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Abstract

This paper presents a new nonlinear non-intrusive reduced-order model (NL-NIROM) that outperforms traditional
Proper orthogonal decomposition (POD)-based reduced order model (ROM). This improvement is achieved through
the use of Auto-Encoder (AE) and self-attention based deep learning methods. The novelty of this work is that it uses
Stacked Auto-Encoder (SAE) network to project the original high-dimensional dynamical systems onto a low dimen-
sional nonlinear subspace and predict fluid dynamics using an self-attention based deep learning method. This paper
introduces a new model reduction neural network architecture for fluid flow problem, as well as a linear non-intrusive
reduced order model (L-NIROM) based on proper orthogonal decomposition (POD) and self-attention mechanism. In
the NL-NIROM, the SAE network compresses high-dimensional physical information into several much smaller sized
representations in a reduced latent space. These representations are expressed by a number of codes in the middle layer
of SAE neural network. Then, those codes at different time levels are trained to construct a set of hyper-surfaces using
self-attention based deep learning methods. The inputs of the self-attention based network are previous time levels’
codes and the outputs of the network are current time levels’ codes. The codes at current time level are then projected
back to the original full space by the decoder layers in the SAE network.

The capability of the new model, NL-NIROM, is demonstrated through two test cases: flow past a cylinder, and
a lock exchange. The results show that the NL-NIROM is more accurate than the popular model reduction method
namely POD based linear non-intrusive reduced order model (L-NIROM).
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1. Introduction

In engineering and physics, most physical phenomena are governed by conservation laws, which can be written
as partial differential equations (PDEs) [1]. However, solving PDEs can be computationally intensive in particular for
high-fidelity realizations[2]. In this case, the reduced-order models(ROMs) technology plays an important role as they
are able to simulate physical systems accurately with several orders of magnitude CPU speed-up. The ROMs have been
applied successfully to a number of research fields such as data assimilation [3], ocean modelling [4], shallow water
equations [5, 6], air pollution prediction [7], polynomial systems [8], viscous and inviscid flows [9], Fluid-Structure
Interaction [10], aerodynamic shape optimization [11], large-scale time-dependent systems [12], optimal control [13],
circuit systems [14, 15], inverse problems [16], fluids [17], reservoir history matching [18] and turbulent flows [19, 20].

Among traditional model reduction methods, proper orthogonal decomposition (POD) combined with Galerkin
projection is a popular model reduction method, and has been applied successfully to a number of fields. However,
it lacks stability and it is highly inefficient for non-linear models[21, 22, 23]. Several stabilization methods such as
calibration [24], Regularization[25], Petrov-Galerkin [26] have been presented. In addition, an empirical interpola-
tion Method (EIM)[27], discrete empirical interpolation Method (DEIM) [23, 28, 29], a combination of Quadratic
expansion and DEIM (residual DEIM method) [30], Petrov-Galerkin method [24] and a Gauss–Newton method with
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approximated tensors (GNAT) [19] have been presented aimed at alleviating the nonlinear inefficiency of POD. The
DEIM combined with POD method has been used to improve nonlinear term reduction efficiency, which means it
improves ROM’s CPU efficiency, but it does not improve the accuracy of the POD method.

Recently, in order to avoid the above mentioned issues, a data-driven non-intrusive reduced order modelling
(NIROM) method was presented and has been applied to a number of research areas such as fluids, climate, turbulence,
nonlinear problems [31, 32, 33, 34, 35]. Xiao et al. presented a number of NIROMs based on POD and interpolation
methods and machine learning or deep learning methods [36, 31]. Wang et al. presented a NIROM based on POD and
neural network and applied it to a combustion problem [37]. Jacquier et al. presented a NIROM based on deep neural
network and POD and applied it to a flooding problem [38]. Ahmed presented a NIROM for non-ergodic flows using
POD and a long short term memory neural network together with a principal interval decomposition [39].

As mentioned above, POD based model reduction methods restrict the state to evolve in a linear subspace (linear
trial sub-spaces), which imposes a fundamental limitation on the efficiency and accuracy of the resulting ROM [40].
The deep learning method provides a feasible way of POD limitation of linear trial sub-spaces. Deep learning methods
have been successfully applied into various fields. It is quite common to use deep learning for learning the fluid dy-
namics and parametric space (boundary or initial conditions). The deep learning methods for dimensionality reduction
are not as many as traditional methods such as POD in ROM literature. One reason for this is that the recent algorithm
advancements, such as back-propagation method, make the computation of neural network with deep hidden layers
become possible. The Auto-Encoder is one type of deep learning method for dimensionality reduction, and can replace
principal component analysis (PCA) or POD method. A number of work have proved that PCA has the same basis
function space with the Auto-Encoder with linear activation function and one hidden layer [41]. The work paves the
way to use Auto-Encoder with non-linear activation function as a non-linear dimensionality reduction method, which
is like a non-linear version of PCA or POD method. Thus improving the limitation of POD method, which restricts the
state to evolve in a linear subspace.

In this paper, we present a new data driven non-linear non-intrusive model reduction framework (NL-NIROM) us-
ing Stacked Auto-Encoder(SAE) network and self-attention based deep learning methods to tackle the above linear trial
sub-spaces issue. The new NL-NIROM uses Stacked Auto-Encoder(SAE) network to map original high-dimensional
dynamical systems into a nonlinear subspace and predict the fluid dynamics using an self-attention based deep learning
method.

Deep learning method is a popular artificial neural network method as it has shown great potential in many re-
search areas such as image recognition, materials, facial recognition, speech recognition, drug discovery, self-driving
cars[42, 43, 44]. Auto-Encoder is a type of artificial neural network in which the input layer has the same dimen-
sional size and data as the output layer. The high-dimensional inputs are passed into the network and are compressed
in the network. The middle layer of the network has a smaller number of neurons compared to the input and output
layers. Thus, the middle layer represents the inputs using reduced number of neurons (or referred to as ’codes’ in Auto-
Encoder network)[45]. Auto-Encoder has been applied to a number of areas such as image compression and denoising.
Dimensionality reduction is the main application of Auto-Encoder network. Auto-Encoder has recently applied to Re-
duced Order Modelling [41, 46, 47, 48, 49]. In the work of [41], Auto-Encoder has been used for eigenvalue problems.
In [46], the convolutional Auto-Encoder combined with self-attention has been used to reduce the dimensional size of
the fluids images and Long short-term memory (LSTM) is used to predict the temporal fluid dynamics after reduction.
Wiewel et al. uses a Auto-Encoder to conduct the dimensionality reduction and LSTM to predict the fluid dynamics
[47].

