Append f6

f8.Name = "st_fuz_centre_pos6"
f8.Type =4 :
NewTd.Fields.Append f8

f10.Name = "st_fuz_sigma0"
f10.Type =6
NewTd.Fields.Append f10

f12.Name = "st_fuz _sigma2"
f12.Type=6
NewTd.Fields.Append f12

f14.Name = "st_fuz_sigma4"
f14. Type=6
NewTd.Fields.Append f14

f16.Name = "st_fuz_sigma6"
f16.Type =6
NewTd.Fields.Append f16

f18.Name = "st_defuz_centre0"
f18.Type =3
NewTd.Fields.Append f18

f19.Name = "st_defuz_centrel"
f19.Type =3
NewTd.Fields.Append f19

f20.Name = "st_defuz_centre2"
f20.Type =3
NewTd.Fields.Append £20

f21.Name ="st_defuz_centre3"
f21.Type =3
NewTd.Fields.Append f21

22 Name = "st_defuz_sigma0"
122.Type =3
NewTd.Fields.Append f22

f23.Name = "st_defuz_sigmal"
123. Type =3
NewTd.Fields.Append f23

f24 Name = "st_defuz_sigma2"
24 Type =3
NewTd.Fields.Append 24

f25.Name = "st_defuz_sigma3"
f25.Type =3
NewTd.Fields.Append 25

f26.Name = "st_budgetstate0"
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£26.Type =6
NewTd.Fields.Append 26

f27 Name ="st_budgetstatel"
f27.Type =6
NewTd.Fields.Append 27

f28 Name = "st_budgetstate2"
28.Type =6
NewTd.Fields.Append £28

29 Name = "st_budgetstate3"
129.Type =6
NewTd.Fields.Append 29

f37.Name = "st_acttime0"
f37.Type =6
NewTd.Fields.Append {37

f38.Name = "st_acttimel"
f38.Type =6
NewTd.Fields.Append {38

f39.Name = "st_acttime2"
f39.Type =6
NewTd.Fields.Append 39

f40.Name = "st_acttime3"
f40.Type =6
NewTd.Fields.Append f40

f41.Name = "st_success00"
f41.Type =DB_INTEGER
NewTd.Fields.Append 41

f42 Name = "st_success01"
f42.Type = DB_INTEGER
NewTd.Fields.Append {42

f43 Name = "st_success02"
f43.Type = DB_INTEGER
NewTd.Fields.Append 43

f44 Name = "st_success03"
f44, Type = DB_INTEGER
NewTd.Fields.Append f44

84 Name = "st_success10"
84.Type = DB_INTEGER
NewTd.Fields.Append {84

f85.Name = "st_success11"
£85.Type = DB_INTEGER
NewTd.Fields.Append {85

f86.Name = "st_success12"
86.Type = DB_INTEGER
NewTd.Fields.Append 36

87 .Name = "st_success13"
87.Type = DB_INTEGER
NewTd.Fields.Append {87

f88.Name = "st_success20"
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88.Type =DB_INTEGER
NewTd.Fields.Append 88

f89.Name = "st_success21"
89.Type = DB_INTEGER
NewTd.Fields.Append £89

f95.Name = "st_success22"
95.Type = DB_INTEGER
NewTd.Fields.Append 95

f90.Name = "st_success23"
90.Type =DB_INTEGER
NewTd.Fields.Append 90

f91.Name = "st_success30"
91.Type = DB_INTEGER
NewTd.Fields.Append 91

92 Name = "st_success31"
192.Type = DB_INTEGER
NewTd.Fields.Append 92

93 Name = "st_success32"
93.Type = DB_INTEGER
NewTd.Fields.Append 93

94 Name = "st_success33"
94.Type = DB_INTEGER
NewTd.Fields.Append 94

45 Name = "CMIOCode0"
f45. Type =7
NewTd.Fields.Append f45

f46.Name = "CMIOCodel"
f46.Type =7
NewTd.Fields.Append f46

f53.Name = "CM_fuz_centre_pos0"
£53.Type=6
NewTd.Fields.Append 53

f55.Name = "CM_fuz_centre_pos2"
£55.Type=6
NewTd.Fields.Append 55

f57 Name = "CM_fuz_centre_pos4"
f57.Type =6
NewTd.Fields.Append f57

f59.Name ="CM_fuz_centre_pos6"
£59.Type =6
NewTd.Fields.Append f59

f61.Name = "CM_fuz_sigma0"
f61. Type=6
NewTd.Fields.Append 61

f63.Name = "CM_fuz_sigma2"
f63.Type =6
NewTd.Fields.Append 63

f65.Name = "CM_fuz_sigma4"
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f65.Type =6
NewTd.Fields.Append 65

f67.Name = "CM_fuz_sigma6"
f67.Type =6
NewTd.Fields.Append 67

f69.Name = "CM_defuz_centre0"
f69. Type =3
NewTd.Fields.Append f69

f70.Name = "CM_defuz_centrel"
f70.Type =3
NewTd.Fields.Append f70

f71 Name = "CM_defuz_centre2"
f71.Type =3
NewTd.Fields.Append 71

f72 Name = "CM_defuz centre3"
f72.Type =3
NewTd.Fields.Append 72

f73 .Name = "CM_defuz_sigma0"
f73.Type =3 4
NewTd.Fields.Append 73

f74 Name = "CM_defuz_sigmal”
f74. Type =3
NewTd.Fields.Append 74

f75.Name = "CM_defuz_sigma2"
f75.Type =3
NewTd.Fields.Append 75

f76 Name = "CM_defuz_sigma3"
f76. Type=3
NewTd.Fields.Append £76

77 Name = "CM_know0"
f77.Type = DB_TEXT
77.Size =32
NewTd.Fields.Append £77

78 Name = "CM_know1"
f78.Type =DB_TEXT
£78.Size =32
NewTd.Fields.Append 78

£79.Name = "CM_know2"
79.Type =DB_TEXT
£79.Size =32
NewTd.Fields.Append £79

f80.Name = "CM_know3"
80.Type = DB_TEXT
80.Size =32
NewTd.Fields.Append f80

f81.Name = "XHome"
f81.Type = DB_INTEGER
NewTd.Fields.Append 81
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£82.Name = "YHome"
82.Type = DB_INTEGER
NewTd.Fields.Append 82

f3.Name = "learn_io_code0"
f3.Type =7
NewTd.Fields.Append f3

f5.Name = "learn_io_codel"
5. Type=17
NewTd.Fields.Append f5

f7.Name = "LearnStrategy"
f7.Type = DB_INTEGER
NewTd.Fields.Append 7

f48 Name = "learn_fuz_centre_pos2"
f48. Type =6
NewTd.Fields.Append f48

f49.Name = "learn_fuz_centre_pos4"
f49.Type=6
NewTd.Fields.Append f49

f50.Name = "learn_fuz_centre_pos6"
£50.Type =6
NewTd.Fields.Append f50

f51.Name = "learn_fuz centre_pos8"
f51.Type=6
NewTd.Fields.Append f51

f52 Name = "learn_fuz_centre_pos10"
£52.Type=6
NewTd.Fields.Append {52

f56.Name = "learn_fuz_sigma2"
f56.Type=6
NewTd.Fields.Append 56

f58.Name = "learn_fuz_sigma4"
f58.Type =6
NewTd.Fields.Append £58

f60.Name = "learn_fuz_sigma6"
f60.Type =6
NewTd.Fields.Append f60

f62.Name = "learn_fuz_sigmag"
f62.Type =6
NewTd.Fields.Append 62

f64 Name = "learn_fuz_sigmal0"
f64.Type =6
NewTd.Fields.Append 64

f83.Name = "Activities"
f83.Type = DB_TEXT
83.Size =72
NewTd.Fields.Append 33
db.TableDefs. Append NewTd
db.Close
Set db = OpenDatabase("c:\blah.mdb") 'writes default intial values to first record in table
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Set t = db.OpenTable(TypeNum & i)
t.AddNew

t("st_io_code0") = 258
t("st_io_codel") =0
t("st_io_code2") = 1032
t("st_io_code3")=0
t("st_io_code4") =4128
t("st_io_code5") =0
t("st_io_code6") = 16512
t("st_io_code7") =0

t("st_fuz_centre_pos0") =5
t("st_fuz_centre_pos2") =30
t("st_fuz_centre_pos4") =15
t("st_fuz_centre_pos6") =5

t("st_fuz sigma0")=1
t("st_fuz_sigma2")=1
t("st_fuz_sigma4") =1
t("st_fuz sigma6")=1

t("st_defuz_centre0") =0
t("st_defuz_centrel") =100
t("st_defuz_centre2") =0
t("st_defuz centre3") =100

t("st_defuz sigma0") =15
t("st_defuz_sigmal™) =15
t("st_defuz_sigma2") =15
t("st_defuz_sigma3") =15

t("st_budgetstate0") =0
t("st_budgetstatel1") =0
t("st_budgetstate2") =0
t("st_budgetstate3") =0

t("st_acttime0") =0
- t("st_acttimel") =0
t("st_acttime2") =0
t("st_acttime3") =0

t("st_success00") =0
t("st_success01") =0
t("st_success02") =0
t("st_success03") =0
t("st_success10") =0
t("st_success11")=0
t("st_success12") =0
t("st_success13") =0
t("st_success20") =0
t("st_success21") =0
t("st_success22") =0
t("st_success23") =0
t("st_success30") =0
t("st_success31")=0
t("st_success32") =0
t("st_success33")=0

t("CMIOCode0") = 18822
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t("CMIOCode1") = 4128

t("CM_fuz_centre_pos0") =.5
t("CM_fuz_centre_pos2")=.5
t("CM_fuz_centre_pos4") =10
t("CM_fuz_centre_pos6") =0

t("CM_fuz_sigma0") =15
t("CM_fuz_sigma2") =1
t("CM_fuz_sigmad")=.5
t("CM_fuz_sigma6") =1

t("CM_defuz_centre0") = 100
t("CM_defuz_centrel")=0
t("CM_defuz_centre2") = 100
t("CM_defuz_centre3")=0

t("CM_defuz_sigma0") =15
t("CM_defuz_sigmal™) =15
t("CM_defuz_sigma2") =15
t("CM_defuz_sigma3") =15

t("CM_know0") = "00000000"
t("CM_know!1") = "00000000"
t("CM_know2") = "00000000"
t("CM_know3") ="00000000"

t("XHome") = 0
t("YHome") = 0

t("learn_io_code0") = 151578
t("learn_io_codel™) =0
t("LearnStrategy") =0

t("learn_fuz_centre_pos2") =0
t("learn_fuz_centre_pos4") =0
t("learn_fuz centre_pos6") =0
t("learn_fuz_centre_pos8") =0
t("learn_fuz_centre_pos10") =0

t("learn_fuz_sigma2")=.3
t("learn_fuz_sigma4")=.3
t("learn_fuz_sigma6") =.3
t("learn_fuz_sigma8") =.3
t("learn_fuz_sigmalQ") =.3

t("Activities") =""
t.Update

t.Close
db.Close
Nexti
Next TypeNum
End Sub

Sub widadd ()

Dim db As database
Dim w As Table
Dim t2 As Table
Dim j As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
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Set t2 = db.OpenTable("world")
t2.MoveLast
Numcells = t2("count")
t2.Close
db.Close

For j =0 To Numcells - 1
Set db = OpenDatabase("c:\blah.mdb", True)

Dim NewTd2 As New TableDef
Dim w1 As New Field, w2 As New Field, w3 As New Field
Dim w4 As New Field, w5 As New Field, w6 As New Field
Dim w7 As New Field, w8 As New Field, w9 As New Field
Dim w10 As New Field, w11 As New Field, w12 As New Field
Dim w13 As New Field, w14 As New Field, w15 As New Field
Dim w16 As New Field, w17 As New Field, w18 As New Field
Dim w19 As New Field, w20 As New Field, w21 As New Field
Dim w22 As New Field, w23 As New Field, w24 As New Field
Dim w25 As New Field, w26 As New Field, w27 As New Field
Dim w28 As New Field, w29 As New Field, w30 As New Field
Dim w31 As New Field, w32 As New Field, w33 As New Field
Dim w34 As New Field, w35 As New Field, w36 As New Field
Dim w37 As New Field, w38 As New Field, w39 As New Field
Dim w40 As New Field, w41l As New Field, w42 As New Field
Dim w43 As New Field, w44 As New Field, w45 As New Field
Dim w46 As New Field, w47 As New Field, w48 As New Field
Dim w49 As New Field, w50 As New Field, w51 As New Field
Dim w52 As New Field, w53 As New Field, w54 As New Field
Dim w55 As New Field, w56 As New Field, w57 As New Field
Dim w58 As New Field, w59 As New Field, w60 As New Field
Dim w61 As New Field, w62 As New Field, w63 As New Field
Dim w64 As New Field, w65 As New Field, w66 As New Field
Dim w67 As New Field, w68 As New Field, w69 As New Field
Dim w70 As New Field, w71 As New Field, w72 As New Field
Dim w73 As New Field, w74 As New Field, w75 As New Field
Dim w76 As New Field, w77 As New Field, w78 As New Field
Dim w79 As New Field, w80 As New Field, w81 As New Field
Dim w82 As New Field, w83 As New Field, w84 As New Field
Dim w85 As New Field, w86 As New Field, w87 As New Field
Dim w88 As New Field, w89 As New Field, w90 As New Field
Dim w91 As New Field, w92 As New Field, w93 As New Field
Dim w94 As New Field, w95 As New Field, w96 As New Field
Dim w97 As New Field, w98 As New Field, w99 As New Field
Dim w100 As New Field, w101 As New Field, w102 As New Field
Dim w103 As New Field, w104 As New Field

