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Notations

c Spring constant or stiffness

f Frequency

m Mass

ke Damping Coefficient

q Pitch rate perturbation

P Period

to Relaxation time

Uo Trim speed along X-body axis
A% Eigenvector or modal matrix
A Eigenvector

w Velocity perturbation along OZ axis
X0 Initial condition

X; Zero-input response

Xs Zero-state response

Greek Symbols

€p Damping angle

o Logarithmic decrement

d(t) State transient matrix (STM)
A Diagonal eigenvalue matrix

A Eigenvalues

0 Pitch attitude perturbation

0 damped frequency

Wy Undamped Natural frequency
£ Damping ratio

& Damping ratio of phugoid mod
c Product of @, and {

Aerodynamic Derivatives

Dimensional elevator power
Dimensional pitch damping derivative
Pitching moment with forward speed
Pitching moment due to vertical velocity

ii

(Hz)

(deg/sec)
(sec)
(sec)

(m/sec)

(m/sec)

(deg)

(deg)
(rad/sec)
(rad/sec)

(rad/sec)

(1/seczlrad)
(1/sec)
(1/m-sec)
(1/m)



Zy Z-force due to elevator deflection
Zy Z-force due to pitch rate

Zu* Z-force due to forward speed

Zw Z-force due to vertical velocity
Xn X-force due to elevator deflection
Xq X-force due to pitch rate

Xo X-force due to forward speed

Xw X-force due to vertical velocity
Abbreviations

EVM Eigen Vector Method

STM State Transient Matrix

TVM Time Vector Method

ii

(1/sec?/rad)
(1/sec)
(1/m-sec)
(1/m-sec)

(llseczlrad)
(1/sec)
(1/m-sec)
(1/m-sec)



1. Introduction

Many methods for aircraft parameter identification have been developed and are
currently in use. Prior to the development of computer methods the graphical Time
Vector Method (TVM) was introduced during 1950°s (ref. 1,2). Basically the TVM is
based on the mechanical vibration theory. When the aircraft responses have oscillatory
modes they can be considered as vibrations even though the typical frequency of these
may be higher than those of the mechanical vibrations. Because of the graphical
approach, the TVM may produce inaccurate results. But it gives us thorough
understanding of the physical system. Owing to the rapid development of computers and
sophisticated parameter identification algorithms, the rather limited graphical method
has fallen into disuse and the others have emerged to replace it. They are, typically, the
output error methods, the equation error methods, the Kalman filter estimator, the
maximum likelihood technique, and so on (ref. 3~6).

The damping angle, natural frequency, relative magnitude and phase angle of each
dynamic mode are the basis of the TVM. In this respect the state-space models can
provide the same information. In particular the eigenvalues and eigenvectors which
involve all the response information of the system, have the same properties as the time
vectors. So, the objective of this report is to show the relationship between the TVM and
the state-space method of an analysis and hence to facilitate the state-space method
(eigenvector analysis) for aircraft parameter identification.

2. Review of the Time Vector Method

2.1 One Degree of Freedom Oscillator without damping

First the simple spring-mass arrangement of Fig. 2.1a may be considered. When
released from an initial deflection, xo, it oscillates harmonically about its equilibrium
position. As no energy is dissipated, the amplitude remains constant. The time history of
the displacement is therefore simply a cosine-line, Fig. 2.1b.

A cosine-line can be considered as generated by a ‘time vector’ of fixed length rotating
with constant angular velocity, oy, about the origin, Fig. 2.1c. During one period, P, of
the oscillation the vector rotates through 2r radians, hence :

n

= %— =2nf (rad/sec) 2.1

Thus o, is also a measure for the frequency, f (Hertz), with which the vector completes
full circular motions.



From the circular motion of the time vector the cosine-wave is generated by plotting the
projection of the vector on a fixed line, L, through the origin against the phase angle,
i.e., against the instantaneous angular position, € = t, of the vector. This is indicated by
the second scale, ot, on the abscissa in Fig. 2.1b.