The other deep learning method used in this work is the self-attention mechanism. It was presented to deal with
long sequence prediction problems. As an outstanding deep learning algorithm, the attention mechanism has generated
impressive results in natural language processing(NLP), computer vision and many other areas[50]. It imitates the
process of organism observation behaviour, especially in human beings, which means that after scanning the whole
image, a small target area in the image is noticed with more attention while other areas are neglected to various
degrees. In encoder-decoder model, the general attention mechanism calculates attention scores of each item between
the input(Source) sequence and the output(Target) sequence [51]. In self-attention-based models, each item in the input
sequence has been assigned an attention score via the scaled dot-product of global Query vector(Q) and Key vector(K),
which are linear projections from the inputs. The Q is obtained by transforming the input sequence into a information
vector, which contains information needs to be searched or queried. The K vector is obtained by transforming the
input sequence into a vector, which contains Keywords-like information. And the V is obtained by transforming the
input sequence into a exact value-like vector. These three vectors Q, K and V are similar to a searching process from a
searching website. For example, we input a word(Q) into a search engine, and the search engine searches the exact value
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(V) via Keywords (K). The self-attention mechanism connects all items of the input sequence via those three vectors,
even if the distance between the two items in the input sequence is large[52, 53]. Thus, the self-attention mechanism
contains both of the long-term relationship and the local dependencies of items in the input sequence. Due to this
advantage, it becomes popular recently in Natural Language Processing, visual tasks and speech recognition[54, 55].
Also, it has been used to construct a number of famous deep learning models such as Transformer[56] and Bert[57]. In
this work, we use it to construct a NIROM.

In our previous work, we presented a number of NIROMs, such as NIROM based on POD and Taylor series
[31], NIROM based on POD and Radial Basis Functions [58] and Long short-term memory (LSTM) [59]. This work
extends our previous work via replacing dimensionality reduction stage in ROM, in particular, the POD process, with
a deep learning method. In addition, self-attention based neural network architecture is used to represent the fluid
dynamics in the reduced space and it is used to construct the linear non-intrusive reduced order model (L-NIROM)
and NL-NIROM. We firstly use self-attention based deep learning architecture to construct a multi-variable response
function (hypersurface) to predict the fluid dynamics in a latent space. The new presented NL-NIROM and L-NIROM
are implemented under the framework of FLUIDITY [60]. The Fluidity is an open source, unstructured mesh, finite
element computational fluid dynamics (CFD) three dimensional model and it is capable of numerically solving the
Navier-Stokes (NS) equations. In order to illustrate the performance of this novel non-linear NIROM, two test cases,
flow past a cylinder and a lock exchange are illustrated. In addition, the performance of this NL-NIROM is compared
against the solutions of proper orthogonal decomposition (POD) based Linear NIROM(L-NIROM). The numerical
results show that the new NL-NIROM is capable of capturing the details of flows while the CPU time is reduced by
several orders of magnitude. In addition, it performs better than the POD based L-NIROM.

The structure of the paper is as follows. A detailed introduction of the governing equations is given in Section 2.
Section 3 provides a brief overview of Linear non-intrusive reduced order model (L-NIROM) based on traditional POD
method and self-attention based neural network architecture. Section 4 describes the newly non-linear non-intrusive
reduced order model (NL-NIROM) based on SAE and self-attention. Section 5 illustrates the performance of this two
types of NIROMs for two test cases: flow past a cylinder and lock exchange. Finally, in section 6, the summary and
conclusions are presented.

2. Governing equations

The three dimensional (3D) non-hydrostatic and incompressible Navier-Stokes equations which describe the con-
servation of momentum and mass of fluids are given by

∂u
∂t

+ u · ∇u − ν∇2u + ∇p = 0, (1)

∇ · u = 0, (2)

where u ≡ (u, v,w)T is the velocity field, p is the pressure, t is the time and ν > 0 is the kinematic viscosity. The
discretised form of the system can be written as

CT u = 0, (3)

M
∂u
∂t

+A(u)u +Ku + Cp = 0, (4)

where C is a pressure gradient matrix, M denotes the mass matrix, A(u) denotes the solution dependent streaming
operator andK denotes the matrix related to the remaining linear velocity terms. The velocity, u, is a vector containing
nodal values of all three components now, likewise, p is a vector containing the pressure nodal values.

3. Linear Non-intrusive reduced order modelling

This section presents a novel linear non-intrusive reduced order model based on traditional model reduction method:
POD and self-attention based neural network architecture.
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3.1. Proper orthogonal decomposition
In the POD method, any variables to be solved un (for example, the velocity, pressure or temperature) at a time

level n can be expressed by the following expansion,

u = u +

c∑
j=1

α jφ j, (5)

where α j represents the jth POD coefficient, φ j denotes the jth POD basis function and u is the mean of snapshots for
the variable u. c is the number of basis functions which can represent most of energy (99% for example) within the
chosen snapshot solutions.

The solutions x of the discretised governing equations(3 and 4) during certain simulation time period can form a
snapshot matrix A .

An SVD calculation is applied to the matrix A which results in three matrices,

A = UΣVT (6)

where U is left singular vectors with a size of N× N, V is right singular vectors with a size ofNs× Ns and Σ is singular
values matrix ( N × Ns ). The left singular vectors matrix U contains the POD basis functions. The singular values in
Σ give an indication as to how important each basis function is. If the singular value is small its corresponding basis
function can be discarded. A common criterion for choosing the number of POD basis functions is as follows: for a
tolerance ε . 1, find the smallest integer c such that ∑c

i=1 λ
2
i∑Ns

i=1 λ
2
i

> ε, (7)

where λi represents the ith singular value and c 6 Ns. For example, if ε takes the value 0.99, this means 99% of the
energy of the physical system would be captured by the first c leading POD basis functions.