NewTd2.Name = "world" & j

w3.Name = "cap_0"
w3.Type =DB_INTEGER
NewTd2.Fields.Append w3

w1.Name = "price_
wl.Type =DB_SINGLE
NewTd2.Fields.Append w1l

"

w4.Name = "payoff0_0"
w4.Type =DB_SINGLE
NewTd2.Fields.Append w4
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w5.Name = "payoff0_1"
w5.Type = DB_SINGLE
NewTd2.Fields.Append w5

wo6.Name = "payoff0_2"
w6.Type = DB_SINGLE
NewTd2.Fields.Append w6

w7.Name = "payoff0_3"
w7.Type = DB_SINGLE
NewTd2.Fields.Append w7

w8.Name = "payoff0 4" -
w8.Type =DB_SINGLE
NewTd2.Fields.Append w8

w9.Name = "payoff0_5"
w9.Type = DB_SINGLE
NewTd2.Fields.Append w9

w10.Name = "payoff0_6"
w10.Type =DB_SINGLE
NewTd2.Fields.Append w10

w11.Name = "payoff0_7"
wll.Type =DB_SINGLE
NewTd2.Fields.Append w1l

w12.Name = "payoff0_8"
w12.Type = DB_SINGLE
NewTd2.Fields.Append w12

w13.Name = "payoff0_9"
w13.Type = DB_SINGLE
NewTd2.Fields.Append w13

w14.Name = "payoff0_10"
w14.Type =DB_SINGLE
NewTd2.Fields.Append w14

w15.Name = "payoff0_11"
wl15.Type =DB_SINGLE
NewTd2.Fields.Append w15

w16.Name = "payoff0_12"
w16.Type = DB_SINGLE
NewTd2.Fields.Append w16

w17.Name = "payoff0_13"
w17.Type = DB_SINGLE
NewTd2.Fields.Append w17

w18.Name = "payoff0_14"
w18.Type = DB_SINGLE
NewTd2.Fields.Append w18

w19.Name = "payoff0_15"
w19.Type = DB_SINGLE
NewTd2.Fields.Append w19

w20.Name = "payofﬁ)_ll6"
w20.Type =DB_SINGLE
NewTd2.Fields.Append w20
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w21.Name = "payoff0_17"
w21.Type = DB_SINGLE
NewTd2.Fields.Append w21

w22.Name = "payoff0_18"
w22.Type =DB_SINGLE
NewTd2.Fields.Append w22

w23.Name = "payoff0_19"
w23.Type =DB_SINGLE
NewTd2.Fields.Append w23

w24 . Name = "payoff0_20"
w24.Type = DB_SINGLE
NewTd2.Fields.Append w24

w25.Name = "payoff0_21"
w25.Type = DB_SINGLE
NewTd2.Fields.Append w25

w26.Name = "payoff0_22"
w26.Type = DB_SINGLE
NewTd2.Fields.Append w26

w27 Name = "payoff0_23"
w27.Type = DB_SINGLE
NewTd2.Fields.Append w27

w28 Name = "cap_1"
w28.Type = DB_INTEGER
NewTd2.Fields.Append w28

w2.Name = "price_1"
w2.Type =DB_SINGLE
NewTd2.Fields.Append w2

w29.Name = "payoffl_O"v
w29.Type =DB_SINGLE
NewTd2.Fields.Append w29

w30.Name = "payoffl 1"
w30.Type = DB_SINGLE
NewTd2.Fields.Append w30

w31.Name = "payoffl 2"
w31.Type = DB_SINGLE
NewTd2.Fields.Append w31

w32.Name = "payoffl_3"
w32.Type = DB_SINGLE
NewTd2.Fields.Append w32

w33.Name = "payoffl_4"
w33.Type = DB_SINGLE
NewTd2.Fields.Append w33

w34.Name = "payoffl_5"
w34.Type =DB_SINGLE
- NewTd2.Fields.Append w34

w35.Name = "payoffl_6"
w35.Type =DB_SINGLE
NewTd2.Fields.Append w35
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w36.Name = "payoffl_7"
w36.Type =DB_SINGLE
NewTd2.Fields.Append w36

w37.Name = "payoffl_8"
w37.Type = DB_SINGLE
NewTd2.Fields.Append w37

w38.Name = "payoffl 9"
w38.Type = DB_SINGLE
NewTd2.Fields.Append w38

w39.Name = "payoffl_10"
w39.Type =DB_SINGLE
NewTd2.Fields.Append w39

w40.Name = "payoffl_11"
w40.Type = DB_SINGLE
NewTd2.Fields.Append w40

w41.Name = "payoffl_12"
w41.Type = DB_SINGLE
NewTd2.Fields.Append w41

w42.Name = "payoffl 13"
w42.Type = DB_SINGLE
NewTd2.Fields.Append w42

w43 Name = "payoffl_14"
w43.Type = DB_SINGLE
NewTd2.Fields.Append w43

w44 .Name = "payoffl 15"
w44.Type = DB_SINGLE
NewTd2.Fields.Append w44

w45.Name = "payoffl_16"
w45.Type =DB_SINGLE
NewTd2.Fields.Append w45

w46.Name = "payoffl_17"
w46.Type = DB_SINGLE
NewTd2.Fields.Append w46

w47 .Name = "payoffl_18"
w47.Type = DB_SINGLE
NewTd2.Fields.Append w47

w48 Name = "payoffl_19"
w48.Type = DB_SINGLE
NewTd2.Fields.Append w48

w49 Name = "payoffl_20"
w49.Type =DB_SINGLE
NewTd2.Fields.Append w49

w50.Name = "payoffl_21"
w50.Type = DB_SINGLE
NewTd2.Fields.Append w50

w51.Name = "payoffl_22"
w51.Type = DB_SINGLE
NewTd2.Fields.Append w51
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w52.Name = "payoffl 23"
w52.Type = DB_SINGLE
NewTd2.Fields.Append w52

w53.Name = "cap_2"
w53.Type = DB_INTEGER
NewTd2.Fields.Append w53

w103.Name = "price_2"
w103.Type = DB_SINGLE
NewTd2.Fields.Append w103

w54.Name = "payoff2_0"
w54.Type = DB_SINGLE
NewTd2.Fields.Append w54

w55.Name = "payoff2_1"
w55.Type = DB_SINGLE
NewTd2.Fields.Append w55

w56.Name = "payoff2_2"
w56.Type = DB_SINGLE
NewTd2.Fields.Append w56

w57.Name = "payoff2_3"
wS57.Type = DB_SINGLE
NewTd2.Fields.Append w57

w58.Name = "payoff2_4"
w58.Type = DB_SINGLE
NewTd2.Fields.Append w58

w59.Name = "payoff2_5"
w59.Type = DB_SINGLE
NewTd2 Fields.Append w59

w60.Name = "payoff2 6"
w60.Type = DB_SINGLE
NewTd2.Fields.Append w60

wo61.Name = "payoff2_7"
w61.Type = DB_SINGLE
NewTd2.Fields.Append w61

w62.Name = "payoff2_8"
w62.Type = DB_SINGLE
NewTd2.Fields.Append w62

w63.Name = "payoff2 9"
w63.Type =DB_SINGLE
NewTd2.Fields.Append w63

w64.Name = "payoff2 10"
w64.Type = DB_SINGLE
NewTd2.Fields.Append w64

w65.Name = "payoff2_11"
w65.Type = DB_SINGLE
NewTd2.Fields.Append w65

w66.Name = "payoff2_12"
w66.Type = DB_SINGLE
NewTd2.Fields.Append w66
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w67.Name = "payoff2 13"
w67.Type =DB_SINGLE
NewTd2.Fields.Append w67

w68.Name = "payoff2 14"
w68.Type =DB_SINGLE
NewTd2.Fields.Append w68

w69.Name = "payoff2_15"
w69.Type = DB_SINGLE
NewTd2.Fields.Append w69

w70.Name = "payoff2_16"
w70.Type =DB_SINGLE
NewTd2.Fields.Append w70

w71.Name = "payoff2 17"
w71.Type = DB_SINGLE
NewTd2.Fields.Append w71

w72.Name = "payoff2_18"
w72.Type = DB_SINGLE
NewTd2.Fields.Append w72

w73.Name = "payoff2_19"
w73.Type = DB_SINGLE
NewTd2.Fields.Append w73

w74 Name = "payoff2_20"
w74.Type = DB_SINGLE
NewTd2.Fields.Append w74

w75.Name = "payoff2_21"
w75.Type =DB_SINGLE

NewTd2.Fields.Append w75

w76.Name = "payoff2_22"
w76.Type = DB_SINGLE
NewTd2.Fields.Append w76

w77.Name = "payoff2_23"
w77.Type = DB_SINGLE
NewTd2.Fields.Append w77

w78 Name = "cap_3"
w78.Type = DB_INTEGER
NewTd2.Fields.Append w78

w104.Name = "price_3"
w104.Type = DB_SINGLE
NewTd2.Fields.Append w104

w79.Name = "payoff3_0"
w79.Type =DB_SINGLE
NewTd2.Fields.Append w79

w80.Name = "payoff3_1"
w80.Type = DB_SINGLE
NewTd2.Fields.Append w80

w81.Name = "payoff3_2"
w81.Type = DB_SINGLE
NewTd2.Fields.Append w81
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w82 .Name = "payoff3. 3"
w82.Type =DB_SINGLE
NewTd2.Fields.Append w82

w83.Name = "payoff3 4"
w83.Type = DB_SINGLE
NewTd2 Fields.Append w83

w84.Name = "payoff3_5"
w84.Type = DB_SINGLE
NewTd2.Fields.Append w84

w85.Name = "payoff3_6"
w85.Type =DB_SINGLE
NewTd2.Fields.Append w85

w86.Name = "payoff3 7"
w86.Type = DB_SINGLE
NewTd2.Fields.Append w86

w87.Name = "payoff3_8"
w87.Type = DB_SINGLE
NewTd2.Fields.Append w87

w88.Name = "payoff3 9"
w88.Type = DB_SINGLE
NewTd2.Fields.Append w88

w89.Name = "payoff3_10"
w89.Type =DB_SINGLE
NewTd2.Fields.Append w89

w90.Name = "payoff3_11"
w90.Type =D DB_SINGLE
NewTd2.Fields.Append w90

w91.Name = "payoff3_12"
w91.Type = DB_SINGLE
NewTd2.Fields.Append w91

w92.Name = "payoff3_13"
w92.Type = DB_SINGLE
NewTd2.Fields.Append w92

w93.Name = "payoff3_14"
w93.Type = DB_SINGLE
NewTd2.Fields.Append w93

w94.Name = "payoff3_15"
w94.Type = DB_SINGLE
NewTd2.Fields.Append w94

w95.Name = "payoff3_16"
w95.Type = DB_SINGLE
NewTd2.Fields.Append w95

w96 .Name = "payoff3_17"
w96.Type = DB_SINGLE
NewTd2.Fields.Append w96

w97 Name = "payoff3_18"
w97.Type =DB_SINGLE
NewTd2.Fields.Append w97
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w98.Name = "payoff3 19"
w98.Type = DB_SINGLE
NewTd2.Fields.Append w98

w99.Name = "payoff3_20"
w99.Type = DB_SINGLE
NewTd2.Fields.Append w99

w100.Name = "payoff3 21"
w100.Type = DB_SINGLE
NewTd2.Fields.Append w100

w101.Name = "payoff3 22"
w101.Type = DB_SINGLE
NewTd2.Fields.Append w101

w102.Name = "payoff3 23"
w102.Type =DB_SINGLE
NewTd2.Fields.Append w102

db.TableDefs.Append NewTd2

Set w = db.OpenTable("world" & j)
w.AddNew
w("cap_0")=10
w("cap_1")=10
w("cap_2")=10
w("cap_3")=10

w("price_0") =1
w("price_1")=1
w("price_2")=2
w("price_3")=2

w("payoff0_0")=2
w("payoff0_1") =2
w("payoff0 2")=2
w("payoff)_3")=2
w("payoff0_4")=2
w("payoff0_5")=2
w("payoff0_6")=2
w("payoffd_7")=.5
w("payoff0_8")=.5
w("payoff0_9")=.5
w("payoff0_10")=.5
w("payoff0_11")=.5
w("payoff0_12")=.5
w("payoff0_13")=.5
w("payoff0_14")=.5
w("payoffd_15")=.5
w("payoff0_16")=.5
w("payoff0_17")=.5
w("payoff0_18")=.5
w("payoff0_19") =2
w("payoff0_20")=2
w("payoff0_21")=2
w("payoff0_22")=2
w("payoff0_23")=2