/3
N [N

™ 2r wt(rad)

ks

(a) Physical System (b) Time History of Osciliation (c) Generating Circular Motion of

Time Vector in the Phase Plane

Figure 2.1 Undamped Oscillator with One Degree of Freedom

The velocity and acceleration of the oscillating mass are easily obtained by
differentiating the cosine function with respect to time. They are shown in Fig. 2.2b. If
the displacement is given by

X = X, COS®t (2.2)

the velocity is

dx - T

— =X = —X,0sinot = X,0cos(wt + ) 2.3)

dt 2
and the acceleration

d’x = 2 2

Et—z— =X = —~X,0" cos®t = X,®" cos(ot + T) 2.4

Thus when any derivative of a component of the motion is differentiated the new
derivative multiplies its amplitude by ® and leads the preceding one by 90 deg.
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Figure 2.2 Undamped Oscillator, Motion Variables

The forces acting on the mass are spring force and the inertial resistance. Hence the
equation of motion is

mx+cx=0 (2.5)

where c is the spring constant or stiffness. From equations (2.2) and (2.4) equation (2.5)
can be written,

m’xg = CXo (2.6)
whence, the undamped natural frequency is given by,

2

o = Q2.7)

c
m
In order to avoid confusion it should be stressed that time vectors have no real physical
vector character like force or speed themselves ; they are just graphical representations
of oscillating quantities, whether scalar or vector, in the phase plane. The same
mathematical rules, however, apply to time vectors as to real vectors. For example, two
or more time vectors representing forces may be added geometrically to give one
resultant time vector.

It is probably more useful to describe a vector by a single complex number which is then
called the complex amplitude. The phase plane is then replaced by the complex plane.
This is indeed advantageous because the process of projecting the time vector onto a
line through the origin to obtain the actual displacement, etc., of the oscillator becomes



equivalent to simply isolating the real part of the complex amplitude. This process is
illustrated by Fig. 2.3.

Inertial Resistance

/
/ , wt

/ ,

Spring Force

(a) Time Vectors of Forces (b) Time Histories of Forces
in the Phase Plane

Figure 2.3 Forces Acting in the Oscillator

(b) Time History of Displacement (c) Generoting Motion of Time Vector
in the Phase Plane

(o) Physicai System

Figure 2.4 Damped Oscillator with One Degree of Freedom



2.2 One Degree of Freedom Oscillator with Damping

2.2.1 Equation of Motion

Next the oscillator with spring, mass and damper in Fig. 2.4a will be considered. The

X

damper is assumed to add purely viscous friction so that F() =kx. Hence the

differential equation describing unforced motion of this oscillator is ,

mx+kx+cx=0 (2.8)
and the general solution is assumed to be,

X = exp(At)
x = Lexp(At) 2.9)
x=2 exp(At)

where A is constant. Substituting equation (2.9) into equation (2.8) yields
, k c
A +—A+—)exp(At) =0 (2.10)
m m

where the quadratic equation is the so-called characteristic equation and the solutions
of this equation are,

NS (_k_) 3 -
127 om~ \V\2m m (2.11)

Whence, the general solution of equation (2.8) may be written
x = Aexp(Art) + Bexp(Aat) (2.12)

In order to examine the properties of the general solution, substitute equation (2.11) into
equation (2.12) to obtain,

k kY ¢ kY ¢
x=exp(——25t]{Aexp£ (-z—n-l-) —Et]-fBexp[— (-2;) —;t} (2.13)



In the general solution the decay factor is,

k t
exp(-— om t) = exp[—- ;j (2.14)

in which tp is the damping time during which the amplitude decrease to 1/e = 0.368 of
its original value. It is sometimes called the relaxation time.

When the system is critically damped, which means the value of the square root in
equation (2.13) is zero, the damping coefficient is,

C
k, = ZmJ— =2mo, (2.15)
m

The fixed amplitude ratio of two consecutive peaks in response, i.e., a full period apart,
is usually given by its Naperian logarithm and is called the logarithmic decrement, b.
This is connected with damping time by the simple relation :

8=£— 2n (2.16)
to

oty
2.2.2 The Damping Angle

When making the geometrical projection of the amplitude time vector it is seen that this
projection reaches its maximum numerical value not when the vector lies along the
positive real axis but, slightly earlier, as indicated in Fig. 2.4c. The phase angle for this
position may be called the damping angle, ep. This angle is the same as that between the
perpendicular to the radius vector and the tangent to the spiral trajectory in the phase
plane which is constant. The angle is zero for no damping and it increases with
damping, making the spiral trajectory converge more rapidly. It becomes negative for
negative damping when the spiral is divergent.