3.2. Self-attention-based deep learning method
Self-attention was introduced by Vaswani et al.[56] as the basis of Transformer model, to deal with the long se-

quence modelling and transduction challenges faced by the encoder-decoder network in natural language processing.
The self-attention mechanism allows the source inputs to interact with each item (self process) and find out which item
should be paid more attention (’attention’ process). This makes the process of modelling long-range dependencies in
a sentence faster and more accurate than recurrent neural network (RNN) and convolutional neural network (CNN)
models[61]. The global information of the whole sequence could be captured with weights according to the computed
attention map. It allows self-attention models to show great potentials in long sequence processing and prediction. The
self-attention mechanism generates the relationship between each item in the input sequence such as POD coefficients
or code information in the reduced latent space via three matrices: query(Q), key(K) and Value (V). The working
process of those three matrices is similar to the process of a searching engine. The matrix Q, as the query, is the word
we entered in the searching bar, aiming to find out the best matching content from the database. The matrix K, similar
to the keywords, is the important information extracted from each item of the database, and it helps to accelerate the
searching process and save energy. The matrix V is the real value that need to be searched. In self-attention mechanism,
the correlation between two items is represented by the result of their similarity calculation, as shown in equation 11,
dot-product calculations are selected to find out the similarity between the matrix Q of one item and matrices K of all
items orderly in this sequence as the attention weights of this item. The self-attention neural network architecture has
shown to perform better than other models in long sequence prediction, such as LSTM [62, 63, 64].

In this work, we use the self-attention mechanism for temporal fluid dynamics prediction in the reduced space.
Unlike previous popular sequential models like LSTM, the self-attention mechanism learns the internal structure of
the reduced temporal fluid dynamics by calculating dependencies regardless of the distance between two time levels
in the inputs. For example, the source sequence (POD coefficients) α0,α1,α2, ...,ατ−1 generated by POD method at
different time levels: t = 0, t = 1, ..., t = τ − 1 are not necessarily inputted into the network in order. It is able to
generate relationships between two items with the largest distance, for example, ατ−1 and α0. τ is the number of time
levels or source sequence length. The self-attention mechanism uses the position embedding to save the temporal
position information for each time level. In this work, Time2vec[65], is used as the position embedding method (time
embedding).
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The attention block that represents fluid dynamics for our reduced order model is given in the Figure 1. It is sim-
ilar to only encoder part of a complete Transformer architecture, which is a sequence prediction model. Six attention
blocks, also called TF-Encoder blocks, are stacked as the main part of our model. In each block, instead of a single at-
tention function, groups of queries(Q), keys(K) and value(V) are projected h times(h=8) respectively as the multi-head
attention block with eight heads. This allows the model to jointly attend to information from different representation
subspace at different positions[56]. In Figure 1, the POD coefficients α0,α1,α2, ...,ατ−1 are inputted into the multi-
head attention in the left side of the figure. The output of the attention block is the next time level’s POD coefficient ατ.
And in the attention block, a position-wise fully connected feed forward network(FFN) block is following the multi-
head attention block as another important sub-layer. One nonlinear activate function(ReLU) layer with larger scale
and one linear layer are applied here aiming to enhance capability of extracted representations. The detailed opera-
tions inside the multi-head attention and feed forward layer can be found in Figure 2 (a) and (b) respectively. We also
employed the residual connection[66] around multi-head attention block and feed forward block separately to avoid
degradation of results in stacked model. The following layer, normalization layer helps to project the representations
into the input range of the activate function and simplify learning process of our model. The residual connection and
layer normalization functions are shown with similar layers but different inputs in step 5 and 7. The FFN block with
two layers is shown in 6. This whole attention block considers each item in inputs with different weights matrices, then
paying more attention on similar part and suppressing other useless information, which is important for the prediction
process. Especially, both global and local connections of inputs are considered together with parallelize computation
in multi-head attention part.
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Figure 1: The figure shows attention block in the NIROM architecture

The main process of self attention block has been summarised in Algorithm 1. In step (1), each code αt (t =

0, 1, 2, ..., τ − 1) represents one time levels complete set αt = (α1
t , α

2
t , ..., α

j
t , ...α

c
t , α

t2vlinear
t , αt2vsin

t ). c is the number of ba-
sis functions in Equation 5 and αt2vlinear

t , αt2vsin
t ) are linear and periodic time presentations calculated by Time2Vec(t2v)

mechanism [65]. The t2v mechanism is developed to save the temporal information in the form of a position em-
bedding. A multi-head attention will be used then to gather different fluid dynamics in different subspace. After the
multi-head attention, FNN prediction and normalisation will be performed. If self-attention mechanism is directly used
to predict the fluid dynamics in the full original high dimensional space, then the dimensional size could be huge, and
it could take long time to train the neural network. As such, the Auto-Encoder can be used to reduce the dimensional
size of data in the full original space before performing the self-attention prediction.

3.3. Linear NIROM based on POD and self-attention
This section presents the method of construction of a Linear Non-Intrusive Reduced Order Model (L-NIROM)

based on POD and self-attention neural network. POD based L-NIROM defines a linear projection between the field
values u and the corresponding POD coefficients α in reduced space. The construction of this L-NIROM is similar to
a NIROM based on POD and Gaussian Process Regression (GPR) [67]. The difference is that the L-NIROM presented
in this work uses self-attention mechanism to represent the fluid dynamics in the reduced space.
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Algorithm 1: Main process of self attention block

(1) Converting the inputs α0, ...,αt, ...,ατ−1 into a feature vector. (t = 0, 1, 2, ..., τ − 1) The inputs of attention
mechanism include the concatenation of codes extracted by Autoencoder and positional embedding by Time2vec.
The conversation process changes the inputs α0, ...,ατ−1 into α̃. αt = (α1

t , α
2
t , ..., α

j
t , ...α

c
t , α

t2vlinear
t , αt2vsin

t )

(2) Initialising h groups of trainable presentations, as multi-head, of the three vectors(Qi, Ki, Vi), WQ
i , WK

i and WV
i

(i = 1, 2, ..., h) by linear projections of input matrix α̃ respectively.

Qi = α̃ ×WQ
i ; (8)

Ki = α̃ ×WK
i ; (9)

Vi = α̃ ×WV
i ; (10)

where the projections are parameter matrices WQ
i ∈ R

dmodel×dk ,WK
i ∈ R

dmodel×dk , and WV
i ∈ R

dmodel×dv .

(3) Calculating the weighted scaled attention scores by Attention function for each inputs using:

Attention = so f tmax(
QiKT

i
√

dk
)Vi, i = 1, 2, ..., h (11)

where
√

dk is a scaling factor. The softmax function converts the vector into a probability distribution within a
range of [0, 1]. This score denotes the contribution from each input.

(4) Concatenating multi-head attention mechanism outputs: concatenate calculated representations from heads headi

together.
Multihead(α̃) = Multihead(Q,K,V) = Concat(head1, head2, headi..., headh)W (12)

headi = Attention(Qi,Ki,Vi), i = 1, 2, ..., h (13)

where the projection W ∈ Rhdv×dmodel .