w("payoffl_0")=0
w("payoffl_1")=0
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w("payoffl_2")=0
w("payoffl_3")=0
w("payoffl_4")=0
w("payoffl_5")=0
w("payoffl_6")=0
w("payoffl_7") =1
w("payoffl_8")=1
w("payoffl_9")=1
w("payofft_10") =1
w("payoffl_11")=1
w("payoffl_12")=1
w("payoffl_13")=1
w("payoffl_14") =1
w("payoffl_15")=1
w("payoffl_16")=1 .
w("payoffl_17")=1
w("payoffl_18")=1
w("payoffl_19")=1
w("payoffl_20")=1
w("payoffl_21")=1
w("payoffl_22")=1
w("payoffl_23") =1

w("payoff2_0")=0
w("payoff2_1")=0
w("payoff2_2")=0
w("payoff2_3")=0
w("payoff2_4")=0
w("payoff2_5")=0
w("payoff2_6")=0
w("payoff2_7")=6
w("payoff2_8")=6
w("payoff2_9")=6
w("payoff2_10")=6
w("payoff2_11")=6
w("payoff2_12")=6
w("payoff2_13")=6
w("payoff2_14")=6
w("payoff2_15")=6
w("payoff2_16")=6
w("payoff2_17") =6
w("payoff2_18")=6
w("payoff2_19")=6
w("payoff2_20")=6
w("payoff2_21")=0
w("payoff2_22")=0
w("payoff2_23")=0

w("payoff3_0")=0
w("payoff3_1")=0
w("payoff3_2")=0
w("payoff3_3")=0
w("payoff3_4")=0
w("payoff3_5")=0
w("payoff3_6")=0
w("payoff3_7")=0
w("payoff3_8")=0
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w("payoff3 9")=0

w("payoff3 10")=0
w("payoff3_11")=0
w("payoff3_12")=0
w("payoff3_13")=0
w("payoff3_14")=2
w("payoff3_15")=2
w("payoff3_16")=2
w("payoff3_17")=2
w("payoff3_18")=2
w("payoff3_19") =2
w("payoff3 20")=2
w("payoff3_21")=2
w("payoff3_22") =2
w("payoff3_23")=2

w.Update

w.Close

db.Close
Next j
NameAct.Show
End Sub

Dbstart.bas
Option Explicit

Sub addrecords ()

Dim db As Database, t As Table, t2 As Table
Set db = OpenDatabase("c:\blah.mdb", True)

Set t = db.OpenTable("typedescriptor")

t.AddNew

t(lltype") — l

t("number") = 1

t("name") = 1

t("st_bud_namel") = "sleep"”
t("st_bud_name2") = "money" .
t("st_bud_name3") = "goods"
t("st_bud_name4") = "social"
t("st_act_namel") = "recreation"
t("st_act_name2") = "work"
t("st_act_name3") = "shopping"
t("st_act_name4") = "socialise"

t.Update
t.AddNew

t("type") = 2

t("number") =1

t("name") =2

t("st_bud_namel") = "sleep"
t("st_bud_name2") = "money"
t("st_bud_name3") = "goods"
t("st_bud_name4") = "social"

t("st_act_namel") = "recreation

"

t("st_act_name2") = "work"
t("st_act_name3") = "shopping"
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t("st_act_name4") = "socialise"
t.Update

t.AddNew

t("type") =3

t("number") = 1

t("name") =3
t("st_bud_namel") = "sleep"
t("st_bud_name2") = "money"
t("st_bud: name3") = "goods"
t("st_bud_name4") = "social"
t("st_act_namel") = "recreation"
t("st_act_name2") = "work"
t("st_act_name3") = "shopping"
t("st_act_name4") = "socialise"
t.Update

t.AddNew

t("type") = 4

t("number") = 1

t("name") = 4
t("st_bud_namel") = "sleep"
t("st_bud_name2") = "money"
t("st_bud_name3") = "goods"
t("st_bud_name4") = "social"
t("st_act_namel") = "recreation”
t("st_act_name2") = "work"
t("st_act_name3") = "shopping"
t("st_act_name4") = "socialise"
t.Update

t.Close
Set t2 = db.OpenTable("world")
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t2.AddNew
t2("count") =1
t2("x_pos")=0
t2("y_pos")=0
t2.Update
t2.AddNew
t2("count™) =2
t2("x_pos") =10
t22("y_pos") =0
t2.Update
t2.AddNew
t2("count") =3
t2("x_pos") =20
t2("y_pos")=0
t2.Update
t2.AddNew
t2("count") =4
t2("x_pos") =0
t2("y_pos") =10

- t2.Update

t2.AddNew
t2("count") =5
t2("x_pos") =10
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t2("y_pos") =10
t2.Update

t2.AddNew
t2("count") =6
t2("x_pos") =20
12("y_pos") =10
t2.Update

t2.AddNew
t2("count") =7
t2("x_pos") =0
t2("y_pos") =20
t2.Update

t2.AddNew
t2("count") =8
t2("x_pos") =10
t2("y_pos") =20
t2.Update

t2.AddNew
t2("count") =9
t2("x_pos") =20
t2("y_pos") =20
t2.Update

t2.Close

db.Close

wldadd

End Sub

Sub blah ()

Dim db As Database

Dim NewTd As New TableDef

Dim WorldTd As New TableDef

Dim I1 As New Index, I2 As New Index

Dim f1 As New Field, f2 As New Field, f3 As New Field
Dim f4 As New Field, f5 As New Field, f6 As New Field
Dim f7 As New Field', f8 As New Field, f9 As New Field
Dim f12 As New Field

Dim f13 As New Field, f14 As New Field, f15 As New Field
Dim w0 As New Field, w1l As New Field, w2 As New Field

Set db = CreateDatabase("C:\BLAH.MDB", DB_LANG_GENERAL)

NewTd.Name = "typedescriptor"
WorldTd.Name = "world"

f1.Name = "type"
f1.Type = DB_INTEGER
NewTd.Fields.Append f1

f2.Name = "number"
f2.Type = DB_INTEGER
NewTd.Fields.Append 2

f3.Name = "name"
f3.Type =DB_TEXT
£3.Size =10
NewTd.Fields.Append f3
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f4.Name ="st_bud_namel"
f4.Type =DB_TEXT
f4.Size = 10
NewTd.Fields.Append f4

f5.Name = "st_bud_name2"
f5.Type =DB_TEXT
£5.Size =10
NewTd.Fields.Append f5

f6.Name ="st_bud_name3"
f6.Type = DB_TEXT
6.Size =10
NewTd.Fields.Append f6

f7.Name = "st_bud_name4"
f7.Type = DB_TEXT
7.Size = 10
NewTd.Fields.Append {7

f12.Name = "st_act_namel"
f12.Type = DB_TEXT
f12.Size =10
NewTd.Fields.Append f12

f13.Name = "st_act_name2"
f13.Type = DB_TEXT
f13.Size = 10
NewTd.Fields.Append {13

f14 Name = "st_act_name3"
f14.Type = DB_TEXT
f14.Size = 10
NewTd.Fields.Append f14

f15.Name = "st_act_name4"
f15.Type = DB_TEXT
f15.Size =10
NewTd.Fields.Append f15

I1.Name = "Type_Index"
I1.Fields = "type"
I1.Primary = True
NewTd.Indexes.Append 11

12.Name = "Number_Index"
12 Fields = "Number"

12 Primary = False
NewTd.Indexes.Append 12

db.TableDefs.Append NewTd

w0.Name = "count" .
wO0.Type = DB_INTEGER
WorldTd.Fields.Append w0

wl.Name ="x_pos"
w1.Type = DB_SINGLE
WorldTd.Fields.Append wl

w2.Name ="y_pos"
w2.Type = DB_SINGLE
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WorldTd.Fields.Append w2

db.TableDefs.Append WorldTd
db.Close

addrecords

End Sub

Display.bas

Option Explicit

Global TotNumber As Integer
Global ResArray()

Global CapArray()

Global PriArray()

Global TotalWealth()

Global BudArray() As Single
Global BudMin As Single
Global BudMax As Single
Global PriMin As Single
Global PriMax As Single
Global CapMin As Single
Global CapMax As Single
Global WealthMin As Single
Global WealthMax As Single
Dim DisplayDemand(3, 8) As Single ‘activities and cells
Dim L Number As Integer
Dim A_number As Integer

Sub CalcDem ()

Dim i As Integer
Dim j As Integer

Forj=0To3 'loop over activities, cells have to be stated explicitely
If CapArray(BarChart.HScrolll.Value, 0, j) = 0 And ResArray(BarChart.HScrolll.Value,
BarChart.HScroll2.Value, 0, 0, j) = 0 Then
DisplayDemand(j, 0) =0 '
ElseIf CapArray(BarChart.HScrolll.Value, 0, j) = 0 And ResArray(BarChart.HScrolll.Value,
BarChart.HScroll2.Value, 0, 0, j) < 0 Then
DisplayDemand(j, 0) = 9.99
Else
DisplayDemand(j, 0) = ResArray(BarChart. HScroll1 .Value, BarChart.HScroll2.Value, 0,
0, j) / CapArray(BarChart.HScroll1.Value, 0, j)
End If

If CapArray(BarChart. HScroll1.Value, 1, j) = 0 And ResArray(BarChart.HScroll1.Value,
BarChart.HScroll2.Value, 1, 0, j) = 0 Then
. DisplayDemand(j, 1)=0
«Elself CapArray(BarChart.HScroll1.Value, 1, j) = 0 And ResArray(BarChart.HScroll1.Value,

BarChart.HScroll2.Value, 1, 0, j) <> 0 Then
DisplayDemand(j, 1) =9.99

Else
DisplayDemand(j, 1) = ResArray(BarChart.HScroll1.Value, BarChart. HScroll2.Value, 1,
0, j) / CapArray(BarChart.HScrolll.Value, 1, j)

End If '

If CapArray(BarChart.HScrolll.Value, 2, j) = 0 And ResArray(BarChart.HScrolll.Value,
BarChart. HScroll2.Value, 2, 0, j) =0 Then
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DisplayDemand(j, 2) =0
Elself CapArray(BarChart.HScroll1.Value, 2, j) = 0 And ResArray(BarChart HScrolll.Value,
BarChart.HScroll2.Value, 2, 0, j) < 0 Then
DisplayDemand(j, 2) =9.99
Else
DisplayDemand(j, 2) = ResArray(BarChart.HScrolll.Value, BarChart.HScroli2.Value, 2,
0, j) / CapArray(BarChart.HScrolll.Value, 2, j)
End If

- If CapArray(BarChart.HScrolll.Value, 3, j) = 0 And ResArray(BarChart. HScroll1.Value,
BarChart.HScroll2.Value, 0, 1, j) = 0 Then
DisplayDemand(j, 3) =0
ElseIf CapArray(BarChart.HScrolll. Value, 3, j) = 0 And ResArray(BarChart.HScrolll.Value,
BarChart.HScroll2.Value, 0, 1, j) < 0 Then
DisplayDemand(j, 3) =9.99
Else
DisplayDemand(j, 3) = ResArray(BarChart.HScroll1.Value, BarChart.HScroll2.Value, 0,
1, j) / CapArray(BarChart.HScrolll.Value, 3, j)
End If

If CapArray(BarChart. HScrolll.Value, 4, j) = 0 And ResArray(BarChart. HScrolll.Value,
BarChart.HScroll2.Value, 1, 1, j) =0 Then
DisplayDemand(j, 4) =0
Elself CapArray(BarChart.HScrolll.Value, 4, j) = 0 And ResArray(BarChart.HScroll1.Value,
BarChart.HScroll2.Value, 1, 1, j) < 0 Then
DisplayDemand(j, 4) = 9.99
Else
DisplayDemand(j, 4) = ResArray(BarChart.HScroll1.Value, BarChart.HScroll2.Value, 1,
1, j) / CapArray(BarChart.HScroll1.Value, 4, j) '
End If

If CapArray(BarChart. HScrolll.Value, 5, j) = 0 And ResArray(BarChart.HScrolll.Value,
BarChart.HScroll2.Value, 2, 1, j) =0 Then
DisplayDemand(j, 5) =0
Elself CapArray(BarChart. HScroll1.Value, 5, j) =0 And ResArray(BarChart. HScroll1. Value,
BarChart.HScroll2.Value, 2, 1, j) < 0 Then
DisplayDemand(j, 5) =9.99
Else
DisplayDemand(j, 5) = ResArray(BarChart.HScrolll.Value, BarChart.HScroll2.Value, 2,
1, j) / CapArray(BarChart.HScrolll.Value, 5, j)
End If