In the engineering applications the damping is often expressed by its ratio to the critical
damping,

kK k 1
§=E= = (2.17)

where ( is the damping ratio.

As described earlier the TVM is connected with the oscillating system, which is
underdamped . Now the circular frequency or damped natural frequency ,®, defined as

SR B



It is evident that the addition of viscous friction reduces the circular frequency.
Furthermore it is seen that this reduction is independent of the sign of tp, i.e., the
frequency is always reduced whether the oscillation is positively damped or divergent.
The time history of such a damped oscillation is shown in Fig. 2.4b. The envelope is the
time function of the decay factor and the damping time tp appears as the sub-tangent to
the envelope at any point.

Also the change of circular frequency with viscous friction can be expressed in terms of
the damping angle as follows. Equation (2.18) can be represented by the relationship of
the sides of a right angle triangle as shown below,

®,
1
€p —_—
ty
(0]

Using this diagram the circular frequency can be redefined and €p can be expressed in
terms of damping time and undamped circular frequency,

® =, COSE

._l( 1 ] - (2.19)
€, = sin =sin" C

D(Dn

Point of Inflection

A _
g —_—— T — — ;
\\ \\\ N ,‘ i 4 I»\z.a an et \\/‘/‘- ——————————
\ i) / } \,' P \Displcceme e
/ /&
/:'

Velocity
/ /

,\ Acceleration

(a) Generating Time Vectors (b) Time Histories
in the Phase Plane

Figure 2.5 Damped Oscillator, Motion Variables



2.2.3 Velocity and Acceleration

As stated above the displacement vector is offset from the vertical axis in the phase
plane by ¢€p, i.e., in the position indicated in Fig. 2.4c. At this instant, t = 0, there must
be zero projection of the velocity vector because the velocity of the physical system is
zero. This means that the vector must fall along the imaginary axis, Fig 2.5a. Thus the
phase angle between the time vector of displacement and that of velocity is 90 deg + €p.

After rotating the diagram into the position of maximum projection for the velocity
vector the same reasoning can be applied to show that the phase angle between the
acceleration and the velocity time vectors is again 90 deg + €p. Hence the acceleration
vector not in counter-phase to the displacement vector but leads by an additional angle

of 2ep, Fig. 2.5a.
This difference is also apparent in the time history of the variables of motion, Fig 2.5b,
where evidently zero acceleration must coincide with the point of inflection of the

displacement curve. This is 2¢p ahead of zero displacement.

The amplitude of velocity and acceleration may be obtained by analytic differentiation
of equation (2.13). Substituting equation (2.14) and (2.18) into equation (2.13) yields

X = exp(— tLJ{A expliot) + Bexp(— icot)}
D
= exp(— {—j{(A +B)cosot_i(A - B)sinot} (2.20)
D

where exp(x iot) = coswt = i sinwt. Using the initial condition of zero velocity,
equation (2.20) can be expressed as follows.

t .
X=X, exp(— = ){cos @t +tane, sinwt
D

Q)] t
=X, exp(— ——)cos(wt —€p) 2.21)
® t,



and the velocity is,
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Similarly,

>

o, t 1.
=—X, exXp| —— [§| —— [sinwt + W coswt
0] tp t

o,’ t
=—X, Q')' exp(— t—] cos(mt +€p,) (2.23)

D

o’ t
= X, ——exp| — — |cos(ot + T +&y )
0] tp

It can be summarized that when any derivative of a component of motion is
differentiated the new derivative multiplies its amplitude by @, and leads it by 90 deg +
€p.

2.2.4 [sosceles Triangle of the Forces Acting on the Oscillator

Having determined the relative phase angles of the motion variables the corresponding
time vectors of the forces acting on the damped oscillator, can be plotted. The spring
and the inertial forces are not in counter phase and together with the damping force they
must form a closed polygon in order that at every instant the projection of all three
vectors may add up to zero. From the phase relationship, Fig. 2.6a and 2.7a, it can be
seen that this polygon must be an isosceles triangle, Fig 2.7b.