(5) Adding and Layer normalization: a residual network and a normalization layer are implemented between the
input matrix α̃ and its Multi-head attention mechanism outputs.

β̃ = LayerNorm(α̃ + Multihead(α̃)) (14)

(6) Performing Feed-Forward Networks(FNN) output. This process consists of a Rectified Linear Unit (ReLU) and
linear transformations. It can be calculated by

F(β̃) = max(0, β̃W1 + b1)W2 + b2 (15)

whereW and b are weights and bias that need to be optimised in the training process of this model.

(7) Adding and Layer normalization: a residual network and a normalization layer are implemented between the
input matrix of FNN block β̃ and its outputs.

output = LayerNorm(β̃ + F(β̃)) (16)
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Figure 2: Multi-head attention architecture and Feed forward block architecture

In equation 5, the POD coefficient α j are solutions in reduced space and it can be solved by

α j(t + ∆t) = f AT N
j (α(t − τ + 1), ...,α(t − 1),α(t)) ∀ j ∈ {1, 2, . . . , c} . (17)

subject to the initial condition
α j(0) = ((u(0) − u), φ j), (18)

In above equation 17, the time step, ∆t, will coincide with that of the high-fidelity full model. τ denotes the number
of time levels in the input sequence in training data pair. α j denotes the jth POD coefficient. c denotes the number of
POD basis functions and it means the dimensional size in the reduced space. f AT N

j is the response function that needs
to approximated by self-attention neural network. In order to construct the self-attention neural network, Ns pairs of
input and output training data have been used to form the response function f AT N

j .

input: αt−τ+1,αt−τ+2, . . . ,αt−1,αt (19)
output: αt+1

j , (20)

for all t ∈ {1, 2, . . . ,Ns}. The bold α is one complete code information vector (α = α1, α2, ..., αc). The input consists of
τ time levels’ complete POD coefficients. The output αk

j denotes jth POD coefficients for time level t. This procedure is
repeated for each code information (i.e. for j ∈ {1, 2, . . . , c}), and once all the functions { f AT N

j }cj=1 have been determined,
the off-line stage is complete. The f AT N

j will be optimised by the self-attention neural network architecture. This
optimisation problem can be mathematically expressed as follows:

arg min
W,b

Loss
(
W, b

)
=

1
Ns

Ns∑
j=1

∥∥∥∥αPOD − αattention

∥∥∥∥2

2

=
1
Ns

Ns∑
j=1

∥∥∥∥αPOD −
(
(αiW1 + b1)W2 + b2

)∥∥∥∥2

2
,

(21)

whereW and b are weights and bias that need to be optimised in the neural network architecture. αPOD denotes the
POD coefficients, and αattention is the POD coefficients that are predicted by self attention based neural network. If three
hidden layers used in the self-attention neural network, then the αattention will be ((αiW1 +b1)W2 +b2)W3 +b3. Larger
number of hidden layers, that process will be repeated. The prediction process can be found in Algorithm 1.

The procedure of on-line prediction using the L-NIROM is summarized in Algorithm 2. The number of time steps
(T ) can be different from that used in the training period. That is, the L-NIROM can be run for a longer or shorter time
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than the high-fidelity full model.

Algorithm 2: On-line Linear NIROM calculation

The response functions,
{
f AT N

j

}c

j=1
are known.

The initial condition (α0), time step (∆t), initial time (t0) and number of time steps (T ) are given.

for n = 1 to T do
t = t0 + n∆t current time

Step (a): calculate the POD coefficients, αn, at the current time step:
for j = 1 to c do

αn
j = f AT N

j (αn−τ,αn−τ+1, . . . ,αn−1)
endfor

Step (b): obtain the solutions, velocity un for example, in the full space at the current time, t, by projecting
αn

j back onto the full space using Equation 22.

u = u +

c∑
j=1

α jφ j, (22)

endfor

4. Non-linear NIROM based on autoencoder and self-attention

This section presents a new non-linear NIROM using stacked Auto-Encoder self-attention neural networks. In the
dimensionality reduction process, we use a non-linear dimensionality reduction method, Auto-Encoder neural network,
to project the full original physical system into a non-linear subspace.

4.1. Stacked Auto-Encoder neural network
The basic Auto-Encoder (AE) is an unsupervised feed-forward neural network that can be used to reduce the

dimensional size. Instead of labelling the outputs for training, the AE network sets the output the same number of
nodes (neurons), shape and values as the inputs. It first maps the input data into a reduced dimensional latent space
(represented by a number of codes in the middle layer of the neural network) and then projects the latent representation
with reduced dimensional size to the output, see Figure 3.

The purpose of this particular neural network architecture is to reconstruct the input data into reduced dimensional
size. The input data will be velocity u, pressure p in flow past a cylinder case and temperature for the lock exchange test
case. An Auto-Encoder consists of two main parts, the encoder and the decoder, which can be described as transitions
E andD, such that:

E : X→ H (23)

D : H → X (24)

E,D = arg min
E,D

‖X − (E ◦ D)X‖2 (25)

In the simplest case (only one hidden layer), the encoder takes the input x ∈ {t0, t1, t2, ..., tm} = X and maps it to
% = H :

% = σ(Wx + b). (26)

In equation 26, the % is the code, or latent variables, or a reduced representation of the full system and will be used
for training the self-attention deep neural network. These representations are similar to the POD coefficients in POD
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based L-NIROM, but not identical. The dimensional size m in the reduced latent space can also be determined by SVD
method, which means that we can still use equation 7 to calculate m in Auto-Encoder neural network. One reason is
that Auto-Encoder neural network will capture more non-linear information using the same number of dimensional
size.

σ in equation 26 is an activation function such as a sigmond function:

σ(x) = 1/(1 + e−x) (27)

or tanh function:
tanh(x) = (ex − e−x)/(ex + e−x). (28)

W in equation 26 is the weights vector and b is a bias vector. The weights and biases are both initialised randomly, and
then updated iteratively using back-propagation. Then, at the decoder stage, the Auto-Encoder maps % to x′ with the
same shape as the input x:

x′ = σ′(W′% + b′), (29)

where W′, σ′ and b′ are weights, activation function and bias vector respectively for the decoder. The Auto-Encoder
is trained to minimise the errors between the inputs x and the reconstruction x′. The loss function or cost function
minimising the errors is then can be described as:

L(x, x′) = ‖x − x′‖2 = ‖x − σ′(W′(σ(Wx + b)) + b′)‖2 (30)

The stacked Auto-Encoder(SAE) is a neural network architecture with more then one hidden layers.