If CapArray(BarChart.HScroll1.Value, 6, j) = 0 And ResArray(BarChart.HScroll1.Value,
BarChart.HScroll2.Value, 0, 2, j) = 0 Then
DisplayDemand(j, 6) =0
Elself CapArray(BarChart.HScrolll.Value, 6, j) = 0 And ResArray(BarChart.HScrolll Value
BarChart.HScroll2.Value, 0, 2, j) < 0 Then
DisplayDemand(j, 6) = 9.99
Else
DisplayDemand(j, 6) = ResArray(BarChart.HScroll1.Value, BarChart.HScroll2.Value, 0,
2, j) / CapArray(BarChart.HScroll1.Value, 6, j)
End If

If CapArray(BarChart.HScrolll.Value, 7, j) = 0 And ResArray(BarChart. HScroll1.Value,
BarChart.HScroll2.Value, 1, 2, j) = 0 Then

DisplayDemand(j, 7) =0
Elself CapArray(BarChart.HScrolll.Value, 7 j) = 0 And ResArray(BarChart. HScrolll.Value,
BarChart.HScroll2.Value, 1, 2, j) < 0 Then
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DisplayDemand(j, 7) = 9.99

Else
DisplayDemand(j, 7) = ResArray(BarChart.HScrolll.Value, BarChart.HScroll2.Value, 1,
2,j)/ CapArray(BarChart.HScroll1.Value, 7, j)

EndIf

If CapArray(BarChart.HScroll1.Value, 8, j) = 0 And ResArray(BarChart.HScroll1.Value,
BarChart.HScroll2.Value, 2, 2, j) = 0 Then
DisplayDemand(j, 8) =0
Elself CapArray(BarChart.HScrolll.Value, 8, j) = 0 And ResArray(BarChart.HScroll1.Value,
BarChart.HScroll2.Value, 2, 2, j) < 0 Then
DisplayDemand(j, 8) =9.99
Else
DisplayDemand(j, 8) = ResArray(BarChart.HScroll1.Value, BarChart. HScroll2.Value, 2,
2,j) / CapArray(BarChart.HScrolll.Value, 8, j)
End If
Next j
DrawCharts
End Sub

Sub displayactivity ()

Dimi As Integer

Dim Message As String
Dim j As Integer

Dim n As Variant

Dim m As Variant

Message = DisplayRes.Text1(0).Text
DisplayRes.Grid1.HighLight = False
Fori=1To3 'clears grid display
Forj=1To3
DisplayRes.Grid1.Row = (i)
DisplayRes.Grid1.Col = (j)
DisplayRes.Grid1.Text=""
Next j
Next i
m = Mid(Message, 3 * DisplayRes.HScroll1.Value, 1)
n = Mid(Message, 3 * DisplayRes.HScrolll.Value - 1, 1)

DisplayRes.Gridl1. Row =m + 1
DisplayRes.Grid1.Col=n+ 1 .
DisplayRes.Grid1.SelStartRow = DisplayRes.Grid1.Row
DisplayRes.Grid1.SelEndRow = DisplayRes.Grid1.Row

DisplayRes.Grid1.SelStartCol = DisplayRes.Grid1.Col
DisplayRes.Grid1.SelEndCol = DisplayRes.Grid1.Col
DisplayRes.Grid1.HighLight = True
DisplayRes.Grid1.Text = Mid(Message, 3 * DisplayRes.HScrolll.Value - 2, 1)
Select Case DisplayRes.Grid1.Text
Case "A"

DisplayRes.Grid1.BackColor = &HFFFF00
Case "B"

DisplayRes.Grid1.BackColor = &HCO0&
Case "C"

DisplayRes.Grid1.BackColor = &HFFFF&
Case "D"

DisplayRes.Grid1.BackColor = &HFFOOFF
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End Select
End Sub

Sub DrawBudgets ()

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim 1 As Integer

Dim Y_factor As Single
Dim X_factor As Single -

BudGraph.Picturel.Cls
BudGraph.Picturel.Line (700, 200)-(700, 3400) 'y-axis
Fori=0To9
BudGraph.Label7(i).Caption = Int((L_Number - 1) / 10 * (10 - i))
Next i '
Forj=0To5
BudGraph.Label3(j).Caption = Left(BudMin + (((5 - j} / 5) * (BudMax - BudMin)), 6)
Next j
Y_factor =3200 / (BudMax - BudMin)
X factor = 10400 / (L_Number)
BudGraph.Picturel.Line (700, 3400 - Y_factor * Abs(Bude)) -(11200, 3400 - Y_factor *
Abs(BudMin))
For1=0To3
BudGraph.Picturel.CurrentX = 700
BudGraph.Picturel.CurrentY = 3400 - (BudArray(0, BudGraph.HScrolll Value
BudGraph.HScroll2.Value, 1) * Y_factor) - Y_factor * Abs(BudMin)
Fork=1ToL_ Number- 1
BudGraph.Picturel.Line -((X_factor * k) + 700, 3400 - BudArray(k,
BudGraph.HScroll1.Value, BudGraph.HScroll2.Value, 1) * Y _factor - Y_factor *
Abs(BudMin)), QBColor(2 * I)
Next k
Next 1
End Sub

Sub DrawCap ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim ] As Integer
Dim Y_factor As Single
Dim X_factor As Single

- BudGraph.Picturel.Cls
BudGraph.Picturel.Line (700, 200)-(700, 3400) 'y-axis
Fori=0To9
BudGraph.Label7(i).Caption = Int((L_Number - 1) / 10 * (10 - i))
Next i
Forj=0To 5
BudGraph.Label3(j).Caption = Left(CapMin + (((5 - j) / 5) * (CapMax - CapMin)), 6)
Next j
Y_factor = 3200 / (CapMax - CapMin)
X_factor = 10400 / (L_Number) . .
BudGraph.Picturel.Line (700, 3400 - Y_factor * Abs(CapMin))-(11200, 3400 - Y_factor *
Abs(CapMin))
For1=0To3
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BudGraph.Picturel.CurrentX = 700
BudGraph.Picturel.CurrentY = 3400 - (CapArray(0, BudGraph.HScroll3.Value, 1) * Y_factor) -
Y _factor * Abs(CapMin)
Fork=1To L_Number - 1
BudGraph.Picturel.Line -((X_factor * k) + 700, 3400 - CapArray(k,
BudGraph.HScroll3.Value, 1) * Y_factor - Y_factor * Abs(CapMin)), QBColor(2 * 1) t
Nextk
Next1
End Sub

Sub DrawCharts ()

‘calculate relative demand
'move to first pic box

'draw coordinate system

'draw four barcharts (activities)

Dim i As Integer

Fori=0To 8
BarChart.Picturel(i).Cls
BarChart.Picture1(i).Line (200, 200)-(200, 1800) 'coordinate system
BarChart.Picture1(i).Line (200, 1800)-(2500, 1800)
BarChart.Picture1(i).Line (300, 1800)-(775, 1800 - DisplayDemand(0, i) * 500), QBColor(0), BF
BarChart.Picture1(i).Line (875, 1800)-(1350, 1800 - DisplayDemand(l, i) * 500), QBColor(2),
BF
BarChart.Picture1(i).Line (1450, 1800)-(1925, 1800 - DisplayDemand(2, i) * 500), QBColor(4),
BF
BarChart.Picture1(i).Line (2025, 1800)-(2500, 1800 - DisplayDemand(3, i) * 500), QBColor(6),
BF '
BarChart.Label5(i).Caption = Left(DisplayDemand(0, i) * 100, 3) & "%"
BarChart.Label6(i).Caption = Left(DisplayDemand(1, i) * 100, 3) & "%"
BarChart.Label7(i).Caption = Left(DisplayDemand(2, i) * 100, 3) & "%"
BarChart.Label8(i).Caption = Left(DisplayDemand(3, i) * 100, 3) & "%"

Next i

End Sub

Sub DrawPri ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim Y_factor As Single
Dim X_factor As Single

BudGraph.Picturel.Cls
BudGraph.Picturel.Line (700, 200)-(700, 3400) 'y-axis
Fori=0To9
BudGraph.Label7(i).Caption = Int((L_Number - 1) / 10 * (10 - i))
Nexti
Forj=0To5
BudGraph.Label3(j).Caption = Left(PriMin + (((5 - j) / 5) * (PriMax - PriMin)), 6)
Next j
Y_factor = 3200/ (PriMax - PriMin)
X factor = 10400/ (L_Number)
BudGraph.Picturel.Line (700, 3400 - Y_factor * Abs(PriMin))-(11200, 3400 - Y_factor * Abs(PriMin))
For1=0To3
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BudGraph.Picturel.CurrentX = 700
BudGraph.Picturel.CurrentY = 3400 - (PriArray(0, BudGraph.HScroll3.Value, I) * Y_factor) -
Y_factor * Abs(PriMin) k '
Fork=1ToL Number- 1
BudGraph.Picturel.Line -((X_factor * k) + 700, 3400 - PriArray(k, A
BudGraph.HScroll3.Value, 1) * Y_factor - Y_factor * Abs(PriMin)), QBColor(2 * 1)
Next k
Next 1
End Sub

Sub DrawRelWealth ()

~ Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim 1 As Integer

Dim Y_factor As Single
Dim X_factor As Single
Dim RelMin As Single
Dim RelMax As Single

RelMin =-.5
RelMax =.5
BudGraph.Picturel.Cls
BudGraph.Picturel.Line (700, 200)-(700, 3400) 'y-axis
Fori=0To9 ’

BudGraph.Label7(i).Caption = Int((L_Number - 1)/ 10 * (10 - i)) 'labels on x-axis
Next i
Forj=0To 5
BudGraph.Label3(j).Caption = Left(RelMin + (((5 - j) / 5) * (RelMax - RelMin)), 6)
Nextj :
Y _factor = 3200 / (RelMax - RelMin)
X_factor = 10400 / (L Number)

BudGraph.Picturel.Line (700, 3400 - Y_factor * Abs(RelMin))-(11200, 3400 - Y_factor * Abs(RelMin))
‘draw x-axis
BudGraph.Picture1.Line (700, 3400 - Y_factor * TotalWealth(0, 0) / (4 * TotNumber))-(11200, 3400 -
Y_factor * TotalWealth(0, 0) / (4 * TotNumber))'draw theoretical share of agent
For1=0To3
BudGraph.Picture1.CurrentX = 700
BudGraph Picturel.CurrentY = 3400 - ((BudArray(0, BudGraph.HScrolll.Value,
BudGraph.HScroll2.Value, 1) * Y_factor) - Y_factor * Abs(RelMin)) / (TotalWealth(0, 1))
Fork=1 To L_Number- 1
BudGraph.Picturel.Line -((X_factor * k) + 700, 3400 - (BudArray(k,
BudGraph.HScroll1l.Value, BudGraph.HScroll2.Value, 1) * Y_factor /
TotalWealth(k, I)) - Y_factor * Abs(RelMin)), QBColor(2 * 1)
Nextk
Next 1
End Sub

Sub DrawWealth ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim Y _factor As Single
Dim X _factor As Single
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BudGraph.Picture1.Cls
BudGraph.Picturel.Line (700, 200)-(700, 3400) ‘y-axis
Fori=0To9
BudGraph.Label7(i).Caption = Int((L_Number - 1)/ 10 * (10 -i))  'labels on x-axis
Nexti
Forj=0To 5
BudGraph.Label3(j).Caption = Left(WealthMin + (((5 - j) / 5) * (WealthMax - WealthMin)), 6)
Nextj
Y_factor = 3200 / (WealthMax - WealthMin)
X_factor = 10400 / (L_Number) .
BudGraph.Picturel.Line (700, 3400 - Y_factor * Abs(WealthMin))-(11200, 3400 - Y_factor *
Abs(WealthMin)) 'draw x-axis
For1=0To 4
BudGraph.Picturel.CurrentX = 700
BudGraph.Picturel.CurrentY = 3400 - ((TotalWealth(0, I) * Y_factor) - Y_factor *
Abs(WealthMin)) '
Fork=1ToL_Number-1
BudGraph.Picturel.Line -((X_factor * k) + 700, 3400 - (TotalWealth(k, 1) * Y_factor) -
Y_factor * Abs(WealthMin)), QBColor(2 * 1)
Next k
Next 1
End Sub

Sub FindCapPriMinMax ()

Dim i As Integer
Dim j As Integer

PriMin = PriArray(0, 1, 0)
PriMax = PriArray(0, 1, 0)
CapMin = CapArray(0, 1, 0)
CapMax = CapArray(0, 1, 0)
Fori=0 To L Number
Forj=0To3
If PriArray(i, BudGraph.HScroll3.Value, j) > PriMax Then
PriMax = PriArray(i, BudGraph.HScroll3.Value, j)
EndIf '
If PriArray(i, BudGraph.HScroll3.Value, j) < PriMin Then
PriMin = PriArray(i, BudGraph.HScroll3.Value, j)
End If .
If CapArray(i, BudGraph.HScroll3.Value, j) > CapMax Then
CapMax = CapArray(i, BudGraph.HScroll3.Value, j)
End If
If CapArray(i, BudGraph.HScroll3.Value, j) < CapMin Then
CapMin = CapArray(i, BudGraph.HScroll3.Value, j)
End If
Next j
Next i
End Sub