The isosceles triangle of forces is most important for the application of the TVM. It will
be seen by reference to Fig. 2.7 that the vertex angle of this triangle is 2ep, showing the
degree of damping. The ratio of the height of the triangle to the sides is equal to cosep
and can therefore be used as a measure of the frequency of the damped motion , ®, as
compared with that of the undamped motion, ®,. A notable consequence of the isosceles
triangle is the fact that the modulus of the spring force vector is always equal to that of
the inertial force vector.
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Figure 2.6 Forces Acting on the Damped Oscillator
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Figure 2.7 Forces Acting on the Oscillator with Negative Damping



2.2.5 Vector Notation

The notation of the basic equations for the time vector representation may be chosen
similar to that of the differential equations; it must, however, give amplitude and phase
of each term explicitly. How this can be achieved may best be demonstrated by means
of the one degree of freedom oscillator described by equation (2.8), repeated below. The
results are also correct for systems with more than one degree of freedom as long as
only one particular oscillatory mode of motion is considered.

mx+kx+ecx =0 (2.8)

With equation (2.20), (2.21) and (2.22) this becomes

t t
{mxong exp(— T)cos(mt +T+E, )} + {kxocon exp(- t_] cos(mt + g)}
D

D
t
+ {cx0 exp(— T]cos(mt -£5 )} =0 (2.24)
D
or, equivalently,
inertial force + damping force + spring force = 0 (2.25)

t
The decay factor exp[—— t_] can be omitted if the time vector system is to be considered
D

at a given instant, e.g., t = 0. The cosine expressions give the phase of each term and the
remainder is the amplitude of each time vector. Thus the desired separate identification
of both amplitude and phase can be achieved.

When writing the amplitude and phase components it will be sufficient, and indeed
more convenient for the subsequent graphical treatment, to indicate the phase only by

the motion variables, e.g., x,x and x, to which the vector term refers together with the
appropriate sign, to indicate whether the force or moment acts in phase with, or in
counterphase to, the variable. The phase of the variable itself is then derived graphically.
The following notation is therefore used,

Moduli : | MXoWy,> | kxo, | CXg
Phases : I o I . 1 X =0
X X

The zero on the right-hand side is to be understood as postulating the closure of the
polygon made up by the time vectors listed on the left.

11



3. State-Space Method

So far the graphical method has been considered in order to investigate the properties of
a simple oscillatory system. Since the computational mechanism is based on the use of
matrix algebra it is most conveniently handled by a digital computer. In this chapter the
general analysis of the equivalent state-space model and its eigenstructure is considered.

3.1 State-Space Equations

Consider a linear time invariant (LTI) system, then the matrix state and output equation
can be expressed,
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3.1)

The variables x(t), u(t), and y(t) are column vectors, and A, B, C, and D are matrices
having constant elements.

3.1.1 Homogeneous Solution (State Transition Matrix : STM)

The homogeneous state equation, with the input u(t)=0, is

x(t) = Ax(t) (3.2)

where A is a constant »n X » matrix and x is an 7 X 1 column vector. The general
solution of the equation (3.2) is given by

X(t) = exp[A(t - to)]x(to) (3.3)

The analogous exponential function of a square matrix A in equation (3.3) with to = 0
using the infinite series becomes

2 3 k
N exp(at) - 1+ AL, AD? (AD° (a0t

n T T T 349

Thus exp(At) is a square matrix of the same order as A. It is common to call this the
state transition matrix (STM) or the fundamental matrix of the system and to denote by

®(t) =e* = exp(At) (3.5)

12



The STM is descriptive of the unforced or natural response. Hence the solution of the
equation (3.2) at tp = 0 will be

x(t) = O(t)x(0) (3.6)

3.1.2 Eigenvalues and Eigenvectors

Consider a system of equations represented by equation (3.2). One case for which a

solution of this equation exists is if x and x have the same direction in the state space
but differ only in magnitude by a scalar proportionality factor A. The solution must

therefore have the form ).((t) = Ax(t) . Inserting this into equation (3.2) and rearranging
terms yields