4.2. Non-linear non-intrusive reduced order modelling based on Auto-Encoder and Self-attention

This work presents a novel neural network architecture for reduced order model. The architecture can be described
in Figure 4. This Non-linear non-intrusive reduced order modelling (NL-NIROM) architecture consists of two main
parts: Auto-Encoder network and self-attention part. The Auto-Encoder network (above part in the figure) is con-
structed for projecting the full high-dimensional space into a reduced space (latent space). The multi-head scaled-dot
self-attention part (bottom part in the figure) is a structure that is used to represent the fluid dynamics in the reduced
space. Its inputs are the codes from the middle layer of Auto-Encoder network and its outputs will be next time level’s
predicted codes and then they are projected back to the full space via decoder. It includes input embedding, positional
embedding, attention blocks, flatten, Rectified Linear Unit (ReLU) and linear modules. This is similar to half of the
complete transformer architecture (Encorder part of the transformer architecture).
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Figure 4: The figure shows neural network architecture for NL-NIROM

4.2.1. Constructing the NL-NIROM (offline stage)
Having obtained the codes in the SAE network (middle layer of the SAE network) in section 4.1, the offline stage

of NL-NIROM will be completed by approximating the governing equations. This is achieved by using trained self
attention based deep neural network to predict how the governing equations would behave. All simulation results
generated by Fluidity at different time levels during a time period are projected onto the reduced space by the Auto-
Encoder neural network architecture. The dimensional size of the codes in the middle layer of SAE is much smaller
than that of the inputs, thus decreasing the dimensional size of the problem drastically. The codes information is similar
to the POD coefficients in the POD method. The weights of neurons in other layers (excluding input, output and middle
layers) store the projection information (projecting full original space into a reduced space and projecting back), which
are similar to the POD basis functions in the POD method, see [58]. The codes are then used to train the self-attention
deep neural network. This training results in a function f j for each code value (reduced coefficient), which maps the
set of code values from τ time levels (%k−τ−1, %k−τ, . . . , %k−1) to the associated code value at the next time level (%k

j), i.e.

%k
j = f j(%k−τ, %k−τ+1, . . . , %k−1)

= f j(%k−τ
1 , %k−τ

2 , . . . , %k−τ
m , %k−τ+1

1 , %k−τ+1
2 , . . . , %k−τ+1

m , . . . , %k−1
1 , %k−1

2 , . . . , %k−1
m ), (32)

∀k ∈ {1, 2, . . . ,Ns} .

where τ denotes input data length in training data. % j denotes the jth code information for SAE method. m denotes the
number of codes used in the SAE network and it means the dimensional size in the reduced latent space. Ns denotes
the total number of time levels, and it equals to the total number of snapshots. By including the initial condition, we
have Ns pairs of input and output data that are used to form the response function f j. The inputs of the function f j

is %k−τ, %k−τ+1, . . . , %k−2, %k−1 and output is %k
j, for all k ∈ {1, 2, . . . ,Ns}. The bold % is one complete code information

vector (% = %1, %2, ..., %m). The input consists of τ time levels’ complete code information. The output %k
j denotes jth

code information for time level k. This procedure is repeated for each code information (i.e. for j ∈ {1, 2, . . . ,m}),
and once all the functions { f j}

m
j=1 have been determined, the off-line stage is complete. The f j is optimised by the
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Algorithm 3: Main process of NL-NIROM

(1) Generating Nt snapshots (for example, solutions u or p) by running the high fidelity full model governed by
Equation (3) and (4);

(2) Treating one time level’s snapshot as one sample, and there are Nt snapshots samples in total to train the
Auto-Encoder network;

(3) Calculating the code values using trained Auto-Encoder network;

(4) Constructing self attention based deep learning network;

(5) Predicting code values using trained self attention based deep learning network;

(6) Projecting the predicted code values in the reduced latent space back into the full space using trained
Auto-Encoder network.

x′ = σ′(W′% + b′), (31)

self-attention neural network architecture. This optimisation problem can be mathematically expressed as follows:

arg min
W,b

Loss
(
W, b

)
=

1
Ns

Ns∑
j=1

∥∥∥∥%AE − %attention

∥∥∥∥2

2

=
1
Ns

Ns∑
j=1

∥∥∥∥%AE −
(
(%iW1 + b1)W2 + b2

)∥∥∥∥2

2
,

(33)

whereW and b represent weights and bias that need to be optimised in the self-attention neural network architecture.
%AE denotes the code values in the Auto-Encoder neural network, and %attention is the code values that are predicted by
self attention neural network. If three hidden layers are used in the self-attention neural network, then the %attention will
be ((%iW1+b1)W2+b2)W3+b3. Larger number of hidden layers, that process will be repeated. The weight distribution
of each head follows certain accuracy of the initial distribution, and then it is fine-tuned during the following epochs
training. After the training converge step by step, the attention maps of heads are trained as learned weights with more
precise and finer details.

4.2.2. Running simulations with the NL-NIROM (online stage)
For running the NL-NIROM, the functions { f j}

m
j=1 are treated as response functions allowing the code information

at one time level to be predicted given those at τ previous time levels

% j(t + ∆t) = f j(%(t), %(t − 1), ..., %(t − τ + 1)) ∀ j ∈ {1, 2, . . . ,m} . (34)

We remark that when running the NL-NIROM, the time step, ∆t, will coincide with that of the high-fidelity full model.
The procedure of on-line prediction using the NL-NIROM is summarized in Algorithm 4. The initial condition can be
different than that used in the high-fidelity full model. After constructing the NL-NIROM, it can start from any time
levels, which means the number of time steps (T ) can be different than that used in the training period. That is, the
NL-NIROM can be run for a longer or shorter time than the high-fidelity full model.
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Algorithm 4: On-line NL-NIROM calculation

The response functions,
{
f j

}m

j=1
are known and Auto-Encoder network is already trained.

The initial condition (%0), time step (∆t), initial time (t0) and number of time steps (T ) are given.

for n = 1 to T do
t = t0 + n∆t current time

Step (a): calculate the code values, %n, at the current time step:
for j = 1 to m do

%n
j = f j(%n−τ, %n−τ+1, . . . , %n−1)

endfor

Step (b): obtain the solutions, velocity un for example, in the full space at the current time, t, by projecting
%n

j back onto the full space using the Auto-Encoder network using Equation 29.

un = σ′(W′% + b′)

endfor

5. Illustrative numerical examples

In this section, we demonstrate the capability of NL-NIROM using two test problems, namely, a 2D flow past a
circular cylinder and a lock exchange. The full model with simulation solutions of these two problems are generated via
the finite element fluid model Fluidity[68]. In both test cases, unstructured triangular meshes were used with sufficient
resolution to ensure accurate solutions. Using this snapshot data the NL-NIROM were constructed and then used to
predict the problems.