Sub FindMinMax ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim | As Integer

BudMin = BudArray(0, 1, 0, 0)
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BudMax = BudArray(0, 1, 0, 0)
For k=0 To L_Number
For1=0To3
If BudArray(k, BudGraph.HScroll1.Value, BudGraph.HScroll2.Value, 1) < BudMin Then
BudMin = BudArray(k, BudGraph.HScroll1.Value, BudGraph.HScroll2.Value, 1)
End If
If BudArray(k, BudGraph.HScroll1.Value, BudGraph.HScroll2.Value, 1) > BudMax Then
BudMax = BudArray(k, BudGraph.HScroll1.Value, BudGraph.HScroll2.Value, 1)
End If
Next 1
Next k
End Sub

Sub FindWealthMinMax ()

Dim i As Integer
Dim j As Integer

WealthMin = TotalWealth(0, 0)
WealthMax = TotalWealth(0, 0)
For i=0 To L_Number
Forj=0To 4
If TotalWealth(i, j) > WealthMax Then
WealthMax = TotalWealth(j, j)
End If
If TotalWealth(i, j) < WealthMin Then
WealthMin = Total Wealth(i, j)
End If
Next j '
Next i
End Sub

Sub LoadActivity ()

Dim db As Database
Dim tl As Table
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim s As Integer
Dim t As Integer
Dim u As Integer
Dim TotNumber As Integer
Dim n As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
t1.MoveFirst
TotNumber = t1("number")
t1.Close
n=0
Set t1 = db.OpenTable("10")
t1.MoveFirst
Do Until t1.EOF
tl.MoveNext
n=n+1
Loop
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t1.Close
ReDim ResArray(n, 23, 2, 2, 3)
‘number of iterations in db, time of day, xcoordinates, ycoordinates, 4 activities
ReDim CapArray(n, 8, 3) ‘number of iterations, cellnumber,activities
ReDim PriArray(n, 8, 3)
BarChart.HScrolll.Max =n
For i=0 To TotNumber - 1
Forl=1To4
Set t1 = db.OpenTable(l & i)
t1.MoveLast
Fork=nTo 1 Step -1
Forj=1To24
Select Case Mid(t1("activities"), 3 *j -2, 1) ="A"
Case True
ResArray(k, j - 1, Mid(t1("activities"), 3 * j - 1, 1),
Mid(t1("activities"), 3 * j, 1), 0) = ResArray(k, j - 1,
Mid(t1("activities"), 3 * j - 1, 1), Mid(t1("activities"), 3
*5,1),0)+1
End Select
Select Case Mid(t1("activities"),3 *j -2, 1) ="B"
Case True
ResArray(k, j - 1, Mid(t1("activities"), 3 * j - 1, 1),
Mid(t1("activities"), 3 * j, 1), 1) = ResArray(k,j - 1,
Mid(t1("activities"™), 3 * j - 1, 1), Mid(t1("activities"), 3
*j, 1), H)+1
End Select
Select Case Mid(t1("activities"), 3 *j- 2, 1)="C"
Case True
ResArray(k, j - 1, Mid(t1("activities"), 3 *j - 1, 1),
Mid(t1("activities"), 3 * j, 1), 2) =ResArray(k,j - 1,
Mid(t1("activities™), 3 * j - 1, 1), Mid(t1("activities"), 3
*5,1),2)+1
End Select
Select Case Mid(t1("activities"), 3 *j -2, 1) ="D"
Case True
ResArray(k, j - 1, Mid(t1("activities"), 3 *j - 1, 1),
Mid(t1("activities"), 3 * j, 1), 3) =ResArray(k,j- 1, -
Mid(t1("activities"), 3 * j - 1, 1), Mid(t1("activities"), 3
*j,1),3)+1
- End Select
Next j
tl.MovePrevious
Nextk
t1.Close
Next1
Next i
'get capacity from world tables
Fors=0To 8
Set t1 = db.OpenTable("world" & s)
t1.MoveFirst
t1.MoveNext
u=1
Do Until t1. EOF .
Fort=0To3
CapArray(u, s, t) =t1("cap_" & t) 'iteration number, cellnumber, activity
PriArray(u, s, t) =t1("price_" & t)
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Next t
u=u+l
t1.MoveNext
Loop
t1.Close
Next s
End Sub

Sub LoadBudgets ()

Dim db As Database
Dim tl As Table
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim n As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
t1.MoveFirst
TotNumber = t1("number")
t1.Close
A_number = TotNumber
n=0
Set t1 = db.OpenTable("10")
t1.MoveFirst
Do Until t1.EOF 'get number of timesteps
tl.MoveNext
n=n-+1
Loop
t1.Close
L_Number=n

ReDim BudArray(n, 4, TotNumber - 1, 3) 'timesteps, Type, tablenumber, budgets

ReDim TotalWealth(n, 4)

ReDim CapArray(n, 8, 3) ‘number of iterations, cellnumber,activities

ReDim PriArray(n, 8, 3)
BudGraph.HScroll2.Max = TotNumber - 1
Fori=1To4 'loop over types

For j=0 To TotNumber - 1 'loop over agents of type

Set t1 = db.OpenTable(i & j)
tl.MoveFirst

Fork=0Ton-1 'loop over number of timesteps
For1=0To 3 'loop over budgets
BudArray(k, i, j, 1) = t1(""st_budgetstate" & 1)
Next1
t1.MoveNext
Nextk
t1.Close
Next j
Next i
db.Close
End Sub
Sub LoadCapPri ()
Dim s As Integer
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Dim t As Integer
Dim u As Integer
Dim db As Database
Dim t1 As Table

Set db = OpenDatabase("c:\blah.mdb", True) 'get capacity from world tables
* Fors=0To8
Set t1 = db.OpenTable("world" & s)

t1.MoveFirst

tl.MoveNext

u=1
Do Until t1.EOF
Fort=0To3
CapArmay(u, s, t) =t1("cap_" & t) 'iteration number, cellnumber, activity
PriArray(u, s, t) = t1("price_" & t)
Next t
u=u+l
t1.MoveNext
Loop
t1.Close
Next s
db.Close
End Sub
Sub RelWealth ()
Dimi As Integer
‘Dim j As Integer
Dim k As Integer
Dim n As Integer
Fork=0To4
Forn=0ToL_ Number- 1
TotalWealth(n, k) =0 'reset totalwealth
Nextn
Nextk
Fork=0To3 'loop over budgets
Forn=0To L. Number- 1 "loop over length of simulation
Forj=1To4 'loop over types of agents
For i=0 To TotNumber - 1 'loop over all agents of one type
TotalWealth(n, k) = BudArray(n, j, i, k) + TotalWealth(n, k)
Next i
Next j
Nextn
Next k

Forn=0 To L _Number- 1
TotalWealth(n, 4) = TotalWealth(n 0)+ TotalWealth(n 1) + TotalWealth(n, 2) +
TotalWealth(n, 3)
Nextn
End Sub

Fuzzrule.bas
Option Explicit

Global I0array(4, 32) As Integer
Global LearnIO(4, 48) As Integer
Global InputNum(4) As Single
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Global LearnInput(6) As Single
Dim area As Single

Dim weigharea As Single

Dim Larea As Single

Dim Lweigharea As Single
Dim BRB(4, 9, 6) 'As Double
Dim LRB(4, 13, 6)

- Sub DecodeLearnRules (Robot() As Actor)

Dim k As Integer
Dim 1 As Integer
Dim test]l As Double
Dim test2 As Double

'loop over all robots running

For ActCount =0 To 3 'loop over activities
testl =0
test2=0
If ActCount = 0 Then
test] = Robot(RobotNum).LearnIOCode(0)
test2 = Robot(RobotNum).LearnIOCode(1)
Elself ActCount =1 Then
test] = Robot(RobotNum).LearniOCode(2)
test2 = Robot(RobotNum).LearnIOCode(3)
Elself ActCount =2 Then
test] = Robot(RobotNum).LearnIOCode(4)
test2 = Robot(RobotNum).LearnIOCode(5)
ElselIf ActCount =3 Then
testl = Robot(RobotNum).LearnIOCode(6)
test2 = Robot(RobotNum).LearnIOCode(7)
End If
Fork=0To 23
If (test] And 2 k) =2~k Then
LearnIlO(ActCount, k) =1
Else LearnlO(ActCount, k) =0
End If
Nextk
For1=0To 23
If (test2 And 2 ~ 1) =2 ~ 1 Then
LearnIO(ActCount, 1 +24) =1
Else LearnIO(ActCount, 1 +24) =0
End If
Next 1
Next ActCount
End Sub

Sub Defuzzify ()
Dim1 As Integer

area=0

weigharea = 0

For1=0To3 "loop over rules
BRB(1,9,5)=0
BRB(,9,3)=0
BRB(], 9, 5) =BRB(}, 9, 4) * BRB(}, 9, 2)
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BRB(l, 9, 3) = BRB(l, 9, 1) * BRB(L, 9, 4) * BRB(, 9, 2)

area = area + BRB(], 9, 5)

weigharea = weigharea + BRB(], 9, 3)
Next !
If area = 0 Then

importance(Actinum) =0
Else importance(Actinum) = weigharea / area
End If

End Sub
Sub Fuzzify ()
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
'this is supposed to fuzzify the Input value for each set
Fori=0To3 'loop over number of rules
For1=0To3 '
Forj=(2*DTo(2*1+1)
Select Case j
Case 2 *1

If BRB(i, j, 2) * (InputNum(l) - BRB(, j, 1)) > 10000 Then
BRB(, j, 4) = 0

Else

BRB(, j, 4) = 1/ (1 + (Exp((BRB(, j, 2) * (InputNum(l) - BRB(, j,

)
End If

Case2*1+1

If BRB(i, j, 2) * (InputNum(l) - BRB(, j, 1)) <-10000 Then
BRB(, j, 4) =1

Else

BRB(, j, 4) =1/ (1 + (Exp(-(BRB(, j, 2) * (InputNum(l) - BRB(, j,

)
End If

End Select
Next j
Next 1

'this is supposed to find the minimum of all active sets

If BRB(], 0, 5) =1 Then
BRB(, 9, 4) = BRB(j, 0, 4)
Else BRB(j, 9, 4) = 0
End If
Fork=1To 8

‘checks whether first set is active or not

'loop over number of sets
If BRB(j, k, 5) =1 And BRB(j, (k - 1), 6) =0 Then
BRB(i, 9, 4) =BRB(, k, 4)

Elself BRB(], k, 5) = 1 And BRB(j, (k - 1), 6) < 0 And BRB(j, k, 4) <BRB(, 9, 4) Then

BRB(, 9, 4) = BRB(}, k, 4)

End If

BRB(j, k, 6) = BRB(, (k - 1), 6) + BRB(j, k, 5)

Next k
Next i
End Sub
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Sub GetLearnValues (Robot() As Actor)

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim n As Integer

LearnInput(0) = Robot(RobotNum).ShortTermBudgets(Actinum)
If WriteNum < 10 Then
LearnInput(1) = Robot(RobotNum).CentreMatrix(WriteNum, Actinum) -
Robot(RobotNum).CentreMatrix(WriteNum + 290, Actinum)
Else LearnInput(1) = Robot(RobotNum).CentreMatrix(WriteNum, Actinum) -
Robot(RobotNum).CentreMatrix(WriteNum - 10, Actinum)
End If
If WriteNum < 10 Then
LearnlInput(2) = Robot(RobotNum).CentreMatrix(WriteNum, MuteAlt) -
Robot(RobotNum).CentreMatrix(WriteNum + 290, MuteAlt)
Else LearnInput(2) = Robot(RobotNum).CentreMatrix(WriteNum, MuteAlt) -
Robot(RobotNum).CentreMatrix(WriteNum - 10, MuteAlt)
End If
LearnInput(3) =0
LearnInput(4) =0
LearnInput(5) = 0
Fori=0To3
Forj=0Tol
LRB(}, j, 2) = Robot(RobotNum).ShortTermFuzSigma(j) 'sigma of input sets
LRB(, j, 1) = Robot(RobotNum).ShortTermFuzCentre(j) ‘centre positon of input sets
Next j
Forj=2To 1l
LRB(, j, 2) = Robot(RobotNum).LearnSigma(j)
LRB(i, j, 1) = Robot(RobotNum).LearnCentre(j)
Next j
Forj=0To 11
- LRB(,j,3)=1 'height of input sets
LRB(0, j, 5) = LearnIO(Actinum, j)
LRB(1, j, 5) = Learn]O(Actinum, j + 12)
LRB(2, j, 5) = LearnIO(Actinum, j + 24)
LRB(3, j, 5) = LearnIlO(Actinurm, j + 36)
Nextj
LRB(j, 13, 2) = Robot(RobotNum).ShortTermDefuzSigma(i) ‘comes from database and
' is stored with robot's data
LRB(i, 13, 1) = Robot(RobotNum).ShortTermDefuzCentre(i)
LRB(j, 13,4)=0
Next i
LRB(0, 0, 6) =LRB(0, 0, 5)
LRB(1, 0, 6) =LRB(1, 0, 5)
LRB(2, 0, 6) =LRB(2, 0, 5)
LRB(3, 0, 6) =LRB(3, 0, 5)
End Sub