[AI-Alx(t)=0 3.7

This equation has a nontrivial solution only if X is not zero. Therefore the determinant of
the coefficients of x must be zero and,

A =[M-Al=0 (3.8)
The resulting polynomial equation (3.8) is called the characteristic equation and the

roots A; of the characteristic equation are called eigenvalues of A. An eigenvalue A; and
its corresponding non-zero eigenvector v; are such that

Avi= A v; (3.9
Therefore the equation (3.8) may be written,

[AMI-A]vi=0 (3.10)
Since v; # O then [ A - A ] is singular. The eigenvectors v; are always linearly
independent hence the eigenvalues A; are distinct. When the eigenvalue is complex its
corresponding eigenvector is also complex and the complex conjugate A; corresponds
with the complex conjugate v; .

The eigenvector or modal matrix comprises all of the eigenvectors and is defined

V=[vivaVvs** ¥yl 3.1

13



Substituting equation (3.11) into (3.9) gives

E ]
A, 0
AV =YV = VA (3.12)
0
L. }\‘n o
where A is the diagonal eigenvalue matrix. Thus
VIAV=A (3.13)

and A is said to be similar to the diagonal eigenvalue matrix A.

Eigenvectors may be determined as follows. Now ,by definition,

Adj[AI-A]

-1
pr-a] = [AI- Al

(3.14)

and since, for any eigenvalue A; , | Al -A | = 0, equation (3.14) may be rearranged and
written,

[A1-AJAdi[AX-A]=[r1-AlT=0 (3.15)

Comparing equation (3.15) with equation (3.10) the eigenvector v; corresponding to the
eigenvalue A; is defined

v, =AdjA,1- A (3.16)

Any non-zero column of the adjoint matrix is an eigenvector and if there is more than
one column they differ only by a constant factor, Eigenvectors are therefore unique in
direction only and not in magnitude. However, the dynamic characteristics of a system
determines the unique relationship between each of its eigenvectors.

3.1.3 Complete Solution of the State Equation

When an input u(t) is present, the complete solution for x(t) is obtained from equation
(3.1). The derivatives of the product of two matrices are given by

%[e““x(t)] =e™ [:}(t) -~ Ax(t)] (3.17)

14



Utilising equation (3.1), in the right side of the equation (3.17) gives,
d —-At —At
E{[e x(t)] = e™*Bu(t) (3.18)

Integrating this equation between 0 and t gives,

e x(t) —x(0) = [ e **Bu(t)dt (3.19)

0

Multiplying by e** and rearranging terms produces,

X(t) = e*x(0) + [ e PBu(t)dt = B()x(0) + [ D(t — T)Bu(t)dt (3.20)
0 Y

Using the STM and generalising for initial conditions at t = ty gives the solution to the
state-variable equation with an input u(t) as, i

X(t) = D(t—t,)x(ty) + JCI)(t - 17)Bu(t)dt t>to (3.21)

to

This equation is called the state transition equation; i.e., it describes the change of state
relative to the initial conditions x(tp) and the input u(t). It may be more convenient to
change the variables in the integral of equation (3.21) by letting =t - T, which gives

X(t) = D(B)X(0) + [ ®(B)Bu(t ~ B)dt (3.22)

All equations comprises two parts, and can be written in general form,
x(t) = xi(t) + x5(t) (3.23)

where x;(t) is called the zero-input response, that is, u(t)=0, and x(t) is called zero-state
response, that is x(tp)=0.

3.2 One Degree of Freedom Oscillator with Damping

3.2.1 Equation of Motion

In order to compare the state space method with the time vector method the same
equation of motion for a mass-spring-damper system is used. Again, writing,

15



mx+kx+cx =0 (3.24)

®

The matrix state equation for this system may be realized by writingz; =x and z, =z, .
Using these relationships the equation (3.24) may be written in matrix form,

' 0 1
“ =[_3 __k_}[z‘} (3.25)
z, m m -%2

z=Az (3.26)

or

3.2.2 The Eigenvalues

As described in paragraph 3.1.2 the characteristic equation may be written,
k c
M+—A+—=0 (3.27)
m m

For a second order system the characteristic equation ,in general, is expressed in terms
of the undamped natural frequency ,w, and damping ratio ,{. Hence equation (3.27)
may be expressed by,

N +2loA+0,> =0 (3.28)

Whence, from the equation (3.27) and (3.28),

c
0’ =—
" 3.29)
ok __o >
T 2me, o,
Now, the roots or eigenvalues of equation (3.28) for 0 < { < 1 are,
A, = Lo, £io,1-0® =-ctio (3.30)

where © is damped frequency of oscillation. The diagram below clearly illustrates the
relationships between damping ratio, undamped natural frequency and damped
frequency.