In this demonstration a comparison between Auto-Encoder based NL-NIROM and POD based ROM has been
carried out. In addition to comparing solution profiles, correlation coefficients and solution errors (root-mean-square
errors(RMSE)) are analyzed. The formulation of CC can be described as,

CC(X(t), X̂(t)) =
cov(X(t), X̂(t))
σX(t)σX̂(t)

=
E[(X(t) − µX(t))(X̂(t) − µX̂(t))]

σX(t)σX̂(t)
, (35)

where X̂(t) and X(t) are ROM and high-fidelity full model at time level t respectively. The µX(t) and µX̂(t) are the
expected values of X(t) and X̂(t), σX(t) and σX̂(t) are standard deviations. The correlation coefficient measures the
strength of relationship between two variables, for example, high-fidelity model solutions and NIROM solutions in this
work. It shows how close the NIROM’s solution is to the high fidelity model’s solutions. If the values are greater than
0.8, it means that the relationship between two variables is considered to be significant.

The RMSE measures the differences between solutions and it is computed as

RMS E(t) =

√√√
(

1
F

)
F∑

i=1

(x̂i(t) − xi(t))2, (36)

where F is the number of nodes in the computational domain.
Also, the reconstruction descriptors f̂ from ROM models are compared with the full physical space values f sepa-

rately. The relative error 4 f can be measured in the relative L2-norm below:

4 f =

∥∥∥ f̂ − f
∥∥∥

2

‖ f ‖2
(37)
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Figure 5: Case 1: computational domain of flow past a cylinder test case

5.1. Case 1: Flow past a cylinder
In the first numerical example, a two-dimensional flow past a cylinder is simulated. The computational domain is

2 units in length and 0.4 units in width, and it includes a cylinder of diameter 0.1 units (L) positioned over the centre

point at (0.2, 0.2), as shown in Figure 5. The dynamics of the fluid flow is driven by an in-flowing liquid that enters

the domain via the left boundary with an inlet velocity of 0.5 meters per second (V = 0.5). The fluid flows past the

cylinder and through the right boundary of the computational domain. No-slip and zero-outward-flow conditions are

applied to the lower and upper edges of the domain, while Dirichlet boundary conditions are applied to the wall of the

cylinder. The Reynolds number for this problem is set to 1000, with a kinematic viscosity of 5 × 10−5.

This problem was simulated for a time period of 200 seconds, with a time step size of Δt = 0.01. From the full

model simulation, with a mesh of 12568 nodes, 2000 snapshots were obtained at equal time intervals Δt = 0.1 for each

of the velocity components (u, v) and pressure p solution variables. 70% of the simulation data is used for training

model. 10% of the simulation data is used to validate the model and 20% of the simulation data is used to test the

model. In deep or machine learning, the more training data is used, the better prediction results can be expected.

Different test cases may need different amount of training data. It is case dependent as it is a data-driven modelling.

In this test case, we generated enough simulation data including the periodic system in order to get accurate solutions.

The input number of time levels is 40 in this case.

Figure 6 shows the field of velocity solutions obtained from the full model, NL-NIROM with 2, 3 and 4 codes and

L-NIROM with 4 POD basis functions at trained time level t = 100s and predicted time level t = 180s. As shown in the

figure, the solutions of NL-NIROM are closer to the high-fidelity full model when a larger number of codes are used.

From these flow patterns it is shown that both the NL-NIROM and L-NIROM methods can capture main structural

details of the solutions and the NL-NIROM performs better using as few as 2 codes. Additionally, the simulation

outputs in pressure field of the NL-NIROM also appears to be in closer agreement to the full model solutions than

that of L-NIROM. This issue is highlighted in the graphs presented the lift coefficient CL and drag coefficient CD over

time in Figure 7 which show the L-NIROM predicted solutions have more deviations from the full model solution than

NL-NIROM. The lift and drag coefficient are calculated by

CL(t) = −
2

LV2

∫
S

(ν
∂utS

∂n
nx + pny)dS (38)

CD(t) =
2

LV2

∫
S

(ν
∂utS

∂n
ny − pnx)dS (39)

where utS is the tangential velocity component [ny,−nx]T at the surface S , defined as utS = u · [ny,−nx]T .

The streamline of velocity solutions of full model, NL-NIROM with 4 codes and L-NIROM with 4 POD basis

functions at predicted time level t = 180s are shown in Figure 8.

The errors considering all of the nodes in the computational domain is given in Figure 9. The graphs (a) and

(b) in Figure 9 show correlation coefficients and RMSE errors of the NL-NIROM and POD based L-NIROM. Again,

these exhibit that a noticeable improvement in accuracy is gained when using the Auto-Encoder network, whereby the

errors are reduced in comparison to POD based L-NIROM method. The graphs also show that using larger number of

codes results in improved accuracy. The errors between the two ROMs and the high-fidelity full solutions at two time

levels t = 100s and t = 180s are presented in Figure 10, which shows that the errors decrease using the Auto-Encoder
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(a) full model, t = 100s (b) full model, t = 180s

(c) NL-NIROM with 2 codes (d) NL-NIROM with 2 codes

(e) NL-NIROM with 3 codes (f) NL-NIROM with 3 codes

(e) NL-NIROM with 4 codes (f) NL-NIROM with 4 codes

(g) L-NIROM with 4 POD basis functions (h) L-NIROM with 4 POD basis functions

Figure 6: Case 1: flow past a cylinder. The graphs (a)-(h) show the field of velocity solutions obtained from the full model, NL-NIROM with 2, 3

and 4 codes and POD based L-NIROM at trained time level t = 100s and predicted time level t = 180s.