Sub GetValues (Robot() As Actor)

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim n As Integer

Forn=0To3
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InputNum(n) = Robot(RobotNum).ShortTermBudgets(n) . ‘this is to be the budget state of
robot in question!
Nextn
Fori=0To3
Forj=0To7
BRB(, j,3)=1 'height of input sets
BRB(j, j, 2) = Robot(RobotNum).ShortTermFuzSigma(j) ‘sigma of input sets
BRB(}, j, 1) =Robot(RobotNum).ShortTermFuzCentre(j) 'centre positon of input sets
BRB(0, j, 5) = I0array(Actinum, j)
BRB(1, j, 5) = I0array(Actinum, j + 8)
BRB(2, j, 5) =I0array(Actinum, j + 16)
BRB(3, j, 5) = I0array(Actinum, j + 24)
Next j .
BRB(i, 9, 2) = Robot(RobotNum).ShortTermDefuzSigma(i)
BRB(i, 9, 1) =Robot(RobotNum).ShortTermDefuzCentre(i)
BRB(, 9,4)=0
Nexti
BRB(0, 0, 6) =BRB(0, 0, 5)
BRB(1, 0, 6) =BRB(1, 0, 5)
BRB(2, 0, 6) =BRB(2, 0, 5)
BRB(3, 0, 6) =BRB(3, 0, 5)
End Sub

Sub LearnDefuzzify ()
Dim 1 As Integer

Larea=0
Lweigharea=0
For1=0To3 'loop over rules
LRB(], 13,5)=0
LRB(], 13,3)=0
LRB(], 13, 5) =LRB(], 13, 4) * LRB(], 13, 2)
LRB(, 13, 3) =LRB(], 13, 1) * LRB(], 13, 4) * LRB(], 13, 2)
Larea = Larea + LRB(], 13, 5)
Lweigharea = Lweigharea + LRB(l, 13, 3)

Next 1
If Larea = 0 Then ,
LearnAlt(MuteAlt) =0 'Correlation factor of other budgets with activitty in question
Else LearnAlt(MuteAlt) = Lweigharea / Larea
End If
End Sub
Sub LearnFuzzify ()
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
'this is supposed to fuzzify the Input value for each set
Fori=0To3 'loop over number of rules
For1=0To5
Forj=(2*)To(2*1+1)
Select Case j
Case2 *1

If LRB(, j, 2) * (LearnInput(l) - LRB(j, j, 1)) > 10000 Then
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LRB(,j,4)=0
Else _
LRB(, j, 4) =1/ (1 + (Exp((LRB(, j, 2) * (LearnInput(l) - LRB(, j,
)
End If
Case2*1+1
IfLRB(, j, 2) * (LearnInput(l) - LRB(, j, 1)) <-10000 Then
LRB(i, j,4) =1
Else :
LRB(, j, 4)=1/(1 + (Exp(-(LRB(, j, 2) * (LearnInput(l) - LRB(j, j,
)}
End If
End Select
Next j
Next1

'this is supposed to find the minimum of all active sets

If LRB(, 0, 5) =1 Then ‘checks whether first set is active or not
LRB(, 13, 4) =LRB(j, 0, 4)
Else LRB(, 13,4)=0
End If
Fork=1To 12 'loop over number of sets
If LRB(i, k, 5) =1 And LRB(, (k - 1), 6) = 0 Then
LRB(, 13,4) =LRB(, k, 4)
ElseIf LRB(}, k, 5) =1 And LRB(j, (k - 1), 6) < 0 And LRB(, k, 4) <LRB(j, 13, 4)
Then
LRB(, 13,4)=LRB(, k, 4)
End If
LRB(, k, 6) = LRB(j, (k - 1), 6) + LRB(], k, 5)
Next k
Next i
End Sub

Inistore.bas
Option Explicit

Global actorname As String
Global actornum As Integer

Sub cmdefretrieve ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")

tl.Index = "type_index"

t1.Seek "=", defuzenter.Text]l.Text

actorname = t1("name" ‘name of actor which is edited
t1.Close
Set t2 = db.OpenTable(actorname & 0)

t2.MoveFirst o

Fori=0To3
defuzenter.defcen(i) = t2("cm_defuz_centre" & i)
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defuzenter.defsig(i) = t2("cm_defuz_sigma" & i)
Nexti
t2.Close
db.Close
End Sub

Sub cmdefstore ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer
Dim j As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor"”)
tl.Index = "type_index"
tl.Seek "=", defuzenter.Textl.Text

actornum = t1("number") 'number of actors
actorname = t1("name") ‘name of actor which is edited
t1.Close

For i=0 To actornum - 1
Set t2 = db.OpenTable(actorname & 1)
t2.MoveFirst
t2.Edit
Forj=0To3
12("cm_defuz_centre" & j) = defuzenter.defcen(j)
t2("cm_defuz_sigma" & j) = defuzenter.defsig(j)
Next j
t2.Update
t2.Close
Next i
db.Close
End Sub

Sub CMfuzretrieve ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
tl.Index = "type_index"
t1.Seek "=", fuzzyenter.Textl.Text
actorname = t1("name") ‘name of actor which is edited
t1.Close
. Set t2 = db.OpenTable(actorname & 0)
t2.MoveFirst
Fori=0To 3
fuzzyenter.setinput(2 * i + 16) = t2("cm_fuz_centre_pos" & 2 * i)
fuzzyenter.setinput(2 * i + 8) = t2("cm_fuz_sigma" & 2 * i)
fuzzyenter.setinput(2 * i + 17) =t2("cm_fuz_centre_pos" & 2 * i)
fuzzyenter.setinput(2 * i + 9) =t2("cm_fuz_sigma" & 2 * i)
Next i :
12.Close
End Sub
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Sub emfuzstore ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer
Dim j As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
tl.Index = "type_index"
tl.Seek "=", fuzzyenter.Textl.Text

actornum = t1("number") 'number of actors
actorname = t1("name") 'name of actor which is edited
t1.Close

Fori=0 To actornum - 1
Set t2 = db.OpenTable(actorname & 1)
t2.MoveFirst
t2.Edit
Forj=0To 3
t2("cm_fuz_centre_pos" & 2 * j) = fuzzyenter.setinput(2 * j + 16)
t2("cm_fuz_sigma" & 2 * j) = fuzzyenter.setinput(2 * j + 8)

Next j
t2.Update
t2.Close
Next i
db.Close
End Sub

Sub defuzretrieve ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer

Set db = OpenDatabase("'C:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor™)
tl.Index = "type_index"
t1.Seek "=", defuzenter.Textl.Text
actorname = t1("name") 'name of actor which is edited
t1.Close ' '
Set t2 = db.OpenTable(actorname & 0)
t2.MoveFirst
Fori=0To 3
defuzenter.defcen(i) = t2("st_defuz_centre" & i)
defuzenter.defsig(i) = t2("st_defuz_sigma" & i)
Nexti
t2.Close
db.Close
End Sub

Sub defuzstore ()

Dim db As database
Dim tl1 As table
Dim t2 As table
Dim i As Integer
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Dim j As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
tl.Index = "type_index"
t1.Seek "=", defuzenter.Text1.Text
actornum = t1("number")
actorname = t1("name")
t1.Close
Fori=0 To actornum - 1
Set t2 = db.OpenTable(actorname & i)
t2.MoveFirst
t2.Edit
Forj=0To3

t2("st_defuz_centre" & j) = defuzenter.defcen(j)
t2("st_defuz_sigma" & j) = defuzenter.defsig(j)

Next j
t2.Update
12.Close
Next i
db.Close
End Sub

Sub fuzzretrieve ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer

Set db = OpenDatabase("C:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor")
~ tl.Index = "type_index"
t1.Seek "=", fuzzyenter.Text1.Text

actorname = t1("name") 'name of actor which is edited

t1.Close

Set t2 = db.OpenTable(actorname & 0)
’ t2.MoveFirst .
Fori=0To3

fuzzyenter.setinput(2 * i + 16) = t2("st_fuz_centre_pos" & 2 * i)
fuzzyenter.setinput(2 * i + 8) = t2(""st_fuz_sigma" & 2 * i)
fuzzyenter.setinput(2 * i + 17) = t2(""st_fuz_centre_pos" & 2 * i)
fuzzyenter.setinput(2 * i + 9) = 2("st_fuz_sigma" & 2 * i)

Next i
12.Close
-db.Close
End Sub

Sub fuzzstore ()

Dim db As database
Dim t1 As table
Dim t2 As table
Dim i As Integer
Dim j As Integer

Set db = OpenDatabase("c:\blah.mdb", True)
Set t1 = db.OpenTable("typedescriptor"”)

'number of actors
'name of actor which is edited
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tl.Index = "type_index"
t1.Seek "=", fuzzyenter.Text]l.Text

actornum = t1("number") ‘number of actors
actorname = t1("name") 'name of actor which is edited
t1.Close

Fori=0 To actornum - 1
Set t2 = db.OpenTable(actorname & i)
t2.MoveFirst
t2.Edit
Forj=0To 3
t2("st_fuz_centre_pos" & 2 * j) = fuzzyenter.setinput(2 * j + 16)
t2("st_fuz_sigma" & 2 * j) = fuzzyenter.setinput(2 * j + 8)
Next j
t2.Update
t2.Close
Next i
db.Close
End Sub

Robots.bas
Option Explicit

" Dim indicator As Integer

Sub Activity (Robot() As Actor)
'this one does determine the theoretical time spent on each activity each day

Dim total As Single

Static acttime(4) As Single
Static Payoff(4) As Single
Static decay(4) As Single
Dim i As Integer

Dim j As Integer

Dim k As Integer

total =0
Fori=0To3
total = total + importance(i)
Next i
Forj=0To3 :

If total = 0 And (Robot(RobotNum).ShortTermIOCode(2 * j) <> 0 Or
Robot(RobotNum).ShortTermIOCode(2 * j + 1) < 0) Then
importance(j) = .00001
total = total + importance(j)

Else

End If

acttime(j) = importance(j) / total * 24

Robot(RobotNum).ShortTermActivities(j) = acttime(j)

Next j
Fork=0To3

decay(k) = dec.Textl(k).Text

Robot(RobotNum).ShortTermBudgets(k) = Robot(RobotNum).ShortTermBudgets(k) - decay(k)

Robot(RobotNum).RemTime(k) = acttime(k)

Nextk ‘ :
Robot(RobotNum).DailyActivities = "" 'reset activity string
End Sub

280



AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

Sub GetSomething (Robot() As Actor)

'Acitvity 0 =recreation/sleep, 1=work, 2=shopping, 3=socialising

'CurrentActivity(0)=activity

'CurrentActivity(1)=arrival number in cell

') all activities get a payoff if capacity is not exeeded

'ii) Shopping and socialising are successful if i) is met AND there is somebody present to work
'iif) shopping and socialising cost money

Select Case Robot(RobotCount).CurrentActivity(0) = 0 'recreation
Case True

If Robot(RobotCount).CurrentActivity(1) <= ThisWorld.Capacity(0,
Robot(RobotCount).CurrentCell) Then
If Robot(RobotCount).PreviousActivity(0) = 0 Then
Robot(RobotCount).ShortTermBudgets(0) = Robot(RobotCount).
ShortTermBudgets(0) + (ThisWorld.Act(0, TimeOfDay, Robot(RobotCount).
CurrentCell) * Exp(-((Robot(RobotCount).PreviousActivity(1) - 3.5) ~ 2) / (18)))

Robot(RobotCount).ShortTermBudgets(1) =
Robot(RobotCount).ShortTermBudgets(1) .