16



A - plane Im

W, i

— - 10

From the diagram the angle 6 between the eigenvalue and the imaginary axis can be
defined as

0 = sin™ (Zoc_) —sin (3.31)

n

3.2.3 The Solution of the Equation of Motion

Using the results of the complete solution of the state equation in paragraph 3.1.3 the
solution of the equation of motion (3.26) will be just z(t) = zi(t) as input is zero in this
case. In order to evaluate the state transient matrix the Cayley-Hamilton theorem is used
(ref. 7) and the STM can be expressed by this theorem,

®(t) =e™ =exp(At) = iak (HA* (3.32)
k=0

where o) and o are expressed below using equation (3.25), (3.28), and (3.30), diagram
shown above and the Euler’s equation(ref. 7),

%o = %[(CM' +eM )— itan G(e"z' —eMt )] = exp(— Co)nt)[cosmt + tan @ sin wt]

Aot At
o, = i£6—~2-5)e—) = ——-(}-)—exp(—— C(ont)sin(z)t

(3.33)

17



Substituting equation (3.33) into (3.32) assuming zero initial velocity yields,

x(t) =z,(t) =X, exp(— C(ont){coscot +tanOsinot}

and,

®
= X, -(—D-’-‘-exp(— Cmnt)cos(mt )]

(3.34)

2 ' 2
. 0} ® T
X=z, =X, —(D“—cxp(— Lo, t)sin(at) = x, —m“—‘exp(— Cmnt)cos(o)t + —) (3.35)

2

4. Comparison of the Time Vector Method with the State-Space

Method

4.1 Similarity

It has been shown above, as expected, both methods provide the same information
although the notations are different. For convenience the analysis described earlier is
summarized in table 4.1 to emphasize the obvious similarities.

Time Vector Method State-Space Method
EOM m;;+k).(+cx=0 m;+k;(+cx=0
Z —_-I’ Oc 1k }{Z]}
z, "m ml%
Characteristic , k , Kk c
Equation M A =0 A +Ek+; 0
M +2loA+o,> =0
Damping ratio Z;——k—— k 1 (= k o
Tk, 2mo, t,0, T 2mo, o,
Damping Angle 1 G
g, =sin” =sin™ 8 =sin"{ — |=sin™
tD("‘)n (‘On
Undamped , € 2 _
Natural O =7 ©. =T
Frequency
Solution

o, t
X=Xo~"eXp| — cos(mt —€p)

D

W
X = X, —OT"exp(— Ca)nt)cos(mt -0)

Table 4.1 Similarities of the time vector method and the state-space method

18




4.2 Comparison of the Procedures of Both Methods

An outline summary of the procedures for parameter identification by both methods is
shown in table 4.2. However, the TVM is established as described earlier whereas, the

state-space or, eigenvector method is merely suggested.

Step Time Vector Method I State-Space Method
Logarithmic Determine the positive peak values and plot their natural logarithm
Decrement(d) versus the time at which they occur
D d 2T
fr:;?;i cy Calculate the period, P, then o = 53
Phase Angl TimeDiff

ase Angle _ 1P erence 360(deg)
Vector From the instant of the time
Magnitude calculate the relative magnitude
of each mode

Damping Time P
ty =5
)
Damping Angle (1
g, =tan™
tD(")n
Damping Ratio { =sin gp
Eigenvalues and A, =Co, Tio
Undamped o o
Natural (Dn - COSSD O)n = >
frequency 1-§
Diagonal Matrix A, O
A=
0 A,