(a) Lift Coefficient (b) Drag Coefficient

Figure 7: Case 1: Flow past a cylinder. Lift and drag coefficients over time are extracted from reconstructions of the full model, L-NIROM with 4

POD basis functions and NL-NIROM with 4 codes.
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(a) Streamline of Full Model

(b) Streamline of NL-NIROM with 4 codes (c) Streamline of L-NIROM with 4 POD basis functions

Figure 8: Case 1: flow past a cylinder. The streamline of velocity magnitude solutions of full model, NL-NIROM with 4 codes and L-NIROM with

4 POD basis functions at predicted time level t = 180s.

based NL-NIROM. The errors of the NL-NIROM are mainly from the dimensionality reduction and reconstruction

of the flow field when the flow is stable. The Auto-Encoder based NL-NIROM is more accurate than that of POD

based L-NIROM using identical dimensional size. We also compared NL-NIROM with POD based L-NIROM using

larger number of dimensional size in the latent/reduced space. Figure 11 shows the relative error between the full

model values and ROMs results against their dimension in the reduced latent space. The relative error is calculated by

Equation 37. Compared with the POD based L-NIROM, NL-NIROMs display higher accuracy using less dimensional

size in the reduced latent space. In addition, the errors reduces very fast in the first 12 codes, which means that the

NL-NIROM is able to capture most of the energy of the full system using only 12 codes while L-NIROM needs more

than 24 basis functions to capture the same energy.
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(a) Correlation Coefficient (b) RMSE

Figure 9: Case 1: Flow past a cylinder. Correlation coefficient and the root-mean-square errors(RMSE) of velocity solutions calculated for Auto-

Encoder based NL-NIROM with 2, 3, 4 codes and POD based L-NIROM with 4 basis functions.

(a) L-NIROM with 4 basis functions error, t = 100s (b) L-NIROM with 4 basis functions error, t = 180s

(c) NL-NIROM with 4 codes error, t = 100s (d) NL-NIROM with 4 codes error, t = 180s

Figure 10: Case 1: Flow past a cylinder. Velocity errors of flow past a cylinder problem at time levels 100 s (left) and 180 s (right). The solutions

compare the error in POD based L-NIROM and Auto-Encoder based NL-NIROM. Both models are established using a dimensional size of 4.

Figure 11: Case 1: Flow past a cylinder. The relative error of velocity between the full model and two NIROMs against their dimensional size in

reduced space.
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Figure 12: Case 2: Computational domain of a lock exchange case

5.2. Case 2: Lock exchange

In the second numerical example, a two dimensional lock exchange problem is demonstrated. The problem consists
of cold and hot fluids with different densities, which are separated by a lock. The cold fluid is at the left and the hot
fluid is at the right. Two gravity currents propagate along the tank after the lock is removed [69]. The computational
domain is a non-dimensional rectangle with a size of 0.8 × 0.1, see Figure 12. The mesh has 13231 nodes. The initial
non-dimensional temperatures are set to be T = −1 for the cold fluid and T = 1 for the hot fluid. The initial conditions
for the pressure and velocity are set to be zero. The isotropic viscosity is 1 × 10−6. The Crank–Nicolson method is
used in the temporal discretisation. In this work, temperature field evolution is simulated via the Fluidity. From the full
model simulation by Fluidity, 3200 snapshots were obtained at regularly spaced time intervals ∆t = 0.025 for solution
variables. The simulation period is 80s and 70% of the simulation data is used for training the attention based deep
neural network in order to predict the fluid dynamics. 10% of the simulation data is used to validate the model. 20%
of the simulation data is used to test the model. The input number of time levels (τ in Equation 33) is 60 in this case.

Figure 13 shows that the temperature solutions obtained from the full model, NL-NIROM with 8, 12, 18 and 24
codes and L-NIROM with 8, 12, 18 and 24 POD basis functions at time t = 30s and 60s respectively. As shown in the
figure, both of the Auto-Encoder based NL-NIROM and POD based L-NIROM can capture dominant structural details
of the numerical solutions.

In order to assess the predictive capability of the model, the predicted solutions at an unseen time level t = 79s
are provided in Figure 14. The temperature solution profiles of these different models are close. In order to see
clearly the differences, the temperature solution comparison at a particular nodal point (x, y) = (0.3315, 0.042) in the
computational domain is given in Figure 15. The reason why we chosen this particular point is because it contains the
cold and hot fluids propagation information and the temperature exchanges actively at this point. The figure 16 shows
the temperature solutions obtained from the full model, NL-NIROM with 8, 12, 18, 24 codes and L-NIROM with 8, 12,
18, 24 POD basis functions at that particular point (x, y) = (0.3315, 0.042). In addition, the errors considering all points
in the computational domain are given in Figure 17. These figures show that the NL-NIROM performs very well using
as few as 8 codes. In addition, the temperature profile of the NL-NIROM appears to be in closer agreement to the full
model solutions than that of POD based L-NIROM. Also, the NL-NIROM with larger number of codes exhibits more
accurate solutions. This issue is highlighted in the graphs presented in Figure 17, which show correlation coefficient
and the root-mean-square errors (RMSE) of temperature solutions calculated from NL-NIROM with 8,12,18,24 codes
and L-NIROM with 8,12,18,24 POD basis functions. The correlation coefficient and RMSE consider errors of all of
the points in the computational domain. The formulations of calculating correlation coefficient and RMSE are given
in Equations 35 and 36 respectively. Figure 18 shows the residual errors between the high-fidelity full model and the
different ROMs at time level t = 60s and t = 79s. As shown in the figure, the overall errors from L-NIROM with 24
POD basis functions are larger than those of Auto-Encoder based NL-NIROM with 8 codes. The graphs also show
that using larger number of codes results in improved accuracy in Auto-Encoder based NL-NIROM. The relative error
between the full model solutions and ROMs against their dimensionality size in the reduced space is shown in Figure
19. From the figure, we can see that the NL-NIROM has less error than the L-NIROM. The results of NL-NIROM
with 8 codes almost have the same accuracy with the L-NIROM with 24 basis functions. The NL-NIROM (red line)
converges much faster than the L-NIROM (blue line).
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(a) Full Model, t = 30s (b) Full Model, t = 60s

(c) NL-NIROM, code number = 8 (d) NL-NIROM, code number = 8

(e) NL-NIROM, code number = 12 (f) NL-NIROM, code number = 12

(g) NL-NIROM, code number = 18 (h) NL-NIROM, code number = 18

(i) NL-NIROM, code number = 24 (j) NL-NIROM, code number = 24

(k) L-NIROM with 8 POD basis functions (l) L-NIROM with 8 POD basis functions

(m) L-NIROM with 12 POD basis functions (n) L-NIROM with 12 POD basis functions

(o) L-NIROM with 18 POD basis functions (p) L-NIROM with 18 POD basis functions

(q) L-NIROM with 24 POD basis functions (r) L-NIROM with 24 POD basis functions

Figure 13: Case 2: Lock Exchange. The temperature solutions obtained at time t = 30s and 60s from the full model, NL-NIROM with 8,12,18 and
24 codes and L-NIROM with 8,12,18 and 24 POD basis functions respectively.
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(a) Full Model, t = 79s