Else
Robot(RobotCount).ShortTermBudgets(0) = Robot(RobotCount).
ShortTermBudgets(0) + (ThisWorld.Act(0, TimeOfDay, Robot(RobotCount).
CurrentCell) * Exp(-((0 - 3.5) ~ 2) / (18)))

Robot(RobotCount).ShortTermBudgets(1) =
Robot(RobotCount).ShortTermBudgets(1)

If Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) < 100 Then
Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0), Robot(RobotCount).
CurrentActivity(2), 2) + 1
Else
End If
End If
Else 4
If Robot(RobotCount). CMknow(Robot(RobotCount).CurrentA ctivity(0),
Robot(RobotCount).CurrentActivity(2), 2) > -100 Then
Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0), Robot(RobotCount).
CurrentActivity(2), 2) - 1
Else
End If
End If
If Robot(RobotCount).PreviousActivity(0) < 0 Then
Robot(RobotCount).PreviousActivity(0) = 0
Robot(RobotCount).PreviousActivity(1) = 1
Else
Robot(RobotCount).PreviousActivity(0) = 0
Robot(RobotCount).PreviousActivity(1) = Robot(RobotCount).PreviousActivity(1) + 1
End If
If ThisWorld.Capacity(0, Robot(RobotCount).CurrentCell) = 0 Then
Demand(0, TimeOfDay, Robot(RobotCount).CurrentCell) = .5
Else
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Demand(0, TimeOfDay, Robot(RobotCount).CurrentCell) = ((-CellCapacityCount(0,
Robot(RobotCount).CurrentCell, 0)) + ThisWorld.Capacity(0, Robot(RobotCount).
CurrentCell)) / ThisWorld.Capacity(0, Robot(RobotCount).CurrentCell)
End If

End Select

Select Case Robot(RobotCount).CurrentActivity(0) = 1 '‘work
Case True
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'If Robot(RobotCount).CurrentActivity(1) <= ThisWorld.Capacity(1,
Robot(RobotCount).CurrentCell) Then
If Robot(RobotCount).PreviousActivity(0) = 1 Then
Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).
ShortTermBudgets(1) + (ThisWorld.Act(1, TimeOfDay,
Robot(RobotCount).CurrentCell))

Robot(RobotCount).ShortTermBudgets(1) =
Robot(RobotCount).ShortTermBudgets(1)

Else
Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).
ShortTermBudgets(1) + (ThisWorld.Act(1, TimeOfDay,
Robot(RobotCount).CurrentCell))

Robot(RobotCount).ShortTermBudgets(1) =

Robot(RobotCount).ShortTermBudgets(1)

If Robot(RobotCount).CMknow(Robot(RobotCount). CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) < 100 Then
Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) + 1

Else

End If

End If
Else
If Robot(RobotCount).CMknow(Robot(RobotCount). CurrentActivity(0),

Robot(RobotCount).CurrentActivity(2), 2) > -100 Then

Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),

Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).

CMknow(Robot(RobotCount).CurrentActivity(0),

Robot(RobotCount).CurrentActivity(2), 2) - 1

Else .
End If

End If

If Robot(RobotCount).PreviousActivity(0) < 1 Then
Robot(RobotCount).PreviousActivity(0) = 1
Robot(RobotCount).PreviousActivity(1) = 1

Else
Robot(RobotCount).PreviousActivity(0) = 1
Robot(RobotCount).PreviousActivity(1) = Robot(RobotCount).PreviousActivity(1) + 1

End If

If ThisWorld.Capacity(1, Robot(RobotCount).CurrentCell) = 0 Then
Demand(1, TimeOfDay, Robot(RobotCount).CurrentCell) = .5

Else :
Demand(1, TimeOfDay, Robot(RobotCount).CurrentCell) = ((-CellCapacityCount(1,
Robot(RobotCount).CurrentCell, 0)) + ThisWorld.Capacity(1, Robot(RobotCount).

CurrentCell)) / ThisWorld.Capacity(1, Robot(RobotCount).CurrentCell)

End If
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End Select

Select Case Robot(RobotCount).CurrentActivity(0) = 2 'shopping
Case True
If Robot(RobotCount). CurrentActivity(1) <= ThisWorld.Capacity(2, Robot(RobotCount).
CurrentCell) And (CellCapacityCount(1, Robot(RobotCount).CurrentCell, 0) <>
ThisWorld.Capacity(1, Robot(RobotCount).CurrentCell)) Then
If Robot(RobotCount).PreviousActivity(0) = 2 Then
Robot(RobotCount).ShortTermBudgets(2) = Robot(RobotCount).
ShortTermBudgets(2) + (ThisWorld.Act(2, TimeOfDay,
Robot(RobotCount).CurrentCell))

Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).
ShortTermBudgets(1) - ThisWorld.Price(2, Robot(RobotCount).CurrentCell)

Else '
Robot(RobotCount).ShortTermBudgets(2) = Robot(RobotCount).
ShortTermBudgets(2) + (ThisWorld.Act(2, TimeOfDay,
Robot(RobotCount).CurrentCell))

Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).
ShortTermBudgets(1) - ThisWorld.Price(2, Robot(RobotCount).CurrentCell)
If Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) < 100 Then
Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) + 1
Else
End If
End If
Else
If Robot(RobotCount).CMknow(Robot(RobotCount). CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) > -100 Then
Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0), '
Robot(RobotCount).CurrentActivity(2), 2) - 1
Else :
End If
End If
If Robot(RobotCount).PreviousActivity(0) < 2 Then
Robot(RobotCount).PreviousActivity(0) = 2
Robot(RobotCount).PreviousActivity(1) = 1
Else
Robot(RobotCount).PreviousActivity(0) = 2 _
Robot(RobotCount).PreviousActivity(1) = Robot(RobotCount).PreviousActivity(1) + 1
End If

If ThisWorld.Capacity(2, Robot(RobotCount).CurrentCell) = 0 Then
Demand(2, TimeOfDay, Robot(RobotCount).CurrentCell) = .5

Else
Demand(2, TimeOfDay, Robot(RobotCount).CurrentCell) = ((-CellCapacityCount(2,
Robot(RobotCount).CurrentCell, 0)) + ThisWorld.Capacity(2, Robot(RobotCount).

CurrentCell)) / ThisWorld.Capacity(2, Robot(RobotCount).CurrentCell)

End If

End Select

Select Case Robot(RobotCount).CurrentActivity(0) = 3 'socialising
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Case True

If Robot(RobotCount).CurrentActivity(1) <= ThisWorld.Capacity(3, Robot(RobotCount).
CurrentCell) And (CellCapacityCount(0, Robot(RobotCount).CurrentCell, 0) <
ThisWorld.Capacity(1, Robot(RobotCount).CurrentCell)) Then
If Robot(RobotCount).PreviousActivity(0) = 3 Then
Robot(RobotCount).ShortTermBudgets(3) = Robot(RobotCount).
ShortTermBudgets(3) + (ThisWorld.Act(3, TimeOfDay, Robot(RobotCount).
CurrentCell) * Exp(-((Robot(RobotCount).PreviousActivity(1) - 3.5) ~ 2) / (18)))

Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).
: ShortTermBudgets(1) - ThisWorld.Price(3, Robot(RobotCount).CurrentCell)
Else
Robot(RobotCount).ShortTermBudgets(3) = Robot(RobotCount).
ShortTermBudgets(3) + (ThisWorld.Act(3, TimeOfDay, Robot(RobotCount).
CurrentCell) * Exp(-((0 - 3.5) ~ 2) / (18)))

Robot(RobotCount).ShortTermBudgets(1) = Robot(RobotCount).

ShortTermBudgets(1) - ThisWorld.Price(3, Robot(RobotCount).CurrentCell)

If Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) < 100 Then
Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) = Robot(RobotCount).
CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) + 1

Else

End If

End If

. Else

If Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) > -100 Then
Robot(RobotCount). CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) =
Robot(RobotCount).CMknow(Robot(RobotCount).CurrentActivity(0),
Robot(RobotCount).CurrentActivity(2), 2) - 1

Else

End If

End If

" If Robot(RobotCount).PreviousActivity(0) < 3 Then

Robot(RobotCount).PreviousActivity(0) = 3
Robot(RobotCount).PreviousActivity(1) = 1
Else
Robot(RobotCount).PreviousActivity(0) =3
Robot(RobotCount).PreviousActivity(1) = Robot(RobotCount).PreviousActivity(1) + 1
End If
If ThisWorld.Capacity(3, Robot(RobotCount).CurrentCell) = 0 Then
Demand(3, TimeOfDay, Robot(RobotCount).CurrentCell) = .5
Else
Demand(3, TimeOfDay, Robot(RobotCount).CurrentCell) = ((-CellCapacityCount(3,
Robot(RobotCount).CurrentCell, 0)) + ThisWorld.Capacity(3, Robot(RobotCount).
CurrentCell)) / ThisWorld.Capacity(3, Robot(RobotCount).CurrentCell)
End If

End Select
If Robot(RobotCount).PreviousActivity(1) > 30000 Then

End If

Robot(RobotCount).PreviousActivity(1) = 30000

End Sub
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Sub MoveAvg (Robot() As Actor)
‘calculates the moving average of the last 300 periods for the central position of the fuzzy input sets

Dim i As Integer

Dim j As Integer

Dim k As Integer

Static CentrePos(4) As Single
Static dist(4) As Single

Fori=0To3
Robot(RobotCount).CentreMatrix(WriteNum, i) = Robot(RobotCount).ShortTermBudgets(i)
dist(i) = Robot(RobotCount).ShortTermFuzCentre(2 * i + 1) -
Robot(RobotCount).ShortTermFuzCentre(2 * 1)
Next i
Forj=0To3
Fork=0To 299 :
CentrePos(j) = CentrePos(j) + Robot(RobotCount).CentreMatrix(k, j)
Nextk ’
CentrePos(j) = CentrePos(j) / 300
Robot(RobotCount).ShortTermFuzCentre(2 * j) = CentrePos(j) - (dist(j) / 2)
Robot(RobotCount).ShortTermFuzCentre(2 * j + 1) = CentrePos(j) + (dist(j) / 2)
If Robot(RobotCount).ShortTermFuzCentre(2 * j) <0 Then
Robot(RobotCount).ShortTermFuzCentre(2 * j) =0
Robot(RobotCount).ShortTermFuzCentre(2 * j + 1) = dist(j)
End If
Next j
End Sub

Sub Mutate (Robot() As Actor)

Select Case LearnAlt(MuteAlt)
Case Is >=50
If ((Robot(RobotNum).ShortTermIOCode(2 * Actinum) And (2 » (2 * MuteAlt)) = (2~ (2 *
MuteAlt))) And (Robot(RobotNum).ShortTermIOCode(2 * Actinum + 1) And (2~ (2 *
MuteAlt + 1)) = (2 ~ (2 * MuteAlt + 1)))) Then
If Rnd > .5 Then ,
Robot(RobotNum).ShortTermIOCode(2 * Actinum + 1) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum + 1) Xor (2 ~ (2 * MuteAlt + 1))
Else
Robot(RobotNum).ShortTermIOCode(2 * Actinum) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum) Xor (2 ~ (2 * MuteAlt))
End If N

Robot(RobotNum).MutationTag = 1
Else

If Rnd > AndOrProb Then

Robot(RobotNum).ShortTermIOCode(2 * Actinum + 1) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum + 1) Xor (2 ~ (2 * MuteAlt) +2 2 (2 *
MuteAlt + 1))

Else »
Robot(RobotNum).ShortTermIOCode(2 * Actinum) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum) Xor (2 ~ (2 * MuteAlt) + 2 A (2 * MuteAlt + 1))

End If

Robot(RobotNum).MutationTag = 1
End If :

Case Is <20
If ((Robot(RobotNum).ShortTermIOCode(2 * Actinum) And (2 * (2 * MuteAlt)) =2 (2 *
MuteAlt)))) Then
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Robot(RobotNum).ShortTermIOCode(2 * Actinum) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum) Xor (2 * (2 * MuteAlt))
ElseIf (Robot(RobotNum).ShortTermIOCode(2 * Actinum + 1) And (2 A (2 * MuteAlt + 1)) =
(2* (2 * MuteAlt + 1))) Then
Robot(RobotNum).ShortTermIOCode(2 * Actinum) = Robot(RobotNum).
ShortTermIOCode(2 * Actinum) Xor (2 ~ (2 * MuteAlt))
End If
Robot(RobotNum).MutationTag = 1
End Select
End Sub

Sub ResetAgent (Tobor() As Actor)

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim n As Integer

Dim accessnum As Integer
Dim oldstrat As Integer

indicator = 0
Tobor(RobotNum).MutationTag = 0
oldstrat = Tobor(RobotNum).LearnS
Forn=0To3
If Tobor(RobotNum).ShortTermBudgets(n) < Resetvalue Then
indicator = indicator + 1
EndIf
Nextn
accessnum = Int(CMASize * Rnd)
If indicator < 0 Then
Fork=0To3 'resets agents's budgets
Tobor(RobotNum).ShortTermBudgets(k) = 0
Nextk
Select Case Repfil < Rnd
Case True
Select Case RUNFORM.Check1(7).Value
Case 0
If (oldstrat = 0 And Rnd <=.33) Then
Tobor(RobotNum).LearnS =1 . 'selects new learning strategy
ElseIf Rnd <= .33 Then
Tobor(RobotNum).LearnS = 0
End If
If ((oldstrat = 0 Or oldstrat = 1) And (Rnd >.33 And Rnd <=.67)) Then
Tobor(RobotNum).LeanS =2
ElseIf (Rnd > .33 And Rnd <=.67) Then
Tobor(RobotNum).LearnS = 1
End If
If (oldstrat = 3 And Rnd > .67) Then
Tobor(RobotNum).LearnS =2
ElseIf Rnd > .67 Then
Tobor(RobotNum).LearnS =3
End If
Case Else
Tobor(RobotNum).LearnS = Int(4 * Rnd)
End Select -
End Select
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Select Case RUNFORM.Check1(2).Value
Case 1
If ItNum > 500 Then
Fori=0To7 'generates new set of rules
Tobor(RobotNum).ShortTermIOCode(i) =
ThisWorld.CommonRules(accessnum, i)
Next i
End If
End Select