Eigenvector and
Time Vector

Using the Phase angle and the
relative magnitude construct time
vector

Construct eigenvector matrix V
from response data

Time Vector

Using the Time vector and

From the Eigenvector and

Polygon and Equation of motion draw the time | Diagonal matrix reconstruct the
Reconstruction | vector polygon and extract the state-space model

of the State- parameters A= VAV

Space Model

Table 4.2 Comparison of parameter identification procedures
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4.3 Case Study of Aircraft Model in the Short Period Mode

For the case study the longitudinal dynamics the McDornnell Douglas Phantom F-4C
aircraft, given in ref. 8 was chosen. In order to carry out the procedures described in
section 4.2, the time responses shown in figure 4.1 for the TVM were obtained using
state-space equation 4.1.

moe

u| [X] X, -(W,+X) -gcos®,[u] [X,

vz z U, +Z) -gsin@,|w| |Z

‘y - xl w ( 0 q) g 0 + n n (41)
gl |MI M, M, 0 ql| |M,

5 0 0 1 0 ) 0

where body axes are assumed. The corresponding numerical state equation is,

o] T-00677 00107 0 -322Tul [ -22

W 00226 -211 1215 0 |w]| |-25018

q| | 00033 -00473 -1986 0 |gq T _60917 " (4.2)
5 0 0 1 0o |6 0

By analysing the time responses in figure 4.1a and 4.1b following results were obtained
for use in the TVM analysis of the longitudinal short period mode,

Period P =0.83sec
Logarithmic Decrement 6 = 1.6931

Damped Frequency ® = 7.5701 rad/sec
Phase Angle ¢ = 91.08 deg
Relative Vector Magnitude w = 158.941, q =1
Damping Time to = 0.4902 sec
Damping Angle ep = 15.08 deg

The simplified vector equations that correspond to the equation 4.1 are

Moduli: |  qw W Uoq

Phases : = W —q =0
+w

Moduli : nq Myw Mqyq

Phases : i3 -w -q =0
+q

The corresponding vector polygons are shown in figure 4.2.
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Vertical Velocity : SPPO
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Figure 4.1 Time Histories in Short Period Mode

(a) Vertical Velocity : w

(b) Pitch Rate : q

(a) Vector Polygon of
Z—Equation

(b) Vector Polygon of
M—Equation

Figure 4.2 Vector Poligons in Short Period Mode

In order to compare the time vector method to the state-space method eigenvectors were

obtained from the state matrix A and, in the same manner as for the TVM, are also

plotted in the Fig. 4.2. By analysing all polygons, time vectors, eigenvectors, phase

differences and relative magnitude of each vector the estimated derivatives were
obtained in the table 4.3 and 4.4 together with the actual values obtained from the state-

space method using the computational tools provided in PC-MATLAB.
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Phase Difference (deg) Relative Magnitude
Time vector Eigenvector Time vector Eigenvector
w 91.08 89.55 158.941 160.361
q 0 0 1 1

Table 4.3 Comparison of phase angle and relative magnitude

Time Vector Method | State-Space method Actual Value
oy 7.9434 7.9067 7.8492
. -1.9214 -2.11 -2.11
M,, -0.0112 -0.0118 -0.0473
M, -2.0671 -2.0094 -1.9859

Table 4.4 Comparison of values of the parameters

It has been shown that, as might be expected, the results using the eigenvectors from
state-space method give a better approximation than those obtained by TVM. Also, it is
clear that the eigenvectors include all information about phase angle and relative
magnitude which are extracted using the time vector method (ref. 9,10).

5. Conclusion

In this report the thorough study of the time vector method was made and compared
with the state-space method for analysing linear oscillating motion. It was concluded
that ;

e The analytical characteristics of the state-space method are exactly parallel to
those of the time vector method

o The eigenvectors contain the same information about phase angle and
relative magnitude as derived by the time vector method

e Hence the time vector method, the limited manual graphical approach for the
aircraft parameter identification, can be replaced by a state-space method in
order to capitalize in computational tools. If reconstruction of eigenvalues
and eigenvectors from recorded flight data can be made satisfactorily, then it
should be possible to estimate the state matrix.

e The next step in this study will be to design computer algorithms for the

reconstruction of eigenvalues and eigenvectors from the flight simulation
data.
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