(b) NL-NIROM, code number = 8

(c) NL-NIROM, code number = 12

(d) NL-NIROM, code number = 18

(e) NL-NIROM, code number = 24

(f) L-NIROM with 8 POD basis functions

(g) L-NIROM with 12 POD basis functions

(h) L-NIROM with 18 POD basis functions

(i) L-NIROM with 24 POD basis functions

Figure 14: Case 2: lock exchange. The graphs (a) show the temperature solutions from the full model at predicted time level t = 79s, (b)-(i) show
NL-NIROM with 8,12,18 and 24 codes and L-NIROM with 8,12,18 and 24 POD basis functions at the same time level
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Figure 15: Case 2: lock exchange. Selected point (x, y) = (0.4038, 0.095) in the computational domain

Figure 16: Case 2: lock exchange. The temperature solutions obtained from the full model, NL-NIROM with 8, 12, 18, 24 codes and L-NIROM
with 8, 12, 18, 24 POD basis functions at that particular point.
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(a) Correlation Coefficient (b) RMSE

Figure 17: Case 2: Lock exchange. Correlation coefficient and the root-mean-square errors(RMSE) of temperature solutions from Auto-Encoder
based NL-NIROM with 8,12,18,24 codes and POD based L-NIROM with 8,12,18,24 basis functions.

(a) L-NIROM error, 24 POD basis functions, t = 60s (b) L-NIROM error, 24 POD basis functions, t = 79s

(c) NL-NIROM error, 8 codes, t = 60s (d) NL-NIROM error, 8 codes, t = 79s

(e) NL-NIROM error, 12 codes, t = 60s (f) NL-NIROM error, 12 codes, t = 79s

(g) NL-NIROM error, 18 codes, t = 60s (h) NL-NIROM error, 18 codes, t = 79s

(i) NL-NIROM error, 24 codes, t = 60s (j) NL-NIROM error, 24 codes, t = 79s

Figure 18: Case 2: Lock Exchange. Temperature errors between full model and two different NIROMs at time levels 60s and 79s. The solutions
compare the errors in L-NIROM with 24 POD basis functions(first row) and Auto-Encoder based NL-NIROM with 8,12,18 and 24 codes (following
rows).
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Figure 19: Case 2: lock exchange. The relative error of temperature between the full model and two NIROMs solutions against their dimensional
size in the reduced space.

5.3. Computational efficiency

Table 1 shows the CPU cost (online cost and offline cost) required for running the high-fidelity full model and NL-
NIROM for each time step. It is worth mentioning that the online CPU cost (dimensionless) required for predicting the
NL-NIROM for one time step is only 3.0E − 02 s, while the high-fidelity full model for the flow past a cylinder case is
2.5 s. The computational cost of the high-fidelity full model will increase as the mesh size increases. For a complicated
test case with larger number of nodes, the NL-NIROM can gain several orders of magnitude speed up. The training
time of self-attention neural network is big, however, it is offline, which means it does not need to run again after is
pre-computed. The training time of SAE neural network (dimensionality reduction stage) is comparatively less than
that of self-attention stage. The reduction computational cost of training Auto-Encoder network is higher than that of
obtaining POD basis functions. However, it has more or less the same time complexity with the POD stage, see the
reduction cost column in the Table 1.

The full model simulations and NL-NIROM online predictions were performed on a workstation with an Intel 8
cores i7-9700 Processor (3.00GHz base frequency and 4.70GHz Max Turbo Frequency) and 24G RAM. The training
of NL-NIROM were performed on Google’s Colaboratory platform, which allows AI researchers to write and execute
python scripts in the web browser. It also provides GPUs for deep learning training.

Table 1: CPU time required to run the full-fidelity full model, L-NIROM based on POD/Self-Attention(SE) and NL-NIROM based on AE/SE(s)
Cases Models Reduction* Self-attention training** Run Nodes
Flow full model \ \ 2.5 12568
past a POD/SE(4) 8.7701 233.4754 3.0387E − 02 12568

cylinder AE/SE(2) 10.4528 186.3898 3.0064E − 02 12568
AE/SE(3) 10.4101 272.8074 3.0296E − 02 12568
AE/SE(4) 11.3381 218.3514 3.0087E − 02 12568

Lock full model \ \ 0.165 13231
exchange POD/SE(24) 3.6774 774.8551 3.2213E − 03 13231

AE/SE(8) 12.6045 767.7650 3.0513E − 03 13231
AE/SE(12) 18.4910 745.5080 3.0291E − 03 13231
AE/SE(18) 27.7016 754.5975 3.1131E − 03 13231
AE/SE(24) 37.1502 789.9625 3.1941E − 03 13231

* The training time of Auto-Encoder model for 5 epochs
** The training time of Self-attention model for 100 epochs
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6. Conclusions

A new non-linear non-intrusive reduced order model (NL-NIROM) is presented in this work. This is achieved by
constructing a new model reduction deep learning neural network architecture. The architecture consists of two main
parts: Auto-Encoder and self-attention. The Auto-Encoder part is used to project the high-dimensional full space into
a much lower dimensional space while the self-attention part involves constructing a number of functions representing
the fluid dynamics in reduced space. The new NL-NIROM has been implemented under the framework of an advanced
three dimensional finite element mesh fluid model (Fluidity). The performance of this NL-NIROM has been illustrated
by two numerical problems: flow past a cylinder and a lock exchange test cases. A detailed comparison between the
high-fidelity full model and two NIROMs has been made. The results show that Auto-Encoder based NL-NIROM
performs better than POD based linear NIROM (L-NIROM). Significant CPU speed-up is achieved compared to the
high-fidelity full model. The advantage of this NL-NIROM is that it is able to capture more non-linearity information
than POD based L-NIROM.

The NL-NIROM will be applied into more complicated fluid problems in the future, such as large scale urban flows,
flooding, multi-phase flow and ocean modelling. The predictive capability of NL-NIROM has strong connections with
the amount of training data. Larger number of training data generally leads to higher accuracy, while it can be case
dependent. Future work will also involve developing a parametric NL-NIROM capable of handling varying initial
and boundary conditions. In addition, our future work will also combine this data-driven NL-NIROM with physical
equations to build a hybrid reduced order model to make simulations when training data is not enough[70].
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