Select Case RUNFORM.Check1(5).Value
Case 1 '
If Rnd < CopyProb Then
Fori=0To7
Tobor(RobotNum).ShortTermIOCode(i) =
ThisWorld. CommonRules(accessnum, 1)
Next i
End If
End Select
Tobor(RobotNum).Age =0
Tobor(RobotNum).MutationTag = 1
End If 'end of reset

Select Case RUNFORM.Check1(5).Value
'copies the agents rule set to common knowledge if its age is greater than 500 time steps

Case 1
If Tobor(RobotNum).Age > 500 Then
Fori=0To 7
ThisWorld.CommonRules(accessnum, i) =
Tobor(RobotNum).ShortTermIOCode(i)
Next i
End If
End Select
End Sub

Sub ResetFDV (Robot() As Actor)

Dimi As Integer
Dim j As Integer

Fori=0To3 ~ 'reset final decision vector
Forj=0To 4
Robot(RobotCount).FinalDecisionvector(j, i) = 0
Next j
Next i
End Sub

Sub RndChngAgent (Tobor() As Actor)

Dim k As Integer
Dim n As Integer

indicator =0 .
Forn=0To3 ‘checks whether to generate new rule parameters
If Tobor(RobotNum).ShortTermBudgets(n) < Resetvalue * Lthres Then
indicator = indicator + 1
End If
If indicator < 0 Then
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Tobor(RobotNum).ShortTermIOCode(n) = Int(65536 * Rnd)
Tobor(RobotNum).MutationTag = 1
Elself indicator = 0 Then
Tobor(RobotNum).MutationTag =0
End If
Nextn
End Sub

Sub RndChngAgentl (Tobor() As Actor)

Dim k As Integer
Dim n As Integer

indicator =0
Forn=0To3 ‘checks whether to generate new rule parameters
If Tobor(RobotNum).ShortTermBudgets(n) < Resetvalue * Lthres Then
indicator = indicator + 1
End If
If indicator <> 0 Then
Fork=2*nTo2*n+1
Tobor(RobotNum).ShortTermIOCode(k) =Int(65536 * Rnd)
Nextk
Tobor(RobotNum).MutationTag = 1
Elself indicator = 0 Then
Tobor(RobotNum).MutationTag = 0
End If :
indicator = 0
Nextn
End Sub

Sub SelAct (Robot() As Actor)

'This routine decides on the current activities to be taken by each
'individual on each time of day

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer

'decision on Activity

Select Case ((Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 0) >=
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 1)) And (Robot(RandArray(1, TTC)
Mod TotalCount).FinalDecisionvector(0, 0) >= Robot(RandArray(1, TTC) Mod TotalCount). '
FinalDecisionvector(0, 2)) And (Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 0)
>= Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 3)))
Case True ,
Robot(RandArray(1, TTC) Mod TotalCount).XPos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(2, 0)
Robot(RandArray(1, TTC) Mod TotalCount).Ypos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(3, 0)
Robot(RandArray(1, TTC) Mod TotalCount).CurrentCell = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(4, 0)

Robot(RandArray(1, TTC) Mod TotalCount).DailyActivities = Robot(RandArray(1, TTC) Mod
TotalCount).DailyActivities & "A" & (Robot(RandArray(1, TTC) Mod TotalCount).XPos /
Gridfactor) & (Robot(RandArray(1, TTC) Mod TotalCount).Ypos / Gridfactor)

288



AN ADAPTIVE AGENT-BASED MULTICRITERIA SIMULATION SYSTEM

Robot(RandArray(1, TTC) Mod TotalCount).RemTime(0) = Robot(RandArray(1, TTC) Mod
TotalCount).RemTime(0) - 1
CellCapacityCount(0, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 0), 0)
= CellCapacityCount(0, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 0),
0)-1
CellCapacityCount(0, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 0), 1)
= CellCapacityCount(0, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 0),
1)+1 .
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(0) = 0 '
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(1) = CellCapacityCount(0,
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 0), 1)

End Select

Select Case ((Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 1) >
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 0)) And (Robot(RandArray(1, TTC)
Mod TotalCount).FinalDecisionvector(0, 1) >= Robot(RandArray(1, TTC) Mod TotalCount).
FinalDecisionvector(0, 2)) And (Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 1)
>= Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 3)))
Case True
Robot(RandArray(1, TTC) Mod TotalCount).XPos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(2, 1)
Robot(RandArray(1, TTC) Mod TotalCount).Ypos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(3, 1)
Robot(RandArray(1, TTC) Mod TotalCount).CurrentCell = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(4, 1)
Robot(RandArray(1, TTC) Mod TotalCount).DailyActivities = Robot(RandArray(1, TTC) Mod
TotalCount).DailyActivities & "B" & (Robot(RandArray(1, TTC) Mod TotalCount).XPos /
Gridfactor) & (Robot(RandArray(1, TTC) Mod TotalCount).Ypos / Gridfactor)

Robot(RandArray(1, TTC) Mod TotalCount).RemTime(1) = Robot(RandArray(1, TTC) Mod
TotalCount).RemTime(1) - 1
CellCapacityCount(1, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 1), 0)
= CellCapacityCount(1, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 1),
0)-1
CellCapacityCount(1, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 1), 1)
= CellCapacityCount(1, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 1),
1)+1
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(0) = 1
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(1) = CellCapacityCount(1,
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 1), 1)

End Select

Select Case ((Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 2) >
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 0)) And (Robot(RandArray(1, TTC)
Mod TotalCount).FinalDecisionvector(0, 2) > Robot(RandArray(1, TTC) Mod TotalCount).
FinalDecisionvector(0, 1)) And (Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 2)
>= Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 3)))
Case True '
Robot(RandArray(1, TTC) Mod TotalCount).XPos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(2, 2)
Robot(RandArray(1, TTC) Mod TotalCount).Ypos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(3, 2)
Robot(RandArray(1, TTC) Mod TotalCount).CurrentCell = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(4, 2)

Robot(RandArray(1, TTC) Mod TotalCount).DailyActivities = Robot(RandArray(1, TTC) Mod
TotalCount).DailyActivities & "C" & (Robot(RandArray(1, TTC) Mod TotalCount).XPos /
Gridfactor) & (Robot(RandArray(1, TTC) Mod TotalCount).Ypos / Gridfactor)
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Robot(RandArray(1, TTC) Mod TotalCount).RemTime(2) = Robot(RandArray(1, TTC) Mod
TotalCount).RemTime(2) - 1
CellCapacityCount(2, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 2), 0)
= CellCapacityCount(2, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 2),
0-1
CellCapacityCount(2, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 2), 1)
= CellCapacityCount(2, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 2),
1)+1 _
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(0) =2
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(1) = CellCapacityCount(2,
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 2), 1)

End Select :

Select Case ((Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 3) >
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 0)) And (Robot(RandArray(1, TTC)
Mod TotalCount).FinalDecisionvector(0, 3) > Robot(RandArray(1, TTC) Mod TotalCount).
FinalDecisionvector(0, 1)) And (Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 3)
> Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(0, 2)))
Case True :
Robot(RandArray(1, TTC) Mod TotalCount).XPos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(2, 3)
Robot(RandArray(1, TTC) Mod TotalCount).Ypos = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(3, 3)
Robot(RandArray(1, TTC) Mod TotalCount).CurrentCell = Robot(RandArray(1, TTC) Mod
TotalCount).FinalDecisionvector(4, 3)

Robot(RandArray(1, TTC) Mod TotalCount).DailyActivities = Robot(RandArray(1, TTC) Mod
TotalCount).DailyActivities & "D" & (Robot(RandArray(1, TTC) Mod TotalCount).XPos /
Gridfactor) & (Robot(RandArray(1, TTC) Mod TotalCount).Ypos / Gridfactor)
Robot(RandArray(1, TTC) Mod TotalCount).RemTime(3) = Robot(RandArray(1, TTC) Mod
TotalCount). RemTime(3) - 1
CeliCapacityCount(3, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 3), 0)
= CellCapacityCount(3, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 3),
0)-1
CellCapacityCount(3, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 3), 1)
= CellCapacityCount(3, Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 3),
)+1
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(0) =3
Robot(RandArray(1, TTC) Mod TotalCount).CurrentActivity(1) = CellCapacityCount(3,
Robot(RandArray(1, TTC) Mod TotalCount).FinalDecisionvector(4, 3), 1)

End Select

End Sub

World.bas
Option Explicit

Global Const CellNos =9

Type World
XPos(CellNos) As Single
Ypos(CellNos) As Single
Act(3, 23, CellNos) As Single
Capacity(3, CellNos) As Integer
Price(3, CeliNos) As Single
tablenumber As Integer
MaxPrice(3, CellNos) As Single
MaxCapacity(3, CellNos) As Integer
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Turnover(CellNos) As Single
CommonRules(19, 7) As Long

End Type

Global ThisWorld As World

Sub ChangeCap ()

Dim CapSigma As Single

Dim CapNorm As Single

Static MediumDem(4, CellNos) As Single
Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim 1 As Integer

Dim m As Integer

CapSigma = CaChange.Text2.Text
CapNorm = CaChange.Text1.Text
Forj=0To3

Fori=0 To CellNos - 1

Next i

Next j

MediumDem(j, 1) =0

Forj=0To3
Fori=0 To CellNos - 1

Next i

Next j

Fork =0 To 299
MediumDem(j, i) = MediumDem(j, i) + LtAvDemand(j, i, k)

Nextk K

MediumDem(j, i) = MediumDem(j, i) / 300

For1=3 To 0 Step -1
Form=0To CellNos - 1

Select Case |
Case 3
ThisWorld.Capacity(l, m) = Int(1 / (1 + Exp((-1) * CapSigma * (MediumDem(l,
m) - CapNorm))) * ThisWorld.MaxCapacity(l, m)) '
Case 2 :
ThisWorld.Capacity(l, m) = Int(1 / (1 + Exp((-1) * CapSigma * (MediumDem(],
m) - CapNorm))) * ThisWorld.MaxCapacity(l, m))
Case 1
ThisWorld.Capacity(l, m) = Int(Capfac * Sqr(ThisWorld.Capacity(2, m))) +
Int(Capfac * Sqr(ThisWorld.Capacity(3, m)))
Case 0 ;
ThisWorld.Capacity(l, m) = Int(1 / (1 + Exp((-1) * CapSigma * (MediumDem(],
, m) - CapNorm))) * ThisWorld.MaxCapacity(l, m))
End Select

Nextm

Next 1
End Sub

Sub ChangePrice ()

Dim PriceSigma As Single
Dim PriceNorm As Single
Dim i As Integer
Dim j As Integer



APPENDIX: LISTING OF THE COMPUTER PROGRAM USED

PriceSigma = PrChange.Text2.Text
PriceNorm = PrChange.Textl.Text
Fori=0To3 'loop over activities
For j =0 To CellNos - 1 'loop over all cells
ThisWorld.Price(i, j) =1/ (1 + Exp((-1) * PriceSigma * (AvDemand(}, j) - PriceNorm)))
* ThisWorld.MaxPrice(i, j) * BasePrice(i, j)
Next j
Next i
End Sub

Sub GetDemand ()

Dim i As Integer
Dim j As Integer
Dim k As Integer
Static sum(4, CellNos) As Single

Fork =0 To CellNos - 1
Forj=0To3
sum(j, k) =0
Next j
Next k
Fork =0 To CellNos - 1
Forj=0To3
Fori=0To 23
sum(j, k) = sum(j, k) + Demand(j, i, k)
Next i ' .
AvDemand(j, k) = sum(j, k) / 24
LtAvDemand(j, k, WriteNum) = sum(j, k) / 24
Nextj
Next k
End Sub

Sub GetTurndver 0

Dimi As Integer
Dim j As Integer
Dim k As Integer

Fori=0 To CellNos - 1 »
'This one is adding up the daily turnover of shopping and socialising in all cells

If CellCapacityCount(2, i, 1) < ThisWorld.Capacity(2, i) Then
ThisWorld. Turnover(i) = ThisWorld. Turnover(i) + CellCapacityCount(2, i, 1) *
ThisWorld.Price(2, i) .
Else .
ThisWorld. Turnover(i) = ThisWorld. Turnover(i) + ThisWorld.Capacity(2, i) *
ThisWorld.Price(2, i)
End If
If CellCapacityCount(3, i, 1) < ThisWorld.Capacity(3, i) Then
ThisWorld. Turnover(i) = ThisWorld. Turnover(i) + CellCapacityCount(3, i, 1) *

ThisWorld.Price(3, 1)
Else
ThisWorld. Turnover(i) = ThisWorld. Turnover(i) + ThisWorld.Capacity(3, i) *
ThisWorld.Price(3, i)
End If
Next 1

For j =0 To CellNos - 1
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Fork=0To 23
If ThisWorld.Act(1, k, j) < 0 Then
If ThisWorld. Turnover(j) / 24 < 1 Then
ThisWorld.Act(1, k,j) =1

Else
ThisWorld.Act(1, k, j) = ThisWorld.Turnover(j) / 24
'change payoff for work on the basis of daily turnover
End If
End If
Nextk
ThisWorld. Turnover(j) = 0 ‘reset turnover vector
Next j
End Sub

293



